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Abstract— In this study, a program based on finite element 

method is developed for rotor dynamic analysis of gas turbine 

rotors. In the FE model of the rotors, various minor and major 

parts of the rotor are modeled using the cylindrical and tapered 

Timoshenko beam elements and the lateral vibration behavior 

of the rotor is evaluated. In the paper, the lateral vibration 

behavior of a certain gas turbine rotor is analyzed using the 

developed finite element program and coupled lateral-torsional 

vibration behavior of the rotor is analyzed using 3D finite 

element model. A good agreement exists between the results 

obtained from two FE models. Two design models are used 
for the rotor one of which has 2 bearings and the other one has 

4 bearings with specific locations. The effects of the number 

of the bearings on the critical speeds, operational deflection 

shapes and unbalance response of the rotor is investigated. It is 

found that the number of the bearings has significant effect on 

the first critical speed but slight effect on the second and third 

critical speeds. It is demonstrated that the number of the 

bearings can be used as one of the system design parameters. 
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I.  INTRODUCTION 

Rotor dynamics is a branch of systems dynamics dealing 
with mechanical systems in which at least one part, usually 
defined as rotor, rotates with significant angular momentum [1-
4]. It is vital to consider the dynamics of the rotating machines 
in the design stage to avoid catastrophic failures that may occur 
because of resonance condition in their operation. Dynamic 
analysis of rotating machines and turbo machinery rotors has 
been performed by many researchers and finite element method 
has been of interest of many researchers recently as a 
numerically efficient method to analyze the dynamics of 
rotating machines and mechanical structures [5-10]. 

Chiang et al. [11] developed finite element models to 
investigate the dynamic characteristics of single- and dual-
rotor-bearing turbomachinery systems. The models were 

analyzed to predict the natural frequencies, produce critical 
speed maps, and estimate the bearing stiffness. They 
demonstrated that the speed ratio of the high speed to low-
speed shaft in dual-rotors could be used as one of the dual-rotor 
system design parameters. Jeon et al. [12] performed a full 
rotor dynamic analysis for a high thrust liquid rocket engine 
fuel turbo pump using finite element method. They found out 
that the rear bearing stiffness was the most important parameter 
for the critical speed and instability, because the first vibration 
mode of the rotor was turbine side shaft bending mode. Jeon et 
al. [13] used 1D and three-dimensional finite element methods 
to perform critical speed analysis of a 30-ton thrust turbo pump 
while considering the casing structural flexibility. They also 
analyzed the effect of loads on the bearings on the dynamic 
behavior of the rotor. Jalali et al. [14, 15] predicted the 
dynamic behavior of a rotor-bearing system with a 1D finite 
element model, a 3D finite element model and experimental 
modal test. They obtained natural frequencies and mode shapes 
of the rotor at rest under free-free boundary condition using 
beam model, 3D model and modal test. Also, they performed a 
full rotor dynamic analysis for the rotor using both FE models. 
Brusa and Zolfini [16] investigated the dynamic behavior of the 
Galileo Galilei Ground (GGG) test facility through numerical 
and experimental analyses. They used one dimensional beam 
finite element model to model the system and They compared 
the results with experimental results. Creci et al. [17] 
performed a full rotor dynamic analysis for a 5-KN thrust gas 
turbine using a 1D finite element model considering bearing 
stiffness and damping dynamics. They obtained mode shapes 
and operational deflection shapes of the rotor and they 
performed a transient analysis to simulate the transition of the 
system through resonance.  

In this paper, a finite element model based on cylindrical 
and tapered Timoshenko beam elements, by considering the 
rotary inertia, gyroscopic effect and shear deformations, is used 
to study the dynamic behavior of a gas turbine rotor. The 
difference of this beam FE model with the models in the 
literature is that the various minor and major parts of the rotor 
are modeled with beam elements in this model, therefore 
dynamics of the rotor can be evaluated exactly. A 3D finite 
element model based on solid elements is also constructed in 
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Ansys software to validate the beam FE results. A parameter 
study is carried out to examine the effects of the number of the 
bearings on the lateral vibration behavior of the rotor. The 
mode shapes, Campbell diagram, critical speeds, operational 
deflection shapes (ODS) and unbalance response of the rotor 
are obtained in both cases with 2 bearings and 4 bearings with 
specific locations to compare the dynamics of the designed 
rotors and to evaluate which design would be better. It is found 
that the number of the bearings can be a design parameter, 
because it influences the vibration behavior of the rotor 
significantly.  

II. THEORETICAL FORMULATION 

The rotor system can be divided into rigid disks, rotor 
segments, and linear bearing supports. The vector of the nodal 
displacements, i.e., of the generalized coordinates of a 
Timoshenko beam element used in this study is: 

1 1 1 1 2 2 2 2x y x yq x y x y      
 (1) 

Where 1x , 1y , 1x and 1y represent node 1’s displacements 

and rotations about the nodal axes and 2x , 2y , 2x and 

2y represent node 2’s displacements and rotations about the 

nodal axes. The value of displacements through the elements 
can be obtained by shape functions and the nodal 
displacements from the following equation. 
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Where ( , 1, 2)ijN i j  are the shape functions of Timoshenko 

beam element which can be found in [18]. The motion equation 
of a complete rotor-bearing system that is axially symmetrical 
around its spin axis and rotates at a constant spin speed Ω , is in 
the following general form:  
 

   (t) (t) (t) (t)  Mq G q K q f  (3) 

 
Where q(t) is a vector containing the generalized coordinates, 
referred to an inertial frame and the other matrices are the 
assembled matrices for the system. M is the symmetric mass 
matrix, G is the skew-symmetric gyroscopic matrix, K is the 
symmetric stiffness matrix, and f (t) is a time-dependent vector 
in which all forcing functions are listed. The gyroscopic matrix 
contains inertial and hence conservative terms that, in the case 
of rotor dynamics, are strictly linked with the gyroscopic 
moments acting on the rotating parts of the machine. When 
dealing with rotating systems, one of the forcing functions is 

usually that caused by the residual unbalance that, although 
small, cannot nevertheless be neglected. Unbalance forces are 
harmonic functions of time, with an amplitude proportional 

to
2 and a frequency equal to  .  

Most flexible rotors can be considered as beam-like structures. 
Under fairly wide assumptions, the lateral behavior of a beam 
can be considered as uncoupled from its axial and torsional 
behavior [1, 18]. The same uncoupling is usually assumed in 
rotor dynamics, with the difference that no further uncoupling 
between bending in the principal planes is possible. When the 
flexural behavior can be uncoupled from the axial and torsional 
ones, Equation (3) holds for the first one.  

In order to solve the eigenvalue problem of the Equation (3) 

(with (t) 0f ), the second-order homogeneous Equation (3) 

should be reduced into 2n first-order differential equations. A 

2n-column vector X
 

  
 

q

q
is used so that Equation (3) with 

zero force can be expressed as: 

-         
         

         

0 M q M 0 q 0

M G q 0 K q 0
 (4) 

Equation (4) can be simplified into: 

+ =AX BX 0  (5) 

By assuming    te
X =  , Equation (5) can be expressed 

as: 

 + =A B 0  (6) 

The eigenvalues of the Equation (6) is =k k ki    

where k  is the decay rate of the kth natural frequency and 

k  is the kth natural frequency. When the natural frequencies 

of the rotor at various rotor speeds are calculated, the Campbell 
diagram can be plotted. The natural frequencies of the rotor at 
various rotor speeds can be calculated by solving the 
eigenvalue problem Equation (6). In addition, the unbalance 
response of the rotor can be calculated by obtaining the 
solution of the Equation (7) which is derived when in Equation 

(3), (t)f  is a harmonic function of time, with amplitude 

proportional to 
2  and a frequency equal to   and by 

assuming the response to be  0(t) = i te 
q q . 

 2 2

0- i r    M G K q f  (7) 

III. FINITE ELEMENT MODELS 

A. Beam Finite element Model 

The studied rotor is a single spool gas turbine rotor and 
consists of two fan stages, six compressor stages and two 
turbine stages. The compressors and fans are made of 
aluminum alloy by the density of 4437 kg/m3, Young modulus 
of 113.8 GPa and the Poisson ratio of 0.342. The material of 
the other parts of the rotor is assumed to be steel by the density 
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of 7700 kg/m3, Young modulus of 215 GPa and the Poisson 
ratio of 0.3. The total length of the shaft is 70 cm. Figure 1 and 
Figure 2 show the finite element design model of the rotor with 
2 and 4 bearings, respectively. In these Figures, disks D1 and 
D2 are the fan stages, D3-D8 are the compressor stages, D9 
and D10 are the turbine stages and D11 is the turbine starter. 
The model of the rotor in both Figures is the same and only the 
number of the bearings is different. The model consists of 60 
nodes and 78 Timoshenko beam elements. A mesh 
convergence analysis is performed to explain why this number 
of nodes and elements is used in the beam model, but the 
results are not presented in the paper for brevity. The parts with 
the same colors in Figs. 1-2 have the same materials. The 
effects of rotary inertia, gyroscopic moments and shear 
deformations are included in the formulations and the damping 
is neglected. The dimensions of the various parts of the rotor 
are exactly equal to those in the 3D FE model. Every node used 
in the system has 4 degrees of freedom. These include 
translations in the nodal directions and rotations about nodal 
axes. In order to consider the inertial properties of fans, 
compressors and turbines and turbine starter, concentrated 
masses are used at the place of each one. Table 1 shows the 
geometric properties of the discs. Inertial properties of the disks 
can be calculated from the dimensions given in Table 1. 
Cylindrical Timoshenko beam elements are used to model the 
various parts of the shaft and the generator. It should be noted 
that, in order to model the rotor more accurately, some of the 
elements have equal nodes. It means that they are on top of 
each other with the same nodes. Tapered Timoshenko beam 
elements are used to model the minor parts such as the gaps 
between different stages of the fans, compressors and turbines. 
Springs are used to model the bearings at the place of bearings. 
Table 2 shows the stiffness coefficients of the bearings. The 
stiffness and damping cross-coupled terms for the bearings are 
considered null.  

 

Figure 1. FE model of rotor with 2 bearings 

 

 
Figure 2. FE model of rotor with 4 bearings 

 

TABLE 1. GEOMETRIC PROPERTIES OF DISCS 

Discs D1 D2 
D3-
D4 

D5-
D8 

D9 D10 D11 

Outer 
diameter 

(mm) 
262 262 219 219 244 257 169 

Inner 

diameter 
(mm) 

7.06 102 140 40 30. 1 13.31 0 

Width 

(mm) 
17.5 17.98 7.62 7.62 20 20 5 

 

TABLE 2. STIFFNESS COEFFICIENTS OF THE BEARINGS 

Bearing Number Stiffness (N/m) 

B1 1.57e+07 

B2 1.77e+07 

B3 3.91e+06 

B4 7.04e+06 

B. 3D Finite Element Model 

The coupled lateral-torsional vibration analysis of the rotor 

is carried out using 3D FEM. The Ansys software is used to 

construct the 3D finite element model with 10 node tetrahedral 

solid elements. Figure 3 shows the 3D finite element model of 

the rotor. The model consists of 50809 nodes and 27982 solid 

elements. All the parts are considered elastic and the material 

and geometric properties of this rotor model are exactly equal 

to that of the beam finite element model. Spring elements in the 

two lateral directions are used at the place of the bearings to 

model the bearings for 2 and 4 bearing cases. 
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Figure 3. 3D Finite Element Model 

 

IV. RESULTS 

A. Dynamic Analysis of the Rotor with 2 Bearings  

In order to investigate the dynamic behavior of the rotor at 

operational speeds, critical speeds and the Campbell diagram 

are obtained using the beam FE model. The speed range 

considered is 0 to 36000 rpm. The Campbell diagram of the 

rotor obtained from beam FEM excluding the rigid body modes 

is illustrated in Figure 4. The three first bending critical speeds 

of the rotor corresponding to the forward whirling obtained 

from beam FE model are 2099.97 rpm, 10479 rpm and 15556 

rpm, respectively. Also, the Campbell diagram obtained from 

3D finite element model excluding the rigid body modes is 

shown in Figure 5. As can be seen, the gyroscopic 

softening/stiffening of some of the modes have minor error 

between two Figs. which is expected because of the difference 

in modeling methods of the inertial properties of the disks in 

two FE models.  

 
Figure 4. Campbell diagram of the rotor with 2 bearings (Beam FE model) 

 

 
Figure 5. Campbell diagram of the rotor with 2 bearings (3D FE model) 

 

The critical speeds obtained from two models are presented in 

Table 3. It should be noted that from the beam finite element 

model, only the bending critical speeds of the rotor are 

calculated but from 3D finite element model, the torsional and 

bending critical speeds are calculated. 

 
TABLE 3. CRITICAL SPEEDS OF THE ROTOR WITH 2 BEARINGS 

Critical 

Speed 

First 

bending 

Second 

bending 

First 

torsional 

Third 

bending 

Second 

torsional 

Beam 

FE 

(rpm) 

2099.97 10479 N/A 15556 N/A 

3D FE 

(rpm) 

2416.2 9869.1 10503 15252 21250 

Error 

(%) 

13.0 6.1 N/A 1.9 N/A 

 

In order to investigate the dynamic behavior of the rotor more 

practically and to verify the critical speed obtained from the 

Campbell diagrams, an imbalance of 1 µm is considered at the 
gravity center of all of the discs which have inner diameter 

equal to the outer diameter of the shaft where they are located, 

to simulate the worst unbalancing condition. The imbalance is 

considered at the gravity center of disks D5, D6, D7, D8 and 

D10 (Table 1). The operational deflection shapes (ODS) at 

two bending critical speeds obtained from the Campbell 

diagrams are shown in Figure 6. 
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Figure 6. Operational deflection shape of the rotor with 2 bearings at  

a) first b) second critical speed (Beam model) 

 

Figure 7. shows the unbalance response of the rotor evaluated 

the location of concentrated masses of disks D5, D6, D7, D8 

and D10 at which the imbalance is considered. Nodes 27, 28, 
29, 30, 45 are the location of concentrated masses of disks D5, 

D6, D7, D8 and D10, respectively. It can be seen that 

displacement peaks at the critical speeds points which were 

previously calculated. 

 

 
Figure 7. Unbalance response of the rotor with 2 bearings (Beam model) 

 

B. Dynamic Analysis of the Rotor with 4 Bearings 

 
The Campbell diagram, operational deflection shapes and 

unbalance response to the worst unbalancing condition is 
obtained also in this case. The considered speed range is again 
0 to 36000 rpm. The Campbell diagrams, excluding rigid body 
modes, obtained from beam FE model and Ansys are shown in 
the Figure 8 and Figure 9, respectively. The critical speeds 
obtained from two models are compared with each other in 
Table 4. 

 

Figure 8. Campbell diagram of the rotor with 4 bearings (Beam FE model) 

 

 
Figure 9. Campbell diagram of the rotor with 4 bearings (3D FE model) 

 
TABLE 4. CRITICAL SPEEDS OF THE ROTOR WITH 4 BEARINGS 

Critical 

Speed 

First 

bending 

Second 

bending 

First 

torsional 

Third 

bending 

Second 

torsional 

Beam 

FE 

(rpm) 

5507.26 10549 N/A 16308 N/A 

3D FE 

(rpm) 

5446.9 9894.2 10868 17697 21180 

Error 

(%) 

1.1 6.6 N/A 7.8 N/A 

 
An imbalance same as which was considered in the 

previous section is considered also in this case and the 
operational deflection shapes (ODS) at two bending critical 
speeds obtained from the Campbell diagrams and the 
unbalance response are calculated. The operational deflection 
shapes at two bending critical speeds are shown in Figure 10 
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and the unbalance response evaluated at the location of disks 
D5, D6, D7, D8 and D10 is shown in Figure 11. 

 

 

Figure 10. Operational deflection shape of the rotor with 4 bearings at  

a) first b) second critical speed (Beam model) 

 

 

Figure 11. Unbalance response of the rotor with 4 bearings (Beam model) 

 

By comparing the critical speeds of the rotor with 2 and 4 

bearings from Tables 3 and 4, it is obvious that the number of 

the bearings has significant effect on the value of the first 

critical speed but slight effect on the value of the second and 

third critical speeds. 

Also, by comparing the operational deflection shapes of the 
rotor with 2 and 4 bearings from Figure 6 and Figure 10, 

respectively, it is found that the effect of the number of the 

bearings on the overall deflection of the rotor at the first 

critical speed is much more than this effect on the overall 

deflection of the rotor at the second critical speed. In addition, 

the overall deflection of the rotor with 2 bearings at the critical 

speeds is much lower than the overall deflection of the rotor 

with 4 bearings at the critical speeds. It should be noted that in 

this paper, the effects of the number of the bearings on the 

dynamics of this rotor is evaluated but the locations of the 

bearings also can affect the dynamics of the rotor.  

I. CONCLUSIONS 

A finite element model based on Timoshenko beam 

elements is presented. In this model, various minor and major 

parts of a gas turbine rotor are modeled using cylindrical and 

tapered beam elements. A full rotor dynamic analysis is 

carried out to evaluate the dynamic behavior of the rotor at 

operational speeds and to avoid vibration problems. Also, a 

3D finite element model is constructed, and the lateral-

torsional vibration behavior of the rotor is predicted. The 

comparison of the results shows good agreement between the 

results obtained from two FE models. The effect of the 

number of the bearings on the dynamic behavior of the rotor is 

also studied from the beam finite element model. It is found 

that the overall deflection of the rotor with 2 bearings (at 

specific locations) at its first two bending critical speeds is 

much lower than the overall deflection of the rotor with 4 

bearings (at specific locations) at its first two bending critical 

speed. In addition, it is found that the effect of the number of 

the bearings on the overall deflection of the rotor at the first 

critical speed is much more than this effect on the overall 

deflection of the rotor at the second critical speed. 

References 

[1] G. Genta, Dynamics of Rotating Systems, Springer2005. 

[2] H. Cao, L. Niu, S. Xi, X. Chen, Mechanical model development of rolling bearing-rotor 

systems: A review, Mechanical Systems and Signal Processing 102 (2018) 37-58. 

[3] B. Shahriari, M.H. Jalali, M. Karamooz Ravari, Vibration analysis of a rotating variable 

thickness bladed disk for aircraft gas turbine engine using generalized differential quadrature 

method, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace 

Engineering 231(14) (2017) 2739-2749. 

[4] M.H. Jalali, B. Shahriari, Elastic Stress Analysis of Rotating Functionally Graded Annular 

Disk of Variable Thickness Using Finite Difference Method, Mathematical Problems in 

Engineering 2018 (2018) 11. 

[5] S. Nabavi, L. Zhang, Design and Optimization of Wideband Multimode Piezoelectric 

MEMS Vibration Energy Harvesters †, 2017. 

[6] M. Rafiee, F. Nitzsche, M. Labrosse, Dynamics, vibration and control of rotating composite 

beams and blades: A critical review, Thin-Walled Structures 119 (2017) 795-819. 

[7] M.H. Jalali, B. Shahriari, M. Ghayour, S. Ziaei-Rad, S. Yousefi, Evaluation of Dynamic 

Behavior of a Rotor-Bearing System in Operating Conditions, World Academy of Science, 

Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial and 

Mechatronics Engineering 8 (2014) 1675–1679. 

[8] S. Nabavi, L. Zhang, Design and Optimization of Piezoelectric MEMS Vibration Energy 

Harvesters Based on Genetic Algorithm, IEEE Sensors Journal 17(22) (2017) 7372-7382. 

[9] M.H. Jalali, B. Shahriari, O. Zargar, M. Baghani, M. Baniassadi, Free Vibration Analysis of 

Rotating Functionally Graded Annular Disc of Variable Thickness Using Generalized 

Differential Quadrature Method, Scientia Iranica  (2017) -. 

[10] B. Parsi, M. Bahrami, A.M. Esfahani, B.S. Sany, Calibration verification of a low-cost 

method for MEMS accelerometers, Transactions of the Institute of Measurement and Control 

36(5) (2014) 579-587. 

[11] H.-W. Chiang, C.-N. Hsu, S.-H. Tu, Rotor-Bearing Analysis for Turbomachinery Single- 

And Dual-Rotor Systems, 2004. 

[12] S.M. Jeon, H.D. Kwak, S.H. Yoon, J. Kim, Rotordynamic analysis of a high thrust liquid 

rocket engine fuel (Kerosene) turbopump, Aerospace Science and Technology 26(1) (2013) 169-

175. 

[13] S.-M. Jeon, H.D. Kwak, S. Hwan Yoon, J. Kim, Rotordynamic Analysis of a Turbopump 

with the Casing Structural Flexibility, 2008. 

[14] M.H. Jalali, M. Ghayour, S. Ziaei-Rad, B. Shahriari, Dynamic analysis of a high speed 

rotor-bearing system, Measurement 53 (2014) 1-9. 

[15] M.H. Jalali, M. Ghayour, S. Ziaei-Rad, B. Shahriari, S. Yousefi, Rotordynamic Analysis of 

a Small Rotor-Bearing System, 4th International Conference on Acoustics and Vibration, 

Tehran, Iran, 2014. 

[16] E. Brusa, G. Zolfini, Dynamics of Multi-Body Rotors: Numerical and Experimental FEM 

Analysis of the Scientific Earth Experiment Galileo Galilei Ground, Meccanica 37(3) (2002) 

239-254. 

[17] G. Creci, J. Carlos Menezes, J. Barbosa, J. Aparecido Corra, Rotordynamic Analysis of a 5-

Kilonewton Thrust Gas Turbine by Considering Bearing Dynamics, 2011. 

[18] J.S. Rao, Finite Element Methods for Rotor Dynamics, History of Rotating Machinery 

Dynamics, Springer Netherlands, Dordrecht, 2011, pp. 269-297. 

 


