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ABSTRACT 

We investigated the thermal behavior of the powder bed fusion (PBF) manufacturing process. 

Specifically, a finite element thermal analysis procedure was developed to simulate selective laser 

melting, one of several PBF processes available on the market. The primary objective was to study 

how selected parameters of the PBF process affect temperature distributions, since a high 

temperature gradient and cooling rate are associated with residual stress and deformation in the 

built part. Since it was difficult to devise an analytical solution for this transient thermal problem, 

commercially available finite element analysis software, Abaqus, was employed. Sensitivity 

analysis was undertaken to analyze the impact of powder diameter, packing density, and substrate 

temperature on the overall temperature distributions. Finally, verification and validation were 

performed via experimental setup and data from the literature. The samples built were 

characterized by residual stress measurements, porosity, and relative density to further validate the 

model. 
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1 INTRODUCTION AND JUSTIFICATION 

Additive manufacturing (AM), commonly referred to as 3D printing or additive layer 

manufacturing, has become increasingly prominent relative to conventional manufacturing 

processes. In 2016, according to the Wohlers report, the industry market share of AM surpassed 

$5 billion USD, growing 25.9% over 2015 figures. Over the past 27 years, the corporate annual 

growth rate for additive manufacturing has been a sizeable 26.2%, demonstrating the growth 

potential of this industry compared with that of traditional processes [1]. The rapid growth of AM 

stems from its versatility, the large number of materials that can be used, and the fast deployment 

of components after their design has been completed [2]. 

The term “additive manufacturing” arose in direct contrast to conventional manufacturing 

processes that have been in use since the 19th century, as the latter are mostly referred to as 

subtractive manufacturing. While subtractive processes, like milling, involve the removal 

(subtracting) of material from a working piece until the desired design is complete, additive 

processes join raw material in a layer-by-layer fashion until the final height is reached. Additive 

manufacturing, like subtractive manufacturing, refers to several different processes that are mostly 

classified according to the type of raw material used or by the consolidation phenomena involved 

[3]. The focus of this research is powder bed fusion (PBF) additive manufacturing — which 

includes selective laser melting (SLM), direct metal laser sintering (DMLS), and electron beam 

melting (EBM) — all of which use metallic alloy materials and full melting consolidation 

phenomena. 
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1.1 Technological Gap and Justification of the Study 

Although AM technologies have grown rapidly, the lack of standardization makes it difficult 

for most industries to rely on the technology. This is due to the large amount of technologies that 

are still under patent and the complexity behind them. Technologies such as PBF and fused 

deposition modeling (FDM) are usually limited to a few applications, owing to the impact of the 

process parameters on the properties of the final part, which has still not been fully investigated 

[3]. The overarching objective of this thesis was to implement a low-cost thermal finite element 

model (FEM) of PBF technology showing (1) the effects of the process parameters on the final 

temperature distribution of the powder bed during scanning and (2) the impact of the process 

parameters on the porosity, relative density, and residual stress in the built part. Temperature 

distribution and cooling rates are key parameters affecting the amount of residual stress in the final 

part. To achieve this objective, two PBF technologies were analyzed: SLM and DMLS. The model 

was initially developed for SLM using SS-304L, a low-cost stainless steel alloy that is not yet 

available for use in PBF processes. Consequently, samples of stainless steel 316 L (SS-316L) 

manufactured using DMLS were analyzed to characterize the built samples.  

1.2 Research Objectives 

To achieve the primary objective of this work — a low-cost FEM — the following activities 

were carried out. 

i. Effective thermal conductivity and emissivity of the powders 

The thermal conductivity of the powder placed in the bed is different from that of the same 

material in solid form. In order to account that difference, effective thermal conductivity was 
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determined; the impact of the packing density and powder diameter was studied as well. Beyond 

that, surface emissivity, an important parameter to consider when radiation is involved, was also 

determined for the powder. 

ii. Thermal modeling and sensitivity analysis 

Numerical analysis using FEM was conducted to characterize thermal distribution in the 

powder bed. The main focus was to analyze the behavior of the moving heat source in a single 

track and the impact of its parameters on the temperature gradient in the powder bed. The material 

utilized was SS-304L, which has not yet been validated for use in the PBF process. The model was 

constructed using the main parameters of SLM. The sensitivity in the final temperature distribution 

in the powder bed to power input, powder packing density, powder diameter, and substrate 

temperature were analyzed. 

iii. Experimental setup, residual stress analysis, verification, and validation 

The model was validated by performing residual stress analysis, taking a micrograph of the 

surface, and measuring relative density and analyzing the porosity of samples of SS-316L 

manufactured by DMLS. Residual stresses in the built part result from a high temperature 

distribution or cooling rate imposed during the manufacturing process. Validation through 

temperature readings is not feasible given the high speed of the laser and the high temperature 

induced in the powder bed, leaving the measurement of residual stress as the more reliable 

parameter for the model. Further validation was conducted by comparing the simulated melt pool 

shape with values determined in the experiments. 
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1.3 Methodology 

A comprehensive literature review indicated that the building of a low-cost FEM could be 

achieved using a parametric thermal model with low computational cost that was able to predict 

temperature distributions when scanning a single layer and track of a powder bed. Some aspects 

of the discrete element method (DEM) were implemented, especially those related to thermal 

conductivity of the powder. We began with the laser power model, using a double-ellipsoidal 

Gaussian profile as the heat flux input into the FEM. Next, the material was defined, considering 

the state (solid, liquid, powder) and temperature dependency. Effective thermal conductivity was 

compiled for the powder under different initial conditions to determine the impact of varying the 

powder’s properties (packing density and powder diameter) on its sensitivity. Different laser power 

inputs and substrate temperatures were accounted for, and their impact on temperature 

distributions in the powder bed were analyzed. Particular attention was also paid to the phase 

change and emissivity of the powder as well. The final model was assembled using SS-304L as 

the material and simulated for all conditions, leading to the results and analysis sections.  

The experimental part of this thesis verifies how well the model can predict the behavior of 

the temperature distributions. The temperature distributions were not measured using an in situ 

thermal couple or camera because such a method is inefficient at capturing high-resolution changes 

in temperature within a small time frame. Instead, samples built using SS-316L were divided into 

four groups that varied based on three different input parameters (laser speed, power, and hatch 

distance). Layer thickness, substrate temperature, and scanning strategy were kept constant. The 

top (scanning direction) and side (build direction) of the samples were analyzed according to their 

microstructural composition, density, and porosity. Further analysis involved the measurement of 
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the residual stresses induced in the samples, and these were correlated with the thermal model 

results previously obtained. 

1.4 Layout of the Thesis 

The thesis consists of six chapters. The present chapter, chapter 1, is a brief introduction. 

Chapter 2 provides an in-depth literature review on relevant models and processes, the 

manufacturing capabilities of PBF, and the technological gaps. In chapter 3, we define the 

material properties of the powder based on Sih and Barlow as well as the analytical approach of 

Wakao and Kagei, and then compare these values with published research. Next, in chapter 4 we 

address the thermal FEM and obtain the temperature distributions for different case scenarios using 

SLM parameters. Chapter 5 presents the experimental approach involved in printing samples 

using the DMLS process and characterizing the samples according to density, final porosity, 

microstructure, and residual stresses. Finally, in chapter 6 we conclude the work and propose 

future research. 
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2 BACKGROUND AND LITERATURE REVIEW 

2.1 Additive Manufacturing of Metallic Alloys — An Overview 

AM, or 3D printing, is defined as the process of using raw material in the form of a wire, 

powder, or liquid to build parts of full or partial density in a layer-by-layer fashion. In the past 38 

years, different materials have been employed in this technology. In the early years, polymers such 

as acrylonitrile butadiene styrene and polycarbonate were used. More recently, the process 

switched to using powdered or wire metals. Metal AM is being investigated by several researchers 

and academic institutions, lending significant new insights into how process parameters and 

physics can affect the final built part. The first developments in this area came with direct metal 

deposition, laser engineering net shaping, and laser cladding, all of which are highly analogous to 

thermal spray coating. These are known to be the first AM processes that used metal alloys as a 

raw material. In this metal AM technique, a powder nozzle provides a successive supply of a metal 

powder onto a substrate or over a part according to the desired geometry [4]. A high-power laser 

is responsible for melting the powder that is injected, and the process repeats layer-by-layer until 

the final height is reached. 

After these initial technologies began to be used in the industry, the second wave of technology 

arrived with the introduction of a new concept — the powder bed process. The first revolutionary 

approach, selective laser sintering (SLS), came into use in the mid-1980s. SLS was patented by C. 

Deckard from Texas in 1990  and was the first to be classified as PBF [5]. This process consolidates 

the metal powder through full or partial melting phenomena. Meanwhile, in Europe, after watching 

the introduction of the first PBF process in the U.S. market, a partnership between Finland’s 

Electrolux Rapid Development (which supplied the powder metallurgy technology) and EOS 
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GmbH in Germany (which provided the plastic laser sintering technology) proved to be very 

successful in competing for this new manufacturing segment [6]. Launched in 1994 and known as 

DMLS, this technology has been continuously improving to become one of today’s state of-the-

art processes in metal AM. The name “laser sintering,” which applies to both SLS and DMLS, 

remains controversial, since the process is a full or partial melting, not sintering as the name 

suggests. According to a terminology standard discussion in “ASTM F2792a Standard 

Terminology for Additive Manufacturing Technologies” issued in 2012, laser sintering was 

considered a misnomer [7]. However, the standard was later on withdrawn from the official ASTM 

listing, and no replacement for it has been provided. Below are the schematics of the process 

(Figure 2.1) described by C. Deckard. 

 

Figure 2.1. Selective laser sintering method patented in 1990 by C. Deckard [8]. 

Yet another path was pursued by others, given the increased demand for advanced AM 

processes. This led to the development of SLM in the mid-1990s by F&S 

Stereolithographietechnik GmbH and Fraunhofer ILT in Germany and the distribution of the 

process by SLM Solutions [9]. SLM was built on the same basic concepts as SLS, including the 

use of a bed filled with powder and selective scanning by a high-power laser to solidify each layer 
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to create a full-density part; however, the solidification step follows the full melting phenomena 

[10]. Figure 2.2 illustrate the process. Finally, EBM, another process that can use either a powder 

bed or a metal wire combined with an electric beam, was developed by Arcam in Sweden in the 

1990s and launched around 2003. When EBM came onto the scene, it became one more option in 

the fast-growing AM market [11].  

 

Figure 2.2. Schematic of selective laser melting. 

Increasing demand for improvements in AM technology in the 1990s stemmed from the 

advantages AM has over conventional manufacturing processes. AM processes, such as PBF, can 

build extremely complex components without the need for tooling. AM technologies were highly 

applicable to the aerospace, medical, and dental fields; however, the automotive and other 

engineering sectors benefited as well. Cost savings, shorter time to market, and high degree of 

freedom are the notable advantages of PBF, but these apply only to a specific high-end market, 

such as the aerospace and defense sectors [12], [13]. For general applications, however, the low 
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productivity of PBF leads to a high per-unit manufacturing cost, the definitive factor for choosing 

a manufacturing process in most scenarios [2]. Though the PBF process uses a very high scanning 

speed (up to 10 m/s; Table 2.2), its low productivity remains problematic and is commonly 

attributed to the small spot diameter (40–115 µm) of the laser or electric beam (Tables 2.2 and 

2.3). Some of the applications of PBF in the industry and R&D are shown in Figure 2.3. 

 

Figure 2.3. Applications of the powder bed fusion process. (a) Research using metal 

printed metamaterials. Reused with permission of IOP Publishing: Society of Photo-

optical Instrumentation Engineers [14], Copyright © 2015; (b) GE fuel nozzle [15]; (c) 

RAMLAB ship propeller [16]; (d) EOS pelvis replacement [17]; (e) tool and die maker 

with conformal cooling [18]; (f) Siemens turbine blade [19]. 

With these various developments available in the manufacturing industry, it is now common 

to classify SLS, DMLS, SLM, and EBM as PBF processes, the reason being that they share certain 

features, such as the use of a powder bed with a roller and a high-power electron beam or laser as 

heat source [12]. 
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2.2 Selective Laser Melting and Direct Metal Laser Sintering 

This thesis focuses on two PBF processes, SLM and DMLS. Currently, this technology is 

commercially distributed by only a few manufacturers around the world, with a selection of alloys 

available [10], [20], [21]. The parameters used by SLM Solutions and EOS GmbH were chosen 

for this work. These two technologies have been improved drastically, allowing them to be 

implemented in high-end components for diverse engineering applications. Full-density parts can 

be built that offer similar or even slightly improved material properties over those of parts 

produced using conventional manufacturing processes [9]. Recent research shows that parts 

produced by SLM are stronger than the ones produced by casting; however, the SLM-produced 

parts tend to be less malleable owing to the rapid solidification that occurs during the process [9]. 

Table 2.1 shows some of the properties that can be found in SLM-produced parts. 

Table 2.1. Tensile strength of selected metal alloys produced by SLM [9]. 

Material 

UTS 

(MPa) 

Yield strength 

(MPa) 

Elongation 

(%) Reference 

Conventional 

material UTS 

(MPa) 

Fe 411.50 305.30 — [22] 225.00 

Fe–Ni 600.00 — — [23] — 

Fe–Ni–Cr 1100.00 — — [23] — 

Fe–Ni–Cu–P 505.00 425.00 — [24] — 

15-5 PH steel 1450.00 1297.00 12.53 [25] 1317.00 

15-5 PH steel 1470.00 1100.00 15.00 [26] 1317.00 

304 stainless steel 717.00 570.00 42.80 [27] 579.00 

316L stainless steel 760.00 650.00 30.00 [28] 558.00 

Maraging steel 1290.00 1214.00 13.30 [29] 1930.00 

SLM equipment found on the market today offers different capabilities. Beam diameter is 

usually between 70 and 115 µm, laser thickness ranges from 20 to 75 µm, and maximum scanning 

speed is up to 10 m/s [10]. SLM Solutions offers three different machines: SLM 125, SLM 280 
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2.0, and SLM 500. The build rate and build envelope are the main differences among the machines, 

with SLM 280 2.0 and SLM 500 having the ability to use twin and quad lasers of 400, 700, or 

1000 W depending on the optics configuration, as shown in Table 2.2. The same holds true for 

DMLS specifications (equipment manufactured by EOS GmbH), but with different ranges of 

parameters (Table 2.3).  

