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Abstract

Current evidence suggests that estradiol (E2), the main ovarian steroid, modulates 

energy balance by regulating both feeding and energy expenditure at the central level, 

through the energy sensor AMP-activated protein kinase (AMPK). We hypothesized that 

the hypothalamic mechanistic target of rapamycin (mTOR) pathway, a well-established 

nutrient sensor and modulator of appetite and puberty, could also mediate the anorectic 

effect of E2. Our data showed that ovariectomy (OVX) elicited a marked downregulation 

of the mTOR signaling in the arcuate nucleus of the hypothalamus (ARC), an effect that 

was reversed by either E2 replacement or central estrogen receptor alpha (ERα) agonism. 

The significance of this molecular signaling was given by the genetic inactivation of S6 

kinase B1 (S6K1, a key downstream mTOR effector) in the ARC, which prevented the 

E2-induced hypophagia and weight loss. Overall, these data indicate that E2 induces 

hypophagia through modulation of mTOR pathway in the ARC.

Introduction

Besides the regulation of the reproductive function, 
estrogens have a key role in the central regulation of the 
energy homeostasis including both modulation of feeding 
behavior and energy expenditure (Mauvais-Jarvis  et  al. 
2013, López & Tena-Sempere 2015, 2016, 2017, Palmer & 
Clegg 2015). Increased life expectancy implies that many 
women will live an increasing number of years in a state 
of ovarian insufficiency. This leads to a steady surge in 
obesity incidence reaching a staggering figure of greater 

than 70% in women older than 60  years (Flegal  et  al. 
2010). Although the interrelationship between estrogen 
deficiency and obesity was the subject of some discussion, 
pooled data derived 107 trials showed that hormone-
replacement therapy in menopausal patients led to 
reduced abdominal obesity, insulin resistance, new-onset 
diabetes, lipids, blood pressure, adhesion molecules and 
procoagulant factors in women without diabetes and 
reduced insulin resistance, as well as fasting glucose in 
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women with diabetes (Salpeter et al. 2006), thus providing 
a cause–effect relationship between estrogen deficiency, 
obesity and metabolic complications.

From a mechanistic point of view, studies carried out 
in rodents showed that reduced levels of estradiol (E2) 
after ovariectomy (OVX) are associated with hyperphagia 
and decreased energy expenditure, leading to weight gain 
(Martínez de Morentin  et  al. 2014a, 2015). Moreover, 
variations in the magnitude of meals and body weight 
occur in rats throughout the estrous cycle, in parallel with 
changes in endogenous E2 levels (Blaustein & Wade 1976, 
Tritos et al. 2004, Mauvais-Jarvis et al. 2013, Martínez de 
Morentin et al. 2014a, López & Tena-Sempere 2015, 2017). 
The functional relevance of these data is supported by the 
fact that central administration of E2 elicits profound 
anorectic, catabolic and weight-reducing effects (Martínez 
de Morentin et al. 2014a, 2015).

At the central level, estrogen receptor alpha and beta 
(ERα and ERβ) are expressed in several hypothalamic 
nuclei with key roles in the regulation of energy balance, 
such as the arcuate (ARC), paraventricular (PVH) and 
ventromedial (VMH) (Simerly  et  al. 1990, Simonian & 
Herbison 1997, Voisin et al. 1997, Osterlund et al. 1998, 
Merchenthaler  et  al. 2004). Recent evidence has shown 
that E2 has a nucleus-specific action in the hypothalamus 
to modulate energy homeostasis, particularly within 
the ARC and the VMH. Thus, while most of the actions 
of estrogens on food intake take place through ERα in 
the ARC, its effect on energy expenditure is conducted 
through ERα in the VMH (Xu  et  al. 2011, Martínez de 
Morentin et al. 2014a, 2015). The molecular mechanisms 
mediating the effect of central estrogens are not totally 
understood, but recent data have demonstrated that E2 
acting on ERα inhibits hypothalamic AMP-activated 
protein kinase (AMPK) and that genetic activation of this 
enzyme within the ARC reverses the anorectic action of 
E2 (Martínez de Morentin et al. 2014a).

