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Abstract— Many of 2D mechanical models have been devel-

oped to simulate liquid sloshing of a partially filled tank with 

different shapes. However, those models didn’t represent 

properly the complex liquid motion, especially in the case of 

portable tanks. Indeed, forces exerted on the liquid can be lat-

eral, longitudinal and vertical. Then, liquid displacement and 

pressure forces applied to the tank walls are undervalued and 

may cause design flaws. In this case, 2D mechanical models are 

ineffective for liquid motion simulation. In previous studies, a 

3D equivalent mechanical model has been developed. This dy-

namical model is used to simulate different liquid motion in a 

partially filled tank that consider any sort of excitement forces 

and get more accurate results in terms of displacements and 

pressure forces. In this study, a brief description of the new dy-

namical model is given, including the liquid discretization pro-

cess, stiffness and damping coefficients computing method and 

equations of motion. Afterward, the model is applied to an el-

liptical cross section tank to obtain displacement and pressure 

forces of the liquid. Finally, the results are compared to the lit-

erature. 

Keywords: liquid sloshing, tank truck, equivalent model, 

elliptical tank, 3D simulation. 

I.  INTRODUCTION 

There are several equivalent mechanical models that 

simulate 2D liquid movement in a partially filled tank with 

different shapes such as spring-mass and simple pendulum 

models [1-4]. The use of such models in the liquid simulation 

provides convincing results when it comes to lateral sloshing. 

However, they didn’t represent the global liquid motion in a 

tank. On the other hand, 3D mechanical models as spring-mass 

lattice are used for modeling complex motions of deformable 

bodies. Especially in computer graphical animation, spring-

mass systems are often used for their simplicity and rapid 

implementation [5-7]. Moreover, the use of these models in the 

simulation of deformable bodies provides both geometrical and 

physical aspects. In a previous study, a new equivalent 3D 

dynamical model was developed to simulate the global motion 

of the liquid in a horizontal tank [8]. A mathematical method for 

liquid discretization showed that liquid splits in multiple 

particles along each axis. Then, the masse and coordinates of 

the center of mass of each particle are computed. The movement 

of each particle is simulated by the displacement of its center of 

mass. All centers of mass constitute the nodes of the mesh. Each 

two adjacent nodes are linked by flexible edges having a parallel 

spring and damper. To adapt the model to all used forms of 

tanks, the generic tank cross-section, developed by Kang [9], 

was employed. In another study [10], we showed how to obtain 

stiffness and damping coefficient depending on the liquid and 

the tank design. Afterward, equations of motion were obtained 

and solved using a computation software program, namely 

Maple 16 [11]. In this study, the 3D dynamical model is applied 

to simulate liquid motion and pressure forces in a partially filled 

tank with an elliptical cross-section. Indeed, this tank shape is 

one of the most used shapes. Many researches have been 

dedicated to study this tank geometry. It allows a lower center 

of mass comparing to a cylindrical tank. We show a brief 

description of the dynamical model. Afterward, some results are 

generated and compared to the literature. 

II. 3D DYNAMICAL MODEL 

A. Liquid discratization 

     In this study, the tank lateral walls are assumed to be straight 

without any camber. The liquid discretization is made by 

dividing the length 𝑋 of the tank by 𝑀 parts, the height 𝑍ℎ of 

the free surface by 𝑃 parts and each portion between two heights 

𝑘. 𝑍ℎ/𝑃 and (𝑘 − 1). 𝑍ℎ/𝑃 by 𝑁 parts in each direction of the 

𝑂𝑌⃗⃗⃗⃗  ⃗ axis (left side and right side of the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis), with 1 ≤ 𝑘 ≤
𝑃 and 𝑀,𝑁, 𝑃 ∈ ℕ∗. Thus, we obtain 𝑀. 2𝑁. 𝑃 particles, noted 

𝑝𝑖,𝑗,𝑘 with 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 2𝑁 and 1 ≤ 𝑘 ≤ 𝑃. Note that 

the positions of each couple of particles 𝑝𝑖,𝑁−(𝑙−1),𝑘 and 

𝑝𝑖,(𝑁+1)+(𝑙−1),𝑘 are symmetric with respect to the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis (1 ≤

𝑙 ≤ 𝑁). Each particle is represented by its center of mass, noted 

𝐺𝑖,𝑗,𝑘, which are the nodes of the model. Mass 𝑚𝑖,𝑗,𝑘 and 

coordinates 𝑝 𝑖,𝑗,𝑘 of each node are computed depending on its 

location [8]. The following figures show an example of the 

liquid discretization for a half full elliptical tank with 𝑀 = 12, 

𝑁 = 4 and 𝑃 = 5: 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/161989472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 Copyright © 2018 by CSME 

 
Figure 1: Example of liquid discretization in 3D 

 
Figure 2 : 2D view of the liquid discretization.  

