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ABSTRACT  37 
 38 
Gene mutations within Amyloid Precursor Protein (APP or AβPP) and/or Presenilin 1 (PS1) are 39 

determinant of familial Alzheimer’s disease (fAD) and remain fundamental for experimental 40 

models. Here, we generated a neuronal knock-in mouse (PLB2APP) with mutated human APPSwe/Lon 41 

and investigated histopathology and behavioural changes. Additionally, PLB2APP mice were cross-42 

bred with a presenilin (PS1A246E) line to assess the impact of this risk gene combination in mice.  43 

Immunohistochemistry determined Aβ-pathology, astrogliosis (via GFAP labelling) and neuronal 44 

densities in hippocampal and cortical brain regions. One-year old PLB2APP mice showed higher 45 

levels of intracellular Aβ in CA1, dentate gyrus and cortical regions compared to PLBWT controls. 46 

Co-expression of PS1 reduced hippocampal but elevated cortical build-up of soluble and fibrillar 47 

Aβ. Amyloid plaques were sparse in aged PLB2APP mice, co-expression of PS1 promoted plaque 48 

formation. Heightened GFAP expression followed the region-specific pattern of Aβ in PLB2APP and 49 

PLB2APP/PS1 mice. Behaviourally, habituation to a novel environment, circadian activity and spatial 50 

reference memory were assessed at 6 and 12 months. Habituation was delayed in 6-month old 51 

PLB2APP mice, and overall home-cage activity was reduced in both lines at 6 and 12 months, 52 

particularly during the dark phase. Spatial learning in the water maze task was impaired in PLB2APP 53 

mice independent of PS1 expression; this was associated with a reduced employment of spatial 54 

navigation strategies. Memory retrieval was compromised in PLB2APP mice only.  55 

Our data demonstrate that low expression of APP is sufficient to drive histopathological and 56 

cognitive changes in mice without over-expression or excessive plaque deposition. AD-like 57 

phenotypes were altered by co-expression of PS1, including a shift from hippocampal to cortical Aβ 58 

pathology, alongside reduced deficits in spatial learning. 59 
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INTRODUCTION  72 
 73 
Mutations of the Amyloid Precursor Protein (APP or AβPP) and Presenilin 1 (PS1) genes linked 74 

with familial Alzheimer’s disease (fAD) have greatly influenced our understanding of disease 75 

pathology. Beta-Amyloid is produced via abnormal proteolysis of AβPP by β-secretase (BACE1) 76 

and γ-secretases (with PS1 as an essential component) and readily forms assemblies such as 77 

oligomers and amyloid plaques typical for AD-afflicted brains [1]. Although AD is an 78 

overwhelmingly sporadic and heterogeneous condition characterised by complex neuronal 79 

histopathology, genetic mutations within APP and PS1 continue to guide experimental modelling of 80 

AD-associated amyloidosis in mice. The majority of mouse models generated to date relied on 81 

random transgene insertion and overexpression, and hence their relevance for the human condition 82 

has been questioned [2]. To address this issue, we generated and characterized several knock-in 83 

mouse models expressing either multiple dementia-relevant mutated genes such as human APP, 84 

TAU and PS1 (PLB1Triple mouse) [3-5], single gene knock-in lines expressing human BACE1 85 

(termed PLB4) [6,7], or human mutant TAU (PLB2TAU) [8]. In contrast to the conventional AD 86 

mouse models, PLB knock-in mice have a low expression of human AD genes, controlled by 87 

CaMKIIα promoter ensuring neuronal specificity. The phenotypes observed in PLB lines 88 

demonstrated for the first time that low levels and neuron-specific expression dementia relevant 89 

genes is sufficient to drive neuropathological events as well as cognitive phenotypes typical for 90 

either sporadic AD (PLB4BACE1 mice), fAD (PLB1Triple mice) or frontotemporal dementia 91 

(PLB2TAU). Due to the identical background and insertion locus, a direct comparisons between the 3 92 

mouse models has allowed us to carefully dissect the relationships between the genetic components, 93 

defined pathologies and behavioural phenotypes; e.g. amyloid-driven hippocampal pathology 94 

resulted in spatial learning impairments in the PLB1Triple and BACE1 mice [3-6], while PLB2TAU 95 

mice showed frontal pathologies associated with altered semantic memory and cognitive flexibility 96 

[8]. 97 

Here, we aimed to investigate whether neuronal expression of a single mutated human AβPP 98 

gene (carrying Swedish and London mutations: K670N, M671L, V717I) was sufficient to induce 99 

amyloidosis and behavioural changes in mice (termed PLB2APP), following on from our previously 100 

reported PLB1Triple model carrying the same APP transgene. We also set out to assess the effects of 101 

mutant PS1 (A246E) co-expression (double-transgenic PLB2APP/PS1) on histological and cognitive 102 

profiles, also part of the genetic make-up of the PLB1Triple  line.  103 

Several single-transgenic (over-expression) AβPP mice have been generated to date with 104 

various fAD genes, mutations and promoters such as platelet-derived growth factor-β (PDGF-β), 105 

prion protein (PrP) and Thy1. These first generation models included the PDAPP [9,10], Tg2576 106 

[11], APP23 [12], J20 [13] and TgCRND8 [14], harbouring either 695 or 770 APP gene constructs 107 
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with one or more mutations. The most commonly used Swedish K670N/M671L mutation [15] 108 

induces overproduction of Aβ from AβPP, accelerating extracellular Aβ deposition. The London 109 

mutation V717l is associated with an increased Aβ42/Aβ40 ratio by increasing Aβ42 levels and little 110 

or no effect on the Aβ40 levels [16-18]. The V717l mutation is also linked to altered APP subcellular 111 

localization, soluble APP-β (sAPP-β) generation, as well as tau expression and phosphorylation. 112 

Transgenic mice carrying the Swedish and/or London mutations were reported to develop cognitive 113 

dysfunction from ~3 months of age coinciding with excessive Aβ42 accumulation and plaque 114 

deposition across different brain regions, partially mimicking age-associated AD pathology [2].  115 

In an attempt to re-create the pathological hallmarks of AD several groups generated transgenic 116 

mice overexpressing human mutated PS1 gene. Although PS1 mutations cause the majority of 117 

early-onset fAD cases [19], overexpression or knock-in of mutant PS1 alone did not induce Aβ 118 

pathology in mice [20-22]. This lack of amyloidosis was attributed to insufficient levels of Aβ42 or 119 

