## Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity

| Journal: | Journal of Animal Ecology |
| ---: | :--- |
| Manuscript ID | JAE-2016-00751.R2 |
| Manuscript Type: | Standard Paper |
| Date Submitted by the Author: | n/a |
| Complete List of Authors: | Trask, Amanda; University of Aberdeen, School of Biological Sciences <br> Bignal, Eric; Scottish Chough Study Group <br>  <br> Environment Research Group <br> Piertney, Stuart; University of Aberdeen, School of Biological Sciences <br> Reid, Jane; Aberdeen University, Department of Zoology |
| Key-words: | Conservation genetics, Evolutionary potential, Life-history variation, <br> Population connectivity, Population management, Iteroparity, Reproductive <br> skew |
|  |  |

SCHOLARONE ${ }^{\text {m }}$
Manuscripts

```
Estimating demographic contributions to effective population
size in an age-structured wild population experiencing
environmental and demographic stochasticity
Amanda E. Trask }\mp@subsup{}{}{1*}\mathrm{ , Eric M. Bignal }\mp@subsup{}{}{2}\mathrm{ , Davy I. McCracken3, Stuart B. Piertney '1 and
Jane M. Reid }\mp@subsup{}{}{1
'1}\mathrm{ Institute of Biological & Environmental Sciences, School of Biological Sciences,
Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ,
UK.
*}\mathrm{ Scottish Chough Study Group, Kindrochaid, Bridgend, Isle of Islay, Argyll, PA44
7PT, UK.
*3}\mathrm{ Future Farming Systems, Scotland's Rural College, Auchincruive, Ayr, KA6 5HW,
UK.
    *Author for correspondence: Amanda E. Trask (amanda.trask@bto.org)
    Running headline: Effective size of age-structured populations
```


## Summary

1. A population's effective size $\left(N_{e}\right)$ is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However estimating $N_{e}$, and identifying key demographic mechanisms that underlie the $N_{e}$ to census population size ( $N$ ) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic agestructure.
2. A sophisticated demographic method of estimating $N_{e} / N$, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However this method requires detailed individual- and population-level data on sexand age-specific reproduction and survival, and has rarely been implemented.
3. Here we use the reproductive value method and detailed demographic data to estimate $N_{e} / N$ for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of $N_{e}$ to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow.
4. The demographic estimate of $N_{e} / N$ was 0.21 , reflecting a high total demographic variance $\left(\sigma_{d g}^{2}\right)$ of 0.71 . Females and males made similar overall contributions to $\sigma_{d g}^{2}$. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from $\geq 5$ year-old males than females.
5. The demographic estimate of $N_{e}$ was $\sim 30$, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high.

Molecular genetic estimates of $N_{e}$ computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30 respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of $N_{e}$.
6. Our analyses identify key sex-age classes contributing to demographic variance and thus decreasing $N_{e} / N$ in a small age-structured population inhabiting a variable environment. They thereby demonstrate how assessments of $N_{e}$ can incorporate stochastic sex- and age-specific demography and elucidate key demographic processes affecting a population's evolutionary trajectory and viability. Furthermore, our analyses show that $N_{e}$ for the focal chough population is critically small, implying that management to re-establish genetic connectivity may be required to ensure population viability.

Key-words: conservation genetics, evolutionary potential, iteroparity, life-history variation, population connectivity, population management, reproductive skew.

## Introduction

A population's effective size, $N_{e}$, is a key parameter that shapes population-wide rates of inbreeding and loss of genetic diversity and, in combination with the strength of selection, determines mutation fixation probabilities (Nunney \& Elam 1994; Frankham 1995; Charlesworth 2009). Estimation of $N_{e}$, and elucidation of key underlying processes that cause the observed $N_{e}$, is therefore central to predicting evolutionary trajectories of finite populations (Charlesworth 2009) and to evaluating population viability (Mace \& Lande 1991; Frankham, Bradshaw \& Brook 2014), such that appropriate population management strategies can be devised (Hare et al. 2011; Laikre et al. 2016).
$N_{e}$ is defined as the size of an idealized Wright-Fisher population that would experience the same rate of genetic drift as an observed population (Wright 1931, 1969). Such a Wright-Fisher population is defined as a hypothetical population of constant finite size with no migration or selection and random mating between monoecious individuals in discrete generations, giving a Poisson distribution of reproductive success (Wright 1931; Crow \& Kimura 1970). However, most natural populations violate key Wright-Fisher assumptions. Thus, $N_{e}$ can exceed the census population size $N$ (i.e. $N_{e} / N>1$ ), up to a theoretical maximum of $2 N$ given uniform reproductive success (Lande \& Barrowclough 1987, but see Waples et al. 2013). However, $N_{e}$ is frequently smaller than $N$ (i.e. $N_{e} / N<1$ ), meaning that a population will experience greater genetic drift than expected given its $N$, potentially reducing its viability (Nunney \& Elam 1994; Frankham 1995; Waples et al. 2013).

Many factors can reduce $N_{e}$ below $N$, including varying $N$, skewed sex-ratio and high among-individual variance in reproductive success (i.e. high reproductive skew,

Wright 1931; Caballero 1994; Frankham 1995; Nomura 2002; Ruzzante et al. 2016). Indeed, high variance in reproductive success is a dominant factor reducing $N_{e}$ in diverse natural populations, spanning fish (e.g. red drum, Sciaenops ocellatus, Turner, Wares \& Gold 2002; steelhead trout, Oncorhynchus mykiss, Araki et al. 2007), mammals (e.g. woodrats, Neotoma macrotis, Matocq 2004) and amphibians (e.g. Italian agile frog, Rana latastei, Ficetola et al. 2010). Small populations (i.e. small $N$ ) can also experience substantial demographic stochasticity, which can exacerbate variance in reproductive success and further decrease $N_{e}$ (Melbourne \& Hastings 2008; Palstra \& Ruzzante 2008). Consequently, at small $N, N_{e}$ might commonly be very small, further increasing genetic drift and threatening population viability.

Conversely, some studies have found an inverse relationship between $N_{e} / N$ and $N$, implying that small populations have higher $N_{e}$ than might be expected given their $N$ (Pray et al. 1996; Ardren \& Kapuscinski 2003; Hedrick 2005; Watts et al. 2007; Palstra \& Ruzzante 2008). Such patterns can arise if the among-individual variance in reproductive success decreases at small $N$, for example because environmental stochasticity reduces the reproductive success of all population members, or because male-male competition for mates or breeding sites is reduced (so-called 'genetic compensation' mechanisms, Ardren \& Kapuscinski 2003; Palstra \& Ruzzante 2008; Beebee 2009). Given the range of possible values and causes of $N_{e} / N$, pervasive aims across evolutionary, population and conservation ecology are to estimate $N_{e} / N$ in diverse natural populations and identify the key contributing demographic processes, and thereby elucidate general relationships between $N_{e}, N$, and underlying demography and population dynamics (Frankham 1995; Palstra \& Fraser 2012; Waples et al. 2013; Ruzzante et al. 2016).

For most natural populations, $N_{e}$ cannot be measured directly and must be estimated using demographic or molecular genetic approaches. Demographic approaches estimate $N_{e}$ as mathematical functions of causal demographic parameters and processes that generate contemporary $N_{e}$, such as the variance in lifetime reproductive success, breeder sex-ratio or fluctuations in $N$ (Lande \& Barrowclough 1987; Caballero 1994). These demographic approaches estimate the variance effective size $N_{e v}$ (i.e. the sampling variance in allele frequencies per generation) and thereby quantify $N_{e}$ for the offspring generation (Kimura \& Crow 1963; Caballero 1994). Such methods are valuable because, beyond providing a point estimate of $N_{e}$, they directly identify key demographic processes that shape $N_{e}$. They can therefore inform population management strategies aiming to increase $N_{e}$ and reduce future loss of genetic diversity (Nunney \& Elam 1994; Ruzzante et al. 2016). However, many demographic methods rely on strong simplifying assumptions, such as discrete generations with no age-structure, no density-dependence and constant $N$, which are typically violated in natural populations (Hill 1972; Nunney 1991; Caballero 1994; Nomura 2002). Even recent methods for estimating $N_{e}$ in age-structured populations with overlapping generations still require strong assumptions, such as constant $N$ and birth rate and hence stable age-structure (e.g. the 'AgeNe' method, Waples, Do \& Chopelet 2011) and consequently do not incorporate effects of environmental or demographic stochasticity or additional demographic heterogeneity that generate dynamic age-structure. However, since theory predicts that environmental and demographic stochasticity and heterogeneity could substantially affect $N_{e}$, especially at small $N$, such effects should be incorporated to avoid biased estimates of $N_{e}$ (Engen, Lande \& Saether 2005; Engen et al. 2007a).

Accordingly, Engen, Lande and Saether (2005) and Engen et al. (2010) derived a novel demographic method that utilises the concept of 'reproductive value' to relax the assumption of stable age-structure and thereby capture effects of environmental and demographic stochasticity and additional demographic heterogeneity on $N_{e}$. Conceptually, this method considers the mean and variance in the change in frequency of a rare selectively neutral allele at each time-step in a hypothetical heterozygote subpopulation, given observed patterns of age-specific demographic variance (Emigh \& Pollak 1979; Engen et al. 2005). Overlapping generations and age-structure in a variable environment are incorporated using Fisher's reproductive value (i.e. the contribution of an individual of a given age to population growth rate), which can be summed across individuals in all age classes to give the population's total reproductive value given its age-structure (Fisher 1958; Crow \& Kimura 1970; Engen et al. 2009). Changes in total reproductive value can then be used to obtain an estimate of total population growth rate, and hence the rate of increase of a neutral allele, thereby generating an estimate of $N_{e}$ that is not biased by dynamic age-structure (Crow \& Kimura 1970; Engen et al. 2007a, 2010).

The total variance in individual contributions to population growth rate in a dynamically age-structured population stems from demographic and environmental variances in age- and sex-specific fecundity and survival which, in practice, can be defined and estimated as the variances within years and in means among years, respectively (Engen, Bakke \& Islam 1998). The required variance components can be estimated using the distribution of individual reproductive values among individuals within and among years, which can be used to estimate the total population demographic variance, $\sigma_{d g}^{2}$. The $N_{e} / N$ ratio can then be estimated as:
$\frac{N_{e}}{N}=\frac{1}{\sigma_{d g}^{2} T}$,
where $T$ is the generation time (Appendix S1; Engen, Lande \& Saether 2005).
This calculation is potentially very insightful but imposes challenging data demands, requiring individual-level information on realised sex- and age-specific reproductive success and survival alongside population-level mean rates. To date, it has only been implemented in a Siberian jay (Perisoreus infaustus) population (as a methodological example considering three age classes, Engen et al. 2010) and a house sparrow (Passer domesticus) metapopulation (considering two age classes, Stubberud et al. 2017) where genetic variation and inbreeding rates are influenced by immigration rather than solely local demography (Baalsrud et al. 2014). Indeed, immigration can cause local $N_{e}$ to approach that for the whole metapopulation, meaning that $N_{e} / N$ is largely independent of local demography (Wang \& Whitlock 2003; Gilbert \& Whitlock 2015). Consequently, studies that apply the 'reproductive value' estimator of $N_{e} / N$ to isolated populations are required to identify key demographic processes that influence $N_{e} / N$ given environmental and demographic stochasticity and heterogeneity, and resulting dynamic age-structure.

Since sufficient data to implement any demographic estimator of $N_{e} / N$ are often unavailable, $N_{e}$ is commonly instead estimated from molecular genetic data. Singlesample approaches, which require DNA sampling at one time-point, are most practical for species with long $T$ and where historical samples are not available (Palstra \& Ruzzante 2008). Such estimators generally measure inbreeding effective size $N_{e i}$ (i.e. the rate of change in heterozygosity) and therefore reflect $N_{e}$ of the parental generation (Crow \& Denniston 1988; Caballero 1994). Given varying $N$, $N_{e i}$ is expected to lag behind changes in $N$ by at least one generation (Kimura \& Crow 1963; Hill 1972; Waples 2005), and might therefore give somewhat misleading estimates of current $N_{e}$.

Additionally, molecular genetic estimates of $N_{e}$ are calculated from resultant effects of $N_{e}$ on genetic variation, and hence do not typically elucidate the ecological and demographic processes that cause the estimated $N_{e}$ (but see Wang et al. 2010). However, such estimators can capture the genetic effects of immigration, which may remain undetected based solely on observations of $N$ and local demography (Hare et al. 2011; Baalsrud et al. 2014; Gilbert \& Whitlock 2015). Consequently, to generate overall mechanistic understanding of $N_{e} / N$ and $N_{e}$ and hence elucidate stochastic evolutionary processes and inform population management strategies, molecular genetic estimators of $N_{e}$ need to be calculated alongside appropriate demographic estimators.

Accordingly, we used detailed individual-level and population-level demographic data, and molecular genetic data, to estimate $N_{e} / N$ and $N_{e}$ in a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax Linnaeus, hereafter 'chough') population of major conservation concern. We utilised the 'reproductive value' demographic estimator (Engen et al. 2005) to account for environmental and demographic stochasticity and heterogeneity and resulting dynamic age-structure, and thereby identified key sex- and age-specific components of demographic variance that contribute to $N_{e} / N$. We additionally computed two single-sample molecular genetic estimates of $N_{e}$ to infer effects of any unobserved immigration. We thereby demonstrate how $N_{e}$ can be estimated in dynamically age-structured populations, and identify key demographic processes underlying $N_{e}$, thus aiding our general understanding of evolutionary processes in finite populations and informing conservation strategy.

## Materials and Methods

## FOCAL POPULATION

Choughs are of conservation concern in Europe and the United Kingdom due to substantial reductions in range and population size and resulting fragmented distribution (Eaton et al. 2015). Comprehensive censuses undertaken every 3-6 years since 1982 show that the island of Islay holds most (ca. 84\%) of the remaining Scottish chough population, yet numbers on Islay have decreased from 78 breeding pairs in 1986 to 46 pairs in 2014 (Finney \& Jardine 2003; Hayhow et al. 2015; Trask et al. 2016, Appendix S2). High neutral genetic differentiation with other British chough populations (Wenzel et al. 2012), and a lack of observed immigration, suggest that Islay's population is isolated. This isolation and small $N$ imply that inbreeding and loss of genetic diversity may compromise population viability.

