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Abstract 
 

Mitochondria are dynamic organelles that produce energy for the cell.  In skeletal muscle, 

mitochondria adapt as a result of regular exercise by increasing their content and improving their 

function, resulting in better muscle energy production. p53 is a protein that maintains basal 

mitochondria function in muscle. However, it is unknown whether it is required for skeletal 

muscle adaptations with exercise. We thus subjected normal, wild-type mice, as well as those 

with a specific p53 deletion within muscle, to a 6-week endurance training program. Our results 

confirm that p53 is required for mitochondrial maintenance in muscle under basal conditions, but 

that it is not required for the adaptive responses in mitochondrial content and function observed 

with training. This suggests that exercise can activate viable alternative compensatory pathways 

to maintain muscle health in the absence of p53.  
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1.0. Skeletal Muscle Function and Maintenance  

1.1. Introduction: Importance of Muscle Health 

Skeletal muscle is a dynamic tissue that coordinates movement, posture, and homeostasis 

through multiple signaling pathways including metabolism, thermogenesis, and mitochondrial 

biogenesis (67, 127). Though it is one of three major muscle types, the others being cardiac and 

smooth muscle, it comprises 40-50% of the total body mass of a healthy individual (64).  Its 

dominant presence throughout the body allows it to serve as an energy reservoir and metabolic 

regulator of interorgan crosstalk (9).  

Energy metabolism is a critical function of skeletal muscle. Its role in glucose uptake and 

storage for the conversion of chemical energy to mechanical energy is required both for 

movement and optimal organ function. Energy derived for work is primarily through ATP 

production which requires rapid re-synthesis for continued availability. The second source of 

readily available energy is creatine phosphate which is a reservoir of high energy phosphate 

bonds vital to rebuild ATP (110). Carbohydrates (CHO) are the only macronutrient that can 

generate ATP aerobically and anaerobically. Anaerobically, glucose/glycogen utilization in the 

cytosol generates low levels of ATP and builds lactic acid which can impede muscle contractions 

over time (110, 177). The aerobic pathway on the other hand provides 18 times more ATP due to 

pyruvate entry into the Krebs’ cycle within the mitochondria. ATP can additionally be provided 

by metabolizing fats and proteins. Triglycerides can be hydrolized to generate fatty acids which 

undergo β-oxidation in the mitochondria producing high energy yields per each acetyl-coA unit. 

However, this process requires greater oxygen levels than CHO oxidation (110). The 

requirement for amino acid substrate utilization for fuel is increased when other substrates are 

unavailable. During prolonged exercise with normal substrate availability, protein oxidation 
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accounts for only 5% of the energy requirements (108, 110). Therefore, the major requirements 

are CHO oxidation, which increases with exercise intensity, and fat oxidation, which increases 

from low to moderate exercise duration, but decreases from moderate to high exercise intensities.   

Numerous conditions and diseases lead to an imbalance in the metabolic demands placed 

on muscle. This can outweigh the protein synthesis occurring with dietary intake and eventually 

can lead to muscle atrophy and a loss of appropriate metabolic functioning. The specific 

conditions that lower dietary intake, such as malnutrition and starvation, and those that alter the 

metabolic load on muscle, such as cancer, immune disorders and muscular dystrophies, can have 

serious consequences (9, 169). Most of these conditions are associated with variable degrees of 

inflammation which activate proinflammatory cytokines to accelerate muscle catabolism (111). 

Ultimately, the loss of muscle mass, function, and strength can lead to longer recovery times, 

selective fiber type transitions, slower wound healing, physical disability, and greater health care 

costs (3, 60, 109, 136). To combat these adverse outcomes, controlled nutrition and exercise 

programs can be implemented for muscle recovery to promote overall health (5, 9, 82, 175).  

1.2. Physiology of Skeletal Muscle 

1.2.1. Structural Physiology 

Skeletal muscle consists of bundles of single large cells, termed myocytes, which develop 

from myoblast fusion in a process known as myogenesis (35). Its architecture originates through 

several distinct phases: 1) embryonic phase, wherein mesoderm-derived structures generate 

template muscle fibers, 2) perinatal phase, whereby myogenic progenitors proliferate and 

myofibrillar protein synthesis peaks and plateaus, 3) mature phase, wherein progenitors enter 

into quiescence and reside in muscle as satellite cells, and 4) regenerative phase, whereby 

satellite cells in the fiber sarcolemma expand mitotically and differentiate into new fibers when 
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damaged (7, 14). Each muscle fiber contains multiple myofibrils, composed of cylindrical 

bundles of thick myosin and thin actin filaments, each of which are organized to form repeating 

sarcomere units.  

Muscle fibers are delineated based on their myosin profiles. Myosin is a hexameric 

protein consisting of four light chains which modulate interactions between myosin and actin, 

and two heavy chains (fast and slow) which are differentiated into nine isoforms to dictate 

appropriate fiber composition (128). With an influx of calcium into the sarcoplasmic reticulum, 

rapid repetition of myosin, working in conjunction with actin to form a cross-bridge, initiates a 

power stroke that allows for contraction (35). Differences in muscle types are a result of 

metabolic properties, histochemical features, and most importantly, structural protein 

composition based primarily on the myosin heavy chain (MHC) protein, which dictates the 

velocity of contraction (9, 128). There are three pure fiber types containing a single MHC 

isoform. Slow twitch red type I fibers with the MHCIβ isoform function as oxidative and fatigue 

resistant fibers. Fast twitch red type IIa fibers with the MHCIIa isoform contain intermediate 

metabolic properties for fast oxidative capacity. Lastly, fast twitch white type IIx fibers with the 

MHCIIx isoform for high glycolytic energy production, result in high force output but 

consequentially have a high fatigue rate (126, 138, 148). Fast twitch white type IIb fibers with 

the MHCIIb isoform are analogous to the type IIx fibers, but are found in humans and not 

mammals. Hybrid fibers types are further created through the mix of major isoforms and include 

type I/IIA (IC), IIA/I (IIC), IIAD, IIDA, and IIBD (126). The dynamic property of muscle is a 

result of fiber type transitions. This is associated with gradual changes in energy costs as a result 

of different muscle usage patterns that dictate sequential and reversible transitions of slow-to-fast 
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and fast-to-slow transformations following the paradigm MHCIβ ↔ MHCIIa ↔ MHCIIx ↔ 

MHCIIb (126). 

1.2.2. Cellular Structure 

To interpret how muscle adapts to incoming stimuli in order to provide energy for 

cellular and mechanical functions, a thorough understanding of the components and properties of 

the myocyte is required. Myocytes are similar in organelle structure to other eukaryotic cells, 

however the addition of myofibrils allows for its contractile ability. Under apt conditions, the cell 

functions to meet energy and signaling demands, however under conditions such as starvation or 

organelle dysfunction, other pathways are induced to maintain cellular integrity. Though all 

organelles are essential, skeletal muscle plasticity is attributed to mitochondria.  

1.2.2.1. Mitochondrial Structure and Function 

The endosymbiotic theory postulates that the rise of mitochondria within cells, 

approximately 1.45 billion years ago, occurred through eukaryotic engulfment to provide its 

anaerobic host with aerobic capacity (105). As the symbiosis matured, the mitochondrial 

organelle transferred a portion of its bacterial plasmid to the nucleus, thereby losing its ability to 

survive as a free-living organism. The current 16.5 kb mitochondrial plasmid now possesses 37 

genes coding for two ribosomal RNAs (12S and 16S rRNA), 22 tRNAs, and 13 electron 

transport chain genes for energy generation (64, 170, 176). The remaining gene products from 

the original mitochondrial genome (~1200) are now encoded within chromosomal DNA. These 

proteins are imported into the mitochondria via protein import machinery (PIM) (170). 

Mitochondria are elliptically shaped double phospholipid membraned organelles with 

multiple folds in the inner membrane called cristae (64, 76). The matrix of the mitochondria 
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contains the mtDNA. Outside of the inner membrane is the intermembrane space which is 

enclosed by the outer membrane. The inner membrane contains the subunits of the electron 

transport chain (ETC) which is made up of five complexes (Figure 1). Ubiquinone and 

cytochrome c proteins shuttle electrons between complexes I ÆIII and II Æ III, and complexes 

IIIÆIV respectively. As the electrons are shuttled across the complexes, proton pumping is 

facilitated out of complexes I, III, and IV and into the intermembrane space (27, 99). This creates 

an electrochemical potential gradient that facilitates proton re-entry into the matrix through 

complex V (ATP synthase), thus generating ATP energy for cellular utilization (27, 99). This is 

known as the chemiosmotic theory for energy generation (113). It is important to note that 

reactive oxygen species (ROS) and heat are by-products of energy metabolism that likely 

activate/regulate downstream signaling mechanisms (115). The production of superoxides and 

radical formation at the NADH dehydrogenase complex I and cytochrome bc1 complex III, as a 

result of substrate unavailability and/or electron slippage through the buildup of the 

electrochemical gradient, can lead to detrimental outcomes such as peroxidized lipids, oxidized 

proteins and damaged DNA, if not removed (66, 112, 116, 135). On the other hand, 

mitochondrial-derived ROS can exert beneficial effects, when maintained at a certain threshold, 

by acting as signaling mechanism for mitochondrial biogenesis (22, 66, 72). Therefore, it seems 

that there is a specific threshold tolerance of the cell to ROS production levels. 
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Figure 1. Substrate utilization and schematic representation of the electron transport 
chain. Large carbohydrates are broken down into glucose molecules that can enter into 

glycolysis within the cytosol, which is then further broken down into two pyruvate molecules in 

a process that yields 4 ATP. Pyruvate diffuses into the intermembrane space where it is 

converted to acetyl-CoA through a transition reaction yielding NADH. Acetyl-CoA, two per 

glucose molecule, can then enter into the Krebs’ cycle. Lipids are broken down to acetyl-coA 

units through beta-oxidation, yielding large amounts of ATP depending on the size of the fatty 

acid molecule. Proteins are the last energy source to be catabolized, and are broken down to 

amino acids through deamination to then enter into the Krebs’ cycle. Once substrates diffuse into 

the mitochondrial matrix, acetyl-coA enters the aerobic Krebs’ cycle yielding 3 NADH, 1 

FADH2 and 1 ATP per acetyl-coA, or a total of 6 NADH, 2 1 FADH2, and 2 ATP per glucose 

molecule. The NADH and FADH2 substrates, generated from both anaerobic and aerobic 

processes, can then be utilized by the electron transport chain (ETC) to generate ATP energy. 