Aβ43 fragments from mouse APP protein, and its lower amyloidogenic potential due to a difference 120 

in three amino acids compared to human Aβ. Thereafter, genetic crosses such as Tg2576 and 121 

PS1M146LTg [23], APPKM679/671NLTg and PS1A246ETg [24], APPKM670/671NL-V717l and PS1M233T/L23P 122 

knock-in [25] demonstrated that co-expression of PS1 mutations in human AβPP transgenic mice 123 

accelerates cerebral Aβ deposition, gliosis and the symptomatic age to as early as 1 or 2 months. 124 

These studies have substantially influenced the way we understand the role of AβPP and PS1 gene 125 

mutations in the pathogenic events in fAD, particularly concerning the production of specific Aβ 126 

species. However, they also ultimately raised a genuine concern about their disease-relevant face 127 

validity in relation to the human condition: neuropathological and behavioural changes emerged 128 

during development, resulting in a rather tenuous translation to the age-related symptom 129 

progression observed in human AD, and behavioural phenotypes vs amyloid load often did not 130 

correlate [5]. Hence, new generation AD models are now sought to allow for dissecting Aβ 131 

pathology and cognitive phenotypes without artefacts and phenotypes induced by overexpression of 132 

the AβPP gene.  133 

 Recent developments have addressed some of the drawbacks associated with the first 134 

generation AD models, through the use of novel tools for genetic manipulation such as the knock-in 135 

strategies. Similarly to PLB lines, recent reports demonstrate that App knock-in [26], where the 136 

murine Aβ sequence was ‘humanized’ by introducing human fAD mutations (Swedish 137 

KM670/671NL and Beyreuther/Iberian l716F plus additional introduction of the Arctic E693G 138 

mutation in a separate line), leads to aggressive amyloid pathology with a ~30-fold increase in the 139 

Aβ42/Aβ40 ratio.  140 

These humanized App knock-in mice show early Aβ pathology including increased Aβ42 141 

accumulation in hippocampal and cortical regions, amyloid plaques in AD-relevant brain regions as 142 
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well as microgliosis and loss of pre-synaptic synaptophysin and postsynaptic PSD95 expression 143 

[26]. Initially, cognitive phenotypes in the humanized App mice were only assessed using the Y-144 

maze spontaneous exploration task and deficits emerged as late as 18 months of age (in the NL-F 145 

line). Some subsequent reports suggested a broader range of cognitive deficits including impaired 146 

spatial memory, flexible learning and reduced attention performance, associated with Aβ pathology 147 

at 18 months of age [27] and reduced locomotor activity in the absence of memory deficits [28]. 148 

Despite the apparent lag between onset of brain pathology and the behaviourally symptomatic age 149 

of these mice, their findings indicated that humanisation combined with the introduction of multiple 150 

App mutations produces AD-relevant pathology without APP overexpression in mice.  151 

 Here, we show that knock-in of human mutated AβPP (on an unaltered murine App 152 

background) was sufficient to produce histopathological and behavioural changes in mice. In 153 

contrast to the model generated by Saito et al. we knocked in a human gene construct into the 154 

mouse Hprt locus under CaMKIIα promoter to ensure neuron-specificity, sparing the mouse App 155 

gene to avoid potential changes caused by the loss of function of the endogenous gene. We report a 156 

histological and behavioural profile of singly transgenic AβPP mice (termed PLB2APP) and 157 

additionally demonstrate effects of mutant PS1 co-expression on neuronal and cognitive phenotypes 158 

in these mice.  159 

 160 

METHODS 161 

Animal husbandry 162 

All animals were housed and tested in accordance with European (European Directive on the 163 

protection of animals used for scientific purposes; 2010/63/EU) and UK Home Office regulations, 164 

experiments were approved by the University Ethics Board and performed in accordance with the 165 

Animal (Scientific Procedures) Act 1986. Mice were bred and initially housed in isolators at a 166 

commercial vendor (Harlan, UK, now Envigo). After transfer to our facilities, mice were allowed to 167 

habituate for a minimum of 2 weeks; mice were group-housed in same-sex cohorts in open wire-top 168 

cages with ad libitum access to water and food at a circadian regime of 12 h (lights on at 7:00 A.M.) 169 

in a fully controlled environment (20 –21°C, 60–65% relative humidity). All histological and 170 

behavioural testing was performed on homozygous/hemizygous mice. Behavioural testing took 171 

place during the light period; locomotor and circadian activity in the PhenoTyper was recorded 172 

during light and dark phases over 7 days.  173 

 174 

Generation of single mutant APP knock-in and APP/PS1 double transgenic mice 175 

The single transgenic PLB2APP mice were derived from a previously described double-transgenic 176 

mouse harbouring human, mutated APP and TAU (APP isoform 770 with Swedish and London 177 
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mutations; TAU isoform 2N4R with P301L and R406W mutations) under mouse CaMKIIα 178 

promoter cloned into the HPRT™ targeting vector [3,8] on normal endogenous App+/+ background.  179 

Selective deletion of the TAU gene cassette was achieved via breeding with Flp-expressing mice. 180 

The corresponding successful excisions of the TAU cDNA flanked by Flipase Recognition Target 181 

(FRT) sites was confirmed (conducted by GenOway, France; for the genetic construct, see Fig. 1A). 182 

Successful insertion of the transgene in PLB2APP mice was determined by the presence of the 6.0 kb 183 

sized AvrII fragment of recombined Hprt allele in heterozygous PLB2APP and a lack of similar 184 

signal in the wild-type (PLBWT) DNA extracts from tail biopsies via Southern blot analysis (Fig. 185 

1B). PLB2 offspring were crossed with C57BL/6 mice for six generations before a homozygous 186 

PLB2 line was established. The CaMKIIα promoter ensures neuron- and forebrain-specific 187 

expression of the transgene; region specificity was confirmed via qPCR (Fig. 1C). RNA extraction 188 

and qPCR (PLB2APP mice, 6 months: n=4, 12 months, n=9) was performed as described previously 189 

[3] using MiniOpticon Real-Time PCR Detection System with iQ SYBR Green (BioRad, Hemel 190 

Hempstead, UK). We used a human APP specific primers (forward: 5’ –ACT GGC TGA AGA AAG 191 