Islay's choughs form territorial, socially monogamous breeding pairs and nest in caves or farm buildings (Bignal, Bignal \& McCracken 1997) with little extra-pair parentage ( $\sim 5 \%$ chicks, Trask et al. 2016). Both sexes breed once per year starting from age 2-4 years and survive to breed in multiple years (maximum breeding age: 17 years), generating overlapping generations (Reid et al. 2004). Reproductive success and survival vary among ages, years, cohorts and nest sites (Reid et al. 2003a,b, 2004, 2006). Sub-adult and non-breeding individuals aged one year or older form flocks that occupy known locations, meaning that all non-breeders can be readily observed and censused (Bignal et al. 1997; Reid et al. 2006, 2008). First-year survival (fledging to age one year) for the 2007-2009 cohorts was particularly low (Reid et al. 2011), causing low subsequent recruitment into the breeding population. Demographic estimation of $N_{e} / N$ that accounts for environmental and demographic stochasticity and demographic heterogeneity, and resulting dynamic age-structure, is therefore required.

## DEMOGRAPHIC ESTIMATION OF $N_{e}$

Age-specific breeding success and survival
Demographic estimation of $N_{e}$ using reproductive value to account for dynamic agestructure (e.g. Engen et al. 2005, 2010) requires estimates of mean population-level sexspecific demographic rates underlying the deterministic asymptotic population growth rate $(\lambda)$, defined for a pre- or post-breeding census. The required rates comprise the sexspecific probabilities of attempting to breed at each age $\left(c_{i}\right)$, age-specific breeding success given a breeding attempt $\left(m_{i}\right)$, and juvenile and subsequent age-specific annual survival probabilities ( $P_{i}$, Caswell 2001; Reid et al. 2004), where $i$ denotes a sex-age class. Such estimation of $N_{e}$ also requires individual-level data on age-specific reproductive success defined as the realised number of offspring that survived to age one year $(b)$ and realised annual survival $(J)$ from samples of individual females and males in a sample of years (Engen et al. 2005, 2010). All notations are summarised in Appendix S1 (Table S1).

To estimate the required population- and individual-level demographic rates, a sample of accessible chough nest sites across Islay were visited each year during 19832014. The number of nestlings that survived to ca. 3 weeks post-hatch was recorded, and nestlings were marked with unique colour-ring combinations (Reid et al. 2003b, 2004). Adults breeding at nest sites across Islay were subsequently identified from their colour-rings, and sexes were assigned based on reproductive behaviour and relative size (Bignal et al. 1997). The annual breeding success of known-age individuals was thereby recorded. Colour-ringed adults and sub-adults were resighted across Islay during MayJune each year, allowing age-specific annual resighting probabilities and apparent
survival probabilities to be estimated using capture-mark-recapture (CMR) models (Reid et al. 2003a, 2004).

Initial year-structured CMR models showed that annual resighting probabilities were typically less than one prior to 2004 , but approached one subsequently due to increased resighting efficiency (estimate across 2004-2014 of 0.97 $\pm 0.02$ SE, Appendix S1). We consequently focussed on live individuals and, of those breeding, whose offspring were ringed in 2004-2013, so that individual-level realised survival $(J)$ and reproductive success (b) could be directly recorded. Separate age classes for individuals aged one to four, and a pooled terminal age-class for individuals aged five years or older, were defined (i.e. $k=5$ age classes). This structure captures age-specific variation in key demographic rates while maintaining sufficient sample sizes within each sex-age class (Appendix S1).

Resightings of individuals in non-breeding flocks versus at nest sites were used to estimate the mean probability of breeding $\left(c_{i}\right)$ for each sex-age class. Non-breeding individuals typically paired and showed courtship behaviour within flocks, allowing sexes to be assigned. The mean number of fledglings produced given that breeding was attempted ( $m_{i}$ ) was directly estimated from breeding records for each sex-age class. Constrained CMR models were fitted to estimate separate age-specific survival probabilities $\left(P_{i}\right)$ for 1983-2003 and 2004-2014 while retaining full encounter histories of all ringed individuals and maximising power to estimate $P_{i}$ for 2004-2014. Initial analyses showed that models that contained three age classes, first-year ( $P_{1}$, fledging to age one year), second-year ( $P_{2}$, age one to age two) and adult ( $P_{a d}$, all subsequent ages) were strongly supported, thereby setting $P_{i}$ equal across all individuals aged two years or older (Appendix S1). This three age-class structure is consistent with previous detailed analyses of age-specific $P_{i}$ in Islay's choughs (Reid et al. 2004). Females and
males were pooled for CMR analyses because sexes of individuals that died before pairing were unknown, and because previous analyses showed that $P_{a d}$ does not differ between the sexes (Reid et al. 2003b, 2004). Additionally, previous analyses showed no evidence of strong density dependence in mean breeding success, or in $P_{1}, P_{2}$ or $P_{a d}$ (Reid et al. 2003a, 2008).

## Population projection matrix

The asymptotic population growth rate $(\lambda)$, stable age distribution $\left(u_{i}\right)$ and reproductive values $\left(v_{i}\right)$ were calculated from a $2 k \times 2 k$ two-sex Leslie matrix ( $l$ ). The matrix comprised four submatrices, formulated for a birth-pulse population with pre-breeding census, which describe the contributions of females and males to female and male offspring (Appendix S1). Top row fecundity $f_{\mathrm{i}}$ terms were calculated as:
$f_{i}=\frac{1}{2} q\left(c_{i} m_{i} P_{1}\right), \quad$ (eqn. 2)
where $q$ is the primary proportion of the focal sex and the factor of $1 / 2$ is the probability that a hypothetical recessive allele is transmitted to each offspring, given a hypothetical subpopulation of heterozygotes that only mate with dominant homozygotes (Engen et al. 2010). Subdiagonal transition probabilities $P_{2}$ and $P_{a d}$ were the probabilities of survival from one age-class to the next (Appendix S1). Standard matrix algebra was used to compute $u_{i}$ and $v_{i}$ from the right and left eigenvectors of $l$ (Caswell 2001), scaled so that $\sum u_{i}=1$ and $\sum u_{i} v_{i}=1$, and to compute the generation time, $T$, as the mean projected age of parents of new offspring. Contributions to $\lambda$ from the female and male submatrices must be the same (Mesterton-Gibbons 1993; Caswell 2001; Engen et al. 2010). $\lambda$ was therefore initially calculated as the real dominant eigenvalue of the female
and male submatrices separately to check that these were approximately equal, and then computed for the full two-sex matrix.

## Estimating demographic variance

The total population demographic variance, $\sigma_{d g}^{2}$, comprises the sum of the contributions to demographic variance from each sex-age class, $\sigma_{d g i}^{2}$, weighted by the stable age distribution, $u_{i}$ :
$\sigma_{d g}^{2}=\sum \sigma_{d g i}^{2} u_{i} \quad$ (eqn. 3).

To calculate each $\sigma_{d g i}^{2}$, we first calculated the demographic variance component from each sex-age class in each year using the mean $b$ and $J$ of each sex-age class $i$ in each year, the mean sum of the squared difference of each individual's $b$ and $J$ from its sexage class mean $\left(S_{b}{ }^{2}\right.$ and $\left.S_{J}{ }^{2}\right)$, and the mean sum of squares of the cross products of $b$ and $J\left(S_{J b}\right)$ (Appendix S1, Engen et al. 2010). These calculations included all individual colour-ringed choughs alive in each year during 2004-2013 whose value of $b$ could be quantified, either because they produced zero fledglings (i.e. $b=0$ ) or because their fledglings were colour-ringed meaning that the number of one-year old offspring alive in 2005-2014 was observed. Whether or not each focal colour-ringed individual was alive the following year (i.e. 2005-2014), and hence individual $J$, was also observed directly.

The expected contributions from females and males to demographic variance from the production of sons and daughters was then calculated, conditioned on $b$ and $J$ from the individuals and years sampled. The brood sex-ratio does not differ significantly from $1: 1$ in Islay's choughs, meaning that $q=0.5$ (Appendix S3). The contributions to demographic variance from the production of sons and daughters were
consequently assumed to be equal (Appendix S1). These expected contributions and the reproductive values, $v_{i}$, computed from $l$, were used to compute $\sigma_{d g i}^{2}$ for each sex-ageyear class. Each $\sigma_{d g i}^{2}$ was then weighted by sample size (Engen et al. 2010). Finally, $N_{e} / N$ was calculated from equation 1 , and $N_{e}$ was then calculated by defining $N$ as the total census population size which includes both adults and sub-adults. Full details of all calculations, underlying data and sample sizes are provided in Appendix S1.

Bootstrap confidence intervals (CIs) around estimates of demographic variance for each sex-age class $\left(\sigma_{d g i}^{2}\right)$, the total demographic variance $\left(\sigma_{d g}^{2}\right)$ and $N_{e} / N$ were initially computed for the full five age-class model, using 10,000 bootstrap samples. However, CIs for variances can be downwardly biased when bootstrap samples are drawn from small sets of observations with skewed distributions, because rare high values might not be sampled (Schenker 1985; Manly 2007; Puth, Neuhauser \& Ruxton 2015). This is likely for $b$, because few individuals were observed for some sex-ageyear classes, and while most breeding attempts produced zero one-year olds, a minority produced 2-4. Indeed, bootstrap CIs for $\sigma_{d g}^{2}$ and $N_{e} / N$ computed from the full five ageclass model scarcely included the point estimate. Therefore, to adequately assess uncertainty around total demographic variance, $\sigma^{2}{ }_{d g}$, and $N_{e} / N$ estimates, these quantities were re-estimated using a reduced model with three age classes (i.e. $k=3$, ages one, two and three years or older), thereby increasing sample sizes for adult sex-year classes. Bootstrap samples for realised survival $(J)$ and breeding success $(b)$ were jointly drawn (with replacement) at the level of individuals within years for each sex-age-year class. This sampling regime is necessary to maintain any covariance in $b$ and $J$ within individuals, and to capture stochastic variation among individuals within years, which generates the demographic stochasticity of interest (Engen et al. 2010, Appendix S1).

CMR models were fitted in program MARK (White \& Burnham 1999). Other analyses were run in $R$ v2.15.2 ( R Development Core Team 2012), using package Popbio (Stubben \& Milligan 2007) for population projections.

MOLECULAR GENETIC ESTIMATION OF $N_{e}$
DNA sampling \& genotyping
Since adult choughs moult during breeding, DNA was non-invasively sampled by collecting moulted feathers from nest sites visited during 2007-2014. This provided DNA samples from a mixed-age sample of individuals nesting across Islay. DNA was extracted from $3-5 \mathrm{~mm}$ clippings of the lower feather calamus, using standard ammonium acetate precipitation (Hogan et al. 2008; Trask et al. 2016). All samples were genotyped at 13 microsatellite loci developed for choughs and polymorphic in the Islay population (Wenzel et al. 2011, Appendix S4). However, one locus (Ppy-005) did not conform to Hardy-Weinberg equilibrium and hence was excluded from analyses (Appendix S4). Duplicate samples from the same individual were identified and excluded to ensure that $N_{e}$ estimates were not downwardly biased (Appendix S4).

Genetic estimators of $N_{e}$
The best-evaluated single-sample molecular estimator of $N_{e}$ utilizes linkage disequilibrium (LD), and measures associations between alleles at different neutral loci compared to expectations given random mating and binomial sampling (Hill 1981). In isolated, finite populations with random mating, LD stems from genetic drift and can be used to estimate $N_{e}$ (Hill 1981). We implemented a single-sample LD estimator of $N_{e}$ in NeEstimator v2.01 (Waples \& Do 2008; Do et al. 2014). To relax the assumption of random mating given the chough's mating system, a model that assumes random initial
mating followed by lifelong monogamy (Waples 2006) was used. Further, since Hill's (1981) equations can give downwardly biased estimates of $N_{e}$ if the sample size is less than true $N_{e}$ (England et al. 2006), a bias-corrected analysis which adjusts for sample size was implemented (following Waples 2006). Finally, since low frequency alleles can upwardly bias $N_{e}$ estimates, alleles at frequency $<0.02$ were excluded (following Waples \& Do 2010). Sensitivity to such exclusions was examined by repeating analyses with exclusion thresholds of $0.01,0.02$ and 0.05 . Although the LD method assumes discrete generations, it can give reasonably unbiased estimates of $N_{e}$ for species with overlapping generations given genotypes from a mixed-age sample of adults, and if the number of cohorts represented roughly equals the generation length (Waples, Antao \& Luikart 2014). These conditions are fulfilled by genotype data from adult choughs sampled during 2007-2014.

We additionally implemented an approximate Bayesian computation (ABC) single-sample estimator of $N_{e}$ using program ONeSAMP (Tallmon et al. 2008), which compares eight summary statistics calculated from the focal population to the same statistics for 50,000 simulated populations with $N_{e}$ drawn from within specified lower and upper prior boundaries. Two different priors were specified; 2-180, with the upper prior reflecting the theoretical maximum $N_{e}$ of $2 N$, and 2-100, as $N_{e}$ is generally lower than $2 N$ in wild populations (Nunney \& Elam 1994; Frankham 1995). Since singlesample genetic estimators of $N_{e}$ utilise sampled breeding adults, $N$ was taken as the total number of breeding adults in the population (Palstra \& Fraser 2012). As the eight ONeSAMP summary statistics may be differently affected by $N_{e}$ of previous generations (Wang 2009) and priors were defined by current $N$, genotype data from adults sampled during 2012-2014 were used.

## Results

## MEAN DEMOGRAPHIC RATES AND PROJECTION MATRIX

One year-old choughs never attempted to breed, and the probability of breeding $\left(c_{i}\right)$ increased to one in individuals aged four years or older in both sexes (Fig. 1a, Appendix S1). Across sampled individuals that attempted to breed, mean breeding success $\left(m_{i}\right)$ increased from age two to three, and tended to be lower in four year olds and higher again in individuals aged five years and older (Fig. 1b, Appendix S1). Mean annual survival probabilities $\left(P_{i}\right)$ increased from first-year through second-year to adult (Fig. 1a, Appendix S1).