Table 2.2. Configuration of three single laser melting machines (SLM Solutions) [10]. 

 SLM 125 SLM 280 2.0 SLM 500 

Build envelope        

(length × width × height) 

125 mm × 125 mm × 

125 mm 

280 mm × 280 mm × 

365 mm 

500 mm × 280 mm × 

365 mm 

3D optics configuration 

Single (400 W) 

Single (400 or 700 W); 

twin (400 or 700 W); 

dual (700 and 1000 

W); 

Twin (400 or 700 W); 

quad (400 or 700 W); 

Laser and gas filling IPG fiber laser with inert gas filling 

Build rate Up to 25 cm³/h Up to 55 cm³/h Up to 105 cm³/h 

Layer thickness 20––75 µm 

Beam diameter 70––100 µm 80––115 µm 

Max. scan speed 10 m/s 

Table 2.3. Configuration of four direct metal laser sintering machines (EOS GmbH) [17]. 

 
EOS M100 EOSINT M280 EOS M290 EOS M400 

Build envelope          

(length × width × height) 

Ø 100 mm ×  
95 mm 

250 mm × 250 mm 

× 325 mm 

250 mm × 250 

mm × 325 mm 

400 mm × 400 × 

400 mm 

3D optics configuration 
Single (200 W) 

Single (200  

or 400 W) 
Single (200 W) 

Single (400 W) or 

quad (400 W) 

Laser and gas filling Yb fiber laser with inert gas filling (nitrogen) 

Build rate Not provided 

Layer thickness 20–50 µm 

Beam diameter 
40 µm 100–500 µm 100 µm 

90 µm (single);  

100 µm (quad) 

Max. scan speed Up to 7 m/s 
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2.3 Limitations of and Technological Gaps in Powder Bed Fusion Processes 

Process and environmental parameters are known to play an important role in determining the 

final mechanical properties of the parts produced by PBF, as several researchers have 

demonstrated [30]. Experimental studies consist of investigating mechanical properties, 

microstructures, the effect of varying the parameters (sensitivity), and several other aspects of the 

material. These studies have been performed since the commercialization of this technology first 

began, and many valuable research findings have helped to improve the process overall. However, 

experimental studies are incredibly costly, since numerous process parameters are involved in this 

technology. A relatively large investment was made by the vanguard in this sector to validate the 

commercialized alloys that they provided along with their machines. Although several 

investigators have uncovered excellent mechanical properties when using optimal process 

parameters with particular alloys, a variety of new alloys that could be used in this technology 

have not yet been validated. 

The materials used thus far by SLM and DMLS are Ti6AL4V, SS-316L, AlSi10Mg, Hastelloy 

X, IN718, IN625, IN939, Invar36, CuSn10, 17-4PH, maraging steel, and some proprietary alloys 

such as GP1, MS1 by EOS GmbH, and Medi-Dent by SLM Solutions. These materials have their 

optimal parameters already defined by each of the manufacturers, and the manufacturer nearly 

always recommends the use of their metal powder only, making the process prohibitively 

expensive and inflexible in most situations. Manufacturers also prohibit new alloys from being 

used on this commercial equipment, and violations can void the equipment warranty in most cases. 

Without the use of optimal parameters, a large number of issues can arise that affect the 

integrity of the built part. Residual stresses, layer delamination, cracking, warping, and undesired 

porosity are among the main problems when printing metal using PBF. These problems are mostly 
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due to the high temperature gradients induced by the laser. Figure 2.4a illustrates this problem, 

where a high heat flux from the laser to the powder bed is inputted in a short time frame. As a 

result, the powder (loose material) melts, causing the previous layers to lose strength owing to the 

high temperature of the top layer. At the same time, the expansion of the top layer is restricted by 

the deep layers, and elastic compressive strains are introduced. The top layer is finally plastically 

compressed at the yield strength of the material. When cooling (Figure 2.4b) the plastically 

compressed upper layers begin contracting and bending occurs. Figure 2.4c shows the 

delamination and cracking problem that results. 

 

Figure 2.4. The laser heats the powder bed (a) and subsequent cooling occurs (b). Reused 

by permission from Emerald Publishing Limited: Rapid Prototyping Journal [31]. 

Copyright © 2006. Delamination and cracking observed on printed samples (c). Reused 

by permission from AIP Publishing: Applied Physics Review [9]. Copyright © 2015. 

(b) 

(c) 

(a) 
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Another issue that arises when the correct parameters are not used during the printing of 

samples related to the porosity and poor mechanical properties of the final built part. Porosity and 

poor mechanical properties are associated with each other in general, since high porosity will 

reduce the yield strength of the material [32]. Porosity is mostly caused by low-level laser energy 

density; however, high-level laser energy density can bring some degree of porosity to the final 

part as well, mostly due to the presence of gas bubbles [33]. Laser energy density is a relationship 

between the main parameters of the process, such as power input, scanning speed, hatch distance, 

and layer thickness [34]. Equation 2.1 in the following section describes the laser energy density 

relationship. 

2.4 The Finite Element Model of Powder Bed Fusion and Experimental Approaches 

In the last 10 years, owing to advances in computational capability and the development of 

dedicated FEM software in the field, numerical analysis studies have become immensely popular 

[35]. There is considerable research involving multi-coupled aspects of the PBF process; yet, the 

majority of studies maintain single-mode analysis to reduce computational cost and model 

complexity. Multi-coupled models tend to show high nonlinearity and undesired deformation, 

leading to increased time to perform simulations and consequently high computational cost. The 

models used most often are thermal, kinetic, fluid dynamics (molten pool), and DEM, as well as 

the coupling of one or more types of analysis [36].  

Recent progress has been achieved in the development of new alloys for PBF processes. 

Biomedical and aerospace applications are the most widely explored fields, as they demand parts 

with specific microstructural and material properties that match the requirements of their intended 

use [37], [38]. Most of this work is performed by studying the impacts of laser energy density on 
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the final material properties and analyzing the discontinuities, such as cracks, delamination, balling 

effect, heat-affected zone (HAZ), and residual stresses. The laser energy density E (J/mm3) is 

defined as the relationship between the laser power input P (W), the scan speed v (mm/s), the layer 

thickness h (mm), and the hatch distance s (mm), as shown in eq. 2.1: 

An experimental study using pure titanium has showed that applying a fixed laser energy 

density (120 J/mm3) is enough to produce 99.5% of the relative density; however, the high density 

is greatly affected by laser power and hatching distance combinations [37]. In the same study, 

when comparing cast to SLM-built titanium alloys, the SLM-built sample displayed considerably 

better performance for wear resistance, yield strength, and Vickers micro-hardness. The porous 

titanium alloys produced by SLM have proved to be effective in biomedical applications, and their 

properties can be tailored to resemble human bones for better osseointegration [37]. EBM-built 

parts are also well explored in biomedical applications, especially those that produce lattice 

materials from topology optimization analysis. Different EBM-built samples with up to 70% 

porosity displayed acceptable mechanical properties for specific applications [38]. 

Microstructural studies have also been undertaken to correlate a material’s mechanical 

properties with grain size and material phase. Liu et al. [39], [40] analyzed the microstructure and 

mechanical properties of β-type Ti–24Nb–4Zr–8Sn produced by EBM and SLM processes and the 

gradient in microstructure in AlSi10Mg samples produced by SLM. Titanium samples from SLM 

exhibited a single β-phase, while EBM-built samples consisted of α and β phases, meaning that 

faster cooling rates from the SLM process induced the formation of β dendrites and led to a low 

Young’s modulus when compared with the properties of EBM-built parts. Another notable result 

shv

P
Ev




 

(2.1) 
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was how the HAZ was influenced by the laser and electron beam spot, with EBM displaying a 

high HAZ (~200 µm) owing to the larger electron beam spot (~40 µm with SLM) [39]. AlSi10Mg 

samples produced by SLM using 30 µm layer thickness and 1500 mm/s scanning speed 

experienced cooling rates of 1.44 × 106 K/s on the top of the powder bed and around 1 × 103 K/s 

on the bottom [40]. The high cooling rates present in the melt pool were responsible for the gradient 

microstructure in the sample, meaning that the grains in the surface of the sample are finer than 

those in the core, resulting in greater wear resistance and hardness [40]. 

The numerical simulation of PBF processes has improved our understanding of the effects of 

parameters in several ways. Denlinger et al. [41] conducted a thermal modeling experiment of 

Inconel 718 with an in situ temperature setup to acquire temperature distributions. The model 

predicted the temperature distribution with an error of 11% during the acquisition period and 

showed that conductivity in powdered media should be accounted for in PBF analyses. Huang et 

al. [42] also performed a similar study using TiAl6V4, with their results indicating that laser power 

plays a more fundamental role in the powder bed thermal behavior compared with other parameters 

such as scan speed and hatch distance. However, shorter hatch distances and tracks can decrease 

the temperature gradient while at the same time increasing the maximum temperature achieved. 

Shaw and Dai [43] developed coupled thermomechanical models for multi-material behavior and 

analyzed residual stresses. Cheng et al. [44] investigated residual stresses and the deformation of 

a multi-layer model using different scanning strategies. And finally, Vastola et al. [45] conducted 

a parameter analysis on the final residual stresses when performing a single laser track using 

TiAl6V4.  
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Liu et al. [46] conducted a study of SLM-built lattice materials under compressive testing and 

cyclic loading–unloading conditions with different strains. An FEM built in Comsol was then 

employed to visualize the local stress concentration for each lattice configuration. Results obtained 

in this study showed that the energy absorption for all cases can be directly attributed to the 

difference between stress distributions and local stress concentrations [46]. Loh et al. [47] 

conducted a parametric study, building an FEM able to predict melt-pool geometry of an SLM 

process using aluminum 6061. Among the findings, they found that high laser power and low 

scanning speed were responsible for increased melt penetration and width; similarly, when using 

low laser power and high scanning speed, the same phenomena were observed, although the latter 

process was more energy efficient [47]. 

Residual stress analysis has also been well explored experimentally using two different 

approaches: the crack compliance method and the X-ray diffraction method [31]. The crack 

compliance method is the simplest in that it uses strain gauges positioned around a predetermined 

surface. This surface is later wire cut in small steps using electric discharge machining, and the 

strain values are measured for each position. Later, a fitting curve profile based on either a 

Legendre or Fourier series is used to account for the strain measurements, and the subsequent 

residual stress profile is obtained. The X-ray diffraction method is most often used in research on 

AM processes, as it can measure surface residual stresses, in contrast to the crack compliance 

method, which is only able to measure residual stresses through the thickness of the material.  

X-ray diffraction is responsible for identifying the material phase in the samples produced and 

for describing the diffracted angle (2) that characterizes the measured lattice plane (hkℓ). The 

lattice deformation from the samples is obtained using a radiation source and compared with the 
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unstressed lattice measured from the same material. This method has the advantage of obtaining 

stresses in two axes through the surface (plane). Mostafa et al. [48] have performed several 

measurements in a large group of 3D-printed airfoils to account for residual stresses. They 

concluded that thermal stresses and phase transformation were the main causes of the residual 

stresses and were mostly in the compressive state, be it in the scanning or the build direction. These 

residual stresses are justifiable, since the material is cooling very fast and shrinkage is expected to 

occur. Mercelis and Kruth [31] performed a theorical and experimental study using both the X-ray 

diffraction and crack compliance methods. Their work yielded very similar findings to those of 

Mostafa et al.; however, the authors observed a different residual stress state in the parts before 

and after removal of the printed parts with a low aspect ratio. This means that when the part is 

built, the bottom of the part is fused to the substrate and generates additional residual stress. When 

the part is finally removed from the substrate, the residual stresses are relieved to some extent, 

which can induce part deformation [31]. 
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3 POWDER THERMAL PROPERTIES 

This chapter was partially adopted from the journal publication of “de Moraes, D.A., 

Czekanski, A. Parametric thermal FE analysis on the laser power input and powder effective 

thermal conductivity during selective laser melting of SS304L. J. Manuf. Mater. Process. 2018, 2, 

47”. According to the copyright agreement, “The authors retain all copyrights and will not be 

forced to sign any copyright transfer agreements.” 

3.1 Powder Packing Density 

The contact between powder particles is an important factor when analyzing the effective 

thermal conductivity of the powder bed [49]. The size of the powder particles, their distribution, 

and their shape affect the contact area between the particles, which influences effective thermal 

conductivity [50]. Kovalev and Gusarov [50], [51] studied the effects of monodispersed and 

polydispersed powder beds and different packing densities on the thermal conductivity of particles 

using FEM packed spheres (DEM modeling). They obtained satisfactory results when comparing 

their DEM model findings with the analytical solution based on Hertz contact theory [52]. 

The packing density (relative density) of the powder bed directly affects powder porosity, one 

of the main parameters influencing effective thermal conductivity. The following are important 

prior observations about powder that form the general principal assumptions considered in this 

study: 

 The relative density was calculated assuming a perfect monodispersed spherical powder; 

 The powder bed was modeled as a whole, meaning that our model represents the total 

volume occupied by the powder bed, not the individual powder particles; 



 

20 

 

 Contact between particles was considered to be in the elastic zone, with no plastic 

deformation; and 

 External loads were neglected, and only gravitational forces were accounted for. 

3.1.1 Packing structures 

Three different packing structures were analyzed. The simple cubic (SC), generally known as 

a cubic structure, is a packing structure with a relative density of 0.523 and represents the least 

dense packing structure in this study. The body-centered cubic (BCC) packing structure has an 

intermediate relative density of 0.68. The face-centered cubic (FCC) packing structure, generally 

referred to as a close-packed structure, has a relative density of 0.74. 