NADH and FADH2 are oxidized by complexes I (NADH dehydrogenase) and II (succinate 

dehydrogenase) respectively. The electrons donated from these processes are passed through 

subsequent complexes including complex III (cytochrome bc1) through reduction of the mobile 

electron carrier ubiquinone (UQ), and complex IV (cytochrome c oxidase) by cytochrome c 

reduction to generate energy required to pump protons into the intermembrane space. This 

transfer process through the ETC can result in the escape of electrons through complexes I and 

III prematurely which reduces oxygen and generates H2O2, also known as reactive oxygen 

species (ROS). The final electron acceptor is oxygen to produce H2O. This electron transfer 

throughout the ETC contributes to the buildup of H+ ions in the intermembrane space, creating a 

proton gradient which is utilized by complex V (ATP synthase) to convert ADP to ATP in a 

process known as chemiosmosis.  This entire process produces an ATP yield of approximately 

36 ATP. 
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Mitochondria function to regulate cellular signaling processes. The dynamic property of 

mitochondria are a result of its existence as a functional reticulum, maintained through fission 

and fusion events (28, 70). This interconnected network ultimately facilitates oxygen diffusion 

and allows for mitochondrial quality control (28, 115). Interestingly, the presence of a reticulum 

conflicts with the well-known existence of mitochondrial sub-populations which form within 

their own networks in discrete subcellular locations. The rise of separate populations with 

distinct biochemical differences is presumed to be a result of the different energy requirements of 

specific locations within the myofiber. The subsarcolemmal (SS) mitochondria are located 

beneath the sarcolemmal membrane in close proximity to myonuclei, therefore permitting greater 

adaptations to stimuli (5, 34, 85). These mitochondrial provide ATP energy for nuclear and 

membrane functions, exhibit higher membrane potentials, and produce greater amounts of ROS 

(34, 123). The intermyofibrillar (IMF) mitochondria coalesce within the myofibrils and comprise 

80-85% of the total mitochondrial volume (5, 34). They have a greater rate of oxygen 

consumption, ~2.5-fold greater than SS populations, and consequentially generate higher ATP 

levels to supply myosin and actin with energy for muscular contractions (4, 5). Furthermore, this 

population has higher rates of protein import and synthesis, and a greater capacity for fatty acid 

oxidation (115, 159). As these populations differ in their structure and function, and possibly in 

the signaling pathways that may exist to facilitate these differences, they do share similar 

mechanisms to regulate metabolic demands. 

1.2.2.1a. Signaling Pathways Regulating Mitochondrial Health 

 There are many important signaling mechanisms that are employed by the cell to 

maintain optimal skeletal muscle function. The primary mechanism of mitochondrial biogenesis 

ensures regulation of energy sensitive pathways including calcium homeostasis, ROS production 
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and signaling, and apoptosis. As a result, a healthy mitochondrial pool is required, with its 

dynamics tightly regulated by opposing fission and fusion processes. Fusion, through Opa1 and 

Mfn-2 proteins, coincides with signals that induce mitochondrial biogenesis, such as endurance 

training, leading to the intermixing of mitochondrial material and expansion of the reticulum  

(70, 83). Fission on the other hand, facilitated by Fis-1 and Drp-1 proteins, promotes the division 

of organelles leading to a reduction of the reticulum. 

 Additional signals that regulate the health of the mitochondrial pool includes the 

antioxidant production pathway whereby primary enzyme antioxidants, non-enzymatic 

antioxidants, and dietary antioxidants function to maintain redox balance (112, 132). In response 

to changes in the cellular environment, optimal mitochondrial functioning may be disrupted 

through increased ROS/RNS leading to DNA, protein, and lipid damage. This induces either the 

cell death or mitophagy pathways. Mitophagy, a component of autophagy, utilizes numerous 

mechanisms to signal the binding of damaged mitochondria to the phagophore causing the 

organelle to be engulfed within the autophagosome and directed to the lysosome for degradation 

(140). With greater genotoxic stress levels due to DNA damage, hypoxia, and oxidative stress, 

the mitochondria can a source of cellular death through permeabilization of the outer 

mitochondrial membrane (MOMP) (87). Ultimately, maintenance of a healthy mitochondrial 

reticulum is required for optimal skeletal muscle function, which can be regulated by the tight 

coordination of numerous signaling mechanisms.  
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2.0. Skeletal Muscle Adaptations to Exercise 
 
2.1. Exercise: Its Pleiotropic Benefits 

 

Exercise is a beneficial signal, not only for skeletal muscle cellular health and 

maintenance, but for whole body health and fitness as well. The exercise regimen, based on type 

of exercise as well as its parameters including duration, frequency, intensity and length, can 

induce a variety of molecular and phenotypic adaptations. Furthermore, the application of a 

recovery period following exercise allows for a sufficient interval in which transient changes in 

gene expression can induce adaptations. Therefore, depending on the type of exercise regimen 

and its parameters, one can optimize and maximize the desired results.  

 Skeletal muscle is a major recipient for the advantageous effects of exercise. Increased 

fiber contractility with aerobic exercise can lead to elevated myoglobin, increased capillarization, 

and enhanced mitochondrial content to ultimately improve the oxidative capacity of muscle (65, 

77, 117). Interestingly, growth of the capillary network, through a process known as 

angiogenesis, is thought to precede adaptations in skeletal muscle. Aerobic exercise 

preferentially utilizes lipid energy metabolism which reduces the formation of lactic acid and the 

use of high energy phosphate, and attenuates the loss of glycogen to reduce the rate at which 

muscle fatigues (64). With other types of exercise, such as with resistance exercise, hypertrophy 

is a consequence due to fiber enlargement according to the myonuclear domain theory (125, 

152). Whole body health can further be improved with prolonged exercise regimens as observed 

through cardiovascular benefits, greater endurance and work capacity, enhanced nutrient delivery 

and uptake, and even enriched mood and cognition (6, 64, 68, 78, 164). As a result of its 

pleiotropic effects in skeletal muscle and throughout the body, exercise can be utilized as an 

intervention to promote a healthier phenotype, and reduce and even reverse symptoms associated 
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with aging, muscle atrophy, and mitochondrial disease (66). However, due to the immense 

variety of signals that regulate adaptations to exercise including fiber type composition, 

intercellular crosstalk, nutrient requirements and mitochondrial content and function, the 

different exercise parameters will result in unique effects in muscle (119). 

2.1.1. Acute versus Chronic Training: Teasing out the Differences 

Exercise can be grouped into two major categories: Resistance and Aerobic exercise. 

Aerobic exercise in particular is further subcategorized into acute exercise and prolonged 

exercise, for which each category results in an umbrella of distinct molecular and morphological 

effects. 

Aerobic exercise provides numerous beneficial results to skeletal muscle, as a result of its 

ability to induce mitochondrial biogenesis to a greater extent than with resistance exercise. 

Depending on the level of training prior to undergoing a single bout of exhaustive exercise, it can 

produce significant adaptations. An acute bout is sufficient enough to increase signaling kinases 

such as p38 MAPK (0.5-fold), AMPK (2.5-fold), and CaMKII (2.5-fold) which further remain 

elevated after 3 hours of recovery (143, 166). These kinases activate numerous transcription 

factors such as the mitochondrial transcription factors NRF-1 and 2, antioxidant transcription 

factor Nrf2, and the guardian of the genome p53, facilitating enhanced nuclear localization and 

activation. Additionally, the major mitochondrial coactivator PGC-1-α, can also be 

phosphorylated by these signaling kinases, allowing for its subcellular localization. Once in the 

nucleus, PGC-1α can assist in the transcription of NUclear Genes Encoding Mitochondrial 

Proteins (NUGEMPs) such as COX IV (60%), Tfam (50%) and NRF-1 (200%), which can be 

further increased during a recovery period (143, 166). The antioxidant pathway is notably 
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activated with acute exercise leading to Nrf2-mediated transcription of GSH and MnSOD 

antioxidants at a threshold of above 90 minutes of acute exercise (171). Furthermore, autophagy 

has also been shown to increase following an acute bout of endurance exercise. Increased LC3-II 

and reduced p62 levels are indicative markers of autophagy activation (166). DNA 

fragmentation, a marker of cell death caused by an increase in the Bax/Bcl-2 ratio and caspase 3 

activation, has been noted following eccentric resistance exercise and acute strenuous treadmill 

exercise programs; chronic aerobic exercise training can relieve these effects (84, 156, 157). 

Further mechanisms induced with acute exercise include increased muscle protein turnover, 

activation of the UPR, and transient changes in myogenic and metabolic genes (20, 81, 88, 178). 

With endurance training on the other hand, mitochondrial content can increase from 30-

100% within a time frame of 4 to 6 weeks (66). As such, greater adaptations will be apparent in 

the low oxidative fibers, where the greatest percentage of mitochondrial content is found. 

Improvements associated with endurance capacity are a result of mitochondrial biogenesis and 

its improved reticular formation. Increased  NUGEMP transcription factors such as p53, and the 

coactivator PGC-1α, enhance mitochondrial content and facilitates a reduction in glycolytic 

activation (lowered lactic acid  production, attenuated glycogen utilization, reduced 

phosphocreatine usage) to prevent an acidotic state, and increases fatty acid fuel oxidation (62, 

64). Other adaptive signals include accelerated mRNA turnover for rapid phenotypic plasticity, 

reduced ROS activation, attenuated apoptotic signaling, and increased autophagy to maintain a 

healthy organelle pool (42, 61, 66, 89, 165). These improvements over time assist in the 

transition to a greater oxidative fiber phenotype and improve capillary density to enhance 

respiratory capacity and increase contractile capability (45, 46). Various models of exercise 

training exist, including constant and progressive treadmill training, electrical stimulation, and 
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voluntary wheel running. Manipulations in these parameters can alter signaling mechanisms to 

lead to the aforementioned effects to enhance muscular endurance.  