TGA CAA-3’; reverse: 5’ATC ACC ATC CTC ATC CTC ATC GTC CTCG-3’) to detect the 192 

transgene and compare cortical and cerebellar expression. Quantification was conducted against 193 

standard serial dilutions of plasmids and copy numbers were normalised to mouse Gapdh (Opticon 194 

Monitor Software, BioRad, Hemel Hempstead, UK). Single transgenic PLB2APP mice were 195 

subsequently crossed with a previously characterised PS1 line, containing the A246E mutation 196 

(PS1, B6C3H/C57BL6 background; [29]), to obtain a double transgenic PLB2APP/PS1 line (Fig. 1D) 197 

for comparison. WT control animals were derived from the PLBWT line, generated out of the 198 

breeding regime described above. 199 

Body weights were routinely monitored before behavioural testing; data shown in Fig. 1E are from 200 

6 months old mice (PLBWT: male n=14, female n=14; PLB2APP: male n=7, female n=8; 201 

PLB2APP/PS1: male n=4 female n=9) and 12 months of age (PLBWT: male n=10, female n=10; 202 

PLB2APP: male n=10, female n=8; PLB2APP/PS1: male n=11 female n=4).  203 

 204 

Immunohistochemistry 205 

Animals were perfused transcardially with 0.9% NaCl followed by 4% paraformaldehyde (PFA, 206 

Sigma Aldrich; in phosphate-buffered saline, PBS, pH 7.4). Brains were removed and post-fixed in 207 

PFA for <4 hrs, transferred to sodium cacodylate storage buffer (0.06M Na Cacodylate Trihydrate, 208 

pH 7.2, Sigma Aldrich) and kept at 4°C. Brain tissue was embedded in paraffin blocks and coronal 209 

sections (4.5µm) were cut on a microtome (Leica, Microsystems) from Bregma -3.0 mm to +2.5 210 

mm in order to obtain several brain regions of interest. For quantification, stereotaxically-matched 211 

sections, based on Paxino-Watson coordinates [30], were used for quantification of 212 
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immunoreactivity (6-month groups: PLBWT n=4, PLB2APP n=4, 12-month groups: PLBWT n=3, 213 

PLB2APP n=4, PLB2APP/PS1 n=4), and the following regions were analysed: caudal and rostral 214 

hippocampi (CA1, CA3 and DG) and cortex (see areas indicated in Fig 2C). For 215 

immunohistochemical assessment of AβPP/Aβ pathology, brain sections from PLBWT and PLB2 216 

transgenic lines were stained with 6E10 antibody (Covance, UK; dilution 1:200) using an 217 

autostainer (Leica Bond Autostaining System). Inflammation (astrogliosis) and neuronal densities 218 

were determined with manual immunofluorescence using glial fibrillary acidic protein (GFAP) 219 

(Sigma Aldrich, UK; dilution 1:400) and αNeuN antibodies (Chemicon, Millipore, UK; dilution 220 

1:500). Primary antibodies were visualized with Bonds refined 3,3’-Diaminobenzidine (DAB) 221 

enhanced substrate system staining kit (Leica Microsystems) or appropriate AlexaFluor 488 or 594 222 

secondary antibodies (Invitrogen; goat anti-rabbit, 1:250). Nuclei were counterstained with either 223 

haematoxylin or DAPI (Prolong Gold with DAPI, 4’,6-diamidino- 2-phenylindole dihydrochloride; 224 

Sigma-Aldrich). Images were captured with a digital camera (Axiocam, Carl Zeiss) mounted on a 225 

Zeiss microscope (Axioskop 2 Plus) (x60 and x10 for 6E10 sections, x40 for GFAP sections). 226 

Staining was quantified using ImageJ as described previously [6]. Briefly, we analysed regional 227 

intracellular and extracellular 6E10 immunoreactivity (CA1, DG; parietal association cortex) by i) 228 

cell counting (DAB-positive cells normalized to total count) ii) plaque counting (per brain section), 229 

or iii) by quantifying the extracellular DAB-labelled area from binary (black and white) images 230 

(area in %) all set at identical threshold, brightness and contrast. Levels of astrogliosis are given as 231 

area stained by GFAP staining (%) and mean intensity. Brain sections used for quantification of 232 

GFAP were stained with GFAP and DAPI only to minimize potential artefacts associated with 233 

channel interference; while figures provide representative images of triple-staining (GFAP, αNeuN, 234 

DAPI) for qualitative assessment of astrocytic and neuronal co-localizations. Brain sections 235 

analysed (both hemispheres per brain region per mouse) were histologically matched and all data 236 

are expressed relative to WT. The region of interest (ROI) used for analyses was 1.2 mm x 1 mm for 237 

all brain areas (see Fig. 2C). 238 

                    239 

Behavioural analysis 240 

Two independent cohorts of mice were used for behavioural testing at 6 and 12 months of age. 241 

Spatial reference memory (water maze) and circadian activity (PhenoTyper) were assessed in the 242 

same cohorts. Behavioural data were inspected for a possible gender effect. As gender did not affect 243 

the variables determined, data were pooled per genotype and age. 244 

 245 

Circadian activity and habituation to a novel environment was assessed using PhenoTyper home 246 

cage system (Noldus IT, Netherlands), a video-based observation system with built-in digital 247 
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infrared lighting sources that enables continuous tracking in both dark and light periods [6,8][31]. 248 

The activity (distance moved, cm) of mice (6-month old: PLBWT: male n=7, female n=8; PLB2APP: 249 

male n=7, female n=8; PLB2APP/PS1: male n=4 female n=7; 12-months old: PLBWT: male n=7, 250 

female n=8; PLB2APP: male n=9, female n=8; PLB2APP/PS1: male n=6, female n=4) was recorded 251 

over 7 days at the rate of 12.5 samples/second by Ethovision software 3.1 (Noldus IT, Netherlands). 252 

Locomotor activity data were extracted in 1 hr-bin and the last 4 days were used to determine 253 

activity in fully habituated animals. Results were averaged into a) hourly-bins over 4 days (94 hrs) 254 

and b) means for 12 hrs light/dark phases. Activity during habituation (initial 3 hrs of recording) 255 

served as an indicator of exploratory behaviour in a novel environment [6]. Data were analysed 256 

using a one-phase decay fit to graphically track habituation curves of both PLBWT and PLB2 257 

animals. Initial novelty-induced exploration (Y0), activity rate constant (K; a proxy for the speed of 258 

the habituation), and plateau (stable activity level [6]) were calculated based on 10-min activity bins 259 

over 3 hrs of initial recording.  260 

  261 

Spatial reference memory in the water maze (hereafter WM) was assessed in a 150 cm diameter and 262 

