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A B S T R A C T

The former mining site at Kisgruva near Kongsberg, Norway, is primarily composed of worked sulphide ore
deposits, of hydrothermal origin, which occur within Precambrian metamorphic basement. Though the original
targets at the Kisgruva mine site were extraction of copper (Cu), sulphur (S) and iron (Fe), the sulphide ore also
contains exceptionally high concentrations of selenium (Se) and tellurium (Te), hosted within selenides
(clausthalite and minor naumannite) and tellurides (hessite and minor altaite and tellurobismuthite). Both Se
and Te are also present within the sulphide ore in pyrite and chalcopyrite, which contain exceptionally high
concentrations of up to 688 ppm Se and 81 ppm Te. Additionally, oxidative weathering of the exposed bedrock
has resulted in the accumulation of hyper-enriched, unconsolidated weathered crust deposits at surface (Se up to
1590 ppm; Te up to 63 ppm), containing selenite (SeO3

2−) and tellurite (TeO3
2−) ions. Concentrations of Se and

Te are subsequently higher in the weathering products than in the sulphide ore, due to fixation on to organic
matter (∼0.4% in weathered ore crusts), jarosite (formed from oxidation of sulphides from the primary ore),
ferric oxide and hydroxide phases (goethite and haematite). Increasing demand for Se and Te to use in green
technologies has led to the reassessment of these orebodies and their associated weathered ore crust deposits.
Though these elements are currently considered mining contaminants, this and similar sites may be of future
economic importance, particularly as demand for Se and Te continues to rise.

1. Introduction

A greater knowledge of how critical element such as selenium (Se)
and tellurium (Te) concentrate and are spatially distributed in solid ore
rock and the associated weathered profile is of increasing economic
importance. This is particularly relevant as the worldwide demand for
viable sources of Se and Te continue to grow. The former Kisgruva
sulphide mine in the Kongsberg region of Buskerud (Norway) is known
to host high Se and Te concentrations, though well-constrained data
from the region are limited (NGU, 1981, 2017; Bjerkgård, 2015;
Kotková et al., 2018). This is in part due to the historically low eco-
nomic importance of Se and Te. Concentrated Se from ore extraction
activities is presently considered toxic, particularly relating to its lib-
eration and release from mining sites (Lemly, 2004; Sandy et al., 2010;
Khamkhash et al., 2017). Tellurium is also toxic in high concentrations
(Pohl, 2011; Schirmer et al., 2014), particularly in the form of tellurite
(TeO3

2−; Templeton et al., 2000; El-Shahawi et al., 2013). However, in

recent years, Se and Te have become critical ‘E-tech’ elements, used in
alloys, photovoltaic products and nanotechnologies (Ba et al., 2010;
Belzile and Chen, 2015; Jin et al., 2016; Wei et al., 2016), and minerals
such as pyrite should be considered a potential source of economic
interest for these elements (Keith et al., 2017). The growing necessity
for sources of E-tech elements has led to an increasing focus on new
potential concentrated Se and Te deposits and a review of former ore
mining sites, such as the Kisgruva site.

The Kisgruva site is part of the greater Kongsberg mining region
(Fig. 1). Vein deposits in banded diorite, granitic gneiss and amphibo-
lite have been extensively worked in the Kongsberg region for Cu and
Ag deposits for over five centuries (Bugge, 1917, 1928, 1937; NGU,
1981, 2017). This metamorphic sequence follows the north-south par-
allel regional ‘fahlbands’, which are subvertical zones enriched in sul-
phides of hydrothermal origin (Bugge, 1917, 1928, 1937; Gammon,
1966; Boyle, 1968; Kotková et al., 2018). To the south of Kongsberg, a
more sporadic distribution of sulphide deposits has been worked on a
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smaller scale, including the Kisgruva deposit (Bugge, 1928; NGU, 1981,
2017; Fig. 1). Former Kisgruva workings are now characterised by ex-
posure of extensively worked sulphide ore deposits, the metamorphic
bedrock host and the outermost weathered sulphide ore crust. A po-
tentially key Se (and by chemical association, Te) source in near-surface
environments is an oxidation zone of Se and Te-bearing mineral phases,
sulphide deposits and associated waste products (Charykova and
Krivovichev, 2017), meaning sites such as Kisgruva may host poten-
tially high Se in both primary ore deposits and their weathered deri-
vatives. Secondary formation of Se and Te-bearing mineral phases is
caused by active precipitation of aqueous solutions in near-surface
conditions within the oxidation zone of sulphide ores, under conditions
of seasonal fluctuations of temperatures and atmospheric pressure
(∼1 bar) (Charykova and Krivovichev, 2017). Elements such as Se and
Te may be mobilised under oxidising conditions (Howard, 1977;
Northrop and Goldhaber, 1990; Simon et al., 1997; Xiong, 2003; Min
et al., 2005; Spinks et al., 2014, 2016), and re-precipitated in the pre-
sence of a reducing agent (e.g. carbonaceous materials, sulphides,
biogenic H2S, ferromagnesian minerals; Spinks et al., 2014, 2016).
These elements may be co-precipitated with iron oxides and adsorbed
from solution (Parnell et al., 2018).

Despite a handful of reports and studies which refer to high Se in the
region (NGU, 1981, 2017; Bjerkgård, 2015; Kotková et al., 2018), the
mineralogy and trace element geochemistry of Kisgruva sulphide ore

deposits, metamorphic bedrock and weathered ore crust is relatively
unknown. Therefore, the aims of this study are to:

• Obtain an overview of Se and Te concentrations in Kisgruva sul-
phide ore, bedrock and weathered ore crust.

• Identify mineral hosts and speciation of Se and Te at Kisgruva.

• Determine the processes of Se and Te mobility and fixation at
Kisgruva.

• Review the economic potential of the Kisgruva site for Se and Te.