2.2 Aerobic Exercise-Mediating Signaling Pathway Regulation 

2.2.1. Kinase Activation and Downstream Pathways 

With cross bridge cycling during contractile activity, there is an increase in specific 

signaling pathways that collectively activate transcription factors within the nucleus and 

mitochondria to alter gene expression. These signals include a) a reduced ATP/free ADP ratio, b) 

changes in intracellular calcium levels following release from the sarcoplasmic reticulum, and c) 

an increase in oxygen consumption and consequentially its by-product reactive oxygen species, 

which cooperatively leads to the activation of intracellular protein kinases such as AMPK, 

CaMKII, Akt, and MAPKs to trigger post-translational protein modifications (63, 66, 77).  

Phosphorylation of transcription factor p53 and transcriptional coactivator PGC-1α, the master 

regulators of cellular homeostasis and mitochondrial biogenesis respectively, allows for their 

nuclear localization and activation of NUGEMPs such as NRF-1/2 and Tfam  (119). Once these 

genes are transcribed, they proceed through the central dogma of protein formation, forming 

their respective mRNAs which then exit the nucleus and are translated to functional proteins in 

the cytosol. Tfam, once folded, can be imported into the mitochondria through the TIM and 

TOM complexes to regulate mtDNA transcription and replication (68, 147). Other proteins 

imported into the mitochondria, such as those regulated by p53, including cytochrome c oxidase 

assembly (SCO2) and apoptosis inducing factor (AIF) proteins, as well as other metabolic 

enzymes, function to assist in the formation of the multi-subunit ETC complexes to increase 

muscle aerobic capacity (68). Furthermore, enahnced transcription of mitochondrial DNA by 

Polγ increases COX I and II gene expression to improve mitochondrial respiration with aerobic 
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exercise. Ultimately these signals lead to the activation of mitochondrial biogenesis and 

expansion of the reticulum with exercise which can feedback to other signaling mechanisms such 

as the antioxidant and mitophagy pathways to maintain optimal cellular homeostasis.  

2.2.2. Intracellular Communication and Crosstalk 

Intercellular and intracellular crosstalk is the process of exchanging molecular messages 

and material between and within cells respectively, to maintain optimal physiological activity 

and coordinate homeostasis, adaptation, and survival (130). This ability for cell-cell 

communication is mediated by numerous mechanisms including ligand-receptor signaling, 

secretion/uptake of the exosome transmitting system, intercellular structures (synapses, gap 

junctions), organelles, and trafficking signaling molecules (130, 183). Thus, in order to maintain 

optimal cellular homeostasis for ideal tissue health, communication is required between signaling 

mechanisms regulating cellular proliferation, maintenance, and degradation.  

With varying stress loads, dependent on the type, duration and intensity, cellular 

degradation pathways may be activated to prevent aberrant proliferation and signaling. Prior to 

this however, certain signaling mechanisms are employed under to maintain cellular integrity. 

Antioxidant enzyme defenses are regulated by the major transcription factor Nrf2 to produce 

enzymes such as SOD2, catalase,  glutathione peroxidase, and reductase to neutralize ROS/RNS 

(129). Furthermore cell cycle arrest and autophagy pathways can be activated to allow for 

genomic repair and dysfunctional organelle removal, respectively. However, when ROS 

production exceeds the antioxidant capacity, apoptosis can be triggered (66). Thus cellular 

maintenance, whilst under the influence of exercise, is required through signaling cross-talk to 

maintain optimal mitochondrial biogenesis to suffice workload requirements, without generating 

above threshold ROS levels that induce cell death pathways.  
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3.0. p53 Transcription Factor 
 
3.1. Introduction to the Tumor Suppressor p53 
 

 The tumor suppressor protein p53 is a rapid-response transcriptional regulator of diverse 

signaling pathways involved in maintaining cellular homeostasis. Thus, it is affectionately 

termed the “Guardian of the Genome” for its master regulatory role. Immense progress has since 

been made from its initial and monumental discovery in 1979 by David Lane and Lionel 

Crawford. The p53 protein was an unexpected finding during an immunoprecipitation 

experiment for the T tumour antigen of the Simian Virus 40, whereby a protein with a molecular 

weight of 53 kDa accompanied the antigen (90). Due to the presence of p53 in numerous cancer 

cell lines and the SV40 cell line, it became persistently characterized as an oncogene. It took a 

decade of elaborate investigations before its true role as a tumor suppressor was revealed. This 

spurred research into the role of p53 in cancer biology for the reason that approximately 50% of 

malignancies carry a p53 mutation/inactivation (24, 56, 69). Within the last fourty years, and 

~78,000 publications later, research on p53 has exploded to define its numerous applications in 

cancer and other diseases. 

New discoveries on the pleiotropic effects of p53 on signaling mechanisms that maintain 

cellular and genomic integrity are continuously being made. With varying levels of stress, 

specific modifications to the p53 protein, activate or impair downstream signaling pathways that 

regulate cell cycle arrest and senescence, pro- and anti-oxidant function, apoptosis, DNA repair, 

metabolism, differentiation, and angiogenesis (93). Though its many roles in the cell are known, 

research on the communication that occurs between these pathways to maintain cellular 

homeostasis are still being pursued, with the goal to elucidate how p53 leads to cooperative 

interactions depending on the level of cellular stress. 
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3.1.1. Cellular Localization Dictates Function 

The p53 gene, also termed TP53 in humans or TRP53 in rodents, contains a large core-

DNA binding domain (DBD) that is preceded by two N-terminal transactivation regions with a 

proline rich domain for protein-protein interactions, and is additionally followed by a 

tetramerisation (TET)/oligomerization motif and C-terminal regulatory region (101, 122). 

Interestingly, the DBD is the region that undergoes heavy mutagenesis during tumour formation, 

with >90% of the mutations occurring within this section (122). Following post-transcriptional 

modifications, the p53 gene codes for eleven exons with two translational start sites in exons 2 

and 4, that when translated, create the 393 amino acid that homodimerizes to form the functional 

p53 protein structure (122). Post-translational modifications can occur in all of these domains 

leading to high variability in the stability and function of p53 (Figure 2). The p53 pathway is 

divided into distinct sections: 1) input signals that trigger cellular biochemical changes, 2) 

detection of signals by upstream mediators that initiate alterations to the p53 protein, 3) 

activation/inhibition of p53 and its subcellular localization, 4) p53 downstream signaling 

activation by transcriptional regulation or sequence specific protein-protein interactions, and 5) 

cellular outputs of these signaling pathways (93). Intrinsic and extrinsic stress signals induce 

post-translational modifications to the p53 protein through mediators such as kinases (ATM, 

ATR, Chk1 and 2, JNK, p38, AMPK), phosphatases (PP2A), sumoylases (PIAS-1, Ubc9, 

Topors, SUMO1), deacetylases (HDAC, SIRT-1), neddylases (NEDD8), methylases (Set9), 

acetyltransferases (p300, CBP, PCAF), and ubiquitin enzymes (UbcH5B/C, Mdm2, Pirh2) (92, 

93). Phosphorylation is the dominant covalent modification as it occurs on ten different residues 

within the 100 amino acid N-terminal region and within the C-terminus, and as such can be 

targeted by numerous kinases (92). This modification can destabilize the interaction between 
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Figure 2. p53 protein domain structure and post-translational modifications. Schematic 

representation of the 393 amino acid domain structure of the p53 protein indicating the important 

sites where numerous post-translational modifications occur such as phosphorylation, 

acetylation, methylation, sumoylation, ubiquitination, and neddylation. There are numerous 

phosphorylation sites within TAD1 (Serine 6, 9, 15, 20, 33, 37 and Threonine 18), TAD2 (Serine 

46 and Threonine 55, 81), DBD (Serine 149, 215 and Threonine 150, 155), before the TET 

(Serine 313-315), and within the REG (Serine 366, 371, 376, 378, 392 and Threonine 377, 387). 

Acetylation sites are present within the DBD (Lysine 120), before the TET (Lysine 305, 320), 

and within the REG (Lysine 370, 372, 373, 381, 382). Methylation sites are found within the 

TET (Arginine 333, 335, 337) and within the REG (Lysine 370, 372, 382). Ubiquitination for 

targeted degradation specifically occurs before the TET (Arginine 320) and within the REG 

(Arginine 370, 372, 37, 381, 382, 386). Neddylation and sumoylation are less frequent, occurring 

within the REG at Arginine 370, 372, 373 and Arginine 386 respectively. Abbreviations: N-

terminal transactivation domain (TAD), proline-rich domain (PRD), tetramerisation domain 

(TET), C-terminal regulatory domain (REG), nuclear export signal (NES), amino acids (aa). 

Figure adapted from (101). 

TAD1 NES TET DNA BINDING DOMAIN TAD2 PRD 

N-terminal Domain C-terminal Domain 

aa 1               40          60             100                                                                300  325         360          393   

N- -C 

p p p p p p p p p p p p p p p p p p p p p p p p 
A A A A A A A A 

Ub Ub Ub Ub Ub Ub Ub 

M M M M M M 
N N N 

S 

S 

N 

M 

Ub 

A 

p Serine/Threonine Phosphorylation 

Lysine Acetylation 

Lysine Ubiquitination 

Lysine/Arginine Methylation 

Lysine Neddylation 

Lysine Sumoylation 



19 
 

p53 and its negative regulators (Mdm2, Pirh2, Cop1) to prevent ubiquitination and proteasomal 

degradation in the cytosol (92). 

In response to stress, phosphorylated p53, most commonly found on Ser15, Thr18 and 

Ser20, is stabilized and accumulates in the cytosol (30, 144). It can then localize to varying 

subcellular compartments, such as the nucleus or mitochondria, to regulate genomic integrity. 

