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Abstract

Shape-constrained methods specify a class of distributions instead of a single para-

metric family. The approach increases the robustness of the estimation without much

loss of efficiency. Among these, log-concavity is an appealing shape constraint in dis-

tribution modeling, because it falls into the popular unimodal shape-constraint and

many parametric models are log-concave. This is therefore the focus of our work.

First, we propose a maximum likelihood estimator of discrete log-concave dis-

tributions in higher dimensions. We define a new class of log-concave distributions

on Zd, and study its properties. We show how to compute the maximum likelihood

estimator from an independent and identically distributed sample, and establish con-

sistency of the estimator, even if the class has been incorrectly specified. For finite

sample sizes, the proposed estimator outperforms a purely nonparametric approach

(the empirical distribution), but is able to remain comparable to the correct paramet-

ric approach. Furthermore, the new class has a natural relationship with log-concave

densities when data has been grouped or discretized. We show how this property

can be used in a real data example.

Secondly, we apply the discrete log-concave maximum likelihood estimator in

one-dimensional space to a clustering problem. Our work mainly focuses on the

categorical nominal data. We develop a log-concave mixture model using the discrete

log-concave maximum likelihood estimator. We then apply the log-concave mixture
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model to our clustering algorithm. We compare our proposed clustering algorithm

with the other two clustering methods. Comparing results show that our proposed

algorithm has a good performance.
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eLC maximum likelihood estimator
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Chapter 1

Introduction

1.1 Motivation

Estimating probability density/mass function is very important in statistics. Para-

metric and nonparametric methods are two popular methodologies in this area. The

parametric method is efficient and has good performance, because specific assump-

tions are added to the estimation. The disadvantage is that the estimation has

large bias when the assumption is wrong. Some example parametric models include:

normal distribution, uniform distribution, poisson distributions. The nonparametric

method such as the empirical distribution does not need specific parameter assump-

tion, is therefore more robust and data-adaptive, but it is not efficient and has larger

variance.

2



Shape-constrained estimation method is one kind of nonparametric method, which

means that the probability density/mass function is estimated with some shape-

constrained assumptions. The shape constraint includes but is not limited to uni-

modality, monotonicity, symmetric, log-concavity. We refer to Wolters and Braun

(2017) for the recent works, as well as the advantages and the challenges of shape-

constrained estimation models. Grenander (1956) introduced a nonparametric method

to estimate the MLE of non-increasing densities, which is known as the Grenander

estimator. Other works focused on monotony densities include Groeneboom (1985);

Huang and Wellner (1995). Based on the Grenander estimator, later research at-

tempted to estimate the unimodal densities. Birgé (1997) introduced an estimator

for estimating non-smooth unimodal densities, when the mode is known. Other

works related to unimodal density estimation include Rao (1969); Bickel and Fan

(1996).

Note that shape-constrained estimation method stands in the middle of paramet-

ric and nonparametric methods. Adding shape-constrained assumptions to distri-

bution improves the performance and reduces the variance comparing to nonpara-

metric method. On the other hand, shape-constrained models specify a larger class

than any specific parametric model. Hence comparing to parametric method, it is

more robust. For example, Bickel and Fan (1996) introduced density estimation
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methods with unimodal shape-constraint and compared their methods with non-

parametric kernel estimation. Their methods do a better job for the tail of density

and when the distribution is asymmetric. In Section 3.2, we will show that our

proposed shape-constrained estimator has an outstanding better performance than

the non-parametric estimator, and remains comparable performance comparing to

the strong parametric estimator. Of course, there is no guarantee of this in all cir-

cumstances. Among those shape constraints, log-concavity is an attractive shape

constraint. It includes a wide range of parametric models. For example: normal,

uniform, gamma(r, λ) with r C 1, beta(a, b) with a C 1, b C 1 in continuous setting,

and multinomial, negative multinomial, multivariate hypergeometric in discrete set-

ting, they are all log-concave. Furthermore, log-concave densities provide a natural

alternative to the class of unimodal densities, while not being too restrictive by spec-

ifying a parametric family. Notably, estimating the maximum likelihood estimator

of a unimodal density is not an easy problem. Let d denotes the dimension of space,

the maximum likelihood estimator does not even exist when d � 1, because the like-

lihood function can go to infinity (Birgé, 1997). Log-concave estimation falls in the

larger paradigm of shape-constrained estimation, inherits the advantage of striking

a balance of efficiency and robustness, also benefits from such properties as (local)

adaptivity and not requiring bandwidth.
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Walther (2009) introduced the attractive properties of log-concavity and gave a

brief review of recent works. For example, Balabdaoui et al. (2009) found the lim-

iting distributions of the nonparametric MLE of a log-concave density; Lutz and

Kaspar (2011) and Dümbgen et al. (2007) discussed algorithms and R packages

(logcondens) to compute the log-concave MLE in continuous setting; Cule et al.

(2010) presented theoretical properties of MLE of log-concave density in multiple

dimensional space, developed algorithm to compute the MLE and proved the con-

sistency of the MLE; Works of Doss and Wellner (2016) and Kim and Samworth

(2016) focused on global convergence rates for the MLE of log-concave densities. For

discrete setting, when d � 1, Weyermann (2008) showed the existence and uniqueness

of the MLE for the log-concave probability mass function (PMF), and provided an

active set algorithm to calculate the MLE, which is much in the spirit of Dümbgen

et al. (2007). Balabdaoui et al. (2013) introduced the log-concave MLE of a dis-

crete distribution in one dimensional space, and studied consistency and asymptotic

properties of the estimator, while Balabdaoui and Jankowski (2016) compared this

estimator with the MLE over the class of unimodal probability mass functions on Z.

Among those work, we highlight the works of Cule et al. (2010); Balabdaoui et al.

(2013) (will be introduced in the following sections). Our work is much in the spirit

of their works. Some of our theoretical results are inspired by the work of Balabdaoui
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et al. (2013), for example, the uniqueness, existence and consistency of the MLE. Our

algorithm to compute the MLE is much inspired by the work of Cule et al. (2010).

We adapt their algorithm and code for discrete setting. In our algorithm, we design

and solve the optimization problem following their work. The main difference is that

their MLE is in continuous setting, but ours is in discrete setting. More details about

the difference will be given in later chapter.

1.2 Overview of maximum likelihood estimation

Maximum likelihood estimation is a well known statistic methodology. With ob-

served data, it attempts to estimate distribution and parameters by maximizing

the likelihood function. For example, MLE can be used to estimate parameters in

a parametric model or the density function with nonparametric shape-constrained

methods.

Let x1, ..., xn be n independent and identically distributed observations from some

unknown distribution. We denote the distribution with f�xSθ�, where θ is a param-

eter vector. The likelihood function is defined as:

L�θ;x1, ..., xn� � n

M
i�1

f�xiSθ�.
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For computation convenience, we apply logarithm to both sides of the function, and

obtain the log-likelihood function:

lnL�θ;x1, ..., xn� � n

Q
i�1

lnf�xiSθ�.

The maximum likelihood estimator Âθmle is defined as:

Âθmle � argmaxθ>Θ

n

M
i�1

f�xiSθ�,

where Θ is the family of parameter θ. Equivalently, maximum likelihood estimator

(MLE) can also be expressed by maximizing the average of log-likelihood function:

Âθmle � argmaxθ>Θ
1

n

n

Q
i�1

lnf�xiSθ�.

The idea behind maximum likelihood estimator is that the most likely parameter

maximizes the likelihood function.

MLE is widely used in statistics. Indeed, under certain regulations the MLE has

the following properties.

� consistency: MLE converges in probability to the true value θ0, when sample
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size n large enough. That is,

Âθmle p
Ð� θ0, as nÐ�ª.

� asymptotic normality:

º
n�Âθmle � θ0� d

Ð� N �0,Σmle�.

� efficiency: MLE is asymptotically efficient since its variance approaches Cramer-

Rao lower bound.

Geman and Hwang (1982) mentioned that MLE methodology usually fails when

the parameters is in an infinite dimensional space. Hence MLE can not be applied to

completely nonparametric statistic models. The MLE of such model does not exist

because the likelihood function is unbounded. But situation changes when some

constraints are added to the model. MLE works efficiently with shape-constrained

nonparametric model. for example Cule et al. (2010) introduced an algorithm to

compute the MLE of log-concave densities in multiple dimensional space.
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1.3 Background

1.3.1 MLE of log-concave density on Rd

A density function f is said to be log-concave if �� log f��x� is a convex function

on Rd. A function h is convex if for all x,x� > Rd and for all α > �0,1� it satisfies

h�αx� �1�α�x�� B αh�x�� �1�α�h�x��. Let F denote the set of log-concave density

functions on Rd, given x1, ..., xn are a random sample drawn from a log-concave

density. The log-concave MLE on Rd is defined as:

Âfn � argmaxf>F

n

Q
i�1

log f�xi�.

Theorem 1.3.1. (Cule et al., 2010) With probability one, a log-concave maximum

likelihood estimator Âfn of f0 exists and is unique, where f0 is the true density on Rd.

The above Theorem proved the existence and uniqueness of the log-concave MLE.

The algorithm computing the MLE is derived based on the tent function ty. Following

Cule (2009), given y > Rn, a tent function can be explicitly defined as

ty�x� � inf�g�x� � Rd Ð� R S g is concave, and g�xj� C yj, j � 1, ..., n�.

To understand the tent function, we can imagine a two-dimensional problem. That
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is, x1, ..., xn > R2. Hence x1, ..., xn correspond points on a plane. We then put poles

with height of y1, ..., yn on those points, respectively. Finally, we stretch a piece of

rubber over those poles. The surface of rubber is exactly the tent function for the

given y1, ..., yn. The tent function actually reflects concave shape constraint, and it

is a piece-wise affine function.

Cule et al. (2010) compute their log-concave MLE by minimizing the objective

function over y � �y1, ..., yn� > Rn. The objective function is defined as follows:

σR�y1, ..., yn� � � 1

n

n

Q
i�1

yi � S
Cn

exp�ty�x��dx,

where Cn is the convex hull of �x1, ..., xn�, that is Cn � conv�x1, ..., xn�. Note that

the objective function is convex (Cule et al., 2010), and it has a unique minimum.

Unfortunately, it is proved not to be smooth everywhere, hence many efficient opti-

mization techniques can not be applied to this. Subgradient methodology is finally

chosen to solve the problem.

The general idea of subgradient algorithms is to proceed iteratively as follows:

Theorem 1.3.2. (Shor, 1985) Let �hi� be a positive sequence with hi � 0 as i �ª

and Pª

i�0 hi � ª. Then, for any convex function σ, the sequence generated by the
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formula

yi�1 � yi � hi
∂σ�yi�
Õ ∂σ�yi� Õ

has the property that either there exists an i0 and y� such that yi0 � y
�, or yi � y�

and σ�yi�� σ�y�� as i�ª.

1.3.2 MLE of log-concave mass function on Z

In this section we introduce the recent work of log-concave MLE in discrete setting.

When d � 1, Weyermann (2008) shows the existence and uniqueness of the maximum

likelihood estimator (MLE) for the log-concave probability mass function, and pro-

vides an active set algorithm to calculate the MLE, which is much in the spirit of

Dümbgen et al. (2007). Balabdaoui et al. (2013) introduced the log-concave MLE of

a discrete distribution in one dimensional space, and studied consistency and asymp-

totic properties of the estimator, while Balabdaoui and Jankowski (2016) compare

this estimator with the MLE over the class of unimodal probability mass functions

on Z.

To our best knowledge, consideration of log-concave probability mass functions

in the multidimensional discrete setting is limited to the work of Bapat (1988), see

also Dharmadhikari and Joag-Dev (1988). They defined a class of generalized log-

concave distribution. But there is no further study about the property or algorithm
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to approximate the distribution. Their definition is a more restrictive class than our

proposed definition. More detailed review will be given in later section.

Other than the formal definition of the convex function we mentioned in previous

section. Alternatively, if h is twice differentiable, then h is convex if and only if

h���x� C 0 for all x > R and if and only if the Hessian matrix of h is positive semi-

definite for all x > C, where C is an open convex set on Rd for d A 1 (Rockafellar,

1970, Theorem 4.5, page 27).

Similarly, one can define convex functions in the one-dimensional discrete setting,

which naturally leads to a definition of log-concave probability mass functions. That

is, let p�z� � Z� �0,1� denote a probability mass function, where Z denotes the inte-

gers

�. . . ,�2,�1,0,1,2, . . .�. The PMF p is said to be log-concave if for any z > Z

�Qh��z� � h�z � 1� � 2h�z� � h�z � 1� C 0, (1.1)

where h�z� � �� log p��z� (Balabdaoui et al., 2013, Proposition 1). In the notation

above �Qh� denotes the discrete Laplacian operator, which can also be expressed as

�Qh��z� � �h�z � 1� � h�z�� � �h�z� � h�z � 1��. This is the second difference of the

function h, and hence this definition matches well that of the continuous setting.

For two probability distributions p0 and p, KL divergence (Kullback and Leibler,
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1951) is used to measure the information gain/loss when we use one probability

distribution p to approximate another probability distribution p0, which is usually

the true distribution. The KL divergence is defined as

ρKL�pYp0� � � Q
z>Zd

p0�z� log
p�z�
p0�z� .

Although it is not a distance but a divergence, it is the natural notion of “distance”

associated with maximum likelihood estimation.

Let P1 denote the class of log-concave PMFs on Z. Balabdaoui et al. (2013)

proved the following Theorem.

Theorem 1.3.3. (Balabdaoui et al., 2013) Suppose that p0 is a discrete PMF on Z

with finite mean such that

SQ
z>Z
p0�z� log�p0�z��S @ª.

Then there is a unique log-concave PMF on Z, Âp0, such that

Âp0 � argminp>P1
ρKL�pYp0�.

They call Âp0 the KL projection of p0. Because of the natural relation between KL

13



divergence and likelihood function, it is not hard to show that the log-concave MLE

exists and is unique on Z. We denote the log-concave MLE (d � 1) as Âpn.
Let g�z� denote a finite concave function on Z. A point K > Z is a knot of g if

g�K� A �ª, and g changes slope at K. Further, a knot K is called an internal knot if

g�K � 1� A �ª and g�K � 1� A �ª. Let �x1, ..., xm� be a random sample from p0, we

assume there are m distinct ordered values in the sample: z1 @ ... @ zm.

Discrete concave function g�z� when d � 1 can be decomposed to the following

form (Balabdaoui et al., 2013):

g�z� � a � bz � p

Q
i�1

ci�Ki � z��, z > Z 9 �z1, zm�

where a, b > R and ci @ 0, K1, ...,Kp denote the internal knots of g�z�. Here they

used the standard notation z� � zI�zC0�. This decomposition is the key to active

set algorithm (Weyermann, 2008; Dümbgen et al., 2007). When d A 1 the discrete

concavity is defined in a totally different way. The definition of discrete concavity

is even not unique. There are no decomposition methods for higher dimensional

discrete concave function, hence active set algorithm can not be applied to higher

dimensions.
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For two PMFs p and p0, we define the lk and Hellinger distances as

lk�p, p0� �

¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

�Pz>Zd Sp�z� � p0�z�Sk�1~k

if 1 B k Bª,

supz>Zd Sp�z� � p0�z�S if k �ª,

h2�p, p0� �
1

2
Q
z>Z

�»p�z� �»
p0�z��2

.

Balabdaoui et al. (2013) proved that the log-concave MLE on Z is consistent in term

of the distance lk,0 @ k Bª or the Hellinger distance.

Theorem 1.3.4. (Balabdaoui et al., 2013) Suppose that p0 is a discrete distribution

on Z with finite mean such that

SQ
z>Z
p0�z� log�p0�z��S @ª.

Then d�Âpn,Âp0�� 0 almost surely, where d is the distance lk,0 @ k Bª or the Hellinger

distance.

1.3.3 Discrete convex in higher dimensions

In higher dimensions, the definition of a discrete convex (equivalently, concave) func-

tion is not straightforward. For a discrete function defined on Zd for d A 1 there are

multiple definitions of convexity. Murota and Shioura (2001) provide a detailed sur-
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vey of convex functions and sets in the higher-dimensional discrete setting, including

a summary of the relationships between the various definitions. Among these def-

initions there are three which are relevant to our initial considerations: discretely-

convex, separable-convex, and convex-extendible. To this end, consider a function

h � Zd � R 8 ��ª� and define the domain dom�h� � �z > Zd Sh�z� @ª�.

– The function h is said to be separable-convex if h�z� � Pd
i�1 hi�zi� �z > Zd� for

a finite family of discrete convex functions hi � Z� R8 ��ª�, i > �1, ..., d�. That

is, �Qhi��z� C 0 for all z > Z and all i > �1, . . . , d�.

– For x > Rd, let 
x� (respectively, �x�) denote the floor (respectively, the ceiling)

of the vector x, obtained by rounding down (respectively, up) each component

of x to its nearest integer. Next, define the set N0�x� � �z > Zd S 
x� B z B �x��.
The function h is said to be discretely-convex if, for any z�, z�� > dom�h� and

any α > �0,1�, it holds that

min�h�z� S z > N0�αz� � �1 � α�z���� B αh�z�� � �1 � α�h�z���.

Similarly, a set S b Zd is said to be discretely-convex if, for any z�, z�� > S and

any α > �0,1�, it holds that N0�αz� � �1 � α�z��� 9 S is non-empty.
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– Define the convex closure of h�z�

h̄�x� � sup
α>R,β>Rd

�α � βTx � α � βT z B h�z� for all z > Zd�, x > Rd.

The function h is convex-extendible if h̄�z� � h�z� for all z > Zd. Similarly,

a set S b Zd is said to be convex-extendible if S̄ 9 Zd � S, where S̄ b Rd is

the convex closure of S, that is, it is the smallest closed convex set (in Rd)

containing S. Another useful definition is convex extension: a closed convex

function hR � Rd � R 8 ��ª� is called a convex extension of h if hR�z� � h�z�
for all z > Zd. For a discrete convex-extendible function, its convex extension is

a closed continuous convex function which goes through all its points. We may

also take a discrete convex-extendible function as a “sub” function of a closed

convex function in continuous setting. Note that affine functions are convex.

By (Rockafellar, 1970, Theorem 5.5, page 35), the pointwise supremum of an

arbitrary collection of convex functions is convex. Hence we conclude that the

convex closure h̄ is convex. It is also a convex extension of h. Any convex function

is a composition of collections of pointwise affine functions, so convex closure is

the greatest convex extension of h. But clearly not all convex extension is convex

closure.
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Figure 1.1: Relations between three definitions: discrete-convex, convex-extendible,
and separable-convex.

Murota and Shioura (2001) summarize the relationships between the various def-

initions of convexity. In particular, some but not all discretely-convex functions

are convex-extendible functions and vice versa, while separable-convex functions are

both discrete-convex and convex-extendible. Figure 1.1 shows the relations between

above three discrete convex definitions. We can see that

separable-convex ` (discretely-convex 9 separable-convex).

18



Example 1: Consider the set

S � �z > Z3Sz1 � z2 � z3 � 2, zi C 0, i � 1,2,3� 8 ��1,2,0�, �0,1,2�, �2,0,1��
� ��0,1,1�, �1,0,1�, �1,1,0�, �0,0,2�, �0,2,0�, �2,0,0�, �1,2,0�, �0,1,2�, �2,0,1��.

This set, as well as the function h equal to zero on S and �ª on Z�S, are discrete-

convex. However,

1
3�1,2,0� � 1

3�0,1,2� � 1
3�2,0,1� � �1,1,1�

is an element of S̄ 9Zd, but �1,1,1� ~> S, and hence h is not convex-extendible.

Example 2: Let S � ��0,0�, �2,1�� and again define the function h equal to zero

on S and �ª on Z�S. The convex closure of S is the segment between points (0,0)

and (2,1), hence S̄ 9Zd � ��0,0�, �2,1�� � �z1, z2� � S, we conclude that h is convex-

extendible. On the other hand, N0�0.5z1 � 0.5z2� � N0 ��1,0.5�� � ��1,0�, �1,1��,
whence N0�αx� � �1 � α�x��� 9 S � g and h is not discrete-convex. Both examples

appear in Murota and Shioura (2001).

1.3.4 Generalized log-concave probability mass function

Bapat (1988) (see also Johnson et al. (1997, page 28)) gave an alternative definition
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of “generalized log-concavity” on Nd, where N denotes the natural numbers. A

probability mass function p on Nd with support S � �z > Nd � p�z� A 0�, is said to be

generalized log-concave if

p�z� �

d

M
i�1

pi�zi�, z > S, (1.2)

where each pi satisfies �Q log pi��zi� B 0. That is, each pi is a univariate discrete log-

concave function (though not necessarily a PMF - therefore, this is a much different

definition than separable-log-concavity from Remark 2.1.1). We will compare our

new defined PMF class with generalized log-concave PMF in later chapter.

1.4 Outline

Note that this thesis is divided into two parts, in this Part I, we focus on the maximum

likelihood estimator of discrete log-concave distribution in higher dimensions.

