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Abstract—In this paper, the transient heat conduction in a 

layered composite with an insulated interface crack parallel to 

the boundaries is investigated by using the dual phase lag 

(DPL) model. Fourier and Laplace transforms are applied and 

the mixed boundary value problem for the cracked structure 

under temperature impact is reduced to solving a singular 

integral equation. The temperature field in time domain is 

obtained and the intensity factor of temperature gradient is 

defined. Numerical studies show that overshoot phenomenon 

may occur due to the combined effect of the insulated crack 

and application of the DPL heat conduction model. The 

thermal conductivity and the phase lag parameters have strong 

influence on the dynamic intensity factor of temperature 

gradients. The results obtained by the dual phase lag model 

can be reduced to that by the hyperbolic model and that by the 

parabolic model. 
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I.  INTRODUCTION  

  High-rate heat transfer has become a major concern in 

modern industries and accurate heat conduction analysis is of 

great importance for the material and structural integrity. For 

applications involving high power density, extremely short 

times or cryogenic temperatures, the classical parabolic heat 

diffusion theory as stipulated by Fourier’s law of heat 

conduction becomes ineffective [1]. A unified heat conduction 

model that accounts for spatial and temporal effects in macro- 

and micro-scale heat transfer in a one temperature formulation 

has been proposed and was experimentally supported [2], 

namely the dual-phase-lag (DPL) model.  

Inherent defects in materials such as dislocations and 

cracks may disturb the temperature distribution when thermal 

loading is applied to the material, and singularities may be 

developed in the neighborhood of discontinuities. Heat 

conduction problems of cracked materials using the classical 

Fourier heat conduction model have been investigated by 

some researchers [3, 4]. Some investigations on crack 

problems in thermo-elastic materials have been made using the 

hyperbolic heat conduction model. Transient temperature field 

around a thermally insulated crack in a substrate bonded to a 

coating has been obtained by Chen and Hu [5] using the 

hyperbolic heat conduction model; and based on the same 

theory, Hu and Chen [6] obtained the transient temperature 

and thermal stress distributions around a partially insulated 

crack in a thermo-elastic strip. The problem of a finite crack in 

a material layer under the theory of non-Fourier heat 

conduction has been investigated by Wang and Han [7]. By 

applying the DPL model to a cracked half-plane under 

transient thermal loading, the dynamic temperature field 

around a partially insulated crack has been obtained [8]. 

To the author’s knowledge, the transient interface crack 

problem in a layered composite under thermal loading by 

applying the dual phase lag model has not yet been reported in 

the literature. In this paper, we analyze the transient 

temperature field around an insulated interface crack in a 

layered composite under temperature impact using the dual 

phase lag model. The effect of the parameters of the dual 

phase lag model and the geometric size of the cracked body on 

the temperature disturbance field are investigated. 

II. PROBLEM DESCRIPTION  

Consider a thermo-elastic, double-layered structure 

containing an interface crack of length 2c parallel to the 

boundaries of the structure, as shown in Fig. 1. The thicknesses 

of the upper and lower layers are 1h  and 2h , respectively. The 

layered structure is initially at the uniform temperature of zero, 

and is suddenly heated to a temperature, 1T and 2T on the upper 

and the lower boundaries, respectively, and )(tH denotes the 

Heaviside step function. The crack surfaces are assumed to be 

thermally insulated, which indicates that the thermal transfer 

across the crack faces vanishes. 

In order to account the effects of finite heat propagation 

and micro-structural interaction, the Fourier’s law of heat 

conduction is modified to the DPL model [2], 
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where q  is the heat flux, T  is the temperature, k  is the 

thermal conductivity of the material,   is the spatial gradient 

operator, t  is the physical time at which observation on heat 

transport is made, q  and T  are the phase lags of the heat 

flux and temperature gradient, respectively, which are two 

intrinsic thermal properties of the material. The heat flux 

precedes the temperature gradient for Tq   , and the 

temperature gradient precedes the heat flux for Tq   .  