Sampled deposits include (1) the mineralised sulphide ore zones, (2)
the crystalline metamorphic bedrock host, and (3) the outermost
weathered crust of the ore. Sample mineralogy, whole rock Se and Te
concentrations and Se and Te speciation were determined for sulphide
ore and weathered ore crust deposits. High Se and Te deposits in
Kisgruva offer an opportunity to assess the means of occurrence, ori-
gins, transport mechanisms and enrichment of these critical elements.
Sulphide ores and associated weathered ore crusts at Kisgruva and si-
milar sites former mining sites may provide a key source of Se and Te,
important as demand continues to increase worldwide.

2. Historic mining at Kisgruva

The former Kisgruva mine (Figs. 1 and 2) has an estimated 581

Fig. 1. Geological map and sampling location in the Kisgruva area of the Kongsberg mining region (modified after Viola et al., 2016; Kotková et al., 2018).

Fig. 2. Sampling sites and local geology in the Kisgruva mining region (modified after Viola et al., 2016; Kotková et al., 2018).
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thousand tons of reserves, with 50 thousand tons produced during
operations, and 3200m3 volume of dump remaining (NGU, 1981,
2017). The Kisgruva deposit was predominantly worked for Cu, grading
up to 1.55% (Bugge, 1928), and for sulphides for use in Ag smelting
processes in the nearby town of Kongsberg (Fig. 1). Operations com-
menced at Kisgruva in 1650, with regular production finishing in 1902.
Since 1944, the site has seen sporadic activity and exploration, in-
cluding geophysical surveying, core drilling and inspections (NGU,
1981, 2017).

Drilling in the 1950s identified potentially ore grade materials, in-
cluding 1.01% Cu, 1.18% Zn, 19.5% S, 430 g/t Se, 25 g/t Ag and 2.5 g/t
Au. High Se was confirmed in the 1980’s, but Au content could not be
validated (NGU, 1981, 2017). The mine today is predominantly water
filled. During surveying by the Norwegian Institute for Water Research
in 2001–2002, water samples were taken at Kisgruva (NIVA, 2003).
Water sample results showed that mining activities produced a highly
acidic drainage, with a pH of approximately 2.7. Iron (Fe) is the most
important heavy metal in drainage water (up to 66.6 mg/l), as well as
SO4 (572mg/l) (NIVA, 2003). Concentrations of Ca, Mg, Al, Cu, Zn, Cd,
Pb, Mn, Ni, Co and Si were also measured. With the exceptions of Fe
and SO4, results indicated that Cu and other measured metal con-
taminations were low. If an annual rainfall is assumed, coupled with an
average concentration of Cu of 3mg/l and a medium water drainage at
1 l/s, the annual Cu transport from the area was estimated at ∼90 kg
(NIVA, 2003).

3. Geological setting

The Kisgruva area forms part of the Kongsberg gneiss complex of
island arc volcanosedimentary sequences and plutonic rocks
(1570–1500Ma, Andersen et al., 2004), affected by Sveconorwegian
deformation and amphibolites facies metamorphism (Bingen et al.,
2008b). The Kisgruva region is characterised by metamorphic rocks,
with Cambro-Silurian sediments to the south east (Figs. 1 and 2). The
Kisgruva area and greater Kongsberg region has undergone a sustained
history of deformation and metamorphism, with periods of deposition
and igneous activity, summarised in Table 1 and here (for a more
comprehensive summary, see Starmer, 1985; Andersen et al., 2004;

Bingen et al., 2008a, b; Bjerkgård, 2012). Following the initial period of
deposition and volcanism (∼1700–1600Ma), the Kongsberg region
underwent amphibolite-granulite facies metamorphism (under ap-
proximate conditions of 700–800 °C and 6–8 kbar). This produced a
zone of folded and sheared metasediments and granitic gneisses
(formed 1700–1500Ma), metamorphosed and deformed during the
Kongsbergian orogeny (1600–1450Ma) (Starmer, 1985; Andersen
et al., 2004; Bjerkgård, 2012). This was followed by further intrusive
activity and associated deformation, before a second phase of meta-
morphism reached greenschist to amphibolite facies metamorphism
during the Sveconorwegian Orogeny (∼1110–1080Ma) (Starmer,
1985; Bingen et al. 2008b).

The Kisgruva deposit forms part of the regional fahlbands. The
sulphide-bearing fahlbands form concordant layers throughout the
Western Kongsberg Complex and Eastern Kongsberg Complex, which
contain variable quartz-plagioclase-biotite-hornblende gneisses
(Starmer, 1985). These variable gneisses show chemical composition
characteristics of dacitic-andesitic volcanics and greywackes, reflecting
their mixed volcanic-sedimentary origin (Starmer, 1985). The crystal-
line bedrock was formed∼ 1400–1500Ma, intruded by 1160–70Ma
granitoids (Bingen et al., 2008a; Scheiber et al., 2015). The fahlbands
trend subparallel to the foliation of the surrounding lithologies, and are
strongly deformed, suggesting formation prior to the regional de-
formation and metamorphism (Gammon, 1966; Kotková et al., 2018).
Sulphide ores within the metamorphic basement occur as occasional
lenses up to 1m in length, consisting of pyrite, chalcopyrite and pyr-
rhotite (Gammon, 1964; NGU, 2017; Kotková et al., 2018). Sulphides
also occur as disseminated individual crystals which define the foliation
of the bedrock host, wrapped by mica (Gammon, 1964).

The origin of the impregnated sulphide lenses is debated. Early re-
searchers favoured the notion that sulphide deposition related to mafic
intrusive activity, followed by regional metamorphism (Kjerulf and
Dahll, 1861; Helland, 1879; Vogt, 1899; Bugge, 1917), while later re-
search suggested a volcanic exhalative sea floor (VMS) origin
(Gammon, 1966; Starmer, 1977; Bjerkgård, 2015), precipitation along
fractures (Sverdrup et al., 1967) or a combination of these geological
processes (Bancroft et al., 2001). The typical lens-like shape of Kisgruva
suggests a probable VMS formation due to venting of hydrothermal
solutions. Exposed (previously worked) regions of primary sulphide ore
deposits have been subjected to prolonged periods of weathering, re-
sulting in the development of a rust-like weathered ore crust. This
weathered ore crust developed due to the weathering of pyrite and
pyrrhotite, which predominantly comprise the ore, as well as sub-
ordinate to accessory phases such as chalcopyrite, sphalerite, galena,
arsenopyrite and cobalt-bearing minerals (Bjerkgård, 2012; NGU,
2017).