      In this example, the model contains of 480 nodes. Then, we 

will obtain 1440 equations of motion, three equations for each 

node.  

B. Stiffness and damping coefficient 

      Each node 𝐺𝑖,𝑗,𝑘 is linked to six links: two links 𝐴1,𝑖,𝑗,𝑘 and 

𝐴1,𝑖+1,𝑗,𝑘 along the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis, two links 𝐴2,𝑖,𝑗,𝑘 and 𝐴2,𝑖,𝑗+1,𝑘 along 

the 𝑂𝑌⃗⃗⃗⃗  ⃗ axis and two links 𝐴3,𝑖,𝑗,𝑘 and 𝐴3,𝑖,𝑗,𝑘+1 along the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis 

as shown in the following scheme: 

 
Figure 3: Links between a node 𝑮𝒊,𝒋,𝒌 and its adjacent nodes. 

     Each link 𝐴𝑞,𝑖,𝑗,𝑘, with 𝑞 = 1, 2 ,3, contains a parallel linear 

spring with a stiffness 𝐾𝑞,𝑖,𝑗,𝑘 and linear damper with a damping 

coefficient 𝑐𝑞,𝑖,𝑗,𝑘 as shown in the figure below: 

 
Figure 4: composition of the flexible link. 

       The nodes contacting the tank walls 𝐺1,𝑗,𝑘, 𝐺𝑀,𝑗,𝑘, 𝐺𝑖,1,𝑘, 

𝐺𝑖,𝑁,𝑘 and 𝐺𝑖,𝑗,1 are attached to the structure by the same type of 

the links. Another special case of the nodes 𝐺𝑖,𝑗,𝑃, that represent 

the free surface of the liquid, are linked by only 5 links because 

they have no contact with the tank structure. The methodology 

used to compute stiffness and damping coefficient of the model 

is discussed as follows:   

       Firstly, stiffness 𝐾1,𝑖,𝑗,𝑘 along the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis is computed. It is 

supposed that the liquid is divided along the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis. Each part 

of the liquid between two heights 𝑍𝑘−1 and 𝑍𝑘 represents a 

vibration mode. The following formula is used to compute the 

natural frequency 𝜔𝑛 of each vibration mode 𝑛 of the liquid in 

rectangular tank [12]: 

𝜔𝑛
2 = 𝜋(2𝑛 − 1)

𝑔

𝑎
tanh [𝜋(2𝑛 − 1) (

ℎ

𝑎
)] (1) 

Where 𝑎 is the width of the tank, ℎ is the height of the liquid 

and 𝑔 = 9.81𝑚. 𝑠−2 is the gravity acceleration. This formula is 

adapted to our model and becomes: 

𝜔𝑥𝑘
2 = 𝜋(2𝑛 − 1)

𝑔

𝐿
tanh [𝜋(2𝑛 − 1) (

𝑍ℎ

𝐿
)] (2) 

Where 𝑛 = 𝑃 − 𝑘 + 1. Indeed, when the cylinder is placed 

horizontally, the tank may be considered as rectangular [1]. 