Consequently, reproductive values, $v_{i}$, increased with age and were slightly higher for males than for females in all age-classes (Fig. 1c, Appendix S1). As expected, the proportional representation of age-classes measured by the stable age distribution values, $u_{i}$, decreased across initial age classes but was greatest for the pooled $\geq 5$ age-class. Age-specific $u_{i}$ values were equal for females and males because values of $P_{i}$ were set equal (Figs. 1a\&d, Appendix S1). Population growth rate was approximately equal for the male and female submatrices $\left(\lambda_{\text {fem }}=0.964, \lambda_{\text {male }}=0.967\right)$, so that for the two-sex matrix $\lambda=0.965$ and generation time $T=6.7$ years.

## SEX-AGE-YEAR SPECIFIC DEMOGRAPHIC RATES

Reproductive success $\left(b_{i}\right)$, calculated as the number of one year-olds produced per individual per year, varied among sex-age-year classes (Fig. 2a, Appendix S1). Median $b_{i}$ was zero in all sex-age classes, but higher values occurred most frequently in females and males aged five years or older (Figs. 2a\&b). Realised survival ( $J_{i}$ ) also varied among sex-age-year classes; as expected given the estimated $P_{2}$ and $P_{a d}$, fewer one year-olds survived to age two than survived through older ages (Figs. 2c\&d, Appendix
$\mathrm{S} 1)$. There was no consistently positive or negative covariance between $J$ and $b$ across individuals within each year (grand mean covariance $=0.04$, Appendix S1).

DEMOGRAPHIC ESTIMATE OF $N_{e}$
Given the two-sex five-age class model, $N_{e} / N=0.21$ and $\sigma_{d g}^{2}=0.71$ (Fig. 3, Appendix S1). Given the 2014 census of $N=141$ choughs (including adults and sub-adults) and generation time $T=6.7$ years, then $N_{e}=30$. The reduced three-age class model returned only small changes in the point estimates, with fairly tight $95 \%$ bootstrap confidence intervals ( $N_{e} / N=0.23,95 \% \mathrm{CI}: 0.21-0.29 ; \sigma_{d g}^{2}=0.67,95 \% \mathrm{CI}: 0.53-0.75$, Appendix S1).

The contribution to total $\sigma_{d g}^{2}$ varied among sex-age classes, such that older age classes contributed more than younger age classes (Fig. 3). For one, two and four yearolds the estimated components of $\sigma_{d g}^{2}$ were similar for females and males. However, three year-old females contributed more than three year-old males to $\sigma_{d g}^{2}$ (Fig. 3). This pattern was reversed for individuals aged five years or older, where males contributed more than females to $\sigma_{d g}^{2}$ (Fig. 3), reflecting a strong positive covariance between $J$ and $b$ across males in one year (Appendix S 1 ). Despite these sex-age class differences, overall male and female contributions to $\sigma_{d g}^{2}$ were similar (means of 0.61 and 0.57 respectively, Fig. 3, Appendix S1).

## GENETIC ESTIMATES OF $N_{e}$

Across the 13 microsatellite loci, the number of alleles per locus ranged from two to six and observed and expected heterozygosities ranged from 0.06 to 0.91 and 0.09 to 0.72 respectively (full microsatellite marker summary statistics are provided in Appendix S4).

The single-sample LD method estimated $N_{e}=50$ ( $95 \%$ CI: 38-69, using genotypes from 93 individual choughs) given a critical allele frequency of $0.02 . N_{e}$ estimates were larger (up to $38 \%$ larger), with wider $95 \%$ CIs, when low frequency alleles were included (Appendix S4). The ABC method estimated $N_{e}=26$ ( $95 \%$ CI: 2136, using genotypes from 71 individual choughs). This estimate was robust to the different upper prior boundaries (Appendix S4).

## Discussion

Estimation of effective population size, $N_{e}$, and identification of underlying components of demographic variance that reduce $N_{e}$ below $N$, is required to understand interrelations between demography and evolutionary processes (Charlesworth 2009), and to predict population viability and inform population management strategies (Mace \& Lande 1991; Hare et al. 2011; Frankham et al. 2014). However, estimating and interpreting $N_{e}$ for wild populations is extremely challenging, particularly given overlapping generations, environmental and demographic stochasticity and heterogeneity and resulting dynamic age-structure, and given gene-flow stemming from immigration (Caballero 1994; Wang \& Whitlock 2003; Waples et al. 2011). Such effects could substantially impact $N_{e}$ but are often ignored (Engen et al. 2005, 2007a), impeding understanding of evolutionary processes and population viability analyses. We used detailed individual- and population-level demographic data to estimate $N_{e} / N$, and its underlying components of sex- and age-specific demographic variance, in a small and apparently isolated red-billed chough population, while accounting for environmental and demographic stochasticity by considering reproductive value. Additionally, we used two single-sample genetic estimators of $N_{e}$ to encompass effects of any unobserved immigration.

## $N_{e}$ AND DEMOGRAPHIC VARIANCE

Our demographic estimate of $N_{e} / N$ for Islay's chough population was 0.21 . This is substantially lower than the mean value of $0.65 \pm 0.15 \mathrm{SD}$ estimated across diverse bird populations, where $N_{e} / N$ was calculated from mean life-table data assuming constant population size and age-structure and hence no environmental or demographic stochasticity or additional demographic heterogeneity (using the 'AgeNe' estimator, Waples et al. 2013). The low $N_{e} / N$ in choughs arose because the estimated total demographic variance was relatively high $\left(\sigma_{d g}^{2}=0.71\right)$ compared to other bird species with similar generation times. Specifically, the female demographic variance component for choughs of $\sigma^{2}{ }_{d}=0.57$ exceeds the value of $\sigma^{2}{ }_{d} \approx 0.25$ for a generation time of 7 years (extrapolated from Sæther et al. 2004b). Further, the total $\sigma_{d g}^{2}$ estimated for choughs is notably high for a monogamous species, where reproductive skew might be expected to be relatively small (Sæther et al. 2004a). This high $\sigma_{d g}^{2}$ is perhaps not surprising since first-year survival is known to vary consistently among nest sites on Islay, creating additional demographic heterogeneity and influencing population dynamics (Reid et al. 2006). Similarly high demographic variance, and small $N_{e} / N$, might also arise in other populations where individual reproductive success varies with territory quality (e.g. Van de Pol et al. 2006; Sergio et al. 2009; Griffen \& Norelli 2015). However, commonly used softwares for population viability analysis often assume a Poisson distribution of family sizes (e.g. RAMAS, Akçakaya 2002, although see VORTEX v.10, Lacy \& Pollak 2014), meaning that demographic variance will be underestimated and $N_{e} / N$ overestimated (Kendall \& Wittmann 2010; Frankham et al. 2014). Further, our estimate of $N_{e}=0.21$ for choughs may itself be a slight overestimate, because the Engen et al. (2010) demographic estimator, like other demographic
estimators that consider age-structure (e.g. 'AgeNe’, Waples et al. 2011, 2013), assumes zero demographic covariance within individuals across years. For relatively long-lived species that show nest-site and mate fidelity, individual reproductive success might be positively correlated across years (Hamel et al. 2009; Lee, Engen \& Saether 2011). Such persistent individual differences can create additional demographic heterogeneity, which could increase the total variance in lifetime reproductive success and thereby further reduce $N_{e} / N$. Indeed, individual reproductive success (b) was moderately repeatable within individuals across years in the focal chough population ( $R=0.22,95 \% \mathrm{CI}: 0.00-0.40$, Appendix S 1 ). Future developments of demographic estimators of $N_{e}$ should aim to incorporate such persistent individual differences alongside other forms of demographic stochasticity and heterogeneity.

## CAUSES OF DEMOGRAPHIC VARIANCE

A major advantage of estimating $N_{e} / N$ using demographic estimators that consider agestructure is that such estimators potentially allow each sex and/or age class's contribution to total $\sigma_{d g}^{2}$, and hence to reducing $N_{e} / N$, to be explicitly quantified (Engen et al. 2010; see also Waples et al. 2013). Critical demographic classes that influence $N_{e}$, and thereby influence a population's evolutionary trajectory and viability, can then be identified. The detailed demographic data available for Islay's chough population, where survival and any reproduction of adults and sub-adults can be directly observed, and immigration is apparently very rare or absent, provides an unusual and extremely valuable opportunity to partition total demographic variance across key sex-age classes.

Our analyses showed that four year-olds and the defined terminal age-class comprising adults aged five years or older contributed most to $\sigma_{d g}^{2}$ (Fig. 3). This might be expected, since these classes encompass most breeding adults and hence encompass
substantial among-individual variation in reproductive success. Overall, male and female contributions to total $\sigma_{d g}^{2}$ were similar (Fig. 3). This concurs with the similar sex-specific components of demographic variance ( 0.16 and 0.14 for females and males respectively) estimated in Siberian jays (Perisoreus infaustus), a corvid with a similar life-history to choughs (Engen et al. 2010). However, estimates of sex-specific demographic variances in populations of other bird species have shown larger contributions from males than females (e.g. great reed warbler Acrocephalus arundinaceus, Sæther et al. 2004a; house sparrow, Engen et al. 2007b). Further, although total female and male components of $\sigma_{d g}^{2}$ were similar in choughs, the agespecific contributions differed between the sexes. Specifically, $\geq 5$ year-old males contributed more to $\sigma_{d g}^{2}$ than $\geq 5$ year-old females, whereas two and three year-old females contributed more than two and three year-old males (Fig. 3). Thus, although overall sex-specific components of $\sigma_{d g}^{2}$ were similar, our analyses illustrate that there may be key sex-age-specific processes acting at small population sizes that drive evolutionary processes and population viability, through their influence on $N_{e}$. These sex-age specific differences may reflect persistent population or life-history characteristics, or may reflect stochastic demographic processes acting at small population sizes. In general, estimates of $N_{e}$ from demographic data commonly only consider the female component of demographic variance (Grant \& Grant 1992; Nunney \& Elam 1994; Frankham 1995; Waples et al. 2013). Our results show that, even for monogamous species like choughs, sex-age-class specific contributions to demographic variance should be incorporated into calculations of $N_{e}$ to avoid bias and identify key demographic classes, and hence elucidate potential underlying ecological mechanisms.

The demographic estimate of $N_{e} / N=0.21$ yielded an estimate of $N_{e} \approx 30$, given $N \approx 141$. Two different single-sample genetic estimators based on linkage disequilibrium and approximate Bayesian computation further supported the conclusion that $N_{e} \leq 50$. Direct quantitative comparison between different $N_{e}$ estimators is difficult (Robinson \& Moyer 2013), not least because demographic estimators of $N_{e}$ reflect processes in the offspring generation and estimate $N_{e v}$ (Kimura \& Crow 1963), while single-sample genetic estimators reflect processes in the parental generation and estimate $N_{e i}$ (Crow \& Denniston 1988). Genetic estimates of $N_{e i}$ may therefore lag behind changes in $N$ by at least one generation. Indeed, $N_{e i}$ estimated from LD may be influenced by processes occurring multiple generations previously, as LD can take multiple generations to break down (Wang 2005; Waples 2005). Genetic estimators also incorporate effects of immigration and gene flow, which demographic estimators do not (e.g. Baalsrud et al. 2014). However, effects on $N_{e}$ estimates will depend on the extent of immigration. Immigration of few genetically differentiated individuals could cause $N_{e}$ to be underestimated, because LD generated by immigration will be attributed to drift. Conversely, high migration rates could cause local population $N_{e}$ to approach metapopulation $N_{e}$ (Wang 2005; Waples \& Do 2008; Gilbert \& Whitlock 2015).

In practice, the LD estimator gave the largest estimate of $N_{e}$ for Islay's chough population, which may reflect the somewhat larger past population size (e.g. 78 breeding pairs in 1986, Finney \& Jardine 2003, Appendix S2). The ABC estimator gave a similar estimate of $N_{e}$ to the demographic estimator. Since the ONeSAMP ABC approach utilises multiple different summary statistics to estimate $N_{e}$, the exact number of previous generations to which the estimate applies is unclear (Wang 2009). However, this estimator might be less biased by $N_{e}$ of previous generations than the LD estimator and may therefore better approximate current $N_{e}$ in a population of varying $N$. The
alternative explanation that the LD estimator is detecting immigration seems unlikely, as this is not supported by the ABC estimator. Additionally, for the LD approach to give an upwardly biased estimate of $N_{e}$ there would need to be considerable successful immigration into the Islay population, which is unlikely to have gone unobserved during population monitoring and ringing of all UK chough populations. Thus, there is likely to be little or no immigration and resulting gene flow that might act to increase genetic diversity and $N_{e}$ in Islay's chough population beyond that calculated from observed $N$ and demography.

## CONSERVATION MANAGEMENT IMPLICATIONS

Our insights into the magnitude and demographic causes of $N_{e} / N$ given dynamic agestructure are also directly relevant to conservation strategy for the focal chough population. The demographic and genetic estimators all showed that $N_{e} \leq 50$, which is below the rule-of-thumb minimum recommended to ensure short-term population viability (Mace \& Lande 1991; Frankham et al. 2014). Specifically, the baseline pergeneration increase in inbreeding, and the corresponding expected rate of loss of genetic diversity per generation, can be calculated as:
$\Delta F=\frac{1}{2 N_{e}}$
(Falconer \& Mackay 1996). From the demographic estimate of $N_{e} \approx 30, \Delta F$ will be $\approx 0.02$ per initial generation in the continued absence of immigration. This value is relatively high, implying increasing expression of inbreeding depression and reduced evolutionary potential, and hence reduced population viability in both the short-term and long-term (Keller \& Waller 2002; Frankham et al. 2014). Genetic management should therefore be urgently considered. Since the observed high $\sigma_{d g}^{2}$ stems partly from spatial variation in offspring survival to age one (Reid et al. 2006), future strategies could aim to reduce
this variation through targeted management of territories with current low productivity (e.g. through targeted habitat improvement or supplementary feeding of specific breeding adults). Additionally, observed sex-age specific contributions to $\sigma_{d g}^{2}$ suggest strategies to alleviate demographic variance could focus on different age classes in females versus males. However, strategies to decrease $\sigma_{d g}{ }_{d g}$ and hence increase $N_{e} / N$ may be insufficient to ensure future viability of Islay's chough population, as current levels of inbreeding and genetic diversity would not be decreased and increased respectively. Further, because $\lambda<1, N$ will continue to decrease. Indeed, the low $\lambda$ may partly reflect inbreeding depression in survival and reproduction (e.g. Liberg et al. 2005; O'Grady et al. 2006). Translocations may consequently be required to re-establish connectivity between Islay and other UK chough populations and thereby increase genetic diversity and ameliorate inbreeding. Re-establishment of gene-flow in small, fragmented populations has been associated with increased fitness and $\lambda$ ('genetic rescue') in diverse species (Hostetler et al. 2013; Frankham 2015; Laikre et al. 2016). Such proactive genetic management, alongside habitat management, might be essential to ensure long-term population viability.