50 cm high pool, filled with water (21 ± 1°C) with several fixed room cues visible from the pool. 263 

The procedure was identical to that described previously [3,6]. Briefly, following the visible 264 

platform test (curtains drawn, platform indicated by a flag, 4 trials of 60 seconds per mouse, 265 

randomised release sites), naïve animals (6-months old: PLBWT: male n=7, female n=7; PLB2APP: 266 

male n=7, female n=8; PLB2APP/PS1: male n=4, female n=9; 12-months old: PLBWT: male n=10, 267 

female n=8; PLB2APP: male n=10, female n=8; PLB2APP/PS1: male n=10, female n=4) were 268 

allocated to target platform locations (Ugo Basile, rising platforms) for 4 consecutive training days 269 

(4 trials per day, 30 min inter-trial interval, max swim time 90 sec). Swim paths, swim speed 270 

(m/sec) and thigmotaxic behaviour (distance in thigmotaxic zone, 5 cm widths) were tracked by 271 

video software (Any-Maze, Ugo Basile).  On the last day of training, the platform was removed and 272 

a probe trial (60 sec) was performed 1 hr after the last training trial. Time spent in quadrants served 273 

as an indicator of spatial memory retrieval. Additional analyses were performed for classification of 274 

search strategies using the MATLAB (MathWorks) Strategizer approach [6]. In total, 1472 swim 275 

tracks were analysed and categorized as either: 1) random, 2) scanning, 3) chaining, 4) directed 276 

search, 5) focal search or 6) direct search using an in-house MATLAB (MathWorks) script [6] based 277 

upon algorithmic classification of these search types according to parametric definitions described 278 

before [32]. Spatial strategy data are expressed as daily means (in %) per group. 279 

 280 

Statistical analysis 281 

Statistical analyses were performed with Prism (V.7 GraphPad Prism) using ANOVAs (one- or two-282 
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way Analysis of Variance) followed by Bonferroni post-tests. Behavioural data from PhenoTyper 283 

and WM tests were analysed with repeated-measure (RM) two-way ANOVA. Comparisons to 284 

chance in the WM probe test were performed with Wilcoxon signed-rank test. Non-linear regression 285 

with one-phase decay was applied for analysis of habituation to novel environment to obtain 286 

plateau, K (speed of habituation) and Y0 (starting point) values in best-fit activity curves. For WM 287 

search strategies we employed χ2 analysis on the relative percentage composition of strategies 288 

across pairs of genotypes over 4 training days [6]. Probability of p<0.05 was considered reliable. 289 

 290 

RESULTS 291 

Breeding and general health 292 

Breeding, litter size, overall health and attrition rates were unaffected in PLB2 mice compared to 293 

wild-type controls. Body weights of transgenic mice were not affected within each gender at either 294 

6 or 12 months of age, independent of PS1 status (Fig. 1 E).   295 

 296 

Tissue analysis 297 

Intracellular and extracellular Aβ pathology 298 

Immunolabelling with the 6E10 antibody confirmed the subtle expression of human AβPP/Aβ in the 299 

forebrains of 12-month old PLB2APP and PLB2APP/PS1 mice across several AD-relevant brain regions 300 

(Fig. 1F). Intracellular APP/Aβ histopathology was prominent in PLB2APP brain sections compared 301 

to age-matched WT, with a ~2.5-fold increase in Aβ-positive neurones (Fig. 1H) in the CA1 302 

(<0.001), DG (p<0.01) and parietal cortex (p<0.001). Interestingly, PLB2APP/PS1 mice showed 303 

similar somatic Aβ staining in cortical (p<0.01 compared to WT) but not hippocampal neurones, 304 

suggesting that intracellular accumulation of Aβ was differentially affected by PS1 expression in 305 

PLB2APP forebrains (genotype effect across brain regions: F(1,66)=23.77, p<0.001). Lack of somatic 306 

Aβ staining in the hippocampi of PLB2APP/PS1 mice and the effect of brain region (F(2,66)=7, p<0.01) 307 

further indicates that PS1 co-expression may preferentially drive cortical Aβ pathology in PLB2APP 308 

mice. Extracellular Aβ accumulation was unaltered cf. WT in PLB2APP mice independently of brain 309 

region. Surprisingly, extracellular 6E10 immunoreactivity was somewhat lower in PLB2APP/PS1 brain 310 

tissue (CA1: p<0.001, DG: p<0.01, cortex: p<0.001) compared to WT mice. 311 

 312 

PS1 co-expression promotes Aβ plaque deposition  313 

Amyloid plaques were sparse in PLB2APP mice at 12 months of age (p’s>0.05 compared to controls; 314 

Fig. 1G and I). In comparison, PLB2APP/PS1 mice displayed a higher plaque load compared to aged 315 

WT mice (Fig. 1G and I), with more frequent occurrence of both immature (<40μm in size; p<0.05) 316 

and diffuse plaques (>40μm; p<0.01). These data confirm that the presence of PS1 decreased 317 
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extracellular soluble Aβ accumulation in favour of Aβ fibril formation in transgenic PLB2 mice. 318 

 319 

Heightened astrogliosis but unaltered neuronal density 320 

We further investigated the levels of brain inflammation in 6 and 12-month old PLB2APP mice 321 

throughout several brain regions (for localization of brain regions selected, see Fig. 2C) relevant to 322 

cognition using an astrocyte-specific GFAP antibody (Fig. 2, GFAP visualised in green). At 6 323 

months (Fig. 2A-B) PLB2APP mice showed increased astrogliosis (area; in %) within the neuronal 324 

layer of DG and CA1 compared to WT controls (p<0.05 and p<0.001, respectively; Fig. 2C-D) 325 

while CA3 and entorhinal cortex (EC) were unaltered at this age. GFAP staining intensity was also 326 

increased in the hippocampal CA1 and DG regions in PLB2APP mice compared to controls (p>0.01; 327 

Fig. 2E). Double-transgenic PLB2APP/PS1 mice were not assessed histologically at 6 months due to 328 

lack of tissue for this age group. At 12-months of age, hippocampal inflammation was still evident 329 

in PLB2APP mice (Fig. 3A), with a ~2-fold increase in the total area covered by astrocytes (p<0.01, 330 