In Chapter 2, we give a new definition of log-concave probability mass functions defined

on Zd (see Definition 2.1.1). We call this class extendible-log-concave, as it is closely

related to extendible-convex functions (Murota and Shioura, 2001). We show that the

new definition is equivalent to discrete log-concave distribution when d � 1. We introduce

a Lemma which can be used to check if a function falls into our new defined class. We

also show its unimodality and derive some properties of the new class of distribution.
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Notably, We show that random variables from a continuous log-concave density can be

grouped/binned (e.g. rounded to some accuracy level), the resulted discrete mass function

will fall into our new defined distribution class under certain conditions (Proposition 2.3.1).

We also show that under which condition the class of generalized log-concave is extendible-

log-concave (Proposition 2.2.1). Moreover we prove there exist a unique extendible-log-

concave PMF which minimize the distance to a given true PMF in term of KL divergence,

and this minimizer is the true PMF itself if the true PMF is extendible-log-concave.

In Chapter 3, we show that the maximum likelihood estimator of our new defined class

PMF exists and is unique. We show some attactive properties of the MLE of extendible-

log-concave PMF. We discuss how to compute the MLE, and how to derive the objective

functions. We compare the performance of our MLE with other parametric and nonpara-

metric method through simulations. We developed two simulation scenarios with finite

sample size. The proposed MLE exhibits considerable improvement in efficiency over the

empirical distribution in the examples we consider. Moreover, in one of the examples we

compare our nonparametric MLE to the correct parametric MLE, and the proposed method

does not show a great loss of efficiency over the parametric method. Similar behavior was

observed by Balabdaoui et al. (2013). In our opinion, this is one of the key benefits of the

balance that the log-concave class is able to strike between robustness and efficiency. Fur-

thermore we give example to show that our estimator can be applied to “binned/grouped”

continuous data set.

In Chapter 4, we introduce the detailed algorithm computing the MLE, the explicit
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form of the objective function and its gradient. We proved that the objective function is

convex but not differentiable everywhere. Hence Subgradient methodology is applied to

compute the MLE. An R package is developed to make methodology widely available.

In Chapter 5, we prove the consistency of the MLE. If the true PMF is extendible-log-

concave, then our MLE converges to the true PMF in term of KL divergence; if the true

PMF is not extendible-log-concave, but is close to extendible-log-concave, our MLE still

reveals desirable behavior.
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Chapter 2

Introduction of discrete log-concave PMF

Our goal here is to define and study discrete log-concave distributions in higher dimen-

sions, and we therefore need to select a class of discretely convex (equivalently, concave)

functions to work with. Among the various discrete convex definitions introduced by pre-

vious chapter, we choose to focus on the class of convex-extendible functions. There are

two main reasons for this: It was shown in Murota and Shioura (2001, Theorem 4.1) that

the class of convex-extendible functions is closed under addition. Furthermore, using this

definition, our class of log-concave probability mass functions is closed under limits. We

will show this property later in Theorem 2.4.1.
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2.1 Definition of discrete log-concave PMF

Following the definition of convex-extendible function, naturally a function h � Zd � R 8

��ª� is concave-extendible if �h is convex-extendible.

Definition 2.1.1. A PMF p�z� � Zd � �0,1� is e-log-concave (eLC) if log�p�z�� is

concave-extendible.

In what follows, we let P0 denote the class of all eLC probability mass functions on Zd.

Remark 2.1.1 (Separable-log-concavity). When d � 1, the class P0 agrees with the class

of discrete log-concave distributions defined in Balabdaoui et al. (2013) by Murota (2009,

Theorem 2.1). The maximum likelihood estimation considered here, when d � 1, have al-

ready been studied in Balabdaoui et al. (2013). Furthermore, if a Zd-valued random variable

X � �X1, . . . ,Xd� has a distribution which is e-log-concave and the elements X1, . . . ,Xd

are known to be mutually independent, then the PMF can be written as p�z� � eϕ�z�, where

�ϕ�z� is separable-convex. In such a situation, the multivariate MLE problem can be solved

using the work of Balabdaoui et al. (2013). Recall that the active set algorithm is for one

dimensional discrete log-concave MLE. We apply active set algorithm to compute each

marginal distribution, then get the joint distribution by multiplication of marginal distri-

butions. Due to the independence, Âp�z� � d

L
i�1

Âpi�zi�, where z � �z1, ..., zd� > Zd and Âpi�zi� is

one dimensional log-concave MLE imputed by active set algorithm. Note that

Âϕ�z� � log �p�z�� � log
d

M
i�1

Âpi�zi� � d

Q
i�1

Âϕi�zi�,
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where Âϕi � log Âpi is discrete concave (or eLC). Hence �Âϕ is separable-convex. We call Âp as

separable log-concave estimation.

Remark 2.1.2 (Checking the class eLC). The following result gives one simple way to

verify if a discrete function is convex-extendible.

Lemma 2.1.1. Murota and Shioura (2001, Lemma 2.3) Let h � Zd � R 8 ��ª� be some

function. Then, h�z� � h�z� for any z > Zd if and only if there exists a closed convex

extension of h.

For example, consider h�z� � zTAz, where z > Zd, and A is a symmetric d� d positive-

definite matrix. The “obvious” convex extension of h�z� is hR�x� � xTAx for x > Rd. Note

that by Rockafellar (1970, Theorem 4.5, page 27) hR�x� is convex. The function is closed

because it is continuous. By Murota and Shioura (2001, Lemma 2.3) h�z� is therefore,

convex-extendible.

Remark 2.1.3 (Alternative lattice structures). In this work we limit ourselves to the

grid Zd, although potentially other lattice structures could also be explored. Simple linear

transformations and rotations are naturally covered by our work. We conjecture that the

convex extendible approach could also be applied to more irregular structures, although we

do not explore it here. This is particularly attractive in light of the relationship that our

definition has with log-concave densities, see Proposition 2.3.1.

Remark 2.1.4 (Unimodality). Several notions of unimodality exist for both densities in

Rd and mass functions on Zd when d A 1. The class P0 is unimodal, in the sense that for
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all z > Zd, the probability mass function is equal to

p�z� � exp��h�z�� � exp��hR�z�� ,

where hR is a convex extension of h�z� defined not only on Zd but also on Rd.

2.2 Relationship with generalized log-concave PMF

Clearly, the definition of generalized log-concave needs not be restricted to Nd and can

easily be extended to Zd. Even with this extension, the definition is still more restrictive

than our eLC definition for certain supports. In fact, the following relationship holds.

Proposition 2.2.1. Suppose that p is generalized log-concave with support S. If S is

convex-extendible, then p > P0.

Proof. By definition, for any z > S, we have that

h�z� � � log p�z� �

d

Q
i�1

�� log pi�zi�� �

d

Q
i�1

hi�zi�,

where each pi�zi� is discrete log-concave on Z, and hence hi�zi� is discrete convex. Note

that the definition of generalized log-concavity does not specify the support S, which means

that S can be any form. Hence we make the assumption that S is convex-extendible to

make it work for convex-extendible. For each i, let Si � �k > Z � �k�i > S�, where �k�i
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denotes any point of Zd with its ith element equal to k. Each function hi is defined on Si.

Hence h�z� � Pdi�1 hi�zi� is separable-convex on S. Therefore h�z� is convex-extendible by

Murota and Shioura (2001), which implies p > P0.

Based on the Proposition 2.2.1 and the work from Bapat (1988); Johnson et al. (1997),

we easily find that distributions such as the multinomial, negative multinomial, multivariate

hypergeometric, multivariate negative hypergeometric, as well as multi-parameter versions

of the multinomial and negative multinomial are also extendible log-concave. We do this by

checking that their supports are convex-extendible set. Hence Proposition 2.2.1 provides

another approach to checking if a given probability mass function falls in the class P0.

2.3 Relationship with continuous log-concave dis-

tributions

In the following proposition, we show the relation between our discrete log-concave distri-

bution and continuous log-concave distribution.

Proposition 2.3.1. Suppose that f is a log-concave density on Rd, and let A � ��1~2,1~2�d.
Define the probability mass function p�z� � Rz�A f�y�dy. Suppose that the support of p is

convex-extendible. Then p > P0.

Proof of Proposition 2.3.1. Let f denote a log-concave density on Rd. For A � ��1~2,1~2�d,
consider the function q�x� � Rx�A f�y�dy � P �Y > A � x�, letting Y denote the random
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variable with density f . Then, by the property of log-concave distributions (see e.g. Dhar-

madhikari and Joag-Dev (1988, (2.6) on page 47)), for any α > �0,1� and any x, y > Rd we

have that

q�αx � �1 � α�y� C q�x�αq�y�1�α

which implies that the function hR�x� � � log q�x� is convex. The function q�x� is continu-

ous by properties of integrals (applying, for example, the dominated convergence theorem

and the fact that f must be bounded). In fact, letting B denote an upper bound on f, we

have that

Sq�x� � q�y�S B Bλ��A � x�∆�A � y�� B 4Bdλ�A�SSx � ySSª,

where λ�A� denotes the Lebesgue measure of the set A, and ∆ denotes set difference sym-

bol. It follows that hR�x� � � log q�x� is continuous on its effective domain, and therefore

it is lower semi-continuous. Therefore, it is closed (Rockafellar, 1970, Theorem 7.1, page

51) on its effective domain. Lastly, hR�z� � � log q�x� � � log p�z� by definition on Zd. It

follows that the restriction of hR to S̄ is a closed convex extension of � log p�z�, and hence

p > P0 by Murota and Shioura (2001, Lemma 2.3) (Lemma 2.1.1).

A quick look at the proof reveals that our result is not tied to the lattice Zd nor

our particular choice of A. Letting Y denote a random variable with density f as above.
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Then the PMF p with A � ��1~2,1~2�d corresponds to the probability mass function of the

random variable X � 
Y �0.5� (componentwise). Other choices of lattice and A lead to other

discretizations of Y, such as δ
Y ~δ� for some δ A 0 (this random variable lives on the lattice

δZd�. This means that the class P0 can be used to analyze log-concave random variables

which have been discretized or “grouped/binned”. An example is given in Section 3.3.

2.4 Properties

The class P0 has several attractive properties.

Proposition 2.4.1. Suppose that p > P0.

1. The support of p, S � �z Sp�z� A 0�, is a convex-extendible set.

Proof. Let h�z� � � log p�z�, then h�z� is convex-extendible by assumption, and

S � �z Sh�z� @ª�. Hence, by Lemma 2.1.1 (Murota and Shioura, 2001), there exists

a convex extension hR�x� of h�z�, which is a closed convex function on Rd. Therefore,

the effective domain of hR,�x ShR�x� @ �ª�, is a closed convex set in Rd (Rockafellar,

1970, page 23 and Theorem 7.1 on page 51). The latter follows since for a closed

function, its epigraph must be closed (Rockafellar, 1970, Theorem 7.1 on page 51)

and the effective domain is the projection of the epigraph onto Rd, (Rockafellar,

1970, page 23). Since such a projection of a closed set must be closed (appealing to

the characterization of closed sets via Cauchy sequences), it follows that the effective
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domain is closed. Therefore, S ` S̄ b �x ShR�x� @ �ª�. Furthermore, we have that

S � Zd 9 �x ShR�x� @ �ª�. Therefore, it follows that S̄ 9 Zd � S, and hence S is

convex extendible.

2. For A ` S, let

Çp�z� �

¢̈̈̈̈
¦̈̈̈̈
¨̈¤
p�z� z > A,

0 otherwise.

If A is a convex-extendible set, Çp > P0.

Proof. Let h�z� � � log p�z�, then h�z� is convex-extendible by assumption. By

Lemma 2.1.1 (Murota and Shioura, 2001), there exist a convex extension hR�x� of

h�z�, which is a closed convex function on Rd. We define a function

ÇhR�x� �

¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

hR�x� � log c, x > Ā

�ª, x ~> Ā,

for c � 1
Pz>A p�z�

, and where Ā denotes the convex closure of A. It is obvious that ÇhR
is also a closed convex function. Also,

� log Çp�z� � � log�cp�z�� � h�z� � log c � hR�z� � log c � ÇhR�z�,

for z > A ` convA ` Ā, and hence ÇhR is a convex extension of � log Çp. Therefore
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Çp > P0.

3. Let p1 > P0 and p2 > P0 with supports S1 � �z1 > Zd1 Sp1�z1� A 0� and S2 � �z2 >

Zd2 Sp2�z2� A 0�. Then p�z� � p1�z1�p2�z2� with support S � S1 � S2 ` Zd1�d2 also

satisfies p > P0.

Proof. Letting h1�z1� � � log p1�z1�, h2�z2� � � log p2�z2� then h1�z�, h2�z� are both

convex-extendible by assumption. Let x1 > Rd1 , x2 > Rd2 . By Lemma 2.1.1 (Murota

and Shioura, 2001), there exist convex extensions hR1�x1�, hR2�x2� respectively, of

h1�z1�, h2�z2�. These are closed convex functions on Rd1 ,Rd2 . Next, hR�x1, x2� �

hR1 �x1� � hR2 �x2� is also a convex function on Rd1�d2 (see below proof *). Further-

more, it is closed, since it is the sum of lower semi-continuous functions, and hence

lower semi-continuous (Rockafellar, 1970, Theorem 7.1, page 51). Finally,

hR�z� � hR1�z� � hR2�z� � h1�z� � h2�z� � � log�p1�z1�p2�z2�� � � log p�z�,

where z � �z1, z2�. Therefore p > P0.

* We now show that hR�x1, x2� � hR1 �x1��hR2 �x2� is also convex function on Rd1�d2 .
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Let x
�

, x
��

�> Rd1�d2 , x�1, x
��

1 > Rd1 , x�2, x
��

2 > Rd2 and x
�

� �x�1, x�2�, x�� � �x��1 , x��2�.

hR�αx� � �1 � α�x��� � hR�αx�1 � �1 � α�x��1 , αx�2 � �1 � α�x��2�
� hR1 �αx�1 � �1 � α�x��1� � hR2 �αx�2 � �1 � α�x��2�
@ αhR1 �x�1� � �1 � α�hR1 �x��1� � αhR2 �x�2� � �1 � α�hR2 �x��2�
� α�hR1 �x�1� � hR2 �x�2� � �1 � α��hR1 �x��1� � hR2 �x��2��
� αhR�x�1, x�2� � �1 � α��hR�x��1 , x��2��
� αhR�x�� � �1 � α�hR�x���

4. Suppose that p > P0 with support in Zd and let z � �z1, z2� where z1 > Zd1 and z2 > Zd2

with d1 � d2 � d. Then the conditional distribution p�z1Sz2� � p��z1, z2��~p�z2� > P0.

Proof. Let h�z� � � log p�z�, then h�z� is convex-extendible by assumption and fix

z2 > Zd2 . By Lemma 2.1.1, there exists a convex extension hR�x� of h�z�, which

is a closed convex function on Rd. Let p2 denote the marginal of p � p2�z2� �

Pz1>Zd1 p�z1, z2�. We then define ÇhR�x1� � hR�x1, x2 � z2��log p2�z2�, where x1 > Rd1 ,

and z2 > Zd2 ` Rd2 is fixed. We will show that ÇhR is the convex extension of

� log p�z1Sz2�, and therefore p�z1Sz2� is eLC.
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Firstly, we have that for any z1 > Zd1

ÇhR�z1� � hR�z1, z2� � log p2�z2� � � log p�z1, z2� � log p2�z2�
� � log p�z1Sz2�.

Secondly, ÇhR�x1� is convex since hR�x� is convex in x1 and log p2�z2� is a constant.

Finally, we need that ÇhR is closed. This follows from Rockafellar (1970, Theorem 7.1,

page 51) by appealing to the definition of closed sets via Cauchy sequences.

Note that hR�x� � hR�x1, x2� is closed implies the level set of hR�x1, x2� is closed,

let denote the level set as C � ��x > Rd ShR�x� B α,α @ ª�. By Krantz (1991,

Proposition 5.5), for any Cauchy sequence �x�n inside C, where xi � �xi1 , xi2 , ..., xid�,
for i � 1,2, ..., n, ..., it’s limit x0 � �x01 , x02 , ..., x0d� is also an element of C.

For a fix z2 � �z21 , ..., z2d2
� > Zd2 , we firstly show that hR�x1, z2� is closed. For the

same α, the level set of hR�x1, z2� can be expressed by C̃ � �x1 > Rd1 ShR�x1, z2� B α�.
Note that chosen of z2 may lead to a empty level set of hR�x1, z2�, we then consider

two cases:

(a) if �x1, z2� ~> C, then C̃ � g, which is closed.

(b) if �x1, z2� > C, then for each Cauchy sequence �x̃�n inside C̃, where

x̃i � �x̃i1 , ..., x̃id1�, we can extend it to a d dimensional Cauchy sequence �x�n
with xi � �x̃i1 , ..., x̃id1 , z21 , ..., z2d2

�, i � 1,2, ..., n, ... Note that �x�n > C, hence its
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limit, denoted by x0 � �x01 , ..., x0a , z21 ..., z2d2
� � �x̃0, z2�, is inside C. We then

have hR�x̃0, z2� B α. We conclude that x̃0 > C̃. By the process we construct

x̃0, it is obviously the limit of Cauchy sequence �x̃�n. Hence by Krantz (1991,

Proposition 5.5), C̃ is closed.

Therefore hR�x1, z2� is closed. It is obvious that ÇhR�x1� � hR�x1, z2� � log p2�z2� is

also closed since log p2�z2� is a constant.

Hence our constructed function ÇhR is a closed convex function, and is the convex

extension of � log p�z1Sz2�. Hence p�z1Sz2� is also eLC.

5. Let Z be a discrete random variable, with probability mass function p > P0 with

support S. Consider the linear transformation ÇZ � AZ � b, where A is a d� d matrix

and b is a vector of length d. Let Çp denote the PMF of ÇZ with support ÇS. If

(a) ÇS is a subset of Zd,

(b) the matrix A is invertible,

then Çp > P0.

Proof. Firstly, we add the first condition because our work focus on Zd. We need

the linear transformed random variable be also defined on Zd. But if we relax our
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work to other the lattice structure (which is possible), this condition can be removed

easily.

Let h�z� � � log p�z�, then h�z� is convex-extendible by assumption. Hence, by

Lemma 2.1.1 (Murota and Shioura, 2001), there exists a convex extension hR�x� of

h�z�, which is a closed convex function. Note that Çp�z� � p�A�1�z�b�� for any z > ÇS.
We then construct ÇhR�x� � hR�A�1�x � b��, for any x > conv� ÇS�, where ÇS denote the

convex hull of S Clearly, ÇhR is also convex and closed. Moreover,

ÇhR�z� � hR�A�1�z � b�� � h�A�1�z � b�� � � log p�A�1�z � b�� � � log Çp�z�,

for any z > Z. Hence h̃R is the convex extension of Çp, and therefore Çp > P0.

The following Theorem shows that the class P0 is closed under limits under some

assumptions.

Theorem 2.4.1. Let pn�n � 1,2, ...�, p be discrete PMFs on Zd, and suppose that for each

n C 1, pn > P0. If pn � p pointwise and the support of p is convex-extendible, then p > P0.

Proof. Define S0 � �z > Zd S p�z� A 0� and assume (for the moment) that S0 � Zd. Define

also hn�z� � � log pn�z�, for each n C 1 and h�z� � � log p�z�. By assumption, hn is convex-

extendible, and converges to h pointwise on S0. To prove that p is eLC, we need to show
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that h is convex-extendible. To do this, we will use Lemma 2.1.1 (Murota and Shioura,

2001), and find a closed convex extension of h.

By Lemma 2.1.1 (Murota and Shioura, 2001), there exists a closed convex extension of

hn, for each n. We denote this by hRn � Rd � R8 ��ª�. By definition, hRn is a closed convex

function, and hRn�z� � hn�z� for any z > Zd.

Fix K > Z� to be a large, positive integer, and let BK � �x > Rd � YxYª B K�, a closed

(in Rd) and bounded set. Since pn � p for all z > Zd, there exists an n0 such that for all

n C n0, pn�z� A 0, and hence hn�z� @ª for all z > BK .

Note that BK is a subset of Rd, and also the convex hull of BK 9Zd (in Rd). Since each

hRn is closed and convex, we can apply Theorem A.1.8 (Rockafellar, 1970) in the Appendix,

and conclude that for each n,

sup
x>BK

hRn�x� B sup
z>BK9Zd

hRn�z� � sup
z>BK9Zd

hn�z�.

Therefore,

sup
nCn0

sup
x>BK

hRn�x� B sup
nCn0

sup
z>BK9Zd

hn�z� �MK,n0 , (2.1)

where MK,n0 is finite because S0 � Zd. Therefore the sequence �hRn�x��nCn0 is finite and

pointwise bounded (uniformly) for all x > BK . The statement continues to hold on the

relative interior of BK (again, in Rd), which we denote rl BK . By Rockafellar (1970, Theo-
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rem 10.6, page 88), Theorem A.1.4 in the Appendix, we conclude that hRn�x� is uniformly

bounded and equi-Lipschitzian relative to, say, BK�1. By the Arzelà-Ascoli theorem, we

conclude that hRn is compact and hence there is a subsequence of hRn that converges uni-

formly on B�K�1�. We denote this subsequence as hRnK
, and its limit as hR.