Upon exposure of its nuclear localization motif in the C-terminal region, p53 enters the nucleus 

to bind to p53-response elements identified by RRRCWWGYYY (R=purine, W=A or T, 

Y=pyramidine) consensus sequences (93). A p53 response element comprises two of these 10 

base-paired sequences, often located in the first or second intron or within the 5’ region, 

interspersed by 0-13 base pairs (93). Approximately 13,774 genes have p53 response elements 

within their promoters and can therefore be transcriptionally regulated by p53 (161). Hence, due 

to the high volume of p53- consensus sequences, p53 can transcribe and regulate genes in 

numerous pathways including those within apoptosis, autophagy, metabolism, cell cycle 

arrest/senescence, and mitochondrial biogenesis. 

Though nuclear localization can occur with a host of intrinsic and extrinsic signals that 

expose the nuclear localization motif on p53, p53 does not contain a mitochondrial targeting 

sequence and therefore mitochondrial localization has been shown to occur with specific signals 

including high cellular stress (signals that induce apoptosis), and more recently exercise. The 

localization of p53 either to the mitochondrial membrane or to the matrix dictates the signaling 

response. With apoptotic stress signals, p53 localizes to the mitochondrial membrane to interact 

with multi-domain members of the anti- and pro-apoptotic Bcl-2 family to inhibit/activate 

respectively, leading to robust MOMP induction (168). This process is facilitated by Bax/Bak 

oligomerization on the outer membrane to initiate pore formation as well as opening of the 
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mitochondrial permeability transition pore (mtPTP) that simultaneously releases lethal proteins 

to activate enzymatic caspase machinery for chromatin degradation, and increases mitochondrial 

swelling through cytosolic influx (168). On the other hand, with exercise stimuli, p53 can 

localize to the mitochondrial matrix to regulate mtDNA integrity for maintenance and 

proliferation of the mitochondrial pool.  

3.2. p53 Signaling Pathways  

Within the last decade, the mechanisms by which p53 regulates homeostasis are 

becoming apparent and may be distinguished based on the intensity of oxidative stress. Exquisite 

sensitivity of the p53 pathway is essential, as highlighted by studies assessing cellular function 

when p53 is overexpressed, reduced, or completely removed (69). Though the well-known 

molecular functions of p53 have been determined through knockout models, overexpression 

models cause an imbalance in normal p53 isoform ratios leading to a premature aging phenotype 

(69, 103, 163). Though numerous studies have attempted to fully understand p53 regulation of 

signaling pathways, the debate still ensues on how cellular stress signals induce its activation. 

3.2.1. Organelle Turnover and Destruction: Autophagy/Apoptosis 

To maintain a healthy organelle pool and optimal cellular function, selective signaling 

processes, such as autophagy, are induced in response to stress to catabolize accumulated 

misfolded/aggregated proteins, dysfunctional organelles, and intracellular pathogens (49). When 

cellular dysfunction reaches a critical level, apoptosis is induced. Autophagy and apoptosis are 

processes that involve overlapping kinase and transcriptional regulators, but they differ in their 

activation depending on the level of genotoxic intensity. p53 is an upstream transcriptional 

regulator of both pathways (Figure 3).   
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Figure 3. p53 maintenance of cellular homeostasis and survival through regulation of the 
autophagy/mitophagy and apoptosis pathways. Autophagy and apoptosis are similar 
processes that involve overlapping kinase and transcriptional regulators to maintain cellular 
homeostasis through degradation of dysfunctional organelles and cells, respectively. However, 
they differ in their activation depending on the level of genotoxic intensity imposed on the cell. 
p53 is interestingly an upstream transcriptional regulator of both pathways. p53 can upregulate 
the autophagy pathway through the transcriptional activation of AMPK, TSC1 and 2 (Tuberous 
Sclerosis Complex 1 and 2), and sestrins 1 and 2 to ultimately inhibit mTORC1 (mammalian 
target of rapamycin complex 1), a transcription factor that dephosphorylates the serine threonine 
kinase ULK1 (Unc-51 Like Autophagy Activating Kinase 1), a central regulator of autophagy 
induction. Cytoplasmic p53 levels inhibit autophagy by blocking the activation of ULK1. With 
mTORC1 inhibition, ULK1 can form a complex with ATG13 (autophagy related gene 13) and 
FIP200 (FAK family kinase-interacting protein) allowing for Beclin-1 complex activation with 
PI3K (phosphoinositide 3-kinase) and AMBRA1 (activating molecule in Beclin-1-regulated 
autophagy) for subsequent initiation of phagophore formation. Additionally, ATGs (ATG3, ATG 
4, ATG5, ATG7, ATG10, ATG12, ATG16) allow for LC3-I to LC3-II (Microtubule-associated 
protein 1A/1B-light chain 3) lipidation which can then surround the phagophore and direct it to 
tagged mitochondrial membrane proteins (ubiquitinated VDAC (Voltage-dependent anion-
selective channel 1) and associated adaptor protein p62). This process is initiated through 
increased mitochondrial ROS levels and decreased membrane potential leading to PINK1 
(PTEN-induced putative kinase 1) phosphorylation of  Parkin. Additional membrane proteins 
like Nix and BNIP3 assist in phagophore binding and surrounding of the dysfunctional organelle. 
The damaged mitochondria is then engulfed in the autophagosome and directed to the lysosome 
where it can then fuse with the assistance of LAMP 1 and 2 (Lysosome-associated membrane 
proteins 1 and 2) and be degraded into functional amino acid (AA) components. p53 has been 
shown to additionally transcriptionally regulate LAMP 2 and cathepsin D lysosomal proteins, 
and therefore plays a role in autophagic substrate clearance. With exercise, there may be a shift 
favouring autophagy to regulate cellular homeostasis, whereby degraded amino acid components 
may inhibit activation of apoptosis. In the nucleus, p53 can further transcribe proteins to 
maintain cellular homeostasis such as through p21, a cellular senescent protein, and Bcl-2, a 
protein preventing Bax/Bak membrane integration and oligomerization and subsequent MOMP 
(mitochondrial outer-membrane permeabilization) (indicated by the black line in apoptosis). 
MOMP is a process of intrinsic apoptosis in which p53-transcribed apoptotic markers localize to 
the mitochondria and BH3-only proteins (BID or BIM) can induce the oligomerization of Bax 
leading to cytochrome c release, among other proteins, which can then bind APAF-1 to caspase 9 
to initiate the caspase cascade and subsequent apoptosome formation for completion of the 
apoptotic process (indicated by blue line in apoptosis). 
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p53 can act as either an endogenous repressor or activator of autophagy depending on its 

localization with stress intensities. Under basal non-stressful conditions, cytosolic p53 represses 

autophagy by interacting with the FIP200 protein of the upstream ULK1-ATG13-ATG101-

FIP200 complex thus blocking the formation of autophagosomes and inhibiting autophagy (104, 

160, 182). However, upon cellular stress, p53 localizes to the nucleus to transcriptionally 

regulate activators of the pathway like AMPK and TSC 1 and 2, core-machinery components 

including numerous ATG’s, autophagy initiator ULK1, and lysosomal protein-encoding genes 

such as cathepsin D and LAMP 2 (80). Nuclear p53 therefore upregulates autophagy through the 

activation of AMPK, TSC1 and 2, and sestrin1 and 2 which inhibit MTORC1, thus leading to the 

activation of ULK1. ULK1 complex initiation can then activate the Beclin-1 complex 

concomitant with PI3K and AMBRA1 for phagophore formation, which is assisted by ATGs that 

lipidate LC3-I to LC3-II to surround the phagophore and direct targeted organelles/dysfunctional 

proteins to the autophagosome (114). Autophagosomes travel along microtubules to fuse with 

the lysosome for degradation into functional amino acids. Interestingly, p53 can also localize to 

the mitochondria to interact with cyclophilin D which promotes an association with ANT-I in the 

inner mitochondrial membrane to open the mitochondrial transition pore (31, 104). This process 

stimulates autophagic removal of dysfunctional mitochondria detected by the dissipated proton 

gradient (104). However, the opening of this pore beyond a critical threshold can lead to MOMP 

and cell death. Thus a fine line in the crosstalk between these two pathways is required.  

There are numerous ways in which cell death can be induced: extrinsic apoptosis, 

intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe (104). p53 

is primarily involved in regulating the intrinsic apoptosis pathway. Upon high levels of genotoxic 

stress, p53 nuclear localization allows for its transcriptional regulation of numerous pro-
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apoptotic genes such as Bax, Puma, and Bid (34). Furthermore, p53 has an extra-nuclear function 

where it can bind and inactivate Bcl-2 while activating multi-domain Bcl-2 family proteins (Bak 

and Bax), or it can itself localize to the mitochondria to interact with cyclophilin D; both 

processes induce MOMP (34). MOMP is a process of intrinsic apoptosis in which p53-

transcribed proteins localize to the mitochondria, and with the assistance of BH3-only proteins 

(BID, BIM, PUMA, NOXA), to induce the oligomerization of the Bax/Bak heterodimer on the 

outer mitochondrial membrane (104). This leads to an opening in the mitochondrial transition 

pore (mtPTP). This pore structure is composed of a hexokinase on the cytosolic surface, VDAC 

on the outer mitochondrial membrane, creatine kinase and nucleoside diphosphate kinase within 

the intermembrane space, and ANC on the inner mitochondrial membrane (15). Thus, the 

increased release of cytochrome c, among other proteins like AIF and EndoG, initiates APAF-1 

association with caspase 9 to induce the caspase cascade and subsequent apoptosome formation 

for completion of the apoptotic process (104). 