GFAP visualised in red) compared to controls, and the cortical region analysed remained unaffected 331 

(Fig. 3B). In contrast, PLB2APP/PS1 mice showed increased cortical (p<0.01), but not hippocampal 332 

astrogliosis (p=0.09). For the older cohorts, GFAP intensity was also increased in hippocampal DG 333 

(p<0.05) and cortical region in PLB2APP mice compared to controls (p<0.001, Fig. 3C), while 334 

PLB2APP/PS1 mice had significantly increased GFAP intensity in the cortex only (p<0.01). 335 

In order to determine the effects of transgene(s) on neuronal density / cell loss in PLB2 mice we 336 

quantified neuronal bodies using the αNeuN antibody. The number of neurons (expressed as % of 337 

total cell count; Fig. 3D) did not differ between transgenic lines and WT controls, independently of 338 

ROI used (F<1, p>0.05; Fig. 3E), suggesting no frank cell loss in these mice at one year of age. 339 

 340 

Behavioural alterations 341 

Delayed habituation to a novel environment in PLB2APP mice  342 

Gross locomotor activity during the first 3 hrs of the recording did not differ between transgenic 343 

lines and WT mice at 6 months of age. However, PLB2APP animals displayed slower habituation 344 

(altered activity rate constant, K) compared to age-matched controls (p<0.01; Fig. 4A), suggesting a 345 

possible delay in the formation of a spatial map for the novel environment [6,33]. This phenotype 346 

was also detected, though to a lesser extent, in 6-month old PLB2APP/PS1 mice (K: p<0.05 compared 347 

to WT). Interestingly, at 12 months PLB2APP mice continued to display delayed habituation relative 348 

to WT (altered K, p<0.05; Fig. 4B) while age-matched PLB2APP/PS1 animals did not. Slower 349 

habituation did not affect the plateau in PLB2 mice at either age point. The delayed habituation to 350 

novel environment in PLB2APP mice was exacerbated from 6 to 12 months, with a reduced activity 351 

rate constant (K, p<0.05) and lower initial activity (Y0; p<0.001) in the older age group. WT mice 352 
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showed similar trends for age-induced deterioration of habituation (K, p<0.05, Y0, p=0.06, plateau, 353 

p=0.056), but no effect of age was detected in PLB2APP/PS1 animals (p’s>0.05).  354 

 355 

Global reductions in locomotor activity in PLB2 mice: Age-dependent changes in PLB2APP but not 356 

PLB2APP/PS1 mice 357 

Overall locomotor activity in habituated animals was unchanged in 6-month old PLB2APP mice 358 

compared to controls (p>0.05), but reduced in age-matched double transgenic PLB2APP/PS1 mice 359 

(F(1,552)=5.5, p<0.05; Fig. 4C). Home-cage activity differed between the two transgenic lines at this 360 

age (F(1,552)=4.8, p<0.05), suggesting an early emergence of a hypoactive phenotype in the PS1 co-361 

expressing mice. 362 

By 12 months of age, PLB2APP mice showed a robust global reduction in locomotor activity 363 

compared to aged WT’s (F(1,690)=21.25, p<0.001;  Fig. 4D). Here again, an ageing effect was 364 

observed only in single transgenic mice (F(1,690)=26.3, p<0.001). No age effect was apparent in 365 

the control group or PLB2APP/PS1 animals, which continued to exhibit decreased activity at this age 366 

group (F(1,529)=7.9, p<0.01; Fig. 4D). Data pooled for light/dark periods (see Fig. 4E) confirmed 367 

global reductions in locomotion in PLB2APP/PS1 from 6 months (light, p<0.01; and dark, p<0.05) and 368 

from 12 months of age in PLB2APP mice (light, p<0.001; dark, p<0.001).  369 

 370 

Impaired spatial reference memory and strategy adaptation in PLB2 animals  371 

We used the standard WM task to investigate whether forebrain-specific expression of mutant APP 372 

in mice was sufficient to alter spatial learning and retrieval in mice, and to evaluate effects of co-373 

expression of PS1 on cognitive profile of PLB2APP mice. Visual ability test (prior to hidden platform 374 

training) demonstrated that PLB2APP/PS1 mice covered longer distances to find the platform (PF) 375 

during the first 2 trials (p<0.01 and p<0.05 compared to controls, Fig. 5A and C). This was likely 376 

due to an anxious response to the test as indicated by increased thigmotaxic behaviour compared to 377 

WT controls (see Fig. 5G). However, swim paths to visible PF were unaltered in PLB2APP/PS1 378 

animals during trials 3 and 4, demonstrating intact visual abilities in these mice (individual trial 379 

data, Fig. 5A and C). PLB2APP mice located the visible PF comparable to age-matched controls, 380 

independent of age (p’s >0.05).  381 

During acquisition days (hidden platform training days 1-4), a robust deficit was detected in 6-382 

month old PLB2APP (F(1,81)=18.42, p<0.001, Fig. 5A and E) and in PLB2APP/PS1 mice compared to 383 

age-matched WT (F(1,75)=4.3, p<0.05, Fig. 5A and E). Both transgenic lines continued to exhibit a 384 

significant impairment in spatial learning at 12 months of age (PLB2APP: F(1,102)=9.1, p<0.01; 385 

PLB2APP/PS1: F(1,90)=17.8, p<0.001; Fig. 5C and F). No effects of genotype were found between the 386 

two transgenic groups for the older cohorts (F’s<1, p’s>0.05).  387 
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 388 

Time in thigmotaxic zone was increased in PLB2APP mice compared to controls at 6 months 389 

(F(1,81)=15.6, p<0.001; especially during day 1 of training, p<0.001; Fig. 5G). At 12 months, the 390 

thigmotaxic behaviour of PLB2APP animals was unaltered (F<1, p>0.05; Fig. 5I). Interestingly, 391 

PLB2APP/PS1 mice had unaltered thigmotaxic behaviour during training days independent of age 392 

(Fs’<1, p’s>0.05; Fig. 5G and I). Swim speed varied between groups, with 6-month old PLB2APP 393 

showing increased velocity compared to PLB2APP/PS1 (F(1,78)=5.1, p<0.05; Fig. 5H) but not compared 394 

to WT (F<1, p>0.05), and at 12 months PLB2APP/PS1 animals showed increased swimming velocity 395 

compared to both WT (F(1,90)=17.6, p<0.001) and PLB2APP mice (F(1,90)=9.1, p<0.01; Fig. 5J). The 396 

swim speed also declined with age in WT and PLB2APP mice (age effects, WT: F(1,90)=18.4, 397 

p<0.001; PLB2APP: F(1,93)=24.2, p<0.0001) but not in PLB2APP/PS1 animals (F<1, p>0.05).  398 

