
A Hierarchical Rule-based Security Management
System for Data-Intensive Applications

Yar Rouf

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE

STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND

TECHNOLOGIES

YORK UNIVERSITY

TORONTO, ONTARIO

SEPTEMBER 2018

c© YAR AKHTER ROUF, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/161989787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Applications in today’s software development environment evolve at a rapid rate, con-

stantly providing their users with new functionalities. As a result, it becomes increas-

ingly complex to understand the entire application. The security team and the develop-

ers may not completely understand each other’s approaches, resulting in a less secure

system with vulnerabilities. In addition, there is large amount of security data to be

analyzed. To mitigate these issues, we propose a platform to support the SecDevOps

framework, a hierarchical distributed architecture for security control that uses a Busi-

ness Rules Engine (BRE). The BRE simplifies security rules by allowing the teams to

write them at an operational level rather than at the network level, which requires spe-

cialized knowledge. Business rules are universally understood by the different teams,

resulting in effective inter-team communication. Additionally, the platform can expand

and scale with new security rules and data sources at runtime in a systematic manner.

ii



Acknowledgement

Firstly, I would like to express my gratitude to my supervisor, Professor Marin Litoiu.

Under his guidance, I was able to get involved in fields of Cloud Computing and Au-

tonomic Computing, and subsequently this research accomplishment. Professor Litoiu

would constantly provide new perspectives and insights to my research that were in-

valuable to my progress in the Master’s program. My opportunity under Professor

Marin Litoiu was filled with new experiences, lessons, support and encouragement.

Without Professor Marin Litoiu, this thesis would not have been possible.

I am genuinely appreciative of the assistance to Dr. Mark Shtern and Dr. Marios

Fokaefs. With their combined knowledge of Computer Security and Software Engi-

neering, their vision and expertise were essential for this accomplishment. I am deeply

grateful of the valuable research and technical experience that I gained working under

them. Their support and involvement was vital to the thesis. In addition, I kindly thank

Dr. Joydeep Mukherjee for generously providing a large amount of positive feedback

and constructive criticism to the text and structure of the thesis.

I give my thanks to the committee members Dr. Zijiang Yang and Dr. Natalija Vla-

jic for providing valuable feedback and interesting viewpoints on my research during

the thesis defence.

I would also like to express my gratitude to all the members I worked with at

CERAS labs and Professor Marin Litoiu research team. Dr. Hamzeh Khazaei, Dr. Cor-

nel Barna, Justin Li, Paul Vytas, Adam Di Prospero, Brian Rampasad, Calin Armenean,

Ali Zargar Shabestari, Nasim Beigi Mohammadi and Amar Patel. Thanks for allowing

me to work with and alongside all of you, and sharing your knowledge.

Finally, I want to dedicate this work to my father Niaz, my mother Shahina, my

brother Raphael and many of my friends who supporting me throughout my studies as

iii



a Graduate student. All of your presences have brought immeasurable positive energy

in my life. Thank you for all the unconditional love and constant support.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Background and Related Work . . . . . . . . . . . . . 13

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Microservices and Containerization . . . . . . . . . . . . . . 15

2.1.3 Intermediate Language . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Streaming Analytics . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 SecDevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



Chapter 3: Architecture . . . . . . . . . . . . . . . . . . . . . 24

3.1 Properties of the Architecture . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Scalability and Hierarchical . . . . . . . . . . . . . . . . . . 29

3.1.2 Minimum Impact on the System . . . . . . . . . . . . . . . . 30

3.1.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Adaptive Actions . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.5 Integration with different sources . . . . . . . . . . . . . . . 31

3.1.6 Expandability . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4: Use Cases . . . . . . . . . . . . . . . . . . . . . . 35

4.1 DDoS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Wordpress Compromised Account . . . . . . . . . . . . . . . . . . . 41

4.3 MySQL Data Breach . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Library Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Application Specific Vulnerabilities . . . . . . . . . . . . . . . . . . 49

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5: Industry Case Study . . . . . . . . . . . . . . . . . . 52

5.1 Industry Implementation . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Scenario One: Unknown vulnerability, existing rule . . . . . . . . . . 59

5.3 Scenario Two: Known vulnerability, no existing rule . . . . . . . . . 62

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 6: Evaluation Experiments . . . . . . . . . . . . . . . . 70

6.1 Increasing Sensors for Packet Dropping . . . . . . . . . . . . . . . . 70

vi



6.1.1 Experiment One: Single Snort IDS . . . . . . . . . . . . . . 71

6.1.2 Experiment Two: Two Snort IDS . . . . . . . . . . . . . . . 72

6.1.3 Experiment Three: Three Snort IDS . . . . . . . . . . . . . . 73

6.2 Vulnerability Table detected by Drools . . . . . . . . . . . . . . . . . 73

6.3 Web Performance for End-User . . . . . . . . . . . . . . . . . . . . . 75

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 7: Conclusion . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



List of Figures

Figure 1 Proposed Architecture for Hierarchical Distributed Security Con-

trol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2 High-level view of a Production Rule System . . . . . . . . . 27

Figure 3 Data Flow for DDoS Detection . . . . . . . . . . . . . . . . . 36

Figure 4 Components Model for DDoS Use Case . . . . . . . . . . . . 37

Figure 5 Drools rule for DoS Detection and IP Block . . . . . . . . . . 38

Figure 6 Components Model for DDoS Use Case with Suricata . . . . . 39

Figure 7 Drools rule for Hybrid DoS Detection . . . . . . . . . . . . . 40

Figure 8 Data Flow for Compromised Account . . . . . . . . . . . . . 41

Figure 9 Components Model for Compromised Account Use Case . . . 42

Figure 10 Drools rule for Security Audit Log . . . . . . . . . . . . . . . 42

Figure 11 Drools rule for Snort Event Creation . . . . . . . . . . . . . . 43

Figure 12 Drools rule for Snort Event Creation . . . . . . . . . . . . . . 44

Figure 13 Basic Threshold rule . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 14 Data Flow for Library Vulnerabilities . . . . . . . . . . . . . . 46

Figure 15 Drools rule for Vulnerability Checking . . . . . . . . . . . . . 47

Figure 16 Application Specific Components . . . . . . . . . . . . . . . . 49

Figure 17 XSS rule for DVWA . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 18 Bitnobi Logging Output Sample . . . . . . . . . . . . . . . . 56

viii



Figure 19 Declaring Drools Object . . . . . . . . . . . . . . . . . . . . . 57

Figure 20 Drools rule for inserting an application object into working

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 21 Basic Rule for XSS detection written by Security and Develop-

ment teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 22 Process of Scenario One for XSS mitigation . . . . . . . . . . 61

Figure 23 Process of Scenario Two for Brute Force mitigation . . . . . . 64

Figure 24 Drools rule for Brute Force Detection written by Developer . . 65

Figure 25 Extension Rule of the Brute Force Detection . . . . . . . . . . 66

Figure 26 Event Creation: User Logging In Rule . . . . . . . . . . . . . 67

Figure 27 Packets received and dropped for Single Snort IDS . . . . . . 71

Figure 28 Packets received and dropped for Two Snort IDS . . . . . . . 72

Figure 29 Packets received and dropped for Three Snort IDS . . . . . . 73

Figure 30 Vulnerability Table for ZAP results . . . . . . . . . . . . . . . 74

Figure 31 DVWA End-User Performance Overhead . . . . . . . . . . . . 76

Figure 32 DVWA End-User Performance Overhead . . . . . . . . . . . 77

Figure 33 DVWA End-User Performance Overhead . . . . . . . . . . . . 78

Figure 34 DVWA End-User Performance Overhead . . . . . . . . . . . 79

ix



Chapter 1

Introduction

Software development is fast-paced and constantly growing in terms of complexity and

size when adding new functionalities [1]. Throughout this process, the development,

operations and security teams are responsible to comply with business and security

requirements of the organization [2]. These include effective protection and mitigation

against malicious attacks, suspicious traffic, application bugs and exploits.

1.1 Problem and Motivation

Vulnerabilities that arise in software development can be a serious threat to businesses,

leading to security breaches. These breaches are still a major problem today. As shown

by the 2017 Ponemon Security study [3], sponsored by IBM, the average global cost

of a data breach is $3.62 million. The average size of a data breach has increased

by 1.8% in a sample of 439 companies. According to the study, the data breaches

ranged from 2,600 to slightly less than 100,000 compromised records, thus showing

that data breaches are still a significant and valid threat. Furthermore, 47% of these

1



data breaches are from malicious or criminal attacks, and 25% of these breaches are

caused by a system glitch.

Vulnerabilities in web applications, which expose the application to attacks, are

due to the various bugs and violations from the software. The software development

team follows a well-defined process to fix the bugs that may take from several days

to months to apply the patches depending on the seriousness of the bug [4]. During

this time frame, a large data breach can occur due to software error and the aftermath

is the loss of jobs, compromised data, reputation loss, and diminished goodwill [5].

This potential outcome weighs pressure on the security team, which leads them to find

solutions and preventative measures against software error without delay. Software

developers are in charge of building the application functionalities in regards to the re-

quirements, which requires extensive knowledge of programming languages, libraries

and other development tools. Security analysts, on the other hand, focus on protecting

the application from malicious attacks and breaches. The developer and the security

teams use different terminologies and tools to describe their individual responsibilities.

Seldom will the security analyst fully understand the fine details of the source code

and, similarly, the developers will not have complete knowledge of the various security

tools and languages such as policies and alerts. This leads to a barrier in communica-

tion between developers and security analysts, even within the limited scope of a small

scaled enterprise.

It is becoming increasingly clear that effective communication is important for a

stronger, secure system. DevOps [6] has emerged as a new popular practice, where the

development and operations teams collaborate in a more unified process. This prac-

tice increases the efficiency of software development and it produces higher-quality

software. Incorporating security in this process has coined a new term, SecDevOps,

2



involving the collaboration between the development team, the operation team and

the security team [7]. In SecDevOps, the most important stages where security con-

cerns are incorporated are static code analysis, dynamic code analysis, and runtime

application protection [8]. In static code analysis, the security team along with the de-

velopment team will review the code of the application during development or when

it is pushed into the code repository [8]. Dynamic code analysis is scanning the web

application while it is running, usually during Quality Assurance (QA), to detect for

vulnerabilities that may not appear or be difficult to identify by simply reviewing the

code [8]. Runtime application protection is the act of monitoring and protecting the

web application while it is in the production environment, from malicious users and

suspicious traffic [8]. In this research, our tool focuses on supporting the latter two

stages, where we monitor the application during QA and production.

To help support SecDevOps and bridge the communication gap between the teams,

we propose an between the software development and security teams. The intermediate

language is supported by a stateful Business Rule Engine (BRE), a software component

that interprets the set of business rules [9] and runs these rules against the specified

business dataset. The Business Rules Group defined business rules in a information

system context as a statement that defines or constrains some aspect of the business

by asserting business structure, controlling or influencing the behavior of the business

[10]. The business rules are essentially the requirements of the organization, in our

case, the security requirements of the software system. The dataset are all the objects

we wish to assert the specified constraints. In our research, the dataset includes the

collection of logs, database data, sensor data and any information that can help us

apply security measures to the software system. The BRE creates events after a rule is

triggered based on monitored data. The stateful property of the BRE allows the events

3



stored to be used by complex rules, and activate actions based on a rule. This makes

the BRE a powerful tool to express security and development concerns and facilitates

communication based on these rules.

Although BREs are useful for effective communication in an enterprise, they have

their own issues, namely the scalability issue. Since the ruleset has the potential to

become extremely large due to the requirements of the security and development teams,

the BRE by itself will begin to have performance issues and not respond fast enough

to security alerts. The growing number of objects, the number of rules, the number

of concurrent callers in the BRE will impact the performance of rule execution [9].

Another problem that arises is that a large ruleset can be complex to interpret and

maintain. When a complex security requirement or policy has been updated, reviewing

one single large ruleset with thousands of security rules can become time-consuming,

confusing and prone to incomplete rule modification. This results in a maintainability

problem.

When monitoring a large-scale system, there are multiple data sources that can

be analyzed to check for security violations, attacks and suspicious behavior. These

can include access logs, audit logs, sensor data and others. This can result in a large

amount of rules of different data types, which may become a performance problem

as stated earlier. In addition, the rules should be able to easily correlate the incoming

data and events (e.g. Brute Force attack or Cross-Site Scripting Attack) to detect more

sophisticated attacks. We can divide the rulesets into smaller rulesets in a hierarchical

structure. Each ruleset is responsible for a certain data type or a specific attack, and

events generated by multiple rulesets can be sent to the next ruleset in the hierarchy for

further analysis. The events that are generated are the security threats and additional

information surrounding it, for e.g., Brute Force attack with IP address of attacker,

4



username, number of attempts, etc. This ruleset can aggregate the events and correlate

them to detect a complex and system-wide attack.

To support SecDevOps and satisfy the goals of scalability, maintainability and flex-

ibility, we implement the rule-based engine with a scalable and hierarchical Streaming

Analytics Clusters, enabling us to create a flexible architecture enabling SecDevOps

and enforcing a more secure system. Organizing the Analytics cluster in a hierarchy

allows us to divide a large ruleset in smaller rulesets, to mitigate issues of maintainabil-

ity and performance. In addition, when there is an increase in demand, the Analytics

cluster also gives us the advantage of adding or removing the nodes that perform the

analysis. This allows us to employ our BRE on both QA and In-Production applica-

tions.

1.2 Research Objectives and Questions

The main objective of this thesis is to incorporate a BRE into an analytics streaming

cluster to simplify security control and to be used as a platform to support the SecDe-

vOps approach. To achieve this objective, it is important to address these following

research questions (RQs):

• RQ-1: How can we simplify security control into a set of business rules allowing

Developers and Security Analysts to communicate more effectively?

• RQ-2: How can we use the Business Rules Engine and Analytics architecture

to aggregate data from several sources to understand the complete state of an

application cloud environment?

• RQ-3: How can we quickly respond and mitigate security threats against the

system?

5



• RQ-4: Is a Rules engine an effective solution to protect against application-

specific vulnerabilities?

The RQs are described in details below:

RQ-1: Business rules have been used mainly for business policies and rules of

the specified industry. These can be checks for financial services, such as mortgage

underwriting, tax reporting, and insurance services, such as policy underwriting and

claim processing [9]. Business rules are easy to understand allows non-programmers

to read and understand business rules for financial and insurance related uses. However,

in this research, we have to design and write business rules for a more technological-

focused field, namely software engineering and computer security. Unlike datasets

of policy claims and tax reports, the incoming security and software-related data is

generated continuously at large volume, and can be widely varied and might contain

noise. In our research, we must be able to organize the incoming security data and

alleviate the complexity that may arise from such large volumes of incoming data.