The mechanistic target of rapamycin (mTOR) is an 
evolutionarily conserved serine-threonine kinase that 
acts as a cellular sensor of changes in growth factors, 
nutrients and oxygen (Wang & Proud 2009, Laplante & 
Sabatini 2012, Martinez de Morentin et al. 2014b). mTOR 
phosphorylates and modulates the activity of the serine/
threonine ribosomal protein S6 kinase B1 (S6K1). In turn, 
S6K1 phosphorylates and activates S6, a ribosomal protein 
involved in protein translation (Wang & Proud 2009, 
Laplante & Sabatini 2012, Martinez de Morentin  et  al. 
2014b). Specifically, hypothalamic mTOR signaling plays 
a key role in modulating energy balance by responding 
to nutrient availability and the hormonal milieu 

(Cota et al. 2006, 2008, Blouet et al. 2008, Mori et al. 2009, 
Martins et al. 2012, Varela et al. 2012). Furthermore, a link 
between mTOR and the gonadal axis has been reported. 
Specifically, hypothalamic mTOR controls puberty 
onset and gonadotropin secretion by regulation of Kiss1 
(Roa et al. 2009, Roa & Tena-Sempere 2010). This evidence 
indicates that mTOR signaling could contribute to the 
functional coupling between energy balance and gonadal 
activation and function. However, despite this evidence, 
it remains unclear whether mTOR might mediate the 
central actions of estrogens on food intake. The aim of 
this study was to assess whether the anorectic actions of 
E2 are mediated by specific modulation of mTOR signaling 
in the ARC.

Materials and methods

Animals

Adult female Sprague–Dawley rats (250–300 g; Animalario 
General USC, Santiago de Compostela, Spain) were used 
for the experiments. The experiments were performed 
in agreement with ‘International Law on Animal 
Experimentation’ and were approved by the USC Ethical 
Committee (Project ID 15010/14/006). The animals were 
housed with an artificial 12-h light (08:00–20:00)/12-h 
darkness cycle, under controlled temperature and 
humidity conditions and allowed free access to standard 
laboratory chow and tap water. For all the procedures, 
except during the washout period after OVX, the animals 
were caged individually.

Ovariectomy

Rats were bilaterally OVX or sham-operated, in which 
each ovary was exposed but not tied or dissected, as 
previously described (Martínez de Morentin et al. 2014a, 
2015, Skrede  et  al. 2017). All treatments (central or 
peripheral) on OVX rats were carried out 2  weeks after 
surgery to ensure a total washout of ovarian hormones, 
as previously reported (Martínez de Morentin et al. 2014a, 
2015, Skrede et al. 2017).

Determination of estrous cycle

Female rats were monitored for estrous cycle by daily 
vaginal cytology, and only rats with at least two 
consecutive regular 4-day estrous cycles were used in 
expression analyses, as previously reported (Martínez de 
Morentin et al. 2014a).
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Peripheral and central treatments

For the experiments with E2 replacement, OVX rats 
received a daily subcutaneous (SC) injection of estradiol 
benzoate (2 µg dissolved in 100 µL of sesame oil; both 
from Sigma) or vehicle (100 µL of sesame oil; control 
rats) during 5–11 days (Vigo et al. 2007, Roa et al. 2009, 
Martínez de Morentin  et  al. 2014a, 2015, Skrede  et  al. 
2017).

For the central treatments, intracerebroventricular 
(ICV) cannulae were stereotaxically implanted under 
ketamine/xylazine anesthesia, as previously described 
(Varela  et  al. 2012, Martínez de Morentin  et  al. 2014a, 
2015, Martínez-Sánchez  et  al. 2017). Animals were 
individually housed and used for experimentation 4 days 
later. For the central estrogen receptor agonists setting, 
OVX rats received one daily injection of the selective 
ERα agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)
trisphenol (PPT, 5 nmol dissolved in 5 µL of DMSO; 
TOCRIS Bioscience, Bristol, UK) or vehicle (5 µL of DMSO; 
control rats) for 5 days (Sanchez-Criado et al. 2004, 2006, 
Roa et al. 2008, Martínez de Morentin et al. 2014a, 2015). 
For the central leucine (Leu) experiments, OVX rats 
received one daily injection of Leu (10 nmol dissolved 
in 5 µL of saline) (Laeger  et al. 2014) or vehicle (5 µL of 
saline) for 6 days.

