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Abstract—A modified three-layer model for solid-liquid flow
in horizontal pipes is developed, which overcomes the limitations
of many previous models. The steady-state model predicts the
pressure loss, critical velocity, concentration profile in the het-
erogeneous layer, mean heterogeneous layer and moving bed layer
velocities, and bed layer heights for each set of parameters. We
propose a new correlation for the turbulent solids diffusivity.
This and the steady state model predictions show a good
agreement with experimentally measured results in literature: for
concentration profile in the heterogeneous layer and pressure loss,
over a wide range of conditions [1]. In turbulent flow. the pressure
loss vs mean velocity curve shows a characteristic minimum just
before the critical velocity is attained.

Index Terms—three-layer model, solids transport, critical ve-
locity, solids diffusivity, pressure gradient

I. INTRODUCTION

The flow of solid-liquid mixtures in the form of slurry
occurs in a wide range of situations, e.g. river bed erosion
and sedimentation, ocean-bed avalanches, transport of mined
particulate, etc.. Pipe flows of water-sand slurry are commonly
encountered in many applications such as mined slurry trans-
port, hole cleaning, hydraulic fracturing and gravel packing in
oil & gas wells. There are numerous studies of the fundamental
sub-processes of solids phase transport (erosion, dispersion,
sedimentation, deposition, shear-migration) appearing over the
past 20-30 years, and dating back to the 1950s.

Many different two-layer multi-phase hydraulics models
have appeared in the slurry transport literature, e.g. the two-
layer model of Shook and Bartosik [2], and many others,
where a heterogeneous layer, and a sliding/stationary bed
layer is predicted. Doron and Barnea [3] first introduced a
three-layer slurry transport model. They identified the flow
patterns of slurries flowing in horizontal pipes as the flow
rate increases: (a) flow with a three-layer configuration, i.e. a
stationary bed layer at the bottom, a sliding bed layer in the

middle, and a heterogeneous layer at the top; (b) flow with a
sliding bed and heterogeneous layer; (c) fully-suspended flow.

Transitions between the different observed flow regimes
have historically formed one major axis of the research work
on slurry transport. These are typically represented as transi-
tion velocities, one of the most important being the deposition,
suspension or critical velocity: defining the onset of a bed at
the bottom of the pipe. There are many correlations and models
for predicting the deposition velocity in literature, e.g. that
of Oroskar and Turian [4]. The empirical correlations and
theoretical predictions are in qualitative agreement and what
is interesting about the methodology in [4] is that it is based
on modeling the physical balance between turbulent eddies
suspending the particles and buoyancy driven settling.

Other critical velocity predictions in literature are based on
a frictional pressure drop prediction, e.g. see [3]. Prediction of
frictional pressure gradient is of key importance for industrial
applications and has attracted many researchers since 1950’s.
For example, Turian and Yuan [5] developed correlations based
on over 2800 data points, for the frictional pressure in each
of the four different flow regimes. This is probably the most
comprehensive empirical correlation developed to date.

Particle turbulent diffusivity prediction plays an important
role in modeling the slurry flow and predicting the concen-
tration distribution in the pipe. We mention here the work
of Walton [6] who proposed a correlation to predict the
mean particle diffusivity which consists of three empirical
parameters, Based on which he derived an equation for the
critical particle velocity. However, the correlation does not
account for the dependence of the mean particle diffusivity
on the solids concentration.

In the present paper we present a new three-layer model
which is based on Doron and Barnea’s concept [3], with the
main change in defining the solids diffusivity. This affects
the prediction of the concentration distribution in the hetero-
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geneous layer and with this the critical velocity. A number
of the stress and force closure models in the bed layer were
changed and the heterogeneous layer Reynolds number for fine
particles was modified. Validation against experimental data is
presented in [1]. In §II we outline the model development and
assumptions, and in §III, we bring an example of reference
outputs from the proposed model.

II. MODEL DEVELOPMENT

In this study we outline a steady state three-layer model used
to predict the transport of solids in horizontal wells, typically
sand-water flows. These flows arise in many well operations
and the model is developed to overcome limitations of existing
three- and two-layer models. Conservation of mass equations
for the two phases and momentum balance in each layer
are combined in the model. A convection-diffusion equation
equation models the solids distribution profile and average
concentration in the heterogeneous suspension layer, above the
bed. These 5 equations plus the imposed flow rate are solved
iteratively to predict pressure drop, individual layer heights,
mean layer velocities and solids distribution. Additional clo-
sure expressions are used to describe other effects.

A. Dimensional analysis

Steady state slurry flow along the pipe depends on many
parameters such as the pipe diameter, D̂, the liquid phase
density, ρ̂l, the solids phase density, ρ̂s, the liquid phase
viscosity, µ̂l, the particle diameter in the solids phase, d̂p,
Gravitational acceleration, ĝ, the flow rate of the slurry, Q̂,
measured positive in the downwards direction along the pipe,
and the fraction of the flow rate due to the solids phase, q, (or
alternatively, the mean volumetric concentration of solids in
pipe cross section, say Cv). The last two mentioned parameters
are dimensionless, but others are dimensional.1 Thus, the base
flow is described by four dimensionless groups, plus the solids
phase flux fraction, q, (or Cv). There are various equivalent
choices for the four dimensionless groups, but we will adopt
two geometric groups, which are the scaled diameter ratio ,
δ = d̂p/D̂, and the density ratio, s = ρ̂s/ρ̂l, and two others,
the Froude number (Fr) and Reynolds number (Re):

Re =
ρ̂lD̂Ûs
µ̂l

, (1a)

Fr =
Û2
s

ĝD̂(s− 1)
, (1b)

where Ûs = 4Q̂/(πD̂2). Other choices could have included a
Richardson or Bagnold number.

The base set of five parameters (Re, s, Fr, δ, q) is clearly
not sufficient to fully describe all phenomena one is likely
to encounter in a pipe flow. Characterising the particle dis-
tribution via a single parameter is considered as a simplifica-
tion, apart from a size distribution particle shape can have
significant effects and as soon bed formation and motion

1Throughout this paper we write all dimensional quantities with a .̂ symbol
and dimensionless parameters without.
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Fig. 1. Schematic of the proposed three-layer model, including geometrical
parameters, moving and static bed layers positions, and stresses and forces
on each layer

is considered other mechanical and geometric parameters
become important, e.g. friction coefficient, maximal packing
fraction, etc.

In order to render the model dimensionless we scale all
lengths with D̂, areas with 0.25πD̂2, velocities with Ûs.
The stresses are scaled with 0.5ρ̂lÛ

2
s , forces are scaled with

0.5ρ̂lÛ
2
s D̂ and the pressure gradient is scaled as follows:

∂p̂

∂ẑ
= [ρ̂l(1− Cm) + ρ̂sCm]ĝ +

2ρ̂lÛ
2
s

πD̂

∂p

∂z
, (2)

where 0.25πD̂2Cv = ÂhCh + ÂbCmax, i.e. Cv is the mean
spatial solids concentration.

B. Three-layer steady state model equations

According to the flow parameters, the pipe cross-section
may contain moving and/or stationary beds at the bottom of the
pipe, of heights ŷm and ŷs respectively, see Fig. 1. Above the
bed the flow is assumed to consist of a heterogeneous slurry, in
which the concentration (volume fraction) of solids varies with
height ŷh. Within the bed the concentration is assumed to be at
the maximal packing fraction, C = Cmax. The heterogeneous
layer moves in the axial direction with mean speed Ûh and
the moving bed layer moves with mean speed Ûm.

Conservation of the total mass flow rate is represented by

Q̂ = 0.25πD̂2Ûs = ÂhÛh + ÂmÛm, (3)

and mass conservation of the solid and liquid phases is
governed by:

Q̂q = ChÂhÛh + CmaxÂmÛm, (4)
Q̂(1− q) = (1− Ch)ÂhÛh + (1− Cmax)ÂmÛm, (5)

where Ch is the mean solids concentration of the heteroge-
neous layer and the areas Âh and Âm are heterogeneous and
moving bed cross section areas respectively. Evidently, one of
Eqs. (3 - 5) is redundant.

We select Cartesian coordinates such that ẑ denotes axial
distance along the pipe in the downwards direction, ŷ measure
distance perpendicularly upwards from the base of the pipe,



viewed in a cross-section, and the x̂ direction is orthogonal,
within the plane of the cross-section. The axial momentum
balance in heterogeneous and moving bed layers are:

Âh
∂p̂

∂ẑ
= −Ŝhτ̂hw − Ŝhmτ̂hm, (6)

Âm
∂p̂

∂ẑ
= −F̂mw − F̂ms − Ŝmsτ̂ms − Ŝmτ̂mw + Ŝhmτ̂hm,

(7)

where the perimeters Ŝh and Ŝm are illustrated in Fig. 1. The
axial pressure gradient is denoted ∂p̂

∂ẑ . The mean shear stresses
along Ŝhw and Ŝmw are denoted τ̂hw and τ̂mw, respectively.
F̂ms is the dry friction force acting at the interface between
the moving bed and stationary bed, τ̂ms is the hydrodynamic
shear stress acting on the interface. F̂mw is the dry friction
force acting at the surface of contact of the moving bed with
the pipe wall, Ŝmw, and τ̂mw is the hydrodynamic shear stress
acting on the pipe wall. Closure models for the stresses and
forces are described in §II-D.

To obtain the velocity of the moving bed layer, which is
a key feature of the three-layer model, we use the method
suggested by [3], in which a moment balance equation is
written on a solid particle in the lowermost stratum of the
moving bed layer, which is at the verge of rolling (for more
details, see [3]). Evaluating the moments exerted about the
particle, just about to move, we get:

Ûm =

√√√√0.779(ρ̂s − ρ̂l)ĝd̂p[Cmax ŷmd̂p + (1− Cmax)]

ρ̂lCD
. (8)

Within the heterogeneous layer, the solids distribution C(ŷ)
is governed by a balance between sedimentation and turbulent
resuspension:

0 =
∂

∂ŷ

[
v̂pC + ε̂p

∂C

∂ŷ

]
, (9)

where v̂p is the sedimentation velocity and ε̂p is the turbulent
particle diffusivity. At the interface between bed and hetero-
geneous layer we have C = Cmax, and at the top of the
heterogeneous layer there is no flux of particles, so that:

v̂pC + ε̂p
∂C

∂ŷ
= 0. (10)

C. Concentration distribution in the heterogeneous layer

On scaling ŷ with D̂, and on integrating (9), the solids
distribution within the heterogeneous layer (yb, 1] satisfies the
following initial value problem:

∂C

∂y
+
v̂pD̂

ε̂p
C = 0, (yb, 1], C(yb) = C0. (11)

In the case that there is a bed, (yb > 0), then the initial
condition is given by C0 = Cmax. The differential equation

(11) is solved to give C(y) and the area-averaged value of
C(y) is then computed as follows:

C̄(yb) =

∫ 1

yb

C(y)
√

1− (2y − 1)2 dy∫ 1

yb

√
1− (2y − 1)2 dy

, (12)

We note that the value of C̄ depends also on the initial
condition C0, used in (11), and on any other dimensionless
parameters in (11). Thus, we write C̄ = C̄(yb, C0) and the
height of the heterogeneous layer is determined from the
equation:

C̄(yb, C0 = Cmax) = Ch. (13)

In the case that there is no bed, (yb = 0), then the initial
condition is unknown but the average concentration must still
equal Ch. Thus, C(y) satisfies (11) and the initial condition
is found from

C̄(yb = 0, C0) = Ch. (14)

Evidently, the solution of (11) depends on the closure laws
used for the sedimentation velocity, v̂p, and for the turbulent
particle diffusivity, ε̂p.

1) Sedimentation velocity, v̂p: The sedimentation velocity
is assumed to depend on the particle concentration according
to Richardson and Zaki’s hindered settling law [7]:

v̂p = v̂p0(1− C)n, (15)

where v̂p0 is the settling velocity of a single particle and n
depends upon the particle Reynolds number, Rep. The settling
velocity of a single particle could be obtained by a force
balance between the gravitational and drag forces:

v̂p0 =

√
4ĝ(s− 1)d̂p sinβ

3CD(Rep)
, (16)

where CD(Rep) is the drag coefficient:

CD(Rep) =



24

Rep
Rep < 1.4

ACD
Re0.625p

1.4 ≤ Rep ≤ 500

ACD
5000.625

500 < Rep

(17)

where ACD = 24/1.40.375, and

Rep =
ρ̂lv̂p0d̂p
µ̂l

. (18)

Using the groups Re, Fr, and δ, we can solve explicitly for
v̂p0, from which Rep is determined.

For very low particle Reynolds numbers, the exponent
n only depends on the diameter ratio δ, whereas in the
intermediate range of Reynolds number it depends on both δ
and Reynolds number, and lastly, for high Reynolds numbers
it is a constant. These closure expressions can be found in [7].
It is also worth mentioning that the range of Rep > 500 is
unlikely to be attained. The values of n are between 2.39



for inertia dominated settling and 4.65 for viscous dominated
settling, and also it is a strong function of Rep specially when
0.2 ≤ Rep < 500, while it is a weak function of δ.

2) Turbulent particle diffusivity, ε̂p: For obtaining the solids
diffusivity, we have adopted and modified Eskins model [8],
which is based on an expression for the turbulent diffusivity
in isotropic turbulence and is characterized by two empirical
parameters that have been identified from the experimental
data for solids concentration distribution available in the
literature. Eskins model only covers a small range of diameter
ratio (δ = 3.636e−4 to 9.320e−3), and also used the pressure
drop model of Turian and Yuan [5] to obtain the pressure
drop and the Fanning friction factor along the pipe. Here we
have modified the solid diffusivity model taking into account
a wider range of diameter ratio including much courser ones,
using the pressure drop obtained by the present model. The
modified solids diffusivity correlation is validated against the
experimental data for solids concentration distribution and
critical velocity in the literature; see [1]. The modified solid
diffusivity correlation is as follows.

ε̂p = αδζ(
¯̂ρh
ρ̂h

dp

dx
)

2
3 (1 +

τs
Tl

)D̂Ûs, (19)

where ¯̂ρh is the mean slurry density in the heterogeneous
layer, ρ̂h is the slurry density which is a function of the local
concentration, τs is the particle relaxation time, and Tl is the
Lagrangian time scale for the pipe flow. This model was fitted
against the experimental concentration data using least square
method and we obtained α = 0.81, and ζ was found to be
dependent on the diameter ratio as

ζ = −333.3δ2 + 26.37δ + 1.355. (20)

The particle relaxation time can be calculated as

τs = τst
24

RepCD
(21)

where τst is the Stokesian particle residence time in the flow.

D. Closure equations for stresses and forces

In the following subsections we define the various closures
we have used for the stresses and forces in each layer. For
friction factors we use the Fanning friction factor as opposed
to the Darcy-Weisbach friction factor, i.e. the relation between
a wall stress τ̂w and the friction factor f is

τ̂w = 0.5fρ̂Û2,

and typically f = 16/Re in laminar flow. Explicit friction
factor formulas will be defined in the following subsections
for each layer.

1) Heterogeneous layer: The wall shear stress in the het-
erogeneous layer is defined by

τ̂hw = 0.5[ρ̂sCh + ρ̂l(1− Ch)]Ûh|Ûh|f(Reh, 0), (22)

where Reh is the heterogeneous layer Reynolds number and
fCW is the friction factor, based on the Colebrook-White
relation for turbulent flows, as described below.

We base the heterogeneous layer Reynolds number Reh on
the hydraulic diameter of the layer, on Ûh, on the mean density
of the slurry and on an effective viscosity. Typically these flows
are fully turbulent and the viscosity to use depends therefore
on how viscous stresses are conveyed to the wall. In the case
that the particles are larger than the viscous sub-layer in the
flow, then the fluid effective viscosity is simply µ̂l. In the
case that the particle size is comparable to the thickness of
the viscous sub-layer, we treat the slurry as a pseudo-fluid,
with effective viscosity:

µ̂s = µ̂l[1.0 + 2.5Ch + 10C2
h + 0.0019e20Ch ], (23)

see [9]. Eq. (23) is an extension of the Einstein-Thomas
relation to higher concentrations and sand particles.
To estimate the size of the viscous sublayer d̂v we use the
estimate

d̂v ≈ 10
D̂h

Reh
√

0.5f(Reh, 0)

(i.e. the viscous layer is approximately 10y+ in turbulent duct
flows). Here D̂h is the hydraulic diameter of the heterogeneous
layer and f is the friction factor.

If the particle diameter d̂p satisfies d̂p < d̂v we assume (23)
to be valid: µ̂h = µ̂s. If the particle diameter is significantly
larger than d̂v , say d̂p > 10d̂v , we assume that µ̂h = µ̂l. For
intermediate values of d̂p/d̂v we interpolate between the above
values. Finally, Reh could be obtained using the effective
viscosity in the heterogeneous layer, µ̂h. We note that the
viscosity ratio µ̂h/µ̂l and Reh depend on the 6 parameters
(Re,Ch, s, δ, yb, uh).

The friction factor formula we use is based on the
Colebrook-White equation for turbulent flow. The Colebrook-
White expression is:√

1/f = −2 log

(
2.51

Re
√
f + εr

3.71

)
,

which gives a Darcy-Weisbach friction factor f(Re, εr).
2) Interfacial stresses: The interfacial stresses are defined

in essentially the same as the heterogeneous layer stresses,
except that the velocity differences are used, and a roughness
is assumed at each interface to determine the corresponding
friction factors.

We assume that the ”interface” between the heterogeneous
and moving bed layers is rough, with the roughness εr =
min{1, δ/dh} where dh is the dimensionless hydraulic diam-
eter of the heterogeneous layer. We also assume the “surface”
between heterogeneous layer and bed to be “rough”, with
roughness εr = min{1, δ/dh}. The interfacial stress is then
defined as follows:

τ̂hm = 0.5[ρ̂sCh + ρ̂l(1− Ch)](Ûh − Ûm)

× |Ûh − Ûm|f(Reh,min{1, δ/dh}). (24)

Similarly, for the interface between the moving and stationary
bed layers, we assume the roughness εr = min{1, δ/dm},
and accordingly, we define the dimensional interface stress as
follows.



τ̂ms = 0.5[ρ̂sCmax + ρ̂l(1− Cmax)]Ûm|Ûm|
× f(Reh,min{1, δ/dm}), (25)

where dm is the dimensionless hydraulic diameter of the
moving bed layer. In addition to the defined interfacial stresses
in (26), we should consider the solid particle contribution to
the friction force on the interface Sms due to the effect of the
submerged weight of the particles in the moving bed layer.
In the heterogeneous layer, it is assumed that the weight of
the particles is entirely supported by turbulent suspension. In
contrast, the submerged weight of the particles in the moving
bed layer is supported by the wall and also the interface
Sms. The resulting dry friction force at the interface which is
transmitted to the wall as a Coulomb friction term is defined
as

F̂ms = η(ρ̂s − ρ̂l)gCmaxŷm ˆSms. (26)

3) moving bed layer: Our treatment of the moving bed
layer wall shear stress is similar to that of the heterogeneous
layer, which is defined as

τ̂mw = 0.5[ρ̂sCmax + ρ̂l(1− Cmax)]Ûm|Ûm|
× f(Rem, 0). (27)

Where Rem is the moving bed layer Reynolds number which
could be determined as follows.

Rem = Re dm |um|(1 + (s− 1)Cmax). (28)

As was discussed in §II-D2 the submerged weight of the solid
phase is partially transmitted through the bed to the wall as a
Coulomb friction term. Thus, the dimensional term of the dry
friction force at the wall is defined as follows.

F̂mw = 2η(ρ̂s − ρ̂l)gCmax(
D

2
)2

×{[2 (ŷs + ŷm)

D
− 1]θm + cos(θm + θs)− cos θs}. (29)

4) Static bed layer, and transition to two-layer solution:
The existence of a static bed is determined based on the
momentum balance equation on the static bed layer. It should
be checked whether the sum of driving forces on the static
bed layer exceeds the maximal available resistance force on
this layer. The driving forces on the static layer are pressure
gradient, and the shear at the interface between the moving
and static bed layers. The maximal available resistance is the
dry friction force acting on the periphery of the static bed
which is defined as follows.

F̂mw = 2ηs(ρ̂s − ρ̂l)gCmax(
D

2
)2

×[(
2ŷs

D̂
− 1)(θs +

π

2
) + cos θs]. (30)

where ηs is the dry static friction coefficient. if

Âs
∂p̂

∂ẑ
+ F̂ms + Ŝmsτ̂ms 6 F̂sw, (31)

is satisfied, the static bed layer does not move, and it is
indeed ”static”; Otherwise, the static bed layer moves and we
get a transition from three-layer model solution to the two-
layer model solution, where we assume that there is one bed
layer in the pipe which is moving. For solving the two-layer
problem, we adopt the similar procedure to the three-layer
problem. The only difference between the two problems is
that in the two-layer model, five equations are numerically
handled to get the five unknowns Ûh, Ûm, ŷm, Ch, ∂p̂∂ẑ , whereas
for three-layer model we deal with six equations to get six
unknowns (aformentioned unknowns plus ŷs).

III. RESULT AND DISCUSSION

An example of reference outputs from the proposed model
is given in Figs. 2(a-f). We present results for Cv =
0.2, 0.25, 0.3, 0.35, over a wide range of mean superficial
velocities, for the horizontal pipe diameter of D = 0.1m.
For each example we present the solids phase flux fraction,
frictional pressure drop, heterogeneous and moving bed layers
velocities, and moving and static bed layers heights. Note that
all of the outputs in Figs. 2(a-f) are dimensionless except for
the pressure drop result (Fig. 2(f)). As mentioned before, the
velocities are scaled with slurry mean superficial velocity Ûs,
and the lengths are scaled with the pipe diameter D.

Eq. 11 suggests that the concentration distribution, and the
bed height in the pipe depend on the competition between the
sedimentation velocity and solid turbulent diffusivity. At low
mean superficial velocities, the turbulent eddies are not strong
enough to suspend the solid phase; As a result ,a considerable
portion of the pipe is covered with bed layers, and we get low
mean delivered solids concentration (Figs. 2(a), 2(c), and 2(e)).
Also, the height of the static bed is larger than the moving
bed (Figs. 2(c) and 2(e)). As a result, the mean heterogeneous
layer velocity is at its maximum at low flow rates to satisfy
the continuity equation (Fig. 2(b)).

As the mean superficial velocity increases, the turbulent
eddies get more capable of suspending the solids; Thus, the
mean delivered solids concentration increases as could be
observed in Fig. 2(a). Furthermore, the height of moving bed
increases as the height of static bed drops(Figs. 2(c) and 2(e)).
The total bed height also decreases with increasing the flow
rate. From Eq. (8) it is obvious that the mean moving bed
velocity Ûm monotonically increases with the moving bed
height as long as we get a three-layer configuration with a
static bed, although Fig. 2(d) could be misleading as it shows
the dimensionless mean moving bed velocity um decreases
with the flow rate increases.

As the flow rate increases, we reach a point where there is
no static bed layer, and the pipe consists of the heterogeneous
and the moving bed layers. As was discussed in §II-D4, this is
the transition from the three-layer to two-layer model solution,
where the mean velocity and the height of the moving bed



and accordingly, we define the dimensional and dimensionless
interface stresses as follows.

τ̂ms = 0.5[ρ̂sCmax + ρ̂l(1− Cmax)]Ûm|Ûm|fCW (Reh,min{1, δ/dm}),
(32a)

τms = [1 + (s− 1)Cmax]um|um|fCW (Reh,min{1, δ/dm}).
(32b)

In addition to the defined interfacial stresses in Equation
(33), we should consider the solid particle contribution to the
friction force on the interface Sms due to the effect of the
submerged weight of the particles in the moving bed layer.
In the heterogeneous layer, it is assumed that the weight of
the particles is entirely supported by turbulent suspension. In
contrast, the submerged weight of the particles in the moving
bed layer is supported by the wall and also the interface
Sms. The resulting dry friction force at the interface which is
transmitted to the wall as a Coulomb friction term is defined
as

F̂ms = η(ρ̂s − ρ̂l)gCmaxŷm ˆSms cosβ, (33a)

Fms =
2ηCmaxymsms cosβ

Fr
. (33b)

3) moving bed layer: Our treatment of the moving bed
layer wall shear stress is similar to that of the heterogeneous
layer, which is defined as

τ̂mw = 0.5[ρ̂sCmax + ρ̂l(1− Cmax)]Ûm|Ûm|fCW (Rem, 0),
(34a)

or in dimensionless terms by

τmw = [1 + (s− 1)Cmax]um|um|fCW (Rem, 0). (34b)

Where Rem is the moving bed layer Reynolds number which
could be determined as follows.

Rem = Re dm |um|(1 + (s− 1)Cmax). (35)

As was discussed in section (II-D2) the submerged weight of
the solid phase is partially transmitted through the bed to the
wall as a Coulomb friction term. Thus, the dimensional and
dimensionless terms of the dry friction force at the wall are
defined as follows.

F̂mw = 2η(ρ̂s − ρ̂l)gCmax cosβ(
D

2
)2{[2 (ŷs + ŷm)

D
− 1]θm + cos(θm + θs)− cos θs},

(36a)
Fmw = ηCmax cosβ[(2(ys + ym)− 1)θm + cos(θm + θs)− cos θs].

(36b)

Finally, the axial body force on the bed layer is given by:

F̂mg = [ρ̂sCmax + ρ̂l(1− Cmax)]ĝ sinβÂm (37)

and for the dimensionless version we again subtract the mean
axial static pressure gradient before scaling

Fmg =
0.5π(Cmax − Cm)am sinβ

Fr
(38)

III. IMPLEMENTATION OF NUMERICAL SOLUTION AND
COMPUTATION PROCEDURES
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Fig. 2. Example solutions from the proposed steady state three-layer model
problem at various Cv , as a function og Ûs, for a sand-water mixture flowing
in a horizontal pipe of diameter D̂ = 0.1m. Fixed parameters are Cmax =
0.55, ρ̂s = 2650kg/m3, ρ̂l = 1000kg/m3, µ̂l = 9 × 10−4Pa.s, d̂p =
7× 10−4m, η = 0.5, and ηs = 0.7.

Fig. 3. colormap of concentration in (Ûs, y) plane for Cv = 0.3. Fixed
parameters are Cmax = 0.55, ρ̂s = 2650kg/m3, ρ̂l = 1000kg/m3, µ̂l =
9× 10−4Pa.s, d̂p = 7× 10−4m, η = 0.5, and ηs = 0.7.

layer reach their maximum values. As we further increase
the flow rate, the height of moving bed decreases until we
reach the deposition velocity where there is no sedimentation
bed, and we get a single heterogeneous layer across the
pipe, and evidently, the mean delivered solids concentration
is equal to the mean spatial solids concentration (Fig. 2(a)).
As can be observed in Fig. 2(f), the pressure gradient reaches
its minimum value at the deposition velocity. Furthermore,
the deposition velocity increases with Cv . These findings are
consistent with the published results of most of the researchers
in the field, e.g. [2], [5].

Fig. 3 shows a colormap of solids concentration in the
(Ûs, y) plane for a constant value of Cv = 0.3. At low
flow rates, the bottom of the pipe is at maximum packing
concentration Cmax which indicates the existence of the
sedimentation bed. Also, we observe that the concentration
gradient is very large in the heterogeneous layer at low flow
rates. As Ûs increases, the total bed height decreases as was
discussed before, and the concentration gradient drops as
well. At very high velocities, the solids turbulent diffusivity
becomes dominant and we get a pseudo-homogeneous slurry
flow in the pipe.

IV. CONCLUSIONS

A modified three-layer model for solid-liquid flow in hor-
izontal pipes has been developed which predicts the pressure
loss, critical velocity, concentration profile in the heteroge-
neous layer, mean heterogenous layer and moving bed layer
velocities, and bed layer heights for each set of parameters.
We have also proposed a new correlation for the turbulent
solids diffusivity based on concentration profile and critical
velocity comparison against the experimental data available in
the literature. The pressure loss vs mean velocity curve shows
a characteristic minimum just before the critical velocity is
attained, in agreement with published research.
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