4. Materials and methods

Metamorphic bedrock (n=4), sulphide ore (n=6) and weathered
ore crust (n= 6) samples were collected in-situ from the former
Kisgruva mining site (Fig. 2). Samples were analysed and characterised
by mineralogical and geochemical methods. Previously worked sul-
phide ore exposures occur sporadically over a transect distance of
∼0.65 km, with four prominent worked regions of ∼20–30m2 ground
coverage. Samples were collected from each of the four identified sites
to ensure full spatial coverage was achieved. Weathered ore crusts are
generally restricted to 1–2m2 on top of sulphide ore exposures. Fresh
(unweathered) metamorphic bedrock and sulphide ore samples were
collected from each site, and weathered ore crust samples were taken
from the centre of the limited exposures.

4.1. Scanning electron microscopy

Whole rock samples were examined using a Zeiss Gemini300 VP
FEG Scanning Electron Microscope (SEM) with energy-dispersive X-ray

Table 1
Major geological events affecting the Kisgruva area and greater Kongsberg re-
gion. Conditions (episodes of activity) and events shown in relative chron-
ological order (from oldest to youngest) (Adapted from Starmer, 1985).

Dates (Ma) Conditions Events

∼1700–1600 Deposition
Volcanism
Subsidence

Shelf sediments overlain by deeper
water sediments and intermediate
volcanics; sulphidic layers
developed; sinking of region

∼1550–1500
(Kongsbergian
Orogeny)

Deformation
Intrusive activity

Compression of quartzite and
various gneisses; granitic
intrusions; granulite facies
metamorphism (mantle
degassing); thrusting; gabbro-
diorite-tonalite intrusions;
thrusting

∼1390–1200
(Sveconorwegian
Orogeny)

Intrusive activity
Deformation

Granitic intrusions; gabbroic
intrusions; dislocation; granitic
intrusions; thrusting

∼1200–1000
(Sveconorwegian
Orogeny)

Intrusive activity
Metamorphism
Deformation
Deposition
Volcanism
Subsidence

Gabbroic intrusions; amphibolite
facies metamorphism; uplift;
shallow water sediment deposition
and volcanics; sinking of region;
dolerite intrusions; thrusting;
granitic intrusions; epidote
amphibolite facies metamorphism;
faulting; granitic intrusions

∼970–900 Uplift
Deformation

Granitic intrusions; faulting
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spectroscopy detector facility at the University of Aberdeen for miner-
alogical determination in sulphide ore and metamorphic basement
samples.

4.2. X-ray diffraction

X ray diffraction (XRD) was performed on weathered Kisgruva
weathered ore crust samples to determine individual mineralogical and
compositional phases that otherwise cannot be determined by SEM. The
finely-powdered (< 64 µm) samples were placed on a flat disk sample
holder, gently compressed and scanned on a Bruker D8 Discover dif-
fractometer at the University of Aberdeen, using CuKα radiation and a
scan range from 5 to 90° (2 Theta), a 0.03° (2 Theta) step size and a data
collection time of 10 s per step. Interplanar spacing was calculated
using Bragg’s Law (d)= (n)× (λ)÷ 2×Sinθ, where d= interplanar
spacing, n= order of reflection and λ=wavelength (Bragg, 1912).
Reference data identified from Anthony et al. (1990), Downs and Hall-
Wallace (2003) and Lafuente et al. (2015).

4.3. Whole rock geochemistry

Whole rock samples were analysed for Se and Te and associated
chalcophile elemental concentrations by both inductively coupled
plasma atomic emission spectroscopy (ICP-AES) and solution ICP-MS.
Samples of ∼30 g were individually milled and homogenised, and 0.5 g
were digested with aqua regia in a graphite heating block. The residue
was diluted with deionised water (18MΩ cm), mixed, and analysed
using a Varian 725 instrument (ALS Minerals, OMAC Laboratories,
Loughrea; method ID: ME-MS41). Results were corrected for spectral
inter-element interferences from the sample matrix, solvent medium
and plasma gas. Errors for whole rock for ICP-MS were calculated based
on certified and achieved values for certified reference materials
(CRM). Results for CRM analysis were within the anticipated target
range for each metal and standard. Duplicate analyses produced re-
ported values within the acceptable range for laboratory duplicates,
with an average relative percent difference of 4%. Total organic carbon
(TOC) and S contents were measured using a LECO CS225 elemental
analyser at the University of Aberdeen. Analyses were run concurrently
with standards 501-024 (Leco Instruments, instrument uncertainty±
0.05% C,± 0.002% S) and BCS-CRM 362. The repeatability, based on
3 repeats of CRMs and blanks, was consistently within 1%.

4.4. Laser ablation

Trace element analysis of polished sulphide ore blocks of generally
inclusion-free pyrite was performed by using a New Wave laser ablation
system UP213 nm coupled to an ICP-MS Agilent 7900 at the University
of Aberdeen. The laser beam was fired with a spot size of 100 µm, a
10 Hz repetition rate and at 50 µm s−1 ablation speed with 1 J cm2

energy. Before ablation, a warm-up of 15 s was applied, with 15 s delay
between each ablation. Parameters were optimised using a NIST Glass
612 to obtain the maximum sensitivity and to ensure low oxide for-
mation. To remove possible interferences which could affect Se mea-
surement, a reaction cell was used with hydrogen gas, between 3.0 and
3.5 mL/min optimisation to decrease Se background. MASS-1 synthetic
polymetal sulphide (US Geological Survey) and FeS−1 (Slim Group,
University of Quebec) CRMs were used to provide quantification. For
that, an external calibration was plotted for each element by using the
two CRMs and a background value of 0 ppm.