 399 

To test memory retrieval post-acquisition we employed a probe trial where the platform was 400 

removed and time in target quadrant was measured for 60 sec. All groups demonstrated intact recall 401 

for target location (p≤0.05 cf. level of chance, 15sec) independently of genotype or age. However, 402 

6-month old PLB2APP mice spent significantly less time in the target quadrant compared to age-403 

matched controls (t=1.8, df=25, p<0.05; Fig. 5B); PLB2APP/PS1 mice did not show similar trends. 404 

Within-genotype comparisons indicated that age did not affect memory in either of the lines 405 

(p’s>0.05).  406 

 407 

We further employed the strategy analysis to determine whether the compromised path length to 408 

target during learning was indeed associated with poor cognitive (non-spatial) strategies (Fig. 6A). 409 

Strategy profiling revealed pronounced genotype differences between transgenic groups and WT 410 

controls both at 6 (Fig. 6B-D) and 12 months of age (Fig. 6E-G). Distribution of strategies (daily 411 

averages, %) per group and per training days were analysed with Chi-square (for a summary data 412 

table, see Fig. 6H). Six-month old PLB2APP employed significantly less spatial navigation (-20 to -413 

35% less directed, focal or direct searches) compared to controls throughout all training days (1-4), 414 

and other non-spatial search strategies (i.e. chaining and scanning) were more frequent in these 415 

mice. Similarly, age-matched PLB2APP/PS1 mice showed altered strategy distribution, yet this was 416 

evident only from day 2 of training. Interestingly, spatial search scores were significantly improved 417 

in PLB2APP/PS1 animals (+25% spatial) compared to single-transgenic PLB2APP mice at 6-months 418 

during day 2 of training (χ2=47, p<0.001; Fig. 6. C-D). At 12 months strategies did not differ 419 

between the two transgenic lines, and only PLB2APP/PS1 mice showed significantly reduced spatial 420 

navigation during days 3 and 4 only (-20% compared to aged WT controls).  421 

 422 
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DISCUSSION  423 

 424 

In light of the rapidly growing worldwide prevalence of AD, the most common cause of 425 

dementia, the search for a disease-modifying treatment remains one of the biggest challenges in 426 

modern medicine. Although early-onset fAD accounts for <1% of all AD cases, the respective 427 

mutations are continuing to guide experimental modelling of AD in preclinical studies. Thus far, 428 

more than 20 mutations in the AβPP [34] and >200 mutations in the PS1 or PS2 genes [35] were 429 

identified as determinants of autosomal dominant fAD, corroborating the relevance of Aβ pathology 430 

in AD pathogenesis. Clinically, AD is characterized by memory deficits followed by a decline in 431 

other cognitive and executive functions [36]. Accumulation of soluble Aβ as well as phospho-tau 432 

and pathological tau oligomers emerge before overt cognitive symptoms and track disease 433 

progression in human AD [37,38]. Other sources suggest that Aβ pathology emerges at least two 434 

decades before cortical tau pathology and the onset of medical symptoms [39,40] when postmitotic 435 

neurons start to degenerate. Over the last decades, >400 drug candidates failed to reach the clinic 436 

[41,42]; this large-scale failure has been attributed to inappropriate mouse models in preclinical 437 

studies, the timing for therapeutic interventions, and the lack of appropriate biomarkers for early 438 

diagnosis, to mention but a few. The development of better animal models that accurately mimic 439 

early pathogenic events as observed in human AD is now considered vital for advances in both 440 

diagnostic and therapeutic strategies. 441 

Based on fAD gene mutations, various transgenic mouse models have been generated for preclinical 442 

studies. The vast majority of these models rely on transgenic overexpression of human, mutated 443 

AβPP, alone or in combination with TAU and PS1, giving rise to elevated levels of Aβ to reiterate 444 

amyloidosis. However, in addition to amyloidogenic pathology, these mice express high levels of 445 

the full-length AβPP, therefore over-burdening the proteostasis apparatus with AβPP and its 446 

multiple cleavage products. Given their complex roles, a misbalance in AβPP handling may per se 447 

lead to a variety of cellular responses in addition to the gain of toxic function of Aβ fragments, 448 

hence resulting in a number of effects not genuinely related to Aβ pathology. The first generation 449 

AD mice also relied on random transgene integration in unknown loci, likely causing artefacts 450 

related to perturbation of the host genome (transgenic mutagenesis), random topography of protein 451 

expression, uncontrolled developmental abnormalities [2,43], alongside high translational demand 452 

and cellular stress unrelated to the innate transgene function [44,45]. The genetic murine 453 

background was also previously shown to modify amyloid pathology [46] making it difficult to 454 

directly compare the existing animal models of AD with each other.  455 
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To overcome these drawbacks, recent efforts have been made to develop mouse models that 456 

produce Aβ in a controlled manner without overexpressing AβPP. We have generated a series of 457 

novel mouse lines (collectively termed PLB) on the same genetic background using homologous 458 

recombination knock-in strategy to introduce a single copy of a transgene into the Hprt locus under 459 

a neuron-specific CaMKIIα promoter. Similarly to the previously reported PLB1Triple, PLB2Tau and 460 

PLB4BACE1 mice, the PLB2APP mice described here demonstrate mild forebrain-specific expression 461 

of the human transgene to allow for investigation of histopathological and behavioural alterations 462 

specific to the mutations within the AβPP transgene. Our histological assessment demonstrates that 463 

the expression of human AβPP carrying Swedish and London mutations was sufficient to produce 464 

intracellular and subtle extracellular Aβ build-up primarily affecting the hippocampal regions. The 465 

amyloidogenic changes were accompanied by heightened astrogliosis as shown by GFAP staining 466 

at 6 and 12 months of age in PLB2APP mice. Although further studies are needed to confirm the 467 

exact nature of species detected with the PLB2APP hippocampi, it is likely that the 6E10-468 

immunoreactive Aβ comprises soluble oligomers similar to those observed in PLB1Triple mice 469 

carrying the same AβPP transgene [3,4,6]. Notably, these histopathological changes coincided with 470 

delayed habituation to novel environment and decreased locomotor activity, preceding spatial 471 