## Acknowledgments

We thank everyone who helped with fieldwork on Islay, in particular Sue Bignal and Pat Monaghan, as well as all land-owners and farmers who allowed access to nest sites. We thank Bernt-Erik Sæther, Steinar Engen and Henrik Jensen for their generous help and discussions. AET was funded by the Natural Environment Research Council and Scottish Natural Heritage. JMR was supported by the European Research Council.

## Data Accessibility

All data associated with this article will be archived at the Dryad Digital Repository upon acceptance of the manuscript.

## References

Akçakaya, H.R. (2002) Estimating the variance of survival rates and fecundities. Animal Conservation, 5, 333-336.

Araki, H., Waples, R.S., Ardren, W.R., Cooper, B. \& Blouin, M.S. (2007) Effective population size of steelhead trout: Influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16, 953-966.

Ardren, W.R. \& Kapuscinski, A.R. (2003) Demographic and genetic estimates of effective population size $(\mathrm{Ne})$ reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49.

Baalsrud, H.T., Saether, B.-E., Hagen, I.J., Myhre, A.M., Ringsby, T.H., Pärn, H. \& Jensen, H. (2014) Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation. Molecular Ecology, 23, 2653-68.

Beebee, T.J.C. (2009) A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: Genetic compensation and population size-genetic diversity correlations. Molecular Ecology, 18, 4790-4797.

Bignal, E., Bignal, S. \& McCracken, D. (1997) The social life of the chough. British Wildife, 8, 373-383.

Caballero, A. (1994) Developments in the prediction of effective population size. Heredity, 73, 657-679.

Caswell, H. (2001) Matrix Population Models, 2nd ed. Sinauer Associates, Sunderland, USA.

Charlesworth, B. (2009) Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10, 195-205.

Crow, J.F. \& Denniston, C. (1988) Inbreeding and variance effective population numbers. Evolution, 42, 482-495.

Crow, J.F. \& Kimura, M. (1970) An Introduction to Population Genetics Theory. Burgess Publishing Company, Minneapolis, Minnesota, USA.

Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J. \& Ovenden, J.R. (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size ( Ne ) from genetic data. Molecular Ecology Resources, 14, 209-14.

Eaton, M.A., Brown, A.F., Noble, D.G., Musgrove, A.J., Hearn, R.D., Aebischer, N.J., Gibbons, D.W., Evans, A. \& Gregory, R.D. (2015) Birds of conservation concern 4: the population status of birds in the UK, Channel Islands and Isle of Man. British Birds, 108, 708-746.

Emigh, T.H. \& Pollak, E. (1979) Fixation probabilities and effective population numbers in diploid populations with overlapping generations. Theoretical Population Biology, 15, 86-107.

Engen, S., Bakke, Ø. \& Islam, A. (1998) Demographic and environmental stochasticityconcepts and definitions. International Biometric Society, 54, 840-846.

Engen, S., Lande, R. \& Saether, B.E. (2005) Effective size of a fluctuating agestructured population. Genetics, 170, 941-954.

Engen, S., Lande, R., Saether, B.-E. \& Dobson, F.S. (2009) Reproductive value and the stochastic demography of age-structured populations. American Naturalist, 174,

795-804.
Engen, S., Lande, R., Saether, B.E. \& Festa-Bianchet, M. (2007a) Using reproductive value to estimate key parameters in density-independent age-structured populations. Journal of Theoretical Biology, 244, 308-317.

Engen, S., Lande, R., Sæther, B.E. \& Gienapp, P. (2010) Estimating the ratio of effective to actual size of an age-structured population from individual demographic data. Journal of Evolutionary Biology, 23, 1148-1158.

Engen, S., Ringsby, T.H., Sæther, B.-E., Lande, R., Jensen, H., Lillegård, M. \& Ellegren, H. (2007b) Effective size of fluctuating populations with two sexes and overlapping generations. Evolution, 61, 1873-1885.

England, P.R., Cornuet, J.-M., Berthier, P., Tallmon, D.A. \& Luikart, G. (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conservation Genetics, 7, 303-308.

Falconer, D.S. \& Mackay, T.F.. (1996) Introduction to Quantitative Genetics, 4th Edn (eds DS Falconer and TFC Mackay). Pearson Prentice Hall, Harlow, UK.

Ficetola, G.F., Padoa-Schioppa, E., Wang, J. \& Garner, T.W.J. (2010) Polygyny, census and effective population size in the threatened frog, Rana latastei. Animal Conservation, 13, 82-89.

Finney, S.K. \& Jardine, D.C. (2003) The distribution and status of the red-billed chough in Scotland in 2002. Scottish Birds, 24, 11-17.

Fisher, R.A. (1958) The Genetical Theory of Natural Selection, 2nd edn. Dover, New York.

Frankham, R. (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66, 95-107.

Frankham, R. (2015) Genetic rescue of small inbred populations: meta-analysis reveals
large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618.

Frankham, R., Bradshaw, C.J.A. \& Brook, B.W. (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56-63.

Gilbert, K.J. \& Whitlock, M.C. (2015) Evaluating methods for estimating local effective population size with and without migration. Evolution, 69, 2154-2166.

Grant, P.R.. \& Grant, B.. R. (1992) Demography and the genetically effective sizes of two populations of Darwin' s finches. Ecology, 73, 766-784.

Griffen, B.D. \& Norelli, A.P. (2015) Spatially variable habitat quality contributes to within-population variation in reproductive success. Ecology and Evolution, 5, 1474-1483.

Hamel, S., Gaillard, J.-M., Festa-Bianchet, M. \& Côté, S. (2009) Individual quality, early life conditions, and reproductive success in contrasted populations of large herbivores. Ecology, 7, 1981-1995.

Hare, M.P., Nunney, L., Schwartz, M.K., Ruzzante, D.E., Burford, M., Waples, R.S., Ruegg, K. \& Palstra, F. (2011) Understanding and estimating effective population size for practical application in marine species management. Conservation Biology, 25, 438-449.

Hayhow, D., Bond, A., Eaton, M., Grice, P., Hall, C., Hall, J., Harris, S., Hearn, R., Holt, C., Noble, D., Stroud, D. \& Wotton, S. (2015) The State of the UK's Birds 2015, RSPB, BTO, WWT, JNCC, NE, NIEA, NRW \& SNH. Sandy, Bedfordshire.

Hill, G. (1972) Effective size of populations with overlapping generations. Theoretical Population Biology, 3, 278-289.

Hill, W. (1981) Estimation of effective population size from data on linkage disequilibrium. Genetics Research Cambridge, 38, 209-216.

Hogan, F.E., Cooke, R., Burridge, C.P. \& Norman, J.A. (2008) Optimizing the use of shed feathers for genetic analysis. Molecular Ecology Resources, 8, 561-567.

Hostetler, J.A., Onorato, D.P., Jansen, D. \& Oli, M.K. (2013) A cat's tale: the impact of genetic restoration on Florida panther population dynamics and persistence. Journal of Animal Ecology, 82, 608-620.

Keller, L.F. \& Waller, D.M. (2002) Inbreeding effects in wild populations. Trends in Ecology \& Evolution, 17, 230-241.

Kendall, B. \& Wittmann, M.E. (2010) A stochastic model for annual reproductive success. American Naturalist, 175, 461-468.

Kimura, M. \& Crow, J.F. (1963) The measurement of effective population number. Evolution, 17, 279-288.

Lacy, R.C. \& Pollak, J.P. (2014) Vortex: A stochastic simulation of the extinction process. Chicago Zoological Society, Chicago, USA.

Laikre, L., Olsson, F., Jansson, E., Hössjer, O. \& Ryman, N. (2016) Metapopulation effective size and conservation genetic goals for the Fennoscandian wolf (Canis lupus) population. Heredity, 117, 279-289.

Lande, R. \& Barrowclough, G.F. (1987) Effective population size, genetic variation, and their use in population management. Viable populations for conservation (ed M.E. Soule), pp. 87-124. Cambridge University Press, Cambridge.

Lee, A.M., Engen, S. \& Saether, B.-E. (2011) The influence of persistent individual differences and age at maturity on effective population size. Proceedings of the Royal Society B, 278, 3303-3312.

Liberg, O., Andrén, H., Pedersen, H.-C., Sand, H., Sejberg, D., Wabakken, P., Kesson, M. \& Bensch, S. (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biology Letters, 1, 17-20.

Mace, G.M. \& Lande, R. (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conservation Biology, 5, 148-157.

Manly, B.F.J. (2007) Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd edn. Chapman \& Hall, Boca raton, USA.

Matocq, M.D. (2004) Reproductive success and effective population size in woodrats (Neotoma macrotis). Molecular Ecology, 13, 1635-1642.

Melbourne, B.A. \& Hastings, A. (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature, 454, 100-103.

Mesterton-Gibbons, M. (1993) Why demographic elasticities sum to one: A postscript to de Kroon et al. Ecology, 74, 2467-2468.

Nomura, T. (2002) Effective size of populations with unequal sex ratio and variation in mating success. Journal of Animal Breeding and Genetics, 119, 297-310.

Nunney, L. (1991) The influence of age structure and fecundity on effective population size. Proceedings of the Royal Society B, 246, 71-76.

Nunney, L. \& Elam, D.R. (1994) Estimating the effective population size of conserved populations. Conservation Genetics, 8, 175-184.

O’Grady, J.J., Brook, B.W., Reed, D.H., Ballou, J.D., Tonkyn, D.W. \& Frankham, R. (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation, 133, 42-51.

Palstra, F.P. \& Fraser, D.J. (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecology and Evolution, 2, 2357-65.

Palstra, F.P. \& Ruzzante, D.E. (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-47.

Van de Pol, M., Bruinzeel, L.W., Heg, D., Van Der Jeugd, H.P. \& Verhulst, S. (2006)

A silver spoon for a golden future: Long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). Journal of Animal Ecology, 75, 616-626.

Puth, M.T., Neuhauser, M. \& Ruxton, G.D. (2015) On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology, 84, 892-897.

R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Reid, J.M., Bignal, E.M., Bignal, S., Bogdanova, M.I., Monaghan, P. \& McCracken, D.I. (2011) Diagnosing the timing of demographic bottlenecks: sub-adult survival in red-billed choughs. Journal of Applied Ecology, 48, 797-805.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I., Bogdanova, M.I. \& Monaghan, P. (2008) Investigating patterns and processes of demographic variation: Environmental correlates of pre-breeding survival in red-billed choughs Pyrrhocorax pyrrhocorax. Journal of Animal Ecology, 77, 777-788.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2003a)
Environmental variability, life-history covariation and cohort effects in the redbilled chough Pyrrhocorax pyrrhocorax. Journal of Animal Ecology, 72, 36-46.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2003b) Agespecific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. Journal of Animal Ecology, 72, 765-776.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2004) Identifying the demographic determinants of population growth rate: A case study of red-billed choughs Pyrrhocorax pyrrhocorax. Journal of Animal Ecology, 73,

777-788.
Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2006) Spatial variation in demography and population growth rate: the importance of natal location. Journal of Animal Ecology, 75, 1201-11.

Robinson, J.D. \& Moyer, G.R. (2013) Linkage disequilibrium and effective population size when generations overlap. Evolutionary Applications, 6, 290-302.

Ruzzante, D.E., McCracken, G.R., Parmelee, S., Hill, K., Corrigan, A., MacMillan, J. \& Walde, S.J. (2016) Effective number of breeders, effective population size and their relationship with census size in an iteroparous species, Salvelinus fontinalis. Proceedings of the Royal Society B, 283, 20152601.

Sæther, B.E., Engen, S., Lande, R., Møller, A.P., Bensch, S., Hasselquist, D., Beier, J. \& Leisler, B. (2004a) Time to extinction in relation to mating system and type of density regulation in populations with two sexes. Journal of Animal Ecology, 73, 925-934.

Sæther, B.-E., Engen, S., Pape Møller, A., Weimerskirch, H., Visser, M.E., Fiedler, W. \& Matthysen, E. (2004b) Life history variation predicts the effects of demographic stochasticity on avian population dynamics. American Naturalist, 164, 793-802.

Schenker, N. (1985) Qualms about bootstrap confidence intervals. Journal of the American Statistical Association, 80, 360.

Sergio, F., Blas, J., Baos, R., Forero, M.G., Donazar, J.A. \& Hiraldo, F. (2009) Shortand long-term consequences of individual and territory quality in a long-lived bird. Oecologia, 160, 507-514.

Stubben, C. \& Milligan, B. (2007) Estimating and analyzing demographic models. Journal of Statistical Software, 22, 1-23.

Stubberud, M.W., Myhre, A.M., Holand, H., Kvalnes, T., Ringsby, T.H., Sæther, B.-E.
\& Jensen, H. (2017) Sensitivity analysis of effective population size to demographic parameters in house sparrow populations. Molecular Ecology, 26, 2449-2465.

Tallmon, D.A., Koyuk, A., Luikart, G. \& Beaumont, M.A. (2008) OneSamp: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources, 8, 299-301.

Trask, A.E., Bignal, E.M., McCracken, D.I., Monaghan, P., Piertney, S.B. \& Reid, J.M. (2016) Evidence of the phenotypic expression of a lethal recessive allele under inbreeding in a wild population of conservation concern. Journal of Animal Ecology, 85, 879-891.