Stereotaxic microinjection

Rats treated with vehicle or E2 were placed in a 
stereotaxic frame (David Kopf Instruments, Tujunga, 
CA, USA) under ketamine/xylazine anesthesia. The ARC 
was targeted using a 25-gauge needle (Hamilton, Reno, 
NV, USA). The ARC injections were bilaterally directed 
to the following stereotaxic coordinates: −2.8 mm 
posterior (one injection was performed in each ARC), 
±0.3 mm lateral to bregma and 10.2 mm dorso-ventral, 
as previously reported (Varela et al. 2012, Contreras et al. 
2014, Martínez de Morentin  et  al. 2014a, Martínez-
Sánchez  et  al. 2017). Adenoviral vectors (SignaGen, 
Rockville, MD, USA) encoding green fluorescence 
protein (GFP, used as control), S6K1 dominant negative 
(S6K1-DN; at 1010 pfu/μL) or S6K1 constitutively active 
(S6K1-CA; at 5 × 1010 pfu/μL) isoforms, were delivered 
at a rate of 200 nL/min for 5 min (1 μL/injection site) as 
previously reported (Varela  et  al. 2012, Contreras  et  al. 
2014, Martínez de Morentin  et  al. 2014a, Martínez-
Sánchez et al. 2017). The adenoviral and E2 treatments 
started at the same time. Direct detection of GFP 
fluorescence was performed after perfusion of the rats 

and detected with a fluorescence microscope Olympus 
IX51 at 4× augmentation.

Sample processing

Rats were killed by cervical dislocation and decapitation. 
From each animal, the ARC was collected and immediately 
homogenized on ice to preserve phosphorylated protein 
levels. Those samples and the serum were stored at 
−80°C until further processing. Dissection of the ARC 
was performed by micro-punch procedure under the 
microscope, as previously described (Varela  et  al. 2012, 
Contreras et al. 2014, Martínez de Morentin et al. 2014a, 
Martínez-Sánchez et al. 2017). The specificity of the ARC 
dissections was confirmed by analyzing the protein levels 
of the specific marker proopiomelanocortin (POMC; data 
not shown).

Hormone measurements

Circulating E2 levels were determined using a commercial 
ultra-sensitive RIA kit (Beckman Coulter, Brea, CA, USA). 
The sensitivity of the assay was 2.2 pg/mL, and the intra- 
and inter-assay CVs were 8.9% and 12.2%, respectively.

Western blotting

ARC protein lysates were subjected to SDS-PAGE, electro-
transferred on a PVDF membrane and probed with the 
following antibodies: mTOR, pmTOR Ser2448, S6K1, 
pS6K1 Thr389, S6, pS6 Ser235/236 (Cell Signalling, 
Danvers, MA, USA), and β-actin (Abcam, Cambridge, 
UK) as previously described (Varela et al. 2012, Martínez 
de Morentin  et  al. 2014a, 2015, Martínez-Sánchez  et  al. 
2017). Values were expressed relative to β-actin protein 
levels. Autoradiographic films were scanned and the bands 
signal was quantified by densitometry using ImageJ-1.33 
software (NIH, Bethesda, MD, USA). Representative images 
for all proteins are shown and each protein was corrected 
by its own internal β-actin control. In the gel images, all 
the bands for each picture come always from the same 
gel, but they may be spliced for clarity, as indicated in the 
figure legends.

Statistical analysis

Data are expressed as mean ± s.e.m. Protein data are 
expressed relative (%) to control (Sham, OVX, vehicle or 
GFP treated) rats. Statistical significance is determined by 
Student t test when two groups is compared or ANOVA 
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and post hoc Bonferroni test when more than two groups 
are compared. P < 0.05 is considered significant. The 
number of animals used in each experimental setting and 
analysis are specified in each figure legend.