RQ-2: A large-scale system has many components and sources of data, such as

logs or security sensors. With a large amount of users today, large-scale systems are

distributed throughout a network. As a result, events such as security attacks that can

be easily detected in one component can be hard to detect simultaneously across sev-

eral components belonging to the system. A single fault detection system or sensor

is insufficient to handle events for a large-scale distributed system. Such a detection

system will eventually cause information loss at high volumes of incoming data since

the system will drop packets at high load [11]. Alternatively, distributing sensors will

only give us the partial information of the system. Hence, our BRE and Analytics ar-

chitecture should be able to aggregate and analyze large volumes of data from multiple

system components in order to correlate information for understanding the complete

6



picture in a system-wide context.

RQ-3: While our solution monitors and analyzes the software systems logs for

security threats, there needs to be a way for security analysts to respond and mitigate

attacks. Traditionally, after the collection and analysis process, security analysts will

begin planning a preventative strategy to secure the system. What we are interested

in is using the BRE to execute an autonomous action to mitigate the security threat.

This allows for security threats to be blocked permanently or temporarily from further

tampering the system while the security analysts can work on a patch, if needed, against

this security threat.

RQ-4: An issue that is highly relevant in computer security is an effective way to

detect application-specific vulnerabilities. Distributed Denial of Service (DDoS) at-

tacks, Brute Force attacks, malware detection are generic attacks that can be detected.

However, an application-specific exploit originates due to unknown software bugs or

coding issues. These application-specific vulnerabilities are not a generic type of at-

tack that can be easily detected, and can only be found with clear knowledge of the

application. In our research, we want to see if directly involving the software de-

velopers with the security teams to write security rules can help reduce and mitigate

application-specific vulnerabilities.

1.3 Thesis Contributions

The work developed in this thesis contributes to computer security control and man-

agement of a large-scale system or application. Our research objective is to support the

practices of SecDevOps, which will help simplify the process to more secure applica-

tions. The research contributions of this thesis are:

7



• We first design an architecture that employs a Streaming Analytics Cluster that

uses a BRE that analyzes incoming data (i.e. logs, sensors and database) of the

system against customizable business rules. The business rules are the secu-

rity requirements of the organization and the BRE provides a more simplified

way of defining security rules at the operational level, allowing developers and

security analysts to communicate more effectively. This architecture follows

the principles of Cloud Computing, distributing workers and streaming clusters

throughout the network and allowing for several Streaming Analytics Clusters

for distributing a large ruleset. This architecture distributes the cluster in a hi-

erarchy, with each cluster responsible for a set of business rules. Incoming data

is then streamed into the architecture and ran against the ruleset. When a rule

triggers, events are created and an adaptive action can be executed. The events

can also be streamed into the next cluster in the hierarchy for more sophisticated

analysis and actions. The clusters can be scaled in response to performance and

load by increasing or decreasing the number of nodes in the cluster. This ar-

chitecture and the BRE as a platform for the developers and security analysts

are the baseline work of this thesis. This contribution addresses the first two re-

search questions, as we provide a platform that can simplify security control and

aggregate multiple data sources.

• We design several adaptive functions for the BRE to mitigate attacks. This will

be the Execution portion of the MAPE-K (Monitor, Analyze, Planning, Execu-

tion) Loop, which is the process to make the architecture autonomous. With the

addition of adaptive functions, we have completed the MAPE-K Loop with our

architecture. For our architecture, we created functions to block IP addresses,

alerting users and admins of the application and removing documents from the

8



database. These functions help us mitigate the attacks from our use case and

case study which are explained in the next two thesis contributions. This contri-

bution addresses the third research question, where we use these adaptive actions

to respond and mitigate the security threats.

• We implement the architecture with various practical security use cases that oc-

cur in a real world setting. We use the designed architecture to demonstrate how

it can be used as a solution to these threats and issues that are present in today’s

computing era. These use cases show the architecture’s ability to be domain

efficient and easily integrate with different applications and attacks.

The security use cases we implemented our architecture with were DDoS de-

tection, compromised accounts, data breaches, library vulnerabilities, software

evolution and application-specific vulnerabilities. For DDoS attacks, we were

able to distribute the sensors and aggregate the incoming sensor data with our

architecture. As a result, we are able to detect and mitigate a DDoS attack by

understanding the complete state of our system and without any information loss

due to a single sensor. We protect against compromised accounts by using our

BRE to correlate Brute Force attacks with suspicious logins. Another serious

security issue are data breaches, which significantly affects many organizations.

We successfully use our BRE to create security policies for a database, such as

threshold rules, and when these rules are violated, we detect suspicious access

of the database.

The library vulnerability use case is designed to showcase our architecture’s abil-

ity to correlate 3rd party data with application data. To speed up development,

developers would use many libraries to create their applications. However, li-

braries may have vulnerabilities, and these vulnerabilities are stored in a Com-

9



mon Vulnerabilities and Exposures (CVE) list. We successfully stream the CVE

list into the architecture, and due to our architecture’s ability to be stateful, this

CVE list is in our engine’s memory. When developers introduce libraries, we

stream that into our architecture and match it against the CVE stream to find any

vulnerabilities. In the Software Evolution use case, when new functionalities are

added to an application, our architecture allows us to write rules at run-time to

make sure these functionalities are working as intended. The application-specific

use case showcases our architecture’s ability to detect and mitigate against vul-

nerabilities and exploits, due to poor code and bugs of a web application. This

contribution addresses all the research questions through implementing our plat-

form with each of the platforms. For the application-specific use case addresses

the fourth research question specifically.

• We apply the architecture on a data-intensive industrial application to examine

its effectiveness in relation to the concept of SecDevOps. We deploy our security

management architecture with Bitnobi 1, a privacy-guaranteeing big-data man-

agement platform. We are interested in two specific scenarios that arise during

software development, known issues with no current mitigation mechanism and

unknown issues to the developer. In this case study, the architecture can be used

as a solution for the developers and security analysts for these two issues. By

using Business Rules to specify security conditions and actions, we enabled two

different teams to have a common understanding of the problems and solutions.

The developers were able to write their own rule-based patches when they were

aware of a vulnerability in the system. With Bitnobi, there was no current val-

idation mechanism to protect against Brute Force or DDoS attacks. With our

1http://www.bitnobi.com/

10



solution, we allowed the developers to protect against these such attacks while

they can work on a patch or validation mechanism. In addition, the developers

artificially introduced XSS vulnerabilities in Bitnobi that our solution was able

to detect and remove. Our case study shows that we are able to detect vulnerabil-

ities more effectively, execute adaptive actions to mitigate the vulnerabilities and

notify the teams, thus creating a stronger secure web application. We are able

to seamlessly keep the system in constant monitoring and maintenance while the

developers continued working on their application. This contribution addresses

the first, third and fourth research questions through implementing the platform

with a production application. We observe the developers of the application

creating security business rules with the platform, detecting application-specific

vulnerabilities and running adaptive actions against attacks.

• Throughout this research work, we designed evaluation experiments for our ar-

chitecture. The purpose of these experiments were to evaluate the limitations

of security tools and compare these results with our architecture. We evaluated

single sensors versus distributed sensors to observe packet loss from incoming

traffic. We implemented the architecture with the distributed sensors to detect a

DDoS attack while we increase the traffic demand. We also used a Web Scanner

to exploit vulnerabilities, and looked at our architecture’s ability to detect the at-

tacks. The results from this evaluation shows the architecture’s effectiveness with

regards to vulnerability detection. Additionally, we evaluate the performance

overhead to the end-user when the architecture is protecting the application and

propose technical solutions that can decrease the performance overhead of our

architecture. These include moving reads and writes to the RAM and using Se-

cure Shell File System (SSHFS) to separate the network streaming tool from the

11



web application. This contribution begins to validate the research questions with

the listed experiments.

1.4 Thesis Organization

This research work is structured as follows. Chapter 2 presents the background and

research related to the field. Chapter 3 presents the framework of the architecture,

properties of our solution and the implementation. Chapter 4 demonstrates the archi-

tecture in a variety of different security and application use cases. Chapter 5 applies

this architecture to a data-intensive industrial application and present the findings for

our case study. Chapter 7 discusses the findings of our experimentation with the archi-

tecture. Finally, Chapter 8 concludes our work and presents the next steps to improve

the architecture based on our research.

12



Chapter 2

Background and Related Work

To understand the research work being presented, key concepts of the research field

have to be presented. In this chapter, we introduce the background of our research field

and underlying concepts behind our platforms design. We then discuss relevant work

that other researchers have been working on in this research field.

2.1 Background

2.1.1 Cloud Computing

To understand the importance of distribution and hierarchy, it is first important to under-

stand the importance behind Cloud Computing. The US National Institute of Standards

and Technology (NIST) defines Cloud Computing as a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interac-

tion [12]. This characteristics of sharing computing resources from a large network

13



provides us with many advantages. We are able to self-provision resources on de-

mand, access them from anywhere, resources can be pooled where multiple users can

be served on a single physical hardware and we are able to scale the resources based

on the demand. These characteristics contribute to increased performance and reduced

costs [13].

There are three main service models provided by the service providers used in

Cloud Computing: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). IaaS provides the user with the computing and storage

resources in the form of Virtual Machines. PaaS gives the user the capability to develop

and deploy applications by providing development tools, APIs, Software Libraries and

services. SaaS provides the user with the complete application or the user interface to

interact with the application [13]. In our research work, we use the IaaS model, provi-

sioning multiple virtual machines from the service provider to build and use our archi-

tecture. NIST [12] also defines the cloud deployment models: Public Cloud, Private

Cloud, Hybrid Cloud and Community Cloud. Public Cloud is the collection of cloud

resources and services available to the general public and any organization. Private

Cloud is the collection of resources and services available only to a specific organiza-

tion. Hybrid Cloud is the combination of the two, and Community Cloud is a cloud

service provided by multiple organizations with the same policies and compliances.

In our research, we use a community cloud with physical hardware hosted by several

universities available to researchers.

We also incorporate the MAPE-K Loop in our proposed architecture. The MAPE-

K control loop is a model that many autonomous systems use as an autonomous man-

ager [14]. The Monitoring component is responsible for capturing data and metrics

and the Analyze component processes the data that is captured. The Planning compo-

14



nent is responsible for selecting the actions that need to be applied, and the Execution

component applied these actions on the system. The K is the Knowledge base of the

MAPE loop and contains the data of the environment, the adaption goals and any rel-

evant states related to the MAPE components [15]. With our architecture, we use

the MAPE-K Loop to monitor incoming security data and executing adaption actions

against these security threats.

2.1.2 Microservices and Containerization

Traditionally, software systems are developed as a single large program which is to

perform all its required tasks. Using this traditional approach, we are only able to

scale vertically, i.e. depending on the demand, we scale the hardware resources of our

server. However, there may be issues with this approach. Scaling vertically can be

expensive because of additional hardware resources. There will also be downtime on

the application due to hardware changes when scaling vertically [16]. Instead of using

a single large program, we can take advantage of Microservices, an important concept

that is key to our architecture. Microservices architecture allows software systems to be

developed and composed into small, independent components that interact with each

other over the network [17]. Using independent components as Microservices, we are

able to scale horizontally, i.e., by adding more servers rather than increase a single

server’s resource. One of the main drivers of the Microservices concept is container-

ization. Containers are the encapsulation of a component or application with all of its

dependencies (binary files, libraries, configurations, etc.) [18]. One key idea to note is

that containerization and Microservices are not directly related. Microservices archi-

tectures can be created without the use of containers, and containers can be used as a

monolithic application [19]. However, the use of containers can support the concept of

15



Microservices. We are able to separate the components of an architecture into multiple

containers and spread them out through the network.

Running Microservices components in multiple independent containers offers many

advantages. Instead of running the application or components directly on the OS, con-

tainers share the resources of its host OS, and there is little to no overhead compared

to a native application. Containers are portable, thus being able to run in any environ-

ment. This reduces any bugs that may arise from an environment change and speeds

the process of deployment. Since containers are self-composed services, they can also

be easily changed, deleted and deployed on-command without any additional set-up.

Finally, multiple containers can run on the platform, each as independent components,

complex architectures and frameworks can be deployed easily [18] .

2.1.3 Intermediate Language

The intermediate language in this work is the BRE (Business Rule Engine), which

makes use of business rules. A business rule is a statement that defines or constrains

some aspect of the business. These rules are essentially When-Then statements that

dictate the requirements of a business. For example, an insurance company is giving

car insurance to their customers. Their business requirements is that customers under

the age of 25 pay higher insurance. The business rule in this example would be When

Customer is less than 25, Then insurance cost equals an extra 300 dollars. This is a very

basic business rules, but with a BRE and it’s properties, we can write a rich amount of

rules that is able to perform more complex requirements. The two main characteristics

of business rules are that they concern the structure and the behavior of the business [9].

In our case, the business is the application specifications. The BRE comprises the

software components that allow analysts, developers and non-programmers to manage

16



the rules, by adding, removing or changing rules when necessary. BREs have been

successfully used in many domains, such as finance, healthcare, retail, manufacturing,

marketing and other industries [9]. In this research, our focus is the use of BREs as an

intermediate language in a security, maintenance and autonomous context.

2.1.4 Streaming Analytics

The architecture we propose uses a Big Data processing analytic system. The term

Big Data has various definitions proposed by different researchers through the field.

The most simple definition is that Big Data is a large collection of data. For the in-

dustry, this would be terabytes and petabytes of data [20]. Other than volume, other

definitions define Big Data as the richness and variety of data [21]. Big Data can be

classified as structured, unstructured and semi-structured. Structured data has a defined

organizational structure and can be usually represented by a schema [20]. Unstruc-

tured data does not have any predefined organizational schema [20]. Semi-structured

uses the combination of both, the data can be organized but can also have arbitrary

associations. [20] Big Data comes from many sources. Huge Data Warehouses may

have decades of data to be analyzed. Social media provides a rich, extremely large

and unstructured data for analysis. In the security context, application logs, metrics

and sensors of large-scale cloud applications can provide a large amount of data to by

analyzed for security threats. However, a traditional tool have been built for smaller

applications, and may not be sufficient to detect security threats.

