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Abstract—In order to detect natural gas pipeline leaks, ethane 

in the natural gas must be discriminated from background 

methane emissions. Our gas detection apparatus is well-suited 

for this application due to its flexibility and low cost. We 

present a comparison of machine learning models for 

quantitative estimation of concentrations of both methane and 

ethane in a target gas sample, using a response over time from 

a single sensor in our apparatus. We also demonstrate that the 

use of synthetic data is very effective for training a model to 

discriminate between methane and ethane.  
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I.  INTRODUCTION 

Natural gas pipeline leak detection can be broadly 

categorized into “internal” and “external” methods, depending 

on whether the detector resides inside or outside the pipeline. 

Internal methods include acoustic measurement, pressure/flow 

monitoring, and statistical analysis. These methods also often 

make use of one of several mathematical modeling options to 

predict when a leak has occurred. External methods are more 

hardware-based, relying on, for example, acoustic, optical, soil 

monitoring, or vapor sampling sensors [1]. These hardware 

solutions can either be permanently installed in a fixed 

location, or used in conjunction with a mobile monitoring 

apparatus, such as a handheld detector or even a drone. We 

present here the application of a small, cost-effective, and 

highly flexible gas sensing apparatus that can be used in either 

permanent or mobile applications.  

Leak detection requires differentiation between methane 

and ethane, since natural gas will typically contain ~5% ethane 

and must be detected in the presence of background methane 

emission from, for example, nearby agriculture. However, the 

difference between the sensor’s response to methane and 

ethane may not be immediately clear. We employ machine 

learning techniques to discover patterns that will enable this 

discrimination. To offset the requirements of some algorithms 

that a large dataset be provided, we also test the performance 

of our estimation models using synthetic data. Using 

simulations, we will be able to generate predictions of the 

sensor’s responses to wide ranges of concentration, 

temperature, pressure and humidity. All of this can be used to 

train the pattern recognition system to be able to take into 

account the effect of these parameters and give more accurate 

results. 

II. SENSING APPARATUS AND DATA COLLECTION 

The sensing apparatus consists of a Figaro 2610 metal 

oxide semiconducting gas sensor embedded in a 3D-printed 

microchannel, which is coated with chromium, gold, and 

parylene-C to increase selectivity. Full fabrication details are 

given in [4]. This apparatus is quite flexible, and target gases 

can be altered simply by changing which MOS sensor is 

included. This is made easier by the fact that Figaro 

manufactures sensors with similar dimensions, but for a 

variety of target gases. Parallel work in our lab has 

demonstrated the suitability of this apparatus for nuisance 

sewer gas detection [2], wine identification [3], and breath 

analysis. Its small size enables it to be used for both stationary 

and mobile applications, which is extremely beneficial in the 

context of pipeline leak detection, where both types of devices 

may be needed, depending on the individual situation. Figure 

1 displays a model of the microchannel sensing apparatus.  

 
Figure 1. Gas sensing apparatus. Figure from [4] 

Our dataset consists of time-series curves from our sensing 

apparatus in response to a variety of target gas concentrations. 

These targets are created through the use of a mass flow 

controller, and contain known concentrations of methane or 

ethane. We have not yet collected enough data with mixtures 

of both gases to make meaningful predictions, but this is the 

focus of ongoing work, primarily on using simulations to 

create synthetic mixture data to alleviate the time required to 

perform manual tests. Therefore, in the current work, the goal 

of the model is to not only determine which gas it has been 

exposed to, but also to estimate the concentration of that gas.  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by YorkSpace

https://core.ac.uk/display/161989534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 Copyright © 2018 by CSME 

The time-series curves are generated by exposing the 

sensor to the target gas for 40 seconds, then allowing the 

sensor to recover by placing it in fresh air for 150 seconds. An 

example curve is shown in Figure 2. The exposure and 

recovery phases are clearly distinguishable. Some of the 

curves’ features are also shown, which will be discussed in 

Section IV-A. 

 
Figure 2. Comparison of responses to 1000ppm methane and 1000ppm ethane, 

with features #3 and #5 shown 

III. SIMULATION METHODOLOGY 

One of the main challenges of developing microfluidic-

based gas detectors is calibration of the sensor, based on wide 

ranges of different parameters such as changes in the mixture 

concentration, temperature, pressure and humidity. This 

requires a vast number of experiments to generate enough data 

to be able to take into account the effect of each parameter 

accurately. Simulation of the gas sensor can help solve this 

problem as it reduces the number of experiments needed for 

calibrating the sensor, saves time, reduces human and 

instrument errors, and removes many limitations. 

In the current study diffusion of a target gas inside the 

sensor’s 3D printed micro-fluidic channel is studied. The 

simulation is done in a three dimensional model and the effect 

of gas adsorption to the channel walls is also applied to the 

simulation results. 

This methodology does not take into account the individual 

differences between each sensor. To use the simulation data to 

train a model used to estimate real data, the simulations need 

to be tailored to account for the fact that the real sensor does 

not exactly match the theoretical model. However, we present 

here a proof of concept that synthetic data is well-suited to 

training a discriminative model such as those discussed in 

Section IV-B and IV-C. Such a calibration procedure that 

would allow the model to be trained on synthetic data and 

tested on real data is the focus of ongoing work. 

The synthetic dataset was generated by simulating a target 

gas with concentrations from 100ppm to 1000ppm in 

increments of 100ppm, with five repeats for each. To make 

our predictions more robust to day-to-day variations in the 

sensor, and to make our data more realistic, we introduce some 

randomness in the simulations. The actual simulated target 

concentrations were sampled from Gaussian distributions with 

means equal to the ideal target concentrations, and standard 

deviations of 10ppm. Since this randomness is unknown to us 

in a real situation, the estimation targets for these tests are kept 

as the ideal targets i.e. 100ppm, 200ppm, etc. The simulated 

curves for different concentrations of methane are shown in 

Figure 3. 

 
Figure 3. Simulation results for methane, with actual concentrations sampled 

from a Gaussian centered on the ideal concentration 

A. Diffusion model 

As in this study, diffusion of a mixture of gas into another 

is the governing transport phenomena. For this, the Maxwell-

Stefan equation, which is an accurate model for 

multicomponent diffusion for low density gases, is chosen: 
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where xi is the mole fraction, Ni the flux, C the total 

concentration and Dij the diffusion coefficient of component i 

in component j. It worth mentioning that, in a binary system, 

the well-known Fick’s law can also be used to simplify the 

model. [5] 

B. Surface adsorption model 

As the gas diffuses inside the micro-fluidic channel, some 

of the molecules adsorb to or desorb from the channel walls 

which affects the transport phenomena rate. In this simulation 

the adsorption is taken into account using the Langmuir 

adsorption model, which considers the phenomena an 

equilibrium reaction and provides the adsorption and 

desorption rate as: 

          [ ] (2) 
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Where kad and kd are the adsorption (forward) and 

desorption (backward) reaction rates, pA partial pressure of A, 

[S] empty sites concentration and [Aad] is the concentration of 

compound A molecules adsorbed on the surface. [6] 

C. Model assumptions and boundary conditions 

In this model we assume that there is no flow, and the 

diffusion is the governing transport phenomena. Also, there is 

no diffusion of gas molecules to the bulk of channel walls and 

the adsorption is occurring only on surface. The simulation 

model is shown in Figure 4. 
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As the experimental test consists of two steps, exposure 

and recovery, the simulation is also designed in two different 

steps which have different initial and boundary conditions. In 

the exposure phase, there is no target gas inside the channel 

and it is filled with air. At time=0s the sample concentration is 

introduced as the boundary condition at the opening of the 

channel and during this step the diffusion happens for 40s, at 

which point the recovery phase starts. The initial concentration 

is derived from the last time point of the previous step and the 

boundary condition will be set to zero concentration of the 

target gas. 

It is worth mentioning that many other model assumptions 

are inherited from the diffusion and the surface adsorption 

models which can be found in the previously mentioned 

references. 

 
Figure 4. Diffusion simulation model 

IV. CONCENTRATION ESTIMATION 

In this work, we evaluate the performance of both feature-

based and feature-less classifiers. In the case of a feature-

based model, the input to the classifier is a set of pre-designed 

features that are extracted from each of the time-series curves. 

In other words, the input is a set of training vectors    
         , where n is the number of samples in the 

training dataset, and d is the number of features extracted from 

each sample. For the feature-less models, the input is simply 

the raw data, so the training vectors are             , 

where t  is the length of each time-series sample. In both cases, 

the targets y are the known concentrations of both methane 

and ethane:             . Feature-based methods have 

found extensive use with electronic noses, and a considerable 

effort has been made in past decades to design features that 

will produce good classification results [1]. However, it is 

desirable to use a classifier that does not require the hand-

designing of such features. For this reason, we investigate the 

performance of a recurrent neural network, which can take the 

raw sensor data as input, without the need for any feature 

design.  

Preliminary hyperparameter selection for each model 

(including model depth, width, and regularization parameters) 

was done using a common held-out test set consisting of 5% 

of the total data. Once hyperparameters were identified that 

maximized performance on the test set, the final performance 

of the model was evaluated by predicting the methane and 

ethane concentrations for each sample, using a leave-one-out 

method. Leave-one-out can be considered a special case of k-

fold validation with k = n, where n is the total number of 

samples. This means that n models were trained, with one 

sample excluded from each, giving the best possible prediction 

for each sample. The leave-one-out method becomes 

impractical for even moderately-sized datasets, for which 

standard k-fold validation should be used instead, with k 

chosen such that the held-out test data in each case would be 

about 5% of the total dataset.  

A. Feature extraction 

In order to get an idea of which features will discriminate 

well between methane and ethane, we examine the comparison 

of the sensor’s response to 1000ppm of each gas in Figure 2. 

The significant difference in speed of response, especially 

between 20 and 50 seconds, suggests that features such as the 

time at which the signal reaches 50% of its peak value might 

be useful. Along with good discrimination between gases, it is 

also important for the magnitudes of predicted concentrations 

to be accurate. For this reason, features such as the peak value 

and the area under the curve will also be useful because these 

features relate directly to the magnitude of the target gas 

concentration. Table 1 provides a full description of the 

features used. 

Once the features have been extracted, they must be 

processed to ensure that the models can learn properly from 

them. This processing is to make the distributions of each of 

the features have a mean of zero, and a standard deviation of 

one. This is done so that one feature with a much larger 

magnitude than the others does not completely dwarf the 

contributions of the rest. 

Table 1. Extracted features used for feature-based classifiers 

Feature 

Number 
Feature Description 

1 Peak value 

2 Area under the curve 

3 Time to 50% of peak value 

(exposure phase) 

4 Time to 75% of peak value 

(exposure phase) 

5 Time to 50% of peak value 

(recovery phase) 

6 Time to 75% of peak value 

(recovery phase) 

B. Feature-based models 

Many machine learning models perform poorly with time-

series data if the entire time-series is naively given to the 

model to use as training/testing data, due to their difficulty in 

learning temporal relationships. Multi-layer perceptrons 

(MLPs) and support vector machines (SVMs) are two such 

models. Therefore, we evaluate the performance of these 

model using extracted features. 

A multilayer perceptron is a type of feed-forward neural 

network consisting of at least three layers, all but the first of 

which apply a nonlinear transform to a weighted sum of the 

previous layer’s activations. The first layer is called the input 

layer, and it is where the features are input. The last layer is 

called the output layer, and it is where the network’s 

predictions appear. Any layers in between these two are called 
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hidden layers. Since a nonlinear transform is applied at every 

layer, the addition of more hidden layers means that the 

network can learn more complex functions [7]. The activation 

z of layer j is given by: 

                (4) 

where zj is the activation vector of the previous layer, bj is the 

bias vector for layer j, Wij is the weight matrix between layers i 

and j, and σ is a nonlinear transform function, usually either 

the logistic sigmoid or the hyperbolic tangent function. 

MLPs are supervised models, meaning that for the network 

to predict the correct output values, it must be allowed to learn 

on a training dataset for which the correct outputs are already 

known. The goal of this learning is for the network’s 

predictions to be as close to the true outputs as possible. This 

is accomplished by altering the network’s weights and biases 

(Wij and bj for each layer) through a process known as 

backpropagation. It involves updating the weights and biases 

along a gradient that maximally decreases the error. The 

weights and biases are updated according to: 
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where δ is a constant called the learning rate, and ε is the error 

function, such as the mean-squared loss function. The learning 

rate controls how large the weight and bias updates are. If it is 

too small, the network will train slowly, but if it is too large, 

the algorithm may not converge. 

In our case, the network must have five input units, and 

two output units, since we are using five features to predict 

two concentrations. Preliminary testing indicates that three 

hidden layers with 50 units each performed best on our data.  

A support vector machine is a binary classification model 

that can construct a very complex classification surface 

through the use of a kernel function. They are based around 

the idea of achieving the maximum margin separation between 

classes. They achieve non-linear classification by mapping the 

inputs into a higher-dimensional space, where linear 

classification may be able to be accomplished. This idea can 

also be extended to regression analysis by fitting a regression 

hyperplane to the training cases. This allows for a highly non-

linear regression surface. In our case, we actually have to fit 

two SVMs, one for each concentration target, since the 

standard SVM is applicable only to single targets [11]. 

C. Feature-less models 

Recurrent neural networks (RNNs) differ from traditional 

neural networks in the fact that they incorporate memory. 

Each new data point in a time-series that is given to an RNN 

will produce not only an output, but also an update to the 

network’s internal memory state. At each time step, the 

network’s hidden units see not only the input data, but also the 

memory state. Using the training data, the network will learn 

how best to use this memory state throughout the duration of a 

single time series data vector [8]. A simple recurrent neural 

network is shown in Figure 5. 

 
Figure 5. Simple recurrent neural network, with connections from the hidden 

units back to themselves. Figure from [8] 

The hidden layer outputs for an RNN are similar to those 

of an MLP, except that the outputs are now indexed by time 

due to the fact that the output changes for every time point in 

each series. Also, there is an extra term in the expression, 

since the hidden layer’s output at the previous time point 

influences the output at the current point:    

                            . (7) 

In the above equation, Wh represents the weight matrix 

from the previous hidden activation to the current hidden 

activation. 

V. RESULTS 

A. Real data prediction 

As mentioned in Section IV, we are using a leave-one-out 

validation method for determining the quality of our models. 

Our quality metric is the mean-squared prediction error over 

our entire dataset. The error ε is given by: 
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where yij refers to the j
th

 concentration target for the i
th

 data 

sample, ypred,ij is the network’s prediction of yij, n is the number 

of samples, and d is the number of concentration targets per 

sample. In our case, d is equal to two, since we are predicting 

methane and ethane. The error rates for the real data are 

presented in Table 2. 

Table 2. Mean-squared error comparison for the models studied 

Model Mean-squared 

Error 

Mean Error 

(ppm) 

MLP 1,845 43.0 

SVM 3,079 55.5 

RNN (1 layer) 22,781 150.9 

RNN (4 layers) 8,276 91.0 
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While the RNN requires less effort in feature engineering, 

it did not perform as well as the more traditional feature-based 

models. This can be attributed to the fact that the RNN’s 

performance increases significantly with a deep model (four 

layers vs one), and deep models tend to require much more 

training data than shallow models [9]. This makes the 

possibility of using synthetic data particularly attractive. 

B. Synthetic data prediction 

For the tests with synthetic data, there was no additional 

model parameter tuning; the same values were used on both 

the real and synthetic datasets. However, since we have 100 

simulated examples, k-fold validation with k=20 was used 

instead of the leave-one-out method. This significantly 

reduced the training time. The error rates for the synthetic 

dataset are presented in Table 3. 

Table 3. Mean-squared error rates for the sythetic dataset 

Model Mean-squared 

Error 

Mean Error 

(ppm) 

MLP 74  8.6 

SVM 288 17.0 

RNN (1 layer) 4,120 64.2 

RNN (4 layers) 6,025 77.6 

As predicted, all of the models saw an improvement when 

using the synthetic dataset instead of the real data. This is 

likely due to the fact that the synthetic data is cleaner and 

contains less variance than the real data. In future tests, the 

randomness added to the synthetic data should be increased to 

match the distribution of the real data. 

The deep RNN did not see as much of an improvement as 

the other models, which might mean that it requires additional 

training time since more data samples were used. 

VI. CONCLUSION 

Even though the RNNs failed to outperform the feature-based 

methods, the overall results show that the quantification of 

methane and ethane with a single MOS sensor is very feasible, 

even when the identity of the target gas is unknown. Once a 

large volume of simulation data has been accumulated, the 

application of the models described in this work, along with 

the integration of our sensing apparatus with a stationary or 

mobile platform will be viable, low cost, and non-invasive 

method of detecting natural gas pipeline leaks. 

VII. FUTURE WORK 

The estimation results presented here have been limited to 

the discrimination between two different gases, and 

concentration estimation of the target gas. Future work will 

include extension to estimating the concentration of both 

methane and ethane in an arbitrary mixture. To accomplish 

this, we anticipate the need for more information than a single 

time-series. For example, multiple different sensors can be 

used with one microchannel, and ideally one of them would be 

more sensitive to either methane or ethane than the other. 

Electronic noses typically do contain more than one type of 

sensor, but since methane and ethane are so similar, the 

approach of adding different types of sensors will not likely 

make a big improvement. The more promising approach is to 

use multiple identical sensors, each with a microchannel of a 

different length. This will accentuate the differences in 

diffusion between the two gases, rather than the difference in 

how they affect the sensor. 

Future work will also include the extension of the 

algorithms described here to other projects in our lab, as 

described above [2][3]. In addition, we will be investigating a 

variant of the RNN called the long short-term memory 

(LSTM) network, which tends to learn longer-term 

dependencies better than regular RNNs [10]. 
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