Conservation of the local energy with vanishing heat 

source applies [9]: 

t

T
Cq p




                                        (2) 

where   and pC  are the mass density and the specific heat 

capacity, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of cracked double-layered structure under transient 

thermal impact on the upper and lower surfaces  

 

Incorporating (1) with (2) leads to the heat conduction 

equations in the following form 
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where Lca   is a characteristic length parameter of the 

material, the superscript “(1), (2)” represent the variables in 

the upper layer and the lower layer, respectively. It is noted 

that the following dimensionless variables have been used for 

simplicity: 

)()(
1

)()2(
1

)()1( ,, I
q

IIII LTTTTTT                (6) 

and the time have been normalized as )(I
qt  . 

The heat conduction equations are subjected to the 

following boundary and initial conditions in the dimensionless 

form as 
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III. METHOD OF THE PROBLEM 

   Application of Laplace transforms to (3, 4) leads to: 
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where the superscript “*” denotes the quantities in the Laplace 

domain and Br  stands for the Bromwich path of integration.   

By considering the initial conditions and boundary 

conditions, we can obtain the appropriate temperature field in 

the Laplace domain by using Fourier transforms as 
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where ),(),,( pEpD jj   ( 2,1j ) are unknowns to be 

determined and ),(),,(,, 21 pyWpyWnm  are known 

functions. 

    Introduce the temperature density function as 

x
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    It is clear from the boundary conditions (10) that 

  0, 
c

c
dtpt .                               (17) 

 

    The satisfaction of the mixed boundary value problem on 

the crack face plane leads to the singular integral equation for 

),( px  as follows 
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where ),,( ptxH  is the kernel function  and its expression is 

omitted here.  

    The solution of the singular integral equation (18) under the 

single-valuedness condition (17) may be expressed as [10]: 

21),(),( xpxpcx  .                       (19) 

where ),( px  is bounded and continuous on the interval 

]1,1[ . From the properties of symmetry and the condition 

(17), it is seen that ),( px  is an odd function of x , i.e., 

),(),( pxpx  .  

By using the numerical method of Erdogan [10], Singular 

integral equations (17) and (18) can be solved at discrete 

points as 
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Once the function ),( pt  is obtained, the function 

),(2 pD   can be obtained by applying the Chebyshev 

quadrature for integration as 
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   The functions ),(1 pD  , ),( pE j   ( 2,1j ) can be expressed 

in terms of ),(2 pD   as 

 
 

 
 

),(
)2exp(1)(

)2exp(1)(
),(

),(
)2exp(1)(

)2exp(1)(
),(

)2exp(),(),(

2

22

11
2

2

22

11
1

121

pD
nhpnK

mhpmK
pE

pD
nhpnK

mhpmK
pE

mhpDpD



















.       (22) 

 

IV. TEMPERATURE FIELD 

    The substitution of (21, 22) into (14, 15) can give the 

temperature in the Laplace domain, and the temperature in 

time domain can be obtained by applying the Laplace inverse 

transform.  

    Of particular interest are the temperature gradients in the 

cracked media under thermal loadings. A temperature gradient 

is a physical quantity that describes in which direction and at 

how much rate the temperature changes the most rapidly 

around a particular location. The temperature gradients in the 

Laplace domain can be obtained as 

    The singular temperature gradients near the right crack tip 

in the Laplace domain can be obtained as 
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    The temperature gradients near the crack tip in the radial 

direction in the Laplace domain can be obtained as 
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where the subscript “ j, ” ( ryxj ,, ) denote the 

temperature gradient in x , y  and radial direction, 

respectively; ),( r  are the polar coordinates measured from 

the crack tip defined by 

)()tan(,)( 222 cxyycxr   .                (26) 

    In front of the crack tip at   , the temperature gradient 

reaches the maximum value and the intensity factor of the 

temperature gradient (IFTG) near the crack tip can be defined 

as [11], 
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and the radial intensity factor of the temperature gradient 