We now argue that hR�x� is a convex extension of h�z� on B�K�1� :

— Since hR is the limit of a sequence of convex functions defined on B�K�1�, it follows that

hR is convex on B�K�1�.

— By definition, hR�z� � limnK�ª
hRnK

�z� � limnK�ª
hnK

�z� � h�z�, for any z > B�K�1�.

— For any K, hRnK
�x� is finite by inequality (2.1). We also know that it is continuous and

uniformly converges to hR�x� on B�K�1�. Hence hR�x� is also finite, and continuous on

B�K�1� by Krantz (1991, Theorem 9.1, page 201), and therefore hR�x� is closed on B�K�1�

by the definition of continuous functions (Krantz, 1991, Theorem 6.9, page 142).

Hence we can conclude that hR�x� is a closed convex extension of h�z� on B�K�1�. Therefore

h�z� is convex-extendible by Murota and Shioura (2001, Lemma 2.3). Recall that h�z� �
� log p�z�, we conclude that p�z� is also eLC for z > B�K�1�. Since the above conclusion is

true for any K > Z�, therefore p�z� is eLC for z > Zd.

Now we consider the situation that S0 ` Zd. Note that pn is eLC, hence the support Sn

is convex-extendible set by Proposition 2.4.1 1. Therefore, there exists a convex closure S̄n

of Sn, which is closed and convex on Rd. For large enough n0, We may repeat the above

proof, but considering BK 9 S̄n0 instead of BK throughout. Note that BK is closed and
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convex by definition, and intersection of two closed convex sets is also closed and convex.

The proof may now be repeated as above, and h will be convex-extendible on Sn0 , which

equals to S0 eventually.

Let YzYª denote maximum norm, YzYª � max�Sz1S, ..., SzdS�.

Theorem 2.4.2. Let p0 be a probability mass function on Zd such that Pz>Zd YzYªp0�z� @
ª and SPz>Zd p0�z� log p0�z�S @ª. Suppose also that the convex hull of the support of p0 is

closed. Then, there exists a unique Âp0, such that

Âp0 � argmin
p>P0

ρKL�p Õ p0�. (2.2)

Furthermore, if p0 > P0, then Âp0 � p0.

We will refer to Âp0 as the KL projection of p0 in what follows. Heuristically, the KL

projection is the closest element of the class P0 to the fixed PMF p0.

Before we proof this Theorem, we will give the proof of a Lemma.

Lemma 2.4.1. Suppose p1, p2 > P0. Then a PMF p � �p1p2�α for any α > �0,1� also

satisfies p > P0.

Proof. Let h1 � � log p1, h2 � � log p2 and h � α�h1 � h2� � c (defined on Zd) for some

appropriate constant c > R. Let h1
R and h2

R denote the closed convex extensions of h1, h2
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(respectively), which exist by assumption. Then hR � α�h1
R
�h2

R�� c is closed, convex (see

previous proof of *), and by definition satisfies

hR�z� � α�h1
R�z� � h2

R�z�� � c � α�h1�z� � h2�z�� � c � h�z� � � log p�z�

on Zd. Therefore, p > P0.

We now proof the Theorem 2.4.2.

Proof of Theorem 2.4.2. We firstly prove the existence part of the theorem. Let S0 � �z >
ZdSp0�z� A 0� denote the support of p0. Without loss of generality, we assume S0 � Zd. Let

Çq � e�YzYª , where z > Zd, such that Çq x Âp0 (if Âp0 � e�YzYª , then we can put Çq � e�0.5YzYª

instead, say). Note that � logÇq�z� � YzYª, and since all norms on Rd are closed convex

functions, YxYª, x > Rd is a convex extension of YzYª. Hence Çq is eLC by Murota and

Shioura (2001, Lemma 2.3).

We can also show that ρKL�Çq Õ p0� @ª under our assumption.

ρKL�Çq Õ p0� � Q
z>Zd

p0 log p0�z� � Q
z>Zd

p0 logÇq�z�
� Q

z>Zd

p0 log p0�z� � Q
z>Zd

YzYªp0�z� @ ª.

Hence, infq>P0 ρKL�q Õ p0� @ª.
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Therefore, there exists a sequence of eLC PMFs �qn�, such that

ρKL�qn Õ p0� � inf
q>P0

ρKL�q Õ p0�.

Because infq>P0 ρKL�q Õ p0� @ ρKL�Çq Õ p0�, there exists an N A 0, such that for all n A N ,

we have

ρKL�qn Õ p0� B ρKL�Çq Õ p0�.

Because both � log qn�z�,� logÇq�z� are positive, hence,

sup
nAN

Q
z>Zd

S � log qn�z�Sp0�z� B Q
z>Zd

S � logÇq�z�Sp0�z� � Q
z>Zd

YzYª p0�z� @ª.

Let M A 0 and consider SM � �z � YzYª BM�. Let αM � minz>SM p0�z�, and note that

as M �ª, we have that αM � 0, since p0 is summable. It follows that

sup
nAN

Q
z>SM

S � log qn�z�S B �max
z>SM

1

p0�z�¡
¢̈̈¦̈̈¤sup
nAN

Q
z>SM

S � log qn�z�Sp0�z�
£̈̈§̈̈¥

B �max
z>SM

1

p0�z�¡
¢̈̈¦̈̈¤sup
nAN

Q
z>Zd

S � log qn�z�Sp0�z�
£̈̈§̈̈¥

B �max
z>SM

1

p0�z�¡
¢̈̈¦̈̈¤Qz>Zd

YzYª p0�z�
£̈̈§̈̈¥ �

B

αM
,
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where B � Ep0�YZYª� @ª. Hence,

sup
nAN

sup
z>SM

S � log qn�z�S B B~αM ,

exp�� sup
nAN

sup
z>SM

S � log qn�z�S¡ C exp��B~αM� .

Hence

inf
nAN

min
x>SM

qn�z� C e�B~αM � δM .

Furthermore, we can find an integer M1 AM large enough so that

sup
nAN

sup
z>Sc

M1

qn�z� @ δM~2.

Therefore, we can find an envelope function el�z�, where l�z� � �αYzYª � β with α,β > R�,

such that supnAN qn�z� B el�z�.
Let Xn be a sequence of random vectors with PMF qn. Since el�z� is summable it

follows that Xn is tight. Hence, there exists a convergent subsequence qnl
, and a limit

point q0 (Rosenthal, 2006). As qn is eLC, by Theorem 2.4.1 q0 is also eLC.

By Fatou’s lemma, we have

ρKL�q0 Õ p0� � Q
z>Zd

p0 log
p0

q0
B lim inf

nl
Q
z>Zd

p0 log
p0

qnl

� lim inf
nl

ρKL�qnl
Õ p0�.

Since ρKL�qnl
Õ p0� � infq>P0 ρKL�q Õ p0�, we have ρKL�q0 Õ p0� B infq>P0 ρKL�q Õ p0�. That
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is, a minimizer Âp0 exists, and the proof of existence is done.

We now prove uniqueness. Let’s assume that Âp1,Âp2 are both eLC and minimize ρKL�� Õ
p0�. Let Çp� �Âp1Âp2�1~2 is a proper PMF. Note that by Lemma 2.4.1, Çp is also eLC. Now,

ρKL�Çp Õ p0� � Qp0 log
p0Çp

� �1~2�Qp0 log
p0Âp1

� �1~2�Qp0 log
p0Âp2

� logQ�Âp1Âp2�1~2

� ρKL�Âp1 Õ p0� � logQ�Âp1Âp2�1~2
B ρKL�Âp1 Õ p0�.

The last inequality follows that P�Âp1Âp2�1~2
B PÂp1PÂp2 � 1 by Cauchy-Schwarz. However,

since ρKL�Çp Õ p0� C ρKL�Âp1 Õ p0�, we find that P�Âp1Âp2�1~2
� PÂp1PÂp2 � 1. Therefore Âp1 � Âp2,

again by Cauchy-Schwarz. This completes the proof.

The following lemma characterizes the support of Âp0.

Lemma 2.4.2. The support of the KL projection Âp0 is the intersection of Zd with the

(closed) convex hull of S0, which is the support of p0.

Proof of Lemma 2.4.2. Let ÂS0 denote the support of Âp0. Let ÇS0 � conv�S0� 9Zd. Our goal

is to show that ÂS0 �
ÇS0. Here, we denote the convex hull of S0 as conv�S0�, and note that

by assumption, this is closed.

Firstly, note that if p0�z0� A 0, then Âp0�z0� A 0 (we call this fact one). This follows

directly from the form of the KL divergence, as PMFs with support strictly smaller than

that of p0 have an infinite KL divergence, and can therefore not act as minimizers. We

42



thus have that S0 b
ÂS0.

Next, consider there exists z0 > ÇS0 � conv�S0� 9 Zd, but z0 ~> ÂS0, that is Âp0�z0� � 0.

Then by Carathéodory’s Theorem (Rockafellar, 1970, Theorem 17.1 page 155) we can

write z0 � Pd�1
i�1 λizi, where λi A 0,Pd�1

i�1 λi � 1 and zi > S0 for each i � 1, . . . , d � 1. Since Âp0

is eLC and therefore log Âp0 has a concave extension equal to log Âp0 on Zd. By the concave

property of the concave extension, we find that

log Âp0�z0� � log Âp0�d�1

Q
i�1

λizi� C d�1

Q
i�1

λi log Âp0�zi�.

But then Âp0�z0� � 0 implies that log Âp0�z0� � �ª and hence Âp0�zi� � 0 for at least one

1 B i B d � 1. But p0�zi� A 0 because zi > S0. This is a direct contradiction with fact one.

It follows that ÇS0 � S0 b
ÂS0. Together with fact one (S0 b

ÂS0), this yields ÇS0 b
ÂS0.

Finally, consider a z0 > Zd such that z0 >
ÂS0, that is Âp0�z0� A 0. But z0 ~> ÇS0. Construct

a PMF

Çp�z� �

¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

cÂp0�z� z > ÇS0

0 z ~> ÇS0

where c denotes an appropriate normalizing constant. By Proposition 2.4.1, Çp is also eLC.
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Also, note that c A 1 by assumption, hence Çp�z� A Âp0�z�. Then,

ρKL�Âp0 Õ p0� � Q
z>Zd

p0�z� log p0�z� � Q
z>Zd

p0�z� log Âp0�z�
� ρKL�Çp Õ p0� � Q

z>Zd

p0�z� log Çp�z� � Q
z>Zd

p0�z� log Âp0�z�
� ρKL�Çp Õ p0� � Q

z>Zd

p0�z�� log Çp�z� � log Âp0�z��
� ρKL�Çp Õ p0� � Q

z>S0

p0�z� �log Çp�z� � log Âp0�z��
A ρKL�Çp Õ p0�.

Therefore, Âp0 cannot minimize the KL divergence. Therefore, ÂS0 b
ÇS0.

Together with the previous conclusion ÇS0 b
ÂS0, we have ÇS0 �

ÂS0.
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Chapter 3

Maximum likelihood estimation of eLC

Note that the convex hull of a finite number of points is a closed polygon, from which it

follows that the support of the empirical distribution is convex-extendible. The following

result is thus a simple consequence of Theorem 2.4.2.

Proposition 3.0.1. Suppose that X1, . . . ,Xn are independent and identically distributed

random variables on Zd with true PMF p0. Then, with probability one, there exists a unique

eLC maximum likelihood estimator. That is, there exists a unique Âpn which maximizes the

likelihood
n

L
i�1
p�Xi� over the class of probability mass functions p > P0.

In what follows, we will use the notation Âpn to denote the MLE

Âpn � argmaxp>P0

n

Q
i�1

log p�Xi�.

Proof. Let p̄n denotes empirical PMF. We replace Âp0 with p̄n in Equation (2.2), then we
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can show that minimizing KL divergence between eLC PMF and the empirical distribution

is equivalent to maximizing the likelihood function.

Âpn � argminp>P0
ρKL�p Õ p̄n� � argminp>P0

�� Q
z>Zd

p̄n log p � Q
z>Zd

p̄n log p̄n�,

is equivalent to

Âpn � argminp>P0
�� Q

z>Zd

p̄n log p�,

which is equivalent to

Âpn � argmaxp>P0

1

n
Q
z>Zd

log p.

Therefore the existence and uniqueness of eLC MLE is a quick consequence of Theorem

2.4.2.

Computation of this estimator is, unfortunately, not an easy problem. We again refer

to Walther (2009) for a review. In d � 1, for example the active set algorithm tends to

rely on a special structure of convex functions which holds only for d � 1. For d A 1, this

computational problem was first solved in Cule et al. (2010), and it is their approach which

we adapt to the discrete setting in this work. This is described in more detail in the next

chapter.

The following is another useful property of the eLC MLE, also known to hold in the

continuous and discrete d � 1 cases.

Lemma 3.0.1. Let pn denote the empirical PMF of independent and identically distributed
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Figure 3.1: Grayscale heatmaps of the empirical PMF (left) and its eLC projection
(right). The true distribution is a discrete Gaussian.
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Figure 3.2: From the example of Figure 3.1, we compute the marginal distributions
of our eLC MLE, we compare the marginals of elC MLE with empirical marginals
and the true marginals in above Figures.
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random variables X1, ...,Xn on Zd, let h � Zd ( R be any convex-extendible function, then

Q
z>Zd

h�z� Âpn�z� B Q
z>Zd

h�z�pn�z�.

Proof. First, note that Âpn is obtained by maximizing the following functional

Φ�ϕ� � n

Q
i�1

ϕ�zi�p̄n � Q
z>Zd

exp�ϕ�z��

over all concave-extendible functions, where ϕ�z� � log p�z� ( see Lemma 3.1.1). Letting

Âϕn � argmax Φ�ϕ�, we then have Âpn�z� � exp�Âϕn�z��.

Let g�z� � Zd ( R be any concave-extendible function, and hence for any ε A 0, ϕ�εg is

also concave-extendible (Murota and Shioura, 2001, Theorem 4). Therefore, Φ�Âϕn � εg� B
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Φ�Âϕn� since Âϕn maximize Φ. This implies that

lim
ε�0

Φ�Âϕn � εg� �Φ�Âϕn�
ε

� lim
ε�0

n

P
i�1

�Âϕn�zi� � εg�zi��p̄n � P
z>Zd

exp�Âϕn�z� � εg�z�� � n

P
i�1

Âϕn�zi�p̄n � P
z>Zd

exp�Âϕn�z��
ε

�

n

Q
i�1

g�zi�p̄n � lim
ε�0

Q
z>Zd

exp�Âϕn�z� � εg�z�� � exp�Âϕn�z��
ε

�

n

Q
i�1

g�zi�p̄n � Q
z>Zd

g�z� exp�Âϕn�

�

n

Q
i�1

g�zi�p̄n � Q
z>Zd

g�z�Âpn
� Q
z>Zd

g�z�p̄n � Q
z>Zd

g�z�Âpn B 0.

Note that the third last equality comes from:

lim
ε�0

exp�Âϕn�z� � εg�z�� � exp�Âϕn�z��
ε

� exp�Âϕn�z�� lim
ε�0

exp�εg�z�� � 1

ε

� exp�Âϕn�z�� lim
ε�0

g�z� exp�εg�z��
1

�g�z� exp�Âϕn�z��

Similarly, for any convex-extendible function h, we have

Q
z>Zd

h�z�Âpn B Q
z>Zd

h�z�p̄n.
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In particular, this implies that the mean of the MLE is equal to the observed mean of

the data, because affine functions h�z� � z, z > Zd are both convex-extendible and concave-

extendible functions. Hence we have

EÂpn�z� � Q
z>Zd

zÂpn�z� B Ep̄n�z� � Q
z>Zd

zp̄n�z�,

EÂpn�z� � Q
z>Zd

zÂpn�z� C Ep̄n�z� � Q
z>Zd

zp̄n�z�.

Hence EÂpn�z� � Ep̄n�z�.
Furthermore, the following Lemma shows that the variance matrix under the eLC MLE

is smaller than the variance matrix under empirical distribution, in the sense that Σn �
ÂΣn

is positive semi-definite.

Lemma 3.0.2. let ÂΣn denotes the variance matrix of random variable which follows the

distribution Âpn. Let Σn denotes the empirical variance matrix, which is the variance matrix

of random variable following the empirical distribution pn. Then Σn �
ÂΣn is positive semi-

definite.

Proof. Let V be any non zero vector on Rd, we define function h�z� � V T zzTV, z > Zd.

Note that h�z� is convex-extendible, because h�z� � �zTV �T �zTV � � �zTV �2, it has convex

extension h�x� � �xTV �2, x > Rd, which is closed convex function on Rd.
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Hence

Q
z>Zd

h�z�Âpn B Q
z>Zd

h�z�p̄n,

Q
z>Zd

V T zzTV Âpn � Q
z>Zd

V T zzTV p̄n B 0,

V T �Q
z>Zd

zzTÂpn � Q
z>Zd

zzT p̄n�V B 0.

Therefore Σn �
ÂΣn is positive semi-definite.

An example of the MLE is given in Figures 3.1 and 3.2. The data is an IID sample

of size n � 1000 from the discrete Gaussian distribution given on later Section. Figure 3.1

shows the empirical distribution (left) and the fitted eLC (right) as a grey-scale heatmap.

The marginal distributions are given in Figure 3.2, where the true marginals are also added.

3.1 Computation of the MLE

For shape constraint method, it is a standard trick to add a summation term to the log-

likelihood function, such that the optimization problem can be relaxed to general functions

set instead of density functions set. That is, maximizing
n

P
i�1

log p�Xi� over p > P0 is equiv-
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alent to minimizing

�
1

n

n

Q
i�1

ϕ�Xi� � Q
z>Zd

exp�ϕ�z�� , (3.1)

over all concave-extendible functions ϕ. Complete proof please see below Lemma 3.1.1.

Note, however, that the valuesX1, . . . ,Xn are expected to have duplicates in our setting.

Therefore, let z1, . . . , zm denote the unique observed values of X1, . . . ,Xn.

Lemma 3.1.1. When the criterion function

Φ�ϕ� � �

m

Q
j�1

wjϕ�zj� � Q
z>Zd

eϕ�z�

is minimized over all concave extendible functions ϕ, the minimizer satisfies P
z>Zd

eϕ�z� � 1.

Proof. Consider any concave extendible ϕ0 minimize Φ�ϕ�, and p0 � exp�ϕ0� such that

P
z>Zd

exp�ϕ0�z�� � c x 1. Let Çϕ0 � ϕ0 � log c. Then Pz>Zd exp�Çϕ0�z�� � 1, because

Q
z>Zd

exp�Çϕ0�z�� � Q
z>Zd

exp� exp�ϕ0�z�� � log c�

� Q
z>Zd

exp�ϕ0�z��
c

�
1

c
Q
z>Zd

exp�ϕ0�z�� � 1
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Now,

Φ�Çϕ0� � � m

Q
j�1

wj Çϕ0�zj� � Q
z>Zd

eÇϕ0�z�

� �

m

Q
j�1

wj�ϕ0�zj� � log c� � 1

�

m

Q
j�1

wjϕ0�zj� � m

Q
j�1

wj log c � 1

�

m

Q
j�1

wjϕ0�zj� � log c � 1

�

m

Q
j�1

wjϕ0�zj� � Q
z>Zd

eϕ0�z� � Q
z>Zd

eϕ0�z� � log c � 1

� Φ�ϕ0� � c � log c � 1.

Since log c B c � 1 for any c A 0, we get Φ�Çϕ0� B Φ�ϕ0�, which is a contradiction.

Let ÂSn � S̄n 9 Zd, where Sn � �z1, . . . , zm�. Also recall the empirical PMF pn. Using

also the characterization of the MLE, we can further re-write the optimization problem

above to be equivalent to minimizing

Φ�ϕ� � � m

Q
j�1

pn�zj�ϕ�zj� � Q
z>ÂSn

exp�ϕ�z�� ,

again, over all concave-extendible functions ϕ. We denote the minimizer of above function

as Âϕ�z� � log Âpn.
For a fixed vector of values y > Rm, following Cule et al. (2010), the tent function is
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defined as

ty�x� � inf�g�x� � Rd � R S g is concave, and g�zj� C yj for j � 1, . . . ,m�.

It turns out, that in the above we can exchange the function ϕ�z� with the tent func-

tions ty�z�, and optimize over the vector y > Rm instead. Lemma 3.1.2 shows a further

simplification of the optimization problem .

Lemma 3.1.2. Consider the function

τ�y1, . . . , ym� � �

m

Q
i�1

wj ty�zj� � Q
z>ÂSn

exp�ty�z�� . (3.2)

Then τ has a minimum over y > Rm. We denote the minimizer as Ây, and Âpn�z� �

exp�tÂy�z��. Furthermore, tÂy is a concave extension of log Âpn.

Proof. Let Âϕn � log Âpn, which minimizes Φ�ϕ�. Let Âyi � Âϕn�zi�, for i � 1, . . . ,m, and consider

tÂy�x� � inf�g�x� � Rd ( R S g is concave, and g�zi� C Âyi for i � 1, . . . ,m�.