Turner, T.F., Wares, J.P. \& Gold, J.R. (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus). Genetics, 162, 1329-1339.

Wang, J. (2005) Estimation of effective population sizes from data on genetic markers. Philosophical Transactions of the Royal Society: B, 360, 1395-409.

Wang, J. (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology, 18, 2148-64.

Wang, J., Brekke, P., Huchard, E., Knapp, L. a. \& Cowlishaw, G. (2010) Estimation of parameters of inbreeding and genetic drift in populations with overlapping generations. Evolution, 64, 1704-1718.

Wang, J. \& Whitlock, M.C. (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446.

Waples, R.S. (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-52.

Waples, R.S. (2006) A bias correction for estimates of effective population size based
on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167184.

Waples, R.S., Antao, T. \& Luikart, G. (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769780.

Waples, R.S. \& Do, C. (2008) LDNE: A program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753756.

Waples, R.S. \& Do, C. (2010) Linkage disequilibrium estimates of contemporary $N_{\mathrm{e}}$ using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262.

Waples, R.S., Do, C. \& Chopelet, J. (2011) Calculating $N e$ and $N e \backslash N$ in age-structured populations: A hybrid Felsenstein-Hill approach. Ecology, 92, 1513-1522.

Waples, R.S., Luikart, G., Faulkner, J.R. \& Tallmon, D.A. (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B, 280, 2-8.

Wenzel, M.A., Webster, L.M.I., Blanco, G., Burgess, M.D., Kerbiriou, C., Segelbacher, G., Piertney, S.B. \& Reid, J.M. (2012) Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax pyrrhocorax) populations. Conservation Genetics, 13, 1213-1230.

Wenzel, M.A., Webster, L.M.I., Segelbacher, G., Reid, J.M. \& Piertney, S.B. (2011) Isolation and characterisation of 17 microsatellite loci for the red-billed chough (Pyrrhocorax pyrrhocorax). Conservation Genetics Resources, 3, 737-740.

White, G.C. \& Burnham, K.P. (1999) Program MARK: survival estimation from populations of marked animals. Bird Study, 46, S120-S139.

Wright, S. (1931) Evolution in Mendelian populations. Genetics, 16, 97-159.
Wright, S. (1969) Evolution and the Genetics of Populations, Vol. 2: The Theory of Gene Frequencies. University of Chicago Press, Chicago.

## Figure legends

Fig. 1. Age- and sex-class specific estimates of (a) annual survival probability ( $P_{i}$, diamonds) with $95 \%$ confidence intervals, and probability of attempting to breed ( $c_{i}$, grey filled symbols); (b) breeding success (number of fledglings produced) of individuals that attempted to breed $\left(m_{i}\right)$, with associated standard errors; (c) reproductive values $\left(v_{\mathrm{i}}\right)$, and (d) stable age distribution $\left(u_{\mathrm{i}}\right)$. Females and males are respectively indicated by ( $\mathrm{a} \& \mathrm{~b}$ ) circles and triangles, and (c \& d) grey and white bars. Sample sizes are summarised in Table S2.

Fig. 2. Proportions of (a) females and (b) males in each age-class that produced 0-4 one-year old offspring (b), and (c) females and (d) males in each age-class that survived to the following year $(J)$. On panels (a) and (b), the interior x-axes show the $b$ values and exterior x -axes show the breeder age classes, where ' 5 ' includes individuals aged $\geq 5$ years. $N$ values denote sex-age specific sample sizes except for age one where sexes were unknown and hence $N$ denotes the pooled sample size. $J$ is consequently assumed to be equal for one year-old females and males (c \& d).

Fig. 3. Total population demographic variance ( $\sigma_{d g}^{2}$, 'Total'), sex-specific components of $\sigma_{d g}^{2}$ ('Sex totals') and contributions to $\sigma_{d g}^{2}$ from each sex-age class (Age 1-5+ years). Dark grey and light grey bars indicate female and male components, respectively.

Whiskers denote $95 \%$ bootstrapped confidence intervals. Bootstrap confidence intervals did not include the point estimate for three year-old males and are not shown (see Appendix S1).

## Authors' contributions

AET and JMR conceived the ideas and undertook the demographic data analyses. AET undertook molecular genetic analyses, and SBP assisted with labwork. EB, DMcC, JMR and AET collected field data. AET wrote the manuscript, assisted by JMR.

## Supporting information

Appendix S1. Details of demographic estimation of effective population size
Appendix S2. Census sizes of the Islay red-billed chough population
Appendix S3. Sex ratio of nestling red-billed choughs
Appendix S4. Details of genetic estimation of effective population size




# Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity 

Amanda E. Trask, Eric M. Bignal, Davy I. McCracken, Stuart B. Piertney and Jane M. Reid.

## Contents

Appendix S1. Details of demographic estimation of effective population size

Step 1. Mean population projection matrix

Step 1.1. Estimating age-specific probabilities of survival
Step 1.2. Selecting appropriate age classes

Step 2. Sex-age-year class data from sampled individuals for the focal years

Step 2.1. Phenotypic covariance between $b$ and $J$

Step 2.2. Repeatability in individual $b$ across years

Step 3. Expectations for each sex-age-year class

Step 4. Components of the demographic variance, $\sigma^{2}{ }_{d g i}$

Step 5. Estimating total demographic variance and $N_{e} / N$

Step 6. Estimating confidence intervals

## Appendix S2. Census sizes of the Islay red-billed chough population <br> Appendix S3. Sex-ratio of nestling red-billed choughs <br> Appendix S4. Details of genetic estimation of effective population size <br> S4.1 Molecular analyses and summary statistics of microsatellites <br> S4.2 Single-sample genetic estimates

## Appendix S1. Details of demographic estimation of effective population size

Effective population size, $N_{e}$, was calculated for an age-structured population of red-billed choughs (Pyrrhocorax pyrrhocorax) using data on sex- and age-specific reproductive success and survival from a sample of individuals and utilising the 'reproductive value' method derived by Engen, Lande \& Saether (2005) and Engen et al. (2010). This approach allows estimation of $N_{e} / N$ in age-structured populations experiencing environmental and demographic stochasticity. It can encompass sex-age-year classes that naturally include very few individuals, as may be common in small populations following low breeding success or high juvenile mortality in some years.

Table S1. Summary definitions of key population-level and individual-level demographic rates, and of key estimated parameters.

## Notation Definition

$N \quad$ Census population size, which may be defined as breeding adults or both adults and sub-adults.
$N_{e v} \quad$ Variance effective size
$N_{e i} \quad$ Inbreeding effective size.
$k \quad$ Age-class.
$l \quad$ Population projection matrix.
$i \quad$ Index denoting a given sex-age class.
Key population-level demographic rates required for $l$ :
$c_{i} \quad$ The proportion of individuals that attempt to breed in a given sex-age class $i$.
$m_{i} \quad$ Mean breeding success, defined as the number of fledglings produced per breeding attempt by individuals that attempted to breed in a given sex-age class $i$.
$q \quad$ Primary proportion of individuals that are the focal sex.
Compound fecundity of a given sex-age class $i$, defined as $1 / 2 q\left(c_{i} m_{i} P_{1}\right)$ given a
$f_{i}$ pre-breeding census.
$P_{1} \quad$ Probability of first-year survival (i.e. fledging to age one year).
$P_{2} \quad$ Probability of second-year survival (i.e. age one year to age two years).
$P_{a d} \quad$ Probability of annual adult survival (i.e. age two years and older).

## Parameters calculated from $l$ :

$\lambda \quad$ Asymptotic population growth rate, calculated as the real dominant eigenvalue of $l$.
$T \quad$ Generation time, calculated as the mean projected age of parents of new offspring.
$u \quad$ Stable age distribution, calculated as the right eigenvector of $l$.
$v$
Age-specific reproductive values, calculated as the left eigenvector of $l$.

## Key individual-level demographic data required:

$b \quad$ Individual breeding success, defined as the number of one year-olds produced per breeding attempt (given a pre-breeding census).
$J \quad$ Individual realised survival to the following year.
Final parameters estimated:
$\sigma_{d g i}^{2} \quad$ Demographic variance component from each sex-age class $i$.
$\sigma_{d g}^{2} \quad$ Total population demographic variance.
$N_{e} / N \quad$ Ratio of effective population size to census population size.

## Step 1. Mean population projection matrix

Mean population-level estimates of survival and fecundity for each sex-age class were used to populate the $2 k \times 2 k$ population projection matrix, $l$, with $k=5$ age classes, and formulated for a birth-pulse population with a pre-breeding census. This population projection matrix comprised four submatrices:

$$
l=\left[\begin{array}{ll}
l_{f f} & l_{m f} \\
l_{f m} & l_{m m}
\end{array}\right]
$$

where $l_{f f}$ is the submatrix for the female contribution to females in the next generation; $l_{m m}$ is the submatrix for the male contribution to males in the next generation; $l_{m f}$ is the contribution of males to females in the next generation; and $l_{f m}$ is the contribution of females to males in the next generation. These submatrices were populated with the survival and fecundity terms:
$56 \quad l_{f f}=\left[\begin{array}{ccccc}0 & \frac{1}{2} q\left(c_{f 2} m_{f 2} P_{1}\right) & \frac{1}{2} q\left(c_{f 3} m_{f 3} P_{1}\right) & \frac{1}{2} q\left(c_{f 4} m_{f 4} P_{1}\right) & \frac{1}{2} q\left(c_{f 5} m_{f 5} P_{1}\right) \\ P_{2} & 0 & 0 & 0 & 0 \\ 0 & P_{a d} & 0 & 0 & 0 \\ 0 & 0 & P_{a d} & 0 & 0 \\ 0 & 0 & 0 & P_{a d} & P_{a d}\end{array}\right]$

57
$l_{m m}=$
$\left[\begin{array}{ccccc}0 & \frac{1}{2}(1-q)\left(c_{m 2} m_{m 2} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 3} m_{m 3} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 4} m_{m 4} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 5} m_{m 5} P_{1}\right) \\ P_{2} & 0 & 0 & 0 & 0 \\ 0 & P_{a d} & 0 & 0 & 0 \\ 0 & 0 & P_{a d} & 0 & 0 \\ 0 & 0 & 0 & P_{a d} & P_{a d}\end{array}\right]$

60

$$
l_{m f}=
$$

$62\left[\begin{array}{ccccc}0 & \frac{1}{2}(1-q)\left(c_{m 2} m_{m 2} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 3} m_{m 3} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 4} m_{m 4} P_{1}\right) & \frac{1}{2}(1-q)\left(c_{m 5} m_{m 5} P_{1}\right) \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

63
$64 \quad l_{f m}=\left[\begin{array}{ccccc}0 & \frac{1}{2} q\left(c_{f 2} m_{f 2} P_{1}\right) & \frac{1}{2} q\left(c_{f 3} m_{f 3} P_{1}\right) & \frac{1}{2} q\left(c_{f 4} m_{f 4} P_{1}\right) & \frac{1}{2} q\left(c_{f 5} m_{f 5} P_{1}\right) \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

65

The survival probabilities, $P_{1}, P_{2}$ and $P_{a d}$ were calculated as described in Step 1.1. For the fecundity terms (probability of attempting to breed, $c_{i}$, and breeding success given that breeding was attempted, $m_{i}$, Table S1), subscripts $f 2-f 5$ and $m 2-m 5$ refer to females and males
of age class $2-5$ respectively. The primary proportion of each focal sex, $q$, was set to be 0.5 (i.e. an equal brood sex-ratio, see Appendix S3).

The asymptotic population growth rate, $\lambda$, the stable age distribution, $u_{i}$, and reproductive values, $v_{i}$, were calculated from the real dominant eigenvalue, and right and left eigenvectors of $l$, respectively (Caswell 2001). The $u_{i}$ and $v_{i}$ values were then scaled so that $\sum u_{i}=1$ and $\sum u_{i} v_{i}=1$. The generation time, $T$, was calculated directly from $l$. Analyses were run in R v2.15.2 (R Development Core Team 2012), using the package Popbio (Stubben \& Milligan 2007) for population projection analysis. Table S 2 shows the sex-age class components of $c_{i}$ and $m_{i}$, sample sizes, and $P_{1}, P_{2}$ and $P_{a d}$, and the computed $u_{i}$ and $v_{i}$ values. These data are summarised in Fig. 1.

Table S2. Sex-age-specific probability of breeding, $c_{i}$, and mean breeding success of individuals that attempted to breed, $m_{i}$, with associated standard error (SE) and sample sizes $\left(N_{\text {obs }}\right)$, and probability of survival $\left(P_{i}\right)$ with associated $95 \%$ confidence intervals (CI) used in the population projection matrix, $l$, and the computed stable age distribution, $u_{i}$, and reproductive values, $v_{i}$. Estimates of $P_{i}$ were the same for both sexes. Sexes of one year-olds were unknown, thus reported sample sizes are pooled across sexes. For individuals in age class three or older, $P_{i}$ is equal (i.e. $P_{a d}$ ).

| Age class | $\boldsymbol{c}_{\boldsymbol{i}}\left(\boldsymbol{N}_{\text {obs }}\right)$ | $\boldsymbol{m}_{\boldsymbol{i}} \pm \boldsymbol{S E}\left(\boldsymbol{N}_{\text {obs }}\right)$ | $\boldsymbol{P}_{\boldsymbol{i}}(\mathbf{9 5 \%} \mathbf{C I})$ | $\boldsymbol{u}_{\boldsymbol{i}}$ | $\boldsymbol{v}_{\boldsymbol{i}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Females: |  |  |  |  |  |
| 1 | $0.00(162)$ | - | $0.25(0.22-0.29)$ | 0.09 | 0.69 |
| 2 | $0.36(40)$ | $1.93 \pm 0.40(15)$ | $0.75(0.67-0.81)$ | 0.07 | 0.89 |
| 3 | $0.65(31)$ | $2.55 \pm 0.29(20)$ | $0.80(0.78-0.82)$ | 0.06 | 1.00 |
| 4 | $1.00(24)$ | $1.63 \pm 0.31(24)$ | - | 0.05 | 1.02 |
| $5+$ | $1.00(103)$ | $1.99 \pm 0.17(103)$ | - | 0.23 | 1.06 |
| Males: |  |  |  |  |  |
| 1 | $0.00(162)$ | - | $0.25(0.22-0.29)$ | 0.09 | 0.71 |
| 2 | $0.20(25)$ | $1.80 \pm 0.58(5)$ | $0.75(0.67-0.81)$ | 0.07 | 0.92 |
| 3 | $0.62(21)$ | $2.08 \pm 0.38(13)$ | $0.80(0.78-0.82)$ | 0.06 | 1.06 |
| 4 | $1.00(19)$ | $1.74 \pm 0.36(19)$ | - | 0.05 | 1.14 |
| $5+$ | $1.00(103)$ | $2.27 \pm 0.16(103)$ | - | 0.23 | 1.18 |

## Step 1. 1 Estimating age-specific probabilities of survival

As a preliminary step to estimating $N_{e}$, capture-mark-recapture models (CMR) were used to estimate age-specific probabilities of survival from colour-ring resightings. Choughs were resighted in mid-May to mid-July each year across Islay. As dispersal from Islay is rare (Reid et al. 2003a, 2004, 2010; Wenzel et al. 2012), disappearance of colour-ringed individuals during 2004-2014 was assumed to reflect mortality. Previous analyses suggested that survival probabilities do not differ significantly between males and females (Reid et al. 2003b) and thus sexes were pooled. A live recaptures Cormack-Jolly-Seber model was fitted to the
encounter histories of all 1695 choughs ringed during 1983-2014, with age-dependent survival probabilities $\left(P_{i}\right)$ and year-dependent resighting probabilities. The best supported model of age-dependent survival was selected based on Akaike's Information Criterion (AIC). Bootstrap goodness-of-fit tests were used to assess the fit of the model, using $\hat{c}$ to check for overdispersion.

