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Abstract—A novel three-dimensional finite strain visco-
hyperelastic constitutive model is proposed to capture the strain rate
dependency of rubber-like materials. The overall material behavior
is defined by cumulative description of hyperelasticity and non-
linear viscoelasticity. The hyperelastic part is based on exponential
logarithmic Hart-Smith strain energy function and the viscous part
comprises of a fading integral which links the current stresses to the
applied strain history. The derived analytical framework is verified
with respect to experimental data. The potential of the proposed
model has been constituted by an excellent fit between proposed
model and considered test data.
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I. INTRODUCTION

Rubber-like materials undergo large deformations at rel-
atively low stresses and recover their initial shape upon
removal of the load. This exceptional ability makes them
suitable and without a doubt irreplaceable materials in vital
engineering applications. This uncommon behavior is caused
by the underlying coiled long chain polymer molecules. These
chains straighten when the material is stretched and recoil
upon removal of the load. This substantial aspect contributes
towards their extraordinary mechanical behavior and makes
rubbers a strain rate dependent material. This rate dependency
is associated with the rearrangement of the molecular chains
[1].

Rubber viscoelasticity can be described by two distinct the-
ories: a) Linear viscoelasticity b) Non-linear viscoelasticity.
To summaries, linear viscoelasticity models are constituted
by considering parallel and/or series arrangements of elas-
tic springs and linear viscous dash-pots. These rheological
analogies are superimposed by Boltzman’s principle and
the relaxation function is approximated with a prony series
formulation[2], [3], [4]. Whereas, the non-linear viscoelastic
constitutive relations are formulated by employing generalized
fading history integral function [5], [6]. In this approach, an
approximation of matrix stress functional defines the strain
history on stresses.

In order to prescribe time dependent response of the
elastomers, quasi-linear viscoelastic frame work requires to
be represented by 4-6 term prony series approximations.
As a result, large number of material constants are needed
to be determined [7], [8], [9]. In contrast, the number of
material constants can be reduced by articulating nonlinear
viscoelasticity. Moreover, numerical implementation of such
formulations is a straightforward procedure and the material
parameter identification is comparatively less time consuming
task. For that reason, a novel power-exponential strain history
functional has been proposed in the nonlinear finite strain
visco-hyperelastic framework to capture rate dependency in
various types of elastomers. For the purpose of validation,
derived constitutive relations are compared with the literature
based high strain rate experimental data for polyurea [10].

II. CONSTITUTIVE MODEL DEVELOPMENT

A. Hyperelasticity

Hyperelastic constitutive laws are derived from strain en-
ergy density W . It expresses the stored elastic strain energy
in material per unit reference volume as a function of the
principle strain or stretch invariants.

W = f(I1, I2, I3), (1)

Where I1, I2 and I3 are the invariants of left Cauchy-Green
tensor (B = FFT ) defined as:

I1 = tr(B) = λ21 + λ22 + λ23

I2 = (trB)2 − trB2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1

I3 = J =
√
det(F ) =

√
(λ21λ

2
2λ

2
3)

(2)

Cauchy stress in an incompressible hyperelastic continua is
given by[11]:

σe = −peI + 2

[(
∂W

∂I1
+ I1

∂W

∂I2

)
B − ∂W

∂I2
B2

]
(3)

where where pe is a hydrostatic pressure term which needs to
be determined from boundary conditions and I is an identity
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tensor. Time independent behavior of elastomers is charac-
terized using Hart-Smith strain energy [12] as it provides
distinctive advantages in modeling finite strain hyperelastic
materials due to its exponential form[13], [14], [15], [16].

WHS = C1

∫
exp

(
C3(I1 − 3)2) dI1 + 3C2ln

I2
3

(4)

Here C1, C2 and C3 are model parameters and need to be
determined from experiments.

Let us consider an in-compressible {i.e. J = 1 in eq.(3)}
material deformation under uniaxial extension mode. If the
stretch in the loading direction is denoted by λ then the
deformation gradient F for this loading becomes:

F =


λ 0 0

0 λ−0.5 0

0 0 λ−0.5

 (5)

Consequently the invariants are depicted as:

I1 = λ2 + 2λ−1, I2 = λ−2 + 2λ (6)

From eq. (3) and (4), we arrived to uniaxial stress-stretch
relation as:

σe11 = −pe + 2λ2
(
I1C2

I2
+ C1 expC3 (I1−3)2 − C2λ2

I2

)
(7)

Then after, the hydrostatic pressure term pe is calculated
by applying uniaxial loading condition σe22 = σe33 = 0

σe22 = 0 = −pe +
2

λ

(
I1C2

I2
+ C1 expC3 (I1−3)2 − C2

λ I2

)
(8)

Finally, by substituting the expression for pe into eq(7);
the we derived incompressible uniaxial hart-smith stress-strain
law as:

σe11 = 2 (λ2 − λ−1)

[
I1C2

I2
+ C1 expC3 (I1−3)2

− (λ2 + λ−1)C2

λ I2

] (9)

B. Viscoelasticity

The generalized constitutive relation for non-linear incom-
pressible viscoelastic material behavior is given by[17]:

σv = −pvI + F (t) ·
t∏

τ=−∞
{C(τ)}·F (t)t (10)

where σv is time dependent cauchy stress tensor, p is the
hydro-static pressure term also called Lagrange Multiplier and∏

is a strain history function given by:

t∏
τ=−∞

{C(τ)}=
∫ t
−∞Φ(I1, I2)m(t− τ) ˙E(τ)dτ (11)

