View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by YorkSpace

Proceedings of The Canadian Society for Mechanical Engineering International Congress 2018

CSME International Congress 2018
May 27-30, 2018, Toronto, ON, Canada

PARTICLE IMAGE VELOCIMETRY DATA PROCESSING ON A GPU CLUSTER

C. Dallas
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Canada

Abstract— Particle image velocimetry (PIV) data processing
is a computationally expensive process. The immense time
taken to analyze data can limit the maximum dataset size.
Using graphics processing units (GPUs) has been shown to
drastically decrease the processing time for PIV image pairs.
The open-source PIV data processing software OpenPIV has
been ported to run on a GPU to boost speed and efficiency and
has outperformed the CPU version of the software. A multi-
pass method is being implemented in OpenPIV to improve both
speed and accuracy. The completed algorithm will be tested on
an embedder CPU-GPU device, a desktop computer, and the
SOSCIP GPU-accelerated supercomputing cluster. Ultimately,
OpenPIV will run on a wide variety of computer platforms an
enable larger datasets to be collects, leading to better statistics
on the resulting velocity fields.

Keywords- PIV; GPU

I. INTRODUCTION

Particle image velocimetry (PIV) has become a powerful
tool for studying aerodynamic flow. However, the time required
to process PIV data can be considerably large which limits
the maximum size of a dataset, leading to concerns about
statistical convergence. Normally, PIV data is processed on
serial computers, utilizing multiple cores and multithreading
technology to speed up calculations. Despite advances in serial
computing hardware, the processing remains too slow for large
datasets. Therefore, PIV algorithms are being developed to
run on parallel architectures equipped with graphics processing
units (GPUs).

Most PIV algorithms use cross-correlation-based methods
which are extremely parallelizable and therefore can be con-
siderably accelerated using GPUs. Executing a PIV window
deformation algorithm with multiple GPUs on a 256 x 256 pixel
image, researchers were able to increase processing speed by
120 times, resulting in a processing speed of 30 pairs per second
[1]. In another study, by storing matrices as texture maps on
the GPU, images were processed at a speed of 13 pairs per
second for a 1024 x 1024 pixel image [2]. Taking a different

P.E. Sullivan
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Canada

approach, researchers using a gradient-based cross-correlation
algorithm (FOLKI) on an NVIDIA Tesla C1060 GPU achieved
a 50x speedup on 1376 x 1040 pixel images, resulting in a
processing speed of 5 image pairs per second [3]. This is an
immense speedup, considering that analyzing a single image
pair on serial computers can take on the order of one minute.

It is clear that GPUs can be used in various PIV algorithms
to accelerate data processing. Some commercial PIV software
has added support for GPUs, but the code is proprietary and
thus cannot be developed, optimized for specific architectures,
or ported to different architectures such as ARM processors or
supercomputing clusters. Therefore, the open-source PIV data
processing code OpenPIV has been developed to utilize GPUs.
Transferring the cross-correlation portion of the algorithm to the
GPU resulted in a 10x speedup when compared to running on
a CPU. The total processing time only decreased by a factor
of 2. The majority of processing time was spent on the CPU
performing sub-pixel peak approximations and velocity field
calculations, both of which could be accelerated using a GPU.
Another shortcoming of OpenPIV is it does not have full support
for multi-pass. A PIV multi-pass algorithm first calculates a
coarse velocity field (usually on a 64 x 64 pixel grid), then
uses that information to calculate a finer velocity field. This
process repeats until noise levels becomes too great and the
highest resolution velocity field is achieved. Furthermore, for
complex flows with turbulence and regions of high shear, the
absence of a multi-pass PIV algorithm results in more spurious
vectors in the final velocity field. Correcting for the spurious
vectors is computationally expensive and can not be ported to
a GPU, inevitably slowing down the computations. Developing
the multi-pass portion of OpenPIV to execute on the GPU would
greatly reduce the number of spurious vectors as well as the
processing time.

Having a fast, open-source platform for PIV data processing
using GPUs would be a valuable tool for multiple researchers.
The code can run on any platform, and can be optimized for
specific systems. For this to be fully realized, more of the code
must be rewritten to run on the GPU, and full support for multi-
pass must be added. To ensure universality of the code across

1 Copyright © 2018 by CSME

https://core.ac.uk/display/161989488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

platforms, the OpenPIV software will be tested on a desktop
computer with a GPU, an embedded CPU-GPU development
system, and the SOSCIP GPU-accelerated supercomputing clus-
ter at SCINET.

II. METHODS

All software development is done using an NVIDIA Jetson
TX1, referred to from now on as the TX1, which is an embedded
CPU-GPU platform for developing GPU accelerated software.
The TX1 includes a quad-core ARM Coretx-A57 processor
(host) with 4GB of RAM, a 256-core NVIDIA Maxwell GPU,
and a variety of I/O ports for peripherals. The host runs the
algorithm and transfers certain calculations to the GPU. The
data transfer between the host and the GPU is time consum-
ing and often comprises most of the GPU related processing
time. Therefore, maximal speed is obtained by strategically and
efficiently managing data transfer between the host and GPU.
For further testing, the software will be run on a desktop CPU
with 16GB of RAM and an NVIDIA GEFORE GT 710 GPU, as
well as the SOSCIP cluster at SCINET which includes 14 IMB
servers, each with 2 x 10 core CPUs with 512GB of RAM and
4 NVIDIA Telsa P100 GPUs.

The version of OpenPIV being developed was originally
written in Python. However, Python is unable to execute on the
GPU. To run code on an NVIDIA GPU, the CUDA interface
must be used. CUDA is a layer of software that allows certain
languages, such as C, C++, and Fortran, to execute on the
GPU. Therefore, the library PyCUDA [4], a Python wrapper
for CUDA functions, was used to insert C code into OpenPIV
and interface with the GPU. Additionally, some functions from
the GPU accelerated Scikits-CUDA library were used. For
increased speed, OpenPIV was compiled using Cython.

The PIV algorithm works by cropping an image pair into
smaller overlapping regions called interrogation windows (IW)
and then uses a FFT-based cross-correlation algorithm on each
IW pair to calculate the velocity field. A depiction of the process
is shown in Figure 1. This portion of the algorithm has already
been written for the GPU, resulting in a 10 X — 35x speedup
depending on IW properties. To further improve OpenPIV,
multi-pass capabilities will be added to the software.

A PIV multi-pass algorithm iteratively refines the resolution
of the velocity field until the maximum resolution is achieved.
First, a coarse velocity field is calculated over the domain.
Then, the grid is refined and corrections to the velocity on the
finer grid are calculated. This process is then repeated until the
noise becomes excessive, or the properties in each grid cell are
not optimal for PIV calculations. The iterative method being
developed in OpenPlV is based on the work done by Scarano
and Riethmuller [5]. The multi-pass algorithm in OpenPIV must
be parallelized to run on the GPU. The algorithm contains
multiple loops for bounds checking, correction calculations,
interpolations, and velocity calculations that can be massively
accelerated using the GPU.

IR

—1
[1
.
GPU To
| FFT CPU

i) Crop i) FFTs done iii) Multiply windows.
interrogation simultaneously Apply IFFT
windows simultaneously

Figure 1. Scheme for calculating FFTs on the GPU

III. EXPECTED RESULTS

The OpenPIV software will be tested on two datasets. The
first contains data on a flow control experiment of low Reynolds
Number airflow over an airfoil. The experiment was done at
a range of angles of attack using a variety of flow control
parameters. Details of the experimental setup can be found in
[6]. 1000 image pairs were taken at a resolution of 2560 x 2160
pixels. This data was originally processed using the commercial
software package LaVision, which provides a set of results for
comparison.

The second dataset is open-source and was originally in-
tended to test PIV uncertainty quantification algorithms [7]. The
experiment consists of a single turbulent jet with multiple sets
of images taken at different regions of the jet, including the
jet-core and shear layer. The dataset at each location contains
an accurate velocity field calculated from ultra-high resolution
images as well as a set of lower resolution images to use with
PIV software.

For both datasets, three properties will be investigated. First,
the difference in processing time between the GPU-accelerated
and CPU version of OpenPIV will be calculated. It is expected
that the GPU-accelerated version will be more than 2x faster
than the CPU version as more portions from the previously
accelerated algorithm are being moved to the GPU. Second, the
number of spurious vectors produced in the final velocity field
with and without multi-pass will be compared. It is expected that
the multi-pass version will produce far less spurious vectors as it
should reduce the relative noise level in the calculations. Third,
velocity field results of the full GPU-accelerated, multi-pass
algorithm will be compared to the LaVision and high resolution
velocity field in each dataset. Comparisons for each image pair,
the resulting velocity field, and other statistics will be made.
When previously compared to LaVision, the CPU version of
OpenPIV which did not use multi-pass performed well, except
in regions of high shear, such as the boundary layer over the
airfoil. The addition of multi-pass is expected to greatly improve

2 Copyright © 2018 by CSME

the accuracy of the algorithm, especially in regions of turbulence
and high-shear.

The processing time will be tested on three different com-
puter platforms to investigate how the algorithm performs across
architectures. The platforms, mentioned before, are the Jetson
TX1, a desktop computer equipped with an NVIDIA GPU,
and the SOSCIP GPU-accelerated supercomputing cluster at
SCINET. The comparison between the TX1 and the desktop
computer will be interesting, as the TX1 has a two times more
powerful GPU, but the desktop has four times more RAM.
It is still expected that the TX1 will outperform the desktop
computer, as the bulk of the calculations will be done on the
GPU.

Despite the fact that the SCOSCIP cluster is expected to
massively outperform the other platforms, the results can be
used to infer a maximum PIV dataset size when using super-
computing clusters. When using normal desktop computers,
reasonable PIV datasets range from 500 - 1000 images. This
puts severe limits on the statistical convergence of some calcu-
lations, and increasing the image size by an order of magnitude
or more using a supercomputer cluster would be extremely
advantageous.

IV. CONCLUSION

Running PIV algorithms on GPUs can greatly decrease
processing time. The open-source PIV data processing software
OpenPlV is currently being developed to run on a GPU with
added support for multi-pass. The software is written in a
combination of Python and CUDA C which is then compiled
using Cython, which can run on any architecture that has a

CUDA capable GPU. Once complete, OpenPIV will be tested in
a variety of datasets for speed and accuracy. The software will
also be run on an embedded computer, desktop computer, and
supercomputing cluster to compare performance. Ultimately,
this project will provide an open-source tool for PIV analysis
that will operate on a wide variety of computing platforms.

REFERENCES

[1] S. Tarashima, S. Someya, and K. Okamoto, “Acceleration of Recursive
Cross-Correlation PIV Using Multiple GPUs,” Proceedings of the
ASME/JSME 2011 8th Thermal Engineering Joint Conference, 2011.

[2] T. Schiwietz and R. Westermann, “GPU-PIV,” Vision, Modeling and
Visualization, 2004, pp. 151-158.

[3] F. Champagnat, A. Plyer, G. Le Besnerais, B. Leclaire, S. Davoust, and
Y. Le Sant, “Fast and accurate PIV computation using highly parallel
iterative correlation maximization,” Experiments in Fluids, vol. 50 (4),
2011, pp. 1169-1182.

[4] A. Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time
code generation,” Parallel Computing, vol. 38 (3), 2012, pp. 157-174.

[5] F. Scarano and M. L. Riethmuller, “Iterative multigrid approach in PIV
image processing with discrete window offset,” Experiments in Fluids,

vol. 26 (6), 1999, pp. 513-523.
[6] M. Feero, S. D. Goodfellow, P. Lavoie, and P. E. Sullivan, “Flow

Reattachment Using Synthetic Jet Actuation on a Low-Reynolds-Number
Airfoil,” AIAA Journal, vol. 53 (7), 2014, pp. 1-10.

[7] A. Sciacchitano, D. R. Neal, B. L. Smith, S. O. Warner, P. P. Vlachos,
B. Wieneke, and F. Scarano, “Collaborative framework for PIV uncertainty
quantification: the experimental database,” Measurement Science and
Technology, vol. 26 (7), 2015, p. 074004.

3 Copyright ©) 2018 by CSME