learning impairments in the water maze at 12 months of age.  472 

Our findings from the PLB2APP model suggest that cognitive deficits can be induced in mice by a 473 

single-copy gene knock-in of human, mutant AβPP without overexpression or significant plaque 474 

formation. Moreover, the CaMKIIα promoter utilised here mimics the neuronal expression pattern 475 

of human AβPP pathology [47] by limiting expression to forebrain regions and by reducing the risk 476 

of potential artefacts associated with temporal and spatial distribution of the transgene. The likely 477 

cause of behavioural deficits in these mice is human Aβ fragments accumulating preferentially 478 

within hippocampal neurons, followed by a similar regional activation of astrocytes. Of note, the 479 

presence of endogenous murine App gene in PLB2APP mice may have affected their phenotype, and 480 

it is at present unclear if this is an advantage or disadvantage. Although novel knock-in technology 481 

to introduce App mutations as utilized by the Saito group may appear to yield higher face validity 482 

for the human condition due to specific ‘humanized’ AβPP -derived products, it is unclear how the 483 

loss of function of endogenous APP protein has affected mouse brain physiology and cognition. 484 

Importantly, the humanized App may also have a distinct biochemical profile as the App gene, 485 

except for parts of intron 15–17, is still murine. For example, the KPI domain (Kunitz-type 486 

protease inhibitor domain in the extracellular region) containing variants of APP are expressed in 487 

human but not mouse AβPP [26]. It is therefore not entirely clear whether metabolism and cleavage 488 

of this form of AβPP by murine secretases is a reflection of human and/or murine pathways. The 489 



15 

 

role of the murine App promoter is an obvious advantage of the humanised knock-in mouse, though 490 

no comparative study exists addressing the differences between mouse and human spatio-temporal 491 

expression of APP  isoforms and App/APP gene promoters.  492 

Similarly to PLB2APP mice and other AD models, App knock-in mice contain a combination of two 493 

or three independent fAD mutations, which do not occur together in human fAD cases and may lead 494 

to an unusual Aβ conformation [48]. This may drive fibrillation and plaque formation, but not 495 

necessarily lead to raised levels of toxic, soluble species, as indicated by the disconnect between 496 

amyloid pathology and late behavioural phenotypes in the humanised App model [49], though a  497 

comparison with wild-type controls was missing from this latest study. Altogether, second 498 

generation AβPP knock-in mice have improved our understanding of Aβ pathology but fall short of 499 

fully explaining its role in cognitive dysfunction in human AD.  500 

Here, we have additionally crossed the PLB2APP mice to the PS1 mutant carrying the A246E 501 

mutation to further facilitate AβPP cleavage. In the double transgenic PLB2APP/PS1 mouse Aβ 502 

pathology shifted from hippocampal to cortical localization compared to the single transgenic mice. 503 

Similarly, patterns of glia emergence and activation followed the temporal patterns of Aβ 504 

accumulation, i.e. PLB2APP mice showed primarily hippocampal histopathology, while double 505 

transgenic mice co-expressing PS1 presented with amyloid and GFAP pathology in cortical areas 506 

where plaque deposition was also more frequent. This is in agreement with a recent report that 507 

suggested co-expression of PS1M233T/L235P via knock-in in APPSwe/Lon mice induced substantial 508 

region-specific Aβ accumulation preceding neuronal and synaptic loss [50].  509 

However, the contribution of this pathology to cognitive changes in vivo has not been described. 510 

Behaviourally, PLB2APP mice displayed delayed habituation to a novel environment during the 511 

initial 3 hrs of familiarization [6,33]. PLB2APP/PS1 mice demonstrated mild changes in habituation 512 

rates at 6 months and a somewhat preserved phenotype at the age of 12 months. Locomotor activity 513 

in habituated mice was reduced in the double PLB2APP/PS1 mice at 6 months to a larger extend 514 

compared to PLB2APP mice, which displayed similar reductions at 12 months only. These data 515 

suggest that co-expression of PS1 may have induced an earlier reduction (potentially to floor level) 516 

in locomotor activity and hence occluded the age-dependent exacerbation of the phenotype seen in 517 

PLB2APP mice. The hippocampus-dependent spatial learning in the WM was affected in single 518 

PLB2APP mice at 6 months particularly during the initial days of training, again suggesting impaired 519 

navigation in novel environment. Interestingly, in contrast to single transgenic mice, PLB2APP/PS1 520 

managed to locate the target during the initial training and only the following acquisition days were 521 

affected compared to controls. At 12 months, both mouse lines demonstrated impaired spatial 522 
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learning compared to WT mice. These differences were associated with decreased use of spatial 523 

strategies in PLB2APP and PLB2APP/PS1 mice in a day- and genotype-dependent manner. Thus, co-524 

expression of PS1 in a human mutated AβPP transgenic exacerbates activity-related phenotypes but 525 

not cognitive processes dependent on hippocampal function.  526 

Altogether, our findings demonstrate that knock-in of single copy human fAD mutant AβPP gene in 527 

neurons is sufficient to cause subtle hippocampal histopathology and age-dependent behavioural 528 

changes in mice, akin to early changes in fAD individuals, such as impaired spatial learning, 529 

reduced activity and circadian rhythmicity. Despite potential drawbacks as no full-blown plaque 530 

pathology, NFTs and overt neuronal loss developed in these mice, they offer advantages as 531 

preclinical models for the identification of early physiological biomarkers and to study the response 532 

of astrocytes upon amyloid stress.  533 
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Figure legends 551 

Figure 1. The APP transgene construct in PLB2APP mouse models, PS1 cross-breeding and effects 552 

of both genotypes on amyloid histopathology in aged mice. (A) Schematic representation of the 553 

knock-in strategy of PLB2APP line post Flp-mediated excision of the FRT-flanked region (for 554 

details, see text). (B) Southern blot analysis of the PLB2APP F1 generation. The genomic DNA of 555 

the 12 tested mice was compared with wild-type DNA (129ES, BL6). Digested DNA samples were 556 

blotted on a nylon membrane and hybridised with the 5’ probe to validate the zygocity of the Hprt-557 

CaMKIIα-APP-allele in these animals. PLB2APP (Hprt-CaMKII-APP) genotype: 19573, 19706; 558 

PLB2APP/TAU (Hprt-CaMKII-APP-TAU) genotype: 19749, 19753, 19575, 19704, 19705.  (C) 559 