4.5. Sequential extraction and speciation

Sequential extraction and speciation was performed on Kisgruva
weathered ore crust samples to determine the pH and the total con-
centration of Se and Te species adsorbed onto oxide minerals and or-
ganic matter. The general principle of the extraction has been reported

in several scientific articles, such as Kulp and Pratt (2004) and Di Tullo
et al. (2016). A phosphate buffer extraction was undertaken to give the
total concentration and speciation of Se and Te adsorbed to charged
surfaces as oxide minerals, while extraction with sodium hydroxide was
conducted to give concentration and speciation adsorbed to organic
matter. Aqua regia residues were used to indicate the total un-
extractable concentrations of Se and Te. The pH was assessed by
shaking 4 g of each sample in 20mL of deionised water. After 20min,
the samples were centrifuged at 3500 rpm for 3min and the pH was
measured in the supernatant.

The samples were crushed and dried, with 0.5 g dissolved in a 10mL
phosphate buffer solution and prepared with potassium phosphate
monobasic purchase from Sigma Aldrich (0.1 mmol L−1, pH 7). To
measure the elemental form of Se and Te, 1mol L−1 of sodium sulphite
(Acros Organics) was added to the phosphate buffer solution. The
samples were shaken for 2 h, then centrifuged at 3500 rpm for 3min.
Supernatants were collected and stored at 4 °C before speciation and
total concentration measurements. The pellet obtained after phosphate
extraction were extracted in 10mL of 0.1mol L−1 sodium hydroxide
(Fisher Chemical) for 2 h at 90 °C. Samples were then centrifuged, su-
pernatants were collected and stored at 4 °C before analysis. Finally, the
residues remaining from extraction were digested by aqua regia. The
aqua regia solution was prepared with 2mL of 70% nitric acid and 6mL
of hydrochloric acid (both obtained from Fisher Chemical). Three re-
plicates were performed for each sample.

4.6. Speciation and total concentration analysis

All analyses were performed with an ICP-MS 7900, coupled to a
HPLC 1100 (Agilent Technology, Japan). A Hamilton PRP-100 column
was used with a phosphate buffer as a mobile phase (1mLmin−1). The
buffer solution was prepared with potassium phosphate monobasic
purchase from Sigma Aldrich (10mmol L−1) and the pH was adjusted
to 10 by using an ammonia solution. The volume of samples injected
was 100 µL and the temperature of the autosampler was set at 4 °C. For
speciation and total analysis, the lens parameters were optimised with a
solution of 1 µg L−1 of Ga, Y, Tl and Ce. Hydrogen was used in the
reaction cell at 3.5mLmin−1. To remove potential interferences during
Se measurement, a solution of 10 µg L−1 of Ge was added and used as
an internal standard to correct any plasma fluctuation. Isotopes 72Ge,
77Se, 78Se, 125Te and 126Te were monitored. Standards were used for
external calibration and quantification. Stock solution (VWR) was used
for the total concentration analysis and sodium selenite (Alpha Aesar),
sodium selenate (Alpha Aesar), sodium tellurite (Alpha Aesar) and
telluric acid (Sigma Aldrich) were used for speciation. The elemental
forms of Se were prepared as described by Aborode et al. (2015) and
obtained as SeSO3.

5. Results

5.1. Sample descriptions

The Kisgruva site is characterised by sporadic exposures of pre-
viously worked sulphide ore and metamorphic bedrock. Former work-
ings also host standing pools of orange-yellow and clear water. Water
extracted from sulphide ore and weathered ore crust samples show a pH
of 4.0 and 2.2 respectively. Sulphide ore lenses are typically< 1m
thick. The metamorphic bedrock contains a high abundance of quartz
(∼40% of modal mineralogy), plagioclase (∼30%), biotite (∼10%),
chlorite (∼5%), hornblende (∼5%) and amphibole (∼5%). Pyrite is
evident as sporadic and disseminated phases in the metamorphic bed-
rock.

In sulphide ore samples, the abundant sulphide-rich zones contain a
mixture of chalcopyrite and (predominantly) pyrite, though pyrrhotite
has also been previously identified in the region (NGU, 2017; Kotková
et al., 2018). Bands of biotite are common, which exhibit a clear
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metamorphic fabric (alignment of micas to crenulated fabric). Frac-
turing is present throughout sample (0.1–0.5 mm), particularly in the
more competent sulphidic zones. Fractures within biotite zones are
filled predominantly with chlorite. Fractures and veins within sulphide
zones are filled with goethite and jarosite, as well as chlorite and
quartz. The Kisgruva sulphide ore is predominantly composed of pyrite,
with pyrrhotite, chalcopyrite, gahnite (Al-Zn spinel), amphibole and
biotite also evident (Fig. 3).

The sulphide ore contains abundant selenides (predominantly
clausthalite (PbSe), with minor naumannite (Ag2Se); Fig. 4), and tell-
urides (predominantly hessite (Ag2Te), with minor altaite (PbTe) and
tellurobismuthite (Bi2Te3); Fig. 5). Clausthalite phases identified in the
sulphide ore samples typically show a small degree of alteration, with
Te replacing Se and forming small amounts of altaite. In some instances,
clausthalite forms a rim around hessite inclusions (Fig. 6). Inclusions of
clausthalite, hessite, naumannite, altaite and tellurobismuthite are ty-
pically 5–25 µm in length and are common in pyrite (occurring less
frequently in chalcopyrite). In general, the telluride and selenide phases
are discreet (except for altaite with PbSe), but within close proximity to
each other. Hessite phases generally contain more oxygen in the che-
mical structure than clausthalite. Inclusions of clausthalite and nau-
mannite often occur in clusters, concentrated closely within larger
pyrite and (less typically) chalcopyrite phases. Where mineralisation
occurs within chalcopyrite, this is more commonly hessite, while
clausthalite is the most abundant phase found within pyrite. Selenides
and tellurides do not occur outside of the sulphide phases. Sulphide ore
samples also contain disseminated phases of hessite within larger

tourmaline phases (Fig. 6). The modal mineralogy of the sulphide ore
samples is:

• Pyrite – 30%

• Biotite – 20%

• Chalcopyrite – 10%

• Gahnite – 10%

• Quartz – 7%

• Chlorite – 5%

• Jarosite – 5%

• Goethite –<5%

• Sphalerite –<5%

• Selenides –<1%

• Tellurides –<1%

Sulphide ore exposures are typically weathered across the site,
showing crumbling crusts of loose orange rock (individual pieces
of< 2 cm in length) on the outer surface of the outcrops (referred to
here as “weathered ore crust”). Individual mineral phases are not dis-
cernible by SEM in weathered ore crust samples, though XRD analysis
indicates the presence of chlorite (14.0 Å, 7.1 Å, 4.7 Å and 2.8 Å),
goethite (4.6 Å and 3.0 Å), jarosite (5.1 Å, 3.1 Å and 1.4 Å), pyrite
(3.3 Å, 2.2 Å and 1.6 Å), chalcopyrite (3.0 Å and 2.6 Å), haematite
(5.0 Å), marcasite (3.4 Å) and minor quartz (3.4 Å) (Fig. 7).

5.2. Whole rock geochemistry

Whole rock geochemical results are shown in Table 2. Across sample
types, Se correlates positively with Te (Fig. 8), and Se and Te have a

Fig. 3. SEM backscatter image of Kisgruva sulphide ore. Py= pyrite;
Cpy= chalcopyrite; Bio= biotite; Sp= Zn spinel.

Fig. 4. SEM backscatter image of Kisgruva sulphide ore containing abundant Ag
and Pb selenides (bright coloured inclusions) concentrated in pyrite.

Fig. 5. SEM backscatter image of a sulphide ore containing an Ag telluride with
an outer Pb selenide rim.

Fig. 6. SEM backscatter image of a telluride-bearing tourmaline crystal within
the sulphide ore.
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positive correlation with S and TOC (Fig. 9), as well as Ag, Au, As and
Co. The sulphide ore contains ∼0.05% organic matter, while the
weathered ore crust contains ∼0.34% TOC.

5.2.1. Metamorphic bedrock
Metamorphic bedrock samples generally contain lower average and

maximum trace element contents compared to sulphide ore and
weathered ore crust samples. Samples are enriched in Se and Te com-
pared to crustal averages (mean crustal composition: Se= 0.04 ppm
and Te=2 μg kg−1; Rudnick and Gao, 2014), with Se 10 ppm to
73 ppm and Te 0.4 ppm to 1.1 ppm (Table 2). There was no detectable
Au in the metamorphic bedrock samples, with trace TOC (average
0.005%).

5.2.2. Sulphide ore
Sulphide ore samples show enrichment of Se and Te typically higher

than comparable sulphide ore deposits from other studies, such as
volcanogenic massive sulphide (VMS), porphyry and epithermal de-
posits (Fig. 10). Sulphide ores contain Se of 320 ppm to 718 ppm, and
Te of 12 ppm to 27 ppm (Table 2). Samples are also high in other
chalcophile elements which show a chemical affinity to Se and Te, such

as S (up to 38.1%), Ag (6–17 ppm), Au (0.1–0.2 ppm), As (up to
303 ppm), Co (up to 143 ppm), Cu (2–2.4%), Mn (up to 749 ppm), Pb
(up to 662 ppm) and Zn (2–2.4%). Sulphide ore samples show the
highest Cu, Hg, Mn, Pb, S and Zn across all sample types. Sulphide ore
samples contain an average of 0.05% TOC.

5.2.3. Weathered ore crust
Weathered ore crust samples are highly variable in trace element

concentrations, generally showing higher Se and Te content than the
sulphide ore and metamorphic bedrock samples (Table 2). Weathered
ore crust samples are also higher in maximum Ag, As, Au, Co, Fe and
TOC (0.6%) content. Samples contain 31 ppm to 1590 ppm Se and
3.9 ppm to 62 ppm Te. Samples contain ore grade Cu (1.3%), as well as
high Au (0.5 ppm) and Ag (42 ppm). Weathered ore crust samples
contain lower S (average 5.2%) than the sulphide ore (average 25.6%).

5.3. Mineral geochemistry

Previous studies have shown that Se and Te can concentrate in
pyrite, substituting for S (Huston et al., 1995; Chouinard et al., 2005;

Fig. 7. XRD spectra and notable peaks showing main mineral phases in
weathered ore crust deposits. Cl= chlorite; Ja= jarosite; Go= goethite;
Cpy= chalcopyrite; Ma=marcasite; Qz= quartz; Py= pyrite;
He= haematite.

Table 2
Mineral (LA-ICP-MS) and whole rock (ICP-MS) geochemistry of Kisgruva sample types.

Ag As Au Co Cu Fe Hg Mn Pb S Se Te Zn TOC
ppm ppm ppm ppm ppm or (%) % ppm ppm ppm % ppm ppm ppm or (%) (%)

Mineral
Pyrite 62.2 376.4 0.1 – 2124 63.3 1.4 – 189.4 – 687.6 80.9 – –
Pyrite 26.1 408.1 0.2 – 476 39.0 0.4 – 1274 – 644.7 49.5 – –
Pyrite 156.7 288.8 0.1 – 3803 26.7 0.5 – 271.3 – 293.9 78.8 – –