A three age-class model, with first-year (fledging to age one year), second-year (age one year to age two years) and adult (age two years and older) classes was best supported, as found previously (Reid et al. 2004). Across the focal study years of 2004-2014, first-year survival was low ( $P_{l}=0.25$ ), but increased in the second year $\left(P_{2}=0.75\right)$ and was high for adults ( $P_{a d}=0.80$ ). Resighting probability was high across all age-classes during 2004-2014 (mean $=0.97 \pm 0.02$ ).

## Step 1.2. Selecting appropriate age classes

Age-classes were defined to capture age-specific variation in reproductive success ( $c_{i}$ and $m_{i}$, Table S2) and survival probability ( $P_{i}$, Step 1.1), but also maintain sufficient sample sizes so that year-specific mean values of $b$ and $J$ for each sex-age class could be calculated. A three age-class CMR model was best supported (Step 1.1) and therefore these age-classes were kept separate to capture this variation. Additionally, the probability of attempting to breed $\left(c_{i}\right)$ and the number of fledglings produced by individuals that attempted to breed $\left(m_{i}\right)$ varied between ages one to four or older, thus these age-classes were also kept separate. Reproductive success has previously been shown to decrease in older age-classes (Reid et al. 2003b, 2004), however sample sizes become too small such that sex-age-year class demographic variances could not be calculated. Individuals aged five and older were therefore pooled into a terminal age-class.

## Step 2. Sex-age-year class data from sampled individuals for the focal years

Data from colour-ringed (and hence known-age) males and females on individual realised survival to the following year $\left(J_{i}\right)$ and breeding success $\left(b_{i}\right)$, calculated as the number of offspring surviving to one year old, for each sex-age class for the years 2004-2013 were included in current analyses.

For each sex-age-year class, mean breeding success (b) across individuals was calculated (Table S3). Mean sums of squares of breeding success $\left(S_{b}{ }^{2}\right)$ were then calculated as the sum of the squares of each individual's difference from its sex-age class mean. The grand mean was calculated by weighting each sum of squares by sample size, by dividing by the number of individuals in each sex-age class in each year minus 1.

Mean realised survival ( $J$ ) for each sex-age-year class was calculated (Table S4). Mean sums of squares of adult realised survival $\left(S_{J}^{2}\right)$ were then calculated as above; the square of each individual's difference from its mean sex-age-year class realised survival was computed, the sum of these squares for each sex-age class in each year was calculated, and the grand mean, weighted by sample size minus 1 , was computed.

The mean sum of squares of the cross products $\left(S_{J b}\right)$ between breeding success and realised survival were then calculated by multiplying each individual's $b$ and $J$ values. The square of each individual's difference from its sex-age class mean for the cross-product was calculated, these squares were summed within each sex-age-year class, and the grand mean weighted by the sample size minus 1 was computed.

| Age | $2\left(N_{o b s}\right)$ |  | 3 ( $N_{\text {obs }}$ ) |  | 4 ( $N_{\text {obs }}$ ) |  | $5+\left(N_{\text {obs }}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Female | Male | Female | Male | Female | Male | Female | Male |
| 2004 | 0.00 (4) | - | - | 1.00 (2) | 0.00 (3) | 0.00 (2) | 0.22 (9) | 0.38 (10) |
| 2005 | - | - | 0.50 (4) | - | - | - | 0.50 (8) | 0.38 (12) |
| 2006 | 1.25 (4) | 00.0 (5) | - | - | 0.00 (3) | - | 0.83 (8) | 0.60 (13) |
| 2007 | 0.00 (4) | 0.00 (4) | 0.00 (4) | 0.00 (6) | - | - | 0.14 (9) | 0.00 (10) |
| 2008 | 0.00(12) | 0.00 (5) | 0.33 (7) | 0.00 (4) | 0.00 (2) | 0.00 (6) | 0.22 (10) | 0.25 (6) |
| 2009 | - | - | 0.13 (9) | 0.33 (4) | 0.40 (5) | 0.75 (4) | 0.11 (11) | 0.00 (9) |
| 2010 | - | - | - | - | 0.17 (6) | 1.00 (3) | 0.33 (14) | 0.56 (11) |
| 2011 | 0.50 (4) | 0.33 (3) | - | - | - | - | 0.36 (11) | 0.91 (13) |
| 2012 | 0.00 (6) | 0.50 (5) | 0.67 (3) | 0.00 (2) | - | - | 0.80 (10) | 1.67 (10) |
| 2013 | 0.00 (3) | 0.00 (2) | 0.00 (2) | 3.00 (2) | 1.33 (3) | - | 0.50 (11) | 0.44 (9) |

Table S3. Mean sex-age-year specific breeding success (b), with sample sizes ( $N_{o b s}$ ) in brackets. '-' indicate sex-age-year classes where data were available for $<2$ individuals, therefore these classes were not included in analyses. One year olds did not attempt to breed and are therefore not included.

Table S4. Mean realised survival to the following year $(J)$ in each sex-age-year class, with sample sizes $\left(N_{o b s}\right)$ in brackets. Sexes of one yearolds were unknown, so sex-specific mean realised survival could not be calculated and all individuals were pooled. '-' indicate sex-age-year classes where data were available for $<2$ individuals, therefore these classes were not included in analyses.


Table S5. Summary statistics of sex-age-year class breeding success (b) and realised survival ( $J$ ). Minimum (Min), maximum (Max), mean with associated standard error (SE), median and variance (Var) are shown, with sample size $N_{\text {obs }}$ in each sex-age-year class. One year-olds did not attempt to breed and sexes were unknown, thus sex-specific realised survival could not be calculated and $N_{\text {obs }}$ is for both sexes combined.

| $\begin{aligned} & \hline \text { Age- } \\ & \text { class } \end{aligned}$ | 1 | 2 |  | 3 |  | 4 |  | 5+ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ( $N_{\text {obs }}=162$ ) | Female $\left(N_{o b s}=38\right)$ | Male $\left(N_{o b s}=25\right)$ | Female $\left(N_{o b s}=31\right)$ | Male $\left(N_{o b s}=21\right)$ | Female $\left(N_{o b s}=24\right)$ | Male $\left(N_{o b s}=19\right)$ | Female $\left(N_{o b s}=103\right)$ | Male $\left(N_{o b s}=101\right)$ |
| Breeding success (b) |  |  |  |  |  |  |  |  |  |
| Min | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Max | - | 3.00 | 2.00 | 2.00 | 3.00 | 3.00 | 2.00 | 3.00 | 4.00 |
| Mean | - | 0.18 | 0.13 | 0.29 | 0.29 | 0.35 | 0.59 | 0.39 | 0.57 |
| $\pm$ SE |  | $\pm 0.11$ | $\pm 0.09$ | $\pm 0.11$ | $\pm 0.19$ | $\pm 0.16$ | $\pm 0.21$ | $\pm 0.07$ | $\pm 0.10$ |
| Median | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Var | - | 0.42 | 0.20 | 0.36 | 0.60 | 0.60 | 0.76 | 0.40 | 0.86 |
| Realised survival ( $J$ ) |  |  |  |  |  |  |  |  |  |
| Mean | 0.74 | 0.90 | 0.88 | 0.90 | 0.86 | 0.83 | 0.89 | 0.79 | 0.83 |
| $\pm$ SE | $\pm 0.03$ | $\pm 0.05$ | $\pm 0.07$ | $\pm 0.06$ | $\pm 0.08$ | $\pm 0.08$ | $\pm 0.07$ | $\pm 0.04$ | $\pm 0.04$ |
| Var | 0.19 | 0.09 | 0.11 | 0.09 | 0.13 | 0.14 | 0.10 | 0.17 | 0.15 |


| Age- |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| class | $\mathbf{2}$ |  | $\mathbf{3}$ |  | $\mathbf{4}$ |  | $\mathbf{5 +}$ |  |
| Year | Female | Male | Female | Male | Female | Male | Female | Male |
| 2004 | 0.00 | - | - | - | 0.00 | 0.00 | 0.14 | -0.23 |
| 2005 | - | - | 0.00 | - | - | - | 0.00 | 0.05 |
| 2006 | 0.00 | 0.00 | - | - | 0.00 | - | -0.23 | 0.07 |
| 2007 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | 0.00 | 0.00 |
| 2008 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.03 | 0.08 |
| 2009 | - | - | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| 2010 | - | - | - | - | 0.03 | 0.00 | 0.03 | 0.07 |
| 2011 | 0.00 | 0.17 | - | - | - | - | 0.11 | 0.09 |
| 2012 | 0.00 | 0.33 | 0.00 | 0.00 | - | - | -0.02 | 0.63 |
| 2013 | 0.00 | 0.00 | - | - | 0.67 | - | 0.07 | -0.01 |

Step 2.1. Phenotypic covariance between $b$ and $J$

Covariance between individual realised survival to the following year ( $J$ ) and breeding success (b) was quantified within each sex-age-year class (Table S6).

Table S6. Covariance between breeding success $(b)$ and realised survival $(J)$ within each sex-age-year class. Sample sizes within each year were as for Table S3\&4. '-' indicate sex-ageyear classes where data were available for $<2$ individuals, therefore these classes were not included.

[^0]Step 2.2. Repeatability in individual b across years

Generalized linear mixed models with Poisson error distributions, using a log link function, were used to estimate repeatability in individual breeding success (b) across years, with random individual identity effects, using the R package rptR v.0.9.1 (Nakagawa \& Schielzeth 2010). rptR was also used to estimate $95 \%$ confidence intervals around the repeatability estimate, using 1000 bootstrap samples.

306 total observations of $b$ from 73 individuals whose $b$ was observed in at least two years were used. Individual reproductive success was moderately repeatable across years (backtransformed observed scale $R=0.22,95 \%$ CI: $0.00-0.41$ ).

## Step 3. Expectations for each sex-age-year class

The expected contributions to demographic variance from females and males, conditioned on mean $b(\bar{b})$ and the sums of squares of $b\left(S_{b}{ }^{2}\right)$ and the sums of squares of the cross-product of breeding success and realised survival $\left(S_{J b}\right)$ for each sex-age class in each year were computed following Engen et al. (2010), assuming $q=0.5$. Equations (i) and (ii), and (iv) and (v), are equal if $q=0.5$, meaning that there are equal contributions to demographic variance from the production of daughters $(X)$ and sons $(Y)$.
(i) The expected contribution from females and males to demographic variance from the production of daughters $\left(E S_{X}^{2}\right)$ :

$$
E S_{X}^{2}=\frac{1}{4} q^{2}\left(S_{b}^{2}\right)+\frac{1}{4} q(2-q) \bar{b}
$$

(ii) The expected contribution from females and males to demographic variance from the production of sons $\left(E S_{Y}^{2}\right)$ :

$$
E S_{Y}^{2}=\frac{1}{4}(1-q)^{2}\left(S_{b}^{2}\right)+\frac{1}{4}(1-q)(1+q) \bar{b}
$$

(iii) The expected cross-product of the contribution from females and males to demographic variance from the production of daughters and sons $\left(E S_{X Y}\right)$ :

$$
E S_{X Y}=\frac{1}{4} q(1-q)\left(S_{b}^{2}-\bar{b}\right)
$$

(iv) The expected contribution from females and males to demographic variance from the survival of daughters $\left(E S_{J X}\right)$ :

$$
E S_{J X}=\frac{1}{2} q S_{J b}
$$

(v) The expected contribution from females and males to demographic variance from the survival of sons $\left(E S_{J Y}\right)$ :

$$
E S_{J Y}=\frac{1}{2}(1-q) S_{J b}
$$

Table S7. Expected contributions to demographic variance from the production of daughters $\left(E S^{2}{ }_{X}\right)$ and sons $\left(E S_{Y}^{2}\right)$, the cross-product of the production of daughters and sons $\left(E S_{X Y}\right)$ and the survival of daughters $\left(E S_{J X}\right)$ and sons $\left(E S_{J Y}\right)$. For age class one, where $b=0$, these expectations were 0 . Sample sizes within each year were as for Table S3\&4. '-' indicate sex-age-year classes where data were available for $<2$ individuals, and were therefore not included in analyses.