Quantitative APP mRNA expression PLB2APP mice and PLBWT controls. (D) Genetic design of the 560 

pre-existing PS1 mouse line used for the generation of generation of PLB2APP/PS1 mice. (E) Body 561 

weights of PLB2APP and PLB2APP/PS1 mice. (F) AβPP and Aβ histopathology in PLB2APP and 562 

PLB2APP/PS1 mice at 12 months of age using anti-human 6E10 antibody across hippocampal (CA1 563 

and DG) and cortical regions. Arrows indicate enhanced extracellular staining in CA1 region of 564 

PLB2APP mice and lack of similar deposition in PLB2APP/PS1 mice; as well as increased intracellular 565 

staining (AβPP positive neurons) in the cortex of PLB2APP/PS1 compared to the cortices of PLB2APP 566 

mice. Scale bar indicates 100μm (magnification x63). (G) High-power representative images of 567 

amyloid plaque deposition in both transgenic lines and WT controls. Scale bar indicates 400μm 568 

(magnification x10). (H) Quantification of intra- and extra-cellular 6E10-immunoreactivity. (I) An 569 

average number of Aβ plaques (divided by size) in whole brain coronal section of PLB2 and WT 570 

animals.  Abbreviations: CA1 Cornu Ammonis 1, Cere Cerebellum, CTX cortex (parietal), DG 571 

Dentate Gyrus. Data were normalized to controls and represent mean + SEM. Significances: * 572 

p<0.05, ** p<0.01, *** p<0.001.  573 

Figure 2. Regional expression and quantification of GFAP-labelled astrocytes co-localizing 574 

neuronal bodies across several AD-relevant brain regions in 6-month PLB2APP old mice. (A) 575 

Representative images of 6-month old WT (left panel) and (B) 6-month old PLB2APP hippocampal 576 

(DG, CA1, CA3) and entorhinal cortex (EC). Note, astrocyte infiltration was evident within 577 

neuronal layers as well as in neuronal processes in PLB2APP hippocampi as indicated by the arrows 578 

in panel B. the arrows (C) Quantification of the total area covered by GFAP-labelled astrocytes and 579 

(D) intensity of the stain. Green: astrocytes (GFAP), red: neuronal bodies (αNeuN antibody), blue: 580 

nuclei (DAPI). Abbreviations: DG Dentate Gyrus, CA1/3 Cornu Ammonis 1/3, EC Entorhinal 581 

Cortex, m months. The scale bar indicates 50µm (magnification x40). ***: p<0.001. Data represent 582 

mean + SEM. 583 



18 

 

Figure 3. Astrogliosis and neuronal densities in brain tissue from 12-month old PLB2 and WT 584 

mice. (A) Representative immunofluorescent images of the polymorph layer of the DG and cortex 585 

(GFAP: red; cell bodies: blue). (B) Quantification of astroglyosis (total area covered in %) and 586 

mean GFAP intensity (C) in 12-month old WT, PLB2APP and PLB2APP/PS1 mice.  (D) Representative 587 

images of neurones (αNeuN: red, cell bodies: blue) in 12-month old mice. (E) Quantification of 588 

neuronal densities in transgenic PLB2 mice and WT controls. Abbreviations: DG Dentate Gyrus, 589 

CTX Cortex, m months. Scale bars indicate 50µm (magnification x40). Asterisks: * p<0.05, ** 590 

p<0.01, *** p<0.001. Data were normalized relative to controls and represent mean + SEM. 591 

Figure 4. Habituation to a novel environment, locomotor and circadian activity in PLB2APP and 592 

PLB2APP/PS1 mice. (A-B) Nonlinear regression analyses of activity (distance moved, cm) of PLBWT  593 

controls, PLB2APP and PLB2APP/PS1 mice during habituation (3 hrs) in the PhenoTyper home cage at 594 

6 and 12 months of age. (C-D) Global ultradian activity (96-hr in hourly-bins averaged over 24hrs). 595 

(E) Mean distance moved (+SEM) pooled for light and dark phases (12 hrs each). Significances: * 596 

p<0.05, ** p<0.01, *** p<0.001. Data represent mean ± or + SEM.  597 

Figure 5. Spatial reference memory in PLB2APP, PLB2APP/PS1 and PLBWT mice at 6 and 12 months 598 

of age in the water maze paradigm. (A) and (C) Mean path lengths to platform for each day of 599 

training in PLB2APP and PLB2APP/PS1 mice at 6 and 12 months of age compared to age-matched WT 600 

controls. (B) and (D) Probe trial (memory recall test) 1hr post training on day 4. (E–F) 601 

Representative swim paths for acquisition days (A1-A4 with hidden platform) and probe trial (P). 602 

G-J: Thigmotaxic behaviour and swim speed of 6-month old and 12-month old PLB2APP mice and 603 

PLB2APP/PS1 mice cf. PLBWT controls. Abbreviations: Vis PF visible platform. Asterisks: * p<0.01, 604 

** p<0.01, *** p<0.001. Data represent mean ± SEM or + SEM.  605 

Figure 6. Analyses of search strategies employed to locate the hidden platform in the water maze in 606 

6- and 12-month old PLB2APP, PLB2APP/PS1 and PLBWT (WT) mice. (A) Classification of search 607 

strategies, representative sample traces and colour codes of identified categories commonly used by 608 

rodents in the water maze test. Mean relative occurrence of each strategy represented for the four 609 

spatial acquisition days for 6-month old PLBWT (B), PLB2APP (C), PLB2APP/PS1 (D) and 12-month 610 

old PLBWT (E), PLB2APP (F) and PLB2APP/PS1 mice (G). (H) The table represents reliable genotype 611 

differences based on contingency plots between age-matched groups, with α set to 5%. Grey shaded 612 

boxes highlight training days with robustly different strategy compositions.  613 

 614 

615 
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Figure 2 – Manuscript running title: ‘Behaviour and histology in a novel APP knock-in mouse’ 802 
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Figure 3 – Manuscript running title: ‘Behaviour and histology in a novel APP knock-in mouse’ 808 
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Figure 4 – Manuscript running title: ‘Behaviour and histology in a novel APP knock-in mouse’ 819 
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Figure 5 – Manuscript running title: ‘Behaviour and histology in a novel APP knock-in mouse’ 830 
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Figure 6 – Manuscript running title: ‘Behaviour and histology in a novel APP knock-in mouse’ 845 
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