Let ÂϕR
n � Rd ( R denote the concave extension of Âϕn, and note that ÂϕR

n�zi� � Âϕn�zi� � Âyi, i �
1 . . . ,m. Therefore ÂϕR

n belongs to the set

�g�x� � Rd � R S g is concave, and g�zi� C Âyi for i � 1, . . . ,m�.
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As tÂy is the infimum of the above class of functions, we have tÂy�z� B ÂϕR
n�z�, z > Zd.

Assume that for some z0 > Zd, Âϕn�z0� A tÂy�z0�. Then P
z>Zd

exp Âϕn�z� A P
z>Zd

exp�tÂy�z�� .
Also note that tÂy�zi� C Âyi, i � 1, ...,m. Hence

Φ�Âϕn� � �

m

Q
i�1

wi Âϕn�zi� � Q
z>Zd

exp Âϕn�z�
� �

m

Q
i�1

wiÂyi � Q
z>Zd

exp Âϕn�z�
A �

m

Q
i�1

wi tÂy�zi� � Q
z>Zd

exp�tÂy�z��
� Φ�tÂy�.

However, this creates a contradiction since Âϕn minimizes Φ. Therefore, Âϕn�z� � tÂy�z�, for

any z > Zd. This also implies that tÂy is a concave extension of log Âpn.

While the above τ function has extended our optimization problem over y > Rm. It

is still not simple enough for computation purpose. We show the objective function in

the following Theorem 3.1.1 is convex. Because of convexity, the objective function has a

unique minimizer. This objective function is the one we will work on in the sequel.

Theorem 3.1.1. Consider the function

σ�y1, . . . , ym� � �

m

Q
j�1

pn�zj� yj � Q
z>ÂSn

exp�ty�z�� . (3.3)

Then σ is convex and has a unique minimum Ây such that Âpn�z� � exp�tÂy�z�� .
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Proof of Theorem 3.1.1. We first prove that σ is convex. For u, v > Rm, λ > �0,1�, we have

λtu�x� � �1 � λ�tv�x�
� λ inf�g1�x�S g1 concave, and g1�zi� C ui, i � 1, . . . ,m�

� �1 � λ� inf�g2�x�S g2 concave, and g2�zi� C vi, i � 1, . . . ,m�
� inf�λg1�x� � Rd � R S g1 is concave, and g1�zi� C ui, i � 1,2, ..., n�

� inf��1 � λ�g2�x� � Rd � R S g2 is concave, and g2�zi� C vi, i � 1,2, ..., n�
� inf�g1�x�S g1 concave, and g1�zi� C λui, i � 1, . . . ,m�

� inf�g2�x�S g2 concave, and g2�zi� C �1 � λ�vi, i � 1, . . . ,m�
C inf�g1�x� � g2�x�S g1, g2 are concave, g1�zi� C λui, g2�zi� C �1 � λ�vi, i � 1, . . . ,m�.

We also have

h̄λu��1�λ�v�x�
� inf�h�x� � Rd � R S h is concave, h�zi� C λui � �1 � λ�vi, i � 1,2, ..., n�.

Since �g1�x��g2�x�S g1, g2 concave, g1�zi� C λui, g2�zi� C �1�λ�vi, i � 1, . . . ,m� is a subset
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of �g�x�S h concave, g�zi� C λui � �1 � λ�vi, i � 1, . . . ,m�, we have

λtu�x� � �1 � λ�tv�x� C tλu��1�λ�v�x�, x > Rd.

Finally, by convexity of ex (apply to the 2nd inequality below),

σ�λu � �1 � λ�v�
� �

m

Q
i�1

wi�λui � �1 � λ�vi� � Q
z>Zd

exp�tλu��1�λ�v�z��
B �

m

Q
i�1

wi�λui � �1 � λ�vi� � Q
z>Zd

exp�λtu�z� � �1 � λ�tv�z��
B �

m

Q
i�1

wi�λui � �1 � λ�vi� � Q
z>Zd

�λetu�z� � �1 � λ�etv�z��
� �

m

Q
i�1

wi�λui � �1 � λ�vi� � λ Q
z>Zd

etu�z� � �1 � λ� Q
z>Zd

etv�z�

� λσ�u� � �1 � σ�σ�v�.

Hence, σ�y� is convex.

Next, for any y > Rm,

σ�y� � τ�y� � m

Q
i�1

wi �ty�zi� � yi� C τ�y�,

by definition of the tent function ty, the 2nd term
m

P
i�1
wi �ty�zi� � yi� is always positive.

Hence σ�y� get its minimum value when
m

P
i�1
wi �ty�zi� � yi� � 0. It implies Âyi � tÂy�zi�, i �

1, . . . ,m, which minimize both σ�y� and τ�y�. Note that multiple y > Rm may lead to same
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tent function ty, but Âyi � tÂy�zi� is unique since it makes poles of the tent. Furthermore,

recall from Lemma 3.1.2 Therefore, tÂy�z� � Âpn�z�.

We have introduced three objective functions (3.1), (3.2), and (3.3). We showed that

minimizing all these three objective functions are equivalent to maximizing the likelihood

function. When we maximize likelihood function, the optimization problem is over elC

PMFs set. In objective function (3.1), we added a sum term such that the optimization

problem is relaxed to concave-extendible functions set. In objective function (3.2), we

replace ϕ with the tent function, such that the optimization problem is relaxed to m

dimensional real number set. In objective function(3.3), we replace the tent function with

yj (the “poles” of the tent function) in the first term, to make the optimization problem is

easier to compute.

Unfortunately, the function σ is not differentiable, and hence subgradient-based meth-

ods are used to perform the optimization. Details, including the algorithm, are given in

the Chapter 4, and we refer to Cule (2009); Cule et al. (2010) for the original development

of these methods.

Remark 3.1.1. It also turns out (see Lemma 3.1.2), that the function tÂy is a concave

extension of log Âpn. Thus, the algorithm finds not only Âpn, but the associated concave ex-

tension.

Lastly, we note that a faster algorithm for log-concave density/PMF estimation in

dimension greater than one remains an open problem in the field (see Cule et al. (2010,
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Section 3) and Walther (2009, Section 5)). Although our algorithm in no way improves on

the one proposed in Cule et al. (2010), our general approach does reduce the number of

data points from n to m, if one considers grouping/binning the data.

3.2 Finite sample performance

We investigate the finite sample performance of the proposed method via simulations for

d � 2. We consider two different scenarios for the true p0.

– For scenario (A), we assume that p0�z� � p1�z1�p2�z2� where p1 is Poisson (λ � 4) and

p2 is negative binomial (p � 0.3, r � 6).

– For scenario (B), we assume that p0 is discretely Gaussian, in that p0�z�� exp��0.5�z�
µ�TΣ�1�z � µ��, where µ � �1,2�, and

Σ �

<@@@@@@@>
4 6

6 25

=AAAAAAA?
.

Considering the closed and continuous function hR�x� � 0.5�x�µ�TΣ�1�x�µ��c, x > Rd,
it is easy to see that this is a convex extension of h�z� � � log p0�z� � 0.5�z�µ�TΣ�1�z�
µ� � c, for the appropriate constant c. By Rockafellar (1970, Theorem 4.5, page 27,

Lemma 2.1.1) we conclude that p0 > P0.
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Figure 3.3: Boxplots of l2 distance between estimator and true distribution.
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For both scenarios, we simulated independent and identically distributed samples with

samples sizes n � 200,500, and 1000. The results of our simulations are shown in Figure 3.3.

Top figure is when the true distribution is Poisson and negative binomial product, the

bottom figure is when the true distribution is discrete Gaussian. The estimators are (a)

empirical MLE, (b) eLC MLE, (c) separable log-concave MLE, and (d) parametric MLE

(top plot only). The y axis is the l2 distance. Each boxplot is the result of B � 1000

repetitions and compares the performance of our eLC estimator as well as three others, via

the l2 distance of the estimator to the true PMF p0. The other estimators are the empirical

PMF pn; the separable log-concave MLE assuming that � log p�z� � h1�z1��h2�z2�, for two

convex functions h1, h2 on Z (see Remark 2.1.1) and the correct parametric MLE, where

the latter is calculated for scenario (A) only. Clearly, the more (correct) assumptions we

make, the more we increase efficiency without increasing bias - this is seen in the top plot.

However, in the bottom plot, the incorrect MLE has poor performance, our proposed MLE

works well when the marginal distributions are dependent to each other. In our opinion,

the success story of the eLC estimator is seen in the top plot: there is not that much loss

of efficiency for the MLE between the nonparametric eLC assumption versus the strong

correct parametric assumption.
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3.3 Binned data example

We illustrate our estimation technique on the Boston housing data set created by Harrison

and Rubinfeld (1978) and available online at Lichman (2013). The data set consists of a

sample size of n � 506 and 14 variables. We choose to work with the last two variables:

LSTAT (percentage lower status of the population) and MEDV (median value of owner-

occupied homes in $1000s). Prior to binning, LSTAT has a range of �1.73,37.97� with

a median/mean value of 11.36~12.65, while MEDV has a range of �5.00,50.00� with a

median/mean value of 21.20~22.53. We remove observations with missing values (only an

issue for MEDV) for a sample size of n � 452. We bin the data as described in Section 2.3,

using the formula xi � 
yi � 0.5� for each observation and for both variables. This creates

m � 270 unique bins. Figure 3.4 shows the result of fitting the e-LC MLE to the binned data,

along with the original histogram. This example has relative large sample size (m � 270

unique bins). Note that the larger the sample size, the better the quality of the estimation.

But exact rule for large enough sample size is difficult to determine. Roughly, Figure 3.4

shows there is negative relation between MEDV and LSTAT. When the LSTAT increases,

the MEDV decreases accordingly. That is when there are more lower status people in the

community, people more likely to buy a house with affordable price, hence the average

price of the owner-occupied house decreases.
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Figure 3.4: Boston Housing Data: original empirical distribution (left) along with
eLC maximum likelihood estimate (right).

3.4 Mixtures and the EM algorithm

As mentioned in Chang and Walther (2007); Walther (2009); Cule et al. (2010), one of the

advantages of the maximum likelihood approach over a fixed family of functions is that

this naturally extends to fitting of mixture models (mixtures of the same fixed family) via

the EM algorithm, for apriori known number of mixtures. Although we do not explore

this in detail, we note that this approach could extend our class into possibly multimodal

distributions as well.

64



Chapter 4

Computing algorithm

4.1 Derive the explicit form of σ�y�

We begin by deriving an explicit formula for σ�y�. To this end, a few definitions are neces-

sary. For our observations z1, . . . , zm and y > Rm, consider the set Z � ��z1, y1�, . . . , �zm, ym��.
The convex hull of the set Z ` Rd�1 is made up of the upper hull and the lower hull. Pro-

jecting the upper hull on the first dimensional subspace Zd, the facets of the upper hull

create a subdivision of the points z1, . . . , zm. We denote the subdivision as S �y�, to em-

phasize its dependence on the vector y. This notion is best illustrated with examples.

Consider the observations �zi�4
i�1 � ��0,0�, �2,0�, �3,1�, �1,1�� with m � 4. We compute,

for three different y vectors, the associated S �y� �
a. Let y � �1,1.9,2,1�, then Z � ��0,0,1�, �2,0,1.9�, �3,1,2�, �1,1,1��. The upper hall of Z

consists of two facets with vertices ��0,0,1�, �2,0,1.9�, �3,1,2�� and ��0,0,1�, �1,1,1�, �3,1,2��.
65



Then we project of the upper hull to Z2, the resulted S �y� has two subdivisions:

��0,0�, �2,0�, �3,1��, ��0,0�, �1,1�, �3,1��. See Figure 4.1 left picture.

b. Let y � �1,2,2,1�, then Z � ��0,0,1�, �2,0,2�, �3,1,2�, �1,1,1��. The upper hall of Z

consists of one facets with vertices ��0,0,1�, �2,0,1.9�, �3,1,2�, �1,1,1��. Then we project

of the upper hull to Z2, the resulted S �y� has one subdivision: ��0,0�, �2,0�, �3,1�, �1,1��.
See Figure 4.1 middle picture.

c. Let y � �1,2.1,2,1�, then Z � ��0,0,1�, �2,0,2.1�, �3,1,2�, �1,1,1��. The upper hall of Z

consists of two facets with vertices ��0,0,1�, �2,0,2.1�, �1,1,1�� and ��2,0,2.1�, �1,1,1�, �3,1,2��.
Then we project of the upper hull to Z2, the resulted S �y� has one subdivision: ��0,0�, �2,0�, �1,1��,
��0,0�, �2,0�, �3,1��.

These three examples are illustrated in Figure 4.1. We can refine each subdivision into

a triangulation (a partition into simplices). Note that S �y1� and S �y3� are both tri-

angulations, while S �y2� needs further partitioning. Let T �y� � �Sj , j > J � denote the

triangulation, where J is the index set of simplices for the triangulation, Sj is the jth sim-

plex of the triangulation. Let Jj � �j0, ..., jd� denote the vertex indicies of jth simplex, then

each Sj is determined by d�1 vertices: �zj0 , ..., zjd�. Finally, let Cj denote the convex hull

of Sj , j � 1, . . . , SJ S. In case of y1 � �1,1.9,2,1�, there are two simplices, J � �1,2�.
S1 is determined by vertices: ��0,0�, �2,0�, �3,1��, and S1 is determined by vertices:

��0,0�, �1,1�, �3,1��. Corresponding convex hulls are C1 � ��0,0�, �1,0�, �2,0�, �3,1��, C2 �

��0,0�, �1,1�, �2,1�, �3,1��.
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Figure 4.1: Subdivisions S �y� for cases a.(left), b.(centre), and c.(right).

From this example we can see that for same observations, the subdivision can be totally

different by different y.

For finitely many points, the tent functions can be written explicitly via the triangula-

tions (Cule, 2009, Equation 3.6, page 26)

ty�z� � Q
j>J

�bTj z � βj�ICj�z� � δÂSn�z�,

for some bj , βj . Here, ICj�z� is an indicator function and J indicates the simplices indicies

set of the triangulation by y. Finally,

δÂSn�z� �
¢̈̈̈̈
¦̈̈̈̈
¨̈¤

0 if z > ÂSn,
�ª if z ~> ÂSn.

Hence we can take the tent function as a composition of affine functions over each simlex.

The following works will show how to decomposite the tent function by a chosen y.

Let θ denote an element in a unit d�simplex: θ > �0,ª�d, and Pdi�1 θi B 1. Following

Cule (2009, page 27), we perform a translation to re-write the above formulas over the unit
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simplex. Define Aj � �zj1 � zj0 S ... Szjd � zj0� to be a d � d matrix and let aj � zj0 . Then

for z > Cj , θ � �Aj��1�z � aj� is in the unit simplex. Next, let Çyj > Rd have components

�yj1 � yj0 , . . . , yjd � yj0�. Then we can write, bj � �ATj ��1Çyj and βj � a
T
j bj � yj0 . Thus,

bTj z � βj � ��ATj ��1Çyj�T z � aTj �ATj ��1Çyj � yj0
� ÇyTj A�1

j z � a
T
j �ATj ��1Çyj � yj0

� ÇyTj A�1
j �Ajθ � aj� � aTj �ATj ��1Çyj � yj0

� ÇyTj θ � �ÇyTj A�1
j aj � a

T
j �ATj ��1Çyj � yj0

� ÇyTj θ � �ÇyTj A�1
j aj � �ÇyTj A�1

j aj�T � yj0
� ÇyTj θ � yj0
� �yj1 � yj0�θ1 � ... � �yjd � yj0�θd � yj0
� yj0�1 � θ �1 �... � θ�d� � yj1θ �1 �... � yjdθ �d

� yj0θ0 � yj1θ1 � ... � yjdθd � θT yJj ,

where θ0 � 1 � θ1 � . . . � θd. Therefore,

σ�y� � �

m

Q
i�1

wi yi � Q
z>Zd

exp�ty�z��
� �

m

Q
i�1

wi yi � Q
z>ÂSn

exp� Q
j>J

�bTj z � βj�ICj�z��

� �

m

Q
i�1

wi yi � Q
j>J

Q
z>Cj

exp��bTj z � βj��,
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We then obtain

σ�y� � �

m

Q
i�1

wi yi � Q
j>J

Q
z>Cj ,z¶8

j�1
k�1

Ck

exp�yj0θ0 � yj1θ1 � ... � yjdθd� ,

where θ � A�1
j �z � aj� for z > Cj . Note that some z may belong to more than one simplex,

and hence the need to exclude these cases in the second summand above. Recall that the

projection of upper hull of Z onto the first d component can be refined to simplices. To

compute σ�y�, we will then work on each simplex. For each discrete point z inside or on

the boundary of the simplex, compute w by w � A�1
j �z�aj�, and add the exponential term

to the σ function. Quick Hull algorithm (c package qhull) is applied to compute convex

hull and triangulation.

4.2 Derive the explicit form of gradient of σ�y�

We also need to compute the derivatives, or when not differentiable, the directional deriva-

tive of σ�y�. As in Cule (2009, Section 3.4.2, page 34), σ�y� is differentiable if S �y� is a

triangulation, while if S �y� is not a triangulation, it is not differentiable. This is relatively

straightforward to see from Figure 4.1, as small changes to the second element of y yield

very different subdivisions.

The following Theorem 4.2.1 conclude that the objective function σ�y� is not differen-

tiable everywhere.
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Proposition 4.2.1. The function σ�y� � �Pmi�1wiyi�Pz>ÂSn exp�ty�z�� is not differentiable

everywhere.

Proof. Denote the directional derivatives as

∂σ�y;u� � lim
t�0

σ�y � tu� � σ�y�
t

.

Since σ is convex, the directional derivative exist (Rockafellar, 1970, Theorem 23.1 page

213). Furthermore, the function is differentiable if ∂σ�y;u� � �∂σ�y;�u�. We will show

that ∂σ�y; ei�� ∂σ�y;�ei� A 0 occurs when S �y� is not a triangulation, where ei > �0,1�m
is the ith row of the m dimensional identity matrix. For simplicity, consider the case when

there are m � d � 2 elements in general position, as the more complex case is similar.

For each i and ε0 A 0 sufficiently small, we have that S �y � ε0ei�,S �y � ε0ei� both

form triangulations. Following Cule (2009, Section 3.4.2, page 35), we may write

ty�εei�x� � ty�x� � εgei,S �y�ε0ei��x� ty�εei�x� � ty�x� � εg�ei,S �y�ε0ei��x�,

where gei,S �y�εei� is the function obtained by:

1 project ��z1, y1�, ..., �zi�1, yi�1�, �zi, yi�ε�, �zi�1, yi�1�, ..., �zn, yn�� on Zd, and get the

triangulation S �y � εei�.
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2 linearly interpolating the points

��z1,0�, ..., �zi�1,0�, �zi,1�, �zi�1,0�, ..., �zn,0��

over each simplex of S �y � εei�.

And g
�ei,S �y�εei� is obtained by the similar way. Note that gei,S �y�ε0ei�,�g�ei,S �y�ε0ei��x�

are the upper and lower hulls of the points

��z1,0�, ..., �zi�1,0�, �zi,1�, �zi�1,0�, ..., �zm,0��,

respectively.

Letting eij denote the �i, j�-element of the n � n identity matrix, we can write

∂σ�y; ei� � lim
ε�0

σ�y � εei� � σ�y�
ε

� lim
ε�0

m

P
j�1

�wj�yj � εeij� � P
z>ÂSn

exp�ty�εei�z�� � m

P
j�1

wjyj � P
z>ÂSn

exp�ty�z��
ε

� lim
ε�0

m

P
j�1

�wj�yj � εeij� � P
z>ÂSn

exp�ty�z� � εgei,S �y�ε0ei��z�� � m

P
j�1

wjyj � P
z>ÂSn

exp�ty�z��
ε

� �wi � lim
ε�0

�Pz>ÂSn exp�ty�z� � εgei,S �y�ε0ei��z�� �Pz>ÂSn exp�ty�z���
ε

� �wi � Q
z>ÂSn

exp�ty�z�� lim
ε�0

exp�εgei,S �y�ε0ei��z�� � 1

ε

� �wi � Q
z>ÂSn

exp�ty�z�� gei,S �y�ε0ei��z�.
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Similarly, we find

∂σ�y;�ei� � wi � Q
z>ÂSn

exp�ty�z�� g�ei,S �y�ε0ei��z�.

Hence,

∂σ�y; ei� � ∂σ�y;�ei� � Q
z>ÂSn

exp�ty�z�� �gei,S �y�ε0ei��z� � g�ei,S �y�ε0ei��z�� .

Recall that gei,S �y�ε0ei�,�g�ei,S �y�ε0ei��x� are the upper and lower hulls of the points

��z1,0�, ..., �zi�1,0�, �zi,1�, �zi�1,0�, ..., �zm,0��,

respectively. It follows that gei,S �y�tei� � g�ei,S �y�tei� A 0 and hence ∂σ�y; ei��∂σ�y;�ei� A
0.

The following Proposition gives the explicit form of ∂σ�y�.

Proposition 4.2.2. 1 The function σ is differentiable at y, and for i � 1, ...,m we

have

∂iσ�y� � �wi � Q
j>J

ICj�yi� Q
z>Cj ,z¶8

j�1
k�1

Ck

∂i �θT yJj� exp�θT yJj� ,

2 The function σ is not differentiable at y, but �∂1σ�y�, ..., ∂mσ�y�� is a subgradient of
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σ at y.