A Big Data analytic processing system, specifically Streaming Analytics, is one

of the solutions we implement in our architecture. Big Data Analytic are used to find

patterns and extract any useful information from large volumes of data. One of the first

17



popular solutions is Hadoop 1, which provides open source software for scalable and

distributed computing. MapReduce is one of the central concepts of Hadoop and Big

Data Analytics. MapReduce is composed of jobs, the first is the Map Job, which takes

the dataset and converts it into another set of data, breaking down the dataset into tuples

(key/value pairs). The Reduce will take the output from the Map function and combines

the tuples into a smaller set of tuples [22]. The MapReduce model provides a way for

parallel processing and allows for a scalable, resilient and flexible way to analyze large

datasets. The Analytics solution that we employ is Apache Spark. Spark extends from

Hadoop and the MapReduce model, by providing more types of computations. Similar

to Hadoop, the Apache Spark Project has many libraries for different needs. The main

component is Spark Core, which provides the basic functionalities of Spark such as

task scheduling, memory management, fault recovery, interacting with storage system

and many other functions. Spark takes advantage of Resilient Distributed Datasets

(RDD), a read-only, partitioned collection of records that can only be created through

deterministic operations on data in stable storage and other RDDs.

Since we are looking at analyzing a continuous stream of data for security threats,

Apache Spark provides a Streaming Analytics component, Spark Streaming. Spark

Streaming uses the Spark API for stream processing, making it easy to built a fault-

tolerant streaming application [23]. Spark Streaming builds on top of the concept of

RDDs and uses an abstraction called Discretized Stream (DStream). Dstream rep-

resents the continuous stream of data, created from input data streams or applying

operations on other DStreams. Internally, DStreams is represented as a sequence of

RDDs [23]. Spark Streaming treats the streaming computations as a continuous series

of smaller batch computations. Each of these input batches are then formed into RDDs

1http://hadoop.apache.org/

18



and are processed using Spark Jobs [24]. For our research, we take the functionalities

and advantages of Spark and Spark Streaming and make use of it in our architecture.

We combine the transformation computation with the Business Rules Engine, and run

the batches against the ruleset. This allows us to analyze for security threats while we

can scale and distribute the processing power throughout the network.

2.1.5 SecDevOps

DevOps stands for Development plus Operations and is considered a new way of think-

ing and working, providing a framework for people and teams to be more effective in

their craft [25]. DevOps helps different teams align development, testing, deployment

and support [26]. DevOps is not a software methodology that follows a strict timeline,

but rather a new paradigm that provides tools, values and knowledge to support col-

laboration between different teams. Some successful businesses that effectively used

DevOps in their application include Etsy, Scotiabank and many more. Businesses have

begun hiring specialized DevOps engineers to increase effectiveness and share their

knowledge of collaboration. Etsy is an online store that allows individual creators to

sell their works to people. They implemented a DevOps approach to their development

structure, placing a high focus on transparency and monitoring data. Using DevOps

and several of its supported tools, they were able to increase the speed of implementa-

tion and reduce unnecessary costs [25]. Amazon provides DevOps services and support

for AWS, such as Amazon Cloudwatch, AWS developer tools and many more. These

help for collaborating code between teams, monitoring data, sharing microservices and

creating an infrastructure for a more efficient development pipeline. However, De-

vOps tends to be implemented without consideration for security, which can result in

long-term issues such as vulnerabilities and malicious attacks. To build upon DevOps,

19



another new way of thinking was coined, SecDevOps [7]. SecDevOps incorporates the

security team to continuously collaborate with the Developments and Operation teams

to build a secure, protection application more efficiently. SecDevOps practices include

static and dynamic code analysis, and run-time application protection [8].

2.2 Related Work

Distributing security is an important design decision to consider for many web-based

applications and large scale systems. Kruegel et. al [27] support our claim that

network-based IDS are barely capable of handling real-time traffic, and a single-node

setup will have difficulty in retrieving all packets. They show that architectural and

system parameters are often affect the packet droppage of the IDS. One of the earlier

works of distributing IDS was by Huang et. al [28], where they proposed a distributed

agent-based IDS architecture to detect security attackers. Distributing the IDS and sen-

sors with different programming models and solutions across multiple network nodes

has been proposed and designed to improve efficiency, scalability, performance and

detection [29, 30]. Vigna et. al [31] describe an approach for distributed intrusion de-

tection, using a network of sensors built around a State Transition Analysis Technique

(STAT) framework, which is able to model entire classes of attacks. The proposed

STAT-based approach is highly flexible and configurable; the work states that config-

uration of sensors can be changed in real-time to deal with new and unknown attacks.

Our architecture’s main focus is not on how to distribute IDS monitors but instead

builds on top of IDS distribution. We achieve this by taking advantage of the data dis-

tribution and combining it with a decision-making process for the entire system while

placing security control in the hands of developers and business analysts. In addition,

20



our architecture adds the ability to dynamically add monitors and new data sources to

support expandability during run-time.

Ramsurrun and Soyjaudah [32] designed a cluster security gateway that uses a com-

bination of tools to create a stateful firewall cluster. Messages can be obtained from

other firewall nodes and inserted in an internal cache for synchronization among all

other nodes. Their design also uses load balancing techniques to distribute the mitiga-

tion of a Distributed Denial of Service (DDoS) attack and prevent a system shutdown.

With their models, IDS nodes are also used to define new policies for the firewall by

informing the policy manager. Ko et al. [33] proposed a distributed recognition and ac-

countability algorithm to observe how a malicious user would move around a network

of computers, and designed an architecture that distributes monitoring with a central-

ized data analysis. However, these solution is primarily focused on the network level

with the usage of firewall nodes, whereas our architecture focuses more on the ap-

plication layer, allowing continuous application-specific development and expansion

of the architecture in correspondence with the runtime application protection stage of

SecDevOps.

Our primary goal is to take the advantages and practices of distributed security,

and use a Business Rule-based platform to help developers understand security at the

application-level and collaborate with the security teams. Business rules and BRE have

been explored in different contexts to help increase understantability and communica-

tion. Jiang et al. used Business Rules to be an intermediate language to integrate

electronic forms with a workflow management system. Lojka et al. have used BREs in

education where they support virtual laboratories allowing the teachers to easily imple-

ment educational methodologies and improves the monitoring, controlling and inter-

actions with their students [34]. BREs have also been integrated with service-oriented

21



architectures using interfaces and service requests for writing rules [35]. This was an

early approach for distributed rule execution. Feng and Subramanian [36] present the

use of BREs in control center applications and address issues of performance and in-

tegration for legacy applications by incorporating remedial action schemes and other

design changes. BREs have proven to be effective in these contexts as an intermediate

language. In our work, we take the BRE and use it in a security control context to

support SecDevOps and security collaboration between teams.

Monitoring is a key component of DevOps and effective log management is a cen-

tral part of monitoring. An important contributor in log management is Security In-

formation and Event Management (SIEM) [37, 38]. SIEM is a solution that provides

central security control in a cloud environment. The basic architecture that SIEMs

follow is collecting data from a large selection of source devices, normalizing the ob-

tained data, applying rules and correlating events, storing the log for traceability and

auditing. SIEM also provides users with a type of console for administrators or users to

access the overall events [39]. IBM provides a SIEMS security analytics tool in a cloud

environment, QRadar [40]. QRadar is able to collect log and event data from various

sources, such as security devices, operating systems, databases, routers. It normalizes

and correlates the data using advanced sense analytics. This allows QRadar to link and

identify complex security incidents and threats in the cloud environment. The main dif-

ferences between our architecture and QRadar is the ability of the former to close the

MAPE (Montitor, Analyze, Planning and Execution) loop for security control. QRadar

can monitor and analyze log sources and network flow data from thousands of devices,

endpoints, and applications, and send the report to the security analyst team to review

and take manual action against threats. In contrast, our architecture has the ability to

be autonomous, and execute adaptive actions to mitigate attacks and address vulnera-

22



bilities. In addition, our architecture can also scale security control while simplifying

the ability to define security correlation rules for the developer.

2.3 Summary

In this chapter, we introduced the basic concepts and background for our proposed

platform. We then discussed relevant literature related to distributed architectures,

intermediate languages in other contexts and security monitoring, and presented the

differences with our platform.

23



Chapter 3

Architecture

Figure 1: Proposed Architecture for Hierarchical Distributed Security Control

In this section, we describe the underlying architecture of our platform and the data

flow between the environment and the application. As seen in Figure 1, the data sources

and sensors are placed as the input for the architecture. Data sources can include var-

ious logs of the system such as access logs, error logs and application-specific logs.

Sensors that react with the environment and create alerts are also important data for

the analysts. Third-party data can also be inserted, such as updates from the Common

24



Vulnerability and Exposure (CVE) database. These data sources are the input to the

Analytics Cluster in the architecture. We use a networking utility tool on the appli-

cation to stream the data into our architecture. This tool allows us to specify the IP

address and the port of the cluster to stream the input data.

When the data is streamed into the Analytics Cluster, it passes through a general

translator. This general translator parses the raw data into segments making it easier to

digest for rule writing and analysis. The Analytics Cluster makes our platform scalable

and hierarchical, allowing for large rulesets, distributed responsibility, handling multi-

ple data sources and easier rule maintenance. In Figure 1, each cluster is organized to

be responsible for a specific type and source of data, thus splitting the responsibilities.

The role of the clusters is to primarily aggregate the partial states provided by the data

source to make decisions and take actions on the overall system from different levels in

the hierarchy. Each level creates events from it’s specific ruleset, and pushes the events

to the next level of the hierarchy, allowing the architecture to make very complex de-

cisions. To address scalability, our platform can easily expand by adding more worker

nodes to the clusters to deal with larger amounts of data.

With respect to intra-team communication, the security analysts may not com-

pletely understand the application-specific logs and the developers may not compre-

hend and employ security best practices for their application. To address the communi-

cation issues, we introduce the Business Rules Engine (BRE) for each of the Analytics

Clusters as the platform that aggregates all data from multiple sources and the teams

can work together to write business rules that get triggered when a specific requirement

is met against all the data sources. Business rules are statements that define or constrain

some aspect of the business and consists of “When - Then” statements. Business rules

operate as follows: When a condition occurs, Then perform a consequence or action.

25



We can imagine the DevOps rule creation process as a library or web service. The

security team provides the specification as security policies and the BRE provides a

Software Development Kit (SDK) in Java with which the development team can write

rules to enforce policies.

Traditionally, each of the sensors is responsible for a subset of the network traffic

to prevent saturation and there are multiple logs with different types of data, creating

the issue of impartial information and a major gap in security. The architecture is

then able to distribute the BRE ruleset for a specific security problem or a specific

data source between different clusters, shown in Figure 1 with each cluster holding a

Business Rules Engine. This allows us to eventually be able to manage an increasing

number and complexity of rules with the same efficiency. The clusters are designed

by the organization and depends on the requirements of the application, and the data

sources available. The output from the analysis from clusters at the lowest level of the

hierarchy can be streamed into clusters at the top of the hierarchy. This enables the

architecture to aggregate the events of the system and to correlate data from multiple

sources. Figure 1 shows two clusters streaming to the cluster at the top of the hierarchy

allowing complex analysis for multiple types of data. For example, multiple security

events that were created from the lower levels in the hierarchy are streamed into the

higher-level, which aggregates these events to find a system-wide attack. In addition,

with a distributed ruleset, it becomes easier to trace rules and events, and understand

the business impact.

Our BRE is based on the Production Rule System (PRS) [41] which is shown in

Figure 2. The BRE stores the rules in the Production Memory. Incoming and declared

objects from the data source are stored in the Working Memory. The Pattern Matcher

matches the objects from the Working Memory against the business rules in the Produc-

26



Figure 2: High-level view of a Production Rule System

tion Memory. This is performed by the Inference Engine. The Agenda is responsible

for execution order of the rules and any conflicts between the rules [41].

Since the BRE is stateful, the inflowing data can be stored as objects in the BRE

Working Memory. This enables the security analysts or the developers to create com-

plex chains of rules with the simplicity of business rules. Chaining is a method of

execution for a rule system and can have two forms: Forward Chaining and Backward

Chaining. Forward chaining is when the incoming objects trigger a sequence of rules

alongside the existing objects in the Working Memory and the BRE finds a particular

conclusion at the end of the sequence. An example in a security context is when an

attack occurs or a suspicious behavior is detected, the rule inserts it in the Working

Memory as an event. This event can be applied as a condition of a new rule to create

another event. This can be repeated until the BRE detects an attack. Backward chain-

ing can also be used: once a rule is triggered, all the objects in the Working Memory

responsible for the rule can be retrieved for specialized analysis by the teams. Another

benefit of the stateful BRE is that previous decisions and suspicious data can be kept

27



as a state in the Working Memory for future use, when complex security attacks arise.

Historical information can be correlated with incoming streaming events, which can

be indicators of compromised data or data breaches. The BRE provides temporal op-

erations which can be used in the condition to create complex time-ordered rules. For

example, if event A occurs 10 seconds after event B, alert the system. This can be taken

advantage against security threats that occur in different order or a specific time frame.

With BRE, the development or security teams can specify an adaptive action once

the rule is triggered. Each BRE cluster has the ability to execute an action, as seen in

Figure 1. Since an application can be hosted on a large-scale network using multiple

machines, our architecture includes an actuator to perform actions against the system

based on the BRE decisions. As of currently, the actuator is a single generic component

that is responsible for all the adaptive actions and uses built-in libraries to execute

these actions. The BRE sends the specified action and values required for the action to

execute (e.g. The BRE sends the IP Block action along with the IP address to block)

to the actuator. These actions include IP Blocking, email notification, changes to the

application and changes to the database. The actions completely depend on the system

and the nature of the attack.

3.1 Properties of the Architecture

In this section, we list the properties of our architecture and how they are an advantage

to security control.

28



3.1.1 Scalability and Hierarchical

Our architecture is required to be scalable and hierarchical for distributing a large rule-

set, handling multiple data sources and to make management of the rules easier. With a

single Business Rules Engine, large ruleset processing the continuous stream of events

may cause performance issues. With the huge amount of known security problems,

vulnerabilities and potential software errors, the ruleset is expected to grow continu-

ously throughout the development process. In addition, the larger the ruleset becomes,

the more difficult it is to navigate through all the rules and event chains. Another issue

arises when we begin to add and distribute our data sources and sensors. As Silber-

berg [42] explains, when a system becomes more distributed, the behaviour become

increasingly difficult to visualize and describe. When more data sources are added to

the system; we lose the ability to understand the entire system state as a whole.

The architecture proposed in this research work is able to distribute the ruleset for a

specific security problem or a specific data source between different clusters. For each

distributed clusters, our architecture can add more nodes based on the number of rules

or events that needs to be processed. In addition, with a distributed ruleset, it becomes

easier to trace rules and events, and understand the business rules. Our architecture

is able to aggregate data from multiple monitors and data types, making high-level

decisions based on the aggregated data.

