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Abstract— Consisting of highly mobile and flexible polymer 

chains, elastomers are known to exhibit viscoelastic behavior. 

Adopting concepts from the theory of polymer dynamics and 

finite-deformation viscoelasticity, this work presents a micro-

macro constitutive model to investigate the viscoelastic 

behavior of elastomers, in which the material viscosity varies 

with the macroscopic deformation. The developed model is 

then applied to study the stress response of elastomers. From 

the simulation results, it is observed that the developed model 

exhibits strong capability of capturing the typical response 

behaviors of elastomers (e.g., strain-softening behavior). A 

comparison of the stress responses between linear and 

nonlinear viscosity is also considered in this work. The 

modeling framework in this paper is expected to provide a 

general approach and a platform to analyze the viscoelastic 

behavior of rubber-like materials with nonlinear viscosity.  

Elastomers; viscoelasticity; finite-deformation; nonlinear 

viscosity; 

I.  INTRODUCTION  

Elastomers, capable of sustaining exceptionally large 
deformation, have extensive applications in engineering and 
industrial fields, such as flexible joints, automotive products, 
soft robots, artificial muscles and vibration isolators [1]. 
Formed by the cross-linking of highly mobile and flexible 
polymer chains, elastomers are hyperelastic and highly 
viscoelastic. These two major characteristics strongly affect the 
response of elastomers and have attracted much interest from 
the research community. 

In the literature, numbers of constitutive models have been 
developed to capture the hyperelastic behavior of elastomers. 
These available models are established mainly based on two 
approaches: continuum mechanics treatments and statistical 
mechanics treatments. Developed through continuum 
mechanics framework, the phenomenological models assume 
that the hyperelastic properties of the material can be described 
by a strain energy function [2-3]. On the other hand, the 
hyperelastic constitutive models based on statistical treatments 
link the macroscopic response of the materials to their 
microstructure [4-5]. 

As for modeling the viscosity of elastomers, extensive 
research is also available in the literature. For example, 
phenomenological models that adopt thermodynamics 
evolution laws have been developed to tackle the inelastic 
deformation and viscous effect of elastomers, where the time-
dependent strain variables are determined by the evolution laws 
[6-7]. Nevertheless, in these phenomenological models, details 
of the microstructure of the material related to the viscosity are 
not involved. Therefore, to reveal the physical mechanisms of 
the viscosity of the material, concepts from polymer dynamics 
[8] have been adopted later to develop the micromechanism 
inspired viscoelasticity models [9-10]. Although both the 
phenomenological models and the micromechanism inspired 
viscoelasticity models work well for fitting certain 
experimental data, they cannot capture the nonlinear viscosity 
of the material (viscosity varies with the deformation). 

This motivates us to revisit the theory of polymer dynamics 
and the state-of-the-art theoretical framework of finite-
deformation viscoelasticity to develop a micro-macro 
constitutive model, which aims to capture the viscoelastic 
deformation of elastomers with consideration of their nonlinear 
viscosity. 

II. THEORETICAL FRAMEWORK 

A. Continuum Mechanics Framework 

Following the pioneering works of Sidoroff [11], and Reese 
and Govindjee [7], it is assumed that the elastomer comprises 
an elastic polymer ground network and a viscous polymer 
subnetwork, which can be represented by the rheological model 
shown in Figure 1. Polymer network A is a purely elastic 
network, while network B is a viscous network. Consider a 
material point P in the reference configuration denoted by its 
position vector X. When the elastomer is subject to external 
loads, point P moves to position x in the current configuration. 
Then the total deformation gradient tensor F is defined as 

F=x(X, t). Since the deformation is applied to both polymer 
networks, FA=FB=F. Borrowing a concept from finite-
deformation plasticity, the deformation gradient tensor of 
network B can be further multiplicatively split into two parts, 

i.e., 
e i

B B B=F F F . Here, e

BF  represents the deformation gradient of 
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the spring and i

BF  denotes the deformation gradient of the 

dashpot. Adopting the rheological model in Fig. 1, the total 
Helmholtz free energy density of the elastomer is expressed as 

     e e

A B A A B B,W W W F F F F ,   (1) 

where WA and WB are the strain energy densities of the springs 
of network A and B, respectively [12-13]. Then the Cauchy 

stress tensor  and the first Piola-Kirchhoff stress tensor P are 
given as 
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and 

TJ P TF .    (3) 

Moreover, the internal variables e

BF  and i

BF  must satisfy the 

following thermodynamic evolution equation, i.e., 
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and 1   takes the form 
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where B is the viscosity of the viscous polymer subnetwork B, 
I4 is the fourth order symmetric identity tensor and I is the 
second order identity tensor [7]. 

 

Figure 1. The rheological model of viscoelastic elastomers 
under finite-deformation.  

B. Nonlinear Viscosity 

To obtain the stress with (2), (3), (4) and (5), the viscosity 

B of the viscous network must be constitutively prescribed 

first. Following Doi and Edwards [8], B can be expressed in 
terms of the shear relaxation modulus Gr, i.e, 

B r

0

G dt


  .    (6) 

In the short time-scale (te), Gr is related to the microstructural 
parameters of the polymer network as 

1/2
e

r B B R
G n k T





 
  

 
,    (7) 

where nB is the number of chains per unit volume in 
subnetwork B, kB is the Boltzmann constant, T is the 

temperature, R is the relaxation time of the contour length of 

the primitive chain, and e is the critical time that the Brownian 
motion is restricted by the topological constraints (tube-like 
region) of the polymer network.  

However, in the long time-scale (t >e), the polymer chains 
may reptate out of the topological constraints (the tube). When 
reptation occurs, the shear relaxation modulus Gr is 

proportional to the fraction (t) of the chain still in the tube, 
i.e., 

 
1/2

e

r B B R
G n k T t






 
  

 
.   (8) 

By solving the one-dimensional diffusion equation to obtain 

(t) and integrating the shear relaxation modulus in (6), 

1/24 4 e

B 0
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a

 
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  

 
,    (9) 

where a is the tube diameter in the current configuration,  is 
the monomer friction constant, b0 is the effective bond length 
between monomers, and <*> is the expectation operation of 
parameter * [13].  

Considering nonlinear viscosity, a  should vary with the 

deformation. Moreover, the mean diameter a  is linked to the 

square end-to-end distance of the primitive chain 2

eeR  and the 

primitive chain length L by 2

ee /a L R . Following Li et 

al. [14], 2

eeR  is obtained as 

 
22 3

ee 0f d R F R R R ,   (10) 

where f0(R) is the statistical distribution function of the end-to-

end vector. Also, the mean primitive chain length L  is given 

as 

0 2

0 0d
4

L L



 

F u
u ,    (11) 

where u0 is the initial tangent vector of the primitive chain in 
the reference configuration. Then the ratio of the tube diameter 
between the current configuration and the reference 
configuration is expressed as 
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Here, a0 is the tube diameter in the reference configuration. 
Therefore, the deformation-dependent viscosity is given as 
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indicates the deformation-dependency. 

III. NUMERICAL SIMULATIONS 

To test the modeling capacity of the theoretical framework 
developed above, the material models (the strain energy 
densities WA and WB in (1)) need to be prescribed first. In this 
work, the Gent strain energy density function [3] is chosen as 
WA, i.e., 

2 2 2EQ

lim 1 2 3lim

A

lim

ln
2

JG J
W

J

     
   

 
.             (14) 

Here, GEQ is the shear modulus of polymer network A and Jlim 

is the material extensibility parameter. Also, 1, 2 and 3 are 
the stretch ratios in three directions. We assume that WB takes 
the same form as WA, which gives 
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where GNEQ is the shear modulus of polymer network B. 

Considering uniaxial tension, 1  , 2 3 1/    , 

e e

1   and e e e

2 3 1/    . From (2) and (3), the 

dimensionless nominal stress is obtained as 
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where G= GEQ+GNEQ and = GEQ/G. Also, the thermodynamic 
evolution equation gives that 
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Here, =/GNEQ is the relaxation time. 

Fig. 2 depicts the dimensionless nominal stress P11/G as a 
function of the stretch ratio of the elastomer at four different 

stretching rates, i.e., 0.01/ s  , 0.03 / s  , 0.05 / s   

and 1/ s  . It can be seen that the loading and unloading 

curves overlap at large stretch ratios when the stretching rates 
are relatively low (0.01/s ~ 0.05/s). According to (13), the 

viscosity B is inversely proportional to the second power of 

(F). Therefore, the viscosity of the elastomer is exceptionally 
low at large stretch ratios, which leads to much faster 
relaxation of the polymer chains, thus causing the loading and 
unloading curves to overlap. However, when the stretching rate 
is high (e.g., 1/s), a wider gap between the loading and 
unloading curves appears since the elastomer has less time to 
relax during the loading path. To further examine the effect of 
the nonlinear viscosity on the stress response of the elastomer, 
Fig. 3 depicts the dimensionless nominal stress P11/G obtained 

with B and , respectively. A higher degree of strain-softening 
behavior is observed from the nonlinear viscosity case. 
Moreover, as the stretching rate increases, the stress difference 
between two cases becomes larger. Therefore, it is essential to 
consider the nonlinear behavior of the material viscosity in 
analyzing the stress response of elastomers, or it may lead to 
significant error in calculation. In Fig. 2 and Fig. 3, the material 

parameters are selected as =0.5, Jlim=110 and =500s [12-13]. 

 

Figure 2. Stress response of the elastomer at different stretching 
rates. 
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Figure 3. Comparison of the stress response between linear and 

nonlinear viscosity. (a) 0.01/ s  , (b) 0.1/ s  and (c) 

1/ s  . 

IV. CONCLUSION 

Based on the theory of polymer dynamics and finite-
deformation viscoelasticity, a micro-macro constitutive model 
is developed to investigate the stress response and relaxation of 
elastomers under large deformation. For the developed model, 
all the material parameters have a microscopic foundation or 
physical meanings. Moreover, incorporating the nonlinear 
material viscosity into the continuum mechanics framework for 
finite-deformation viscoelasticity, the developed model can 

adopt most of strain energy density functions for hyperelastic 
solids and thermodynamics evolution laws of viscoelastic 
materials. From our simulation results, it is found that the 
developed model can better capture the strain-softening 
behavior of elastomers, which could be explained by the 
nonlinear viscosity of the material. In summary, the developed 
modeling framework is anticipated to provide significant 
guidelines for studying the viscoelastic behavior of elastomers. 
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