In equation (11), Φ(I1, I2) is the function depending on
invariants of strain tensor C and the strain rate ˙E(τ) is defined
as:

Ė =
1

2
(ḞTF + FT Ḟ ) (12)

m(t) is a relaxation function which is represented by a series
of exponential series functions as

m(t) =

N∑
i=1

exp

(
− t− τ

θi

)
(13)

where θi is the relaxation time. Several researchers have
assigned N values greater than/equal to 2 in their work[18]. In
order to reduce the number of material constants with single
relaxation time scheme i.e. N = 1, we are proposing a novel
suitable representation of the function Φ(I1, I2) as:

Φ(I1, I2) = ˙E(τ)
A1 ·A2 · exp(I2 − 3)A3 (14)

The starting point for the time integration is at the instant
when loading commences. It is assumed that the effect of
deformation history for τ < 0 on the stress at time t > 0 is
negligible. Thus, the period of deformation history which is
considered to effect the stress response and hence the limits
of integration in the second term on the right-hand side of
Eq.11 becomes [0, t] rather than [−∞, t].

Substituting Eqs. 14 and 13 with N=1 into Eq. 11 results
in the following proposed integral approximation for

∏
∏

=

∫ t

0

ĖA1 ·A2 · exp(I2 − 3)A3exp

(
− t− τ

θ1

)
Ėdτ

(15)
Substitution of eq.(15) into eq.(10) yields a finite strain
viscoelastic model for incompressible materials as

σv = −pvI + F ·
[∫ t

0

ĖA1 ·A2 · exp(I2 − 3)A3 ·

exp

(
− t− τ

θ1

)
˙E(τ)dτ

]
· F t

(16)

C. Visco-hyperelasticity

Visco-hyperelastic behavior is generally introduced by ag-
gregating hyperelasticity and viscocity i.e. σ = σe +σv [18],
[19].

σ = −pI + 2

[(
∂W

∂I1
+ I1

∂W

∂I2

)
B − ∂W

∂I2
B2

]
+ F ·[∫ t

0

ĖA1 ·A2 · exp(I2 − 3)A3 · exp
(
− t− τ

θ1

)
˙E(τ)dτ

]
· F t

(17)
where σ is the total stress and p is the total hydrostatic
pressure incorporating static and viscoelastic components.
Inserting Ė11 = λλ̇ into eq.(17) concludes the uniaxial stress
as:

σ11 = −pv + σe11+

λ3
∫ t

0

(λλ̇)A1 ·A2 · exp(I2 − 3)A3 · exp
(
− t− τ

θ1

)
λ̇dτ

(18)
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By applying uniaxial loading condition that σ11 = 0 into
eq.(18), pv is formulated as:

pv = −λ
−1

2

[ ∫ t

0

λ−2(λλ̇)A1 ·A2 · exp(I2 − 3)A3 ·

exp

(
− t− τ

θ1

)
λ̇dτ

] (19)

Replacing pv in eq(18), we derived the uniaxial stress-
deformation expression as:

σ11 = σe11 + λ3
∫ t

0

(λλ̇)A1 ·A2 · exp(I2 − 3)A3 ·

exp

(
− t− τ

θ1

)
λ̇dτ +−λ

−1

2

[ ∫ t

0

λ−2(λλ̇)A1 ·A2·

exp(I2 − 3)A3 · exp
(
− t− τ

θ1

)
λ̇dτ

] (20)

III. VERIFICATION OF PROPOSED MODEL

We have considered experimental data reported by Roland
et. al [10] for verifying derived analytical results. They have
performed uniaxial tensile test on polyurea from moderate to
high strain rates using drop weight apparatus. The hyperelastic
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Fig. 1: Comparison of Roland et. al [10] data with proposed
model

Hart-Smith material parameters are determined with respect
to quasi-static (in this case 0.15 S−1 ) experimental data. The
detailed procedure for parameter identification is described in
[13]. Where as the material parameters for the viscoelastic
part has been derived by considering test data for the strain
rates of 14 S−1 and 573 S−1. These required material
constants have been optimized using non-linear least square
function "Fmincon" in MATLAB (see Table I). Fig. (??)
demonstrates an excellent agreement between the proposed
model results and the experimental data. Notably, the model
is adequate to predict the material response for the rates of
327 S−1 and 408 S−1 accurately even though the relevant
experimental data have not been considered for the material
parameters identification.

TABLE I: Optimized material parameters

Hyperelastic model Viscoelastic model
C1 C2 C3 θ1 A1 A2 A3

0.4474 12.79 8.1E-4 5.4E-3 -0.7355 259.89 0.05

IV. CONCLUSION AND FUTURE WORK

To summarize, a novel visco-hyperelastc material law has
been proposed to capture rate dependency in elastomers
by adopting generalized non-linear viscoelasticity. Analyt-
ical stress-strain relations are derived for uniaxial tension
mode. An excellent agreement between numerical results and
experimental data reported by Roland et. al [10] has been
obtained. Also, the predictive capability of the model has
been demonstrated. Following the promising findings, the
conducted work will be extended by considering broader
spectrum of experimental data. The developed model will be
implemented in commercial finite element code via user de-
fined subroutine to analyze complex geometries and ladings.
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