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Abstract - An external force is required to maintain the 

relative movement of horizontal plates. It is shown that this 

force is reduced when the plates are subject to a spatially 

distributed heating. The largest reduction occurs for heating 

wavelengths of the order of distance between the plates with 

its magnitude increasing proportionally to the second power of 

the relevant Rayleigh number. It is shown that a sufficiently 

strong heating eliminates the need for the driving force 

altogether. The effect is active only in small Reynolds number 

flows.  
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I.  INTRODUCTION 

 Friction between moving shafts found in numerous 
machines contributes to the energy cost of operating these 
devices. This cost may be estimated by determining force 
required to maintain the relative motion between these parts. 
Similar processes can be found in other applications, e.g. the 
towing of a free-floating body in a shallow basin. In general, 
flows which form in the space between two infinite plates in 
relative motion are well approximated by the Couette flow 
model, which is one of the family of simple flows frequently 
used in analyses. 

Couette flow is characterized by the absence of a 
streamwise pressure gradient, a linear velocity distribution 
across the fluid layer and the lack of the linear stability limit 
[1]. The nonlinear stability analyses are well reviewed in [2] 
and demonstrate various routes to secondary finite-amplitude 
states as well as to turbulence. Surface modifications either in 
the form of transverse grooves [3], longitudinal grooves [4] or 
wall transpiration [5] can lead to centrifugal instabilities. 
Replacing the plane Couette flow with the annular Couette 
flow leads to shear instabilities [6]. Transition to secondary 
states leads to an increase in the wall shear and the need to 
increase the externally-imposed driving force. Such states 
should be avoided if minimization of energy cost is of interest.   

Analyses of non-isothermal Couette flows are rather 
limited. They typically involve fluids with temperature-
dependent material properties in a flow system exposed to a 
spatially uniform heating [7]. The addition of gravity brings in 
buoyancy effects which may generate secondary flows through 
the Rayleigh-Bénard (RB) instability [8,9] if the relevant 
critical conditions are met. Analyses of the resulting mixed 

convection are well reviewed in [10]. The use of spatially non-
uniform heating leads to structured convection which occurs 
regardless of the heating intensity, but which is yet to be 
studied in the case of Couette flow. It is known that such 
heating leads to the reduction of pressure losses in pressure-
gradient driven flows [11-13]. 

The present work is part of a wider search for drag reducing 
methods which, in the present case, manifests itself in the form 
of reduction of the external force required to maintain the 
relative plate movement. One of the approaches is to assure 
stability of the flow so that transition to secondary states is 
avoided. Another approach, which is followed here, is to create 
spatial flow modulations which could lead to the reduction of 
shear and, thus, reduction of the driving force. The use of 
grooves for this purpose has been explored in [14-16]. This 
paper explores modulations created by spatially distributed 
heating. 

II. PROBLEM FORMULATION 

Consider two horizontal plates moving relative to each 
other and separated by a distance as shown in Fig.1. 

 

Figure 1. Schematic diagram of the flow domain. 

The resulting gap extends to in the x-direction and is filled 

with a fluid of thermal conductivity , specific heat , 

thermal diffusivity , kinematic viscosity , 

dynamic viscosity , thermal expansion coefficient   and 

with variations of density  described by the Boussinesq 

approximation. The gravitational acceleration  acts in the 
negative y-direction. The upper plate is pulled in the positive x-
direction with a constant velocity  while the lower plate is 

stationary. When the system is isothermal, the drag force and 
the resulting flow field can be easily determined: 
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, ,  (1) 

where velocity has been scaled with  as the velocity scale, 

Q0 stands for the flow rate scaled with the same velocity scale, 

 stands for the shear acting on the upper plate scaled with 

,  denotes the force per unit length and width 

required to drag the upper plate scaled with   and the 

relevant Reynolds number is defined as . 

 
Introduce an external heating resulting in sinusoidal 

temperature variations along the lower plate,  

,    (2) 

where the subscripts “mean” and “p” refer to the mean and 
periodic parts, respectively,  is the peak-to-peak amplitude of 

the periodic component, and subscripts L and U refer to the 
lower and upper plates, respectively. Using the upper plate’s 
temperature for reference and introducing the relative 
temperature  lead to plates’ temperatures of the 
form 

,   , (3) 

where , . Using half of the gap 

height  as the length scale and  as the 

temperature scale results in the temperature boundary 

conditions of the form 

 

,      , (4) 

where  is the uniform Rayleigh 

number measuring the intensity of the uniform heating,  
 is the periodic Rayleigh number 

measuring the intensity of the periodic heating, and all material 
properties are evaluated at the reference temperature . 

The field equations take the form  

,                ,                 (5) (2.5a.b) 

,  , (2.5c,d) 

where  (u, v) are the velocity components in the (x, y) 
directions, respectively, scaled with  as the 

velocity scale,  stands for the pressure scaled with  as 

the pressure scale and Pr =  is the Prandtl number. These 
equations are subject to boundary conditions (2.4) combined 
with    

, ,                 (6) 

where . As the flow is driven by the movement 

of the upper plate, any effects associated with the mean 

pressure gradient are eliminated through imposition of 

constraint of the form 

 

. (7) 

   Heating alters the flow resulting in the change of the driving 

force, , which, when scaled with , can be 

evaluated using the following relation  

.         (8) 

III. DISCUSSION OF RESULTS  

Identical mean temperatures of both plates correspond to 
Rauni = 0. When the upper plate is stationary (Re = 0), a purely 
periodic heating results in the formation of convective counter-
rotating rolls with the fluid moving upwards above the hot 
spots and downwards above the cold spots, as illustrated in 
Fig.2a, and its temperature rising above the mean in most of the 
fluid volume. Slow movement of the upper plate (Re = 1) 
results in a competition between the plate-driven and the 
buoyancy-driven motions. The flow topology is simple in the 
zones with the clockwise-rotating rolls as the roll movement is 
kinematically consistent with the plate movement, resulting in 
the formation of a single stream of fluid moving in the positive 
x-direction located in the immediate vicinity of the moving 
plate. A complex flow topology forms in the zones with the 
counterclockwise-rotating rolls as the fluid stream splits into 
two branches, one flowing above the rolls and one flowing 
beneath them. The upper branch is dominated by the plate 
effect, and the lower branch is dominated by the roll effect (see 
Fig.2b). Most of the fluid remains trapped in the rolls, i.e. 
either in the clockwise rolls attached to the lower plate or in the 
counter-clockwise rolls bounded by the two branches of the 
stream moving to the right. A further increase of the plate 
velocity (Re = 5) results in the dominance of the plate-driven 
movement with most of the fluid moving to the right, the 
elimination of the counterclockwise rolls and the reduction of 
the size of the clockwise rolls (see Fig.2c) but with the 
buoyancy effects still providing a significant contribution to the 
overall flow dynamics. A further increase of Re results in the 
eventual elimination of the rolls (see topology for Re = 50 in 
Fig.2D). The sequence of plots displayed in Fig.2 illustrates the 
process of formation of both the flow and thermal boundary 
layers near the lower plate as Re increases.  
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(C) 

 
(D) 

Figure 2. The flow and temperature fields for Rap = 1000, Pr = 0.71, 

, α = 2 and (A) Re = 0, (B) Re = 1, (C) Re = 5, (D) Re = 50. 

Thick solid lines identify streamlines, thin solid lines identify negative 
isotherms while thin dashed lines identify positive isotherms. Thick 

streamlines mark borders of bubbles trapping the fluid. 

 

The results presented in Fig.3 demonstrate that all heating 
wave numbers lead to a decrease of the driving force with the 
magnitude of this reduction being a strong function of α. The 
largest reduction occurs for α ≈ 1-2 with its magnitude 
decreasing proportionally to α4 if an excessively small α is 
used. The flow and temperature fields (not shown) are 
qualitatively similar to those displayed in Fig. 2. The use of an 
excessively large  also results in a reduction of  but at a 
much higher rate, i.e. proportionally to α-7. 

 

Figure 3. Variations of ΔF/Re as a function of α for Pr = 0.71, , Re 

=1 (solid lines) and Re = 10 (dashed lines). Thin dotted lines identify 

asymptotes. The shaded area identifies conditions where the driving force 

must change direction and becomes a braking force. 

 
The force-reducing effect is a strong function of Re (see 

Fig.4). The magnitude of ΔF increases proportionally to Re for 
small Re’s, reaches a maximum at Re ~ 5-6 and then decreases 
at a rate proportional to . The flow topologies displayed in 
Fig.2 show that the elimination of ΔF is associated with the 

reduction of convection bubbles and confinement of convection 
effects to a thin boundary layer near the lower plate. 

 

Figure 4. Variations of ΔF as a function of Rap for Pr = 0.71, , Re = 
1 (solid lines) and Re = 10 (dashed lines).   The shaded area identifies 

conditions where the driving force must change direction and becomes a 

braking force when Re = 1 and the double shaded area identifies such 
conditions for Re = 10. 

 

As it is unlikely that the mean temperatures of both plates 
can be kept equal, it is of interest to determine how their 
difference may affect the system response. This difference is 
expressed in the analysis as the uniform Rayleigh number 

 whose positive (negative) values correspond to the lower 
plate being hotter (cooler). The results displayed in Fig.5 
demonstrate that the uniform heating increases ΔF while 
cooling decreases it, and the change is approximately linear 
with . 

 

Figure 5. Variations of ΔF/Re as a function of α for Re = 1 (solid lines) and Re 

=10 (dashed lines), RaP = 1000, Pr = 0.71. The shaded area identifies 

conditions where the driving force changes direction and becomes a braking 
force. 
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IV. SUMMARY 

An external force is required to generate a relative motion 
between horizontal plates with the rate of this motion expressed 
in terms of the Reynolds number Re. The effects of spatially 
distributed heating on the magnitude of this force have been 
analyzed. Heating resulting in the lower plate temperature 
varying sinusoidally in the horizontal direction, with its 
amplitude expressed in terms of a periodic Rayleigh number 
Rap and the spatial distribution described by the wave number 
α, has been considered. The analysis has been limited to Rap < 
3000 to avoid condition leading to a potential formation of 
secondary flows. The difference between the mean plates’ 
temperatures has been expressed in terms of the uniform 
Rayleigh number  with positive values corresponding to a 
warmer lower plate. The fluid motion results from a 
competition between the buoyancy-driven effects and the plate-
driven movement. The former has the form of counter-rotating 
rolls whose distribution is dictated by the heating pattern. The 
latter one adds a rectilinear motion which leads to the reduction 
and eventual elimination of the rolls if Re is large enough. 

It has been shown that periodic heating always reduces the 
driving force, regardless of whether the heating is applied to 
the lower or upper plate, but the magnitude of this reduction is 
a strong function of the heating wave number. The largest 
reduction is achieved for α = 1-2 with a rapid decrease of this 
effect when either too small or too large α’s are used. An 
increase in  magnifies this effect. An increase in Re 
eliminates the rolls and reduces this effect, leading to its 
practical elimination for Re > 30-50 depending on the heating 
intensity. The use of proper heating intensity and distribution 
results in the complete elimination of the driving force as the 
plate movement can be supported by the buoyancy effects only. 
Conditions where an external braking force needs to be used to 
prevent the plate from accelerating have also been identified. 
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