Distributing the Streaming Analytics Cluster supports the ability to analyze the

trace of alerts from the sensors and events from the lower-level clusters in the archi-

tecture. The architecture also has the flexibility to add new rules to the business rules

engine to address more attacks during runtime without any change to the application.

By making use of a Business Rules Engine, this allows business analysts and develop-

ers to create new security rules and manage actions of the system.

29



3.1.2 Minimum Impact on the System

On existing applications, it can become difficult to integrate new functionalities. Caste-

leyn [43] explains that evolving an application requires starting a new development

process by developers who understand the code of the existing application. Integration

for new features is time-consuming and costly, and Jacobs [44] mentions that incorpo-

rating security measures is not only hard to design and implement, but may decrease

efficiency and can make the system unusable.

Instead of integration, the proposed architecture is complementary to the applica-

tion that it is protecting, and can easily be placed on existing applications without any

hindrance or affect on the application’s functionalities. This is possible since the only

requirement for our platform is a source of data that can be analyzed. Only the net-

working utility tool has to be deployed on the application or has to access the data in

order to stream the data to our architecture which can be placed on a separate virtual

machine with no relation or dependencies for the application itself. There is no change

in the application or web service required. However, the only limitation is the per-

formance of using the network utility tool which causes a 12 - 18 % overhead on the

application.

3.1.3 Flexibility

Our platform is flexible and can easily be implemented with applications from a vari-

ety of different types and fields. We implemented our platform with Wordpress, PHP

Applications and NodeJS Applications. However, the architecture can be applied to

non HTTP-based applications. The only requirement is that there needs to be data that

can be fed into the architecture and security threats and irregular patterns can be found

through this data source.

30



3.1.4 Adaptive Actions

Our architecture is able to perform actions based on an event. When a rule triggers,

the architecture either makes an action to an internal or external system. These actions

include an IP block, logging information and sending email notifications. These actions

are sent to the Actuator, which executes this action.

These changes to the environment also change the data flow, and can be used to

trigger additional rules in the engine. The ability to change the environment as soon

as a rule triggers is a powerful and necessary tool for a secure system. The actions

implemented in our platform currently are:

• IP Block

• Email Notification

• Logging Security Events to a specified file

• Database Changes

New actions have to be programmed into the platform, and we are looking at dif-

ferent use cases to find effective and required actions to implement for the future.

3.1.5 Integration with different sources

Our architecture shows its capabilities in security control by being able to process a

wide range of data sources. This includes IDS sensors, Database logs, Wordpress plu-

gins, Queries and is able to handle any new data type. The data sources are placed at

the lowest level, and the hierarchical architecture creates events when a rule triggers at

the low level in the hierarchy. These events are streamed to higher-level abstractions

into the business rules engine. Since the rules engine is stateful, we have a clear picture

31



of the entire state of the system from all the data and lower level sources. The archi-

tecture can then make complex decisions based on a combination of lower-level and

higher-level abstractions as well as a chain of events triggered by multiple rules.

3.1.6 Expandability

New data sources and sensors can be seamlessly integrated into the architecture, as

well as new clusters for the data source and its corresponding ruleset. When required,

new sensors can be added and the data is set to stream into the ports opened by the

architecture. Logs and other data sources can also be streamed to an open port. If

another cluster is required for the new data sources, it can be placed during runtime

with a new input and output port for streaming. This input port can be the data source

or can be another cluster from a lower level in the hierarchy. The output port can be

set for the cluster to send data to a higher level cluster in the hierarchy or on stand-

by for future higher level nodes. If needed, the developers or security analysts can

take advantage of the ability to update business rules during runtime for the new data

sources and sensors.

3.2 Implementation Overview

For the implementation of our architecture, Spark Streaming1 is used as our Analytics

cluster with Drools2 as the BRE. All data is streamed to the analytic clusters through

Netcat3, a networking utility tool used to forward the log to the architecture. Docker4 is

instrumental of our architecture as it provides a self-contained and lightweight method

1https://spark.apache.org/docs/latest/streaming-programming-guide.html
2https://www.Drools.org/
3http://netcat.sourceforge.net/
4https://www.docker.com/

32



to deliver the services for the analytics cluster and the BRE using containers. A con-

tainer is the runnable instance based on an image, which is a set of instructions for

creating the container [45]. For the architectures data sources for our use cases, Snort

was used as our main IDS sensor for alerts as it is one of the most widely-deployed

open source IDS, owned by Cisco [46]. Suricata was used as the multi-threaded IDS,

exhibiting the architecture’s ability to incorporate hybrid sensors.

One of the web application that is being protected by the architecture is a Word-

press server composed of a load balancer, two web servers and a MySQL database.

We stream the MySQL slow log data into our architecture to make MySQL related

business rules, as well as the Wordpress Audit Log plugin for additional wordpress

related data. In our application-specific vulnerability experiments, we used Damn Vul-

nerable Web Application (DVWA) 5, a PHP/MySQL web application that is known to

have vulnerabilities and weaknesses. We use DVWA to test our architecture’s ability

to detect different types of vulnerabilities.

In our implementation, all our components are containerized and when we need to

scale, a new container is created and is integrated seamlessly with all the other com-

ponents during runtime. Other than the benefit of scalability and expandability for

our architecture, Docker containers are an important addition in terms of performance.

Chung et. al [47] evaluating Docker containers in high performance computing appli-

cations found that Docker containers are able to reduce overhead and are more suitable

with data-intensive applications. With the large amount of traffic to be treated against

security rules, Docker is an ideal platform for building our architecture.

5http://www.dvwa.co.uk/

33



3.3 Summary

In this chapter, we presented our proposed architecture for security control. The archi-

tecture’s components was designed in an hierarchy to distribute the responsibilities of

the rules and to perform more sophisticated analysis at the higher level of the hierar-

chy. We then examined the data flow and each of components of our architecture and

described their purpose. We explained the BRE, and presented the advantages of using

the BRE for a collaborative security control platform. Furthermore, we discussed the

properties of using a hierarchical rule-based architecture, and how they are an advan-

tage to the system. Finally, we reported the key technologies and implementations that

we used for each of the components in our architecture.

34



Chapter 4

Use Cases

In this chapter, we implement our platform with common real-world security threats

and issues. We demonstrate the implementation of the platform with different types of

applications and their architecture. In addition, we show the several sample rules and

the data flow of the use case.

4.1 DDoS Detection

The first use case we examined with our architecture was the detection of a DDoS at-

tack. Since DDoS attacks can cause a large amount of stress on the system, Chung [48]

identifies DDoS as a scalability problem, not only as a security one. The author argues

that instead of content-centric solutions to prevent DDoS attacks, network architec-

tures should focus more on increasing their scalability to better handle sudden surges

in incoming traffic and avoid system shutdowns. If a DDoS attack is detected at the

lower-level, the Snort nodes create an alert and can take action against the attack as

well. However, since the Snort IDS are distributed, the information for each IDS is

35



Figure 3: Data Flow for DDoS Detection

partial and not complete, resulting in not enough information for the node to detect a

DDoS attack. Our solution is presented in Figure 3, which shows the data flow of the

DDoS attack with the BRE. Each of the distributed Snort nodes sends multiple high

traffic warnings to the architecture. The Drools engine creates events based on the high

traffic warning, and correlates these with the alerts that arrive from all the other nodes.

Once the Drools Rules for the DDoS attack is triggered, it uses the IP Block action on

the attacker.

In our use case setup, which can be seen in Figure 4, we employed two Snort IDS

Nodes as containers for the Wordpress Server as the low level data source. The IPTa-

bles is a component that uses IPtables to distribute the request packets of the Wordpress

server to each of the Snort IDS. For this Use Case, we developed an Aggregator com-

36



Figure 4: Components Model for DDoS Use Case

ponent, which is a service placed in a Docker container. The Aggregator allows us

to identify the sensors in our system and aggregate the alerts from multiple sensors to

send to a single cluster A-1. For the Aggregator, we set the IP address and Port of the

sensors, and a single output IP address and port for the cluster. Once these are set, the

Aggregator will tag the source of the alert which can be used as an identification for the

Streaming Analytics Cluster. The Aggregator can add or remove new sensor sources

at runtime when needed. The Aggregator then sends the alerts to the Streaming An-

alytics Cluster. At the start of this use case, we only use a single cluster to run our

rules. We deployed an Actuator container which collects the actions from the cluster,

and executes it on the system.

At the start of this use case, the user makes requests to the Wordpress Application.

The requests first enter through the router entry point, where the users request is for-

warded to the web application and duplicated to the IDS nodes for analysis. To set this

use case, we used iPerf 1 to emulate regular traffic and Skipfish 2 to inject a DDoS at-

tack in the regular traffic. While Iperf is generating normal web traffic load, we initiate

Skipfish on our Wordpress application and begin the attack. The Snort IDS Sensors

will analyze the incoming network traffic, and run them against it’s own security rules.

If the Snort IDS detects an attack, the Snort will be able to act by itself and the alert

1https://iperf.fr/
2https://github.com/spinkham/skipfish

37



will be forwarded to the actuator to perform an IP block on the router. However, if

Snort is not able to detect the attack, especially in a distributed system where the traffic

is divided, the Snort IDS forwards the alert to the cluster A-1, and will be analyzed

against the Business Rules Engine. This alert is a High Traffic Warning alert due to the

activation of Skipfish during normal traffic.

rule "DDoS Attack"

when

AlertOne : SnortAlert((

AlertOne.getMessage().equals("SnortOneHighTrafficWarning") &&

!AlertOne.getPriority().equals("") &&

!AlertOne.getIP().equals("")))

AlertTwo : SnortAlert

((AlertTwo.getMessage().equals("SnortTwoHighTrafficWarning")

&& !AlertTwo.getPriority().equals("") &&

!AlertTwo.getIP().equals(AlertOne.getIP())))

latestOutput: Output ()

then

latestOutput.setOutput("SnortOutput: " + AlertOne.getIP() + ",

DDoS, " + AlertOne.getPriority());

Action action = new Action();

action.ipBlock(AlertOne.getIP(), 20)

update(latestOutput );

retract( AlertTwo );

retract( AlertOne );

end

Figure 5: Drools rule for DoS Detection and IP Block

If multiple high traffic warnings appear from all the Snort nodes, then the the DDoS

rule is triggered by the Drools engine. A Drools rule sample to detect the DDoS for this

use case can be seen in Figure 5. In the When Statement, we first check if the High Traf-

fic warning alert is coming from both our Snort IDS sensors. For example, in case of

two Snort nodes, if AlertOne.getMessage().equals("SnortOneHighTrafficWarning")

and AlertTwo.getMessage().equals(”SnortTwoHighTrafficWarning”) are true, which

means this alert occurred on both IDS nodes. In this rule, the IP address of the at-

38



tacker is also checked to see if they are the same on both machines. Drools then makes

the decision that the attack isn’t a high traffic warning, but actually a DDoS attempt,

and creates a new Action object which is used to block the source IP. Update returns

the object back to the Spark Application, and retract removes the alert objects from the

working memory.

The next demonstration of this use case was initiating an action or a response to

a business rule being triggered. In the Then-statement of the Figure 5 rule, we insert

the IP address into the action object, action.ipBlock(AlertOne.getIP(), 20),

and block the IP address for 20 seconds. This action object creates the script to sent

the IP address of the attackers is sent to the actuator, and the IP address is blocked,

effectively preventing the DDoS attack to continue. In the future, we plan on using

the architecture to try and prevent Low Slow DDoS attacks, i.e. a DDoS attack that

aims to slow a service using extremely slow incoming traffic. Using the business rule

engine, we can monitor performance metrics and number of active users. Once the

performance metrics do not correspond to a number of active users, the Low Slow

DDoS rule should be triggered and will automatically notify the system.

Figure 6: Components Model for DDoS Use Case with Suricata

The architecture is able to add and handle a different type of IDS to compliment the

current IDS. Figure 4 shows that we implement another type of IDS for our architecure,

Suricata. The previous steps can be repeated, where a Netcat message router and a new

39



aggregator specifically for Suricata has to be added. A new Spark Streaming Analytics

Cluster with Drools Business Rule Engine will be added to analyze the stream of alerts

from Suricata, and perform necessary decisions. To obtain the complete state of the

system and perform complex decisions based on both Snort and Suricata, an Aggregate

Spark Analytics Cluster is added. This cluster will read the outputs of both the Snort

and Suricata Spark Analytics cluster, and send the decision actions to the actuator to

perform. This demonstrates our Platform’s ability to be easily flexible and can be

implemented with a Hybrid system. This also allows security analysts with different

specializations in tools to work together to write sophisticated rules.

rule "DDoS Attack"

when

snortAlert : SnortAlert

(snortAlert.getMessage().equals("SnortNodeOneHighTrafficWarning")

||

snortAlert.getMessage().equals("SnortNodeTwoHighTrafficWarning")

)

suricataAlert : SuricataAlert

(suricataAlert.getMessage().equals("(SuricataNodeOneHighTrafficWarning)")

)

then

...

end

Figure 7: Drools rule for Hybrid DoS Detection

Cluster A-1 BRE handles the Snort IDS alerts as demonstrated previously, with

the addition of the output being sent to the next cluster in the Hierarchy, B-2, seen

in Figure 6. The added Suricata IDS will not send the alerts to the Cluster A-2,

which is responsible for Suricata alerts. The rule written in this cluster is similar to

the rules written for Snort, but are formatted specifically for Suricata. The events

of Cluster A-2 will be sent to Cluster B-2, where the Snort event is in the working

memory. This is where the detection for a Hybrid system can come to play. A sam-

ple rule for the DDoS detection in Cluster B-1 can be shown in Figure 7, where it

40



checks for a Suricata event and a Snort event in the working memory. If the events

from both IDS show that there is a high traffic warning, snortAlert.getMessage()

.equals("SnortNodeTwoHighTrafficWarning") and suricataAlert.getMessage()

.equals("(SuricataNodeOneHighTrafficWarning)"), Cluster B-1 will detect

this as a DDoS attack and send the action to the Actuator.

4.2 Wordpress Compromised Account

Figure 8: Data Flow for Compromised Account

41



In this case, we use a combination of the Snort IDS and a Wordpress web applica-

tion and we try to detect an account that has been compromised. A Wordpress audit log

plugin was installed on the applications, which stores a log of users and actions taking

place in the Wordpress server into the MySQL database. The dataflow can be seen in

Figure 8, where the Snort IDS alerts and the Security Audit Log are streamed into the

BRE to detect a compromised account.