Proof. (1) When σ�y� is differentiable, we easily obtain that

∂iσ�y� � �wi � Q
j>J

ICj�yi� Q
z>Cj ,z¶8

j�1
k�1

Ck

∂i �θT yJj� exp�θT yJj� ,

Note that when we compute the ith partial derivative, we only need to consider those

simplices which involve yi, so the indicator function above ensures that only the simplex

involving yi will be counted.

(2) Proposition 4.2.1 showed that σ is not differentiable everywhere. If σ�y� is not

differentiable at a given y > Rm, Cule et al. (2010) Proposition 5(b) can also be applied

to our case. Rockafellar (1970) shows that for any ε A 0, we can find a point ỹ > Rn

with Õ y � ỹ Õ2@ ε, such that σ is differentiable at ỹ and Õ ©σ�ỹ� � ∂σ�y� Õ2@ ε. Hence

we conclude that �∂1σ�y�, ..., ∂mσ�y�� is a subgradient of σ at y. Technically, this can

be done by sequentially making small adjustments to the components of y in the same

order as that in which the vertices were pushed in constructing the triangulation. Cule

(2009) also mentioned that theoretically, it is necessary to check if the refinement of S �y�
by QuickHull algorithm is a triangulation. But in practice, this was not found to be

necessary.
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4.3 Subgradient algorithm

Since the function σ�y� is not differentiable everywhere, following Cule et al. (2010), we ap-

ply a subgradient method to solve the problem. While the convergence rate of subgradient

method might be slow due to differential direction. Cule et al. (2010) perform a sequence

of dilations in the direction between two successive subgradient, which is known as Shor’s

r-algorithm. Cule et al. (2010) also state that the formal convergence of the r-algorithm

has not been proved theoretically, but it is found to be robust, efficient and accurate in

practice. The idea here is to “make steps in the direction opposite to a sub-gradient” (Kap-

pel and Kuntsevich, 2000, page 193). These steps are made in a transformed, “dilated”,

space. Kappel and Kuntsevich (2000) describe further improvements to the method via

modified stopping criteria.

As in Cule et al. (2010), we use this latter modification with stopping criteria

Syk�1
i � yki S B δSyki S for i � 1, ..., n

Sσ�yk�1� � σ�yk�S B εSσ�yk�S
U1 � Q

z>Zd

exp�tyk�z�� U B η

for fixed tolerances δ, ε and η. The last criterion above is not one suggested by Kappel

and Kuntsevich (2000), but is there to ensure that the algorithm returns close to a proper

probability mass function. In our current implementation, the tolerances are set to δ � ε �
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η � 10�4.

In our algorithm, we did not change the subgradient iteration process, we follow the

work and code of Cule et al. (2010). Although our algorithm is in discrete setting, the

objective function σ�y� is still a continuous function. The only difference between our

algorithm and that of Cule et al. (2010) is that the objective function is different. Hence

our main work is to derive the explicit form of the objective function and its gradient,

as well as to compute the values of the objective function and its gradient with a given

y > Rm. For detailed subgradient algorithm description, we refer to Cule et al. (2010).

4.4 Computing algorithm and comparison

To compute σ�y�, we refine the projection of Z into simplices. We then work on each

simplex, and find all lattice points inside or on the boundary of the simplex. If the discrete

point has not been counted, we compute the corresponding θ, and add in the exponential

term. The quickhull algorithm is applied to compute convex hulls and triangulations.

Details of these calculations, as well as gradient and subgradient calculations are given in

Algorithm 1.

Recall that our optimization problem is

Âpn � argmaxp>P0

n

Q
i�1

log p�Xi�.
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Algorithm 1 Calculate σ�y� and gradient of σ�y�, input zobs, y

1: Compute convex hull of observations: C � conv�zobs�
2: Compute extreme/out points of C � zout, corresponding subset of y: yout
3: Compute inner points of C � zin � zobj � zout, corresponding subset of y: yin
4: ymax � max�y1, ..., ym�
5: ymin � min�y1, ..., ym�
6: Combine yout

ymax�ymin
and zout to get d � 1 dimensional data set: zzout

7: Combine yin

ymax�ymin
and zin to get d � 1 dimensional data set: zzin

8: Combine ymin�1
ymax�ymin

and zout to get d � 1 dimensional data set: zzxtr
9: All points set: zzall � zzout 8 zzin 8 zzxtr

10: Compute convex hull of All points set: Call � conv�zzall�
11: Compute facet set of Call � fct � �fct1, ..., fctk�
12: Initial σ�y� � ��p̄1 � y1 � ... � p̄m � ym�
13: Initial ∂iσ�y� � �p̄i, i � 1, ...,m
14: Initial Eall as an empty list P Used to check duplication
15: for each facet fctj , 1 B j B k do
16: if fctj is a true facet then
17: The extreme (out) points set of fctj � pj � �zj0 , ..., zjd�
18: Matrix A � �zj1 � zj0 S...Szjd � zj0�
19: Vector aj � zj0
20: Inverse matrix of A � A�1

21: Vector ytmp � �yj0 , ..., yjd�
22: Generate a rectangle of pj � rec � �r > Zd�, such that ri � �z > ZSmin�zij0 , ..., z

i
jd
� B z B

max�zij0 , ..., z
i
jd
��, for 1 B i B d

23: for each point r in rec do
24: if r is inside convex hull of pj then
25: Add r to enumerate list: Ej

26: end if
27: end for
28: for each point of Ej � e do
29: if e is not duplicated with any points of Eall then
30: Vector w � A�1�e � aj�,w0 � 1 �w1 � ... �wd

31: Sigma function: σ�y�� � exp�yj0w0 � ... � yjdwd�
32: for i > �j0, ..., jd� do
33: Gradient: ∂iσ�y�� � wi exp�yj0w0 � ... � yjdwd�
34: end for
35: Add e to enumerate list Eall

36: end if
37: end for
38: end if
39: end for
40: Return σ�y�, ∂iσ�y� for i � 1, ...,m
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Firstly the log-likelihood function is a convex function of p. Secondly the following

Lemma shows that P0 is a convex set. Hence our optimization problem is a convex

optimization problem and we are proposing an algorithm to solve our particular

problem.

Lemma 4.4.1. By our definition, P0 � �p � exp�ϕ� Sϕ is concave-extendible and p is PMF on Zd�
is a convex set.

Proof. Let L1 � �p � exp�ϕ� Sϕ is concave-extendible�,L2 � �p is PMF on Zd�. We

can re-write P0 as: P0 � L19L2. Firstly, We show that L1 is a convex set. Exponential

function is a convex function, it is sufficient if we can show that �ϕ Sϕ is concave-extendible function�
is a convex set. Note that convex-extendible is closed under addition by Murota and

Shioura (2001). We now show that convex-extendible is also closed under multipli-

cation by a constant. Let h�z� be a convex-extendible function on Zd, hence there

exists a closed convex function hR�x� on Rd, which is the convex extension of h�z�.
Let k > R, it is not hard to see that k � hR�x� is the convex extension of k � h�z�.
Hence k � h�z� is also convex-extendible. Therefore convex-extendible functions set

is convex. It follows that concave-extendible functions set is also convex.

Secondly, L2 is also a convex set. Hence P0, as the intersection of two convex

sets, is also a convex set.

Algorithms to solve the convex feasibility problem are usually called projections
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onto convex sets (POCS) method. More details of convex feasibility problem and

POCS, we refer to Bauschke and Borwein (1996). The subgradient method is one

of the approach to solve the convex feasibility problem per Bauschke and Borwein

(1996). Since minimizing the objective function Pn
i�1 log p�Xi� over P0 is equivalent

to minimizing the KL divergence between the empirical distribution p̄n and any eLC

PMF (p > P0), the minimizer Âpn can be viewed as the projection of the empirical

distribution p̄n onto P0 in the KL divergence sense.
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Chapter 5

Asymptotic Properties

For two PMFs p and p0, we define the lk and Hellinger distances as

lk�p, p0� �

¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

�Pz>Zd Sp�z� � p0�z�Sk�1~k

if 1 B k Bª,

supz>Zd Sp�z� � p0�z�S if k �ª,

h2�p, p0� �
1

2
Q
z>Z

�»p�z� �»
p0�z��2

.

Our main consistency result follows.

Theorem 5.0.1. Suppose that p0 is a discrete distribution on Zd with finite expected

value of YzYª and finite entropy, that is,

Q
z>Zd

YzYª p0�z� @ª and TQ
z>Zd

p0�z� log p0�z�T @ª.
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Assume also that the convex hull of the support of p0 is closed. Then d�Âpn,Âp0� � 0

almost surely, where d is the distance lk for any 1 B k Bª or the Hellinger distance

h.

We have thus shown that even if the true distribution p0 is not in P0, then the

MLE still converges, and it converges to Âp0, the best approximation to p0 in P0.

Such robustness properties are known to hold for other shape-constrained estimators

(based on maximum likelihood), and for other maximum likelihood estimators in

general. They are a very appealing aspect of the method and can be interpreted to

say that even if p0 ¶ P0, then if p0 is “close” to P0, our proposed MLE will exhibit

desirable behavior.

We will prove the following lemma firstly.

Lemma 5.0.1. Let pn, p be discrete probability mass functions on Zd, and pn � p

for all z > Zd, then lk�pn, p�� 0 for 1 B k Bª, and h2�pn, p�� 0, as n� 0.

Proof. Clearly, it is sufficient to show that pointwise convergence implies the other

types of convergence. To this end, fix ε A 0. Then, there exists a K such that

PYzYªBK p�z� C 1 � ε~4. Furthermore, since pn � p, for all z > Zd, there exists large

enough N, such that

sup
YzYªBK

Spn�z� � p�z�S B
ε

4�2K � 1�d ,
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for all n C N. Hence, for any z such that YzYª BK, and any n C N,

Spn�z� � p�z�S B sup
YzYªBK

Spn�z� � p�z�S B ε

4�2K � 1�d .

Note that the size of set �z S YzYª BK� is �2K � 1�d. Following above inequality, we

can deduce the below two inequalities:

Q
YzYªBK

Spn�z� � p�z�S B ε

4�2K � 1�d � �2K � 1�d � ε
4
,

and

pn�z� C p�z� � ε

4�2K � 1�d .

From the above, it also follows that for all n C N,

Q
YzYªBK

pn�z� C Q
YzYªBK

p�z� � ε

4�2K � 1�d � �2K � 1�d C 1 � ε~4 � ε~4 � 1 � ε~2.
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Putting these facts together, we find that

Q
z>Zd

Spn�z� � p�z�S � Q
YzYªBK

Spn�z� � p�z�S � Q
YzYªAK

Spn�z� � p�z�S
B Q

YzYªBK

Spn�z� � p�z�S � Q
YzYªAK

pn�z� � Q
YzYªAK

p�z�
� Q

YzYªBK

Spn�z� � p�z�S � �1 � Q
YzYªBK

pn�z�� � �1 � Q
YzYªBK

p�z��
B ε~4 � ε~2 � ε~4 � ε.

We have thus shown that pointwise convergence implies l1�pn, p�� 0.

Note that for any fixed z0, we have Spn�z0� � p�z0�S B Pz>Zd Spn�z� � p�z�S, and

hence

lª�pn�z�, p� � sup
z>Zd

Spn�z� � p�z�S B Q
z>Zd

Spn�z� � p�z�S � l1�pn, p�� 0, as n�ª.

Moreover, 0 B pn�z�, p�z� B 1 implies that Spn�z� � p�z�S B 1. Hence Spn�z� � p�z�Sk B
Spn�z� � p�z�S, for any 1 @ k @ª. Therefore, for any 1 @ k Bª,

lkk�pn, p� � Q
z>Zd

Spn�z� � q�z�Sk B Q
z>Zd

Spn�z� � q�z�S � l1�pn, p�

Lastly, recall that 2h2�p, q� B l1�p, q�.We conclude that pointwise convergence implies

all other types of convergence as well.
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We now prove Theorem 5.0.1

Proof. Let Xn be a random vector with PMF Âpn. Then by Markov’s inequality and

Lemma 3.0.1, we have that

P �YXnYª Cm� B PYzYªCm YzYª Âpn�z�
m

B
Pz>Zd YzYª Âpn�z�

m
B
Pz>Zd YzYª pn�z�

m
,

since the norm SS � SSª is convex-extendible. By strong law of large number and

the finite mean assumption of the Theorem, Pz>Zd YzYªpn�z� B 2Pz>Zd YzYªp0�z�,
say, almost surely for all n sufficiently large. Note that S P

z>Zd

YzYªp0�z�S @ ª by

assumption. Hence, P
z>Zd

YzYªp̄n�z� @ª almost surely for sufficient large n. Therefore

for any ε A 0, there exists large enough m A 0, such that

P
z>Zd

YzYªp̄n�z�
m

@ ε.

It follows that the sequence Xn is tight. Therefore, there exists a subsequence of

Âpn and a Çp, which we denote again by n, such that Âpn � Çp. By Theorem 2.4.1 we

conclude that Çp is also eLC. It remains to show that Çp � Âp0 to finish the proof.

Because log function is strictly increasing function and p̄n�z� A 0 for any z > Zd,
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we have p̄n�z� log�Âpn�z� � b� C p̄n�z� log�Âpn�z�� for any z > Zd, hence

Q
z>Zd

p̄n�z� log�Âpn�z� � b� C Q
z>Zd

p̄n�z� log�Âpn�z��.

Also by definition of MLE, Âpn maximize log-likelihood Pz>Zd p̄n log p�z� over P0, for

any b A 0, we have

Q
z>Zd

p̄n�z� log�Âpn�z� � b� C Q
z>Zd

p̄n�z� log�Âpn�z�� C Q
z>Zd

p̄n�z� log�Âp0�z��.

The 2nd inequality comes from Âpn is MLE, which maximize log likelihood. Hence

Q
z>Zd

pn�z� log�Âpn�z� � b� C Q
z>Zd

pn�z� log�Âp0�z��.

Therefore,

Q
z>Zd

pn�z� log�Âpn�z� � b� � Q
z>Zd

pn�z� log�Âp0�z��
� Q

z>Zd

�pn�z� � p0�z�� log�Âpn�z� � b� � Q
z>Zd

�p0�z� � pn�z�� log�Âp0�z��
� Q
z>Zd

p0�z� log
Âpn�z� � bÂp0�z� � b � Qz>Zd

p0�z� log
Âp0�z� � bÂp0�z� C 0. (5.1)

We next get rid of the first two terms on the right-hand side. For the first term on
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the right-hand side,

Spn�z� � p0�z�S B SFn�z� � F0�z�S � SFn�z � 1� � F0�z � 1�S
B 2 supz>Zd SFn�z� � F0�z�S a.s.

Ð� 0, as n�ª,

where Fn�z�, F0�z� denote the empirical and true cumulative distribution functions

(CDFs), corresponding to pn and p0, respectively. By Lemma 5.0.1, we conclude that

Pz>Zd Spn�z� � p0�z�S� 0. Since

log�b� B log�Âpn�z� � b� B log�b � 1�,

we have

S log�Âpn�z� � b�S BM @ª,

where M � max�S log�b�S, S log�b � 1�S� @ ª is afinite constant. Therefore the first

term converges to 0 (showing as following).

WQ
z>Zd

�pn�z� � p0�z�� log�Âpn�z� � b�W B Q
z>Zd

Spn�z� � p0�z�SS log�Âpn�z� � b�S
B M Q

z>Zd

Spn�z� � p0�z�S a.s.
Ð� 0, as n� 0.

We relax this fixed sample space to any sample space, above conclusion is true almost
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surely.

We now show that the 2nd term converges to zero. Since Âp0 minimizes KL

divergence, that is,

� Q
z>Zd

p0�z� log
Âp0�z�
p0�z���Qz>Zd

p0�z� log
p0�z�
p0�z�� � � Qz>Zd

p0�z� log Âp0�z��Q
z>Zd

p0�z� log p0�z� B 0.

Note that log p0�z�, log Âp0�z� @ 0, hence by assumption

Ep0�S log Âp0�z�S� � Q
z>Zd

p0�z�� � log Âp0�z�� B Q
z>Zd

p0�z�� � log p0�z�� @ª.

EÂp0�S log Âp0�Z�S� � � Q
z>Zd

p0�z� log Âp0�z� B � Q
z>Zd

p0�z� log Âp0�z� � Ep0�S log Âp0�Z�S� @ª.

Therefore, by the strong law of large numbers,

Q
z>Zd

�p0�z� � pn�z�� log Âp0�z� � Q
z>Zd

pn�z�� � log Âp0�z�� � Q
z>Zd

p0�z�� � log Âp0�z��
� Epn�S log Âp0�Z�S� �Ep0�S log Âp0�Z�S�

a.s.
Ð� 0, as n�ª,
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where Z is random vector on Zd. Since the first two terms on the right-hand side of

(5.1) both converge to zero, we have

lim sup
n

Q
z>Zd

p0�z� log
Âp0�z� � bÂpn�z� � b B Q

z>Zd

p0�z� log
Âp0�z�Âp0�z� � b.

By Fatou’s Lemma, we have

lim inf
b�0

Q
z>Zd

��p0�z� log
Âp0�z�Âp0�z� � b¡ C Q

z>Zd

lim inf
b�0

��p0�z� log
Âp0�z�Âp0�z� � b¡ � 0,

Note that � lim inf �f � lim sup f, therefore

lim sup
b�0

lim sup
n

Q
z>Zd

p0�z� log
Âp0�z� � bÂpn�z� � b B lim sup

b�0
Q
z>Zd

p0�z� log
Âp0�z�Âp0�z� � b

B Q
z>Zd

lim sup
b�0

p0�z� log
Âp0�z�Âp0�z� � b

� 0.

For each n, fixed b and any z > Zd, since log�x�, x > R is monotonically increasing

and 0 B Âpn�z�, p0�z�,Âp0�z� B 1, we have

p0�z� log
b

b � 1
B p0�z� log

Âp0�z� � bÂpn�z� � b B p0�z� log
b � 1

b
.
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Hence, by dominated convergence theorem, we have

lim sup
b�0

lim sup
n

Q
z>Zd

p0�z� log
Âp0�z� � bÂpn�z� � b � lim sup

b�0
Q
z>Zd

lim sup
n

p0�z� log
Âp0�z� � bÂpn�z� � b

� lim sup
b�0

Q
z>Zd

p0�z� log
Âp0�z� � bÇp�z� � b .

Without loss of generality, we can restrict 0 @ b B 1, and hence � log�Âp0 � b� C � log 2,

which implies that � log�Âp0 � b� is bounded below and increases as b� 0. Therefore,

by monotone convergence theorem, we have

lim sup
b�0

Q
z>Zd

p0�z� �� log�Âp0�z� � b�� � � Q
z>Zd

lim sup
b�0

p0�z� log�Âp0�z� � b�
� � Q

z>Zd

p0�z� log Âp0�z�,

and similarly when Âp0 is replaced by Çp. Putting together the above arguments, we
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thus arrive at

lim sup
b�0

Q
z>Zd

p0�z� log
Âp0�z� � bÇp�z� � b

� � � lim sup
b�0

Q
z>Zd

�p0�z� log�Âp0�z� � b� � lim sup
b�0

Q
z>Zd

�p0�z� log�Çp0�z� � b��
� Q
z>Zd

p0�z� log Âp0�z� � Q
z>Zd

p0�z� log Çp0�z�
� Q
z>Zd

p0�z� log
Âp0�z�Çp�z� B 0.

Furthermore,

Q
z>Zd

p0�z� log
Âp0�z�Çp�z� � Q

z>Zd

p0�z� log
p0�z�Çp�z�

Âp0�z�
p0�z�

� Q
z>Zd

p0�z� log
p0�z�Çp�z� � Q

z>Zd

p0�z� log
p0�z�Âp0�z� B 0.

Rearranging, we find that

Q
z>Zd

p0�z� log
p0�z�Çp�z� B Q

z>Zd

p0�z� log
p0�z�Âp0�z� .

However, as Âp0 is the unique minimizer of the quantity on the right hand side, we

obtain that Çp � Âp0. Therefore Âpn � Âp0, and by Lemma 5.0.1 we have d�Âp0,Âp0�� 0, as

n�ª.
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Part II

Application of discrete log-concave

in clustering
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Chapter 6

Introduction

6.1 Motivation and overview

Clustering has a broad application in practice, such as biology, medicine, business

and marketing. Comparing to the continuous setting, less work has been done for

categorical data clustering, although categorical data is very popular for a wide range

of applications.

Categorical data is usually divided into two types: nominal and ordinal. With

the former, levels of data attributes are not ordinal, and have no order. For example,

eye color can take the values: black, green, blue, and brown. Clearly, these colors

are not ordered. For ordinal categorical data, levels of attributes have an order. For

example, income may have three levels: low, medium, and high. Our work focuses
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on nominal categorical data. It is very different from ordinal data, where distance

can be measured using a metric. For nominal categorical data, the main challenge is

that the points’ attributes levels have no order, such that metric distance calculated

vary significantly when the attributes’ levels are coded in different way. Hamming

distance (Gordon, 1999) measures the similarity or dissimilarity between two given

data points. It counts how many attributes with different values there are for two

data points. This gives us a way to measure how “far” two nominal data points are.