3.2.2. Cellular Maintenance of Stress: Cell Cycle Arrest/Senescence/Antioxidants 

Upon exposure of low to moderate levels of cellular stress, the cell manages these 

perturbations through regulatory pathways including antioxidant enzyme production and cell 

cycle arrest and senescence, as a safeguard mechanism against cell death or mutation. Redox 

signaling, through the generation of ROS and its by-products hydrogen peroxide, 

alkoxyl/peroxyl radicals and peroxynitrite, can either lead to detrimental cellular oxidative stress 

when produced in large quantities, or they can act as a second messenger system under low to 

moderate stress levels (97). Upstream kinases regulated by ROS include p38 MAPK, ATM, and 

ERK which can phosphorylate p53 on cysteine residues 124, 135, 141, 182 and 277, as these 

contain redox-sensitive thiol groups (97). Under non-toxic ROS conditions, p53 sustains 
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antioxidant gene expression by regulating the levels of MnSOD, catalase, SCO2, and GPX1 (97). 

MnSOD converts oxygen radicals to H2O2, and GPX and catalase converts H2O2 to H2O. 

Furthermore, an interesting cross-talk exists between p53-mediated antioxidant transcription and 

the major antioxidant Nrf2-KEAP1-ARE signaling pathway. Nrf2 levels are maintained by its 

negative regulator KEAP1, which directs Nrf2 to the CUL3 E3 ubiquitin ligase for proteasomal 

degradation (37). Interestingly, the p53-target gene p21 can stabilize Nrf2 by binding KEAP1 

and preventing its degradation (32, 137). The Nrf2 pathway reciprocates by transcribing NQO1 

which interacts with p53, thus blocking its degradation by the 20S proteasome (10, 137). Though 

the existence of this beneficial cross-talk yields new roles for p53 in mediating oxidative stress, 

there are discrepancies wherein the Nrf2 pathway can increase p53 degradation by Mdm2, and 

p53 can reduce Nrf2 binding to the ARE through competitive inhibition (43, 137, 181). With 

greater ROS levels, p53 can switch to trans-activate pro-oxidant ROS-generating enzymes like 

NQO1, PIG3/6 and FDXR, and apoptotic genes including Bax, Puma, and p66Shc to uncouple 

mitochondrial electron transport, leading to MOMP (97, 121). Hence, a fine balance between 

antioxidant production and incoming oxidants is required; if the balance tips, oxidative stress 

ensues and cell cycle arrest/senescence, autophagy, and apoptosis pathways become activated.  

Cell cycle arrest is the initial step of cellular senescence, whereby cells sustaining limited 

DNA damage can initiate arrest at the G1 and G2 phase during checkpoints G1/S and G2/M, 

respectively to afford the opportunity to repair DNA damage (80). G1 arrest prevents replication 

of damaged/mutated DNA, while G2 arrest prevents improper chromosomal segregation (185). It 

is important to note that skeletal muscle cells cannot undergo cell cycle arrest and senescence as 

they are post-mitotic; mitotic stem cells, or satellite cells, can undergo this process. p53 is an 

upstream transcriptional regulator of numerous cell cycle arrest genes, the most prominent being 
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p21, a cyclin/cyclin-dependent kinase inhibitor (1, 134). p21 functions to induce G1 arrest 

following DNA damage by inhibiting kinase phosphorylation and activation of pRb, or by 

binding to E2F and PCNA (1, 134). The p21-PCNA complex blocks PCNA’s role as a 

polymerase processivity factor in DNA replication, but not its DNA repair function (94). The Rb 

protein induces senescence rather than cell cycle arrest by repressing gene transcription and 

progression into the S phase (48). The G2/M checkpoint is additionally proposed to be regulated 

by p53 to prevent premature entry into the S phase (94).  Gadd45a and 14-3-3-σ are genes 

transcriptionally regulated by p53 to stimulate G2 arrest. .  

In response to cumulative increases in stress levels causing DNA damage, such as by IR 

or oxidative stress, the p53 pathway is activated resulting in cellular senescence (134). Senescent 

cells lack proliferative markers, have an enlarged flattened morphology, and express the 

lysosomal enzyme β-galactosidase (26). p53 is activated by upstream signals including ATR-

ATM (phosphorylates p53 at Ser15), Chk2 (phosphorylates p53 at Ser20), PCAF (acetylates p53 

at K320), and PML-IV (acetylates p53 at Lys382 and phosphorylates at Ser15 and Ser46), 

allowing for its dissociation from Mdm2 and its nuclear localization and transcription of 

senescent genes (134). p53 transcribes senescent genes  p21, DEC1, and  PAI-1 which inhibits a 

protease that promotes the G1/S transition (134). Conserved sequence identity in the DBD 

regions of p53-regulated genes allows for p53 family members p63 and p73 to activate p21 and 

DEC1, thus allowing for redundancy (134).  

3.2.3. Improvements to Cellular Health: Mitochondrial Biogenesis, Metabolism 

p53 promotes cell viability by enhancing the activation of catabolic pathways to maintain 

energy production during periods of low nutrient availability (102). These metabolic signaling 

pathways include fatty acid oxidation (FAO), mitochondrial respiration, and glucose metabolism. 
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Within the glucose energy pathway, p53 limits glycolytic flux directly at the transcriptional level 

through repression of glucose transporter genes GLUT1 and GLUT4, or indirectly through 

inhibition of NF-kB (79, 102, 150). p53 can additionally suppress the insulin receptor promoter, 

thereby further reducing cellular glucose uptake (102, 173). p53 also binds PGM to inhibit 

enzyme catalysis of 1,3-biphosphoglycerate to 1,2-bisphosphoglycerate, suppresses ChREBP to 

stimulate lipid and nucleotide biogenesis, and regulates G6PD to catalyze the rate limiting step in 

the pentose phosphate pathway (PPP) (102, 160). p53 further transcriptionally upregulates 

TIGAR which inhibits fructose-2,6-biphosphate, thus impairing glycolysis progression and 

diverting glycolytic intermediates into the PPP (13). Though overwhelming evidence indicates 

that p53 negatively regulates glycolysis, depending on the energy requirements of the cell, p53 

can switch to facilitate glycolysis by transcriptionally regulating hexokinase II levels which 

catalyzes the first step in glycolysis (106). A fine balance in glycolytic energy production is 

therefore required. The Warburg effect, a shift towards a high glycolytic rate for rapid ATP 

synthesis caused by mutated p53, can lead to increased cellular proliferation (121). FAO is 

another energy pathway regulated by p53. Nutrient deprivation is one mechanism which 

mediates AMPK-dependent activation of β-oxidation to initiate p53 activation of fatty acid 

uptake and mitochondrial oxidation proteins (86). Inhibition of p53 on the other hand reduces 

mitochondrial biogenesis and decreases oxygen consumption, facilitating a more anaerobic 

environment and thus changing the ATP production ratio of glycolysis versus oxidative 

phosphorylation from 3:1 rather than the normal 1:3 ratio (121). Mitochondrial respiration is 

regulated by p53 through its promotion of oxidative phosphorylation genes such as the SCO2 

regulator of complex IV composition of the ETC,  AIF which is an essential subunit of complex I 
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of the ETC, PGC-1α-mediated activation of NUGEMPs such as COX-IV, and post-

transcriptional regulation of COX-II by p53R2 on mtDNA (19, 102, 107, 153).  

Proper mitochondrial function, indicated by appropriate respiration and ROS output, 

allows for these organelles to exist as part of a dynamic network regulated by fusion and fission 

events. Knockout (KO) studies on p53 have revealed reduced fission events due to the ability of 

p53 to transcriptional regulate Drp1, an adaptor protein that serves as a mitochondrial targeting 

sequence, and Fis1 a recruiter of mediator fission proteins (18, 95, 145). p53 also regulates 

fusion by transcriptionally activating Mfn2, a GTPase that signals for accelerated mitochondrial 

fusion events (118, 172). No evidence has yet concluded the vital necessity for p53 maintenance 

of the mitochondrial network due to the presence of redundant signaling. However, 

mitochondrial morphological detriments have been observed using p53 KO models. A deficit in 

the volume of SS (61%) and IMF (70%) mitochondrial subfractions was observed in the absence 

of p53, with further structural deficits in IMF mitochondria evidence by reduced reticular 

network and in the SS mitochondria which displayed cristae deformities (141). These resulting 

morphological differences are a result of a lack in p53 expression in the nuclear and 

mitochondrial compartments. In the nucleus, p53 transcribes its own NUGEMPS such as COX 

IV, SCO2, AIF and Tfam, or it can transcribe PGC-1α which co-transcriptionally regulates NRF-

1 and 2 to enhance the expression of Tfam, cytochrome c, ETC proteins, and import machinery 

proteins (64, 75, 141).  Within the mitochondria, p53 displays an intrinsic 3’Æ 5’ exonuclease 

activity for base excision repair, interacts with Polγ and mtDNA to increase replication, 

facilitates Tfam binding to mtDNA to regulate copy number and transcriptional activity, and 

transcribes vital COX subunits such as COX I and II (Figure 4) (2, 141). As such COX activity, a  
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Figure 4. p53 regulation of mitochondrial biogenesis with exercise. Muscular contractions 
induce the activation of numerous signals, such as kinase phosphorylation, increased ROS 
production, enhanced calcium production through action potential generation, and an increased 
AMP: ATP ratio, which collectively leads to p53 phosphorylation of its Serine15 residue to 
enhance its stability and activation. Once activated, p53 cellular localization to the mitochondria 
through PIM (protein import machinery), rather than to the nucleus, is increased and assisted by 
CHCHD4 (coiled-coil-helix-coiled-coil-helix domain containing 4) import machinery by 
cysteine-135 residue modification of p53. As shown in previous studies, once in the 
mitochondria, p53 has numerous roles including assisting Tfam, a nuclear p53-regulated gene, in 
binding to the D loop region (regulatory sequences that contain the only three promoters of 
mtDNA) where it can regulate mitochondrial replication and transcription. Additionally, p53 can 
bind polymerase gamma to the mtDNA, the only polymerase to regulate the mitochondrial 
plasmid, and can also increase 16S rRNA production to facilitate improved translation. 
Ultimately, once in the mitochondria, p53 can increase mitochondrial biogenesis through 
enhanced production of ATP by improving the efficiency of the electron transport chain. Though 
there may be greater mitochondrial relative to nuclear p53 localization, nuclear p53 levels are 
still required to bind to the regulatory sequence regions of NUGEMP promoters. This is 
accomplished both through p53’s direct transcription of mitochondrial biogenesis proteins such 
as Tfam, COX IV (Cytochrome c oxidase subunit 4), SCO2 (Cytochrome C Oxidase Assembly 
Protein), and AIF (Apoptosis Inducing Factor) as well as its regulation of PGC-1α at multiple E-
Boxes to enhance NUGEMP transcription. p53 additionally regulates glycolysis through the 
regulation of enzymes, such as TIGAR (TP53-inducible glycolysis and apoptosis regulator), 
which impairs fructose-2,6-bisphosphate in the glycolytic pathway (4). Through glycolysis 
inhibition, there is a greater reliance on the pentose phosphate pathway (PPP) and fatty acid 
oxidation (FAO) to increase oxidative phosphorylation and energy production. It is predicted that 
with training, there will be an increased drive for p53 cellular localization, rather than remaining 
in the cytoplasm where is can be degraded by the Mdm2 – MdmX (Mouse double minute 2 
homolog) complex which functions as an E3 ubiquitin ligase to direct p53 to the 26S proteasome 
for degradation to maintain a low pool of this protein. Interestingly, Mdm2 can signal for p53 
mono-ubiquitination within the nucleus, thus exposing its nuclear export signal to allow for 
cytoplasmic accumulation and poly-ubiquitination to increase degradation. Abbreviations: Ψ = 
membrane potential. 
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marker of mitochondrial biogenesis, was reduced by 26% in p53 whole body KO mice (141). 