Figure 9: Components Model for Compromised Account Use Case

The set-up can be seen in Figure 9, where we have a Wordpress Web Server with

a Security Audit Log installed and a Snort IDS deployed. The Security Audit Log is

stored in the Wordpress MySQL server. We created a container that queries the Audit

Log in time intervals, and streams newly added rows to the A-2 Web Cluster. The Snort

IDS follows the same set-up as the DDoS Use Case. The events created in A-1 and A-2

Cluster are streamed into A-3 Cluster for further analysis.

rule "Admin Brute Force"

when

a : WSAlert ( ( a.getAttempts() >= 8 && a.getUserName() ==

"admin" && a.getOutput() == "" ) , myWSAlert : userName)

then

a.setOutput( "MySQLOutput: "+ a.getOccurrenceID()+ ", " +

a.getUserName()+ ", " + a.getClientIP() + ", " +

a.getAttempts() + ", Brute Force Attempt");

update( a );

end

Figure 10: Drools rule for Security Audit Log

In the A-2 Cluster, the first rule we created was to detect a Brute Force attack on

42



our Wordpress application as seen in Figure 10. We check the username of the login

attempt and the number of login attempts. If the username is admin and the number of

attempts is over 8, we can begin to suspect that there is a Brute Force attack occurring

against the admin user of the application. Since Brute Forces are a common occurrence

in many web services, it might not be a major concern for the system. The Brute Force

Attacks are only logged in the Drools knowledge base and the events are transferred to

the Cluster B-1 in the hierarchy for further analysis.

rule "Create Output"

when

completeAlert : SnortAlert (

(!completeAlert.getPriority().equals("") &&

!completeAlert.getMessage().equals("") &&

!completeAlert.getIP().equals("") &&

completeAlert.getCurrent() == true) )

latestOutput: Output ()

then

System.out.println("Creating Complete Output");

completeAlert.setOutput("SnortOutput: " + completeAlert.getIP() +

", " + completeAlert.getMessage() + ", " +

completeAlert.getPriority());

latestOutput.setOutput("SnortOutput: " + completeAlert.getIP() +

", " + completeAlert.getMessage() + ", " +

completeAlert.getPriority());

System.out.println(completeAlert.getOutput());

// Complete Alert Reset

completeAlert.setCurrent(false);

update( latestOutput );

update( completeAlert );

end

Figure 11: Drools rule for Snort Event Creation

At the same time, the Snort IDS is also analyzing the network traffic and creating

alerts. This alert if fed into the BRE and ran against the rule seen in Figure 11. This

rule is not used for detecting any attacks, instead the rule collects all the parameters

of the Snort alert and creates an output. This output is sent to the Cluster B-2, where

Figure 10 rule’s output was also sent for analysis.

43



rule "Compromised Account"

when

sqlAlert : WAlert (

(sqlAlert.getMessage().equals("BruteForceAttempt") ) )

snortAlert : SnortAlert

(snortAlert.getMessage().equals("AdminLoggedIn") )

actionOutput: Action ( (actionOutput.getOutput().equals("") ))

then

actionOutput.setOutput( "Compromised Account: " +

sqlAlert.getUserName() + ", " + snortAlert.getIP() );

System.out.println("Compromised Account");

update(actionOutput);

retract(sqlAlert);

retract(snortAlert);

retract(actionOutput);

end

Figure 12: Drools rule for Snort Event Creation

Now that both clusters have sent their output to the cluster at the top of the hi-

erarchy, we can now detect more sophisticated attacks. The rule shown in Figure

12 was written for the B-1 Cluster. First, this rule waits until there is both an alert

from the Audit Log and from the Snort IDS. These events are streamed from the

lower clusters as show from the previous two rules in Figure 5 and Figure 11. At

times, many incoming events are unrelated to the rules condition and would either be

stored in the working memory or retracted. However, once the Brute Force event and

the Admin Login event are streamed into the cluster, they trigger the conditions of

the rule, sqlAlert.getMessage() .equals("BruteForceAttempt") and snor-

tAlert.getMessage() .equals(”AdminLoggedIn”). This tells the system that there was

a Brute Force attack on the Admin user followed by an admin login. This combina-

tion can be seen as a compromised account. The compromised admin account rule

is triggered, the compromised admin and the corresponding information about the at-

tack is logged, and the whole system is notified. The security team will then take the

subsequent steps to respond to this breach.

44



4.3 MySQL Data Breach

As discussed before, data breaches are a huge problem in business causing compro-

mised data and reputation loss of the company. In this case, we used MySQL slow log

to send all queries, the user and IP address requesting the query, rows examined, rows

sent and the performance time of the query to the architecture. The idea of this use case

is that many organizations have policies that should not be violated.

rule "SQL Injection"

when

sql : SlowQueryLog(sql.getRowsSent() >= 50)

latestOutput: Output ()

then

...

end

Figure 13: Basic Threshold rule

There will be a threshold rule in which developers or security analysts will define

a maximum number of records for specific SQL queries, and define query patterns

for specific web request. A sample rule can be seen in Figure 13, where we continu-

ously check the number of rows sent to the client of a MySQL server. The business

rule engine will examine the affected number of records from the MySQL server. If

the threshold value is violated, the architecture will send the user and IP address to

the actuator, which will block the IP address using iptables. Since business rules can

be changed at runtime, we can constantly change threshold values depending on the

security policies of an organization.

45



Figure 14: Data Flow for Library Vulnerabilities

4.4 Library Vulnerabilities

Software development has become fast-paced and software is continuously evolving.

As a result, many developers are required to be efficient when they create web appli-

cations. This is solved thanks to the vast amount of open-source libraries available

to developers on the web. The developers can make use of these libraries in their

applications to easily add frameworks, functionalities and other services that fit their

needs without creating them from scratch. However, vulnerabilities from the libraries

46



may be unknown to the developer and can open the software to serious risk. Many of

these vulnerabilities are found and recorded by The National Vulnerability Database

(NVD). The NVD keeps a list of the Common Vulnerabilities and Exposures (CVE)

in technologies and provide a data feed for developers or security analysts. Using our

platform and it’s stateful properties, we can write rules to detect whenever there is a

known vulnerability from the CVE in the developers application.

Figure 14 shows the data flow of this use case, first a library manager, such as

Node Package Manager(NPM), will send a list of the libraries and vulnerabilities used

to in the application to the platform. Using the stateful capabilities of the business

rules engine, these libraries will be stored in the knowledge base. The architecture will

then monitor the data feed of the CVE. When a vulnerability in the library used by the

application is disclosed, the architecture will notify the developers or the administrator

about this new vulnerability in the Software.

rule "Check Vulnerability - Product Name and Version"

when

vdata : VulnerableData(vdata.getComplete() == true && getProduct()

!= null)

ldata : LibraryData( vdata.getProduct().contains(ldata.getName())

&& vdata.getProduct().contains(ldata.getVersion()) &&

ldata.getVulnerable() == false)

latestOutput: Output ()

then

ldata.setVulnerable(true);

System.out.println("Vulnerability Detected! Match with CVE: " +

vdata.getProduct() + ", with Library Data: " + ldata.getName()

+ ", " +ldata.getVersion());

latestOutput.setOutput("Vulnerability Detected! Match with CVE: "

+ vdata.getProduct() + ", with Library Data: " +

ldata.getName() + ", " +ldata.getVersion());

update(ldata);

update(latestOutput);

end

Figure 15: Drools rule for Vulnerability Checking

The sample rule in Figure 15 is to check the Vulnerability after the NPM data

47



and the CVE data are both in the working memory of Drools. vdata.getProduct()

.contains(ldata.getName()) in the When-statement checks the name of the the

package in the CVE and the NPM to see if there is a match, and then vdata.getProduct()

.contains(ldata.getVersion()) checks if the version number is similar. If there

is a match for both Product and Version number, a library vulnerability may be in the

developers application.

4.5 Software Evolution

Software is constantly evolving, adding new functionalities or improving efficiency or

previous functionalities. During each new version, there is a potential of new bugs

and issues that can be initially unknown. The architecture is able to easily handle soft-

ware evolution and validating any data. In this case, we used a random application on

Github to demonstrate the architecture handling evolution and new functionalities. In

our evaluation, we used Gotty, a terminal sharing software. We set up an older version

of Gotty where we first set basic Drools rules for validating the users connecting, dis-

connecting and successful application exit. Then we installed the newer version, with

two new functionalities: setting a maximum number of users and a timeout for exiting.

In our example, we set threshold rules validating the maximum number of users and

the timeout. We then stream the output of Gotty to our architecture, and if the new

functionalities are within the threshold, the application is running properly. This is

done without changing anything in the source code or stopping the Drools and Spark

analytics system, and instead the developer and security team are able to change the

Drools Rules at runtime to account for the new functionalities.

48



4.6 Application Specific Vulnerabilities

Vulnerabilities that arise from issues in the applications code can often be more difficult

to identify. These vulnerabilities may be improper state changes, where an unautho-

rized user can find an access to the admin’s portal or application webpage updates by

the user without proper validation. With our architecture and the use of DevOps for

communication, it is simpler to create specific business rules to detect vulnerabilities

that are application specific.

Figure 16: Application Specific Components

The set-up components of this use case can be seen in Figure 16, where we used

DVWA and streamed the log files with Netcat to the Cluster. We activated the MySQL

Slow Log and the Apache2 Access Log and fed it into the Business Rules engine. In

addition, we created custom PHP logs for user form entries and interactions for specific

web pages. With a combination of these three logs, we created application specific

rules to protect against attacks. These rules written were to protect against Cross-Site

Scripting (XSS) attacks, SQL Injections, PHP backdoor, Path Traversal and Remote

File Inclusions.

A sample XSS rule for the application can be seen in Figure 17. The condition

user.getQuery() .contains("guestbook") is to check if the attack is targetting

the guestbook, a webpage and table that is specific to DVWA. We then check if the

query has the keyword <script>, which means a user is trying to place a script into the

guestbook. However, this can be other XSS-related keywords such as <body onload

or even the closing of a tag, />, which shouldn’t be placed inside the guestbook. For

49



rule "XSS Exploit 1"

when

user : SQLQuery (user.getManipulation() == "INSERT" &&

user.getQuery().contains("guestbook") &&

user.getQuery().contains("<script>"), this before[1ms] index)

latestOutput: Output (latestOutput.getOutput() == "")

then

...

end

Figure 17: XSS rule for DVWA

this use case, we have multiple rules targetting different types of attacks that require

some background of the application.

To attack DVWA, we used ZAP scanner 3, an open-source web application security

scanner that can be trained to understand the applications behaviour. This is done by

opening the browser with ZAP, and exploring the website and the forms. Once this

has been completed, we being the ZAP active scan to find vulnerabilities. An active

scan is an attack on the web application, listing the vulnerabilities after the attack.

After the ZAP scanner has finished running the dynamic scan, it provides us with the

a number of vulnerabilities in DVWA. We then begin a manual penetration with these

vulnerabilities, and target and attacked these vulnerabilities individually. When the

attack occured due to our manual penetration, the Drools Engine was able to detect an

application specific misbehaviour or current attack, such as an XSS attack or a MySQL

Injection. In the experiment section, the results can be seen from our vulnerability

table.
3https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

50



4.7 Summary

In this chapter, we presented our platform in various real-world security use cases. The

uses cases we implemented our platform with were DDoS Detection, Compromised

Accounts, MySQL Data Breach, Software Evolution and Application Specific Vulner-

abilities.

We introduced the different data flow, the set-up of the components, application and

platform of each of the use cases. Furthermore, we presented sample rules for the use

cases, demonstrating the rule logic, the writing process and the simplicity of When-

Then Statement. We demonstrated how our architecture can aggregate different data

sources, handle hybrid sensors, make sophisticated decisions, run adaptive actions,

handle third-party data sources, detect application-specific attacks and various other

advantages of using our platform.

51



Chapter 5

Industry Case Study

While understanding the system in a controlled manner is important, we are more in-

terested in examining its application on an actual development and production environ-

ment. In this type of environment with different developers working on an application,

we can observe the concept of DevOps and SecDevOps in action. The purpose of this

case study is to see if and how we can successfully apply our architecture on a data-

intensive industrial application. As our architecture is a platform for SecDevOps, we

can observe if the the process of dynamic addition of rules are simple to understand

by both analysts and developers. Our main argument is that this collaboration should

result in a stronger and more secure system.

In the context of our experiments, we deployed our security management appli-

cation with Bitnobi 1, a privacy-guaranteeing big-data management platform. Bitnobi

fits perfectly our case study for a data-intensive application with high requirements in

security and privacy, given that it handles large amounts of financial data, like bank-

ing and credit records. Bitnobi’s deployment is also distributed, which means that all

1http://bitnobi.com

52



problems around volume and distribution of the monitoring data are present. The main

idea behind our case study is to have Bitnobi teams (development and security) to use

our system to deal with a variety of known and unknown vulnerabilities and security

issues. More specifically, there are two scenarios we are interested in examining in the

context of continuous security maintenance and evolution. These scenarios are:

1. The BRE detects a vulnerability in the application that the developers do not

know about and the developers in response, begin correcting that vulnerability.

2. The developer knows that there is a vulnerability in the application, writes a rule

with a corresponding action and uses the BRE to temporarily patch this specific

vulnerability.

In the first scenario, we assume that everything (BRE and the application) is already

deployed together and there are already prewritten rules based on known vulnerabili-

ties, suspicious user activity and incorrect state changes (e.g. regular user with access

to the admin page). When the application is continuously evolving, a new vulnerability

may arise that may match these rules. This first experiment shows us that BRE can

catch these vulnerabilities as soon as they appear in logging data. This is an example

of the dynamic application analysis and runtime application protection of SecDevOps

where the architecture monitors and receives feedback once the application is deployed.

Vulnerabilities, which may have gone unnoticed during development time when sim-

ply looking at the code, are now revealed through malicious traffic at runtime. Besides

identification, the BRE can handle this malicious activity, for example, by blocking

specific IPs or dropping particular packages, until the vulnerability is fixed at its root

cause.

In the second scenario, the developer may have found or already know of a vulner-

53



ability but there is no rule in the BRE to protect against it. The motivation behind not

fixing the vulnerability immediately could include time or cost constraints. Instead, the

developer can write a simple rule to address this vulnerability and dynamically insert

in the BRE without shutting down the system. In this experiment, we show that this

rule can be very simple and tightly connected to the application itself for the developer

to immediately add it as a response to the threat. Once the rule is placed, the developer

can notify the security analyst to verify, validate and expand on these rules, further

enhancing the security patch of the system. This communication between teams using

the BRE represents the DevOps practice of the project.