Results

Lack of ovarian function decreases mTOR signaling 
in the ARC

OVX rats gained significantly more weight and developed 
marked hyperphagia (Fig.  1A and B). OVX rats showed 
the expected decrease in circulating E2 levels (Sham: 
21.75 ± 2.68 pg/mL vs OVX: 9.35 ± 0.49 pg/mL; P < 0.001; 
n = 9 rats/group) confirming the efficiency of the OVX 
procedure. Our data showed that OVX induced a marked 
inactivation of mTOR signaling, as demonstrated by 
decreased protein levels in the ARC of phosphorylated 
(active) mTOR (pmTOR) at Ser2448, and its downstream 
targets, namely, pS6K1 at Thr389 and pS6 at Ser235/236 

(Fig.  1C and D). These data suggested that ovarian 
function regulated mTOR signaling in the ARC.

Estradiol increases mTOR signaling in the ARC

To gain more insight in the effect of ovarian function 
on mTOR, we analyzed the effects of E2 replacement 
on mTOR signaling in the ARC of OVX rats. Our data 
showed that E2 administration to OVX rats induced 
weight loss and reduced feeding (Fig.  2A and B), 
associated with activation of the ARC mTOR pathway, 
demonstrated by elevated levels of pmTOR, pS6K1 and 
pS6 in that nucleus (Fig. 2C and D). To further explore the 
physiological relevance of our findings, we investigated 
the modulation of mTOR pathway of rats in proestrous, 
a stage of the cycle with elevated E2 levels (Martínez 
de Morentin  et al. 2014a, 2015, Skrede  et al. 2017). Our 
data showed that when compared with OVX animals, 
rats at proestrous exhibited a higher activation of mTOR 
signaling in the ARC (Supplementary Fig. 1A, see section 

Figure 1
Effect of ovariectomy on energy balance and mTOR pathway within the 
ARC. (A) Body weight change, (B) daily food intake, (C) representative 
Western blot auto-radiographic images and (D) ARC protein levels of 
mTOR pathway of Sham rats or OVX rats. n = 30–32 animals per group 
for body weight and food intake data; n = 7 animals per group for 
Western blot data. All data are expressed as mean ± s.e.m. *, ** and 
***P < 0.05, 0.01 and 0.001 vs Sham. For the Western blot analysis, 
representative images for all proteins are shown. In the gel images, all 
the bands for each picture come always from the same gel, but they 
may be spliced for clarity; in such case, this is depicted as vertical  
black lines.

Figure 2
Effect of E2 replacement on energy balance and mTOR pathway within 
the ARC in OVX rats. (A) Body weight change, (B) daily food intake,  
(C) representative Western blot auto-radiographic images and (D) ARC 
protein levels of mTOR pathway of OVX rats SC treated with vehicle or 
E2. n = 8–10 animals per group for body weight and food intake data; 
n = 6–10 animals per group for Western blot data. All data are expressed 
as mean ± s.e.m. *, ** and ***P < 0.05, 0.01 and 0.001 vs OVX vehicle. For 
the Western blot analysis, representative images for all proteins are 
shown. In the gel images, all the bands for each picture come always 
from the same gel, but they may be spliced for clarity; in such case, this is 
depicted as vertical black lines.
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on supplementary data given at the end of this article). 
This evidence suggested that endogenous E2 levels were 
likely physiological regulators on hypothalamic mTOR.

ERα agonism increases mTOR signaling in the ARC

Compelling evidence has demonstrated that the anorectic 
effect of E2 is mediated by ERα in the ARC (Xu  et  al. 
2011); therefore, we aimed to investigate whether the 
effect of E2 on mTOR signaling was mediated by this 
receptor. ICV administration of the specific ERα agonist, 
PPT (Sanchez-Criado  et  al. 2004, 2006, Roa  et  al. 2008, 
Martínez de Morentin  et  al. 2014a, 2015), to OVX rats 
mostly recapitulated the effects of E2 by eliciting weight 
loss and anorexia (Fig.  3A and B), with concomitant 
activation of the mTOR pathway in the ARC (Fig. 3C and 
D), being the slight differences observed likely related to 
the route of administration (SC E2 vs ICV PPT). Overall, 
these data demonstrated that the anorectic effect of E2 
in the ARC was associated to increased mTOR signaling 
in this hypothalamic nucleus, likely via the ERα receptor.

Central activation of mTOR with leucine 
recapitulates the effect of E2

Given that E2- and PPT-induced anorexia in association 
to increased mTOR signaling in the ARC of OVX rats, 
we next aimed to investigate whether activation of this 
pathway impacted feeding in OVX rats. Our data showed 
that central administration of Leu, a well-established 
activator of mTOR (Cota  et  al. 2006, Laeger  et  al. 2014) 
increased the levels of pmTOR in the ARC (Fig. 4A and 
B), and decreased body weight (P < 0.001; F = 23.67) and 
food intake (P < 0.001; F = 18.88) in OVX rats in a similar 
magnitude to E2 (Fig. 4C and D).

Inhibition of S6K1 in the ARC reversed the anorectic 
effect of E2

To further investigate the role of mTOR signaling on 
the anorectic effect of E2, we targeted S6K1, a direct 
downstream target of mTOR by using adenoviruses 
encoding either S6K1-CA or S6K1-DN or control 
adenovirus expressing GFP in the ARC. Injection in the 
ARC was assessed by visualization of GFP expression 
(Fig. 5A) and the efficiency of the treatment by assessing 

Figure 3
Effect of central PPT on energy balance and mTOR pathway within the 
ARC in OVX rats. (A) Body weight change, (B) daily food intake,  
(C) representative Western blot auto-radiographic images and (D) ARC 
protein levels of mTOR pathway of OVX rats ICV treated with vehicle or 
PPT. n = 7–12 animals per group for body weight and food intake data; 
n = 7 animals per group for Western blot data. All data are expressed as 
mean ± s.e.m. *, ** and ***P < 0.05, 0.01 and 0.001 vs OVX vehicle. For the 
Western blot analysis, representative images for all proteins are shown. 
In the gel images, all the bands for each picture come always from the 
same gel, but they may be spliced for clarity; in such case, this is depicted 
as vertical black lines.

Figure 4
Effect of central Leu and E2 on energy balance in OVX rats.  
(A) Representative Western blot autoradiographic images and  
(B) densitometry measures of protein levels of pmTOR and mTOR in the 
ARC of OVX rats ICV treated with vehicle or Leu. (C) Body weight change 
and (D) daily food intake of OVX rats ICV treated with vehicle or Leu  
and/or SC treated with vehicle or E2; n = 6 animals per group for body 
weight, food intake and Western blot data. All data are expressed as 
mean ± s.e.m. *, ** and ***P < 0.05, P < 0.01 and 0.001 vs OVX vehicle; 
#P < 0.05 vs OVX E2. For the Western blot analysis, representative images 
for all proteins are shown. In the gel images, all the bands for each 
picture come always from the same gel, but they may be spliced for 
clarity; in such case, this is depicted as vertical black lines.
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Figure 5
Effect of activation and down-regulation of mTOR pathway on the central actions of E2 on energy balance in OVX rats. (A) Direct fluorescence of GFP,  
(B and D) representative Western blot auto-radiographic images and (C and E) protein levels of pS6 and S6 in the ARC of OVX rats stereotaxically treated 
in the ARC with adenoviruses encoding GFP, S6K1-CA or S6K1-DN. (F) Body weight change and (G) daily food intake of OVX rats stereotaxically treated 
in the ARC with adenoviruses encoding GFP or S6K1-CA and SC treated with vehicle or E2. (H) Body weight change and (I) daily food intake of OVX rats 
stereotaxically treated in the ARC with adenoviruses encoding GFP or S6K1-DN and SC treated with vehicle or E2. n = 8–11 animals per group for body 
weight and food intake data; n = 7 animals per group for Western blot data. All data are expressed as mean ± s.e.m. * and ***P < 0.05 and 0.001 vs GFP or 
OVX Veh GFP; #P < 0.05 vs OVX E2 GFP. For the Western blot analysis, representative images for all proteins are shown. In the gel images, all the bands 
for each picture come always from the same gel, but they may be spliced for clarity; in such case, this is depicted as vertical black lines.
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the protein levels of pS6, the downstream target of 
S6K1. S6K1-CA treatment increased, while S6K1-DN 
decreased, pS6 levels in the ARC, when compared with 
GFP controls (Fig. 5B, C, D and E). While administration 
of S6K1-CA in the ARC of E2-treated OVX rats decreased 
body weight (P < 0.001; F = 15.95) and reduced feeding 
(P < 0.01; F = 6.50) in a similar magnitude to E2 (Fig.  5F 
and G), S6K1-DN ameliorated the effect of simultaneously 
given E2 by increased food intake (P < 0.001; F = 15.98) 
and therefore body mass (P < 0.001; F = 20.33) (Fig.  5H 
and I). No changes in body weight were detected when 
vehicle-treated OVX rats were administered with S6K1-CA 
or S6K1-DN adenoviruses (Supplementary Fig. 2A and B). 
Overall, these data indicate that the anorectic effect of E2 
is, in part, mediated by stimulation of mTOR signaling in 
the ARC.

Discussion

Current evidence has demonstrated that E2’s anorectic 
effect is mediated by ERα signaling in the ARC (Xu et al. 
2011, Martínez de Morentin et al. 2014a, 2015). However, 
the molecular mechanism explaining this effect remains 
unclear. Here, we show for the first time that mTOR 
signaling in the ARC is modulated by E2, and specifically 
by ERα agonism, an effect that mediates the anorectic 
actions of this estrogen.

Over the last decade, it has become clear that besides 
the classical neuropeptide networks, key molecular 
pathways regulate energy balance in the hypothalamus. 
Among them, energy sensors, such as AMPK (Kahn et al. 
2005, López et al. 2016, López 2017) and nutrient sensors, 
such as mTOR (Cota  et  al. 2006, Blouet  et  al. 2008, 
Varela et al. 2012, Martinez de Morentin et al. 2014b) play 
a major role. We have recently documented the role of 
AMPK in the central actions of E2. Our data suggest that 
AMPK mediates the effects of E2 on energy balance in a 
dual manner; food intake is regulated via effects on AMPK 
in the ARC, whereas modulation of AMPK action in the 
VMH controls energy expenditure through sympathetic 
regulation of the brown fat (Martínez de Morentin et al. 
2014a, 2015).

Whether mTOR signaling plays a role in the anorectic 
actions of central E2 is currently unknown, but the idea 
is supported by data showing that AMPK and mTOR 
pathways interact in the hypothalamus to modulate 
energy balance (Dagon et al. 2012, Varela et al. 2012) and 
also by the fact that the mTOR route mediates the effects 
on feeding of other peripheral signals such as thyroid 

hormones and ghrelin (Martins  et  al. 2012, Varela  et  al. 
2012). Moreover, it is known that mTOR acts in the 
hypothalamus regulating the hypothalamus–pituitary–
gonadal axis (HPG) (Roa  et  al. 2009). All this evidence 
led us to investigate the possible connection of the 
hypothalamic mTOR pathway with E2’s anorectic action.

Our data show that mTOR signaling is modulated 
by E2 acting at the central level, as demonstrated by the 
fact that E2 administration reversed the OVX-induced 
decrease in mTOR signaling in the ARC. One possible 
constraint of our study is the use of OVX rats, which are 
probably the most ‘classical’ model for the study of ovarian 
steroid actions (Martínez de Morentin et al. 2014a, 2015, 
Skrede  et  al. 2017). In this context, the major strength 
of this model, namely the lack of ovarian estrogens, it 
is also a limitation, which makes difficult to extrapolate 
the conclusions to a physiological context (the ovarian-
intact, cycling female), perhaps apart from aging-related 
decline in ovarian function. To overrule this limitation, we 
analyzed the mTOR pathway in rats at the proestrous stage 
of the cycle, when the E2 levels are maximal (Martínez 
de Morentin  et  al. 2014a, 2015). Our data showed that 
mTOR signaling in the ARC is activated in proestrous 
when compared with OVX rats, suggesting that the 
mTOR pathway in the ARC is physiologically regulated 
by ovarian steroid milieu. Of course, other regulators of 
hypothalamic mTOR cannot be ruled out. For example, 
it is known that the increased adiposity that follows OVX 
is associated with increased leptinemia and insulinemia 
(Mauvais-Jarvis et al. 2013). Considering that both leptin 
and insulin are major modulators of hypothalamic mTOR 
(Dagon  et  al. 2012, Martinez de Morentin  et  al. 2014b), 
thus, the possible development of central leptin and/or 
insulin resistance could be a contributing factor.