This complex, essential for its role in aerobic respiration, is made up of 13 subunits, both nuclear 

and mtDNA-encoded, and primarily catalyzes electron transfer from reduced cytochrome c to 

molecular oxygen. p53 KO models indicate impaired respiration, evident by a 40% reduction in 

state 3 IMF respiration, and increased ROS production observed by 1.5-3 fold increases in state 4 

and state 3 levels in IMF mitochondria (141). The greater deficits observed in the IMF 

subfraction pose significant repercussions as this population comprises 80-85% of the total 

mitochondrial volume (67). These results allude to the vital requirement of p53 in the regulation 

of proper mitochondrial morphology and adaptability towards incoming stimuli.  

3.2.4. Does a Crosstalk Exist Between Pathways?  

p53 has been dubbed the “molecular policeman” for its role in lowering ROS levels and 

repairing DNA to promote survival (good cop); with high stress intensity it initiates cellular 

senescence and cell death (bad cop) (50). Therefore, coordinated communication is required, i.e. 

“cross-talk”, between the signaling mechanisms regulated by p53.  

In pre-mitotic satellite stem cells, temporary cell cycle arrest is initiated in response to 

exogenous or endogenous sources of oxidative stress. When stress accumulates and the repair 

mechanisms are overwhelmed, p53 downregulates the proliferative potential by inducing cellular 

senescence (16). The p53 target p21 is the major rheostat of this pathway. This is confirmed by 

one study whereby at day 1 cell cycle arrest is induced, and when p21 is switched off they can 

revert back to their proliferative state, but by day 3 cells acquire a senescent morphology (17, 

29).  
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On the other hand, in post-mitotic differentiated skeletal muscle cells, two major 

pathways are employed to limit the damage induced by oxidative stress, in order to enhance cell 

survival. The antioxidant enzyme production system is evolutionarily conserved to protect and 

preserve cellular components, and is thus is the first responder to cellular oxidative stress. Redox 

imbalance plays a pivotal role in driving cellular deterioration. p53-dependent processes that 

enhance antioxidant production can be accomplished by either p21-mediated activation of Nrf2 

transcription at the ARE region, or p53 specific binding to the ARE (32). Additionally, p53 can 

transcriptionally activate upstream autophagy regulators such as AMPK and sestrins, as well as 

additional regulatory proteins including Ulk1 and Atg’s (36, 41, 80, 174). Prolonged stress 

induces mitochondrial depolarization and fragmentation to further assist in mitophagic removal 

(44). Failure to restore homeostasis through the aforementioned signaling pathways, can lead to 

the transcription of cell death proteins towards apoptosis, rather than autophagy (120, 160).  

Essential crosstalk is required for mechanisms facilitating antioxidant enzyme 

production, metabolism, and mitochondrial biogenesis. p53 promotes a shift away from 

glycolysis under exercise stimuli, navigating away from the well-known cancerous Warburg 

pathway (184). Mitochondrial integrity and oxidative capacity is maintained by antioxidant 

systems through both p53-dependent and independent mechanisms, with a fine coordination 

occurring between the upstream regulators Nrf2, p53, and PGC-1α. With mitochondrial 

biogenesis, increased respiration and ROS by-products are released, requiring a larger volume 

response by antioxidants regulators. If ROS production increases to a substantial level, inhibition 

of mitochondrial biogenesis may occur to allow antioxidant removal of ROS before continuing 

the mitochondrial proliferation processes (16).  
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The literature available on the regulation of numerous signaling mechanisms by p53 is 

astounding. However, researchers are at the point of amalgamating primary research to create 

mechanistic models of p53 to determine how these different pathways exhibit a fine crosstalk 

with various oxidative stressors, such as exercise, to maintain cellular homeostasis.  

3.3. p53- Mediated Skeletal Muscle Adaptations with Exercise 

3.3.1. Systematic Review of Literature: p53 and Acute vs Chronic Exercise 

Acute and chronic contractile activity triggers a plethora of signals that induce beneficial 

metabolic and biochemical adaptations to enhance muscle health and performance. For example, 

the moderate increases in ROS produced by exercise are able to repair and strengthen the 

oxidative capacity of the cell by increasing mitochondrial content and fuel oxidation (96, 133, 

154). To date, a total of seven exercise studies in animal models have assessed the role of p53 

regulatory pathways with exercise (Table 1). 

One bout of acute exercise is sufficient to initiate transcriptional signaling towards 

mitochondrial biogenesis (33, 142). A host of upstream signals, such as ROS production and 

calcium signaling, enhances AMPK and p38 MAPK kinase expression leading to Ser15 

phosphorylation of p53 to facilitate both nuclear and mitochondrial localization (66, 142–144). 

In the nucleus, p53 binds to response elements within the PGC-1α promoter, specifically at site -

2317 in mouse or -1237 in humans, to enhance the expression of NUGEMPs such as Tfam, COX 

IV, SCO2, and AIF (38, 98, 107, 124, 143). With an acute exercise bout, a recovery period of ~3 

hours further improves signaling events (i.e. nuclear p53 localization and transcriptional 

regulation) to further enhance mitochondrial biogenesis proteins in both rodent and human 

models (52, 144, 158). p53 localizes to mitochondria where it acts as an exonuclease on mtDNA,  
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Table 1: Literature compiled on p53 and exercise regimens. Literature (7 studies) was 

grouped by acute (2 studies) or chronic (5 studies) exercise. Arrows indicate whether markers 

regulated by this form of stress increased (↑) or decreased (↓) in expression and/or activation. If a 

WT vs KO model is employed, only the results from the WT group are indicated. A caveat to 

this is the study published by Safdar et al., Skelet Muscle, 2016 which examines exercise in 

Polg1 MSKO models only. Various time measurements are indicated for the length of imposed 

stress. This table has been adapted from Beyfuss & Hood (2018). Abbreviations: WT 

(wildtype), KO (knockout), HT (heterozygous), MSKO (muscle specific KO), mito 

(mitochondria), SS (sub-sarcolemmal), IMF (intermyofibrillar), PAT (patagialis), ADL (anterior 

latissimus dorsi).  
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and increases the expression and binding of Tfam and Polg1 to mtDNA to maintain genomic 

integrity, and enhance SS and IMF mitochondrial biogenesis (2, 11, 144, 180).   

In contrast to acute bout of exercise, training is classified as repeated bouts of endurance 

exercise interspersed with recovery sessions over a period of time. The result of chronic exercise 

is a heightened adaptive state in which signaling responses to each exercise bout is attenuated, 

including ROS production (98). This adaptation is modulated by p53 signaling which is one of 

the major upstream regulators that confers increased mitochondrial content and improved 

mtDNA integrity, decreased cellular senescent and apoptotic signaling, less emphasis on 

glycolytic energy utilization and more on oxidative phosphorylation, reduced lactate production, 

and ultimately improved VO2 max and skeletal muscle performance (124, 139, 141). Though it is 

true that a 5-fold reduction in the exercise ability of p53 whole body KO mice is observed during 

an 8-week voluntary wheel running program, and that the subcellular localization of p53 seems 

indispensable for exercise-mediated mtDNA repair (initiator of Tfam-Polg1 complexes) and 

mitochondrial biogenesis and respiration (transcription of NUGEMPs, TIGAR, SCO2, p53R2), 

the absence of p53 does not seem to necessarily hinder the ability to adapt with exercise (124, 

139, 141). One study showed a similar increase in mitochondrial content compared to wildtype 

(WT) mice in response to exercise, indicating that exercise provokes the overlap of redundant 

signals to induce normal adaptations in mitochondria (141). An interesting divergence in the 

signaling patterns in humans arises in response to exercise, whereby short interval training, more 

than continuous exercise in humans, increases p53 Ser15 phosphorylation and PGC-1α nuclear 

localization for enhanced mitochondrial biogenesis and respiration (51, 52). However, another 

study reported no differences in signaling or gene expression when high and lower intensity 

exercise regimens were performed, when matched for workload (12). Therefore, further 
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examination into the variable parameters associated with exercise, including sex, age, exercise 

protocol and muscle type, is required.  

3.3.2. Regulatory Signaling Pathways with Endurance Exercise 

Though mitochondrial biogenesis is the well-known adaptation that enhances muscle 

plasticity with exercise, as described above, there are numerous additional signaling mechanisms 

regulated by p53 under the influence of aerobic exercise to improve skeletal muscle health (16).  