5.1 Industry Implementation

For the subject system to be managed by the proposed architecture, we collaborated

with the Bitnobi team. Bitnobi is a web application already in production that elimi-

nates the need to create copies of data and places the responsibility for launching data

jobs on the end user by ensuring that the end user meets the data provider’s ”rules of

engagement”. Bitnobi is a privacy-protected data sharing platform, which alleviates

the issues that arise from the amount of data records that are growing at an exponential

rate for many businesses. Business analysts have to sift through these large datasets in

order to capture insights for their products and/or services. Data providers also need to

copy and mirror the data sets to be analyzed, which may not be secure or anonymized.

Moreover, this process may be inefficient when only a segment of the data is required

to be analyzed rather than the whole. Bitnobi provides the solution to these issues by

allowing data providers to share access to data in a secure manner without releasing

raw data or making copies of them. The platform enables the data providers to control

54



access to virtualized segments of the data, allowing the end users to choose the data

they need to work with when building a data job, instead of aquiring the entire dataset.

Bitnobi uses large sensitive datasets belonging to business or data providers. This

means that Bitnobi itself must be secure from any vulnerabilities and malicious attacks.

Bitnobi is also a newly developed product that is constantly being updated every week

with new functionalities. For these reasons, we believe that evaluating the SecDevOps

platform alongside Bitnobi would be an ideal use case. For the needs of our experi-

ments, we worked with the Bitnobi team on a sandbox copy of the application. Our

architecture was placed on a large-sized VM with 8GB RAM, 4 VCPU and a 80.0GB

Disk. All components of the architecture were deployed as Docker containers.

Our first step was to identify Bitnobi sources for security monitoring data that could

be fed into the Streaming Analytics Cluster. Bitnobi uses NodeJS2, an open-source,

cross-platform JavaScript run-time environment that executes JavaScript code on the

server side. In addition, Bitnobi implements a process manager for production appli-

cations for NodeJS called PM23. PM2 is able to list all the online components of the

application (Web Application, Database, etc), any errors or failed components, moni-

toring memory and cpu, and log management. In our case, log management was the

most important part. PM2 is able to stream all available logs in the web application.

Using Netcat, the PM2 log manager streamed all logging information that was set by

the developers into the Spark analytics cluster. The general translator was programmed

for the Spark Analytics Cluster. It parses the raw data by splitting the string data into

segments. This allows the teams to select the specific segment that is required to be an-

alyzed, simplifying the rule writing process. The developer or security analyst can now

write rules to correlate the incoming log data from Bitnobi and detect any application-

2https://nodejs.org/en/
3http://pm2.keymetrics.io/

55



specific issues.

To detect these application-specific issues, we first need the Bitnobi logs to provide

us with enough information to make these types of analysis. The production version

of Bitnobi has minimum logging, the only logging information it contained was heap

used and the error count. This was not enough information to detect any type of vul-

nerability within Bitnobi, and we had to make some modifications. The developer

version of Bitnobi was also available, but the same issue arose in which we did not

have enough information to detect any attacks. We worked with the Bitnobi developers

and discussed certain requirements needed in the log for proper data analysis and rule

created.

Figure 18: Bitnobi Logging Output Sample

The developer was already using Morgan 4 to help the development and testing

process of Bitnobi. Morgan is an HTTP request logger middleware for node.js and

customized important values that can help detect malicious traffic from vulnerabilities.

Therefore, we used the Morgan logger for our data source, exhibiting the flexibility of

our architecture by implementing it with preexisting logging modules. The developers

only had to do simple modifications to log the required information to fully detect and

mitigate attacks. The resulting logging structure for the Bitnobi application is: http,

IP address, method, url, requestpayload and status. This output can be seen in Figure

18. From the figure, the first section gives the logging data’s application origins, in

this case, 1|server is the active Bitnobi application. Logging data can also originate

from MongoDB and MySQLReplication. The IP address gives us the source address

4https://github.com/expressjs/morgan

56



where the request is arriving from, which will be important for correlating and blocking

attacks. The next part is the method which can be a GET, POST, DELETE request. The

url expresses which page is being accessed. The payload of the request shows the

request data in a JSON format; any improper or suspicious request can be analyzed

and correlated from the JSON requests. Finally, the status shows the HTTP codes,

letting the architecture know if the request was successful or a failure. This amount of

information is sufficient to begin experimenting with the scenarios and will be streamed

into our architecture via Netcat.

declare ApplicationLog

@role(event)

@ClassReactive

fullLine: String

IPAddress: String

http : String

method: String

url : String

requestpayload: String

status : String

end

Figure 19: Declaring Drools Object

Before we begin creating a ruleset to protect the application, some preliminary

declarations and rules have to be created for our achitecture. Figure 19 shows the

declaration of a new type; these are akin to objects that will be modified and interacted

with in the Drools engine by the rules. In this case, we are declaring the application log

that was discussed in the previous paragraph. The @role and @ClassReactive are

property metadata for the type. The @role(event) sets the type to be handled as an

event which adds the ability of timestamping. The use of timestamps allows us to use

the temporal operations such as Before() and After() which can be used to correlate

and combine different events to trigger more complex rules. The @ClassReactive is

57



a property that disables property reactivity, which disables (re)evaluation. In our case

studies and security-based rules, multiple reevaluations of the events with new events

are important and thus, property reactivity has to be disabled. The next lines of the

type declarations are the variables that make up the application log, which are the

IPAddress, http, method, url, requestpayload and status. To make use of this

type, incoming data has to be inserted into the engine as the applicationLog object.

rule "Insert Application Object"

when

rawData : DataInput(

rawData.getStringData(0).equals("1|server"))

then

try{

ApplicationLog request = new ApplicationLog();

request.setFullLine(rawData.getFullLine());

request.setHttp(rawData.getStringData(0));

request.setIPAddress( rawData.getStringData(2));

... // set up of other properties

retract(rawData);

insert(request);

}catch(IndexOutOfBoundsException e){

System.out.println("Index out of Bounds");

}

end

Figure 20: Drools rule for inserting an application object into working memory

The rule to insert these objects can be seen in Figure 20. The Drools engine then

automatically creates getter and setter methods of our declared type which allows us to

easily modify the values. The incoming data from Bitnobi is first streamed through a

general translator in the analytics cluster, and the data is parsed by spaces and the values

are inserted into a list. In the Drools community, Left Hand Side (LHS) is a common

name for the conditional part of the rule and Right Hand Side is a common name for

the consequence part of the rule. In the rule shown in Figure 20, the Left Hand Side

shows that when the first parsed value in the rawData equals 1|Server, which corre-

sponds to the Bitnobi Application log, the log data is then streamed into the declared

58



ApplicationLog type on the Right Hand Side of the rule. Once the values are set, the

raw data is retracted from the working memory, and the new applicationLog type is

inserted for analysis. Since this type is set as an Event, it is automatically timestamped

once inserted into the Drools engine.

5.2 Scenario One: Unknown vulnerability, existing rule

To setup this scenario, the security analyst alongside the developers had already created

ruleset. The developers first had to be trained on how to use Drools. Since Drools is

Java-based, it was familiar to the developers and easy to learn as it is closer to appli-

cation logic. The developers were first presented the architecture, properties of Drools

and the basic syntax of the “When - Then” statements. The developers were then

shown how to first declare objects, the basic Get and Set functions generated by the

Drools Objects and the several built-in functions that Drools provides. Once the devel-

opers were able to do some basic exercises using Drools, they were then shown how

to interact with the incoming data from Bitnobi. Unlike policies, network and security

documentation which developers find difficult to understands, the training process for

Drools was simple and straight-forward since it was code-based.

The security analysts provided security requirements, and the developers wrote a

ruleset. This included rules to correlate the incoming data and detect any vulnerabilities

of Bitnobi. We began this process by navigating through Bitnobi and understanding the

normal user activity that arises. Basic rules were created initially. For example, a basic

rule checks if the MongoDB and the Bitnobi servers have any errors or connection

problems, and if triggered, the rule will notify the developer. Threshold and security-

based rules were then added into the ruleset. These included rules for login attempts,

59



Brute Force attacks, checks for broken access controls and cross-site scripting. In

this scenario, the unknown vulnerability was cross-site scripting attack (XSS). The

Open Web Application Security Project (OWASP) places the XSS attack in the Top

10 application security risks in 2017 [49]. The XSS vulnerability can occur whenever

an application includes untrusted data in a new web page without proper validation, or

when user-supplied data can be updated into an existing web page using a browser API

that can create HTML or JavaScript. XSS allows the attackers to execute their scripts

in the victim’s browser which can result in hijacking the users session or redirecting the

user to a malicious site. Using a combination of rules and actions, the Drools engine

can catch and protect against this attack in this case.

rule "XSS Attack 1"

when

request : ApplicationLog(

request.getUrl().equals("/users") &&

request.getRequestpayload()

.contains(";</script>"))

then

Action action = new Action();

action.notify("Developer", " XSS Error/Vulnerability: See " +

request.getFullLine());

action.changeDocument("users", "<script>",

"temporary-replacement-text");

end

Figure 21: Basic Rule for XSS detection written by Security and Development teams

The analyst created some basic XSS detection rules. Figure 21 shows some of the

preexisting rules for an XSS attack. On the left-hand side, when the incoming request

payload contains a <script> or XSS-related tag on the /users page, then the rule is

triggered. The analysts wrote the basic keywords to detect an XSS attack, while the

developers with their knowledge of Bitnobi, add application-specific triggers in the

rules. An example from the figure are request.getUrl().equals("/users"), as

60



the developers know the specific pages that may be vulnerable or are new additions

to Bitnobi, and haven’t been fully tested. Once these rules were set, we deployed the

application.

Figure 22: Process of Scenario One for XSS mitigation

During the deployment, attacks occurred during the normal routine traffic where

the requests are legitimate. A script was created to automate normal traffic on the

web application. The script logs in to Bitnobi, saves the session and uses Apache

Bench, a tool for benchmarking, to send a large number of requests to the appli-

cation. Alongside normal behavior, we manually injected malicious scripts in Bit-

nobi, seen at the start of the process in Figure 22. In Bitnobi, one of the unsecured

XSS vulnerabilities can be exploited when the user edits the profile section: they in-

sert a script into the first or last name form and save it as the user’s profile. The

61



next time the user accesses the page, they will be greeted with "Hello, <script>

window.open("http://maliciouswebsite.com") </script> Doe". However,

this is detected as soon as the user tries to attempt this specific XSS attack by the rules.

When the user submits a script, the form request data are logged and streamed directly

to the security architecture. Once the data is inserted into the Drools engine, each of

the rules is evaluated against this line until the XSS rule is triggered. Figure 22 shows

the the process after the rule has been triggered. The rule can store this XSS attack

as an event for further analysis as well as perform an adaptive action. One of these

adaptive actions is to create a notification. Once the Bitnobi developer is notified about

this vulnerability, they can begin working on fixing this issue by adding a sufficient

security validation to the edit profile section. Alternatively, once the rule is triggered

and the XSS attack is found, an automatic adaptive action, already specified, can be

executed. For the XSS rule, the action.changeDocument() is used to specify the

collection in MongoDB, find the values that have scripting keywords and replace them

with a temporary placeholder. Under this continuous monitoring and maintenance sys-

tem, unidentified vulnerabilities can easily be found during runtime and fixed in a more

efficient and time-saving manner.

5.3 Scenario Two: Known vulnerability, no existing rule

Bitnobi is a new application that is used by a specialized set of end users, and the focus

for development has been on the client’s functional requirements. For this reason, the

developers of Bitnobi know that there is limited protection against DDoS and Brute

Force attacks in the current version. Our first steps were to see the effects of Bitnobi

without any Brute Force protection. For the experiment, the developers purposely mis-

62



configured the middleware allowing attackers to exploit the REST Api to grab the list

of all the registered users. Once the attacker obtains the user list, it reduces the com-

plexity of the Brute Force attack. For the Brute Force attacks, we set up THC Hydra5,

a tool that can perform rapid dictionary attacks against a web application. Before the

Brute Force attack, we configure the clients containers to send normal web traffic to the

application. During normal behavior, we initiated a lengthy Brute Force attack against

Bitnobi and there was no responding action against this attack. THC Hydra was able

to constantly try different combinations of passwords and Bitnobi kept on logging the

increasing number of requests from the Brute Force attack mixed with all the normal

login attempts and application access by legitimate users. Without any proper mecha-

nism to defend against a large wave of requests, the Brute Force attack will eventually

be successful if the attack goes unnoticed.

This is where our architecture plays a key role in a SecDevOps context. This pro-

cess can be seen in Figure 23. While the Bitnobi server is still running, and the de-

veloper knows that there may be a Brute Force attack in the future because they are

aware that there is no application validation system, they begin writing the Brute Force

rule. The developer can then create a business rule based on the threshold of login at-

tempts. Once the number login attempts from the same IP address passes the threshold,

the rule triggers an adaptive action to temporarily block the IP. Once the temporary IP

block is over, the attacker begins the Brute Force attack once again. Since the events of

the rules are stored in the working memory, the rule detects the new Brute Force and

detects that is has been an IP address that has already been identified to launch Brute

Force attacks. From here, the rule’s action can be configured to block the IP address

for a longer period of time or even permanently. In this scenario, the developer can

5https://github.com/vanhauser-thc/thc-hydra

63



Figure 23: Process of Scenario Two for Brute Force mitigation

support the application’s security by adding this temporary patch to fix the breach.

Figure 24 shows the rule that the Developer has written. Drools Business Rule

provides a cumulative function, which allows the rule to iterate a function over a col-

lection of objects, returning a result object. For the Brute Force rule, the developer

used a combination of accumulate() and count() on the Left-Hand side, keeping

track of all the requests with the same IP address. The calls attempts.getMethod(),

attempts.getURL() and attempts.getStatus() are set to check if the incoming

requests send a POST request to /auth/signin, which results in a bad request, a 400

http code. This part of the rule detects that this request was a failed login. Finally,

64



rule "Brute Force Detection" salience 10

when

request : ApplicationLog(

request.getMethod() == "POST" &&

request.getUrl() == "/auth/signin" &&

request.getStatus().equals("400"))

accumulate ( attempts : ApplicationLog (

attempts.getIPAddress()

.equals(request.getIPAddress()) &&

attempts.getMethod() == "POST" &&

attempts.getUrl() == "/auth/signin" &&

attempts.getStatus().equals("400") );

numLogins : count(attempts) ; numLogins >= 10 )

then

Action action = new Action();

action.ipBlock(request.getIPAddress(), 20);

Event bruteForceEvent = new Event();

bruteForceEvent.setName("BruteForceAttack");

bruteForceEvent.setIPAddress(

request.getIPAddress());

insert(bruteForceEvent);

end

Figure 24: Drools rule for Brute Force Detection written by Developer

the rule accumulates these objects as attempts, and runs the function count(attempts)

and if the threshold is over 10, the rule triggers. The Right-Hand Side shows the

action.ipBlock(request.getIPAddress(), 20) which sends the IP address to

a script that blocks the IP address on IPtables and after 20 seconds, to remove the IP

block. The Brute Force event is then created with the corresponding IP address, and

inserted into the working memory.