Whole rock
Sulphide ore 17.2 278 0.11 141.0 (2.1) 28.5 1.6 441 662.0 36.6 718.3 21.8 (2.4) 0.016
Sulphide ore 11.3 163.5 0.13 73.5 8260 27.7 0.9 749 127.5 12.2 590.0 14.4 6870 0.141
Sulphide ore 12.5 219 0.18 142.5 9760 26.1 5.0 276 85.6 24.7 570.0 12.7 (2.2) 0.002
Sulphide ore 6.1 303 0.15 75.9 3140 25.5 6.1 258 105.5 27.4 360.0 23.7 (2.0) 0.003
Sulphide ore 16.9 267 0.09 142.0 (2.4) 19.9 0.3 237 43.0 14.3 320.0 19.7 934 0.043
Sulphide ore 12.6 280 0.02 145.5 7410 28.1 2.7 151 85.5 38.1 420.0 27.1 7720 0.126
Metamorphic bedrock 0.2 123 <0.02 36.7 89 7.3 0.2 104 25.7 5.7 73.1 0.4 258 0.001
Metamorphic bedrock 0.9 110 <0.02 37.9 200 5.4 0.2 87 69.3 6.1 25.8 1.1 129 0.016
Metamorphic bedrock 0.7 27.6 < 0.02 42.6 699 5.5 0.1 97 7.7 5.1 10.7 0.7 64 0.002
Metamorphic bedrock 0.8 111 <0.02 39.2 177 4.9 0.1 6.0 64.6 6.4 26.0 0.8 15 0.001
Weathered ore crust 41.9 332 0.52 199.5 (1.3) 22.1 0.8 306 76.3 8.6 1402 62.1 580 0.338
Weathered ore crust 4.1 65.7 0.04 24.9 2810 29.1 0.5 497 49.2 3.9 141.0 3.9 1270 0.603
Weathered ore crust 0.6 35.3 < 0.02 33.1 142 3.7 0.3 258 67.1 1.2 31.0 4.1 570 0.038
Weathered ore crust 1.3 48.4 0.03 80.4 766 5.9 0.1 107 63.9 3.1 43.1 4.5 70 0.523
Weathered ore crust 39.9 357 0.44 256 (1.7) 25.2 0.8 354 75.1 8.6 1590 53.6 624 0.338
Weathered ore crust 42.1 360 0.48 227 (1.5) 24.2 0.8 303 78.3 5.8 1179 46.3 581 0.383

Fig. 8. Cross plot of Se vs. Te for Kisgruva sulphide ore and weathered ore crust.
Volcanogenic massive sulphide (VMS), porphyry, epithermal and modern sea-
floor hydrothermal data also shown for comparison (Auclair et al., 1987;
Hannington et al., 2004; Vikentev et al., 2004; Ishihara and Endo, 2005;
Layton-Matthews et al., 2005; TH Cresgate, 2016; Vikentev, 2016; Bullock
et al., 2017; OSNACA, 2018).
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Kesler et al., 2007; Keith et al., 2017), or concentrate within selenide
(Se2−) and telluride (Te2−) inclusions (Emsbo et al., 2003; Pals et al.,
2003; Cook et al., 2009a; Tanner et al., 2016; Keith et al., 2017).
Analysis of predominantly inclusion-free pyrite phases within the sul-
phide ore reveals high concentrations of Ag (26–157 ppm), As
(289–409 ppm), Se (294–688 ppm) and Te (49–81 ppm) (Table 2 and
Fig. 10). Laser ablation maps show that As, Cu, Se and, to a lesser ex-
tent, Te, are generally high throughout the pyrite phases (Fig. 10). For
As, Se and Te, concentrations are higher towards the edges of the pyrite.
As well as a high content throughout pyrite, Se and Te also show dis-
seminated areas of high concentrations, in some instances, up to
10,000 ppm and 1000 ppm respectively. Though the selected pyrite
crystals are generally inclusion-free, these Se and Te hotspots may
correspond to micron-sized Se2− and Te2−, which concentrate towards
the edges of some pyrites (as evident in SEM imagery; Figs. 4 and 10).
Other elements, such as Ag, Au, Hg and Pb, predominantly show con-
centrated and disseminated phases of high content within pyrite
(Fig. 10).

5.4. Se and Te speciation

Both selenite (SeO3
2−) and tellurite ion species were identified in

weathered ore crust samples by phosphate and sodium hydroxide ex-
traction methods (Fig. 11), but no elemental forms (Se0 and Te0) nor
selenate (Se(VI))/tellurate (Te(VI)) were detected. Of the extractable Se
(∼74.2% of total Se), only 7% concentrates on oxide minerals, with
93% adsorbed to organic matter (Se(-II)). For extracted Te (∼11%),
∼15% is adsorbed to oxide minerals, and ∼85% adsorbed to organic
matter (Te(-II)).

6. Discussion

6.1. Weathered ore crust development

The main mineral phases present in the weathered ore crust include
chlorite, goethite, jarosite, pyrite, chalcopyrite, haematite, marcasite
and quartz (Fig. 7). These minerals resulted from acidic weathering and
oxidation of mineral phases from the primary sulphide ore and/or the
crystalline metamorphic bedrock, either as alteration products or
remnant impurities. Oxidation of phases such as hessite within the
sulphide ore indicates weathering within the rock has taken place.
Phases such as quartz and chlorite in the weathered ore crust represent
remnant impurities from the sulphide ore and metamorphic bedrock,
which are often high in quartz and chlorite. Additional chlorite may
have also resulted from weathering of biotite (high in sulphide ore and
metamorphic bedrock) under acidic conditions. Some pyrite and chal-
copyrite were also retained as impurities from the sulphide ore. How-
ever, pyrite is not very resistant to weathering when in contact with
oxygen and an aqueous fluid, and will break down to produce sulphuric
acid, sulphates and haematite. Sulphuric acid will be carried away in
solution as acid mine drainage (evident at Kisgruva in standing pools of
acidic waters), and haematite is evident at Kisgruva in the weathered
ore crust. Weathering of pyrite also produces jarosite, ferric oxides
(haematite) and hydroxides, such as goethite (Frau, 2000; Benvenuti
et al., 2000; Lu et al., 2005), all of which are present in Kisgruva
weathered ore crust samples. Pyrrhotite (previously reported in the
Kongsberg region sulphide ores; NGU, 2017; Kotková et al., 2018)
weathering can also produce secondary pyrite, jarosite, goethite and
marcasite (Burns and Fisher, 1990; Bhatti et al., 1993), and hornblende
(high in metamorphic bedrock) can also produce additional goethite
(Velbel, 1989).