Antioxidant production is one of the first signaling pathways activated in response to 

increased oxidative stress, i.e. ROS generation, with acute and chronic exercise. In skeletal 

muscle, antioxidants are produced in an intensity-dependent manner and commonly include 

MnSOD, GPX, CAT, and NQO1 (39, 59, 91, 131). Nrf2, the major upstream regulator of these 

antioxidant enzymes, is increased by 1.5-fold in response to exercise training (37). p53 also 

transcriptionally regulates many of these enzymes including MnSOD, GPX1, and GLS2 to 

maintain cellular integrity (23). The metabolic shift in energy substrate utilization is another 

early response mechanism to improve mitochondrial handling of exercise. p53 directly 

transcribes glycolysis regulators (i.e. TIGAR) to switch substrate utilization towards oxidative 

phosphorylation and away from glycolytic energy usage, thereby reducing lactate production.  

Exercise, though a beneficial form of induced “oxidative stress” due to signaling ROS-

mediated cascades, is still an oxidative stressor that can activate various pathways. In response to 

exercise, satellite cells play a pivotal role in regeneration and are activated, proliferate, undergo 

self-renewal, and differentiate into mature muscle cells (86, 179). The cell cycle arrest pathway 

is activated with moderate endurance exercise and is transcriptionally regulated by p53. This is 

confirmed by Yu et al. (2016), whereby mice trained for 10 weeks expressed elevated levels of 



37 
 

p21 (29%), PTEN (12%), and IGFBP-3 (25%) compared to sedentary controls. Greater 

intensities of oxidative stress, such as telomere erosion, DNA lesions and high ROS levels, 

induces cellular senescence and can be a precipitating cause for sarcopenia, the degenerative loss 

in skeletal muscle mass with age (21, 53). This pathway is not commonly activated with exercise 

as exercise is often used a treatment to reverse sarcopenia or pathological muscle degeneration.  

Autophagy is known to be activated with acute endurance exercise, however  whether it 

is mediated by p53 is ambiguous (54, 57, 58, 164). One study by He et al. (2012) showed 

increased lipidated LC3II and degraded p62 with acute exercise, while Saleem et al. (2014) 

found no differences in these proteins in WT mice following an exhaustive exercise bout. 

However, an increase in ubiquitination (Ub), a tag for the removal of cellular debris, was found 

in p53 KO mice indicating p53-independent targeting of dysfunctional organelles for degradation 

(143). This discrepancy may be due to a lack of intensity or duration of the exercise protocol. 

Perhaps a greater intensity is required, as indicated by one study whereby an upregulation of 

autophagy proteins was found after an ultraendurance bout of exercise lasting 24 hours in 

humans (74). Mitophagy, on the other hand, is upregulated with acute exercise as indicated by 

increased mitochondrial LC3II, p62 and Ub expression, which can also function independently 

of p53 (143). Maintenance of the mitochondrial reticulum is further maintained through fission 

and fusion events whereby chronic contractile activity increases the reticulum through increased  

(53%) Mfn2 protein, known to have a p53-response element within its promoter, and Opa1 (71). 

Should the mitochondria become dysfunctional in response to exercise, p53-regulated fission 

proteins such as Drp1 can be activated to shuttle damaged mitochondria towards mitophagy. 

Further research is warranted to determine the p53-regulated maintenance of the mitochondrial 
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reticulum through fusion and fission events with exercise, and once fission is underway, the 

process by which both mitophagy and autophagy are induced in skeletal muscle. 

With strenuous bouts of exercise, high ROS levels can destabilize the mitochondrial 

membrane to induce apoptosis, as evidenced by increased DNA fragmentation and reduced Bcl-2 

levels (146, 151). However, it has been shown that an 8 week exercise training protocol, reduced 

apoptosis by increasing Bcl-2 and reducing APAF-1 and Bax transcript levels; signals all 

dependent on p53 activation  (151). Furthermore, another study revealed with chronic contractile 

activity an increase in mitochondrial biogenesis and a simultaneous decrease in apoptotic 

susceptibility indicated by reduced IMF ROS production and diminished cytochrome c and AIF 

protein release (4). As apoptosis is the last resort to maintaining cellular integrity, earlier 

signaling pathways in response to exercise are activated in an intensity-dependent manner. 

3.3.3. Applicable Models to Study p53 Function 

Live animal work (i.e. in vivo experimentation), is the typical stage following in vitro cell 

work, and before detailed human analysis. The benefits of utilizing rodent models, which share a 

99% genomic similarity to humans, allows for further genetic engineering to determine the 

morphological and molecular regulation by specific genes (167). Various models have been 

utilized including transgenic, tissue specific deletions/knockdowns, and whole body gene 

deletions/knockdowns.  

Whole body genetic deletions of the p53 gene have been utilized for decades in cancer 

research and are now expanding their use to understand other p53-mediated pathways. To create 

this model, a neomycin cassette is used to replace approximately 40% of the coding sequences in 

the TRP53 locus extending from exons 2 to 6, which contains the translation start codon, of the 
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total 11 exon structure (73). The average age for spontaneous tumour development in these mice 

is approximately 6 months of age, after which they die by 10 months of age (40). Though 

phenotypically there are no observed differences, deficits in exercise capacity have been noted to 

be a result of reduced gait synchronization (25, 141). Campana et al. (2003), demonstrated 

differences in fiber type distribution  whereby in the EDL, p53 KO mice displayed significantly 

fewer fast fibers (Type IIA) and more hybrid fibers (IC) than their WT counterparts, while in the 

oxidative soleus muscle p53 KO muscle contained a greater percentage of IIA than IA fibers. As 

it is unknown whether the discrepancies in skeletal muscle function are a result of p53 deletion in 

the muscle, or p53 deletion in neural networks, further investigations are necessary. Work 

previously described on understanding the phenotypic characteristics, morphological differences, 

skeletal muscle function, and signaling pathways mediated by p53 has been widely published 

using this whole body knockout model (107, 124, 141, 143–145). 

Though a wealth of evidence is present confirming the essential role that p53 plays in 

regulating whole body metabolism and skeletal muscle mitochondrial function, the importance of 

p53 in regulating skeletal muscle health cannot be established from whole body p53 deletion. 

Thus, a muscle specific p53 knockout model, one that has been recently developed, allows for 

greater analysis into p53 regulatory signaling pathways solely in skeletal muscle (47). This 

model is created by breeding two mouse strains. The first strain is a transgenic mouse expressing 

the Cre recombinase gene driven by the muscle creatine kinase (MCK) promoter found in 

skeletal muscle (47). The second strain is a homozygous mouse with a floxed p53 allele, 

whereby LoxP restriction sites are located at exons 2 and 10 (47). Once these two strains breed, 

their progeny will have the functional part of the p53 gene, flanked at exons 2 and 10, excised by 

Cre recombinase to create a muscle specific knockout (Figure 5). Efficiency of the knockout 
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Figure 5. Rodent Genetic Models. (A) Wildtype (WT) mice contained regular gene expression 

and optimal ability for transcription and translation; (B) Whole Body (WB) knockout (KO) mice 

were created using a neomycin (NEO) cassette to replace 40% of the p53 coding region by 

homodimerizing with exons 2 and 6 thus replacing this region so that it cannot be translated; (C) 
Muscle Specific KO (mKO) mice were created using a Cre-lox recombinase system. In one 

mouse, exons 2 and 10 are flanked by loxP sites. These mice are bred with mice that contain a 

cre recombinase gene under the control of a promoter of interest, i.e. the MCK promoter for 

skeletal muscle. The progeny will have the loxP sites cleaved leading to removal of the p53 

allele and ablation of its expression solely in skeletal muscle. 
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was confirmed by measuring p53 mRNA and protein expression which revealed a 70% and 60% 

reduction respectively, indicating that this the Cre-lox recombination system does not completely 

remove functional p53 protein from skeletal muscle, as it does in the whole body KO mice (155). 

One theory is that the observed p53 protein reflects the expression of protein from non-muscle 

fibre cells within skeletal muscle tissue, however further analysis is required to determine 

whether the present protein is functional (155). According to observations following these mice 

across 15 months of age, no overt differences in total body weight, skeletal muscle mass, muscle 

histology, grip strength, or organ/tissue (heart, liver, kidney, fat pad) masses were observed (47). 

Further analysis into signaling mechanisms was performed indicating no difference in 

mitochondrial content, evidenced by similar electron transport chain protein expression and 

citrate synthase enzyme activity (155). Furthermore, mitochondrial biogenesis proteins were 

comparable between genotypes, while mitochondrial dynamics was analogous with comparable 

fission and fusion protein expression (155). Lastly, fatty acid transport and carbohydrate 

metabolism were similar between groups (155).  Therefore, p53 in fully-differentiated skeletal 

muscle may not be required for maintenance into adulthood, as its absence does not induce any 

overt phenotype nor does it affect any significant signaling pathways (47, 155).  

To elucidate whether the alterations in exercise capacity observed with training are the result 

of p53 loss in skeletal muscle and not the result of the systemic deletion of p53, both mouse 

models are useful to employ. One theory on the observed differences that may exist between the 

neomycin cassette insertion (WB) and Cre-lox recombination-mediated p53 deletion (mKO), 

may indeed be a result of the timing of p53 deletion. In mKO mice, p53 would be deleted at 

approximately 13 days into embryonic development, whereas in the germline WB mice, p53 is 

absent throughout the entirety of embryonic development (100, 149). As p53 plays a significant 
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role in the differentiation phase of myogenesis, greater mitochondrial deficits may be observed in 

the WB mice as a result of its loss during this developmental period (155). Furthermore, it is 

posited that the impairments observed in mitochondrial content and function in WB KO mice is a 

secondary consequence of the loss of p53 in alternative tissues, rather than loss of p53 in skeletal 

muscle fibres. Previously, these WB mice have been observed to experience lower spontaneous 

activity, which could be a result of p53 KO loss in skeletal muscle, however it could also be a 

result of the loss of p53 in neural networks. Therefore, further research is warranted to determine 

the role p53 plays neurologically.   

