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Abstract— 

In this paper we investigate the effects of stiffness, damping and 
temperature on the performance of a MEMS vibratory 
gyroscope. The stiffness and damping parameters are chosen 
because they can be appropriately designed to synchronize the 
drive and sense mode resonance to enhance the sensitivity and 
stability of MEMS gyroscope. Our results show that increasing 
the drive axis stiffness by 50% reduces the sense mode 
amplitude by ~27% and augments the resonance frequency by 
~21%. The stiffness and damping are mildly sensitive to typical 
variations in operating temperature. The stiffness increases by 
1.25%, while the damping decreases by 3.81%, when the 
temperature is raised from 0C to 45C. Doubling the damping 
reduces the oscillation amplitude by 80%, but ~1% change in 
the frequency. The predicted effects of stiffness, damping and 
temperature can be utilized to design a gyroscope for the desired 
operating condition. 
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I.  INTRODUCTION  

Microelectromechanical systems (MEMS) based inertial 
sensors such as accelerometers and gyroscopes are the most 
commercially successful MEMS sensors to date. With the rapid 
advancement of semi-conductor based mass manufacturing, the 
cost, size and power consumption are continuously decreasing, 
enabling new applications in automotive, aerospace, biomedical 
and consumer electronics. MEMS vibratory gyroscopes are 
physical sensors that can detect and measure the angular motion 
of an object relative to an inertial frame of reference. MEMS 
vibratory sensors show promising vibration characteristics. 
Fabrication accuracies  are comparable to macro-scale high 
performance sensors [1]-[4]. A vibratory gyroscope uses a 
vibrating structure (proof mass) to determine the rate of rotation 
[5].  The vibrating proof mass tends to vibrate along the same 
plane even if its support rotates. The Coriolis Effect causes the 
object to exert a force on its support, and the rate of rotation can 
be determined from the exerted force. The energy is transferred 
from the vibrating drive axis to the sense axis through Coriolis 

force. The sense mode response detects the angular velocity. 
The sensing performance of the MEMS gyroscope can 
deteriorate because of the influence of time-varying parameters 
such as damping, cross stiffness, and environmental variations. 
They  generate a frequency of oscillation mismatch between the 
two vibrating axes [6]. Due to fabrication imperfections and 
environmental effects, true values of resonant frequencies 
deviate from their nominal values (which is known as frequency 
mismatching). These lead to considerable reduction in the 
sensitivity of the gyroscope. Therefore, it is necessary to design 
proper stiffness and damping for achieving a robust gyroscope.  

 

Figure 1. Schematic showing MEMS gyroscope model. 

Optimization of time varying system parameters for better 
performance can be achieved by iterative modelling and 
simulation procedure. Various modeling techniques, including 
finite element analysis (FEA) modeling, analytical modeling and 
simplified lumped parameter modeling are employed [7]. FEA 
based modeling are robust, flexible and accurate in solving the 
complete multi-physics problem. Additionally, it can be coupled 
with controllers and electronics for selecting an appropriate 
controller [8].  

Usually gyroscope displacement measurement varies under  
open loop scheme which can cause undesirable performance 
characteristics such as scale factor nonlinearity, limited dynamic 
range and narrow bandwidth [9]. In MEMS gyroscopes, 
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manufacturing imperfection and noises often exist which 
negatively influence the resolution and performance. Errors due 
to noise are inevitable in actual MEMS gyroscopes, and thus, the 
controller has to be  robust and effectively designed [10]. Post-
fabrication modeling of gyroscope using lumped-parameter 
techniques can shed light to the influence of system parameters, 
noise and environmental parameters on the gyro performance. 
This will allow iteration and design of a proper controller.  

In this paper, a lumped-parameter model for predicting the 
gyroscope performance with the influence of various system 
parameters such as stiffness, damping and environmental 
condition (temperature) is analyzed.  The results can be utilized 
to design a robust high performance gyroscope with efficient 
controller. 

II. MATHEMATICAL MODEL 

In a vibratory gyroscope the main sensing element is the 
proof mass, which is suspended above the substrate by several 
flexible beams. The overall dynamic system is usually modeled 
as a 2 degrees-of-freedom (2-DOF) spring-mass-damper system, 
as shown in Figure 1. The proof mass is suspended on the 
substrate using four springs (Figure 1), the other end of the 
springs are anchored to the substrate. An electrostatic actuation 
is used to give an oscillatory motion to the proof mass in the 
drive axis. When the proof mass is subject to an angular velocity, 
energy is transferred from drive axis to sense axis, causing it to 
oscillate. The mechanism for sensing position and velocity of the 
proof mass along the sense axis is present. Constant velocity of 
the proof mass and changing angular velocity of gyroscope 
about the z-axis are assumed. The MEMS vibratory gyroscope 
model includes proof mass (m), drive axis displacement (x), the 
angular velocity input (Ωz), and sense axis displacement (y). 

According to Lagrange’s [11] equation, the dynamics of the 
gyroscope can be described by the equations of motion below 
[12]: 

 
m�̈�+dxx �̇� + kxx x +kxy y + dxy �̇� = ux + 2m Ωz �̇�  (1) 
 
m�̈�+dyy �̇�+ kyy y +kxy x + dxy �̇� = uy+ 2m Ωz �̇�   (2) 
 
Manufacturing imperfections are translated mainly to the 
asymmetric spring and damping terms, kxy and dxy. The drive 
and sense axes spring and damping terms kxx, kyy, dxx and dyy 
are mostly known, but have small unknown variations from 
their nominal values. The proof mass can be determined 
accurately, and ux, uy are the control forces in the x and y 
directions. 
 
Dividing gyroscope dynamics by the reference mass, the 
following equation can be obtained [13]:  
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Angular rate variation may be considered to be negligible. The 
equations of motion of the gyroscope are normalized to 
generalize the model. The final non-dimensional equation is 
derived in terms of normalized time, t* = ω0 t. With this, 
dividing both sides of the equation by the reference frequency 
and length gives [13]: 
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where the parameters are defined as follows: 
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Consequently, the non-dimensional representation becomes 
 
�̈� + 𝐷�̇� + 𝑞𝑘 + 𝑘 𝑞 = Ω �̇� + 2𝑆�̇� + 𝑢    (5) 
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Simulation is done to observe the influence of stiffness, 
damping and temperature on gyroscope performance to 
minimize time and cost of expensive trial and error with the 
actual fabrication cycle. 
 
MATLAB Simulink [14] is used for simulation and 
computation. Spring stiffness, damping coefficient and 
temperature are known to have significant influence on the 
output performance of gyroscope. Thus, the objective of the 
simulation is to quantify the effects of these parameters. The 
spring stiffness and damping coefficient are varied from half to 
double of their nominal values. The temperature is varied from 
00 C to 450 C to observe the temperature effect on stiffness, 
damping coefficient and on sensing magnitude. For the 
simulation model, the nominal values for the proof mass, 
stiffness, and damping are extracted from the literature reported 
in [12]. Proof mass, m = 0.57e -8 kg, damping coefficient along 
the drive-axis, dxx = 0.429e-6 N s/m, damping error due to 
manufacturing imperfection, dxy = 0.0429e−6 N s/m, damping 
coefficient along the sense-axis, dyy = 0.687e−36 N s/m, spring 
stiffness along the drive-axis, kxx= 80.98 N/m, stiffness error 
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due to manufacturing imperfection, kxy = 5 N/m, spring stiffness 
along the sense-axis, kyy = 71.62 N/m, angular velocity, Ωz= 5 
rad/s are considered.  

III. MODEL RESULTS 

A. Oscillation Frequency 

To identify the first resonance frequency, input frequency is 
varied, a sinusoidal electromagnetic force is introduced at the 
drive-axis and output is sensed both in drive and sense 
directions (Fig. 2). Usually the drive mode displacement is 
higher compared to sense mode due to the energy transfer.  

 
Figure 2. Displacement in drive mode (x) and sense mode (y) direction. 

 
After sweeping the simulation with the frequency range of 1 
kHz to 60 kHz (Fig. 3), the resonance frequency is found at 
around   9.4 kHz. So, for better focusing, the frequency range is 
restricted from 10 kHz - 30 kHz for other comparisons.  
 

 
Figure 3.  Frequency versus magnitude graph.  

B. Variation in Stiffness 

Suspension beam along drive and sense direction provides the 
stiffness necessary in each direction. Keeping the kyy value 
constant at 71.62 N/m, kxx is varied from 50% (normalized 
value 0.5) to 150% (normalized value 1.5). The normalized 
value of tuned reference stiffness (80.98 N/m) is considered as 
1.  It is observed that magnitudes at resonance frequencies show 
linear decreasing trend (Fig. 4) and amplitudes decrease (Fig. 
5) as stiffness increases. However, decreasing the stiffness 
creates phase lag and distortion in output response. 
 

 
Figure 4.  Effect of drive mode stiffness on resonance frequency and 

amplitude. 

 
Figure 5.  Effect of drive mode stiffness on output sense (sense mode stiffness 

is constant) 
Keeping the kxx value constant, kyy is varied. It is observed that 
shift in resonance frequency is non-significant (Fig. 6). 
 

 
Figure 6.    Effect of sense mode stiffness on magnitude  (drive mode stiffness 

is constant). 
Variation in stiffness (kxx and kyy) along both axes decreases 
magnitudes at resonance frequencies and resonance frequencies 
shift towards higher frequencies (Fig. 7) and amplitudes also 
decreases as stiffness increases (Fig. 8). 

 

 
Figure 7.  Combined effect of drive mode stiffness and sense mode stiffness on 

magnitude. 
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Figure 8.  Effect of drive mode stiffness and sense mode stiffness on output 

sense. 
 

C. Variation in Damping 

Here, damping along drive axis is varied (Fig. 9). It is obvious 
from the figure that the resonance frequencies do not change 
that much but slope steepness decreases after resonance 
frequencies.   
 

 
 

Figure 9. Effect of drive mode damping on magnitude. 
 

D. Temperature Variation 

One key disadvantage of MEMS gyrosocpe is its high thermal 
sensitivity. The frequency of oscillation drifts with temperture. 
Temperature variation mainly affects the stiffness and damping 
of the supporting beams. Here  investigation on  the temperature 
sensitivity for stiffness and damping is done. The variation of 
stiffness with temperature can be modeled using simplified 
linear relationship of [7] 𝐾(𝑇) = 𝐾 (1 − 𝑘Δ𝑇), where K0 is the 
stiffness coefficient at reference temperature 300 K and k=70 
ppm.  
 
Variation of damping coefficient with temperature can be 

modeled as [7] 𝑑(𝑇) = 𝑑 . 1.28  ( ) , where T is temperature 
in K , 𝑑 is demping coefficient at reference temperature of 300 
K. Magnitude   shows positive increasing trend with the 
increase of temperature when stiffness and temperature 
relationship shows linear behaviour. The damping coefficient 
within industrial temperature range  shows decreasing trend as 
temperature  increases (Fig. 10, 11). 

  
 

Figure 10. Effect of temperature on linear drive mode stiffness and magnitude 
 

 
Figure 11. Effect of temperature on non-linear damping and magnitude 

 

 
 

Figure 12. Effect of temperature on non-linear drive mode stiffness and 
magnitude. 

 
The spring stiffness and temperature relationship shows non-
liner behavior, the magnitude increases non-linearly up to a 
certain point before decreasing. At the end of the industrial 
temperature range, the magnitude increases drastically (Fig. 12). 

IV. CONCLUSION AND FUTURE WORK 

This paper investigates the effect of variation of suspending 
stiffness coefficient, damping coefficient and temperature on 
the performance of MEMS gyroscope. Simulation results show 
how these parameters affect the error i.e. mismatch between the 
input and sense signals. This will help to design appropriate 
system parameters and controllers to increase gyroscope 
accuracy. Simulation results also show that stiffness is the 
dominant gyroscope parameter. The temperature can negatively 
impact resonance frequency and sense magnitude.  In the future, 
we plan to extend this by including experimental validation of 
our results with MEMS gyroscopes and implementing a 
controller to minimize these effects and maximize the 
gyroscope performance. 
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