Fig. 9. Cross plots of (a) S (%) vs. Se (ppm), (b) TOC (%) vs. Se, (c) S vs. Te (ppm) and (d) TOC vs. Te.
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6.2. Se and Te residence

Inclusions of clausthalite, hessite, naumannite, altaite and tell-
urobismuthite (Figs. 4–6) within sulphide ore samples provide the
dominant source of Se and Te in the Kisgruva sample suite. Elevated
concentrations of Se and Te within in pyrite crystal structures from the
ore (Fig. 10) are also contributing sources of elevated Se and Te in
Kisgruva samples, as evident by the LA-ICP-MS maps of generally in-
clusion-free pyrites (Fig. 10). Pyrite and other sulphide phases in the

primary ore (pyrrhotite, chalcopyrite, sphalerite and galena) also host
other highly concentrated chalcophile elements such as As, Hg, Cu, Pb,
Zn and Au. The low organic content of the sulphide ores (0.05%) sug-
gests that the majority of Se and Te is held in clausthalite, hessite,
minor selenide and telluride phases, and sulphide phases, and not
sorbed on to organic matter. High Se and Te concentrations within
weathered ore crust samples indicates that Se and Te were mobilised
once the exposed ore was weathered at the surface (or in the sub-sur-
face), and the host mineral phases decomposed.

Fig. 10. LA-ICP-MS element maps of predominantly inclusion-free pyrite phases from Kisgruva sulphide ore samples (scale in ppm).
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Phases of Se2− and Te2− have previously been shown to form in
similar sulphide ore-producing settings, such as the Au-enriched VMS
deposits of The Urals (Vikentev, 2006; Vikentev et al., 2006; Belogub
et al., 2008; Maslennikova et al., 2008; Cook et al., 2009b). Tellurides
occurring with common sulphides in such settings may form from re-
crystallisation of Au during late (low-temperature) hydrothermal pro-
cesses and/or overprinting during greenschist facies metamorphism
(Vikentev, 2006). This may be the case with Kisgruva (Au detected
within sulphide ore samples), with a hydrothermal origin followed by

later medium grade regional metamorphism. Sulphosalts and associated
Se2− and Te2− may also concentrate by sulphidation and oxidation
during interactions between the reduced hydrothermal fluids and the
oxidised seawater, and associated microbial activity, as previously de-
scribed at the Urals (Belogub et al., 2008; Maslennikova et al., 2008;
Cook et al., 2009b).

Fig. 10. (continued)
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6.3. Se and Te mobilisation

Both Se and Te have a range of oxidation states (−II to +VI), with
some species more mobile than others under changing redox condi-
tions, mainly due to the adsorption processes of Fe oxides and clay
minerals (Davidson, 1960; White and Dubrovsky, 1994; Kulp and Pratt,
2004). Inclusions of clausthalite, hessite, naumannite, altaite and tell-
urobismuthite, identified in Kisgruva sulphide ores, are easily decom-
posed under oxidising conditions, converting to SeO3

2− and TeO3
2−

ions. Ions of SeO3
2− and TeO3

2− are also highly mobile (Davidson,
1960; Balistrieri and Chao, 1987), particularly under acidic conditions
such as those identified at Kisgruva. The oxidised SeO3

2− and TeO3
2−

ion species have been identified in weathered ore crust samples
(Fig. 11), mobilised and forming from clausthalite, naumannite, tell-
urobismuthite and hessite from the sulphide ore. Soluble forms of Se
and Te are adsorbed strongly onto Fe oxides (e.g. goethite, haematite)
in acid conditions (Balistrieri and Chao, 1990, Manning et al., 1998, Su
and Suarez 2000; Rovira et al., 2008), with SeO3

2− ions absorbing to

Fig. 10. (continued)
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jarosite (formed from oxidation of sulphides from the primary ore) at
lower pH values. Selenate has a much lower affinity for Fe oxides than
SeO3

2− (Su and Suarez 2000), which may explain its absence in the
weathered ore crust samples. Elemental Se and Te may still be present
and remained unextracted during speciation experiments. For instance,
in the case of Se, abiotic reduction of SeO3

2− to Se0 can occur in the
presence of Fe oxides in deposits such as lake sediments (Chen et al.,
2008; Maher et al., 2010).

A combination of fine particle size (typically colloidal) and the af-
finity of Fe oxides for Se and Te means that weathered ore crusts may
provide a natural trap for percolating solutes (Fig. 12). The higher Se
and Te concentrations in the weathered ore crust compared to the
sulphide ore can be attributed to a higher organic content and the
presence of goethite, haematite and jarosite. The majority of extractable
Se and Te was bound to organic matter (reducing agent to immobilise
Se and Te), with the rest adsorbed to jarosite and Fe oxides. Though

Fig. 11. Chromatographs of Se and Te speciation in weathered ore crust samples (selenite (SeO3
2−)) and tellurite (TeO3

2−) ions) by phosphate buffer and sodium
hydroxide extraction methods. Chromatographs show that SeO3

2− and TeO3
2− ions were the only detectable species.
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pyrite was identified in the metamorphic bedrock, lower concentrations
of Se and Te were identified, owing to the low organic matter (average
of 0.005%) and Fe oxide content to act as a sink for these trace ele-
ments. Trace organic matter, such as that detected in the sulphide ore,
may have accumulated by entrapment and thermal maturation of se-
dimentary organic matter by hydrothermal fluids during ore formation
(Rasmussen and Buick, 2000). The organic matter in the weathered ore
crust (average of 0.4%) may also be residual material from ore for-
mation, with additional accumulation sunken from plants and regolith.
Other carbon-rich material has been identified as coalblende-bearing
aggregate silver samples from areas of Kongsberg to the north of Kis-
gruva (Kotková et al., 2018). The high amount of coalblende in these
Kongsberg samples has been attributed to fluids derived from the
Cambro-Silurian organic-rich black shales of the Oslo Graben (Kotková
et al., 2018), which lie 2–3 km east of Kisgruva (Fig. 1). This suggests
that carbon and other organic materials from these black shales may
have been mobilised and transported through the Kisgruva region to the
more northerly Kongsberg silver deposits and may therefore have
supplied some additional organic material to the lithological units and
weathered ore crust, though this is only speculated. The presence of
organic matter, and associated microorganisms such as S- and Fe-oxi-
dising bacteria, can increase the weathering, mobility and metal release
from the ore (Leslie et al., 2015).