Although there are several other packing structures described in the literature, such as 

diamond-like (relative density of 0.34) and hexagonal close-packed (relative density of 0.74048), 

it was not the objective of this study to include those structures, since the results of the included 

packing structures can be extrapolated. In this case, relative density is described by the atomic 

packing factor (AFP), which is calculated using the following equation: 

where nparticle is the number of particles per unit cell (cube in this case), Vparticle is the volume of 

each corresponding particle, and Vunit cell is the volume of the unit cell. For instance, the SC 

structure in Figure 3.1a has eight 1/8 of a particle at each corner, giving a total of one particle per 

unit cell. Each particle, assumed to be a sphere, has a volume of 4πr3/3, and the volume of the unit 

cell (cube) is represented by (2r)3. These parameters yield the following relative density: 

particle particle

unit cell

AFP
n V

V


  (3.1) 
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Figure 3.1 shows the packing structures of SC, BCC, and FCC, respectively.  

 

Figure 3.1. Simple cube (SC) packing structure (a), body-centered cubic (BCC) packing 

structure (b), and face-centered cubic (FCC) packing structure (c). 

3.2 Contact Area and Porosity of the Powder Bed 

The contact of two adjacent spherical particles is essential when calculating thermal 

conductivity, since heat exchange occurs primarily through conduction [53]. The respective radius 

of contact is based in the Hertz theory to contact interaction of solid bodies [52]. This contact area 

is very small (Figure 3.2), especially in the present study, since plasticity is not considered and 

gravity is the only force acting among particles. The main influence of the contact radius is 

associated with the thermal conductivity due contact between particles, where majority of the heat 

losses occur during the process. In the following section 3.5 the contact thermal conductivity is 

addressed. 

(b) (a) (c) 
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Figure 3.2. Particles in the contact region (left) and in the contact radius in detail (right). 

An equation derived from Dul’nev and Zarichnyak’s model is applied to define porosity, as 

Abyzov et al., Kovalev, and Gusarov later successfully applied this equation in their models to 

calculate effective thermal conductivity [50], [52], [54], [55]. Porosity, φ, is expressed as a function 

of the coordination number, N, as follows: 
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where the mean coordination number of a given particle, N, is defined as the number of its 

neighbor’s particles that have their respective centres at a distance that corresponds exactly to the 

diameter of the original particle when studying monodispersed spheres. The correlation in eq. 3.4 

is the mathematical representation of N, while M is the total number of particles in the domain and 

kj is the number of contacts of a given particle j. The mean coordination numbers for FCC, BCC, 

and SC packing structures are 12, 8, and 6, respectively, resulting in porosities of 0.2424, 0.3571, 

and 0.467, respectively. In previous work, the effects of powder packing in the bed were not 

analyzed, and thus a general porosity value of 0.400 was adopted [36]. The equation for loading 

applied by a roller or scraper (FN) and the material properties constant (E*) is defined by Hertz 

elastic contact theory [52]: 
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where a is the contact radius, E is Young’s modulus, and ν is Poisson’s ratio. Combining load 

eq. 3.5 with eq. 3.6 and isolating for contact radius, we obtain the following: 

2

3
(1 )3

4

r Nx F
a

E


  (3.5) 

In this study, besides the three packing densities, three different powder diameters were 

analyzed: 20, 60, and 100 μm. The normal contact load between the particles in the SLM process 

is difficult to account for analytically, and a proper model for compaction by roller or scraper 

should be implemented. It was not the objective of this work to develop such a formulation, and 

hence only gravitational loads were the forces considered to be acting in the powder bed [50]. 

The roller or scraper, when distributing a new layer of powder, can increase the load between 

the particles in the powder bed. However, no specific data or studies were found that associated 

the effect of the roller or scraper with packing structure or contact loading. We assumed that as 

soon as the roller or scraper finished distributing a new layer, the additional load due to powder 

compaction ceased to exist. For this reason, in this study we assumed that the roller or scraper 

impact on the powder is related only to the particle packing structure, not to the actual compaction 

of powder through the powder bed. 

3.3 Material Properties 

The material used to develop the model was SS-304L. This alloy is considerably less 

expensive and yet is still not available for commercial use. The alloy’s temperature-dependent 
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properties were derived from a report by Kim [56] and are shown in Figure 3.3, including specific 

heat, density, and thermal conductivity, all of which are essential parameters to know when 

simulating a high-temperature change in thermal distribution over small increments of time. To 

accommodate phase transformation, we also included latent heat, as it modifies heat capacity 

during the melting of the powder [36].  

(a)  (b) 

 

(c) 

Figure 3.3. Temperature-dependent density (a), thermal conductivity (b), and specific 

heat (c) of stainless steel 304L. 
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3.4 Powder Emissivity 

Powder emissivity was included as a model parameter, as it affects overall radiation thermal 

losses and the thermal conductivity of the powder bed. Since we have three different packing-

density scenarios — SC, BCC, and FCC — along with their respective powder bed porosity values, 

there are three different emissivity values to determine. The following formulations were used to 

achieve the final value of emissivity, where 𝜀p is defined as effective powder emissivity, 𝜀s is solid 

emissivity of the material, 𝜀𝐻 is gap emissivity, 𝐴H is area fraction of the powder surface, and 𝜑 

is powder porosity [53]: 

In Figure 3.4, the emissivity values calculated for the three different packing densities 

considered in this work are plotted along the curve representing all possible emissivity values. A 

0% porosity is interpreted as being representative of a full-density material, which is considered 

to have an emissivity of 0.44 for SS-304L [53], [57]. 
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Figure 3.4. Porosity-dependent emissivity of simple cubic (SC) packing structure, body-

centered cubic (BCC) packing structure, and face-centered cubic (FCC) packing 

structure. 

3.5 Effective Thermal Conductivity of Powders 

The definition of effective thermal conductivity (keff) of powders addresses four of the main 

thermal transport phenomena that occur in the powder bed: contact thermal conductivity between 

particles, kcontact; thermal conductivity due to radiation, kR; gas thermal conductivity, kg; and solid 

thermal conductivity of SS-304L, ks [53], [58]. Wakao and Kagei [58] developed this definition 

for powder-packed beds. It was applied in several studies, including the work of Sih and Barlow 

[53], as previously mentioned. Below is the full equation, with all four main terms already 

expanded, followed by Figure 3.5 showing the compiled results for SS-304L at temperatures of 

300 K to 𝑇Solidus. 
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The thermal radiation term is highly influenced by powder diameter, temperature, and 

emissivity of the powder bed. Thermal conductivity, owing to the contact between particles, will 

vary according to the contact ratio and the initial solid thermal conductivity, since the value of the 

fractional contact area, Λ, is less than 3×10⁻⁴. The term B is a deformation parameter that varies 

according to porosity. Note that the compilation of the effective thermal conductivity of the powder 

will generate nine different curves. We have three packing densities (SC, BCC and FCC) that 

affect, respectively, porosity and emissivity, yielding three keff curves. There are also three 
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different powder diameters (20, 60 and 100 µm) that affect the fractional contact area, yielding 

three curves per packing density scenario. 

 

Figure 3.5. Effective thermal conductivity of powder in simple cubic (SC) packing 

structure, body-centered cubic (BCC) packing structure, and face-centered cubic (FCC) 

packing structure, with powder particles of 20, 60, and 100 μm diameter. 

It is evident from Figure 3.5 that powder diameter does not significantly affect the value of 

𝑘eff for temperatures between 300 and 800 K. However, for higher temperatures, owing to the 

radiation term, there is a perceptible difference. For example, for FCC there is ~7% 𝑘eff increase 

when using a powder with a diameter of 100 μm instead of 20 μm. The margin increases to 22% 

when doing the same comparison with SC, owing to the higher emissivity of SC compared with 

that of FCC. When comparing the different packing densities, the increase in 𝑘eff is even greater, 

more than 2.5 times that between SC and FCC for instance. 
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3.6 Verification and Conclusions 

The results compiled in the last section for effective thermal conductivity of a powder were 

not verified experimentally owing to the considerations already mentioned. These include the 

geometric shape of the particles (spherical) and because attempting to represent the packing 

structures with a commercially available powder is impractical. The reason is that the powder 

particles have a size distribution that ranges from a minimum value to a maximum value and 

generally follows a Gaussian profile. In addition, the powder particles are not all necessarily 

spherical; they can take any geometric configuration possible (oblong, oval, etc.) [59].  

Nevertheless, recent studies in the field, both numerical and experimental, are in good 

accordance with the results presented here, although some use different materials and 

methodologies [50], [60]. Kovalev and Gusarov [50] modeled a DEM powder bed with several 

powder packing densities and conditions. The steel used for the model was not specified, but the 

authors used the following properties: E = 210 GPa, ρ = 6900 kg/m³, Cp = 477 J/kg·K, ν = 0.28, 

and ks = 30.5 W/mK. Also worth noting, the authors did not consider temperature-dependent 

properties, while these properties are considered in the model described in this thesis. 

Alkahari et al. [60] performed an experiment whereby they measured the effective thermal 

conductivity of SS-316L. A point source of heat was applied to the powder receptacle, to which 

thermocouples were attached, to measure the moment in time when maximum voltage is reached 

[60]. The setup was executed only at ambient temperature (300 K) for four different powder 

diameters and bulk densities. Table 3.1 compares the thermal conductivity determined in the 

literature cited above with the value determined in the current work. 
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Table 3.1. Comparison of effective thermal conductivity from Kovalev and Gusarov 

[50], Alkahari et al. [60], and the current work. 

Packing structure 

DEM model from 

Kovalev and Gusarov:  

T = 300 K, xr = 62.5 

µm, unspecified steel 

Experimental data 

from Alkahari et al.:  

T = 300 K, xr = 50 

µm, SS-316L 

Analytical model in 

current work:  

T = 300 K, xr = 60 

µm, SS-304L 

Cubic 0.014 W/mK 0.206 W/mK 0.180 W/mK 

Body-centered cubic 0.026 W/mK — 0.285 W/mK 

Face-centered cubic 0.039 W/mK — 0.482 W/mK 

Random  0.015 W/mK — — 

Polydispersed  0.009 W/mK — — 

Note: Where no data are provided (—), that type of powder was not included in the study. 

Comparing the effective thermal conductivity between the work of Gusarov–Kovalev and that 

of the current model shows that they do not match, with the latter being around 10 times larger. 

Since the materials employed are different, we cannot draw a definitive conclusion about the exact 

values, but there is a tendency observed in both data sets: the higher the packing density, from SC 

to FCC, the higher keff. The increased percentage is similar as well, with 54% from SC to BCC and 

67% from BCC to FCC for the Gusarov–Kovalev data, and 63% from SC to BCC and 59% from 

BCC to FCC for the current data. This confirms that packing density influences thermal 

conductivity, with the lower packing density having the lower keff. 

When comparing the findings of Alkahari et al. with those of the current model, there is very 

close agreement between the keff, with a difference of only 13%, as shown in Table 3.1. Alkahari 

et al. conducted a study using different bulk densities, which is in fact a packing density analysis; 

however, we cannot infer which value of bulk density corresponds to the packing structure in the 

current model. From the results, the authors found that increased bulk density and powder diameter 

raise the keff as well, an observation similar to that for the current model.  
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4 FINITE ELEMENT THERMAL MODELING OF SELECTIVE LASER 

MELTING 

This chapter was partially adopted from the journal publication of “de Moraes, D.A., 

Czekanski, A. Parametric thermal FE analysis on the laser power input and powder effective 

thermal conductivity during selective laser melting of SS304L. J. Manuf. Mater. Process. 2018, 2, 

47”. According to the copyright agreement, “The authors retain all copyrights and will not be 

forced to sign any copyright transfer agreements.” 

4.1 Governing Equations 

The temperature distribution of the PBF process, described as T(x,y,z,t), is found by solving 

the three-dimensional heat conduction equation (eq. 3.1) with suitable boundary conditions as 

follows: 

p( ) ( ) ( , ) ( , )
dT

T C T q r t Q r t
dt

   
 

(4.1) 

Tktrq ),(  (4.2) 

zyxr ,,  (4.3) 

where the 𝜌(𝑇) and 𝐶p(𝑇) are the density and specific heat with temperature T dependent 

values, respectively; 𝑞(𝑟, 𝑡) is the rate of flow of heat energy per unit area; 𝑄(𝑟, 𝑡) is the volumetric 

heat flux; and r represents the three-dimensional Cartesian coordinates in this study [61]. By 

substituting eq. 3.2 into eq. 3.1 and decomposing the Laplace operator, we arrive at: 
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The boundary conditions for the thermal analysis depend on the environment inside the 

chamber. In this case, besides the conduction that is happening in the powder bed, thermal 

conduction and radiation are accounted for by considering the powder emissivity, the type of inert 

gas, and the initial temperature inside the chamber [41], [49]. The following equations are 

described in the literature for convection and radiation: 

where ℎc is the convective heat transfer coefficient, 𝜀p is the emissivity of the powder surface, 

𝜎 is the Stefan–Boltzmann constant, and T and T0 are the surface and ambient temperatures, 

respectively [41]. To reduce computational cost, the convective and radiant heat transfers were 

modeled as a combined boundary condition. The main reason for doing so is that radiation is a 

highly nonlinear heat-transfer condition, a property that increases computational costs and time 

[62]. In an experimental study by Vinokurov, the following equation combining radiation and 

convection was demonstrated to have less than a 5% loss in accuracy [63]: 

The appropriate value of powder emissivity, 𝜀p, was determined in chapter 3. A user-defined 

subroutine, FILM, was used to combine the coefficients of radiation and convection. 

4.2 Thermal Model Domain and Finite Element Model 

The thermal model was defined to handle materials in different phases (liquid, solid, and 

powder states) as well as to account for their variation at different temperatures. A three-

dimensional model was established using a 25 μm DC3D8 hexahedron element with a total domain 

conv c 0( )q h T T 
 

(4.5) 

4 4

rad p 0( )q T T    (4.6) 

2 2 3 1.61
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of 1500 μm × 1500 μm × 75 μm (1.5 mm × 1.5 mm × 0.075 mm), as shown in Figure 4.1. A small 

domain was justifiable given the small laser spot diameter of 50 μm used in the model and the very 

low thermal conductivity present on the bed. 

 

Figure 4.1. Three-dimensional domain of the model. 

The software used for this work was Abaqus. The choice was made considering the volume 

and quality of previous available findings in which Abaqus was the most frequently used option 

[45], [64]–[67]. The software is also flexible enough to permit user-defined subroutines, allowing 

proper implementation of the moving heat source and boundary conditions [68]. The material was 

modeled as temperature and state dependent, as defined in chapter 3, ensuring more accurate 

representation of temperature distributions. Some additional considerations that maintained low 

computational time and cost inferred the following principal assumptions of the FEM model: 

 Thermo-fluid effects were not considered, so the Marangoni effect and fluid flow in the 

melt pool were not accounted for; 
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 Material vaporization is not accounted for, although the phenomenon can occur at high 

temperatures. The impact of vaporization, however, would not affect the temperature 

distributions in this study [69]; 

 A single track of the laser was observed and the influence of the hatch distance was 

neglected to focus on the effect of packing structure and particle diameter on the 

temperature distributions; and 

 Only mean powder (particle) diameter was considered when calculating the effective 

thermal conductivity of the powdered state. 

Abaqus, as already mentioned, allows the user to write subroutines. For this model, the 

DFLUX and FILM subroutines were implemented to account for Gaussian heat flux and 

convection–radiation, respectively. The solution given is the temperature distribution of the 

process, described as T(x,y,z,t), obtained from each selected node associated with the cross-section 

being analyzed.  

4.3 Modeling of Selective Laser Melting Heat Source 

The laser used in the SLM process follows a Gaussian heat flux profile. The laser used in this 

study was an ytterbium fiber laser with a TEM00 profile. TEM, or transverse electromagnetic mode, 

refers to the classification used for laser beams that follow a Gaussian profile. Figure 4.2 shows 

these different TEM profiles for several lasers [70], [71]. Although the laser profile is described 

as Gaussian, the process is not stationary, meaning that the laser is not heating only one specific 

point at a time. The movement of the heat source through the powder bed is no longer described 

as a purely Gaussian profile, but a combination of the three different profiles within the three-
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dimensional space, resulting in a double ellipsoid shape that is usually called a “comet tail” shape 

[66]. 

 

Figure 4.2. Different transverse electromagnetic modes for lasers. Reused by permission 

from Elsevier: International Journal of Machine Tools and Manufacturing [71], 

Copyright © 2009.  

The “comet tail” shape (Figure 4.3) is the result of a high-power laser, usually a fiber laser of 

100 to 1000 W, that consolidates the powder in SLM systems, as shown in Table 2.2 [10]. There 

are several formulations in the literature for the moving heat source [44], [45], [62], [64], [65]. The 

first developments in numerical simulation to account for the phenomena came from Goldak et al. 

[72] in 1984. His model for welding processes has been widely used since then, with some 
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modifications depending on the process being studied. Recently, several authors have been 

applying the formulation in the PBF numerical simulation, with good results being obtained, in 

accordance with the melt pool profile induced in the powder bed [73], [74] [41], [67]. For this 

reason, the Goldak implementation was used in this thesis, as described in eqs. 4.8 and 4.9, and 

modeled into the DFLUX subroutine using Fortran language [72]. 

 

Figure 4.3. Double-ellipsoidal heat source model. Adapted by permission from Springer 

Nature: Metallurgical and Materials Transactions B [72], Copyright © 1984.  

The heat flux, 𝑄̇(𝑥,𝑦,𝑧), is represented as two functions, one for the front part of the flux and 

another for the rear part. These terms yield the correct representation of the comet shape formed 

by the laser moving through the powder bed. In Figure 4.3, the heat source moves in the X-axis, 

scanning the bed with steady speed. The longitudinal ellipsoid has two coefficients, 𝑎f (front) and 

𝑎r (rear); the cross-section is determined by b and the depth by c. The parameter 𝑓𝑓 corresponds 

to the front heat fraction (0.6), and the rear heat fraction is represented by 𝑓𝑟 (1.4) [72]. 𝜂abs is the 

powder absorption coefficient. Finally, x, y, and z are the coordinates of the model. Figure 4.4 

below shows the heat flux distribution at a stationary point. 

Heat flux profile 
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Figure 4.4. Static heat flux distribution modeled as a Gaussian profile using the Goldak 

formulation. 

4.4 Phase Transformation 

Phase transformation must be considered to analyze the proper temperature profile induced 

by the phase change in the powder bed. The formulation that investigators have used extensively 

is based on the modification of specific heat according to the latent heat and the solidus and 

liquidus temperatures: 
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where 𝐶p is the specific heat, 𝐿f is the latent heat of fusion, 𝐶L is the specific heat of the liquid, and 

𝑇L and 𝑇S are the liquidus and solidus temperatures, respectively. 
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4.5 Parameters of the Simulation 

For the three-dimensional model using transient thermal analysis, the distributor of Abaqus 

recommends that the following equation be used to determine the minimum time increments 

required: 

2t
6

pC
l

k


        (4.11) 

where 𝐶p, 𝜌, 𝑘, and ∆𝑙 are, respectively, the specific heat, density, thermal conductivity, and 

element size of the meshing. This calculation prevents false oscillations that may appear in the 

boundary vicinities as well inaccurate solutions for very small time increments [68]. To execute 

and debug subroutines that are written in Fortran, the software is linked with Intel Parallel 

Compiler 17.0 and Visual Studio 2012 [75].  

Following this recommendation and for convenience, a time increment of 1.5×10–6 s was used 

with 1000 increments, yielding a total time of 1.5 ms. The total time was calculated based on the 

speed of the laser, which was defined as 1 m/s. The other model parameters are listed in Table 4.1. 

Table 4.1. Parameters of the selective laser melting simulation. 

Parameters Values Reference(s) 

Latent heat of fusion, 𝑳𝐟 (J/kg) 273790 [62] 

Solidus temperature, 𝑻𝐒 (K) 1703 [56] 

Liquidus temperature, 𝑻𝐋 (K) 1733 [56] 

Solid emissivity, 𝜺𝐬 0.44 [57] 

Preheat temperature, 𝑻𝟎 (K) 298, 373, 643  [10], [20], [21] 

Absorption coefficient, 𝜼𝐚𝐛𝐬 (W) 0.40 [76] 

Laser spot diameter d0 (µm) 50 [10], [20], [21] 

Layer thickness, h (µm) 75  [10], [20], [21] 

Laser power input, 𝑷 (W) 100, 200, 400 [10], [20], [21] 

Scanning speed, v (m/s) 1.0 [10], [20], [21] 

Average powder diameter, 𝒙𝐑 (µm) 20, 60, 100  [77] 
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Gas thermal conductivity, 𝒌𝐠 (W/m·K) 0.016 [41] 

Coefficient ar (µm) 220 [72] 

Coefficient af (µm) 60 [72] 

Coefficient b (µm) 120 [72] 

Coefficient c (µm) 150 [72] 

Time step, t (ms) 1.5 -  

4.6 Results 

4.6.1 Longitudinal and cross-sectional temperature distributions 

The numerical analysis was conducted for three laser inputs combined with three packing 

densities and three different powder diameters, resulting in 27 compiled models. A single 

processor was used for each simulation and two tokens were available for Abaqus, allowing two 

parallel simulations to be run at the same time. We used an Intel Core i7-6700 3.4GHz processor 

that was able to run all the compilations for one substrate temperature in 14 h (42 h total), averaging 

~30 min for each simulation.  

The temperature was measured at nodal points from the mesh, with acquisition points for the 

time-dependent temperature measurements (total time = 1.5 ms), shown in yellow, taken through 

the thickness of the layer. Acquisition points for the cross-section measurements, shown in black, 

were collected for half of the cross-section only; since the Gaussian model uses a symmetric 

formulation, temperatures on both sides are mirrored. Figure 4.5 displays the nodal points. 

The contact powder and substrate were omitted; however, the preheating temperature from 

the substrate was entered as a boundary condition, with the present data set having a predefined 

temperature of 643 K. In the next chapter, the substrate temperature is analyzed as standalone 

parameter [10], [20], [21]. Previously produced layers were not modeled in this study; 

nevertheless, excluding them did not affect the effective thermal conductivity value of the powder 
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itself. The only perceivable impact occurred on the temperature at the bottom of the new layer, 

which could achieve higher temperatures than the initial substrate temperature [71]. We have 

found that different powder diameters at the same packing density have no impact on the final 

temperature distributions of the model. However, between the three different packing densities the 

temperature differs. 

 

Figure 4.5. Nodal acquisition scheme. 

When using a power input of 100 W (P = 100 W; Figure 4.6) with the current configurations 

of the parameters mentioned, the maximum temperature achieved was ~1575 K at the surface, not 

enough to reach the melting point of the alloy used. However, it was essential to consider that 

powder can still melt to a certain degree owing to necking between the small particles. The only 

concern here is at the bottom (−75 µm), where temperatures only reached 1090 K. 

In the same temperature distribution plot, the temperature increases at the same rate for all 

packing densities. However, as soon as the temperature reaches the maximum value and the laser 

scan moves forward, the temperature loss differs among each of the configurations. On the second 

plot in the same graph, SC loses less heat than BCC and FCC. Since SC has the smallest effective 
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thermal conductivity among all the packing densities, less heat is exchanged. The biggest 

difference is 45 K (or 3%), between SC and FCC, which occurs at the surface of the powder bed.  

Another notable finding from the temperature distributions of P = 100 W is that the cooling 

rate was very small after the temperature reached its maximum, even though the temperature rises 

when the number of laser scans is very high. This occurred because the domain was still in the 

powder state and thus had low thermal conductivity overall. The cooling rate for the top surface 

(Figure 4.6) is around 60 K/ms for FCC packing density, 37.1 K/ms for BCC, and 25.7 K/ms for 

SC within the domain modeled. 

 

 

Figure 4.6. Temperature distribution at a power input (P) of 100 W during one scan in the 

scanning direction. 

The cross-section plot in Figure 4.7 shows how the temperature spreads through the powder 

bed when t = 0.75 ms (maximum temperature achieved), with a HAZ of ~160 µm from the centre 

of the powder bed. This behavior was observed for all plots (P = 200 and 400 W). The secondary 

plot shows in detail that the different packing densities had no significant impact on the 
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temperature profile. Another distinguishable feature from the cross-section plot is the effect of 

mesh size, which is evident from the sudden temperature rate change at exactly 25 µm, meaning 

that the mesh was not ideally capturing all the temperature changes. However, a change in mesh 

size in this model can increase the simulation time up to 4 times.  

The cross-sectional temperature distribution for P = 100 W also shows how the temperature 

gradient between the layers behaves. The top (0 µm) and bottom (-75 µm) surfaces of the powder 

bed have a 𝛻𝑇0 μm→−75 μm (temperature gradient) of 460 K in the middle of the powder bed; from 

the top surface to –25 µm it is 80 K; from –25 µm to –50 µm it is 170 K; and finally, from –50 µm 

to the bottom surface at –75 µm it was measured to be 210 K. The temperature gradient along the 

thickness captured for P = 100 W, however, is not considered high among the full-melting 

consolidation processes. 

 

Figure 4.7. Temperature distribution at a power input (P) of 100 W at the cross-section 

perpendicular to the laser scanning direction. 
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For P = 200 W in Figure 4.8, the melting point was reached for the surface of the powder bed 

at –25 and –50 µm. However, the bottom of the powder bed did not reach the melting point, with 

the temperature remaining at 1525 K, whereas the surface reached 1900 K. This led to a high 

exchange of heat after the laser had scanned through, and it is evident how the bottom point (–75 

µm) still increased from 1525 to 1675 K in less than 0.7 ms. The packing densities here do not 

display an apparent temperature difference, since there is only a 4 K difference between SC and 

FCC on the bottom node, as shown in the second plot. As confirmation of the role of powder 

diameter in the temperature distribution, Table 4.2 list the five last increments corresponding to 

the three powder diameters under SC packing density. There are only fluctuations of temperature, 

with no significant changes, which explains the overlap of all the temperature distributions at 

different powder diameters. In fact, researchers studying the effects of individual powder particle 

interactions using DEM models found significant effects of powder diameter on temperature 

distributions [50], but this parameter was not within the scope of the present study.  

Table 4.2. Temperature in the last five time increments at –75 µm and P = 200 W for 

simple cubic (SC) packing density. 

Time increment (t) 
Temperature (K) 

20 µm SC 60 µm SC 100 µm SC 

1.4940 ms 1683.71 1683.34 1683.52 

1.4955 ms 1683.83 1683.46 1683.65 

1.4970 ms 1683.96 1683.59 1683.77 

1.4985 ms 1684.08 1683.71 1683.89 

1.5000 ms 1684.20 1683.83 1684.01 

At –50 µm, after the laser scans through, the temperature remains within the solidus and 

liquidus temperatures, owing to the effect of the latent heat of fusion. Interestingly, the top surface 

(0 µm), –25 µm, and bottom surface (–75 µm) are all converging around the mushy zone, which 
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is defined as the zone between the solidus and liquidus temperatures. This means that high energy 

is concentrated on those regions and heat is exchanged accordingly until a steady state is achieved. 

 

Figure 4.8. Temperature distribution at a power input (P) of 200 W during one scan in the 

scanning direction. 

The impact of the packing density is no longer visible for the top surface, –25 µm, and –50 

µm. The impact is only observable for the bottom surface; however, there is a very small 

temperature difference between the packing densities. It is evident that the impact of packing 

density on temperature distribution diminishes when the temperature crosses the melting point.  

From the cross-sectional temperature distribution for P = 200 W (Figure 4.9), we observed 

the following temperature gradients: from the top (0 µm) and bottom (–75 µm) surfaces of the 

powder bed 𝛻𝑇0 μm→−75 μm = 380 K; from the top surface to –25 µm it is 70 K; from –25 µm to –

50 µm it is 100 K; and finally, from –50 µm to the bottom surface at –75 µm it is 210 K. When 
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comparing these results with those obtained for P = 100 W, these gradients are actually 80 K lower, 

representing a relatively better condition for solidification, since a higher temperature gradient can 

induce residual stresses and consequently warpage and deformations in the built part.  

 

Figure 4.9. Temperature distribution at a power input (P) of 200 W at the cross-section 

perpendicular to the laser scanning direction. 

The last power input (P = 400 W) is the only one in which the entire depth of the powder bed 

layer reached the melting point. However, the maximum temperature achieved at the surface was 

~3250 K, which is an undesirable condition that can lead to the evaporation of the metal [69]. The 

bottom reached ~2100 K, which would most likely induce the melting of the substrate or increase 

the HAZ of the same. It is noteworthy that a gradient of ~1100 K between the top and bottom 

layers was induced, whereas at P = 100 W the gradient was 450 K and at P = 200 W the gradient 

was 400 K. This fact alone is extremely important when analyzing residual stresses during SLM, 

as explained previously. 
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Figure 4.10. Temperature distribution at a power input (P) of 400 W during one scan in 

the scanning direction. 

In the secondary plot shown in Figure 4.10, the melting point area between solidus and 

liquidus temperature (broken red line) is highlighted. The rate of temperature change in this 

interval proves that the model is capable of interpreting the different property states and the phase 

change caused by the latent heat of fusion even when using a small time increment. 

The cross-sectional temperature gradients for P = 400 W (Figure 4.11) were the highest 

achieved in this study. The following temperature gradients were observed: from the top (0 µm) 

and bottom (–75 µm) surfaces of the powder bed 𝛻𝑇0 μm→−75 μm = 1100 K; from the top surface to 

–25 µm it is 200 K; from –25 µm to –50 µm it is 450 K; and finally, from –50 µm to the bottom 

surface at –75 µm it was measured to be 450 K.  
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Figure 4.11. Temperature distribution at a power input (P) of 400 W at the cross-section 

perpendicular to the laser scanning direction. 

4.6.2 Melt pool behavior for T0 = 643 K 

Identifying the melt pool region in SLM processes is important for determining the HAZ of 

each scanned track. Usually the melt pool exceeds the diameter of the laser beam depending on 

parameters such as scanning speed and power input. The following results are for a substrate 

temperature of 643 K, SC packing density, and 20 µm powder diameter. 

When using P = 100 W, the powder does not effectively melt. Temperature distributions are 

kept below the melting point through the entire thickness of the layer, as shown previously. Figure 

4.12 shows the cross-section along two planes. For P = 200 W (Figure 4.13a), the maximum 

temperature value was fixed at 1733 K, thus the grey region in the temperature field corresponds 

to the melt pool region. It is evident that the comet shape formed in the melt pool region, a feature 
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that was expected, since the Goldak heat flux input used in the current model resembles this shape 

[72]. Note that all temperatures are expressed in degrees kelvin (K). 

 

Figure 4.12. X–Z cross-section (top) and Y–Z cross-section (bottom).  

 

Figure 4.13. Melt pool area at 1.5 ms for P = 200 W (a) and P = 400 W (b). 

(b) P = 400 W 

(a) P = 200 W 
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The molten material at P = 400 W (Figure 4.13b) occurs along the entire distance of the bed 

scanned by the laser and through all the powder bed thickness as well. It is apparent, in the 

beginning of the track, that the melt pool area increases in width over time. This change indicates 

that the melt pool has high energy and is exchanging heat with the nearby powder, thereby melting 

it and increasing the HAZ. 

Regarding the melt pool dimensions for P = 200 and 400 W, the feasibility of using a power 

input of 200 W is evident, given the small HAZ present. Figures 4.14 and 4.15 show the melt pool 

size for P = 200 and 400 W along different cross-sections. 

 

 

 

 

 

 

 

 

Figure 4.14. Melt pool dimensions in the last time increment for P = 200 W. X–Y plane 

(a), X–Z plane (b), and Y–Z plane (c). 

(a) 

(c) 

(b) 
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Figure 4.15. Melt pool dimensions in the last time increment for P = 400 W. X–Z plane 

(a), X–Y plane (b), and Y–Z plane (c). 

The material becomes fully molten at P = 200 W up to –50 µm; the light grey in Fig. 4.14 and 

4.15 represents the region where temperatures exceed 1733 K (Tliquidus). The remaining colours are 

in the range of 1703–1733 K, representing the mushy zone, a mixture of solid and liquid material. 

Finally, the dark grey represents temperatures below 1703 K (Tsolidus). The dimension of the melt 

(c) 

(a) 

(b) 
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pool at P = 200 W is 75 µm × 425 µm, a width that it is 1.5 times larger than the laser beam 

diameter used in the model. 

On the other hand, at P = 400 W, the whole thickness of the layer is above the melting point, 

with 100 µm of the width in the bottom surface and 150 µm on the top of the powder bed 3 times 

larger than the laser beam diameter. The entire track is molten as well (750 µm of length), and at 

the end of the laser scanning period, at 1.5 ms, the melt pool width at the beginning scan point is 

~180 µm. 

The remaining packing density and powder diameter data sets have not been compiled here, 

since the previous sensitivity analysis showed that they have a very small impact on temperature 

distributions overall. The next section covers the topic of substrate temperature in detail. 

4.6.3 Sensitivity analysis of substrate temperature 

The substrate temperature, T0, was previously set at 643 K (370 °C), which is a common value 

used for stainless steel [78]. To investigate the impact of the substrate temperature, two more data 

sets were simulated, one with T0 = 298 K (25 °C) and the other with T0 = 373 K (100 °C). The 

SLM process has substrate temperature range of 20 to 550 °C according to SLM Solutions, while 

DMLS has a substrate temperature range of 20 to 100 °C according to EOS GmbH [10], [17]. A 

study performed by Li et al. [79] demonstrated how substrate temperature influences the built part, 

since it plays an important role in defining the interface bonding between the substrate and the part 

as well as the microstructures of the final part. The authors concluded that higher substrate 

temperature increased the quality of the bond and can be attributed to the high cooling rate and 

larger melt-pool volume. A lower substrate temperature initially has a higher cooling rate; 

however, the small melt pool induced is responsible for forming a strong boundary and gap in 
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between the part and the substrate, preventing an effective heat transfer from the part to the 

substrate and resulting in a reduction of the actual cooling rate [79]. 

In the model, the substrate temperature was entered as a boundary condition for all data sets, 

but mechanical contact between the interfaces was ignored, since the focus here was thermal 

behavior. Figure 4.16 presents the results for T0 = 298 K for all power inputs, packing densities, 

and powder diameters, and Figure 4.17 shows the results for T0 = 373 K. Since the previous 

sections covered temperature distribution behavior in depth, here the plots were placed side by 

side to show the longitudinal temperature distribution and its cross-sectional counterpart. 

  

  

(a) (b) 

(c) (d) 
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Figure 4.16. Temperature distribution for T0 = 298 K at P = 100 W (a), P = 200 W (c), 

and P =400 W (e) and their corresponding cross-sections in (b), (d), and (f). 

  

  

(e) (f) 

(a) (b) 

(c) (d) 
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Figure 4.17. Temperature distribution for T0 = 373 K at P = 100 W (a), P = 200 W (c), 

and P =400 W (e) and their corresponding cross-sections in (b), (d), and (f). 

It is clear that by increasing the substrate temperature, the maximum temperature achieved 

increases as well. However, the temperature gradients measured through the thickness of the layer 

decreases, as shown in Table 4.3. The main implication of the results is that an increase in the 

substrate temperature causes the powder bed to use less energy from the heat flux, consequently 

decreasing the temperature gradient through the layer thickness. However, this increase is not 

linear, meaning that a rise of 100 K in the temperature does not bring about a 100 K change in the 

temperature distribution obtained. Thus, the complexity of the simulation is evident.  

The best scenario among all simulations is P = 200 W and T0 = 643 K, with a lower gradient 

of 380 K between the bottom and top surfaces. Although P = 100 W has a lower heat flux, it 

inputted a higher temperature gradient when compared with P = 200 W, mainly because the former 

condition did not cause the substrate to reach the melting point and the latter resulted in one or 

more points through the layer thickness being above the melting point or in the mushy zone. When 

(e) (f) 



 

55 

 

the material is in the mushy zone, it requires a great deal of energy to change the state (solid to 

liquid), and thus the gradient was reduced in the case of P = 200 W. 

Table 4.3. Temperature gradients (𝛻𝑇) and maximum temperature (TMax; in kelvin) 

for all simulated substrate and power conditions. 

  T0 = 298 K T0 = 373 K T0 = 643 K 

P
 =

 1
0
0
 W

 TMax 1250 1300 1550 

𝛻𝑇0 μm→ –25 μm 70 50 80 

𝛻𝑇–25 μm→–50 μm 180 220 170 

𝛻𝑇–50μm→ –75 μm 225 200 210 

𝛻𝑇0 μm→ −75 μm 475 470 460 

P
 =

 2
0
0
 W

 TMax  1733 1760 1900 

𝛻𝑇0 μm → –25 μm 3 40 70 

𝛻𝑇–25 μm→ –50 μm 110 30 100 

𝛻𝑇–50 μm→ –75 μm 420 400 210 

𝛻𝑇0 μm → –75 μm 533 470 380 

P
 =

 4
0
0
 W

 TMax  2950 3000 3200 

𝛻𝑇0 μm → –25 μm 150 170 200 

𝛻𝑇–25 μm→ –50 μm 450 430 450 

𝛻𝑇–50 μm→ –75 μm 560 550 450 

𝛻𝑇0 μm → –75 μm 1160 1150 1100 

4.7 Verification and Conclusions 

The parametric low-cost FEM thermal model proposed in this chapter is capable of measuring 

temperature distributions through a powder bed, and consequently the temperature gradient, of a 

single layer and track of laser scanning using the SLM process. Parameters such as power input, 

powder diameter, powder packing density, and substrate temperature were analyzed. Packing 

density and powder diameter influenced the effective thermal conductivity of the power, as seen 

in chapter 3, and these parameters were implemented in the simulation.  
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The only considerable effects of both powder diameter and powder packing density that are 

visible in the temperature distribution were found for lower power input (P = 100 W) and only for 

different packing densities. The powder diameter did not have a major impact on the outcome, 

which can be attributed to the minor change in effective thermal conductivity that occurred, 

regardless of packing density, and because the model was based on the total volume occupied by 

the particles as a whole, and thus the individual particle interactions are not accounted for. The 

packing density effects are perceived for temperatures below the melting point, since the model of 

effective thermal conductivity is calculated from 300 to 1703 K. The SC packing density has the 

lowest keff  and thus lower cooling rates when comparing to BCC or FCC, as seen in the temperature 

distributions for power input of 100 W. The maximum difference of temperature (ΔT) achieved 

between SC and FCC was 45 K at the top surface of the powder bed at 100 W; for 200 W, the 

difference was minor, only perceivable at –75 µm with ΔT = 5 K; and finally, for 400 W, the 

packing density did not influence the temperature distributions at all, since all the layers were 

above the melting point. 

Power input and substrate temperature played a major role in the analysis, with all the 

scenarios having specific implications:  

 P = 100 W was the lowest power input at which temperatures did not reach the melting 

point. According to Gibson, powder can sinter at half melting point temperatures, and 

in the current investigation the TMax achieved was around 1500 K for T0 = 643 K. The 

TSolidus of the material was 1703 K, more than enough for necking to occur among the 

particles. However, we cannot draw further conclusions on the degree to which the 

material would effectively consolidate, since the temperature mentioned is only at the 
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surface of the powder bed; on the bottom surface, the temperature was 1100 K, 

sufficient to start the sintering between the particles as well, but at a smaller scale. T0 

= 643 K is strongly recommended to be used with P = 100 W, given the statements 

mentioned before, but when using T0 = 298 K and T0 = 373 K, the TMax achieved was 

around 1250 and 1300 K, respectively, and the TMin
 around 775 and 850 K, on the 

threshold for the sintering condition mentioned by Gibson and thus not enough to fully 

consolidate the material; 

 P = 200 W is the ideal situation among all the power inputs analyzed, given the melt 

pool behavior and the temperature gradients. For T0 = 643 K, we achieved the optimal 

temperature gradient of 380 K, the lowest of all the conditions simulated, and thus this 

temperature is strongly recommended for use with this power input. The main reason 

is that the temperature distribution was just enough to reach the TSolidus for h = 0 µm, 

–25 µm, and –50 µm, with a TMax = 1900 K. In this case, when the temperatures are 

between the TSolidus and TLiquidus, the latent heat of fusion plays an important role, 

consuming most of the heat to change the phase either from the solid state to liquid 

and vice versa. For this reason, the temperature gradient is fairly small when compared 

with other power inputs, and even for the other substrate temperatures; 

 P = 400 W is strongly not recommended as a power input to be used for SS-304L, the 

reason being that temperatures reached 3200 K when using T0 = 643 K, with 

temperature gradient of 1100 K between the top and bottom of the powder bed. In 

addition, the entire thickness of the powder bed exceeded the melting point, and the 

melt pool observed and consequently the HAZ were very large, indicating that re-

melting from previously layers or substrate could occur.  
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Overall, the observed temperature distributions very closely followed the behavior of SS-304L 

in other experimental studies found in the literature. Abd-Elghany and Bourel printed SS-304L to 

investigate its mechanical properties using different setups. The authors produced manufactured 

specimens using a machine with power input of 100 W and 30, 50, and 70 µm layer thicknesses, 

concluding that higher layer thickness produced specimens with low density and poor mechanical 

properties [33]. This can be used as a reference to our setup of P = 100 W and layer thickness of 

75 µm, in which case the laser input was not enough to bring the temperature to the melting point, 

and thus consolidation between powder particles was poor. 

In the next chapter, results are presented for samples produced by a process analogous to SLM, 

using SS-316L. The analysis is concentrated on the relative densities of the samples, the porosity, 

and finally residual stress measurements and microscopic characterization. 
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5 DIRECT METAL LASER SINTERING EXPERIMENTAL SETUP 

The experimental setup is designed to verify the model and demonstrate how parameters play 

an important role in the final part printed using PBF processes. Specimens were produced using a 

commercially available machine, EOS GmbH model M280. This industrial 3D printer uses the 

PBF process known as DMLS. SS-316L was the material selected for the experiments, given the 

similarity in its thermal properties with SS-304L, the material used in the previous chapter. The 

part was built in the AM laboratory at McMaster University facilities in Hamilton, Ontario, 

Canada. 

5.1 Stainless Steel 316L Powder 

The powder used to manufacture the parts was supplied by EOS, with a powder size 

distribution of 15–45 µm and a composition described in Table 5.1. 

Table 5.1. Chemical composition of EOS stainless steel 316L [17]. 

Element 

Nominal composition 

(%) of SS-316L powder 

Fe Balance 

Cr 17.00/19.00 

Ni 13.00/15.00 

Mo 2.25/3.00 

C 0.030 

Mn 2.00 

Cu 0.50 

P 0.025 

S 0.010 

Si 0.75 

N 0.10 
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The thermal properties of the material utilized in the experiment, SS-316L, is highly analogous 

with SS-304L utilized at chapter three and four. The similarity can be perceived at Figure 5.1 

below [56]. 

 

 

Figure 5.1. Thermal properties of SS-304L and SS-316L [56]. 

The total volume of the powder bed envelope was calculated before the manufacturing process 

began, and this value was used to calculate how much material needed to be loaded in the machine. 

Although there is no proper recommendation from the machine manufacturer as to how much 

material must be loaded, the laboratory recommends loading 3 times the total weight of the powder 
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bed volume. With an envelope volume of ~938 cm3 and a powder density of 8.05 g/cm3, we 

calculated a total powder mass of 7547 g, resulting in a total of 22.6 kg being used for the 

experiment. 

The reason for using such a large amount of raw material is that the powder is then equally 

distributed through the powder bed, which has dimensions of 25 cm × 25 cm, and the sample has 

a height of 1.5 cm. The roughly three times estimation of material that must be added is a safety 

measure in order to overcome powder loss through evaporation, contamination, and airborne 

particles that is spread to other surfaces inside the machine chamber. In total, we used roughly 4.16 

kg of material, which ≈1.9 kg was the weight of the batch.  The remaining 18.44 kg was recycled; 

however, the powder had to be sifted to remove oxide powder and agglomerated particles that 

exceeded the maximum size allowed for reuse. This was one more reason for the large rate of 

material loss in the process. 

5.2 Designing the Experimental Setup 

The experiment setup was designed to effectively demonstrate the significance of the 

parameters on the relative density and residual stresses of the final part. One batch of samples was 

manufactured; thus, layer thickness and substrate temperature were the fixed parameters of the 

built part, since they cannot be modified within the same batch. The machine chamber is filled 

with nitrogen gas, and gas flow is directional along the powder bed. Power input (P), scanning 

speed (v), and hatch distance (s) were the main parameters analyzed; beam offset, stripe overlap, 

and stripe width are the remaining build parameters; however, they were set as constant, since it 

was not our main objective to study their effect in the built samples. Nevertheless, the scanning 

strategy on the EOS machines cannot be modified, as it uses a 67° scanning angle and stripe raster 
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strategy with 10 mm width. These settings did not affect the setup in the current study, since the 

scanning strategies were not analyzed. The samples were designed to have dimensions of 20 mm 

× 20 mm × 15 mm, following a requirement from the X-ray diffraction equipment of a minimum 

10 mm × 10 mm surface and having a minimum of a two-stripe width in the top scanning surface. 

The three parameters defined in the sample grouping (P, v, and s) have their own ranges as 

determined by the machine manufacturer. Table 5.2 shows the range for all parameters of EOS 

M280. 

Table 5.2. Range of parameters for the EOS M280 3D printer [17]. 

 Min. value Max. value Increment 

Layer thickness (µm) 20 50 10 

Hatch distance (µm) 10 400 10 

Scanning speed (mm/s) 50 7000 1 

Power input (W) 1 370 1 

Substrate temperature (K) 293 373 1 

Following the parameter ranges and based on the literature review conducted, particularly the 

results of studies by Mower and Long [80] and Ghasri-Khouzani et al. [81] shown in Table 5.3, 

we determined the experimental range of parameters for this study. 

Table 5.3. Common parameters applied for SS-316L using direct metal laser sintering. 

 Speed 

(mm/s) 

Power 

(W) 

Temperature 

(K) 

Layer thickness 

(mm) 

Hatching 

(mm) 

Mower et al. [80] 750 195 355 40 — 

Ghasri-Khouzani et al. [81] 1083 195 353 20 80 

The layer thickness was fixed at 30 µm, with a constant substrate temperature of 353 K. The 

scanning speed was varied from 250 to 1750 mm/s at an increment of 500 mm/s; the laser power 
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input was varied from 150 to 250 W at an increment of 50 W; and finally, the hatching distance 

was varied from 80 to 140 µm at an increment of 20 µm. Table 5.4 show how the groups were 

created with the following nomenclature: G1–G4 were used to define the hatch distance groups; 

next, A–D were used to define the scanning speed; and finally, 1–3 specified the power input used. 

The samples were placed according to their laser energy density values, as explained in chapter 2. 

In total, 48 samples were programed to be printed; however, due to technical problems, 10 samples 

had to be left out of the study, as they could not be completed. In the next section a full explanation 

is provided. The samples removed from the experiments are highlighted in red below. 

Table 5.4. Designed range of parameters and groups. 

  1 (P=150W) 2 (P=200W) 3 (P=250W) 

G
1
 

(s
=

8
0

µ
m

) (v=250 mm/s) A G1A1 G1A2 G1A3 

(v=750 mm/s) B G1B1 G1B2 G1B3 

(v=1250 mm/s) C G1C1 G1C2 G1C3 

(v=1750 mm/s) D G1D1 G1D2 G1D3 

G
2
  

(s
=

1
0

0
 µ

m
) (v=250 mm/s) A G2A1 G2A2 G2A3 

(v=750 mm/s) B G2B1 G2B2 G2B3 

(v=1250 mm/s) C G2C1 G2C2 G2C3 

(v=1750 mm/s) D G2D1 G2D2 G2D3 

G
3
 

(s
=

1
2

0
µ

m
) (v=250 mm/s) A G3A1 G3A2 G3A3 

(v=750 mm/s) B G3B1 G3B2 G3B3 

(v=1250 mm/s) C G3C1 G3C2 G3C3 

(v=1750 mm/s) D G3D1 G3D2 G3D3 

G
4
 

(s
=

1
4
0

µ
m

) (v=250 mm/s) A G4A1 G4A2 G4A3 

(v=750 mm/s) B G4B1 G4B2 G4B3 

(v=1250 mm/s) C G4C1 G4C2 G4C3 

(v=1750 mm/s) D G4D1 G4D2 G4D3 

 

5.2.1 Samples placement in the substrate plate 

Three modes of heat exchange are happening at once when the machine is manufacturing the 

samples: conduction between powder and substrate; convection between inert gas and chamber-

exposed surfaces (including powder and substrate); and radiation due to high temperatures induced 
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by the fiber laser. There is a gas duct on the side of the powder bed providing directional gas flow 

through the powder bed surface, thus cooling down the melted material. For this reason, we 

designed the position of the samples to maximize convection heat exchange: we placed the samples 

with higher laser energy density closer to the duct where the gas was being emitted and the samples 

with lower energy density on the opposite side. 

 The calculated laser energy density Ev (J/mm³) for each sample and their positions are shown 

in Figure 5.2. The samples that were excluded from the batch owing to a technical manufacturing 

failure have red values; the successfully printed samples are indicated by blue values. 

Laser energy density (J/mm³) 

416.7 333.3 333.3 277.8 266.7 250.0 222.2 

238.1 200.0 190.5 166.7 142.9 138.9 111.1 

111.1 92.6 88.9 83.3 83.3 79.4 74.1 

66.7 66.7 66.7 63.5 59.5 55.6 55.6 

53.3 50.0 47.6 47.6 47.6 47.6 44.4 

40.0 39.7 38.1 38.1 35.7 34.0 33.3 

31.7 28.6 28.6 27.2 23.8 20.4  

Figure 5.2. Laser energy density of each sample and layout. 
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5.3 Manufacturing Process 

The computer-aided design model presented in the last section contained the assembled 48 

samples, with identification marks and minimum distance between samples (6 mm) already 

defined. The model was then imported into a software called Magics to create the slices necessary 

for the machine to define each cross-section to be laser scanned. Afterwards, the sliced model was 

again imported into the EOS machine software, which was then used to define each one of the 

individual parameters of the samples, as well as the substrate temperature and layer thickness. 

Finally, the code was generated and sent to the EOS machine to commence the process. At the 

same time, the machine was loaded with the correct amount of powder and the inert gas was 

connected to the machine. 

The manufacturing process to build the batch of samples took a continuous 48 h to finish; 

however, as can be observed in Figure 5.3c, 10 samples were not completed. The main reason for 

the failure was the extreme interference between these 10 samples and the powder roller, resulting 

in collision between them. The referenced samples were excluded from the batch in the first hour 

of the printing operation, since this interference could have resulted in imminent damage to the 

ceramic roller, a very fragile component of the machine. Note the inert gas duct in the top of the 

chamber (Figure 5.3b), which is responsible for gas flow from the top to the bottom of the powder 

bed. The high laser energy density samples were placed closer to the gas flow to maximize the 

cooling rate on them.  
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The root cause of the printing failure of these samples is related to the fact that these samples 

have high laser energy density, ranging from 416 to 190 J/mm3. Thus, on each layer the molten 

material accumulates on the border due to heat and mass transport, resulting in a thick solidified 

 

Figure 5.3. Set of samples being programmed using EOS 3D printing system (a), the 

printing process taking place with the laser scanning at the centre (b), and the finished 

direct metal laser sintering samples on the substrate. 

(a) (b) 

(c) 
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“bumper” on all four edges of the samples, as indicated in Figure 5.4c. The failed printed samples 

could not be used for the analysis, given the small height and the impossibility of removing them 

from the substrate plate. Figure 5.4b shows six of the samples, with some of them presenting a 

very dark blue colour, while others have a golden surface. As with welding, these colours are the 

result of an oxide layer that forms on the surface after solidification, affecting the final corrosion 

resistance of the sample [82].  

  

 

Figure 5.4. Low energy density samples (a), high energy density samples (b), and 

“bumper” detail on the high energy density samples (c). 

(a) (b) 

(c) 
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 On the other hand, for the low energy density samples, we found that a small delamination 

process occurred in the last sample row, especially on samples G4D2, G3D1, and G4D1. This 

delamination is an indication that the combination of parameters was not sufficient to properly 

bond the layers in those samples, although it was still not a severe delamination and we were able 

to remove and characterize the samples. Figure 5.4a depicts the phenomenon. 

 The highest laser energy density samples (G3B1, G4A1, and G1B3) in the second row of 

samples still had noticeable surface deformations and an oxide layer. Figure 5.5a shows several 

surface deformations in the form of small “bumpers” on sample G4B1, and Figure 5.5b shows a 

sample with a golden oxide layer. The sample in Figure 5.5c, on the other hand, has a metallic 

appearance to its surface, indicating that mass transport did not influence the sample. 

5.4 Density Analysis  

The samples were analyzed according to Archimedes’ principle density measurement, which 

is suitable for metal 3D-printed materials and more accurate than conventional displacement 

   

Figure 5.5. High laser energy density sample with surface deformation and oxide layer 

on samples G4A1 (a) and G1B3 (b); normal surface printed sample G3B2 with lower 

laser energy density (c). 

 

(a) (b) (c) 
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methods [83]. The method is described by “ASTM B962-17 Standard Test Methods for Density 

of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” in 

which each sample is weighed twice using a Mettler Toledo scale (Figure 5.6) [84]. First, we 

measured the sample in the air (M1). Next, we immersed the sample in distilled water and measured 

the apparent mass (M2). Next, the density was calculated as follow: 

watersample
MM

M


21

1


           (5.1) 

 

Figure 5.6. Scale used to measure the mass of the samples and consequently their 

densities. 

where ρsample is the final density of the sample and ρwater is the density of distilled water at 25 °C 

(0.997 g/cm³). The scale has a resolution of ±0.0001 g. The samples were weighed twice and the 

results averaged for ρsample. The bulk density of SS-316L is 8.05 g/cm3 (ρbulk), a value used as a 

reference to calculate the relative density (ρr) of the samples as follows: 



 

70 

 

sample

r

bulk

(%)





      (5.2) 

The porosity of the samples was acquired by using an imaging method to calculate the area 

fraction of the voids. ImageJ software was used for the analysis. 

5.4.1 Results of relative density and porosity analysis 

The results of the relative density measurements are show in Figure 5.7. The data were 

compiled according to the laser energy density, Ev, of each sample. Notice the shape of the fitted 

curve (R2 = 0.9702), with samples with low laser energy density having the lowest relative density 

(ρr); however, after achieving a maximum value, ρr begins to decrease. 

 

Figure 5.7. Relative density of the samples versus the laser energy density. 

By analyzing the effects of each group separately, we compiled three different groups and 

their corresponding samples, as seen in Figures 5.8, 5.9, and 5.10. 
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(a) (b) (c) 

Figure 5.8. Relative density of the samples varied according to laser energy density. 

Samples were grouped according to power input, with groups designated as 1 (P = 150 

W) (a), 2 (P = 200 W) (b), and 3 (P = 250 W) (c). 

   

(a) (b) (c) 

 

(d) 

Figure 5.9. Relative density of the samples varied according to laser energy density. Samples 

were grouped according to scanning speed, with groups designated as A (v = 250 mm/s) (a), 

B (v = 750 mm/s) (b), C (v = 1250 mm/s) (c), and D (v = 1750 mm/s) (d). 
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(a) (b) (c) 

 

(d) 

Figure 5.10. Relative density of the samples varied according to laser energy density. 

Samples were grouped according to hatching distance, with groups designated as G1 

(s = 80 µm) (a), G2 (s = 100 µm) (b), G3 (s = 120 µm) (c), and G4 (s = 140 µm) (d). 

It is evident that some groups of parameters a have larger ρr range of samples varying through 

the Ev values. We can observe this trend in each one of the parameter groups. In Figure 5.8a, for 

the P = 150 W group, samples have ρr varying from 78.4% to 99.5%; in Figure 5.9d for the v = 

1750 mm/s group, samples have ρr varying from 78.4% to 98%; and in Figure 5.10d, for the s = 140 

µm group, samples have ρr varying from 78.4% to 99%. On the other hand, groups with a small 

relative density range can be seen in Figure 5.8c (P = 250 W), Figure 5.9b (v = 750 mm/s), and 

Figure 5.10c (s = 80 µm), with 94%–99%, 97%–99.5%, and 93%–99.5% relative density, 

respectively. A small range in relative density within each group means that the combination of 
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other parameters did not influence the final density values. Thus, these conditions represent the 

optimal values to be used in the process. However, relative density alone does not represent all the 

ideal mechanical properties of a material, and further analysis needed to be carried out.  

For the group with v = 250 mm/s (Figure 5.9a), only two samples were printed, and therefore the 

analysis was not valid for this parameter, given the lack of samples available to analyze the 

material’s tendencies. Figure 5.11 shows the groups individually assessed for better understanding 

of the trends. 

  

 

Figure 5.11. Relative density versus laser energy density for hatch distance (a), 

scanning speed (b), and power input (c). 

(a) (b) 

(c) 
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The maximum relative density value achieved among all samples was 99.57%, for sample 

G1B1, and the minimum relative density value was 78.389%, for sample G4D1. Figure 5.12 

depicts the top surface micrograph (scanning direction) of the samples mentioned. Note the 

number of voids in the sample with low relative density compared to the one with high relative 

density. 

  

Figure 5.12. Micrographs of the top surface after polishing samples G1B1 (a) and   

G4D1 (b). 

The porosity (φfinal) of the samples was measured using ImageJ imaging software. The top 

surface of the samples was sanded and polished with a 0.05 µm diamond suspension, and later 

images of the surfaces were acquired by optical microscopy. The micrographs were then processed 

by ImageJ software, using the area fraction of the voids to calculate the percentage of porosity of 

the sample. Figure 5.13 shows the results, with a maximum porosity of 41.66% achieved for 

sample G4D1 and minimum porosity of 0.045% for sample G3B3. 

(a) (b) 
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Figure 5.13. Porosity versus laser energy density of the samples. 

Note that the curve follows the same trend as the relative density results previously presented. 

The highest laser energy density sample, G3A1 (166.67 J/mm
3
), has 3.71% porosity, considerably 

more than sample G1B1 (83.33 J/mm3), which had a porosity of 0.107%. 

5.5 Surface Micrographs 

The as-built top surface images were also acquired for different groups to show the behavior 

of the layer and their respective scanned tracks along the surface. The micrographs are shown at a 

magnification of 2.5× and 10× in the selected area. It is clear that the high porosity observed in 

sample G4D1 (Figure 5.12b), which gave the part a low relative density, is strongly associated 

with poor or partially melted powder, as seen in Figure 5.14. On the contrary, the high-density 

samples have a large number of small particles throughout the surface, as seen in Figure 5.13, the 

result of particles being ejected due to high laser energy density. 
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Magnification of 2.5x Magnification of 10x 

  

  

  

Figure 5.14. As-built micrographs of the top surface with same scanning speed 

(750 mm/s) and power input (250 W), varying the hatch distance from 80 to 140 µm. 

G1B3 G1B3  

G2B3 G2B3 

G4B3 G4B3 
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Magnification of 2.5x Magnification of 10x 

  

  

  

Figure 5.15. As-built micrographs of the top surface with same scanning speed 

(1250 mm/s) and hatch distance (100 µm), varying the power input from 150 to 250 W. 
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Magnification of 2.5x Magnification of 10x 

  

  

  

G3A1 G3A1 

G3C1 
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Figure 5.16. As-built micrographs of the top surface with same power input (150 W) and 

hatch distance (120 µm), varying the scanning speed from 250 to 1750 mm/s. 

Magnification of 2.5x Magnification of 10x 
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Figure 5.17. As-built micrographs of the top surface with same power input (200 W) and 

scanning speed (1750 mm/s), varying the hatch distance from 80 to 140 µm. 

The poor or partially melted tracks in several micrographs are the main cause of the high 

porosity and low relative density of the samples. The combination of parameters was responsible 

for this result — samples G1B1, G3B1, G3D2, and G4D2 had the lowest relative densities, mainly 

owing to low power input, high scanning speed, and high hatching distance. 

Figure 5.14 shows three of the highest density samples: G1B3 (98.964%), G2B3, (97.983%), 

and G4B3 (98.696%). The relative density values achieved for these samples are very similar to 

each other, and thus variability in the hatch distance did not influence the results, given that the 

G3D2 G3D2 

G4D2 

 

G4D2 
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samples in this group had P = 250 W and v = 750 mm/s. Figure 5.15 has an interesting scenario, 

with samples G2C1 (94.161%), G2C2 (99.286%), and G2C3 (99.153%). The power input variance 

in these samples showed an effect on the relative density, with the sample at P = 150 W (G2C1) 

having the lowest density, and the samples with a power input of 200 and 250 W having very good 

densities. This group of samples had a fixed hatch distance of 100 µm and a scanning speed of 

1250 mm/s. 

Figure 5.16 shows the best case involving low and high density in the same group, for samples 

G3A1 (96.904%), G3B1 (98.674%), G3C1 (90.943%), and G3D1 (85.177%). In this group, the 

scanning speed was variable enough to have samples below and above the optimal relative density 

value. G3A1 has high number of ejected particles in the surface, whereas sample G3B1 has the 

highest relative density value in the group and displays a fully consolidated surface appearance 

with only a few partially melted tracks. G3C1 and G3D1 have the highest speeds (1250 and 1750 

mm/s, respectively) and presented poor or partially melted tracks, as can be seen in Figure 5.17. 

Finally, in Figure 5.17, while varying hatch distance and maintaining v = 1750 mm/s and P = 200 

W, we conclude with samples G1D2 (97.413%), G2D2 (92.501%), G3D2 (90.434%), and G4D2 

(88.598%). The relative density in this group decreased substantially as hatch distance increased. 

5.6 Residual Stress Analysis 

Residual stresses are measured in samples using the X-ray diffraction method. In this method, 

the strain in the crystal lattice is obtained and linked with the residual stresses by applying the 

predetermined constants of the material used. The incident X-rays in the surface are captured by 

the grains and crystals, thus influencing the final residual stresses found. Some of the X-rays can 

in fact penetrate the surface, and hence the measurements are an average of strains acting over a 
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depth of a few microns. The average strains are later converted to residual stresses using the 

constants of the material [85]. The constants used in this work were extracted from Yakout et al. 

[48] and applied to all SS-316L samples. Figure 5.18 shows the location of the strain extraction, on 

the side of the samples (building direction), to avoid the influence of the scanning direction on the 

measurements. 

Top View     Side View 

   

 

 

 

Figure 5.18. Measurement location of residual stresses in a sample. 

5.6.1 Results for residual stress analysis 

The principal stresses σ1 and σ2 were obtained for this analysis, since only one point of X-ray 

diffraction was obtained in the surface and we were not analyzing the stress directions. Amongst 

the samples analyzed, there was a large variation of residual stresses, between 40 and 84 J/mm3, 

with the maximum principal stresses going from compressive to tension states. From 84 to 140 

J/mm3, we observed a tendency of the residual stresses to rise; however, at 166 J/mm³ (sample 

G3A1), the residual stress decrease. Figure 5.19 depicts the behavior of the residual stress versus 

the laser energy density of the samples. 

Identification side (Top) 

G1 

A2 Point of measurement 
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Figure 5.19. Residual stresses measured at the side of the sample’s surface versus laser 

energy density. 

Note that residual stresses vary erratically, both for maximum and minimum values in the 

previously mentioned range. The reason behind this behavior is the intrinsic uncertainty of the X-

ray diffraction method associated with the material constants used to convert the phases into strain 

values, since the 3D-printed part can have slightly different material composition from the material 

used for the conversion. Figure 5.20 to 5.22 show the results for individual parameter sets. 

   

Figure 5.20. Residual stress measurements for scanning speed groups versus hatch 

distance. Maximum principal stresses (a) and minimum principal stresses (b). 

(a) (b) 
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Figure 5.21. Residual stress measurements for hatch distance groups versus scanning 

speed. Maximum principal stresses (a) and minimum principal stresses (b). 

Figure 5.22. Residual stress measurements for hatch distance groups versus power 

input. Maximum principal stresses (a) and minimum principal stresses (b). 

The scanning speed group sorted by its respective hatch distances (from 80 to 140 µm) brought 

dispersed results for the subsequent residual stress values (Figure 5.20). No trend was found for the 

maximum principal residual stresses in Figure 5.20a. For the minimum principal residual stresses, 

 

 

(a) (b) 

(a) (b) 



 

85 

 

there was a slight trend from 80 to 120 µm, with the σ2 decreasing, but at 140 µm it dispersed 

again, as seen in Figure 5.20b. 

The same applies to the results presented in Figure 5.21, where samples are sorted according 

to the scanning speed and hatch distance grouping. In Figure 5.21b, the same behavior occurs, as 

was observed in the hatch distance group, but the trend is very weak. From 750 to 1750 mm/s, the 

minimum principal residual stresses decrease. 

Power input sorting, however, yielded a trend that is noticeable for both maximum and 

minimum residual stresses values, as seen in Figure 5.22. It is clear that at 150 W, there is an 

overall lower stress value than at 200 or 250 W. The trend is more perceptible in Figure 5.22a, 

with the maximum residual stresses changing from 350 MPa (maximum achieved) at 150 W, 400 

MPa for 200 W, and 716 MPa for 250 W. This is a strong indication that power input is the main 

parameter responsible for high residual stresses in the built samples. Although all parameters play 

important individual roles, we can infer that the sensitivity of the power input is vital in the final 

properties of the built part. 

5.7 Microstructural Analysis 

A microstructural image was obtained to understand the micro-constituents of the printed 

samples. SS-316L is an austenitic steel (γ-Fe) with an FCC crystal structure in its solid form; 

however, since the raw material is a powder, it is impossible to define the microstructure of the 

PBF process without proper characterization [48]. The samples have a high degree of martensitic 

formation, especially around the melting pool of the solidified material. The reason is the increased 

temperature gradients around the melt pool, as evident in chapter 4, as well as rapid solidification 
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rates across each melt pool, a scenario that is ideal for the martensitic transformation. Figures 5.23 

and 5.24 show the micrographs. Note the detail highlighted in Figure 5.23, which shows the 

martensitic transformation happening at the melt pool boundary. 

 

Figure 5.23. Micrograph (magnification 40×) of sample G1B3, with austenite and 

martensite areas highlighted. 

Another important observation is that surface hardening, caused by martensitic 

transformation, is also responsible for residual stresses. It is not clear what the exact impact of this 

contribution is; however, volume expansion is taking place when martensite is formed, causing 

compression at the surface and tensile stresses at the core of the part, as observed by Yakout et al. 

[48]. 

Melt pool 

Martensite 

Austenite 

Melt pool 
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Figure 5.24. Micrograph (magnification 40×) of sample G2C2, with austenite and 

martensite areas highlighted. 

Besides the micro-constituents, we acquired an image of the melt pool from the top and side 

surfaces. From the top, we can clearly see how the laser tracks are influencing the microstructure, 

as the grains are growing from the solidification of the laser track melt pool; and from the side we 

can see the melt pool depth. Figures 5.25 and 5.26 show the top surface of sample G2B3 and the 

side surface of sample G4B1, respectively. 

Martensite 

Austenite 
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Figure 5.25. Laser track observed at top surface of sample G2B3. 

 

Figure 5.26. Melt pool track observed at side surface of sample G4B1. 
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5.8 Conclusion and Discussion 

From the analysis of the relative density of the samples, we have drawn the following 

conclusions: 

 By increasing the laser energy density, we have found that the final density of the samples 

tends to increase until a certain maximum value, at which point it starts to decrease, a 

phenomenon that was observed by Yakout et al. as well [34]; 

 In the range of 20–65 J/mm3, the relative density of the samples increased substantially 

from around 78% to 99%; 

 The highest relative density, 99.570%, was found in sample G1B1, which had a laser 

energy density of ~83.33 J/mm3; however, we also found similar samples with high 

density (sample G2B1: 99.517% relative density and 66.667 J/mm3 laser energy density; 

sample G1C2: 99.430% relative density and 66.667 J/mm3 laser energy density); 

 At 70–80 J/mm3 laser energy density, the tendency curve started to have a negative slope, 

and consequently the relative density decreased; and 

 The fitting curve has an exponential algorithm profile with a coefficient of determination 

(R2) of 0.9702. 

Overall, the behavior of relative density allowed us to confidently evaluate the effectiveness 

of each parameter in the manufacturing process. Three parameters showed a very small relative 

density spread among them, and thus a change in other parameters did not significantly alter the 

density value. Analyzing the parameters separately, P = 250 W, v = 750 mm/s, and s = 80 µm 

represented the best-case scenario with the lowest range in relative density. Combining all the 

mentioned parameters gave us sample G1B3, which had a 98.964% relative density. Although it 
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was not the highest value achieved (sample G1B1 had a relative density of 99.57%), its value was 

within an acceptable range for relative density. Figure 5.27 shows the relationship between relative 

density and laser energy density. The drawbacks mentioned are observed in the micrograph of the 

as-built sample surfaces. The porosity analysis showed that the maximum porosity achieved was 

for sample G4D1 (41.66% porosity). 

 

Figure 5.27. The relationship between relative density behavior and laser energy density. 

Adapted by permission from Springer Nature: The International Journal of Advanced 

Manufacturing Technology [34], Copyright © 2017. 

In the residual stress analysis, we encountered some uncertainty; however, we were still able 

to observe some tendencies, especially when varying the power input, on which principal residual 

stresses increased in the built part with an increase in power. The residual stresses are the result of 

high temperature gradients and are caused to some degree by the martensitic formation within the 
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tracks and layers. The martensite was observed in several samples, especially the high laser energy 

density ones. For the low energy densities, we could not observe the formation owing to the high 

porosity present on the surface. 

A similar comparison that we can infer between the finite element thermal model and the 

experimental data is the average melt pool size observed in Figure 5.26. The melt pool was 92 µm 

when parameters were set at P = 150 W, v = 750 mm/s, and s = 140 µm. Our finite element thermal 

model using P = 200 W and v = 1000 mm/s had a melt pool of 75 µm. However, the simulation 

only accounted for 1.5 ms, an infinitesimal time step of the samples’ total processing time, which 

includes solidification, surface hardening, etc. 
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6 THESIS SUMMARY AND FUTURE WORK 

6.1 Thesis Summary and Research Contribution 

In this thesis we developed a low-cost thermal FEM capable of capturing the behavior of the 

temperature distributions, cooling rates, and temperature gradients present during a single layer and 

track of laser scanning through a powder bed during selective laser melting, a PBF process. In 

addition, we successfully measured effective powder thermal conductivity for different powder 

packing densities and diameters to observe the sensitivity of the same in the temperature field, and 

also studied the melt pool and substrate temperature effects. To emphasize the importance of this 

type of analysis for the evaluation of process parameters, we built a single batch of samples using 

DMLS, another PBF process found in the AM industry, to show the effects of the main parameters 

on the final built part. This parametric analysis is a fundamental tool to investigate the optimal 

parameters for employment of a new alloy, both for SLM and DMLS. 

The main objectives of this thesis are reiterated below: 

i. Effective thermal conductivity and emissivity of powders 

The thermal conductivity of the powder placed in the bed is different from that of the same 

material in solid form. To account for that difference, effective thermal conductivity was 

determined; the impact of the packing density and powder diameter was studied as well. Beyond 

that, surface emissivity, an important parameter to consider when radiation is involved, was also 

determined for the powder. 
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ii. Thermal modeling and sensitivity analysis 

Numerical analysis using FEM was conducted to characterize thermal distribution in the 

powder bed. The main focus was to analyze the behavior of the moving heat source in a single 

track and the impact of its parameters on the temperature gradient in the powder bed. The material 

utilized was SS-304L, which has not yet been validated for use in the PBF process. The model was 

constructed using the main parameters of SLM. The sensitivity in the final temperature distribution 

in the powder bed to power input, powder packing density, powder diameter, and substrate 

temperature were analyzed. 

iii. Experimental setup, residual stress analysis, verification, and validation 

The model was validated by performing residual stress analysis, taking a micrograph of the 

surface, and analyzing relative density and porosity of SS-316L samples manufactured by DMLS. 

Residual stresses in the built part result from a high temperature distribution or cooling rate 

imposed during the manufacturing process. Validation through temperature readings is not feasible 

given the high speed of the laser and the high temperature induced in the powder bed, leaving the 

measurement of residual stress as the more reliable parameter for the model. Further validation 

was conducted by comparing the simulated melt pool shape with values obtained from the 

experiments. 

The results of the SLM analysis performed in Abaqus demonstrate that proper compaction 

and density distribution of the powder bed is important for keeping the cooling rates and 

temperature distributions within a desirable range. However, these effects were only perceivable 

outside the melt pool zone, below the melting point. The powder diameter — although it affected 
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the value of the effective thermal conductivity, as seen in chapter 3 — did not cause any change in 

the temperature distribution, and thus the model is not sensitive to changes in powder diameter. 

On the other hand, we observed that a power input of 400 W induced very high temperatures 

at the surface and all the way through the layer thickness. The temperature gradient measured 

between the top and bottom surfaces was around 1150 K (for T0 = 643 K), which is the main cause 

of warping and residual stresses after solidification. A power input of 400 W was enough to cause 

temperatures to reach 3200 K, at which point vaporization and ejection of metal particles are more 

common phenomena. The vaporization phenomenon is primarily associated with mass loss, which 

can bring undesired surface tolerancing due to material loss. 

For P = 200 W, the temperature reached the melting point but did not go beyond it, which 

represents a desirable condition, given the lower temperature gradient achieved (380 K) when the 

substrate is at 643 K. The melt pool for this power input is ideal, since it does not melt through the 

entire layer thickness, with the bottom surface staying below the melting point. 

Finally, for P = 100 W, we observed the lowest temperature distributions, which were not 

sufficient to reach the melting point, a phenomenon that influences the consolidation of the 

particles and the final porosity of the built part, as seen in chapter 5. We observed that poor melted 

tracks are the main reason for the high porosity of the samples, and thus this condition is not 

recommended. 

The substrate temperature analysis results match the claims made by some authors, such as 

Parry et al. and others [31], [86]–[88]. Amongst all the substrate temperatures, T0 = 643K is the 

highest temperature recommended for use to eliminate residual stresses. Although 643 K is not a 

high temperature for the powder, it is valid to mention that if higher temperatures are applied to 
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the substrate, it can start the sintering of the powder. Sintering would cause each particle to start 

necking with its neighboring particles, thus affecting the surrounding areas of the scanned surface 

and degrading the surface finish quality and tolerances. For lower substrate temperatures, the 

maximum temperature achieved in the simulation will obviously decrease; however, the overall 

temperature gradient will actually increase. The reason behind this behavior is that less heat has 

accumulated in the powder bed, which means the laser heat flux is not penetrating all the way 

through, leading to a higher temperature gradient. 

The experimental setup demonstrated all the claims presented in the previous chapter. 

However, we used another PBF technology, DMLS, to do so. The relative density is fairly efficient 

for analyzing the mechanical integrity of the samples, since relative density and porosity are 

closely associated. It was found that relative density follows a “bell curve,” with samples having 

small relative densities also having small laser energy density, until relative density reached an 

optimum value, at which point the relative densities started to go down, even with high laser energy 

densities. The reason is the metal ejection of particles, gas bubbles, and vaporization of material, 

all of which happen only when high laser energy densities are applied. 

To further reinforce the analysis, residual stresses measurements were performed next. The 

relationship between residual stresses and laser energy density was evident based on the analysis, 

but only for a range of values. In the mentioned range, the residual stresses increased with an 

increase in laser energy density. The parameter effects on the principal residual stresses, on the 

other hand, demonstrated that power input plays an important role. Power tended to increase the 

residual stresses independently of the combination of other parameters in most cases, further 

supporting power input as the most influential parameter. 
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6.2 Research Contributions 

The proposed model has proved to be a flexible tool to investigate temperature distributions 

of PBF processes, with special attention given to the laser power input. New alloy employment 

can take advantage of this low-cost tool for pre-evaluation of optimal parameters to be used in the 

equipment. Important findings were obtained in the analytical formulation for effective thermal 

conductivity, as well as analysis of the sensitivity of powder packing density and diameter to the 

temperature field during laser scanning. The experimental setup for parameter evaluation showed 

that relative density measurements were good for the initial parameter analysis; however, the setup 

was not enough to assess how good a set of parameters it was, and further analysis should be 

considered. Using laser energy density, we were able to associate the three main parameters 

(power, scanning speed, and hatch distance) into one variable, making it easier to interpret the 

trends. We further analyzed the batch with X-ray diffraction measurements to obtain residual 

stresses and concluded that power input was the major variable responsible for bringing residual 

stresses into the printed part, thus increasing deformation and warpage and compromising its 

mechanical properties. 

6.3 Future Research 

We developed a thermal finite element model for the PBF manufacturing process that can be 

used for parametric evaluation of several parameters and sensitivity analysis. The future work 

listed below represents a complementary analysis to the findings presented here: 

1. Measure effective thermal conductivity of a powder by experimental setup. This would 

be an interesting investigation to validate further the analytical model presented in chapter 

3. Different scenarios, such as packing densities SC, BCC, or FCC, plus different powder 
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size distributions, as were proposed here, would bring more data to the scientific 

community. 

2. Conduct monodispersed and polydispersed powder bed analysis to see the effects on the 

melt pool and final mechanical properties of the built part. Although it is a challenge to 

perform a setup with monodispersed beds, it would be interesting to see the effect of 

different levels of polydispersity of powder beds. 

3. Develop a multi-track and multi-layer thermal FEM to study the effect of hatch distance 

and layers in the temperature gradients of the powder bed. 

4. Implement a thermomechanical model to evaluate stress fields in different scenarios. For 

that, a proper solidification model that is able to account for shrinking volume would be 

ideal. Since the objective is to maintain a low computational cost, an uncoupled FEM is 

recommended. 

5. Use the data acquired from finite element thermal models and imaging obtained from a 

built-in thermal camera to develop an integrated system that can identify undesirable 

temperature fields and inform the operator about the occurrence of high temperatures, as 

well as actively increase or decrease substrate temperature or gas flow. 

6. Evaluate the effect of multiple lasers on the quality (i.e., mechanical properties) of the 

built part, as multiple manufacturers are using this process to increase productivity. 
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Abaqus Subroutine DFLUX and FILM  
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Input File of Abaqus 

*Heading 

** Job name: P=100-20micro-BCC Model name: Job-2 

** Generated by: Abaqus/CAE 2016 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=PART-1-1 

*Node 

 1,           0., -0.000750000007,  7.50000036e-05 

 2,           0., -0.000724999991,  7.50000036e-05 

 3,           0., -0.000699999975,  7.50000036e-05 

 4,           0., -0.000675000018,  7.50000036e-05 

.... 

.... 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=POWDER_FCC 

*Conductivity 

0.007200104939668,300 

0.008099424137992,400 

0.008998743336316,500 

0.009892511181564,600 

0.010791830379888,700 

0.011691149578212,800 

0.012590468776537,900 

0.013489787974861,1000 

0.014383555820109,1100 

0.015282875018433,1200 

0.016182194216757,1300 

0.017081513415081,1400 

0.017980832613405,1500 

0.018874600458653,1600 

0.019801676422357,1703 

17.92,1733. 

18.14,1800. 

18.46,1900. 

18.79,2000. 

19.11,2100. 

19.44,2200. 

19.76,2300. 

20.09,2400. 
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20.41,2500. 

20.73,2600. 

21.06,2700. 

21.38,2800. 

*Density 

7894., 300. 

7860., 400. 

7823., 500. 

7783., 600. 

7742., 700. 

7698., 800. 

7652., 900. 

7603.,1000. 

7552.,1100. 

7499.,1200. 

7444.,1300. 

7386.,1400. 

7326.,1500. 

7264.,1600. 

7197.,1703. 

6905.,1733. 

6862.,1800. 

6795.,1900. 

6725.,2000. 

6652.,2100. 

6576.,2200. 

6498.,2300. 

6416.,2400. 

6331.,2500. 

6243.,2600. 

6152.,2700. 

6058.,2800. 

*Latent Heat 

273790.,1703.,1733. 

*Specific Heat 

510.03, 300. 

523.42, 400. 

536.81, 500. 

550.2, 600. 

564., 700. 

577.39, 800. 

590.78, 900. 

604.17,1000. 

617.56,1100. 

631.37,1200. 

644.75,1300. 
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658.14,1400. 

671.53,1500. 

685.34,1600. 

698.73,1703. 

794.96,1733. 

794.96,1800. 

794.96,1900. 

794.96,2000. 

794.96,2100. 

794.96,2200. 

794.96,2300. 

794.96,2400. 

794.96,2500. 

794.96,2600. 

794.96,2700. 

794.96,2800. 

*Material, name="Steel plate (Sub)" 

*Conductivity 

 11.5, 

*Density 

5700., 

**  

** INTERACTION PROPERTIES 

**  

*Film Property, name=INTPROP-1 

10. 

**  

** PHYSICAL CONSTANTS 

**  

*Physical Constants, absolute zero=-273.15, stefan boltzmann=5.67e-08 

**  

** PREDEFINED FIELDS 

**  

** Name: Field-1   Type: Temperature 

*Initial Conditions, type=TEMPERATURE 

_PICKEDSET62, 300. 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=NO, inc=1000 

*Heat Transfer, end=PERIOD 

0.0000015, 0.0015, , ,  

**  

** LOADS 

**  
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** Name: BODYFLUX-1   Type: Body heat flux 

*Dflux 

PART-1-1.SET-1, BFNU, 1. 

**  

** INTERACTIONS 

**  

** Interaction: SURFFILM-1 

*Sfilm 

_PICKEDSURF60, FNU, 300., 1. 

** Interaction: SURFRADIATE-1 

*Sradiate 

SURF-4, AVG, 0.0, 0.5652 

**  

** CONTROLS 

**  

*Controls, reset 

*Controls, parameters=time incrementation 

8, 10, , , , , , , , ,  

*Controls, parameters=field, field=temperature 

0.05, 0.5, , , , , ,  

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

NT,  

**  

** FIELD OUTPUT: F-Output-2 

**  

*Node Output, nset=Middle 

NT,  

**  

** FIELD OUTPUT: F-Output-3 

**  

*Node Output, nset=Surface 

NT,  

**  

** FIELD OUTPUT: F-Output-4 

**  

*Node Output, nset=Surface-25 

NT,  

**  
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** FIELD OUTPUT: F-Output-5 

**  

*Node Output, nset=Surface-50 

NT,  

**  

** FIELD OUTPUT: F-Output-6 

** 

*Node Output, nset=Middle-25 

NT,  

**  

** FIELD OUTPUT: F-Output-7 

**  

*Node Output, nset=Middle-50 

NT,  

**  

** FIELD OUTPUT: F-Output-8 

**  

*Node Output, nset=Middle-75 

NT, 

** 

** FIELD OUTPUT: F-Output-9 

**  

*Node Output, nset=Bottom 

NT,  

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Output, history 

*Radiation Output 

FTEMP, RADFL, RADFLA, RADTL, RADTLA, VFTOT 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Contact Output 

HFLA, HTL, HTLA, SJD, SJDA, SJDT, SJDTA, WEIGHT 

*End Step 


