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Abstract—Lithium ion batteries play important roles as energy 

storage solutions in electric vehicle, portable devices, and 

renewable energy systems. There are many issues facing 

lithium ion batteries. One of them is the long charging time 

due to the slow electrochemical dynamics. Fast charging is 

one of the most difficult techniques that affect the acceptance 

of the electric vehicles. This paper presents a single particle 

battery model for charging optimization. The single particle 

model is enhanced with electrolyte dynamics. An optimal 

charging problem is formulated based on the electrolyte 

enhanced single particle model. Safety constraints are 

identified and imposed on the optimal charging problem. 

Multiple techniques have been developed to reduce the 

computational load. The fast charging strategy is developed. 

The results show that the fast charging strategy includes 

multiple phases and is able to reduce the charge time 

significantly.  
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I.  INTRODUCTION 

 Limited fossil fuel reserve and global warming provide a 
strong driving force for transportation electrification and clean 
energy technology. Lithium ion batteries play an important role 
as the most widely used energy storage system, and therefore 
are essential to the sustainable development of our society. 
There are still many issues facing lithium ion batteries. One of 
them is the long charging time due to the slow electrochemical 
dynamics. Compared with conventional vehicle which refuels 
in couple minutes, electric vehicle takes several hours to 
recharge. Battery recharge also requires meticulous control due 
to complex electrochemical reactions, immeasurable internal 
states, and serious safety concerns. It is thus important and also 
the focus of this article to develop a systematic approach 
solving for the optimal charging strategy while ensuring the 
safety during the charging process. 

There are many charging protocols in the literature, such as 
constant-current / constant-voltage (CC/CV), pulse current 
charging, multi-stage charging [4], constant power charging, 
pulse voltage charging [1], [2], [3], neural networks[5], and 
fuzzy logic[6, 7]. The most widely used charging protocol is 
the constant-current / constant-voltage (CC/CV). These 
approaches use predefined charging profiles with fixed current, 
voltage, or power constraints. Therefore, they are simple to 
implement. Most of them are based on the basic knowledge or 
experience of battery dynamics. These charging methods don’t 
provide the best achievable performance determined by the 
electrochemistry.  

This paper aims to develop a systematical approach for 
solving the optimal charging strategy based on a single particle 
model with electrolyte dynamics. An optimal control problem 
is mathematically formulated. The fast charging strategy is 
investigated. Multiple techniques, including time to SOC 
domain conversion and electrolyte dynamics approximation, 
have been developed in this paper to reduce the computational 
burden while maintaining the accuracy.  

The rest of the paper is structured as follows. In section II, 
the physics-based single particle model is presented, and the 
electrolyte dynamics is simplified and added to the single 
particle model. The model is validated against experimental 
data. In section III, the optimal charging problem is formulated, 
and the fast charging strategy is then derived and investigated. 
In section IV, the optimized fast charging strategy is discussed 
in details. Section V concludes the presented work.  

II. EELECTROLYTE ENHANCED SINGLE PARTICLE MODEL 

In the following we describe in detail the single particle 
model with electrolyte dynamics.  

A graphite/LiFePO4 cell with 400mAh is considered in this 
study. The single particle approach is used here. In the SP 
model, electrodes are assumed to consist of spherical 
intercalation particles with identical size. The surface of the 
spherical particle is scaled to that of the porous electrode. The 
key assumption in the single particle model is that the current 
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distribution is taken to be uniform along the thickness of the 
electrode. Figure 1 provides a schematic of the SP model with 
electrolyte dynamics. 

The mass balance of lithium ions in an intercalation particle 
of electrode active material is described by Fick’s second law 
in a spherical coordinate system. Here the diffusion equation is 
simplified by using two-term polynomial approximation [8-10] 
as follows: 
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where       , electrode’s SOC, is the ratio of the solid average 

concentration to the maximum solid concentration        for 

each electrode.    is the current density for each electrode.    is 
the electroactive surface area for each electrode.      is the 

applied current.    is the particle radius.         is the ratio of 

the solid surface concentration to the maximum solid 
concentration.      is the solid phase diffusion coefficient.   is 

the Faraday constant.  

 

Figure 1. Electrolyte enhanced single particle model 

The rate of lithium intercalation and deintercalation 
reactions is related to the surface SOC and over potential, and 
is expressed through the Butler-Volmer equation as follows.  
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where    is the over-potential for lithium ion 

deintercalation/intercalation reactions.      and      are the 

anodic transfer coefficient and cathodic transfer coefficient 
respectively.   is the gas constant.   is the temperature.    is 
the reaction rate coefficient.  

   and    can be estimated as[11] 
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The over-potentials are calculated by the following 
equations  
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where    is the electrode’s potential.   
  is the open circuit 

potential in the appendix.  

The cell voltage equals to the difference of solid phase 
potential between the positive and negative electrodes plus the 
voltage loss due to the internal resistance. 

                      (10) 

where       is the internal resistance.  

The material balance for the binary electrolyte in the liquid 
phase is given by [12] 
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where    is the lithium ion concentration,    is the electrolyte 

phase volume fraction,   
   

 is the effective electrolyte phase 
Li diffusion coefficient.   

  is the transference number.  

 
Figure 2. (a) Equilibrium Li+ concentration at different charge rates. (b) 

Comparison of Li+ concentration responses between full order model and 

transfer function. (c) Input current profile to both full order model and transfer 
function. 
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During charging, the longer the diffusion distance of the Li
+
 

ions, the greater the decrease of the Li
+
 concentration in the 

electrolyte. The lowest electrolyte phase lithium ion 
concentration occurs near the anode current collector (the 
diffusion distance is longest from the cathode). Therefore, the 
lithium depletion could occur near the anode current collector. 
Based on the full-order model in our previous work [12], a 
static map is generated to predict the equilibrium Li

+
 

concentration at the anode current collector surface (here the 
diffusion distance is longest) at different charging rates as 
shown in Figure 2. The Li

+
 concentration decreases at the 

anode current collector as the charge rate increases. It reaches 0 
       when charge rate reaches about 2.9C as shown in 
Figure 2. When the charge current continues to increase 
beyond 2.9C, the equilibrium Li

+
 concentration decreases to 

negative values. This is impossible and meaningless in reality. 
However, it’s possible in the simulation, because the 
concentration is just a continuous variable. Although the 
negative equilibrium Li

+
 concentration beyond 2.9C is 

meaningless in reality, it is actually very useful for predicting 
concentration decreasing rate at high charge rates. The lower 
the negative equilibrium lithium concentration at a charging 
rate, the greater the decreasing rate of the current lithium 
concentration at that charging rate.  

TABLE I.  BATTERY MODEL PARAMTERS 

Parameter 
Negative 

electrode 
Separator 

Positive 

electrode 

Electrode thickness (m)                         

Particle radius    (m)                  

Electroactive surface area    (m
2
) 0.8458  12.6641 

Active material volume fraction    0. 5384  0. 4179 

Filler volume fraction    0.172  0.172 

electrolyte phase volume fraction     0. 2896 1 0. 4101 

Max. concentration        (mol m
-3

) 26390  22806 

Initial electrode’s SOC,        0.017  0.7862 

Li diffusion coefficient      (m
2
s

-1
)                       

Initial electrolyte concentration (mol m
-3

) 1200 1200 1200 

Charge transfers coefficient   ,    0.5  0.5 

Reaction rate coefficient     (Am
-2

)                      

Time constant for diffusion dynamics    
(s) 

60 60 60 

ad: adjusted 
 

The nonlinear electrolyte diffusion equation has high 
fidelity. However, it’s very computationally costly due to its 
PDE nature. Therefore, a first-order transfer function is used to 
approximate the Li concentration dynamics at anode current 
collector. The first-transfer function is given as follows. 
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where       is the instantaneous lithium concentration (in 
Laplace domain) at anode current collector.          is the 

equilibrium lithium concentration at a given charge rate.    is 
the time constant for the diffusion dynamics.  

The transfer function in Laplace domain can be converted 
into time domain as follows 
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The above first-order equation is able to accurately predict 
the lithium concentration evolution at the anode current 
collector. In this equation, lower negative       will lead to 

lower negative value of 
   

  
 , which means greater lithium ion 

decreasing rate. Therefore, a negative value beyond 2.9C in 
Figure 2 indicates a high decreasing rate of   .  A comparison 
between transfer function prediction and the full-order 
model[12] prediction is shown in Figure 2. A charging current 
profile is input into both transfer function and full-order model. 
And the resultant Li

+
 concentration profiles at anode current 

collector are compared. As shown in Figure 2, the transfer 
function has a very high accuracy (almost 100%) of predicting 
the Li

+
 concentration compared with full-order model. 

Therefore the diffusion dynamics of electrolyte can be 
simplified by using a static map of equilibrium lithium 
concentration at different charge rates and a first-order transfer 
function. This technique developed in this paper significantly 
reduces the computational cost, and also the states needed in 
the optimal charging problem. 

The battery model parameters are summarized in Table I 
and more details can be found in [12-14].  

The single particle model with electrolyte dynamics is 
validated against experiment data. The battery cells used are 
graphite/LiFePO4 cells with 400mAh nominal capacity. As 
shown in Figure 3, a current profile is applied to both the single 
particle model and the real battery cell. Voltage responses from 
both simulation and experiment are compared. The RMSE of 
voltage is about 41mV.   

 

Figure 3. Experiment results for fast charging strategy. 

III. CHARGING STRATEGY OPTIMIZATION 

Based on the validated single particle model, an optimal 
charging problem is formulated with the aim to reduce the 
charge time while ensuring the safety constraints. The cost 
function is given by 
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where          is the charge time. The optimization variables 

are the input current      and final time    , with the state 

variables,        (electrode’s SOC) and    (electrolyte 

concentration). 
The above optimal charging problem is formulated over 

time domain. The final time is a variable. To further reduce the 
state variables and optimization variables, the problem is 
converted from time domain into SOC domain.  In this paper, 
the anode electrode SOC,       , is used to represent the SOC 

for the battery cell.  When the battery is being charged, the 
anode SOC starts at a very low level (close to 0), and increases 
to a target high level. Therefore, we can formulate the cost 
function over anode SOC domain instead of time domain. 
Anode SOC is first divided in to many small segments     . 
Over each      segment, the charging time can be calculated 
by the following equation. 
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where       is the charge time for the segment     . 
Therefore, the new cost function in anode SOC domain 
becomes 
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where anode electrode             (fully discharged) and 
           (fully charged). After the time to SOC 
conversion, the state variable SOC is eliminated, and 
optimization variable     is also eliminated. The optimization 
variable is now the input current        only. The only state 
variable is the electrolyte concentration    at anode current 
collector. The above time to SOC conversion technique 
simplifies the optimal control problem, and reduces the states 
and control inputs.  

The optimal control problem has the following constraints 
for model dynamics, inputs, and states.  

            (18) 
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These constrains protect the active particle from overcharge 
(saturation on anode and depletion on cathode), electrolyte 
from depletion and cell voltage from overvoltage. 

Dynamic Programming (DP) is a very powerful, general 
tool for solving sequential decision making problems. DP as an 
extremely powerful approach has been extensively applied to 
real-world optimal control problems, including hybrid vehicle 
control system[15], path planning for autonomous vehicles[16],  
hydroelectric generation scheduling[17], etc… 

IV. OPTIMIZATION RESULTS 

In this section, the optimal charging problem is solved by 
dynamic programming. The optimized charging strategy is 
studied and discussed in details.  

 

 

Figure 4. Optimization results for fast charging strategy. 

   

The charging strategy pursued by this work aims to charge 
a battery as fast as possible. Dynamic programming is applied 
to find the optimal charging strategy which achieves the 
minimum charging time. The optimized charging current 
trajectory is shown in Figure 4. It takes about 19 minutes 18 
seconds to achieve a target anode SOC of 61% (fully charged) 
from an initial anode SOC 1.7% (fully discharged).   

 
As shown in Figure 4, the optimized charging process can 

be divided into three stages. In the first stage, a high maximum 
current is applied until the Li

+
 concentration in the electrolyte 

at the anode current collector depletes. In the second stage, the 
current is lowered to a level to avoid lithium depletion in the 
electrolyte and maintain a constant and small Li

+
 concentration 

in the electrolyte at the anode current collector. In the third 
stage (close to the end of charge), the lithium concentration on 
the cathode surface decreases and gets close to zero, the charge 
current is gradually lowered to avoid the lithium depletion on 
the cathode surface. The whole charging process follows 
constant-current / constant-electrolyte-concentration / constant-
cathode-concentration (CC/CEC/CCC).  

V. CONCLUSION 

This paper enhances the single particle model with 
electrolyte dynamics. Based on the enhanced model, the fast 
charging strategy is investigated. An optimal charging problem 
is formulated to solve for the fast charging strategy that 
achieves the minimum charging time. Dynamic programming 
as an extremely powerful approach has been used to find the 
optimal fast charging strategy. Multiple techniques, including 
electrolyte dynamics approximation and time to SOC domain 
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conversion, have been used in this paper to reduce the 
computational cost and dimensions of the problem for the 
dynamic programming. Fast charging strategy is investigated 
and discussed in details. This charging strategy takes the 
shortest time to charge the battery, about 19 minutes 18 
seconds in this study. The fast charging strategy can be divided 
into three stages and follows constant-current / constant-
electrolyte-concentration / constant-cathode-concentration 
(CC/CEC/CCC).  
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APPENDIX 

The equilibrium potentials are obtained by C/50 charge 

and discharge, as shown in Figure A1. 

 
Figure A1. Equilibrium potentials for anode and cathode 
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