The use of this event can be seen in Figure 25. Once the IP address is no longer

blocked, the attacker begins to run another Brute Force attack. However, their IP ad-

dress is already stored as an event. Once again, Drools accumulates the failed login

attempts but now compares it with the IP address of the previously detected Brute

Force attack. If that is the case, the rule is triggered and another ipBlock action is exe-

cuted, blocking the IP for a longer time than previously. Any more additional attacks,

65



rule "Brute Force Detection - Extension" salience 20

when

prevBruteForce : Event(

prevBruteForce.getName()

.equals("BruteForceAttack"))

request : ApplicationLog(

request.getMethod() == "POST" &&

request.getUrl() == "/auth/signin" &&

request.getStatus().equals("400"),

this after prevBruteForce)

accumulate ( attempts : ApplicationLog (

(attempts.getIPAddress()

.equals(request.getIPAddress()) &&

attempts.getIPAddress()

.equals(prevBruteForce.getIPAddress())) &&

attempts.getMethod() == "POST" &&

attempts.getUrl() == "/auth/signin" &&

attempts.getStatus().equals("400"),

this after prevBruteForce );

numLogins : count(attempts) ; numLogins >= 10 )

then

...

Figure 25: Extension Rule of the Brute Force Detection

and this could result in a permanent block. This is an example of the developer being

able to chain the rules and mitigate the Brute Force attack by adding a new rule after

the application is deployed or even during the Brute Force attack. One keyword to note

from both Figure 24 and 25 is Salience. Salience is an important keyword that can be

set to define the priority of the execution order of the rules. If multiple rules can be

executed without any priorities, they will be executed in an arbitrary order. The higher

the Salience value, the higher its priority. In our scenario, the extension has higher

priority than the initial Brute Force rule. This is because if the initial Brute Force rule

had already been triggered, the developers and the security analysts wanted the exten-

sion rule to be checked first to see if the attacker is still in action. If the Salience is

not set, then the initial Brute Force rule will be triggered for the same attacker and a

longer block would not be given. When THC Hydra is used to execute a Brute Force

66



attack now, it is detected by the rules, the attacker’s IP is blocked and the application

is secure. This rule can be seen as a temporary patch until the developer adds a proper

validation mechanism for the authentication page.

rule "User Logged In"

when

request : ApplicationLog(

request.getMethod() == "POST" &&

request.getUrl() == "/auth/signin" &&

request.getStatus().equals("200"))

then

Event userLoggedIn = new Event();

userLoggedIn.setName("Logged In User");

JSONParser parser = new JSONParser();

Object obj = parser.parse(request.getRequestpayload());

JSONObject jsonObject = (JSONObject) obj;

String name = (String) jsonObject.get("username");

userLoggedIn.setUsername(name);

userLoggedIn.setIPAddress(

request.getIPAddress());

insert(userLoggedIn);

end

Figure 26: Event Creation: User Logging In Rule

A vulnerability in REST API allowed the list of all users to be captured. This was

intentionally set by the developers to evaluate the Brute Force scenario more effec-

tively. However, this is still a real threat to many web applications and an example

of sensitive data exposure, one of the top 10 common vulnerabilities where the API is

not properly configured to protect sensitive data [49]. Without the vulnerable REST

API, the Brute Force attacker would not have been able to obtain the usernames which

would create a more time-consuming attack due to a larger computational complexity.

The attacker exploits this vulnerability to use the user list for the Brute Force attack.

Using our engine, we are able to detect when the user list or sensitive data have been

compromised.

67



Figure 26 shows a basic rule for creating events of every user who has logged in,

and inserting it into the working memory. On the Left-Hand Side of the rule, once

there is a successful login (HTTP status code equaling 200) on the authentication page,

the rule is triggered. To make use of this event for future correlations, certain values

have to be associated with this event. The developer can import external classes in

Drools on the Right-Hand Side, in this case, the JSON parser is imported to parse the

request payload. Once converted into a JSON object, the developer gets the username.

Logging the username itself is pretty essential, but the Event Drools object does not

have a username attribute. Here we showcase Drools flexibility, where the developer

simply writes username : String in the object declaration and now the developer

is able to set the username in the rule. They insert this user event into the working

memory. The developer and the security analyst can write a rule to detect any po-

tential sensitive data leaks. Using the REST API call to view the list of users should

only be available to the developer or the admin of the page, thus the request URL

"/resourcesmanager/listusers" with a successful http status code is compared

with two other conditions. The first condition is when the User event, that was inserted

in the previous rule, has the same IP address as the request URL but the user is not an

admin. The second condition is when there are no users logged in to Bitnobi currently,

but the list of users were still accessed. If one of these conditions are met, then the

developer is notified that there is a vulnerability where sensitive data is exposed. The

developer now is aware of this issue, and can take action.

68



5.4 Summary

In this chapter, we implemented our platform with a production application, Bitnobi.

We explain the Bitnobi application and the technical implementation specifications

with our platform. We presented two scenarios of the application. The first scenario

is when the BRE detects a vulnerability that are now known to the developers. This

scenario shows the ability to detect threats, and will help developers by providing them

the information of what fixes are required. The second scenario is when the developer

knows that there is a vulnerability, but there is no rule written in the BRE. The devel-

opers, while aware of the threat, may not be able to fix it due to constraints, therefore

they write a rule to temporarily detect and patch any exploits to the vulnerability.

We present the data flow of each scenario and then demonstrate the collaboration

between the developers and security team. In each scenario, we go through the rule-

writing process to detect and mitigate the attacks. Furthermore, we present sample rules

for each of the use cases, explaining the components of the rules and the operations that

were used.

69



Chapter 6

Evaluation Experiments

In this chapter, we look at three main experiments related to our platform. The first ex-

periment is the distribution of IDS sensors, where we observe the packet droppage and

packet distribution. In the second experiment. we look at using the platform on a web

application and observing what vulnerabilities our platform is able to catch. The final

experiment is related to the platform overhead on the web application. Specifically, we

are interested in seeing the performance effects of implementing our platform and it’s

required components with the web application.

6.1 Increasing Sensors for Packet Dropping

In these experiments, we view Snort IDS and its ability to handle the number of packets

from incoming traffic. We show that increasing the number of IDS sensors will prevent

us from losing any valuable information when attempting to detect an attack.

70



6.1.1 Experiment One: Single Snort IDS

Figure 27: Packets received and dropped for Single Snort IDS

A single snort instance at a 50 % CPU utilization limit was used in this experiment. An

Iperf instance was used to simulate network traffic and generated UDP packets incre-

mentally by 50 mbits/second. During the traffic generation of Iperf, a Skipfish instance

is initialized to simulate a DoS attack where the Snort instance generates alerts. This

experiment was run to see at what point Snort drops packets and when to add another

Snort instance. As seen in Figure 27, packets begin to drop when the traffic passes 150

Mbits/Sec. At 150 Mbits/sec, 2.67% of all the packets received were dropped. At this

point, it does not affect the IDS ability to detect attacks. At 200 Mbits/Sec, there is a

21.29 % drop in packets. This is when the IDS performance becomes a serious issue.

At 21.29 %, the IDS can let a significant amount of malicious traffic through without

any detection. At this point, it is important to consider adding more sensors and dis-

tributing the workload. At 250 Mbits/Sec, 33.10 % of the packets are dropped and at

300 Mbits/sec, 44.81 % of the packets are dropped. By this point, a significant major-

ity of packets are being dropped which results in losing valuable information such as

suspicious traffic and requests.

71



6.1.2 Experiment Two: Two Snort IDS

Figure 28: Packets received and dropped for Two Snort IDS

After observing the issues with having a single mechanism for detecting attacks, we

added two Snort IDS sensors. These two snort instances were each running at 50 %

CPU utilization limit for this experiment. As seen in Figure 28, there was no packets

being dropped when the traffic was under 250 Mbits/sec. This was already a significant

improvement, as previously with a single sensor, we would be seeing a 30 % drop at

this point. At 300 Mbits/sec, there are only 0.97 % packets being dropped. This is an

insignificant amount of dropped packets and suspicious traffic is still detected at this

point. At 350 mbits/sec, 2.02 % of packets are being dropped. We start seeing more

packets dropped at the 450 mbits/sec and 500 mbits/sec. At 450 mbits/sec, 7.5 % of

all packets are dropped and at 500 mbits/sec, 10.78 % of all packets are dropped. As

demonstrated, adding more sensors begin to decrease the number of packets dropped.

However, when we begin distributing the sensors, 50 % of all the packets are transferred

to one Snort IDS, and the other 50 % to the second sensor. With our architecture, we

can take advantage of distributed sensors and send the individual sensor alerts to our

architecture to perform an aggregated analysis.

72



6.1.3 Experiment Three: Three Snort IDS

Figure 29: Packets received and dropped for Three Snort IDS

In this experiment, we look at three snort instances, each running at 50 % CPU

utilization limit. Compared to the previous experiment, there is little to none packet

drop throughout the workloads as seen in Figure 29. At 500 mbits/sec, there is only a

0.23 % drop in all packets, an insignificant amount for the highest traffic load of the

experiments. This will result in capturing the entirety of the incoming traffic and any

indication of a potential attack will not be lost due to non-distributed IDS limitation.

We can then feed this data into our architecture to combine the information from the

distributed IDS to understand the complete picture of our system.

6.2 Vulnerability Table detected by Drools

The key part of our platform is using the written business rules to detect security threats

of an application. In this section, we present our results of the application-specific use

case from Chapter 4. We demonstrate our platform and demonstrate the ability of

business rules to detect these security threats by using the ZAP active scanner and

manually injecting the found vulnerabilities. We then created a vulnerability table

73



comparing the threats that ZAP detected with the amount of threats our platform was

able to detect.

Figure 30: Vulnerability Table for ZAP results

The vulnerability table can be seen in Figure 30, where the ZAP Scanner detected

vulnerabilities in the Damn web application. A total of 11 XSS, 1 Path Traversal, 1 RFI

and 11 SQL Injection vulnerabilities were detected in the web application. We used

ZAP to then manually inject the attacks while our platform was running and protecting

the application. The results of the detected threats is shown in Figure 30. From the

figure, our platform detected a total of 8 XSS attacks, 1 Path Traversal Attack, 1 RFI

and 1 SQL Injection.

However, our platform was able to detect only 62.5 % of the ZAP attacks on the

application. However, on further inspection, 37.5 % of the vulnerabilities were false

positives that ZAP considered vulnerabilities. In the XSS case, ZAP would leave a

script on its initial attack, but when revisiting the page and using the GET response,

ZAP thinks its previous script is a new XSS attack. However, our platform would

detect this XSS attack when it was originally inserted into the page. The 3 XSS attacks

that Drools did not detect are GET responses that did not send a script. There were 11

SQL Injections found by ZAP but 6 of the attacks were false positives. One of the false

SQL Injection was a regular login and the other 5 never queried the SQL database.

When not including the false positives, Drools was able to detect all the application

vulnerabilities that ZAP can exploit. This experiment shows that it is possible to use

74



business rules to detect a wide variety of security threats.

6.3 Web Performance for End-User

In this section, we begin to look at our platform’s effect on the performance of the web

application. We were interested in seeing the overhead that may arise when implement-

ing the components that are required of the platform such as the logs, configurations

and the network utility tools. We use the same setup as the Vulnerability Table ex-

periment, with one DVWA web application and our platform which was hosted on a

seperate machine. We then use Apache Bench, a benchmarking tool that sends traf-

fic to the web application. Apache Bench reports the Requests per Second, the Time

per Request and the Transfer Rate. The web application was implemented as a docker

container. Each experiment was run 10 times each, with 5000 number of requests. For

each iteration, we increase the number of concurrent users against the web application.

The web application, Apache Bench and the Platform were hosted on virtual machines

each with 4GB RAM, 2 VCPUs and a 40 GB Disk.

In the first experiment shown in Figure 31 and Figure 32, Netcat was installed

on the DVWA web application to stream the MySQL Slow Log and a Custom PHP

log to the Platform. This set-up of the DVWA web application is required for our

Platform. We then compared it to a Vanilla web application without any logging or

security protection, and observed the overhead. When using our custom application

over the Vanilla application, the highest overhead for Time per Request is 18.93 % for

160 Concurrent users, the lowest is 11.50 % for 20 concurrent users and the average is

is 14.40 %, with the custom DVWA web application taking more time to complete the

request. For Requests per Second, the highest overhead is 15.88 % for 160 Concurrent

75



(a) Time Per Request

Figure 31: DVWA End-User Time Per Request Performance Overhead

users, the lowest is 10.21 % for 20 concurrent users and the average is 12.52 %, with

the custom DVWA web application handling less requests per second. For the transfer

rate, the highest overhead is 15.88 % for 160 concurrent users, the lowest overhead is

10.30 % for 20 concurrent users, and the average overhead for all the concurrent users

is 12.52 % with the custom DVWA web application performing slower.

These first experiments show that there is a overhead when implementing the com-

ponents for our platform. We looked at isolating the specific components to find what

may be causing this overhead. Upon further inspection, we found that Netcat was caus-

ing the majority of the overhead to the DVWA web application. To reduce the Netcat

overhead, we created a separate Secure Shell File System (SSHFS) container where

the log data was to be mounted. SSHFS was used to mount the log data in the DVWA

container to this seperate container, where Netcat was running. This shift was able to

fix the overhead significantly. However, one of the drawbacks is that the rate of the

mounted data that is fed to the Drools engine is about 5 to 10 seconds slower. This

76



(a) Request Per Second

(b) Transfer Rate

Figure 32: DVWA End-User Request and Transfer Performance Overhead

77



(a) Time Per Request

Figure 33: DVWA End-User Time Per Request Performance Overhead

issue has to be explored in the future to find additional solutions. Another solution to

reduce overhead was moving all the log data into the RAM memory.

The results of moving Netcat to a seperate container and moving all the logs to

the RAM can be seen in our experiments shown in Figure 33 and Figure 34. From

the figures, we show that there is a significantly reduced overhead between Vanilla and

the Protected web application. For Time per Request, the highest overhead is 10.55 %

for 80 Concurrent users, the lowest is 7.76 % for 10 concurrent users and the average

is 8.75 %, with the custom DVWA web application taking more time to complete the

request. For Requests per Second, the highest overhead is 9.56 % for 80 Concurrent

users, the lowest is 7.13 % for 10 concurrent users and the average is 8.05 %, with

the custom DVWA web application handling less requests per second. For the transfer

rate, the highest overhead is 9.56 % for 80 concurrent users, the lowest is 7.13 %

for 10 concurrent users, and the average overhead for all concurrent users is 8.04 %

with the custom DVWA web application performing slower. Although there is still an

78



(a) Request Per Second

(b) Transfer Rate

Figure 34: DVWA End-User Request and Transfer Performance Overhead

overall present overhead of about 8 % for each of the experiments, this is minimal to

the user impact and our architecture vastly improves on the security and monitoring of

the vanilla application.