| Year | $\begin{aligned} & \hline \text { Age } \\ & \text { class } \end{aligned}$ | $E S^{2}{ }_{X} \boldsymbol{\&} E S^{2}{ }_{Y}$ |  | $\boldsymbol{E S}_{X Y}$ |  | $E S_{J X} \& E S_{J Y}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Female | Male | Female | Male | Female | Male |
| 2004 | 2 | 0.00 | - | 0.00 | - | 0.00 | - |
|  | 3 | - | - | - | - | - | - |
|  | 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5 | 0.05 | 0.10 | 0.00 | 0.01 | 0.05 | 0.03 |
| 2005 | 2 | - | - | - | - | - | - |
|  | 3 | 0.16 | - | 0.03 | - | 0.25 | - |
|  | 4 | - | - | - | - | - | - |
|  | 5 | 0.11 | 0.10 | -0.01 | 0.01 | 0.07 | 0.14 |
| 2006 | 2 | 0.38 | 0.00 | 0.06 | 0.00 | 0.56 | 0.00 |
|  | 3 | - | - | - | - | - | - |
|  | 4 | 0.00 | - | 0.00 | - | 0.00 | - |
|  | 5 | 0.22 | 0.17 | 0.01 | 0.02 | 0.18 | 0.23 |
| 2007 | 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4 | - | - | - | - | - | - |
|  | 5 | 0.04 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |



Step 4. Components of the demographic variance, $\sigma_{d i}^{2}$

Using the expected contributions calculated above and the sex-age specific reproductive values ( $v_{i}$, Table S2), the demographic variance components for each sex-age-year class were estimated by parameterising the following equation. Here, $v_{i+l}$ is the reproductive value of the subsequent sex-age class, with the final age class receiving its own reproductive value.

$$
\begin{gathered}
\hat{\sigma}_{d g i}^{2}=v_{i+1}^{2} S_{J}^{2}+v_{1}^{2} E S_{X}^{2}+v_{k+1}^{2} E S_{Y}^{2} \\
+2 v_{i+1} v_{1} E S_{J x}+2 v_{i+1} v_{k+1} E S_{J Y} \\
+2 v_{1} v_{k+1} E S_{X Y}
\end{gathered}
$$

| Age- | $\mathbf{1}$ |  |  | $\mathbf{2}$ |  | $\mathbf{3}$ |  | $\mathbf{4}$ |  | $\mathbf{5}+$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| class |  |  |  |  |  |  |  |  |  |  |  |
| Year | Female | Male |  |
| 2004 | 0.17 | 0.18 | 0.00 | - | - | - | 0.75 | 0.00 | 0.61 | 0.54 |  |
| 2005 | 0.12 | 0.13 | - | - | 1.16 | - | - | - | 0.74 | 1.02 |  |
| 2006 | 0.16 | 0.17 | 2.54 | 0.00 | - | - | 0.37 | - | 1.20 | 1.55 |  |
| 2007 | 0.24 | 0.25 | 0.00 | 0.00 | 0.26 | 0.00 | - | - | 0.35 | 0.58 |  |
| 2008 | 0.23 | 0.24 | 0.20 | 0.00 | 0.53 | 0.00 | 0.00 | 0.70 | 0.49 | 0.79 |  |
| 2009 | 0.10 | 0.10 | - | - | 0.29 | 0.99 | 0.98 | 1.42 | 0.27 | 0.21 |  |
| 2010 | 0.06 | 0.06 | - | - | - | - | 0.41 | 1.60 | 0.84 | 1.14 |  |
| 2011 | 0.20 | 0.21 | 1.12 | 0.82 | - | - | - | - | 0.84 | 1.56 |  |
| 2012 | 0.14 | 0.15 | 0.17 | 1.69 | 1.54 | 0.65 | - | - | 1.27 | 4.16 |  |
| 2013 | 0.17 | 0.17 | 0.00 | 0.00 | - | - | 3.26 | - | 0.57 | 0.73 |  |

Table S8. Sex-age-year class contributions to demographic variance, $\hat{\sigma}_{d g i}^{2}$. Sample sizes within each year were as for Table S3\&4. '-' indicate sex-age-year classes where data were available for $<2$ individuals, therefore these classes were not included in analyses.

Step 5. Estimating total demographic variance, $\sigma_{d g}^{2}$, and $N_{e} / N$

The weighted mean demographic variance for each sex-age class across years was then calculated from the components of the demographic variance, $\hat{\sigma}_{d g i}^{2}$ calculated above, weighted by sample size ( $n_{t i}$ ) minus 1 , thus allowing comparison between each sex-age-year class's contributions to total demographic variance:

$$
\sigma_{d g i}^{2}=\frac{\sum \hat{\sigma}_{d g i}^{2}\left(n_{t i}-1\right)}{\sum n_{t i}-1}
$$

The total demographic variance was then calculated as the weighted mean of these sex-age class mean demographic variances (Fig. 3), weighted by the scaled stable age distribution values ( $u_{i}$, Fig. 1d):

$$
\sigma_{d g}^{2}=\sum \sigma_{d g i}^{2} u_{i}
$$

where the subscript $g$ indicates that the total demographic variance $\left(\sigma_{d g}^{2}\right)$ has a genetic component due to Mendelian segregation. The $N_{e} / N$ ratio was then calculated using $\sigma_{d g}^{2}$ and the generation time $(T)$ following equation 1 in the main manuscript:

$$
\frac{N_{e}}{N}=\frac{1}{\sigma_{d g}^{2} T}
$$

Estimating the effective number of breeders $\left(N_{b}\right)$

While we did not aim to estimate the effective number of breeders $\left(N_{b}\right)$ in the focal chough population, $N_{b}$ is a parameter of interest in other studies, in particular where it is only possible to sample or census adults in a single breeding season or from a single cohort (Palstra \& Fraser 2012; Waples et al. 2013; Ruzzante et al. 2016). Indeed, $N_{b}$ can be estimated from our demographic analyses, from the total demographic variance pertaining to the breeding sex-age-classes (i.e. as the weighted mean of the breeding sex-age class's demographic variances, weighted by their respective $u_{i}$ values). The total demographic variance of the breeding sexage classes can then be used to calculate $N_{b} / N$ following equation 1 in the main manuscript, by replacing $N_{e}$ with $N_{b}$. $N_{b}$ itself can then be estimated by taking $N$ as the total number of breeding individuals.

For the focal chough population, most individuals do not start to breed until age three (Fig. 1a). Thus, $N_{b} / N$ was estimated from the weighted mean of the demographic variance components pertaining to males and females aged three years or older (Fig. 3). The total demographic variance of the breeding sex-age classes was 0.91 , giving $N_{b} / N=0.16$ (from equation 1). Taking $N=92$ as the total number of breeding individuals in 2014, then $N_{b}=15$.

## Step 6. Estimating confidence intervals

Confidence intervals around the sex-age specific components of demographic variance $\left(\sigma_{d g i}^{2}\right)$, were estimated by bootstrapping for the full five age-class model (Fig. S1). However, to obtain confidence intervals around the estimates of $\sigma^{2}{ }_{d g}$ and $N_{e} / N$ a reduced three age-class model was used, in order to increase sample sizes within sex-age-year classes (Fig. S2).

Realised survival $(J)$ and breeding success (b) were jointly resampled within years for each age-sex class, with replacement. Resampling within each sex-age-year class is necessary to capture the stochastic variation in $b$ and $J$ among individuals within years and to maintain any covariance, because it is this within-year variation which generates the demographic variance. Confidence intervals were calculated from 10,000 bootstrap samples.


Fig. S1. Bootstrap distributions of each sex-age class's contribution to the total demographic variance, $\sigma_{d g}^{2}$, computed from the full five age-class model (with age-class labelled). Dark grey and white bars indicate females and males respectively. Dashed and dotted lines indicate point estimates for females and males respectively. X-axis scales are standardised to facilitate comparison across age-classes.

293


317 Appendix S2. Census sizes of the Islay red-billed chough population

|  | No. of |
| :---: | :---: |
| Year | breeding pairs |
| 1982 | 53 |
| 1986 | 78 |
| 1992 | 68 |
| 1998 | 43 |
| 2002 | 56 |
| 2007 | 53 |
| 2010 | 43 |
| 2013 | 39 |
| 2014 | 46 |

A sample of accessible occupied nest sites across Islay were visited during the 2012-14 breeding seasons to colour-ring and DNA sample nestlings. Small blood samples were collected through brachial venipuncture from nestlings 2-3 weeks post-hatch, and stored in EDTA tubes at $-20^{\circ} \mathrm{C}$ or on $\mathrm{FTA}{ }^{\circledR}$ cards (Whatman Biosciences Ltd $®$ ) stored at room temperature in separate polythene sample bags. DNA was extracted from $<5 \mu$ of blood using DNeasy blood and tissue kits ${ }^{\circledR}$ (Qiagen $\left.\operatorname{Ltd} ®\right)$, according to the manufacturers protocol, or standard ammonium acetate precipitation (Hogan et al. 2008). DNA from blood samples on FTA cards was extracted using FTA purification reagent ${ }^{\circledR}$ (Whatman Biosciences Ltd.) and 5\% Chelex elution (Walsh, Metzger \& Higuchi 1991).

DNA samples were sex-typed using PCR amplification of the CHD1 gene with the primer pairs P2 and P8 (P2: 5’-TCTGCATCGCTAAATCCTTT-3' and P8: 5’-CTCCCAAGGATGAGRAAYTG-3'; Griffiths et al. 1998). PCR reactions were carried out with reaction volumes and cycling conditions as described in Wenzel et al. (2012). PCR products were visualised via electrophoresis on 2\% agarose gels, stained with Web Green DNA stain. Individuals with a putative male sex-type show a single gel band and thus are indistinguishable from a null allele at the female-specific second band (Robertson \& Gemmell 2006). All putative male samples were therefore additionally sex-typed using the 2550 and 2718 primer pair, which amplify a different region of the CHD1 gene (2550F: $5^{\prime}$ -GTTACTGATTCGTCTACGAGA-3’ and 2718R: 5’- ATTGAAATGATCCAGTGCTTG-3'; Fridolfsson \& Ellegren 1999). The PCR reaction profile for the 2550 F and 2718R primer pair consisted of an initial denaturation step of $94{ }^{\circ} \mathrm{C}$ for 2 min , followed by 10 TouchDown cycles from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ with $1^{\circ} \mathrm{C}$ decrements (denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing for 30 s , elongation at $72^{\circ} \mathrm{C}$ for 30 s ). Then 25 additional cycles were run with denaturation at $94{ }^{\circ} \mathrm{C}$ for 30 s , constant annealing temperature of $50^{\circ} \mathrm{C}$ for 30 s and elongation at $72^{\circ} \mathrm{C}$
for 30 s and a final elongation step at $72{ }^{\circ} \mathrm{C}$ for 5 min . The sex-ratio of nestlings was then compared to a 1:1 expected ratio, using $\chi^{2}$ goodness-of-fit tests.

In total, 157 nestlings were sex-typed. These individuals were identified as 81 ( $51.6 \%$ ) males and 76 (48.4\%) females. Consequently, the offspring sex-ratio did not differ significantly from 1:1 $\left(\chi^{2}{ }_{1}=0.16, P=0.69\right)$.

## Appendix S4. Details of genetic estimation of effective population size

## S4.1 Molecular analyses and summary statistics of microsatellites

PCRs for microsatellite markers were performed individually, following Wenzel et al. (2012) and with annealing temperatures as specified in Table S10. Genotyping procedures are described in Trask et al. 2016 and with primers fluorescently-tagged as specified in Table S10.

Microsatellite data were checked for genotyping errors and heterozygote deficiency using MICRO-CHECKER v2.2.3 (van Oosterhout et al. 2004). Allele frequencies and observed $\left(\mathrm{H}_{\mathrm{O}}\right)$ and expected $\left(\mathrm{H}_{\mathrm{E}}\right)$ heterozygosity at each locus were calculated using GenAlex v6.5 (Peakall \& Smouse 2012). Departures from Hardy-Weinberg equilibrium for each locus were assessed using Fisher's Exact tests in GENEPOP v4.2.2 (Rousset 2008), using a Markov Chain Monte Carlo approach ( 1,000 dememorisation steps, 100 batches, 5,000 iterations). GENEPOP v4.2.2 was also used to test for genotypic linkage disequilibrium between all possible loci combinations. For tests for both Hardy-Weinberg equilibrium and linkage disequilibrium, Bonferroni corrections for multiple comparisons were applied, using p.adjust in R v2.15.2 ( R Development Core Team 2012).

The number of alleles per locus ranged from two to six and observed and expected heterozygosities ranged from 0.06 to 0.91 and 0.09 to 0.72 respectively (Table S10). There was no evidence for null alleles at any of the 13 loci. Significant linkage disequilibrium was found in 9 of 58 loci combinations, and persisted in two combinations after Bonferroni corrections (between Ppy-008 and Ppy-010 and Ppy014-Ppy011). However, Wenzel et al. (2012) has previously shown no consistent linkage between loci across different chough populations, thus
suggesting no physical linkage on chromosomes. Observed linkage disequilibria can therefore be attributed to chance associations between alleles at freely-recombining loci arising due to finite population size (Hill 1981; Waples 2005). Significant deviations from Hardy-Weinberg equilibrium, which persisted after Bonferroni corrections, were found at locus Ppy-005. This locus was therefore excluded and twelve loci used in further analyses.

Genetic estimates of $N_{e}$ will be downwardly biased if duplicate samples from the same individual are included (Waits, Luikart \& Taberlet 2001). Use of DNA samples from moulted feathers collected across multiple years creates risk of duplicate sampling, especially since individual choughs typically breed at the same nest site in multiple years (Trask et al. 2016). Duplicate feather samples from the same individual were identified and excluded by comparing the genotype obtained from each feather sample together using the program Gimlet v1.3.3 (Valière 2002). Additionally, at nest sites where colour-ring observations showed that the same individual was present across consecutive years, samples that differed at $<2$ loci or had missing data were assumed to be from the same individual, and such duplicates were excluded. In total, from 109 feather samples genotyped, 16 were duplicates and were excluded from further analysis.