Hamming distance actually measures the similarity or dissimilarity of two vectors

(data points).

Zhang et al. (2006) developed an algorithm to cluster nominal categorical data

based on Hamming distance. They refer to it as the HD vector algorithm. This

algorithm can automatically detect significant clusters in a given data. Each cluster

is defined by a cluster center and cluster radius. To identify if a cluster exists, the

algorithm uses something called HD vector, which is akin to empirical distribution.

From this HD vector, the cluster center and radius is identified. This procedure

is sensitive to the lack of smoothness in the HD vector. We propose to apply log-

concave method to smooth out this HD vector. Applying log-concave method to

approximate the HD vector can significantly improve the smoothness, increase the

stability and efficiency of the algorithm. We call our proposed algorithm as HD-LCD
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algorithm.

6.2 Techniques review and background

6.2.1 Nominal categorical data set

Consider a data set x � �x1, ..., xn�, where n denotes the sample size. Each obser-

vation xi � �xi1, xi2, . . . , xiq� is a sequence of length q, where the jth element of the

sequence is a categorical variable, taking on one of mj possible levels. The data set

is thus a collection of observations from the space Ωq, with SΩq S �M �Lq
i�1mi. For-

mally we define Ωq � �ω � �ω1, ..., ωq� Sω1 > A1, ..., ωq > Aq�, where Aj has mj elements

and is the set of states of the jth attribute.

We now take zoo data as an example, which is posted on the UCI Machine Learn-

ing Repository (Lichman, 2013), created and donated by Richard Forsyth in 1990.

The data were collected from 101 animals. Animals’ 17 attributes were recorded, such

as: hair, feather, eggs, milk. All attributes’ value are nominal type. 101 animals were

classified into 7 groups: Mammals, birds, reptiles, fish, amphibians, insects, and mol-

lusks. In this case, n � 101, q � 17. The number of clusters is K � 7. The number of

levels for all 17 attributes are: �101,2,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2�. The first at-

tribute is animals’ name, so each row (data point) has different value. This attribute
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(column) will not be used for clustering, because it does not contribute any helpful

information. For the remaining attributes, most of them are boolean type: ”Yes” or

”No”. The 14th attribute “leg” has m14 � 6 levels, and the corresponding state set

: A14 � �0,2,4,5,6,8�, which indicates the number of legs. We can still treat it as

nominal data in the sense of if animals have same number of legs. For zoo data, the

sample space has size of SΩ17S �L17
i�1mi � 19,857,408.

6.2.2 Hamming distance vector and cluster center

Unlike how we measure distance for ordinal data, it is hard to define “distance”

beween nominal data points. Following Zhang et al. (2006) we apply Hamming

distance to measure distance between two nominal data points. Let I�� denote

the indicator function, let d�xi, xj� � Pq
k�1 I�xik x xjk� denote the Hamming distance

between two points xi and xj, which is equal to the number of attributes with different

values. Hence it actually measure how different two nominal data points are. In the

following example (Table 6.1), we take part of the zoo data. Animals are valued by

four attributes: hair, legs, domestic, and breathes. They are all categorical nominal

data. We can see that the similarity between antelope and calf is higher than that of

antelope and carp. The Hamming distance between antelope and calf is one because

there is only one attribute (Domestic) with different values; the Hamming distance
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Table 6.1: Example of Hamming distance for zoo data.

Animal Hair Legs Domestic Breathes
antelope Yes 4 No Yes
calf Yes 4 Yes Yes
carp No 0 Yes No

between antelope and carp is four because all four attributes have different values.

Note that in a data set, for a given data point xi, we can calculate Ham-

ming distance between xi and any points. The Hamming distances between them

are from 0 to q. We can then derive a frequency vector, named as Hamming dis-

tance (HD) vector, denoted by H�xi� � �H0�xi�,H1�xi�, ...,Hq�xi��, and Hk�xi� �

Pn
j�1 I�d�xi, xj� � k�, k � 0,1,2, ..., q. Hence HD vector is a vector of q � 1 ele-

ments, the kth element indicates the number of data points which have HD of

k � 1 to the given point xi. Also note that Pq
k�0Hk�xi� � n. Here is an example:

let x � �x1 � �a, a, a�, x2 � �a, b, c�, x3 � �b, a, c�, x4 � �c, c, c�, x5 � �a, b, a��. Then

Hamming distance between points x1 and x2 is: d�x1, x2� � 2. The HD vector for

xi � H�x1� � �1,1,2,1�, where the first element “1” indicates there is one data point

�x1� which has Hamming distance of 0 with x1, and the third elements two indicates

there are two data points �x2, x3� which have Hamming distance of two to x1.

Follow Zhang et al. (2006)[Definition 2], the position c � �c1, ..., cq� > Ωq is said to

be the center of a data set x � �x1, ..., xn� if it minimizes the sum of the Hamming
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distance over all data points, namely

D�c, x� � n

Q
i�1

d�c, xi�,

where c � argminω>Ωq Pn
i�1 d�ω,xi�.

6.2.3 Uniform Hamming distance vector

Zhang et al. (2006) also provide a reference HD vector when no clustering pattern

appear in the data set, so we can compare a potential center’s HD vector with the

reference HD vector case and determine the most likely center. When all points

of the state space Ωq are equally likely the HD vector is called the reference HD

vector. We, here, will call it as the uniform Hamming distance (UHD) vector. It is

denoted by U�Ωq� � �U0�Ωq�, U1�Ωq�, ..., Uq�Ωq��. Intuitively, the UHD vector is a

special case of HD vector. Given an uniformly distributed data x � �x1, ..., xn�, for

an arbitrary position ω > Ωq, the corresponding HD vector U�ω� has q � 1 elements.

the kth element is (Zhang et al., 2006):

Uk�ω� � n

Q
i�1

d�xi, ω�, k � 0,1, ...q,

which is the number of possible outcomes that have an exact distance k to the
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position ω. Also note that the value of Uk does not depend on the position ω. By

Zhang et al. (2006)[Theorem 3] the UHD vector has the form:

U0�Ωq� � n

M
,

U1�Ωq� � n

M
��m1 � 1� � ... � �mq � 1��,

U2�Ωq� � n

M

q

Q
i@j

�mi � 1��mj � 1�,
...

Uq�Ωq� � n

M
�m1 � 1��m2 � 1�...�mq � 1�.

Figure 6.1 is an example of UHD vector for sample space where q � 25,m1 �

, ...,m25 � 2. Note that UHD vector is symmetric when m1 �, ...,� mq � 2, but it is

not true for other cases.

For a given point, we can calculate the Hamming distance between this point

with all other points. Hence we have a sequence of Hamming distance. Then the

HD vector is the frequency vector of those distances. The kth element of the vector

counts the number of points which are exactly distance k away from the given point.

If the given point is a center c, we expect a local bump in the HD vector representing

all the points in the local cluster, followed by a dip. And a second bump for all

the other points not in the local cluster. Figure 6.2 shows an example center’s HD
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Figure 6.1: UHD with 25 binary attributes
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Figure 6.2: We take one sample (n � 200) which is simulated by original simulation
method, we choose one of the simulated center, compare the center’s HD vector
against the corresponding UHD vector.

vector against UHD vector from one of our simulated data set, which is simulated

with the original simulation method (will be illustrated in later chapter). Clear

bimodal pattern is observed. Hence it becomes possible to identify potential cluster

center by comparing the bimodal HD vector with unimodal UHD vector. Note that

in this case the UHD vector is not symmetric, unlike the previous example.
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6.2.4 HD vector algorithm

The goal of the algorithm is to find a collection of clusters C1, . . . ,CK such that

x � C1 <C2 < . . . <CK ,

where < indicates the disjoint union. Notably, the number of clusters K is not

assumed to be known apriori. Each cluster Ck is defined by a cluster center ck, and

a radius R�

k, where Ck � �xj > x � d�ck, xj� B R�

k�. The goal of the algorithm is thus

to find the cluster centers c1, . . . , cK and radius R�

1 , . . . ,R
�

K .

Zhang et al. (2006) state if each observation in the data set has an equal proba-

bility of locating at any position in the space Ωq (no clear cluster pattern appear in

data set), then the resulted UHD vector has a typical unimodal pattern distribution.

While for a data set with significant cluster pattern, the cluster center has a bimodal

pattern distribution. This provides a way to detect the cluster’s center: a point

which HD vector is the “farthest” to the UHD vector might be the cluster center.

Note that we are mostly interested in the first bump of the HD vector, which reflects

the local cluster and involve most relevant information. The effect of the second

bump should be minimized to avoid the “noise”. Therefore there are two things we

need to consider:
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1. where to separate two bumps,

2. How to calculate the distance between selected point’s HD vector and the UHD

vector.

For a given position ω > Ωq, to find the location where to separate the two peaks

of H�ω�, the HD vector algorithm version cutoff is defined as (Zhang et al., 2006)

r�ω�t� � min
iA0

�iSHi�ω� @ Ui�Ωq�� � t,

where t is a tuning constant to tune the upper cutting edge of first bump, t = 1,...,T,

for a suitable T. When t � 1, the cutoff is the maximum value of the range on which

the HD vector is larger than the UHD vector. For example, in Figure 6.2 r�ω�1� � 5.

The most optimal cutoff point is chosen by minimizing the p-value of the modified

chi-squared statistic described later.

r�ω � argminr�ω�t��p-value of χ2
M�r�ω�t�, ω��, (6.1)

For a given position ω > Ωq, to compute the distance between its HD vector to the

UHD vector. Zhang et al. (2006) applied the Pearson’s chi-squared statistics, which
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is one of the common way to evaluate the discrepancy of two frequency distribution.

χ2�ω� � q

Q
i�0

�Hi�ω� �Ui�Ωq��2

Ui�Ωq� .

Intuitively, chi-squared statistics evaluate the discrepancy of two frequency vectors

by adding up the normalized difference of each element. Motivated by minimizing

the effect from the second bump, they separate it into two parts using HD vector

algorithm version cutoff r�ω. For the second bump, the value of Hr�ω�1�ω�, ...,Hq�ω� are

reallocated to minimize the difference, the resulted statistic is called as the modified

chi-squared statistic:

χ2�r�ω, ω� � r�ω

Q
i�0

�Hi�ω� �Ui�Ωq��2

Ui�Ωq� � min
Hi�ω�

q

Q
i�r�ω�1

�Hi�ω� �Ui�Ωq��2

Ui�Ωq� .

For a given position ω > Ωq, Zhang et al. (2006)[Theorem 5] state that the modified

chi-squared statistic takes the form

χ2
M�r�ω, ω� � r�ω

Q
i�0

�Hi�ω� �Ui�Ωq��2

Ui�Ωq� �
�Pr�ω

i�0Hi�ω� �Pr�ω
i�0Ui�Ωq��2

Pq
i�r�ω�1Ui�Ωq� . (6.2)

Without theoretical support, Zhang et al. (2006) stated that the modified chi-squared

statistic follows the chi-squared distribution with degrees of freedom r�ω � 1. Hence
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they use the upper tail critical value of chi-squared distribution χ2
α�v� to determine

the significance of the cluster, where P �X A χ2
α�v�� � α, and X is a chi-squared

random variable with v degrees of freedom. Significant cluster exists if the modified

chi-squared statistic is larger than χ2
α�r�ω � 1�. α is set to 0.05 in their simulation

and data analysis. Note that Zhang et al. (2006) choose cluster center from set

Dq � 8xi>x�ω > Ωq � d�xi, ω� B 1�. Which is an augmentation of the original data set

to include also all nearest neighbours. Point with the largest modified chi-squared

statistic value is chosen as cluster center, if significant cluster exists.

After the cluster center is chosen, the next step is to determine the member of

cluster. The cluster radius for a given cluster center ck is defined as:

R�

k � min
0@j@q

�j SHj�ck� @ min�Hj�1�ck�,Hj�1�ck��� � 1, (6.3)

which is the first local minimum of the HD vector distribution. We also call it the

first local minimum (FLM).

The algorithm proceeds the following iterating procedure to detect all significant

clusters.

1. Is there a cluster in the remaining data set?

2. If yes, the algorithm finds the cluster, and removes it from the current data
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set. The algorithm then returns to step one.

3. If no, all of the remaining/isolated points in the data set are re-categorized to

one of the other existing clusters, and the algorithm terminates.

The detailed HD vector algorithm is shown in Algorithm 2. Notably, the HD vector

algorithm much depends on HD vector. It is involved in two essential parts of

the algorithm: it is used to calculate the modified chi-squared statistic (“distance”

between HD vector and UHD vector), therefore to determine cluster center; it is

also used to determine cluster radius (FLM). For the above two essential parts, HD

vector algorithm applies the empirical distribution of HD vector in both cases, it may

decrease the algorithm accuracy due to the un-smoothness of empirical distribution.

We will show this in later chapter.
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Algorithm 2 HD vector algorithm, input x � �x1, ..., xn�
1: Compute Dq.
2: Compute the UHD vector U0�Ωq�, ..., Uq�Ωq�.
3: Set the list lcenter � NULL, cluster counter k � 0, initial χ2 � �ª, r�c0 � 0.
4: while χ2 C χ2

0.05�r�ck � 1� do
5: for each position ω � ω > Dq do
6: Compute the HD vector H�ω�.
7: Compute the cutoff r�ω using (6.1).
8: if r�ω � 0 then
9: χ2

M�r�ω, ω� � 0, and label ω as an isolated position.
10: else
11: Compute χ2

M�r�ω, ω�, using (6.2)
12: end if
13: end for
14: Set χ2 � maxω>Dq χ

2
M�r�ω, ω�, ck � argmaxω>Dq

χ2
M�r�ω, ω�

15: if χ2 C χ2
0.05�r�ck � 1� then

16: k � k � 1.
17: lcenter � lcenter 8 �ck�.
18: Compute radius R�

k using (6.3).
19: Ck � �xi > x Sd�xi, ck� B R�

k�.
20: Set x � x � x �Ck.
21: Set Dq � Dq � Dq � �ω > Dq Sd�ω, ck� B R�

k�.
22: end if
23: end while



6.2.5 K-modes algorithm

Another clustering algorithm we used to compare is the K-modes algorithm. It is

a well-known clustering algorithm for categorical data, proposed by Huang (1998).

The K-modes algorithm is an extension of K-means algorithm. The goal of K-modes

algorithm is to partition a data set into K clusters. It is also an algorithm based on

the Hamming distance (dissimilarity measure). Let’s define a cluster centers (cluster

modes) set C � �c1, ..., cK�, where ci � �ci1, ..., ciq� is a center, and ci > Ωq. A n �K

partition matrix is defined as:

Λ �

<@@@@@@@@@@@@@@@@>

λ11 λ12 . . . λ1K

λ21 λ22 . . . λ2K

� � � �

λn1 λn2 . . . λnK

=AAAAAAAAAAAAAAAA?

.

For a given data set x � �x1, ..., xn�, the K-modes algorithm is to solve the opti-
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mization problem:

minimize: P �Λ,C� � K

Q
l�1

n

Q
i�1

q

Q
j�1

λilI�xij, clj�
subject to: λik > �0,1�,1 B i B n,1 B k BK,

K

Q
k�1

λik � 1, i � 1, ...K,

where P �Λ,C� is called the cost function. Briefly the K-modes algorithm aims to

find the partition of the data, which minimizes the within cluster Hamming distance

between cluster members and cluster center. For a given cluster Ci, i � 1, ...,K, Let

ci � �ci1, ..., ciq� be its center, then

cij � argmaxa>Aj
Q
xl>Ci

I�xlj � a�, j � 1, ...q. (6.4)

To determine the value of the jth attribute of cluster center, we count the different

state’s frequency for all cluster members’ jth attribute. The one with largest relative

frequency is chosen for cij.

Briefly, the K-modes algorithm follows the steps:

1. Randomly initial K cluster centers (modes).

2. Each data point is assigned to a cluster which center is closed to it in the
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Hamming distance sense.

3. After all data points are allocated, compute and determine the center for all

clusters following (6.4).

4. Repeat steps 2-3 until no data point has changed clusters.

The K-modes algorithm can not determine the number of clusters automatically.

Manually setting up the number of cluster is required before user runs the algorithm.

This is a big problem when user have no idea how many clusters there are in data

set. Also K-modes algorithm heavily depends on the start seeds chosen, different

orders may lead to significantly different clustering result, hence the clustering result

is not unique for one data set.

6.3 Outline

In Part II, we apply log-concave MLE (d � 1) to clustering methodology and discuss

the performance.

In Chapter 7, we define the log-concave mixture model. An example of log-

concave mixture model is given in this chapter. We also describe how to compute the

model and how to determine cutoff of two modes in a bimodal pattern distribution.

In Chapter 8 we discuss the details of our proposed algorithm, and illustrate why our
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model improve the smoothness and increase the accuracy. In Chapter 9, we show

the comparison of our proposed algorithm with HD vector algorithm and K-modes

algorithm through simulated data and real data.
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Chapter 7

Log-concave mixture model

Log-concavity is an appealing shape constraint in distribution modeling. Comparing

to parametric and nonparametric methods, log-concavity provides a good trade off

between robustness and efficiency. This is because log-concavity is a natural shape

constraint. A broad range of parametric models are log-concave, such as, normal,

uniform, gamma(r, λ) with r C 1, beta(a, b) with a C 1, b C 1 in continuous setting, and

multinomial, negative multinomial, multivariate hypergeometric in discrete setting

(in term of eLC definition). Hence the log-concave class is a much broader class than

a specific parametric model, which therefore reduce the bias. On the other hand,

comparing with the nonparametric method, adding log-concave shape constraint to

estimation improves the efficiency and reduce variance. Another advantage of the

log-concavity is that no arbitrary choices such as bandwidth, kernel or prior are
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involved in the estimation. Hence, the log-concave model can provide more local

information without the effect of the bandwidth.

Recall the definition of a discrete log-concave PMF. Let p�z� � Z � �0,1� denote

a PMF, where Z denotes the integers set �. . . ,�2,�1,0,1,2, . . .�. Then p is said to

be log-concave if for any z > Z

�Qh��z� � h�z � 1� � 2h�z� � h�z � 1� C 0,

where h�z� � � log p�z�. The notation above �Qh� denotes the discrete Laplacian

operator, which can also be expressed as �Qh��z� � �h�z�1��h�z����h�z��h�z�1��.
This is the second difference of the function h, and hence this definition matches well

with the one in the continuous setting.

Given independent and identically distributed observations z1, ..., zn > Z, Bal-

abdaoui et al. (2013) provides an algorithm to compute the MLE under the as-

sumption that the distribution is log-concave. The log-concave MLE is defined as

Âpn � argmaxp>P1

1
n Pn

i�1 log p�zi�, where P1 indicates the set of all log-concave proba-

bility mass functions on Z. It is theoretically proved to exist and be unique.

In a data set with n points x � �x1, ..., xn�, for a given point xi > x, recall

that the HD vector is defined as H�xi� � �H0�xi�,H1�xi�, ...,Hq�xi��, and Hk�xi� �
Pn
j�1 I�d�xi, xj� � k�, k � 0,1,2, ..., q. We further define the empirical Hamming dis-
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tance distribution via the formula:

pxi�k� �Hk�xi�~n, k � 0, ..., q.

It is the empirical distribution of Hamming distances to all points of a data set

from a given point xi. The support of this empirical Hamming distance distribution

is �0, ..., q�. As for the UHD vector, we also define the uniform Hamming distance

distribution pu�k� � Uk�Ωq�

n , k � 0, ..., q. It can also be expressed as:

pu�0� � 1~M,

pu�1� � ��m1 � 1� � ... � �mq � 1��~M,

pu�2� � � q

Q
i@j

�mi � 1��mj � 1��~M,

...

pu�q� � ��m1 � 1��m2 � 1�...�mq � 1��~M.

This is also a distribution on �0, . . . , q�. Each value pu�k� represents the expected

value of pxi�k� assuming that each observation in the data set has an equal probability

to appear at any position in the space Ωq. Note that the UHD distribution does not

depend on either the sample size n or the location xi.
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We develop the log-concave mixture model to approximate a discrete bimodal

distribution. Let Pq denote the class of log-concave PMFs on �0, . . . , q�. Let Pm �

�p � p � αp1 � �1 � α�p2, p1, p2 > Pq, α > �0,1�� denote the class of mixtures of log-

concave distributions. The mixture log-concave projection is the distribution defined

by

Âpxi � argming>Pm

q

Q
k�0

pxi�k� log�pxi�k�
g�k� �

� argmaxg>Pm

q

M
k�0

�g�k��pxi (7.1)

The mixture log-concave projection Âpxi is computed by minimizing the KL divergence

between any mixture of log-concave distributions and the empirical Hamming dis-

tance distribution pxi , hence it is the projection of the empirical Hamming distance

distribution pxi onto Pm in the KL divergence sense. It is the “closest” log-concave

mixture distributions to the empirical Hamming distance distribution pxi , and in-

tends to provide a smoother approximation than the empirical distribution. Note

that the support of the mixture log-concave projection is �0, ..., q�. Consider the

following example: the HD vector of position ω � H�ω� � �1,4,3,2,5,2� represents

the frequency vector of set A � �0,1,1,1,1,2,2,2,3,3,4,4,4,4,4,5,5�. In this case

q � 5 and the support is �0,1,2,3,4,5�. Given the observations in set A, we apply

113



unique values in A

F
re

q

0 1 2 3 4 5

0
1

2
3

4
5

HIST

Mixture Projection

HD−LCD cutoff

Figure 7.1: Histogram plot against the mixture log-concave projection Âpω. Simulated
from set A � �0,1,1,1,1,2,2,2,3,3,4,4,4,4,4,5,5�.
the log-concave mixture model to approximate the distribution. Figure 7.1 compares

the histogram and the mixture log-concave projection for above example.