(RIFTG) near the crack tip can be defined as 
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    By applying the inverse Laplace transform, the near crack-

tip temperature gradients in time domain can be obtained as 
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where the intensity factor of temperature gradient (IFTG) in 

the time domain, )()( tK j
T  ( 2,1j ) is given as 
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and the radial intensity factor of temperature gradient (RIFTG) 

near the crack tip in time domain is 
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It can be seen from (33) that the dynamic temperature 

gradients possess a 21r  singularity near the crack tip, which 

is in agreement with the corresponding static thermal crack 

problem [3, 11]. The dynamic effect is merely introduced by 

the IFTGs, which are time-dependent as shown in (34, 35). It 

can be observed that the maximum temperature gradient 

appears at the angle   , which corresponds to the lower 

and the upper crack surfaces near the crack tip; this conclusion 

is in agreement of the physical intuition that abrupt 

temperature changes occur near the crack tip. The effect of the 

geometric size 1h  and 2h  on the radial intensity factor of 

temperature gradient (RIFTG) is through the function ),1( p , 

and the geometric size does not affect the angular function of 

the temperature gradient. 

 

V. NUMERICAL RESULTS AND DISCUSSION 

    The temperature field in the time domain can be obtained by 

applying the numerical inversion of Laplace transform, as 

detailed in Miller and Guy [12]. The geometric size of the 

composite is chosen as 1,2,1 21  Lchch , without 

loss of generality.  

The temperature distribution in the cracked layers is shown 

in Figs. 2 and Figs. 3 for the cases of 5.021 kk  and 

221 kk , respectively. Other related material parameters of 

the two layers are assumed to be sqq
9)2()1( 10 , 

sT
9)1(

100.2  , sT
9)2(

105.0  . The normalized 

temperature applied on the boundaries of the layers are 

assumed to be 2,1 21  TT .  

For the case of 5.021 kk , the disturbance of the 

thermally insulated crack on the temperature field can be 

observed from the iso-temperature lines in Fig. 2, and there is 

a temperature jump across the crack faces. The interference of 

the insulated crack results in the higher temperature in the 

inner region of the heat conduction medium than that on the 

boundary, this is called temperature overshooting 

phenomenon, as shown in Fig. 2, which corresponds to the 

normalized time 0.2t . This temperature overshooting 

phenomenon is of great importance in thermal engineering 

applications such as safety design of the electronic or 

mechanical devices under severe thermal loadings [13]. Fig. 3 

display the temperature distribution in the cracked layers for 

the case of 221 kk , temperature overshooting phenomenon 

is observed and there is a temperature gap across the crack. 

Comparing to Fig. 2, it can be seen that the temperature 

intensification around the crack varies as the thermal 

conductivity parameters changes.  

Of much interest is the temperature distribution on the 

crack faces as the insulated crack interrupt the temperature in 

the cracked composite. The temperature on the crack faces and 

crack face extended lines is shown in Fig. 4 for different time 

points. It is observed that there is temperature jump across the 

insulated crack on the interface of the bonded layers, while 

outside the crack region the temperature on the interface is 

continuous. As the time changes, the temperature on crack 

faces and the extended lines changes accordingly. It can be 

seen that the temperature on part of the upper face may exceed 

the temperature on the boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Temperature distribution in cracked layers when 5.021 kk  at 

0.2t . 
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Figure 3. Temperature distribution in cracked layers when 221 kk  at 

0.2t . 

 

 

 

 

 

 

 

 

 

Figure 4. Temperature distribution on crack faces and extended lines when 

5.021 kk . 

 

VI. CONCLUSIONS  

The transient temperature distribution in a layered 

composite with an interface crack under temperature impact 

loading has been studied using the dual phase lag model. The 

crack lies parallel to the boundary and is assumed to be 

thermally insulated. Fourier and Laplace transforms are 

applied to solve the temperature field, and the mixed boundary 

problem is reduced to solving a singular integral equation. An 

asymptotic analysis and inverse Laplace transform are applied 

to obtain the temperature field in the time domain and the 

intensity factor of temperature gradient is defined. Numerical 

studies show that overshoot phenomenon may occur due to the 

combined effect of the insulated crack and application of the 

DPL heat conduction model. The thermal conductivity and the 

phase lag parameters have strong influence on the dynamic 

intensity factor of temperature gradients. 
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