Table S10. Microsatellite locus name, GenBank accession number, PCR primer sequence with fluorophore shown in square brackets, annealing temperature $\left(T_{a}\right)$, repeat motif and allele size ranges are shown. Number of alleles per locus for the Scottish red-billed chough population $\left(N_{a}\right)$ and observed $\left(\mathrm{H}_{\mathrm{O}}\right)$ and expected $\left(\mathrm{H}_{\mathrm{E}}\right)$ heterozygosity values were calculated using GenAlex v6.5 (Peakall \& Smouse 2012). Frequencies of null alleles, F (null), were calculated in MICRO-CHECKER v2.2.3 (van Oosterhout et al. 2004). These loci were developed specifically for use in red-billed choughs (Wenzel et al. 2011).

| Locus | GenBank | Primer sequence ( $5^{\prime}-3{ }^{\prime}$ ) | $\mathbf{T}_{\mathrm{a}}\left({ }^{\circ} \mathbf{C}\right)$ | Repeat motif | Allele <br> size | $\mathbf{N a}_{\text {a }}$ | $\mathrm{H}_{\mathbf{O}}$ | $\mathrm{H}_{\text {E }}$ | F(null) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | accession |  |  |  |  |  |  |  |  |
|  | no. |  |  |  | range |  |  |  |  |
| Ppy-001 | JF304556 | F: TCCCAACAAAGCAACAAACA | $60 \rightarrow 50$ | $(\mathrm{TACA})_{2} \mathrm{TACT}(\mathrm{TACA})_{3} \mathrm{~T}$ | 150-179 | 3 | 0.50 | 0.51 | 0.17 |
|  |  | R : | TD | GCA(TACA) $3^{\text {TAGA(TAT }}$ |  |  |  |  |  |
|  |  | [NED]TGGCAAAAACGAAAGACTAGC |  | $\mathrm{A})_{2}(\mathrm{CA})_{4}$ |  |  |  |  |  |
| Ppy-003 | JF304558 | F: [6 FAM] | $60 \rightarrow 50$ | $(\mathrm{ATCT})_{8}$ | 292-344 | 3 | 0.26 | 0.23 | 0.21 |
|  |  | CAGCAGTCCGGATAAGAACA | TD |  |  |  |  |  |  |
|  |  | R: CTTCCACCTTAGCATTTTT |  |  |  |  |  |  |  |
| Ppy-004 | JF304559 | F:CCTTGCTGTCTGTTCAAATAA | $60 \rightarrow 50$ | $(\mathrm{AGAT})_{2} \mathrm{AGGT}(\mathrm{AGAT})_{12}$ | 174-295 | 3 | 0.19 | 0.17 | 0.16 |
|  |  | $\mathrm{R}: \quad[6 \mathrm{FAM}]$ | TD |  |  |  |  |  |  |


|  |  | TTGGCATGCATGAAATTTGT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ppy-005 | JF304560 | F: CTGTCTCCCAGCAGAGAACC | $60 \rightarrow 50$ | $\left.(\mathrm{TATC})_{3} \mathrm{TCTC}^{\text {(TATC) }}\right)_{7} \mathrm{GA}$ | 222-242 | 2 | 0.91 | 0.50 | 0.37 |
|  |  | R: [NED] TCGCTCCATGCTTTTATTCC | TD | TCTATCTGTC(TATC) $2_{2}$ |  |  |  |  |  |
| Ppy-007 | JF304562 | F: [NED] | $60 \rightarrow 50$ | (GATA) ${ }_{15}$ | 161-193 | 5 | 0.71 | 0.72 | 0.67 |
|  |  | AGGCTCTAAACGTGAGGAATT | TD |  |  |  |  |  |  |
|  |  | R: CTTCTCCTTTAGAGATATC |  |  |  |  |  |  |  |
| Ppy-008 | JF304563 | F: AGAGAGATTTTACCATGGGAGAT | $55 \rightarrow 45$ | (GATA) $9^{\text {GACA }}$ (GATA) 5 | 233-340 | 4 | 0.50 | 0.51 | 0.03 |
|  |  | R: <br> [HEX] | TD |  |  |  |  |  |  |
|  |  | AGACTGATTGCCGGACTTTG |  |  |  |  |  |  |  |
| Ppy-009 | JF304564 | F: CACAGGTCAATATGGGCATC |  | $(\mathrm{GT})_{3}(\mathrm{AAGT})_{9}$ | 222-238 | 2 | 0.06 | 0.09 | 0.09 |
|  |  | R: <br> [PET] | TD |  |  |  |  |  |  |
|  |  | CCGACTGAGCATTTAAAGGTG |  |  |  |  |  |  |  |
| Ppy-010 | JF304565 | F: AACCTGTTGCTTGGCATTT | $60 \rightarrow 50$ | $(\mathrm{CA})_{27}$ | 108-146 | 3 | 0.28 | 0.31 | 0.27 |
|  |  | R: <br> FAM] | TD |  |  |  |  |  |  |
|  |  | ACAAACGTGAAGACAGAGAGAGC |  |  |  |  |  |  |  |
| Ppy-011 | JF304566 | F: [HEX] | $60 \rightarrow 50$ | TAGA(TA) $\left.2^{\text {GA(TAGA }}\right)_{12}$ | 160-191 | 3 | 0.76 | 0.63 | 0.55 |
|  |  | GAGAGATGTCGTTATCACTTCCAA | TD |  |  |  |  |  |  |


|  |  | R: CCAGCAGAATATGCCATTCC |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ppy-012 | JF304567 | F: [PET] | $60 \rightarrow 50$ | TAGA(TA) ${ }_{2}$ | 210-266 | 2 | 0.28 | 0.27 | 0.23 |
|  |  | AGGGAAGGGCAACGTATGTA | TD | GA(TAGA) $9_{9}$ (TACATAGA |  |  |  |  |  |
|  |  | R: TCATGACAGTTTCCCCAAAA |  | $)_{4}$ TAGA |  |  |  |  |  |
| Ppy-013 | JF304568 | F: AGCTCACTTCTTGCTCACAGTTT | $60 \rightarrow 50$ | $(\mathrm{TAGA})_{2}(\mathrm{GATA})_{13}(\mathrm{GACA}$ | 197-221 | 4 | 0.70 | 0.59 | 0.49 |
|  |  | R: <br> [6 <br> FAM] | TD | $)_{2}(\text { (GATA })_{4}$ |  |  |  |  |  |
|  |  | GCTTCAGGCTGTTCTATCTATC |  |  |  |  |  |  |  |
| Ppy-014 | JF304569 | F: GGCCTTGAAAGAAGTGTGCT | $60 \rightarrow 50$ | (GATG)7 ${ }_{7}$ GACAGATT(AG | 239-275 | 2 | 0.32 | 0.27 | 0.23 |
|  |  | R: <br> [HEX] | TD | $\mathrm{AT})_{3}(\mathrm{AGAC})_{2}(\mathrm{AGAT})_{3}(\mathrm{G}$ |  |  |  |  |  |
|  |  | GCCTGATCCTCTTCTTGCTTT |  | $\text { GAT) })_{4}$ |  |  |  |  |  |
| Ppy-016 | JF304571 | F: [NED]GTCTTCTCCAACCCAAACCA | $60 \rightarrow 50$ | $(\mathrm{GGAT})_{22}$ | 210-266 | 6 | 0.43 | 0.37 | 0.35 |
|  |  | R: TCTCCTTCCTTTGCAACACA | TD |  |  |  |  |  |  |

## S4.2 Single-sample genetic estimates

$N_{e}$ can be estimated from molecular genetic data using temporal or single-sample approaches. The temporal approach requires genotype samples from two or more time-points separated by at least one generation time $T$, to measure allele frequency change (Waples 1989). This approach is consequently impractical for species like choughs that have long $T$, and where historical DNA samples are not available (Palstra \& Ruzzante 2008). Single-sample approaches utilizing linkage disequilibrium (LD, Do et al. 2014) and approximate Bayesian computation (ABC, Tallmon et al. 2008), which require one sampling time-point, were instead used to estimate $N_{e}$ for the focal population. Genotype data from a mixed-age sample of breeding adults from across Islay was used and, due to our non-invasive sampling of surviving adults, comprehensive genetic data from single cohorts were not available.

The LD method has been suggested to be reasonably unbiased by overlapping generations when a mixed-age sample of mature adults is used, if the number of cohorts represented in the sample is roughly equal to the generation length (Waples, Antao \& Luikart 2014). However, the LD method has also been postulated to underestimate $N_{e}$ when sampling adults from different cohorts as the Wahlund effect can also cause LD, which is then attributed to genetic drift (Waples et al. 2014). In our study, a large downward bias in the LD estimate of $N_{e}$ seems unlikely as this approach yielded the highest $N_{e}$ estimate.

Including low frequency alleles in the LD estimation of $N_{e}$ can upwardly bias estimates (Waples \& Do 2010). We therefore re-estimated $N_{e}$ excluding alleles that occurred below frequencies of $0.05,0.02$ and 0.01 . In concordance with previous studies (Waples 2006;

Waples \& Do 2010), including alleles that occurred at a low frequency gave higher $N_{e}$ estimates (Fig. S3).

We also tested whether $N_{e}$ estimated from summary statistics in ONeSAMP was sensitive to different upper prior boundaries. However, estimates were very similar given priors of 2-100 and 2-180 (Fig. S3).


Fig. S3. Effective population size $\left(N_{\mathrm{e}}\right)$ estimates using single-sample linkage disequilibrium (LD, filled circles) and ONeSAMP summary statistics (filled triangles) methods, with associated $95 \%$ confidence intervals. Estimates from LD use different critical allele frequency values of 0.05 (1), 0.02 (2), 0.01 (3) and all alleles included (4). Estimates from ONeSAMP use two different upper priors of 180 (5) and 100 (6).

## References

Caswell, H. (2001) Matrix Population Models, 2nd ed. Sinauer Associates, Sunderland, USA.

Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J. \& Ovenden, J.R. (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size ( Ne ) from genetic data. Molecular Ecology Resources, 14, 209-14.

Engen, S., Lande, R. \& Saether, B.E. (2005) Effective size of a fluctuating age-structured population. Genetics, 170, 941-954.

Engen, S., Lande, R., Sæther, B.E. \& Gienapp, P. (2010) Estimating the ratio of effective to actual size of an age-structured population from individual demographic data. Journal of Evolutionary Biology, 23, 1148-1158.

Fridolfsson, A. \& Ellegren, H. (1999) A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology, 30, 116-121.

Griffiths, R., Double, M.C., Orr, K. \& Dawson, J.G. (1998) A DNA test to sex most birds. Molecular Ecology, 7, 1071-1075.

Hill, W. (1981) Estimation of effective population size from data on linkage disequilibrium. Genetics Research Cambridge, 38, 209-216.

Hogan, F.E., Cooke, R., Burridge, C.P. \& Norman, J.A. (2008) Optimizing the use of shed feathers for genetic analysis. Molecular Ecology Resources, 8, 561-567.

Nakagawa, S. \& Schielzeth, H. (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews, 85, 935-956.
van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. \& Shipley, P. (2004) Micro-checker:
software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538.

Palstra, F.P. \& Fraser, D.J. (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecology and Evolution, 2, 2357-65.

Palstra, F.P. \& Ruzzante, D.E. (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-47.

Peakall, R. \& Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28, 2537-2539.

R Development Core Team. (2012) R: A language and environment for statistical computing.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I., Bogdanova, M.I. \& Monaghan, P. (2010) Parent age, lifespan and offspring survival: structured variation in life history in a wild population. Journal of Animal Ecology, 79, 851-62.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2003a) Environmental variability, life-history covariation and cohort effects in the red-billed chough Pyrrhocorax pyrrhocorax. Journal of Animal Ecology, 72, 36-46.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2003b) Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. Journal of Animal Ecology, 72, 765-776.

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I. \& Monaghan, P. (2004) Identifying the demographic determinants of population growth rate: A case study of red-billed choughs Pyrrhocorax pyrrhocorax. Journal of Animal Ecology, 73, 777-788.

Robertson, B.C. \& Gemmell, N.J. (2006) PCR-based sexing in conservation biology: Wrong
answers from an accurate methodology? Conservation Genetics, 7, 267-271.

Rousset, F. (2008) Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8, 103-106.

Ruzzante, D.E., McCracken, G.R., Parmelee, S., Hill, K., Corrigan, A., MacMillan, J. \& Walde, S.J. (2016) Effective number of breeders, effective population size and their relationship with census size in an iteroparous species, Salvelinus fontinalis. Proceedings of the Royal Society B, 283, 20152601.

Stubben, C. \& Milligan, B. (2007) Estimating and analyzing demographic models. Journal of Statistical Software, 22, 1-23.

Tallmon, D.A., Koyuk, A., Luikart, G. \& Beaumont, M.A. (2008) OneSamp: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources, 8, 299-301.

Trask, A.E., Bignal, E.M., McCracken, D.I., Monaghan, P., Piertney, S.B. \& Reid, J.M. (2016) Evidence of the phenotypic expression of a lethal recessive allele under inbreeding in a wild population of conservation concern. Journal of Animal Ecology, 85, 879-891.

Valière, N. (2002) GIMLET: a computer program for analysing genetic individual identification data. Molecular Ecology Notes, 3, 377-379.

Waits, L.P., Luikart, G. \& Taberlet, P. (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10, 24956.

Walsh, P.S., Metzger, D.A. \& Higuchi, R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10,

506-513.

Waples, R.S. (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391.

Waples, R.S. (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14, 3335-52.

Waples, R.S. (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.

Waples, R.S., Antao, T. \& Luikart, G. (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780.

Waples, R.S. \& Do, C. (2010) Linkage disequilibrium estimates of contemporary $N_{\mathrm{e}}$ using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262.

Waples, R.S., Luikart, G., Faulkner, J.R. \& Tallmon, D.A. (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society $B, \mathbf{2 8 0}, 2-8$.

Wenzel, M.A., Webster, L.M.I., Blanco, G., Burgess, M.D., Kerbiriou, C., Segelbacher, G., Piertney, S.B. \& Reid, J.M. (2012) Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax pyrrhocorax) populations. Conservation Genetics, 13, 1213-1230.

Wenzel, M.A., Webster, L.M.I., Segelbacher, G., Reid, J.M. \& Piertney, S.B. (2011) Isolation and characterisation of 17 microsatellite loci for the red-billed chough (Pyrrhocorax pyrrhocorax). Conservation Genetics Resources, 3, 737-740.


Colour-ringed red-billed choughs (Pyrrhocorax pyrrhocorax). Photograph by Gordon yates, provided by the Scottish Chough Study Group.


[^0]: