
 1 Copyright © 2018 by CSME 

Proceedings of The Canadian Society for Mechanical Engineering International Congress 2018 

CSME International Congress 2018 

May 27-30, 2018, Toronto, On, Canada 

  

Application of Fiber Bragg Grating Sensor for Strain Measurement at the 
Notch Tip under Cyclic Loading

Amirhossein Pahlevanpour, Bahareh Marzbanrad, Seyed Behzad Behravesh, Hamid Jahed 

Mechanical and Mechatronics Engineering Department, University of Waterloo 

Waterloo, Canada 

 

 

Abstract— Notches are inevitable in many components and 

structures due to design limitations. In addition, they are the 

locations for stress concentration and are susceptible to fatigue 

failure. As a result, the cyclic stress/strain response at a notch 

is of key importance. Fiber Bragg Grating (FBG) sensors have 

been successfully utilized for mechanical and thermo-

mechanical strain measurement in many cases; nevertheless, 

their capability of measuring strain at spots with intensive 

stress/strain has not yet been explored. In this research, FBG 

sensors are employed for strain measurement at the notch tip. 

A verification test was designed to substantiate the FBG 

measurements. The test involves a rectangular magnesium 

sheet with a center hole, subjected to uniaxial cyclic loading 

while the strain was measured at the notch tip using three 

different methods: strain gage, digital image correlation (DIC), 

and FBG. There were good agreements between the three 

measurements. 
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I.  INTRODUCTION 

Fatigue is the dominant failure mode for components under 
cyclic loading, particularly in notched members [1]. To assess 
fatigue life, the cyclic stress/strain response at the notch tip is 
of key importance; however, strain measurement at this 
location has been challenging due to the high gradient of strain 
over a small area in the vicinity of the notch.  

The common experimental approaches for notch 
stress/strain assessment are photoelasticity, thermoelasticity, 
brittle coatings, strain gages, and digital image correlation 
(DIC). Photoelasticity was initially devised by Brewster [2]. 
More than a century later, Coker and Filon developed this 
method as a tool for stress distribution assessment [3]. In this 
technique, a transparent material is utilized for fabricating a 
specimen with geometry similar to that of the notched member, 
and stress distribution is obtained by monitoring changes in the 
optical properties of the loaded transparent specimen via a 
polariscope. Photoelasticity can be adapted to both static and 
dynamic loading scenarios, even though doing so requires 
model preparation, and sometimes, tedious post-calculation [4]. 

The thermoelastic effect in metals was first recognized by 
Weber [5]. Belgen developed the first thermoelasticity 
application for contactless experimental stress analysis [6]. In 
thermoelasticity, local small temperature alterations of the 
loaded specimen indicate the stress distribution, allowing full-
field stress map to be made of the surface. In this method, the 
minimum detectable stress is restricted by the sensitivity of the 
employed apparatus; therefore, high precision requires costly 
experimental setup [7]. 

The brittle coating method begins with spraying a brittle 
coating on the surface of the notched member and letting it dry. 
The applied load will form crack patterns in the coating. The 
region and magnitude of stress concentrations can be indicated 
by comparing the crack patterns with the intact surface of the 
calibration coating. The coating’s vulnerability to humidity and 
temperature, and the qualitative rather than quantitative results 
are two disadvantages of this method [8]. 

The strain gage technique is the most common 
experimental method for local strain measurement. The strain 
gage consists of a metallic foil pattern that acts as electrical 
resistance, supported by an insulating backing. It is attached to 
a prepared surface in the region of interest by a suitable 
adhesive. The dimensional change caused by the applied load 
results in electrical resistance alternation of the foil, which is 
used for strain measurement [9]. Initial calibration, non-
linearity, and pointwise measurement are among strain gage’s 
main drawbacks [7]. 

Digital image correlation (DIC), is a non-contact optical 
technique for strain measurement, employs image tracking and 
registration techniques [10]. One of the first applications of 
DIC for deformation quantification was suggested by Peters 
and Ranson [11]. The DIC’s accuracy has been widely 
substantiated through comparison with finite element and other 
verified methods [12]–[17]. Two DIC algorithms were used by 
Gonzáles and co-workers [10] for elastoplastic strain 
distribution measurement in shallow and deep notches. They 
verified their results with finite element method (FEM). 
Kotousov et al. [18] employed DIC for displacement- and 
strain-fields quantification near a sharp notch and compared the 
measurements with analytical and numerical solutions. 
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The Fiber Bragg grating sensor is another advanced optical 
method for gauging external stimulants like strain. The Bragg 
gratings are written into the germanium-doped core of an 
optical fiber by periodic ultraviolet exposure leading to peculiar 
wavelengths reflection [19]. Any externally applied load and/or 
change in temperature increases or decreases the initial 
wavelength that is recorded by an interrogator during the 
experiment. The magnitude of this alternation can be converted 
into strain values by means of the mathematical expressions 
[19]. Even though the merit of FBG sensors for mechanical 
strain quantification has been verified extensively in the 
literature [20]–[24], its capability for intense notch tip strain 
measurement is still not well understood. 

Because of the high resolution of the grating in the FBG 
sensor, it could be a proper candidate for mechanical strain 
measurement at spots with an intensive stress/strain gradient, 
e.g., at notches. To explore the applicability of the FBG, they 
are employed in this work for strain measurements at the notch 
tip. Variable amplitude cyclic loading was applied to the 
specimen, and the strain was measured utilizing three different 
measurement methods: strain gage, DIC, and FBG. 

II. MEASUREMENT AND TEST PROCEDURES 

A. Material and Experimental Setup 

The material under investigation was 4mm thick AZ31B-
H24 hot-rolled magnesium sheet, provided by Magnesium 
Elektron of North America (MENA). Wrought magnesium has 
different yields in tension and compression [25] similar to the 
strength-differential effect seen in high strength steels [26]. The 
specimen was machined along the rolling direction with the 
dimensions shown in Fig. 1.  

 

Figure 1.  Notched specimen geometry (dimensions in millimeters) 

Miniature strain gage C2A-06-015LW-120 from Micro 
Measurement Co. was selected for parallel strain measurement. 
The geometry of the strain gage is shown in Fig. 2. DAQ-
DQ430 data-acquisition was employed, and one dummy gage 
was linked to the device to support quarter bridge gage 
configuration. 

 

 

Figure 2.  C2A-06-015LW-120 Strain Gage 

 

 

Figure 3.  FBG equipment a) Corning SMF-28 with Bragg Grating b) Micron 

Optic SM125-200 Interrogator 

Corning SMF-28 FBG with 5 mm effective length and 125 
𝜇𝑚 dimeter were used in this research. The fiber optic 
sensor is illustrated in Fig. 3 (a).  The initial wavelength was 
measured to be 1550 nm. The grating modulation is 
Gaussian-apodized for this sensor, and the Bragg grating (1 
mm length) had been written on a single mode of the optical 
fiber. The utilized optical interrogator is a Micron Optic 
SM125-200 with 5 pm resolution and an accuracy specification 
of 10 pm, as shown in Fig. 3 (b). It was connected to one side 
of the fiber optic cable by a FC/APC fiber connector.  

For DIC strain measurement, the ARAMIS 3D System with 
two 5 megapixels CCD cameras, capable of 15 fps readout at 
full resolution has been employed. This stereo system delivers 
precise 3D coordinates by using stochastic patterns or reference 
point markers. 

Three different methods- DIC, strain gage, and FBG- were 
utilized for notch tip strain measurement. The schematic 
configuration indicating the devoted area to each technique is 
illustrated in Fig. 4 (a). To obtain comparable results from the 
different techniques, measurement was performed at the same 
distance from the notch tip. Due to the installation limitations 
enforced by the strain gage dimensions, the strain gage was 
attached to the specimen as close to the notch tip as was 
technically possible. Then, its location was used as a reference 
for the FBG sensor and DIC measurements. The FBG sensor 
was connected to the other side of the notch, as shown in Fig. 4 
(b). For simultaneous strain measurement, LabVIEW was used.  

(a) (b) 
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Figure 4.  Schematic configurations of a) techniques used for notch tip strain 

measurement b) FBG and strain gage positions relative to the notch 

B. Test Procedures 

The specimen was loaded using the 8874 Instron servo-
hydraulic test frame with 25kN load capacity and 100N.m 
torque capacity. The test was run in load-control mode, and a 
variable amplitude load (VAL) pattern was applied. The peak 
force was 13 KN in accordance with the notch tip stress 
concentration to compel plastic deformation at the notch tip, 
while the far field remained elastic. Given the specimen 
geometry, shown in Fig.1, and the mode of loading, Fig. 4 (a), 
the stress concentration factor is equal to 2.5 [27]. The VAL 
loading scenario is depicted in Fig. 5.  

 
Figure 5.  VAL scenario for FBG evaluation 

III. RESULTS AND DISCUSSION 

Fig. 6 shows the test setup. Measured Peak and valley 
strains are tabulated in Table. I, and the engineering strain as a 
function of time is plotted in Fig. 7. All three methods follow 
the VAL pattern closely, with DIC having more noise in the 
measurements. This issue can possibly be resolved by utilizing 
higher resolution cameras. Fig 8. manifests the strain 
distribution around the notch tip for the first peak of loading 
captured by DIC. 

 

 

Figure 6.  Final setup for simultaneous strain measurement 

TABLE I.  FIRST PEAK AND VALLEY OF STRAIN (%) MEASURED BY 

THREE DIFFERENT TECHNIQUES 

Techniques Peak  Valley 

Strain Gage 0.587 -0.497 

FBG 0.601 -0.575 

DIC 0.599 -0.523 

(a) 

(b) 
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Figure 7.  Notch strain measured by three experimental approaches 

 

 

 

Figure 8.  Peak strain distribution at the notch tip captured by DIC a) sample 

with speckle pattern b) strain map  

The FBG sensor was capable of monitoring real-time strain 
during the experiment, whereas for DIC, the obtained images 
had to be analyzed after the test. In addition, the FBG 
pointwise resolution was higher compared to the strain gage. 
Overall, this study demonstrates the promising capability of 
FBG for fine strain measurement at the notch tip. Major 
sources for the slight difference in results are attributed to the 
following: 

 Due to the very high strain gradient in the area near the 
notch root, even a few microns difference in the 
measurement position can affect the results 
significantly. 

 All the implemented techniques average the strain over 
a specific area, e.g., the resistor area (0.38 × 0.5 mm2) 
of the strain gage, although efforts have been made to 
keep it as small as possible. 
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