Then, stiffness 𝐾𝑥𝑘 of each spring that simulate each mode 𝑘 is 

computed by: 

𝐾𝑥𝑘 = 𝑚𝑥𝑘 . 𝜔𝑦𝑘
2 (3) 

Where 𝑚𝑥𝑘 is the mass of the liquid between two heights 𝑍𝑘−1 

and 𝑍𝑘. Afterward, it is supposed that each spring 𝐾𝑥𝑘 is a set of 

𝑀 + 1 springs in series with equal stiffness 𝐾𝑥𝑘,𝑖 computed by 

the following formula: 

𝐾𝑥𝑘,𝑖 = (𝑀 + 1). 𝐾𝑥𝑘  (4) 

Then, it is supposed that each spring 𝐾𝑥𝑘,𝑖 is a set of parallel 

springs with the same stiffness 𝐾1,𝑖,𝑗,𝑘 such as: 

𝐾1,𝑖,𝑗,𝑘 =
𝐾𝑥𝑘,𝑖

2𝑁
   𝑤𝑖𝑡ℎ   1 ≤ 𝑗 ≤ 2𝑁 (5) 

Finally, proceeding by the same way for each part of the liquid 

between two heights 𝑍𝑘−1 and 𝑍𝑘, all stiffness along the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis 

are obtained. 

       Secondly, stiffness 𝐾2,𝑖,𝑗,𝑘, along the 𝑂𝑌⃗⃗⃗⃗  ⃗, axis are 

computed. The method is identical to the one used previously 

for stiffness along the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis. It is supposed that the liquid is 

divided along the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis. The formula (1) that compute natural 
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frequencies of each part of the liquid between 𝑍𝑘−1 and 𝑍𝑘 is 

adapted as follows: 

𝜔𝑦𝑘
2 = 𝜋(2𝑛 − 1)

𝑔

𝑌𝑘−1 + 𝑌𝑘

tanh [𝜋(2𝑛 − 1) (
𝑍ℎ

𝑌𝑘−1 + 𝑌𝑘

)] (6) 

Where 𝑌𝑘 is the half width of the tank corresponding to the height 

𝑍𝑘. In fact, the width of the tank along the 𝑂𝑌⃗⃗⃗⃗  ⃗ axis varies 

depending on the height of the studied liquid part. Therefore, 

the value of width 𝑎 in the formula (1) is replaced by the 

average width between to the heights 𝑍𝑘−1 and 𝑍𝑘. The stiffness 

𝐾𝑦𝑘 describing each mode is computed by: 

𝐾𝑦𝑘 = 𝑚𝑦𝑘. 𝜔𝑦𝑘
2 (7) 

Where 𝑚𝑦𝑘 is the mass of the liquid between 𝑍𝑘−1 and 𝑍𝑘. It is 

supposed that the spring 𝐾𝑦𝑘 is a set of 𝑀 parallel springs with 

the same stiffness: 

𝐾𝑦𝑘,𝑖 =
𝐾𝑦𝑘

𝑀
  𝑤𝑖𝑡ℎ   1 ≤ 𝑖 ≤ 𝑀 (8) 

 Afterward, we split each stiffness 𝐾𝑦𝑘,𝑖 in 2𝑁 + 1 springs in 

series with equal stiffness, noted 𝐾2,𝑖,𝑗,𝑘, with: 

𝐾2,𝑖,𝑗,𝑘 = (2𝑁 + 1). 𝐾𝑦𝑘,𝑖  (9) 

All stiffness 𝐾2,𝑖,𝑗,𝑘  values along the 𝑂𝑌⃗⃗⃗⃗  ⃗ axis are then obtained 

by the proposed computational procedures.   

      Thirdly, the stiffness 𝐾3,𝑖,𝑗,𝑘  of springs along the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis is 

computed. In this case, there is no formula in the literature that 

can be used to compute natural frequencies of vertical sloshing. 

For this, an important assumption is considered. Indeed, the 

vertical displacement of the liquid is usually limited. For 

conventional shapes of the tank, vertical displacement Δ𝑧 of the 

liquid center of mass is 0.04 𝑚 on average [9]. Considering this 

assumption, first, it is supposed that there is only one spring, 

namely 𝐾𝑧, attached to the center of mass of the liquid. The 

maximum stretch of this spring should be Δ𝑧. Assuming that the 

mass of the center of mass is the total liquid mass 𝑚𝑡, then, 

stiffness 𝐾𝑧 is computed as follows: 

𝐾𝑧 =
𝑚𝑡 . 𝑔

Δ𝑧
 (10) 

Then, the spring 𝐾𝑧 is considered as a set of 𝑃 springs in series 

with equal stiffness, noted 𝐾𝑧𝑘 with 1 ≤ 𝑘 ≤ 𝑃. Each stiffness 

𝐾𝑧𝑘 to be calculated by the formula: 

𝐾𝑧𝑘 = 𝑃.𝐾𝑧𝑧 (11) 
Afterwards, each spring 𝐾𝑧𝑘 is considered to be a set of 2𝑀𝑁 

parallel springs 𝐾3,𝑖,𝑗,𝑘 computed as follows: 

𝐾3,𝑖,𝑗,𝑘 = 𝐾𝑧𝑘/2𝑀𝑁 (12) 

 Stiffness of each spring 𝐾3,𝑖,𝑗,𝑘 along the 𝑂𝑍⃗⃗⃗⃗  ⃗ axis is then 

obtained. 

       Finally, the damping coefficients 𝑐𝑞,𝑖,𝑗,𝑘 with 𝑞 = 1, 2 ,3 are 

assumed to be equal to 100 times the dynamical viscosity 

coefficient 𝜂 of the liquid multiplied by the corresponding link 

length. For example, the damping coefficient of a link between 

two nodes 𝐺𝑖,𝑗,𝑘 and 𝐺𝑖+1,𝑗,𝑘 along the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis 

𝑐1,𝑖,𝑗,𝑘 = 100. 𝜂. ‖𝑝 𝑖,𝑗,𝑘 − 𝑝 𝑖−1,𝑗,𝑘‖ (13) 

Where ‖𝑥 ‖ is the Euclidian norm of the vector 𝑥 . To obtain 

consistent results, a calibration factor is added to the model such 

that all the values of stiffness along 𝑂𝑋⃗⃗ ⃗⃗  ⃗ axis and 𝑂𝑌⃗⃗⃗⃗  ⃗ axis to be 

multiplied by this factor. The value of this factor is used 

depending on the number of nodes in the model. Virtually, as 

the number of nodes decreases extremely, the calibration factor 

increases. This factor can be explained by the lack of precision 

when the mesh is less refined. In this case, parameters of the 

links are underestimated and should be corrected. 

C. Equations of motion 

      Displacement, velocity and acceleration vectors of a node 

𝐺𝑖,𝑗,𝑘 are noted respectively 𝑟 𝑖,𝑗,𝑘(𝑡), 𝑣 𝑖,𝑗,𝑘(𝑡) and 𝑎 𝑖,𝑗,𝑘(𝑡). The 

forces applied on each node are: stress force �⃗� 𝑖,𝑗,𝑘 of the springs 

attached to the nodes, damping force 𝐴 𝑖,𝑗,𝑘 and input force 𝐹 𝑖,𝑗,𝑘. 

Stress force �⃗� 𝑖,𝑗,𝑘 is calculated by the following formula: 

�⃗� 𝑖,𝑗,𝑘 = �⃗� 1,𝑖,𝑗,𝑘 + �⃗� 1,𝑖+1,𝑗,𝑘 + �⃗� 2,𝑖,𝑗,𝑘 + �⃗� 2,𝑖,𝑗+1,𝑘 + �⃗� 3,𝑖,𝑗,𝑘

+ �⃗� 3,𝑖,𝑗,𝑘+1 
(14) 

Where the stress force of each spring attached to the node is 

computed by the Hook law. For example: 

�⃗� 1,𝑖,𝑗,𝑘 = −𝐾1,𝑖,𝑗,𝑘(‖𝑟 𝑖,𝑗,𝑘 − 𝑟 𝑖−1,𝑗,𝑘‖

− ‖𝑝 𝑖,𝑗,𝑘 − 𝑝 𝑖−1,𝑗,𝑘‖).
𝑟 𝑖,𝑗,𝑘 − 𝑟 𝑖−1,𝑗,𝑘

‖𝑟 𝑖,𝑗,𝑘 − 𝑟 𝑖−1,𝑗,𝑘‖
 

 

(15) 

Damping force 𝐴 𝑖,𝑗,𝑘 of each node is computed by: 

𝐴 𝑖,𝑗,𝑘 = 𝐴 1,𝑖,𝑗,𝑘 + 𝐴 1,𝑖+1,𝑗,𝑘 + 𝐴 2,𝑖,𝑗,𝑘 + 𝐴 2,𝑖,𝑗+1,𝑘

+ 𝐴 3,𝑖,𝑗,𝑘 + 𝐴 3,𝑖,𝑗,𝑘+1 
(16) 

Where the damping forces applied by each attached damper is 

computed by the viscosity law. For example: 

𝐴 1,𝑖,𝑗,𝑘 = −𝑐1,𝑖,𝑗,𝑘. (𝑣 𝑖,𝑗,𝑘 − 𝑣 𝑖−1,𝑗,𝑘) (17) 

The input force 𝐹 𝑖,𝑗,𝑘 is calculated by the formula below: 

𝐹 𝑖,𝑗,𝑘 = 𝑚𝑖,𝑗,𝑘[𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑡 (18) 

Where 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 are respectively the longitudinal, lateral 

and vertical accelerations applied on the tank. Using the Newton 

second law, we obtain for each node 𝐺𝑖,𝑗,𝑘 the following 

equations of motion: 

�⃗� 𝑖,𝑗,𝑘 + 𝐴 𝑖,𝑗,𝑘 + 𝐹 𝑖,𝑗,𝑘 = 𝑚𝑖,𝑗,𝑘. 𝑎 𝑖,𝑗,𝑘 (19) 

      To obtain the global system of motion equations, the global 

displacement vector is computed by 𝑟 , the global velocity vector 

by 𝑣 = �̇�  and the global acceleration vector by 𝑎 = �̈� . These 3 

vectors contain 3𝑀𝑁𝑃 components. Moreover, note by [ℳ] the 

3𝑀𝑁𝑃 × 3𝑀𝑁𝑃 diagonal mass matrix such as each mass 𝑚𝑖,𝑗,𝑘 

is repeated 3 times. The global input forces vector is then given 

by: 

𝐹 =  [ℳ]. 𝑎𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ (20) 

 where 𝑎𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ is given by: 

𝑎𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑎𝑥 𝑎𝑦 𝑎𝑧 … 𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑡 (21) 

The global stress forces 3𝑀𝑁𝑃-vector �⃗�  is equal to: 

�⃗� = [𝑇𝑥,1,1,1 𝑇𝑦,1,1,1 𝑇𝑧,1,1,1 … 𝑇𝑥,𝑀,𝑁,𝑃 𝑇𝑦,𝑀,𝑁,𝑃 𝑇𝑧,𝑀,𝑁,𝑃]𝑡 (22) 

    Similarly, global damping forces 3𝑀𝑁𝑃-vector 𝐴  is obtained 

by the same manner. Finally, the global system of equations of 

motion is given as follows: 

[ℳ](�̈� − 𝑎𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝐴  − �⃗� = 0 (23) 
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III. RESULTS AND DISCUSSION 

      In this section, the new 3D dynamical model is used to 

simulate liquid sloshing in a partially filled elliptical tank that 

is one of the most used geometry of portable tanks. The purpose 

of this simulation is to compare liquid displacement and 

pressure forces obtained by this model to the results obtained in 

the literature by two different methods [13]. The first model is 

an analytical model considering the liquid as a rigid body. 

Liquid motion is simulated by the movement of center of mass 

of the body. The second method is obtained by using a 

numerical simulation software. We compare maximum, both 

lateral and vertical, displacements of the center of mass of the 

liquid and maximum pressure forces generated by liquid 

sloshing. 

     To obtain lateral displacement 𝑌𝑔 and vertical displacement 

𝑍𝑔 of the center of mass of the liquid using the 3D model 

developed in this study, the following formulas are used: 

𝑌𝑔 =
1

𝑚𝑇

∑ 𝑚𝑖,𝑗,𝑘 .  𝑦𝑖,𝑗,𝑘

𝑀,2𝑁,𝑃

𝑖=1,𝑗=1,𝑘=1

 

𝑍𝑔 =
1

𝑚𝑇

∑ 𝑚𝑖,𝑗,𝑘 .  𝑧𝑖,𝑗,𝑘

𝑀,2𝑁,𝑃

𝑖=1,𝑗=1,𝑘=1

 

(24) 

Where 𝑚𝑇 is the total mass of the liquid, 𝑦𝑖,𝑗,𝑘 and 𝑧𝑖,𝑗,𝑘 are 

respectively lateral and vertical displacement of the node 𝐺𝑖,𝑗,𝑘. 

Using the forth order numerical derivation, lateral acceleration 

is computed to obtain lateral pressure force 𝐹𝑦. 

     A 50% filled elliptical tank is considered in this simulation 

with 𝑋 = 7.5 𝑚, 𝑎 = 1.2 𝑚 and 𝑏 = 1 𝑚. The liquid is 

supposed to be a domestic oil with a density 𝜌 = 966 𝑘𝑔.𝑚−3 

and a dynamic viscosity 𝜂 = 0.048 𝑘𝑔.𝑚−1. 𝑠−1. The selected 

values for the discretizing model are 𝑀 = 12, 𝑁 = 4 and 𝑃 =
5. Therefore, the dynamical model consists of 480 nodes and 

585 links (Figure 1). Firstly, a vehicle engagement in a curve 

maneuver is used as an input force with maximum lateral 

acceleration 𝐴 = 3 𝑚. 𝑠−2. The following table shows 

maximum displacements and lateral pressure forces obtained by 

three different models. 

TABLE I.  COMPARING RESULTS OF LIQUID DISPLACEMENTS AND 

PRESSURE FORCES ACCORDING TO THE NEW 3D MODEL AND THE LITERATURE. 

 
Literature 

New 3D 

Model Analytical 

Model 

Numerical 

Model 

Lateral displacement (𝑚) 0.18 0.27 0.246 

Vertical displacement (𝑚) 0.023 0.073 0.111 

Lateral pressure force (KN) 40.5 52 51.05 

     The table above shows accurate results in term of 

displacements and lateral pressure forces. Indeed, the numerical 

model using the simulation software is supposed to be the most 

accurate with respect to real displacements and lateral pressure 

forces. Note that the results obtained by the new 3D model are 

closer to the numerical model than the analytical model of the 

literature [13]. We can also notice that the lateral pressure forces 

are undervalued by the analytical model while the new 3D 

model developed in this study is more accurate. Thus, these 

results validate the new 3D model and it is possible to use it for 

tank design and for the study of vehicle stability. Note also that 

for the simulation of the center of mass motion for a duration of 

12 seconds, the computer required approximately one hour of 

computation time. Which is much shorter than the computation 

time of a numerical simulation software which requires hours, 

or even days of computation. Then we can show the real results 

obtained by the new model by evaluating displacement of each 

node of the mesh. The figure below shows the displacement of 

the liquid after one second of motion in a curve: 

 
Figure 5: liquid displacement after 1 s of the vehicle engagement in a curve. 

Figure 6 shows displacement of each node representing the 

liquid after two seconds of the vehicle movement in a curve: 

 
Figure 6: liquid displacement after 2 s of the vehicle engagement in a curve. 

The two figures above show that not only does the new model 

provide accurate values of displacement of the center of mass 

and pressure forces generated by the liquid motion, but it is also 

possible to visualize the global liquid motion by evaluating 

displacement of each node. In addition, it is also possible to find 

an approximation of the shape of the liquid free surface by 

linking the adjacent nodes that represent the free surface. 
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IV. CONCLUSION 

      In this study, a new 3D-dynamical model is described and 

used to simulate liquid sloshing in an elliptical tank. Firstly, we 

showed a brief description of the dynamical model. This model 

is based on the idea of modeling the liquid as a deformable body 

using a spring-mass lattice. A special method is used for liquid 

discretization. Each mass of the liquid is simulated by a node of 

the mesh that represents its center of mass. The adjacent nodes 

are linked by a flexible link containing a parallel spring and 

damper. Afterwards, stiffness and damping coefficient of each 

link are computed using some assumptions. The equations of 

motion of each node are then calculated and compiled to obtain 

the global system of equations of the 3D model. All formulas 

and equations are programmed and solved using Maple 16 

software. To compare the results of the model with the 

literature, identical dimensions of an elliptical tank are used as 

well as the filling rate, the external force applied and the liquid 

properties. Comparing the results with the literature allows to 

conclude that the new model provide results closer to the 

numerical models that require a longer computation time. 

Moreover, the new model allows a visualization of the global 

movement of the liquid by evaluating displacement of each 

node of the mesh.  Future works will focus on generating more 

results for other tank geometries, filling rates and other vehicle 

maneuver. It will be possible to compare results generated by 

this new model with other researches. 
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