The projection Âpxi is computed using the EM algorithm (Dempster et al., 1977)

and the R package logcondiscr. We apply naive Bayes classifier (Rish, 2001) to find

the cutoff of two modes. Consider the log-concave mixture projection Âpxi and write

it in terms of its components ÂαÂp1 � �1 � Âα�Âp2, where we now drop the dependence

on xi in the notation. Let Âα1 � Âα and Âα2 � 1 � Âα. The mixture model represents

the overall population as a mixture of two sub-populations. Let S1 and S2 be the
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sub-populations corresponding to Âp1 and Âp2, respectively. For a point k > �0, . . . , q�,
the probability that k belongs to population Si�i � 1,2� is defined as pr�SiSk� �

pr�Si��pr�kSSi�
pr�k� , where pr�A� is the probability of event A. Since pr�k� is identical in

both populations, we can get rid of it and define the Bayes discriminant functions

Di�k� � pr�Si� � pr�kSSi�, i � 1,2. Hence the Bayes classifier is defined as

B�k� � argmaxi�1,2 �Di�k�� .

In our case, Di�k� � pr�Si��pr�kSSi� � ÂαiÂpi�k�. Hence the Bayes classifier in our mix-

ture model is B�k� � argmaxi�1,2 �Âαi Âpi�k�� . Then, the “cut-off” value of r between

the two regions can be defined by

r � min� max
B�k��1

�k�, max
B�k��2

�k�  .

Let us assume that the notation is chosen in such a way that k satisfying B�k� � 1

is smaller than those k satisfying B�k� � 2. Then, we formally define the HD-LCD

version cut-off as

rxi � r � min
0BkBq

�k � Âα1 Âp1�k� B Âα2 Âp2�k�� � 1. (7.2)
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Note that the above definition chooses a convention to resolve any possible ties where

Âα1 Âp1�k� � Âα2 Âp2�k�. One example is illustrated in Figure 7.1, the HD-LCD version

cutoff rω � 3, which perfectly separates two modes.
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Chapter 8

Algorithm

8.1 Modified reversed KL divergence

For two probability distributions p0 and p, KL divergence (Kullback and Leibler,

1951) is used to measure the information gain/loss when we use one probability

distribution p to approximate another probability distribution p0, which is usually the

true distribution. The KL divergence defined on N0 � �0,1,2,3...� can be expressed

as.

ρ�pYp0� � � Q
z>N0

p0�z� log
p�z�
p0�z� .

In our case, we are trying to compare potential cluster centers’ HD vector to
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UHD vector, such that we can detect the most likely cluster center. Recall that

KL divergence is not symmetric, we need to consider which version to apply, the

common version: KL divergence from selected point’s HD vector to UHD vector? Or

the reversed version: KL divergence from UHD vector to selected point’s HD vector.

In practice, particularly when working on simulated data, we found that common

version KL divergence could not identify cluster center well, but the reversed version

is doing a much better job. The reason is, as we described in previous chapter,

we want to focus on the information of first bump but minimize the “noise” from

2nd bump. We now list the two versions of KL divergence: the common version,

ρKL�pYp0�, and the reversed version ρRKL�p0Yp�.

ρKL�pYp0� � � Q
z>N0

p0�z� log
p�z�
p0�z� ,

ρRKL�p0Yp� � � Q
z>N0

p�z� log
p0�z�
p�z� .

Compare these two formulas, the log term: log p�z�
p0�z�

and log p0�z�
p�z� are actually the

difference between two probability distributions in log scale. The multiplication

factor p0�z� or p�z� is essential, it can be taken as a weight term. Recall that we

want to boost the information contained in the first bump, but eliminate the noise

from the second bump. It is more appropriate that the weight term has relative large
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value for first bump, but small value for the remaining bumps. As showed in Figure

6.2, obviously PMF of unimodal pattern UHD does not satisfy our situation well. As

a weight term, the peak of UHD will boost the difference (“noise”) between estimator

and true PMF at the second bump. But bimodal pattern HD vector works better as

the weight term in this case. So we determined to apply reversed KL divergence to

our algorithm, which can be explicitly expressed as:

ρRKL�puYÂp� � � q

Q
k�0

Âp�k� log
pu�k�Âp�k� ,

where Âp is the mixture log-concave projection of a potential center’s HD vector, and

pu indicates the distribution of UHD. We drop the dependence on xi in the notation

in the following content.

To minimize the “noise” from the second bump, we separate the sum term of

reversed KL divergence into two parts:

ρRKL�puYÂp� � � r

Q
k�0

Âp�k� log
pu�k�Âp�k� �

q

Q
k�r�1

Âp�k� log
pu�k�Âp�k� ,

where r is the cutoff to separate two bumps. The following theorem provides us the

explicit form of modified reversed KL divergence (MRKL), which we used to evaluate

the distance between two distributions.
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Theorem 8.1.1. Let pr�1, ..., pq > �0,1�. Minimize the effect of r � 1 to q summation

terms of the reversed KL divergence is equivalent to

Maximize:
q

Q
k�r�1

pk log
pu�k�
pk

Subject to:
q

Q
k�r�1

pk �
q

Q
k�r�1

Âp�k�.

The modified reversed KL divergence takes the form:

ρ�RKL�puYÂp, r� � � r

Q
k�0

Âp�k� log
pu�k�Âp�k� �

q

Q
k�r�1

Âp�k� log
Pq
k�r�1 pu�k�
Pq
k�r�1 Âp�k� .

Proof. The reversed KL divergence from the baseline PMF pu to a given PMF Âp is

ρRKL�puYÂp, r� � � q

Q
k�0

Âp�k� log
pu�k�Âp�k�

� �

r

Q
k�0

Âp�k� log
pu�k�Âp�k� �

q

Q
k�r�1

Âp�k� log
pu�k�Âp�k�

We re-write the optimization problem as the following:

Maximize: f�pr�1, ..., pq� � q

Q
k�r�1

pk log
pu�k�
pk

Subject to: g�pr�1, ..., pq� � q

Q
k�r�1

pk � l � 0, where l � 1 �
r

Q
k�0

Âp�k�.
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Let λ be the Lagrange multiplier, and Lagrange function L � f � λg. Follow the

Lagrange optimization method, we have

∂L

∂pk
� log pu�k� � log pk � 1 � λ � 0, k � r � 1, ..., q.

Hence,

log pk � log pu�k� � λ � 1,

pk � pu�k� exp���λ � 1��, k � r � 1, ..., q.

Plug in the above equations to g�pr�1, ..., pq�, we have

exp���λ � 1�� q

Q
k�r�1

pu�k� � l � 0.

So exp���λ � 1�� � l
P

q
k�r�1

pu�k�
, and

pk �
pu�k� � l
Pq
k�r�1 pu�k� �

pu�k��1 �Pr
k�0 Âp�k��

Pq
k�r�1 pu�k� �

pu�k�Pq
k�r�1 Âp�k�

Pq
k�r�1 pu�k� .
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Modified reversed KL divergence:

ρ�RKL�puYÂp, r� � � r

Q
k�0

Âp�k� log
pu�k�Âp�k� �

q

Q
k�r�1

pu�k�Pq
k�r�1 Âp�k�

Pq
k�r�1 pu�k� log

pu�k�Pq
k�r�1 pu�k�

pu�k�Pq
k�r�1 Âp�k�

� �

r

Q
k�0

Âp�k� log
pu�k�Âp�k� �

q

Q
k�r�1

Âp�k� log
Pq
k�r�1 pu�k�
Pq
k�r�1 Âp�k� .

8.2 Test cluster pattern using bootstrap

Zhang et al. (2006) determined the significance of cluster pattern with a hypothesis

test, their test statistic is the modified chi-squared statistic. In our proposed algo-

rithm, the significance of the cluster pattern is determined using a hypothesis test

with test statistic equal to the largest (over all elements of the data set) modified

reversed KL divergence (MRKL). The distribution of the test statistic is difficult to

compute, so a nonparametric bootstrap procedure is used. The unusual idea behind

our hypothesis test is that we reverse the role of the typical null and alternative

hypothesis test. Our Null hypothesis states that significant cluster pattern exists,

while alternative hypothesis states that no cluster pattern exists. This hypothesis

setting corresponds to the reversed version of KL divergence, which we are measur-

ing the distance from UHD vector to chosen point’s HD vector. We accept the null
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hypothesis if the observed p-value is larger than 0.05.

H0 � Cluster pattern exists in the data.

Ha � Cluster pattern does not exist in the data.

To implement the test, the idea is that we assume the given data has cluster

pattern, hence we create testing samples under “cluster” assumption by randomly

drawing points from the given data set with replacement. The testing sample has

the same sample size of the given data set. We then calculate the largest MRKL of

these testing samples. The testing samples’ largest MRKL approximate the behavior

of the test statistic. We describe the testing process as following.

1. For a given data set x, we create testing samples with the same sample size

of x, the testing samples are created by randomly drawing points from x with

replacement.

2. Calculate the MRKL for each point of the testing sample created in step 1. We

denote the largest MRKL as ρ�i , where i is the index of the testing sample.

3. Repeat step 1-2 B=100 times, then we get a sequence of the largest MRKL

under “cluster” assumption: ρ�1, ..., ρ
�

100. This is used to determine if the cluster

pattern appear in the given data set x.

4. Let ρ� be the largest MRKL of the given data set x. The cluster pattern
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does exist if the p-value is greater than α � 0.05, where p-value is defined as

1
B�1

�PB
i�1 I�ρ�i @ ρ�� � 1� .

8.3 HD-LCD algorithm with the bootstrap

The goal of the HD-LCD algorithm is similar to the HD vector algorithm: automat-

ically detect and find a collection of clusters C1, . . . ,CK from a given data set x. We

still use c1, ..., cK to denote cluster centers, R1, ...,RK to denote cluster radius. A

cluster is defined as Ck � �xj > x � d�ck, xj� B Rk�, k � 1, ...,K. The process of our

algorithm is similar to that of the HD vector algorithm:

1. Is there a cluster in the remaining data set?

2. If yes, the algorithm finds the cluster, and removes it from the current data

set. The algorithm then returns to step one.

3. If no, all of the remaining points in the data set are re-categorized to one of

the other existing clusters, and the algorithm terminates.

Comparing with HD vector algorithm, there are three main differences between

them.

1. For a given data set, the way to determine the significance of cluster pattern.

Zhang et al. (2006) tested the significance using test statistic of chi-squared
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statistic. In our proposed algorithm, it is done using the largest reversed KL

divergence.

2. The range where to choose the cluster center. Zhang et al. (2006) chose center

from an augmented set Dq � 8xi>x�ω > Ωq � d�xi, ω� B 1�. We tried to include

the neighbours in our algorithm, but it does not improve the efficiency of our

algorithm. On the other hand, it slows down algorithm significantly. We hence

restrict our algorithm only on all points of x.

3. The way to determine cluster radius. Zhang et al. (2006) determined the cluster

radius by the first local minimum of the center’s HD vector. For the kth cluster,

we define the cluster radius as Rk � rck � 2. Note that ck is the cluster center,

and rck is the HD-LCD version cutoff of the cluster center which separate two

bumps of HD vector distribution. We define the radius as two less than the

cutoff, because we believe the edge of the first bump is not relevant to the local

cluster.

We also note that it is possible for the algorithm to find no clusters in the data

set. The detailed algorithm proceeds as shown on the following page (Algorithm

3). Note that if the data set x has an attribute j > �1, . . . , q� such that the values

of �xij, i � 1, . . . , n� are either all the same or all different (the latter is, of course,

less common), then we remove these attributes from the data set when applying the
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algorithm.

We have not theoretically studied the consistency of the bootstrap test process. In

later chapter, we will provide two simulated data examples to illustrate the validity

of the test process. We apply the HD-LCD algorithm with the bootstrap to two

simulated data sets. We will show the cluster test process works well. Unfortunately,

the cluster pattern testing process is very time consuming. Roughly, for B � 100,

calculating the largest MRKL of testing samples cost 100�K times as long, where K

is the number of clusters. To improve the time cost, we remove the cluster pattern

test process. The algorithm stops when a small number of points remaining in the

data set. Usually, we set the threshold as a specific number, or the ratio of number

of remaining points over original sample size. For example, in our simulations, the

algorithm stops when the ratio is less than 0.1. Our simulation study shows that the

HD-LCD algorithm without the bootstrap also works well. Following is the detailed

algorithm (Algorithm 4).
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Algorithm 3 HD-LCD algorithm with the bootstrap, input x0 � �x1, ..., xn�
1: Set x � x0.
2: Compute the UHD distribution pu.
3: Set the list lcenter � NULL, cluster counter k � 0, remaining sample size l � n, p-value = 1.
4: while p-value C 0.05 do
5: for each point of the data set x: xi, i � 1,2, ..., l. do
6: Compute the empirical Hamming distance distribution pxi

.
7: Compute its mixture log-concave projection Âpxi , see (7.1).
8: Compute the cutoff value rxi using (7.2).
9: Compute ρ�RKL�puY Âpxi , rxi�.

10: end for
11: Set ρ� � maxi�1,...,l ρ

�

RKL�puY Âpxi , rxi�, ck � xi� where i� � argmaxi�1,...,l ρ
�

RKL�puY Âpxi , rxi�, and set Rk � rxi�
� 2.

12: for b = 1,..., B do
13: Assuming all points in x is equally likely, create testing sample x� by randomly select l points from x with replacement.
14: for each point of x� � x�j , j � 1, ..., l do.
15: Compute the empirical Hamming distance distribution px�j .

16: Compute its mixture log-concave projection Âpx�j , and the cutoff value rx�j , see (7.1) and (7.2) .

17: Compute ρ�RKL�puYÂpx�j , rx
�

j
�.

18: end for
19: Set ρ�b � maxj�1,...,l ρ

�

RKL�puY Âpx�j , rx
�

j
�,

20: end for
21: p-value = ��P

B
b�1 I�ρ

�

b @ ρ
��� � 1�~�B � 1�.

22: if p-value C 0.05 then
23: k � k � 1.
24: lcenter � lcenter 8 �ck�.
25: Ck � �xi > x Sd�xi, ck� B Rk�.
26: Set x � x � x �Ck, and update the sample size l for x.
27: end if
28: end while
29: if k C 1 then
30: for each point of x0: xi, i � 1,2, ..., n. do
31: Assign xi to cluster Cj� if j� � argminj>�1,...,k� d�cj , xi�.
32: end for
33: end if
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Algorithm 4 HD-LCD algorithm without the bootstrap, input x0 � �x1, ..., xn�
1: Set x0 � x.
2: Compute the UHD distribution pu.
3: Set the list lcenter � NULL, cluster counter k � 0, remaining sample size l � n, p-value = 1.
4: while l C n � 0.1 do
5: for each point of the data set x: xi, i � 1,2, ..., l. do
6: Compute the empirical Hamming distance distribution pxi .
7: Compute its mixture log-concave projection Âpxi , see (7.1).
8: Compute the cutoff value rxi using (7.2).
9: Compute ρ�RKL�puY Âpxi , rxi�.

10: end for
11: Set ρ� � maxi�1,...,l ρ�RKL�puY Âpxi , rxi�, ck � xi� where i� � argmaxi�1,...,l ρ

�

RKL�puY Âpxi , rxi�, and set Rk � rxi� � 2.
12: k � k � 1.
13: lcenter � lcenter 8 �ck�.
14: Ck � �xi > x Sd�xi, ck� B Rk, i � 1, ..., l�.
15: Set x � x � x �Ck, and update the sample size l for x.
16: end while
17: if k C 1 then
18: for each point of x0: xi, i � 1,2, ..., n. do
19: Assign xi to cluster Cj� if j� � argminj>�1,...,k� d�cj, xi�.
20: end for
21: end if



8.4 Smoothness and limitations of HD-LCD algo-

rithm

Comparing two algorithms, the main advantage of HD-LCD algorithm is that mix-

ture log-concave projection is much smoother than the empirical distribution. We

choose two data points from Soybean disease data, Figure 8.1 and 8.2 compare how

radius is determined by two algorithms. By Figure 8.1, we can see that cluster radius

(FLM) chosen by HD vector algorithm is R � 1, which is obviously not relevant. For

HD-LCD algorithm, the HD-LCD version cutoff r � 7, we determine the radius is

R � r � 2 � 5. It is more relevant. Figure 8.2 shows another example where the FLM

does not exist in HD vector algorithm, because there is a tie between Hamming dis-

tance 1 and 2. In this case HD vector algorithm is not able to get clustering result.

While HD-LCD version radius is R � r�2 � 8�1 � 6. Mixture log-concave projection

does a much better job in both cases.

Our proposed HD-LCD algorithm is based on the assumption that the distribu-

tion of the cluster center’s Hamming distance vector has a bimodal pattern, hence

a data set with less number of attributes can not be used with our algorithm or the

HD vector algorithm. For example, if there are less than 6 attributes in a data set

(q @ 6), it is hard to define a bimodal shape distribution for the HD vector when
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there is less than six unique observations. Also through our simulation, we found

that the performance of our algorithm decreases when some of the clusters have

relative small cluster size. In this case small clusters member might be wrongly

classified to big neighbor clusters. To improve the clustering accuracy, we applied

mixture log-concave projection instead of empirical distribution. At the same time

computing mixture log-concave projection slows down the algorithm, especially for

data set with large sample size.
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Figure 8.1: Mixture log-concave projection vs empirical distribution of a selected
point from Soybean disease data set (1). HD-LCD version cutoff r � 7, cluster radius
R � r � 2 � 5.
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Figure 8.2: Mixture log-concave projection vs empirical distribution of a selected
point from Soybean disease data set (2). HD-LCD version cutoff r � 8, cluster radius
R � r � 2 � 6.
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Chapter 9

Clustering result comparison

9.1 Algorithm evaluation

Following Zhang et al. (2006), we use two criteria to evaluate accuracy of clustering

algorithms. They are classification rate (CR) and information gain (IG)(Bradley

et al., 1998). Given K clusters, the CR is defined as CR�K� � PK
k�1

Çnk

n , where n is

sample size, and Çnk is the number of data points that have been correctly assigned

to cluster k. The IG is defined as IG = total entropy - weighted entropy, where

total entropy =�PK
k�1

nk

n log2
nk

n ,

weighted entropy = �PK
k�1

nk

n �PLk

l�1

Çnk
l

nk
log2

Çnk
l

nk
�, where K is the number of true

clusters, Lk is the number of algorithm resulted clusters in a given cluster k, Çnkl is

the number of data points with algorithem resulted cluster label l but belongs to
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true cluster label k, nk is the number of data points in a true cluster k. Here we take

a ratio of IG/total entropy, which is similar to CR, the value is between 0 and 1.

But Zhang et al. (2006) also mentioned that IG may lead to a wrong conclusion.

9.2 Examples for HD-LCD algorithm with the boot-

strap

In this section, we illustrate two examples which we apply HD-LCD algorithm with

the bootstrap. Two example data sets are both simulated by the modified simulation

method, which will be introduced in later section. they have q � 7 attributes, each

attribute has three levels, that is, m1 � ... � m7 � 3, A1 � ... � A7 � �1,2,3�. For

example 1, sample size n � 40. Points are grouped into two clusters with cluster

size n1 � n2 � 20. For example 2, sample size n � 60. Points are grouped into three

clusters with cluster size n1 � n2 � n3 � 20. For both cases, centers are chosen

satisfying d�ci, cj� C 5, i x j.

We apply HD-LCD algorithm with the bootstrap to the example data sets, Table

9.1 shows the clustering result of both examples. Hypothesis testing p-value are

listed for each round. We can see that the testing process works well.

Figure 9.1 compares the histogram of testing samples’ largest MRKL and the
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histogram of example 2’s MRKL in the first round. The distribution of the MRKL

of example 2 (Figure 9.1 (a)) is right skewed, its value is between 0-0.62. The

distribution of largest MRKL of testing samples (Figure 9.1 (b)) has an approximate

bell shape, the value is between 0.3-1.1. We can see the range 0.3 - 1.1 in Figure

9.1 (a) is exactly the skewed tail. That is, most of the point in the example 2, as

members of clusters, do not reveal the cluster pattern. Only a small number of points

(right of value 0.3) is detected significant cluster pattern, they are very likely to be

cluster centers, or they are close to the centers.
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Figure 9.1: (a) is the histogram of modified reversed KL divergence of example data,
computed in the first round, sample size n � 60. (b) is the histogram of largest
modified reversed KL divergence of “cluster” samples with sample size of 60.
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Table 9.1: Examples for HD-LCD algorithm with the bootstrap.

Example 1 (K � 2) Example 2 (K � 3)
CR 0.925 0.87
IG 0.68 0.62
p-value (1st round) 0.44 0.35
p-value (2nd round) 0.21 0.07
p-value (3rd round) 0.01 0.43
p-value (4th round) not available 0.01
Description Algorithm runs three round, testing

process stops the algorithm at the third
round because p-value = 0.01 @ α � 0.05

Algorithm runs four round, testing pro-
cess stops the algorithm at the fourth
round because p-value = 0.01 @ α �

0.05.



9.3 Simulation study

Simulation study can help us to evaluate the performance of algorithms. We im-

plement two simulation studies comparing our proposed algorithm with HD vector

algorithm and K-modes algorithm. We call the first simulation method as the orig-

inal simulation method, which we follow the simulation introduced by Zhang et al.

(2006). With the original simulation method, the simulated sample has q � 10 at-

tributes, the sample size is n � 200. Five clusters are simulated (n1 � 70, n2 � 50, n3 �

40, n4 � 25, n5 � 15). Clusters’ centers are set to be well-separated, that is, pairwise

Hamming distance between centers is greater or equal to five. The cluster members’

attribute value are selected following multinomial distribution.

The second simulation method is based on the original simulation, but we did

some modifications in order to increase the non-smoothness of the empirical distri-

bution of Hamming distance. We call it as the modified simulation method. The

simulated data still has q � 10 attributes, but we decrease the sample size to n � 100.

Four clusters are simulated with cluster size: n1 � 40, n2 � 30, n3 � 20, n4 � 10. Clus-

ters’ centers are chosen following the same rule (pairwise Hamming distance is greater

or equal to five). The main difference between two simulation methods is at the last

step, where to determine the cluster members’ attribute value. For the ith attribute,

to determine the ith attribute’s value for cluster member, we set the center’s ith
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attribute’s value (state) with a relative higher probability than other states, to make

sure cluster members are “close” to their center. For the original simulation method,

the same state with the center’s ith attribute’s value is set to a fixed probability

0.7, all other states’ probability is evenly set to �1� 0.7�~�mi � 1�. Intuitively, within

each cluster, distance between each data point and the cluster center follow a normal

distribution with mean equals to q � 0.7, which very likely results in a smooth curve

for first peak. For the modified simulation, we decrease sample size to increase the

sparsity of clusters. Cluster member’s ith attribute’s value still follow multinomial

distribution. But the same state with center’s ith attribute’s value does not have a

fixed probability. Its probability is randomly chosen from �0.5,0.6,0.7,0.8,0.9�. We

make this modification in order to add some “noise”. For each simulation, we create

200 samples. Table 9.2 describes details of two simulation methods.

We apply HD-LCD algorithm without the bootstrap to the simulated data, Tables

9.3 and 9.4 compare the results of two simulations. For HD vector algorithm, due to

the limitation of not existing FLM, it runs successfully for part of simulated samples.

That is, 152 out of 200 for original simulation method; 132 out of 200 for modified

simulation method. To provide an equal comparison, the result in the tables for all

three algorithms is the average of 152/132 simulations, respectively. Recall that the

K-modes algorithm chooses initial cluster center by seed, therefore same data set
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may get different clustering results. We reorder each simulation data 100 times by

random, to reduce the dependence of the order/seed of input data. Hence the results

in table is the average of 15200/13200 clustering results. Also because the number

of clusters need to be specified for K-modes algorithm, we tried different k values to

have a comprehensive comparison.

Occasionally, the IG criterion can give misleading result as we described in pre-

vious chapter, we rely more on the CR criteria when we interpret the comparison

results. For the original simulation study, our proposed algorithm’s CR and IG are

all better than the other two algorithms. Our HD-LCD algorithm’s standard de-

viation is the smallest among three algorithms. It is slightly more accurate than

HD vector algorithm and K-modes algorithm (when the correct number of clusters

is specified) in terms of classification rate. For the modified simulation study, the

performance of HD-LCD algorithm is obviously better than HD vector algorithm,

and is about the same level comparing to the K-modes algorithm (when the correct

number of clusters is specified). Note that K-modes algorithm has two significant

drawbacks: need to specify cluster’s number and clustering result is not unique. We

can conclude that HD-LCD algorithm’s performance of simulation study is the best

among three algorithms.
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9.4 Soybean disease data and zoo data

We introduced zoo data in previous chapter. About soybean disease data posted on

UCI Machine Learning Repository (Lichman, 2013), there are two data sets available.

We choose to use the smaller data set without missing values. In this data set,

diseased soybean plant’s data were collected to classify the type of disease. The

data has 35 attributes, for example, seeds’ color, leaf’s shape, and rotted roots. In

our algorithm, 21 attributes are used for clustering after unique value columns are

removed. Per the data information, 47 data points are grouped into four clusters.

The clusters size are 17, 10, 10, and 10.

Tables 9.5 and 9.6 shows the clustering results comparison between HD-LCD

algorithm without the bootstrap, HD vector algorithm and the K-modes algorithm.

For zoo data, our algorithm is much better than K-modes algorithm, and has a

comparable accuracy with HD vector algorithm. For soybean data, our algorithm

provides similar accuracy level with K-modes algorithm (when the correct number

of clusters is specified), but it is less accurate than the HD-vector algorithm. Our

algorithm’s CR rate is 85.1%, while the HD-vector algorithm has a CR rate of 100%.

About 7 data points are incorrectly clustered in our algorithm. Our algorithm divides

the data into five clusters with clusters size of 21, 10, 7, 6, and 3. We can see that

the first cluster has a relative big cluster size. There are four data points are wrongly
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grouped into the fist cluster, it is the major reason of the lower accuracy rate. The

HD-LCD algorithm’s accuracy is sensitive to the cluster centers chosen, because the

cluster radius is determined by the width of the first bump of the cluster center. It is

hard to tell the exact reason of the mis-clustering of soybean disease data. Sparsity

might be one possible reason although we have not theoretically proved it.
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Table 9.2: Comparison of two simulations

# Original simulation Modified simulation
1 set number of attributes q � 10, Randomly

select 10 numbers from the set �4,5,6� as
the levels of attributes m1, ...,m10.

set number of attributes q � 10, Randomly
select 10 numbers from the set �2,3,4,5� as
the levels of attributes m1, ...,m10.

2 set 5 clusters, choose five cluster centers,
ck, k � 1, ...,5, such that d�ci, cj� C 5 for all
i x j.

set 4 clusters, choose four cluster centers,
ck, k � 1, ...,4, such that d�ci, cj� C 5 for all
i x j.

3 set the sample size n � 200 with cluster sizes
n1 � 70, n2 � 50, n3 � 40, n4 � 25, n5 � 15.

set the sample size n � 100 with cluster sizes
n1 � 40, n2 � 30, n3 � 20, n4 � 10.

4 generate data points for each cluster. Let
take example of first cluster with center c1,
we will generate n1 � 1 � 69 data points.
Those 69 data points are generated with
the following rule: for ith (i � 1, ...,10)
attribute, it has mi states �ai1, ..., aimi

�.
Let ith attribute of center c1 be c1i, where
c1i > �ai1, ..., aimi

�. Then for each 69 data
points, the ith attribute can be chosen from�ai1, ..., aimi

�, which follow multinomial dis-
tribution. The occurrence probability of c1i

is 0.7, the occurrence probability of other val-
ues is �1�0.7�

mi�1 .

generate data points for each cluster. Let
take example of first cluster with center c1,
we will generate n1 � 1 � 39 data points.
Those 39 data points are generated with
the following rule: for ith (i � 1, ...,10)
attribute, it has mi states �ai1, ..., aimi

�.
Let ith attribute of center c1 be c1i, where
c1i > �ai1, ..., aimi

�. Then for each 39 data
points, the ith attribute can be chosen from�ai1, ..., aimi

�. And the occurrence probabil-
ity of c1i, indicated by p�c1i� is randomly
chosen from �0.5,0.6,0.7,0.8,0.9�, the occur-
rence probability of other states is randomly
assigned, which sum up to 1 � p�c1i�. Hence�ai1, ..., aimi

� still follows multinomial distri-
bution.



Table 9.3: Original simulation study comparison

K-modes
Original HD-LCD HD vector k=4 k=5 (True) k=6

mean of CR 94.3% 93.1% 87.8% 93.2% 93.2%
SD of CR 3.6% 9.6% 5.2% 5.9% 4.8%

mean of IG 92.7% 91.7% 75.8% 86.9% 90.2%
SD of IG 5.1% 4.0% 7.0% 8.4% 6.4%

Table 9.4: Modified simulation study comparison

K-modes
Modified HD-LCD HD vector k=3 k=4 (True) k=5

mean of CR 84.0% 80.7% 80.6% 84.7% 81.9%
SD of CR 7.6% 14.9% 8.0% 9.4% 8.5%

mean of IG 78.8% 79.4% 58.0% 70.2% 74.3%
SD of IG 11.1% 9.8% 11.3% 13.7% 11.6%

Table 9.5: Comparison on soybean disease data

K-modes
Soybean HD-LCD HD vector k=3 k=5 (True) k=5

mean of CR 85.1% 100% 75.7% 86.1% 83.1%
SD of CR NA NA 5.8% 15.3% 9.3%

mean of IG 84.0% 100% 66.5% 85.8% 94%
SD of IG NA NA 9.6% 14.2% 10.2%

Table 9.6: Comparison on zoo data

K-modes
Zoo HD-LCD HD vector k=6 k=7 (True) k=8

mean of CR 91.1% 95.1% 78.5% 77.5% 76.3%
SD of CR NA NA 8.9% 8.7% 8.2%

mean of IG 84.0% 91.6% 79.0% 81.8% 83.8%
SD of IG NA NA 6.0% 5.0% 4.2%
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Chapter 10

Conclusion and future work

This thesis includes two Parts. In Part I, we defined a new class of shape-constraint

discrete distribution in higher dimensional space: extendible-log-concave (eLC) PMF.

We studied and discovered the properties of the eLC PMF. We proved the existence

and uniqueness of the eLC MLE, and introduced the algorithm to compute the MLE.

We also showed the performance of our eLC MLE through simulations, and com-

pared our estimator with parametric method and empirical nonparametric method.

In Part II, we applied the univariate log-concave MLE (see Balabdaoui et al. (2013))

in clustering. We developed a log-concave mixture model to approximate bimodal

pattern discrete distributions. We then applied the log-concave mixture model to

clustering algorithm (HD vector algorithm) and studied its performance through sim-

ulated and real data, and compared our HD-LCD algorithm with other clustering
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algorithms. The two Parts of this thesis are not directly related. In Part I, our work

focus on higher dimensions, while in Part II the application is based on one dimen-

sional space. What the two parts have in common is that they both focus on discrete

log-concavity. Part I proposed a discrete log-concave MLE in dimensions larger than

one, and Part II apply the discrete log-concave MLE to clustering application.

Developing eLC mixture model in higher dimensions is a possible future work.

The main challenge is how to obtain acceptable running speed. In our current setting,

we applied the EM algorithm to compute the mixture log-concave projection. It

computes the value of likelihood function for each candidate distribution and update

the candidate distribution in each iteration. The mixture log-concave projection

is determined when the value of likelihood function converges. It means that in

higher dimensions we need to compute eLC MLE in each iteration until it converges.

Computing eLC MLE is more complicated than in one dimension. Hence the key is

how to improve the running speed. Additional suggested future work includes:

� to derive the asymptotic distribution and convergence rate of the eLC MLE.

Balabdaoui et al. (2013) showed the asymptotic behavior of discrete log-concave

MLE in one-dimensional space, which might be the starting point.

� to verity the eLC assumption for a given data set. Checking the eLC assump-

tion in higher dimensions is not easy. If one can derive the relations between
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eLC joint PMF and the eLC marginals, then the problem might be easier.

Cule (2009) showed that the marginal distribution of log-concave density is

also log-concave in continuous setting.

In Section 8.4, we listed some limitations of our current HD-LCD algorithm.

Those limitations should be the food for the future work.
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Appendix A

Appendix: background material

A.1 Important Definitions, Theorems and Lemma

Definition A.1.1. (?, Definition 5.1, page 85) A function f � Rd � R is said to be

convex if

pf�x� � qf�y� C f�px � qy�

for all x, y > Rd, and p, q > �0,1� with p � q � 1.

Definition A.1.2. (?, Definition 5.3, page 85) A subset C of Rd is said to be convex

if

px � qy > C

for all x, y > C, and p, q > �0,1� with p � q � 1.
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Definition A.1.3. (Rockafellar, 1970, pages 24) A convex function f is said to be

proper if its epigraph is non-empty and contains no vertical lines, i.e. f�x� @ �ª for

at least one x, and f�x� A �ª for every x.

Definition A.1.4. (Rockafellar, 1970, Theorem 7.1, pages 51–52) A proper convex

function

f � Rd � ��ª,�ª� is said to be closed if the function is lower semi-continuous.

Or, equivalently, if

�x S f�x� B α� is closed for every α > R.

The only closed improper convex functions are the constant functions �ª. and

�ª.

Definition A.1.5. For a function f � Zd � R 8 �ª�, We define the convex closure

of f as

f̄�x� � sup
α>R,β>Rd

�α � βTx � α � βT z B f�z� for all z > Zd�, x > Rd.

Definition A.1.6. A sequence of probability measures pn on metric space S is defined

to be tight if for every ε A 0 there exists n0 and a compact set K ` S, such that

pn�K� A 1 � ε for all n A n0.
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Theorem A.1.1. (Rockafellar, 1970, Theorem 4.5, page 27) Let f be a twice con-

tinuously differentiable real-valued function on an open convex set C in Rn. Then f

is convex on C if and only if its Hessian matrix

Qx � �qij�x��, qij�x� � ∂2f

∂ξ1∂ξ2

,

is positive semi-definite for every x > C.

Theorem A.1.2. (Rockafellar, 1970, Theorem 5.5, page 35) The pointwise supre-

mum of an arbitrary collection of convex functions is convex.

Theorem A.1.3. (Rockafellar, 1970, Theorem 7.1, page 51) Let fbe an arbitrary

function from Rn to ��ª,ª�. Then the following conditions are equivalent:

1. f is lower semi-continuous through out Rn;

2. �xSf�x� B α� is closed for every α > R;

3. The epigraph of f is a closed set in Rn�1.

Theorem A.1.4. (Rockafellar, 1970, Theorem 10.6, page 88) Let C be a relatively

open convex set, and let �fiSi > I� be an arbitrary collection of convex functions finite

and pointwise bounded on C. let S be any closed bounded subset of C. Then �fiSi > I�
is uniformly bounded on S and equi-Lipschitzian relative to S.
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The conclusion remains valid if the pointwise boundedness assumption is weakened

to the following pair of assumptions:

(a). There exists a subset C
�

of C such that conv�cl C
�� a C and sup�fi�x�Si > I� is

finite for every x > C
�

;

(b). There exists at least one x > C such that inf�fi�x� S i > I� is finite.

conv�C� denotes convex hull of C, and cl C denotes closure of C.

Theorem A.1.5 (Carathéodory’s Theorem). (Rockafellar, 1970, Theorem 17.1,

page 155) Let S be any set of points and directions in Rn, and let C � conv�S�.Then

x > C if and only if x can be expressed as a convex combination of n � 1 of the

points and directions in S (not necessarily distinct). In fact C is the union of all the

generalized d�dimensional simplices whose vertices belong to S, where d � dimC.

Theorem A.1.6. (Rockafellar, 1970, Theorem 23.1, page 213) Let f be a convex

function, and let x be a point where f is finite. For each y, the difference quotient in

the definition of f
��x; y� is a non-decreasing function of λ A 0, so that f

��x; y� exists

and

f
��x; y� � inf

λA0

f�x � λy� � f�x�
λ

.

Moreover, f
��x; y� is a positively homogeneous convex function of y, with f

��x; y� � 0
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and

�f
��x;�y� B f ��x; y�, ¦y.

Theorem A.1.7. (Rockafellar, 1970, Theorem 25.2, page 244) Let f be a convex

function on Rd, and let x be a point at which f is finite. A necessary and sufficient

condition for f to be differentiable at z is that the directional derivative function

f
��x; �� be linear. Moreover, this condition is satisfied if merely the n two-sided

partial derivatives ∂f�z�
∂ξj

exist at x and are finite.

Theorem A.1.8. (Rockafellar, 1970, Theorem 32.2, page 343) Let f be a convex

function, and let C � conv�S�, where S is an arbitrary set of points. Then

sup�f�x� Sx > C� � sup�f�x� Sx > S�,

where the first supremum is attained only when the second (more restrictive) supre-

mum is attained.

Theorem A.1.9. (?, The Arzelà-Ascoli Theorem, page 221) Let C � C�0,1� be the

space of continuous, real-valued functions on the unit interval [0,1] with the uniform

metric. A subset A of C has compact closure if and only if

sup
x>A

Sx�0�S @ª
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and

lim
δ�0

sup
x>A

wx�δ� � 0,

where wx�δ� � sup
Ss�tS@δ

Sx�s� � x�t�S.
Theorem A.1.10. (?, The Monotone Convergence Theorem, page 83) Let �fn�
be an increasing sequence of nonnegative measurable functions on E. If �fn� � f

pointwise a.e. on E, then lim
n�ª

RE fn � RE f.

Theorem A.1.11. (?, The Lebesgue Dominated Convergence Theorem, page 88)

Let �fn� be a sequence of measurable functions on E. Suppose there is a function g

that is integrable over E and dominates �fn� on E in the sense that SfnS B g on E

for all n.

If �fn�� f pointwise a.e. on E, then f is integrable over E and lim
n�ª

RE fn � RE f.

Theorem A.1.12. ? Let f�x, y� be a log-concave functions on Rm�Rn, with x > Rm

and y > Rn. Further, let A be a convex subset of Rn. Then

g�x� � S
A
f�x, y�dy

is a log-concave function on Rm.

Theorem A.1.13. (Murota and Shioura, 2001, Theorem 4.17) For a convex-extendible
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function f � Zd � R 8 ��ª�, and a value λ > R 8 ��ª�, the level set L�f, λ� is a

convex-extendible set.

Where the level set is defined as L�f, λ� � �z > Zd S f�z� B λ�.
Theorem A.1.14. (Murota, 2009, Theorem 2.1) A function f � Z � R̄ is convex-

extendible is and only if it satisfies

f�x � 1� � f�x � 1� C 2f�x�,

where R̄ � R 8 ��ª�.
Theorem A.1.15. (Murota, 2009, Theorem 2.1) A function f � Z � R̄ is convex-

extendible is and only if it satisfies

f�x � 1� � f�x � 1� C 2f�x�,

where R̄ � R 8 ��ª�.
Theorem A.1.16. (Rosenthal, 2006, Theorem 11.1.10) If �un� is a tight sequence

of probability measures, then there is a subsequence �unk
� and a probability measure

u, such that unk
� u, i.e. �unk

� converges weakly to u.
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A.2 List of important symbols and notations

Y � Yª � Maximum norm.

f � Probability density function on Rd.

Âfn � MLE of log-concave density on Rd.

f0 � True probability density function on Rd.

F � set of log-concave density functions on Rd.

g � Concave function on Rd.

h�x� � Convex function on Rd.

h�z� � Convex function on Zd.

h̄ � Convex closure of h on Rd.

hR � Convex extension of h on Rd.

h2�p, q� � Hellinger distance between p and q.

lk�p, q� � Lk distance between p and q.

p � Probability mass function on Zd.

p0 � True PMF on Zd, Pz>Zd YzYªp0�z� @ª and SPz>Zd p0�z� log p0�z�S @ª.
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pn � a sequence of eLC PMF on Zd.

Âp � Mixture log-concave projection/MLE on �0, ..., q�.

Âp0 � eLC KL projection of p0, which minimize KL divergence to p0 over eLC PMF

set.

Âpn � eLC MLE on Zd, d > �1,2,3, ...�.
P0 � Set of eLC PMF on Zd.

P1 � Set of log-concave PMF on Z.

Pq � Set of log-concave PMF on �0, ..., q�.
Pm � Set of log-concave mixture PMF on �0, ..., q�.
ty � Tent function on Rd.

ϕ � ϕ � log p is convex-extendible function on Zd.

C � Open convex set on Rd.

�k�i � point of Zd with ith element equals to k, k > Z.

N � Natural number set.

S � Set on Zd.
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S̄ � Convex closure of S, on Rd.

S � Support of PMF p, on Zd.

S0 � Support of true PMF p0, on Zd.

S̄n � Convex closure of Sn � �z1, ..., zm�.
ÂSn � S̄n 9Zd.

Z � Integers set.

ÂΣn � Variance matrix under the MLE.

Σn � Empirical variance matrix.

∆ � Set difference symbol.

σ � objective function to estimate eLC MLE on Zd.

σR � objective function to estimate eLC MLE on Rd.

eLC : log-concave-extendible functions on Zd.

MLE : Maximum likelihood estimator.

PMF : Probability mass function.
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L. Dümbgen, A. Hüsler, and K. Rufibach. Active set and EM algorithms for log-

concave densities based on complete and censored data. Technical Report 61,

IMSV, University of Bern, 2007.
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