79



6.4 Summary

In this chapter, we report our findings for three main experiments related to our plat-

form. We ran an experiment on distributing IDS sensors, detecting vulnerabilities and

looking at the performance overhead. For the first experiments, we generated traffic

load on one sensor, two sensors and three sensors, and observed the packet droppage.

By distributing the sensors, we were able to show a minimize the packet droppage sig-

nificantly in our results. The second experiment demonstrated our platform and it’s

ability to detect vulnerabilities. Using manually injected attacks from the vulnerabil-

ities found through the ZAP active scanner, we presented a table showing the list of

vulnerabilities and the attacks our platform was able to detect. We also discussed the

false-positives in this experiment. Our final experiment was to observe the performance

effects for the end user when implementing our platform with the web application. Us-

ing a benchmarking tool, we found that there was an overhead for Requests per Second,

Time per Request and the Transfer Rate.

80



Chapter 7

Conclusion

Vulnerabilities in applications are a constant security threat. These vulnerabilities can

be exploited and result in serious breaches and malicious attacks. However, these vul-

nerabilities are often the result of the barriers of communication between developers

and security analysts. By providing a collaborative solution to bridge the communica-

tion gap, we can create a stronger and more secure system. Additionally, there are a

multitude of data sources that can be analyzed, each generating a number of security

threats. Analyzing one sensor or data source out of many does not provide us with

the complete state of the system. These multiple data sources also produce a large

and growing ruleset. Distributing and maintaining the ruleset, aggregating the data

from multiple sources and performing sophisticated analysis is required for a security

control system.

In this work, we designed a distributed and hierarchical Rule-based Security Man-

agement architecture to support SecDevOps. This collaborative solution allows the

developers and analysts to define security rules during runtime at an application level

and to use a wide variety of different data sources showing our architecture’s ability

81



to be flexible and expandable. The architecture can handle high volumes of workloads

and aggregate data from different sources to effectively monitor and understand the

complete state of the system, allowing us to be aware of more sophisticated attacks. In

addition, the architecture is capable of executing adaptive actions to mitigate security

threats.

For our first contribution, we designed an architecture that uses the BRE with a

Streaming Analytics Cluster that can analyze incoming data and run them against cus-

tomizable business rules. This creates a collaborative platform for developers and secu-

rity teams, providing a simplified way of defining security rules at the operational level.

This architecture allows for distributing the workers and streaming clusters throughout

the network and for distributing a large business ruleset among the clusters. We dis-

tributed the architecture as a hierarchy, with each cluster responsible for its own ruleset

and higher level clusters responsible for more sophisticated analysis.

For our second contribution, we closed the MAPE-K Loop with our architecture by

designing several adaptive functions for the platform. These adaptive actions helped

us to write rules that can not only detect vulnerabilities, but also mitigate these attacks

and security threats.

For our third contribution, we implemented our platform with practical real life use

cases. Our platform was used as a solution for security threats that affect these cases,

and demonstrated its ability to be easily integrated with different types of applications

and security threats.

For our fourth contribution, we tested our platform on an industrial production ap-

plication, Bitnobi. By using Business Rules to specify security conditions and actions,

we enabled two different teams to have a common understanding of the problems and

solutions. The developers were able to write their own rule-based patches when they

82



were aware of a vulnerability in the system. Our case study showed that we were able

to detect vulnerabilities more effectively, execute adaptive actions to mitigate the vul-

nerabilities and notify the teams, thus creating a stronger secure web application. We

were able to seamlessly keep the system in constant monitoring and maintenance while

the developers continued working on their application.

For our final contribution, we designed three evaluation experiments for our ar-

chitecture. The first experiment was to view the limitation of an IDS, as we evalu-

ated a single sensor versus distributed sensors to observe packet loss from incoming

traffic. Our second experiment was to demonstrate the platform’s ability to detect

application-specific vulnerabilities and attacks by manually injecting vulnerabilities

our active scanner found. We also evaluated the performance overhead of our platform

to the end-user, and provided technical solutions to decrease the overhead.

7.1 Future Works

While we designed a collaborative platform and evaluated the ability to detect security

threats, we need to examine an in-depth analysis on the scalability of our proposed

solution. We plan on evaluating our architecture’s scalability by designing a validation

experiment that examines how many security events our architecture can handle at a

time, and how our architecture will handle a growing number of security events. We

will also look at effects of scaling the clusters and worker nodes with the number of

incoming security events. This will be the next key step to evaluate our architecture.

We also aim to add more adaptive actions to our architecture. We plan on looking

at more security use cases and what adaptive actions may benefit them. Many web

applications include REST APIs, and creating an adaptive action that can make REST

83



calls can be a general benefit to multiple security and development cases. Addition-

ally, we plan on creating an adaptive action that can modify the Docker platform by

adding, removing or updating containers. This can allow the developers or security

teams to make system-wide adaptive changes such as adding new sensors or adding a

new containerized web application.

Finally, we plan on trying to implement our platform with more complex scenarios

in the future, as skilled attackers can be slow and methodical and their preparation for

an attack may take months [50]. Using the stateful and temporal properties of Business

Rules, we will explore detecting prolonged suspicious behavior in a larger time frame.

84



Bibliography

[1] R. Vaclav, Software engineering: the current practice. Chapman and Hall/CRC,
2012.

[2] C. Wysopal, L. Nelson, E. Dustin, and D. Dai Zovi, The art of software security
testing identifying software security flaws. Addison-Wesley, 2007.

[3] Ponemon Institute’s 2017 Cost of Data Breach Study: Global Overview. [On-
line]. Available: https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=
SEL03130WWEN

[4] R. E. Smith, Elementary information security. Jones & Bartlett Learning, 2016.

[5] Data Breach Aftermath and Recovery for Individuals and Institution proceedings
of a workshop. National Academies of Sciences, Engineering, and Medicine,
2016.

[6] M. Hüttermann, DevOps for developers. Apress, 2012.

[7] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword? - map-
ping research on security in devops,” in 2016 11th International Conference on
Availability, Reliability and Security (ARES), Aug 2016, pp. 542–547.

[8] J. R. Vacca and J. R. Vacca, Computer and Information Security Handbook, Sec-
ond Edition, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2013.

[9] J. Boyer and H. Mili, Agile Business Rule Development Process, Architecture,
and JRules Examples. Springer Berlin, 2014.

[10] D. Hay, K. Healy, J. Hall, C. Bachman, J. Breal, J. Funk, J. Healy, D. McBride,
R. McKee, and T. Moriarty, “Defining business rules. what are they really? the
business rules group,” pp. 4–5, 01 2000.

[11] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, “Characterizing the per-
formance of network intrusion detection sensors,” in Recent Advances in Intru-
sion Detection, G. Vigna, C. Kruegel, and E. Jonsson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 155–172.

[12] P. Mell and T. Grance, The NIST definition of cloud computing. Computer Secu-
rity Division, Information Technology Laboratory, National Institute of Standards
and Technology, 2011.

85



[13] A. Bahga and V. K. Madisetti, Cloud computing: a hands-on approach. Cre-
ateSpace Independent Publishing Platform, 2013.

[14] A. V. Vasilakos, R. Beraldi, R. Friedman, and M. Mamei, Autonomic Comput-
ing and Communications Systems: Third International ICST Conference, Auto-
nomics 2009, Limassol, Cyprus, September 9-11, 2009, Revised Selected Papers.
Springer, 2010.

[15] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing mape-k
feedback loops for self-adaptation,” in 2015 IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, May
2015, pp. 13–23.

[16] B. Wilder, Cloud architecture patterns. OReilly, 2012.

[17] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice Archi-
tecture: Aligning Principles, Practices, And Culture. OReilly, 2016.

[18] A. Mouat, Using Docker: Developing and Deploying Software with Containers.
O’Reilly Media, Inc.

[19] S. Sharma, R. RV, and D. Gonzalez, Microservices: Building Scalable Software.
Packt Publishing Ltd, 2017.

[20] N. Dasgupta, Practical Big Data Analytics: Hands-On Techniques to Implement
Enterprise Analytics and Machine Learning using Hadoop, Spark, NoSQL and R.
Packt Publishing, 2018.

[21] M. Guller, Big Data Analytics with Spark: A Practitioners Guide to using Spark
for Large-scale Data Processing, Machine Learning, and Graph Analytics, and
High-Velocity Data Stream Processing. Apress, 2015.

[22] “Analytics.” [Online]. Available: https://www.ibm.com/analytics/hadoop/
mapreduce

[23] “Spark streaming programming guide.” [Online]. Available: https://spark.apache.
org/docs/latest/streaming-programming-guide.html

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2. [Online].
Available: http://dl.acm.org/citation.cfm?id=2228298.2228301

[25] J. Davis and K. Daniels, Effective DevOps: building a culture of collaboration,
affinity, and tooling at scale. OReilly, 2016.

[26] S. Vadapalli, DevOps: Continuous Delivery, Integration, and Deployment with
DevOps. Packt Publishing Ltd, 2018.

[27] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful intrusion
detection for high-speed networks,” in Proceedings of the 2002 IEEE
Symposium on Security and Privacy, ser. SP ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 285–. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=829514.830527

86



[28] M.-Y. Huang, R. J. Jasper, and T. M. Wicks, “A large scale distributed
intrusion detection framework based on attack strategy analysis,” Computer
Networks, vol. 31, no. 23, pp. 2465 – 2475, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128699001140

[29] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter, “Network-wide deploy-
ment of intrusion detection and prevention systems,” in Proceedings of the 6th
International COnference. ACM, 2010, p. 18.

[30] O. B. Fredj, H. Sallay, A. Ammar, M. Rouached, K. Al-Shalfan, and M. B. Saad,
“On distributed intrusion detection systems design for high speed networks,”
in Proceedings of the 9th WSEAS International Conference on Advances in E-
Activities, Information Security and Privacy,(ISPACT’10), WSEAS, USA, 2010,
pp. 115–120.

[31] G. Vigna, R. A. Kemmerer, and P. Blix, “Designing a web of highly-
configurable intrusion detection sensors,” in Proceedings of the 4th International
Symposium on Recent Advances in Intrusion Detection, ser. RAID ’00.
London, UK, UK: Springer-Verlag, 2001, pp. 69–84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645839.670737

[32] V. Ramsurrun and K. Soyjaudah, “The stateful cluster security gateway (csg) ar-
chitecture for robust switched linux cluster security,” in Proceedings of the Sev-
enth Australasian Conference on Information Security-Volume 98. Australian
Computer Society, Inc., 2009, pp. 109–118.

[33] C. Ko, D. A. Frincke, T. Goan, Jr., T. Heberlein, K. Levitt, B. Mukherjee, and
C. Wee, “Analysis of an algorithm for distributed recognition and accountability,”
in Proceedings of the 1st ACM Conference on Computer and Communications
Security, ser. CCS ’93. New York, NY, USA: ACM, 1993, pp. 154–164.
[Online]. Available: http://doi.acm.org/10.1145/168588.168608

[34] T. Lojka, P. Papcun, and I. Zolotová, “Business rule engine for education in virtual
laboratory cyberlabtrainsystem,” in 2017 IEEE 15th International Symposium on
Applied Machine Intelligence and Informatics (SAMI), Jan 2017, pp. 000 343–
000 346.

[35] C. Nagl, F. Rosenberg, and S. Dustdar, “Vidre–a distributed service-oriented busi-
ness rule engine based on ruleml,” in 2006 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC’06), Oct 2006, pp. 35–44.

[36] X. Feng and M. Subramanian, “Incorporating business rule engine technology in
control center applications-toward adaptive it solutions,” in 2008 IEEE Energy
2030 Conference, Nov 2008, pp. 1–5.

[37] A. Chuvakin, K. Schmidt, and C. Phillips, Logging and log management: the
authoritative guide to understanding the concepts surrounding logging and log
management. Elsevier/Syngress, 2013.

[38] A. Buecker, J. Amado, D. Druker, C. Lorenz, F. Muehlenbrock, and R. Tan, IT
security compliance management design guide with IBM Tivoli Security Informa-
tion and Event Manager. IBM, International Technical Support Organization,
2010.

87



[39] F. Holik, J. Horalek, S. Neradova, S. Zitta, and O. Marik, “The deployment of
security information and event management in cloud infrastructure,” in 2015 25th
International Conference Radioelektronika (RADIOELEKTRONIKA), 2015, pp.
399–404.

[40] “Ibm qradar siem,” Jul 2017. [Online]. Available: https://www.ibm.com/us-en/
marketplace/ibm-qradar-siem/details

[41] 2018. [Online]. Available: https://docs.jboss.org/drools/release/7.7.0.Final/
drools-docs/html single/index.html

[42] D. P. Silberberg and G. E. Mitzel, “Information systems engineering,” Johns hop-
kins ApL TechnicAL DigesT,, vol. 26, no. 4, p. 343–349, 2005.

[43] S. Casteleyn, F. Daniel, P. Dolog, and M. Matera, Engineering Web Applications,
1st ed. Springer Publishing Company, Incorporated, 2009.

[44] S. Jacobs, Engineering Information Security: The Application of Systems Engi-
neering Concepts to Achieve Information Assurance, 2nd ed. Wiley-IEEE Press,
2015.

[45] “Docker overview,” Jul 2017. [Online]. Available: https://docs.docker.com/
engine/docker-overview/

[46] “Snort: The world’s most widely deployed ips technology,” Jan 2015.
[Online]. Available: http://www.cisco.com/c/en/us/products/collateral/security/
brief\ c17-733286.html

[47] M. T. Chung, N. Quang-Hung, M. T. Nguyen, and N. Thoai, “Using docker
in high performance computing applications,” in 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE), July 2016, pp. 52–57.

[48] Y. Chung, “Distributed denial of service is a scalability problem,” ACM SIG-
COMM Computer Communication Review, vol. 42, no. 1, pp. 69–71, 2012.

[49] “Open web application security project,” Jun 2018. [Online]. Available:
https://www.owasp.org/index.php/

[50] J. S. Chris Sanders, Applied Network Security Monitoring: Collection, Detection,
and Analysis. Syngress, 2013.

88