One interesting fact is that the effect of E2 on mTOR 
signaling is mediated by ERα in this nucleus, since 
administration of the specific ERα agonist, PPT, mostly 
recapitulates (with slight differences in feeding, possible 
due to the protocol of administration: SC E2 vs ICV PPT) 
this action. This is of importance, because ERα is the 
primary ER isoform to modulate the anorectic properties 
of E2 at the hypothalamic level (Xu et al. 2011, Martinez 
de Morentin et al. 2015). Therefore, we hypothesized that 
hypophagia and subsequent weight loss after E2 or PPT 
administration might be mediated by specific modulation 
of mTOR signaling in the ARC. Our results show that either 
pharmacological activation of mTOR signaling following 
central administration of Leu or genetic activation of 
the downstream protein S6K1 with specifically delivery 
of S6K1-CA adenoviruses in the ARC prevented the  
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OVX-induced hyperphagia and body weight gain. 
Importantly, the specific inhibition of the S6K1 in the ARC 
with S6K1-DN isoforms, partially blunted the anorectic 
effect of E2. These data demonstrate that the central 
actions of E2 on energy balance are at least partially 
mediated by the selective modulation of mTOR pathway 
through ERα and that this effect is placed in the ARC.

The molecular relevance of this evidence is intriguing. 
AMPK and mTOR function as major regulators of cellular 
metabolism that respond to changes in energy and nutrient 
status (Martinez de Morentin  et  al. 2014b, López  et  al. 
2016). Both in vitro and in vivo results have demonstrated 
that activation of AMPK suppresses mTOR signaling 
(Bolster et al. 2002, Krause et al. 2002, Kimura et al. 2003, 
Saha  et  al. 2010) and also that S6K1 phosphorylates 
AMPK to mediate leptin’s action on feeding (Dagon et al. 
2012). Furthermore, AMPK phosphorylates mTOR at 
Thr2446, inhibiting its function, which in turn decreases 
S6K1 phosphorylation (Cheng  et  al. 2004). Therefore, 
considering that AMPK in the ARC mediates the appetite-
suppressive effect of E2 (Martínez de Morentin  et  al. 
2014a), it would be tempting to speculate that both routes 
might act in this hypothalamic nucleus to coordinately 
regulate feeding and energy balance, a hypothesis that 
warrants further studies. In this sense, it will be critical 
to identify the ARC neuronal populations mediating that 
action. The most obvious candidate would be POMC 
neurons, which have been demonstrated to be critical for 
mediating E2’s anorectic effects (Xu et al. 2011, Martinez de 
Morentin et al. 2015). However, the well-described actions 
of E2 on specific glial cell populations, such as astrocytes 
(Azcoitia et al. 2011, Acaz-Fonseca et al. 2014, 2016), with 
a known role on energy balance (Garcia-Caceres  et  al. 
2016), and the fact that the used S6K1 adenoviruses can 
also infect those cells, make astrocytes also interesting 
candidates to explore in further studies. The molecular 
underpinnings of that effect are also of interest for 
investigation. In this sense, the existence of membrane-
initiated estrogen signaling effects in POMC neurons, 
involving for example mitogen-activated protein kinase 
(MAPK), phosphoinositide 3-kinase (PI3K) and protein 
kinase C (PKC) (López & Tena-Sempere 2015, Stincic et al. 
2018), which are upstream modulators of mTOR (Martinez 
de Morentin et al. 2014b, Saxton & Sabatini 2017), makes 
them potential candidates to mediate the effects of E2 
signaling on mTOR and, subsequently, its anorectic 
action.

In summary, our study shows that mTOR signaling 
in the ARC conveys E2’s anorectic effect. Our data 
also describe that hypothalamic mTOR pathway is of 

importance for understanding and potential treatment 
of the positive energy balance that characterizes states of 
estrogen deficiency, such as OVX or menopause.
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