6.4. Economic considerations

Identification of high Se and Te in pyritic ores and associated
weathered deposits is essential for future advances and decisions in ore
processing and management of both former and active metalliferous
mining sites. While Se and Te are not currently considered viable ex-
tractable primary resources (i.e. their current production is typically as
by-product recovery, such as during Cu processing; Brown, 2000; Plant
et al., 2013), their presence in high abundances may prove important as
methods of critical element extraction continue to improve globally, as
demand rises and worldwide conventional Se- and Te-hosting deposits
are exhausted. Due to their high pyrite content and economic sig-
nificance, a comparison between previously studied VMS, epithermal
and porphyry deposits worldwide and the Kisgruva site can provide an
indication on the potential suitability of Kisgruva as a site of economic
importance (Fig. 8).

Kisgruva Se is equivalent to, or higher than, modern seafloor hy-
drothermal systems (∼154 ppm Se; Hannington et al., 2004) and Cu-
rich chimneys at seafloor hydrothermal black smoker sites (∼1000 ppm
Se; Auclair et al., 1987) (Fig. 4). Archived Se and Te data (available

online) from 24 VMS localities worldwide contain an average of
88.5 ppm Se (maximum 245 ppm), and an average of 9.4 ppm Te
(maximum 109 ppm) (OSNACA, 2018). Elsewhere worldwide, Se and
Te are similar or higher than other notable VMS deposits, such as
Shimokawa and Tsuchikura mines, Japan (330 ppm Se; Ishihara and
Endo, 2005), Parys Mountain, UK (173 ppm Se and 1.5 ppm Te; Bullock
et al., 2017) and Lagoa Salgada, Portugal (194 ppm Se; TH Cresgate,
2016). The Uchalinsk copper-zinc-pyritic district (the Urals) has been
previously noted as one of the largest ore belts of massive sulphide
reserves in the world and is also known to contain notably high Se and
Te content (Vikentev, 2016). The highest grades from the Uchalinsk and
Uzelginsk deposits, Russia, show concentrations of Te that are up to 3
magnitudes higher than Kisgruva (3650 ppm and 1239 ppm respec-
tively; Vikentev et al., 2004; Vikentev, 2016). However, Se concentra-
tions at Kisgruva are similar, and in some cases slightly higher (up to
1324 ppm Se at Uchalinsk ore district, and 154 ppm at the Uzelginsk
deposit; Vikentev et al., 2004; Vikentev, 2016). Highly economic areas
of Finlayson Lake district, Yukon, Canada, show higher Se (up to
3420 ppm) than Kisgruva, but Te is not measured (Layton-Matthews
et al., 2005). Kisgruva samples are generally higher in Se than most
previously determined porphyry and epithermal deposits (OSNACA,
2018), though some porphyry and epithermal deposits contain
equivalent or higher Te (Fig. 8).

At present, Se and Te are not directly mined, and are typically
sourced as a by-product from Cu or Ni production. Therefore, well-
constrained cut-off grades are not considered for these elements. This
means that some deposits that are rich in Se and Te are neither mined
nor targeted at all, and are often deliberately avoided during mining.
This is particularly true of Se, which is considered a contaminant in
mining, such as at U mine-waste sites (Dahlkamp, 2010; Abzalov, 2012;
Bullock and Parnell, 2017). However, with improved knowledge, ex-
pertise and more efficient processing, this may change, particularly
with the growth of industries responsible for alloys, photovoltaic pro-
ducts and nanotechnologies (Jin et al., 2016; Wei et al., 2016). Meeting
future demand requires new approaches, including a change from by-
production to targeted processing of Se- and Te-rich materials. The
future supply of a range of Se and Te may be resolved by the processing
of mineral hosts, such as sulphides (Cline and Hofstra, 2000; Reich
et al., 2013; Deditius et al., 2014; Keith et al., 2017). The growing
necessity for sources of E-tech elements has led to an increasing focus
on new potential worldwide sources of Se and Te, and a review of
former base metal sites may form an important part of this shift. With a
potential 581 thousand tons of reserves and 3200m3 volume of dump
remaining, the Kisgruva site could hold potentially economic Se and Te

Fig. 12. Source, mobility and fixation of Se and Te species at the Kisgruva site.
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in both sulphide ore materials and weathered ore crust deposits. Based
on these reserve estimations, and average grams per tonne Se and Te
across sulphide ore and weathered ore crust measured in this study, the
Kisgruva site may contain up to 367,000 kg Se and 130,560 kg Te in
reserves, and a further 3340 kg Se and 130 kg in remaining dump.

7. Conclusions

The Kisgruva site contains exceptionally high concentrations of Se
and Te within the sulphide ore and weathered ore crust deposits, re-
lative to economic VMS, porphyry and epithermal deposits worldwide.
High concentrations are sourced from sulphide minerals and dis-
seminated clausthalite, hessite, and minor naumannite, altaite and
tellurobismuthite phases within the sulphide ore, mobilised under
oxidising conditions upon weathering of the exposed and sub-surface
ore. The higher concentrations of the weathered ore crust deposits are
attributed to high organic, goethite, haematite and jarosite contents,
acting as a sink for Se and Te, fixing SeO3

2− and TeO3
2− ion species

and Se and Te sorbed on to organic matter. Though high Se and Te
concentrations may currently be considered a contaminant in base
metal mining and production, the rising demand for these trace ele-
ments may highlight the need to identify and review sites such as
Kisgruva to meet requirements, particularly with improved knowledge
and means of efficient processing. Results have important implications
for Se- and Te-bearing ores and weathered products as potential critical
element resources, particularly as means of extraction continue to im-
prove. While high Se and Te in selected sample areas do not necessarily
apply to the full extent of the extractable ore body, the identification of
enriched regions and deposits allows for the identification of specific
targets and natural enrichment processes which may occur regionally or
at similar deposits worldwide.
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