3.3.4. Systemic Benefits: Neurological Maintenance 

Consistent endurance aerobic exercise provides many systemic benefits that extend life 

expectancy and reduce morbidity by improving cardiovascular function, shifting substrate 

requirement towards lipid utilization, and ameliorating contractile and metabolic dysfunction due 

to disease states and aging (66). The role of p53 in skeletal muscle with exercise is more well-

known compared to its systemic effects, especially in neurological functioning with exercise.  

Regular engagement in aerobic exercise is associated with superior brain structure and 

integrity, neural connectivity, and greater circulation of cerebral blood flow and neurotrophin 

release to ultimately improve strategic executive functions (working memory, volitional 

inhibition, selective/sustained attention) (55). When neural networks are dysfunctional as a result 

of p53 deletion and inhibition of its apoptotic function, exacerbation of neural deficits in 

response to adverse stimuli, like exercise, can reduce the activation of motor synchronization 

structures and networks (8, 25). Motor synchronization is primarily controlled by the olivo-

cerebellar system connected by axons of the olivary cells to Purkinje cells in the cerebellum (25). 

During coordinated movements such as running, groups of Purkinje cells fire synchronously in 
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response to olivary input allowing for movement. Though no differences were found in exercise 

capacity under an acute bout of exercise, when a rotarod test was performed, the WB p53 KO 

mice displayed significantly reduced walking times (10%), which was more pronounced at 

higher rotation speeds (30%) (25). Interestingly, all other neurological responses and reflexes 

(clasping movement of paws, horizontal/vertical rearing, evidence of ataxia, anxiety dispositions, 

and gait) were similar between the KO and WT mice (25). Another study by Amson et al. 

(2000), observed that during the an open field test and Morris water maze test, p53 KO mice 

displayed reduced thigmotaxis (wall-seeking tendency), and reduced central activity, spatial 

learning, and memory capacity. Therefore, advanced analysis into the role of p53 in the 

maintenance of neural structure and connectivity for optimal exercise performance is required 

through further analysis of neurological function between WB p53 KO and WT models.  

3.4. Directions for Future Research 

Regular exercise, either through acute bouts of exercise or endurance training programs, 

can induce a plethora of adaptive outcomes leading to numerous physical and mental health 

benefits. Though p53 is a relatively new player in this field, it is established as a major 

transcriptional regulator of signaling mechanisms facilitating these beneficial adaptations. 

However, further understanding of the p53-mediated coordination of signaling pathways with 

varying intensities, durations, and types of exercise/oxidative stress is still required. This can be 

accomplished by determining an optimal exercise protocol to elicit the specific activation of 

beneficial downstream signaling pathways like antioxidant and metabolic events. Fine tuning of 

this protocol will depend on the intensity (low versus high; progressive versus consistent), the 

duration (2, 4, 6, 8 weeks; every day verus certain days/week), and the type of exercise (aerobic 

versus anaerobic versus resistance). Greater analysis into the subcellular compartmentalization of 
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p53 can assist in determining the activation of specific signaling pathways, concomitant with 

microarrays or co-immunoprecipitation assays to determine the upregulation of specific markers 

by p53 within each signaling pathway. Then exposing the model to some form of stress will 

allow for an understanding in the coordinated upregulation of pathways that maintain cellular 

homeostasis. Furthermore, understanding model differences that occur between whole body 

deletion and muscle specific deletion will yield new findings on the essential requirement of p53 

in skeletal muscle. The integration of p53 in the regulatory networks governing specific 

adaptations is astounding and further work in this field will contribute to fitting the pieces of the 

signaling puzzle together to provide a picture of the cellular cooperation that occurs in response 

to exercise. 
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Research Objectives 
 

To understand the role of p53 in directly regulating skeletal muscle mitochondrial 

signaling basally and under the influence of exercise training, we must first assess p53 regulation 

in WT mice. p53 transcriptional regulation will be determined through mRNA analysis and by 

understanding p53 subcellular localization. p53 translational regulation will be determined 

through protein and post-translational modification analysis. Once an understanding of p53 in 

skeletal muscle at the transcriptional and translational level is understood, both basally and under 

the influence of exercise, the next objective will be to understand whether the 6-week 

progressive training program has been piloted correctly, i.e. is of sufficient intensity and duration 

to increase mitochondrial biogenesis adaptations in skeletal muscle. Once it is understood that 

the training program induces the appropriate adaptations, we will observe the signaling pathways 

of mitochondrial biogenesis, antioxidant production, cell cycle arrest, autophagy and apoptosis, 

in both WT and p53 KO mice, basally and under the influence of exercise. This will be required 

to understand whether these signaling pathways are regulated by p53 basally and whether 

exercise induced adaptation are dependent on p53. Furthermore, if these pathways are regulated 

by p53 basally, we will investigate whether exercise-training is sufficient to attenuate the deficit 

induced by the basal absence of p53. Lastly, we are interested in investigating the neurological 

role of p53 in regulating exercise ability, and will thus employ a whole body p53 deletion model 

in addition to a skeletal muscle p53 deletion model. This will delineate whether p53 deletion in 

alternative tissues impacts skeletal muscle signaling.  
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Hypotheses 
 
 
We hypothesize that: 
 

1. The 6-week training protocol will lead to sufficient increases in mitochondrial biogenesis 

in skeletal muscle, with a notable reduction in the training adaptation of the KO mice; 

2. Training will activate p53 through post-translational serine phosphorylation, increase its 

mRNA and protein content, and lead to enhanced nuclear and mitochondrial localization; 

3. In response to an endurance training program, p53 will be required to upregulate cell 

cycle arrest, autophagy, mitochondrial biogenesis and antioxidant enzyme production 

signaling pathways, and will downregulate cellular senescent and apoptosis; 

4. p53 whole body KO will have greater deficits in exercise capacity and mitochondrial 

biogenesis rather than the muscle specific mKO model, as a result of the influence of 

possible neurological lesions on walking synchronization. 
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Abstract  

p53 plays an important role in regulating mitochondrial homeostasis. However, it is unknown 

whether p53 is required for the physiological and mitochondrial adaptations with exercise 

training. Furthermore, it is also unknown whether impairments in the absence of p53 are a result 

of its loss in skeletal muscle, or a secondary effect due to its deletion in alternative tissues. Thus, 

we investigated the role of p53 in regulating mitochondria both basally, and under the influence 

of exercise, by subjecting C57Bl/6J whole-body (WB) and muscle-specific p53 knockout (mKO) 

mice to a 6-week training program. Our results confirm that p53 is important for regulating 

mitochondrial content and function, as well as proteins within the autophagy and apoptosis 

pathways. Despite an increased proportion of phosphorylated p53 (Ser15) in the mitochondria, 

p53 is not required for training-induced adaptations in exercise capacity or mitochondrial content 

and function. In comparing mouse models, similar directional alterations were observed in basal 

and exercise-induced signaling modifications in WB and mKO mice, however the magnitude of 

change was less pronounced in the mKO mice. Our data suggest that p53 is required for basal 

mitochondrial maintenance in skeletal muscle, but is not required for the adaptive responses to 

exercise training.  
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Introduction 

The tumor suppressor protein p53 is a rapid-response transcriptional regulator of numerous 

pathways involved in maintaining cellular homeostasis. Though extensively researched in the 

context of cancer and its role in the Warburg effect, few studies have examined the role of p53 in 

skeletal muscle, an organ that comprises 40% of total body mass (19, 23). Skeletal muscle is an 

exceptionally malleable tissue that can adapt to multiple physiological stimuli (2, 19), and 

mitochondria are the organelles that display plasticity within muscle. 

 Recently, the role of p53 has been examined in mitochondrial biogenesis within skeletal 

muscle. Exercise enhances p53 activation through kinase activation (AMPK, p38 MAPK) 

leading to the phosphorylation of specific p53 residues to increase its mitochondrial and nuclear 

localization (35, 37, 38). Once in mitochondria, p53 functions to enhance biogenesis through its 

interaction with Tfam, and its requirement for the expression of mtDNA gene products in 

response to exercise (1, 36, 48). Acute exercise has specifically been shown to increase p53 

serine15 phosphorylation and subsequent localization to subsarcolemmal (SS) and 

intermyofibrillar (IMF) mitochondria, with concomitant increases in  mtDNA copy number and 

elevated COX-I protein (37, 38). p53 additionally localizes to the nucleus where it can bind to 

the promoters of PGC-1α and nuclear genes encoding mitochondrial proteins (NuGEMPs) such 

as Tfam, COX IV, and SCO2, to upregulate transcription (26, 33, 38). p53 mitochondrial 

localization with acute exercise seems to be preferred over nuclear accumulation (38), however it 

has yet to be established whether exercise training modifies this distribution and further, and 

whether p53 is required within the mitochondria for adaptation purposes.  

 p53 is also known to play a role in regulating additional mitochondrial-dependent 

signaling pathways, including autophagy/mitophagy and apoptosis. Within the cytosol, p53 acts 
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as an upstream endogenous repressor of autophagy, through its interaction with the ULK1 

complex (31, 45). When nuclear localized, p53 can regulate autophagy through transcription of 

upstream activators AMPK and TSC2 (14), as well as lysosomal genes (13, 21, 37). 

Furthermore, p53 monitors ubiquitination and regulates autophagy flux through LC3 and p62 

modulation (21, 37, 40). Although autophagic flux and lysosomal activation in response to acute 

exercise does not depend on p53, it is required for the regulation of ubiquitination (37). 

However, it has not been established how the autophagy pathway is regulated by p53 with 

exercise training. p53 is also well-known for its role in regulating apoptosis, since it can 

transcriptionally regulate numerous pro-apoptotic genes including Bax and Bid to induce DNA 

fragmentation (16, 35, 47). Furthermore p53 itself can localize to the mitochondrial surface 

where it can regulate permeability transition pore kinetics (30, 47). Chronic exercise has been 

previously shown to reduce the Bax:Bcl-2 ratio (42, 46) concomitant with reductions in 

cytochrome c and AIF protein release  (3), indicative of anti-apoptotic adaptations in 

mitochondria. However, the role of p53 in mediating these exercise training effects on the 

apoptotic pathway is still unknown. Furthermore, literature published on the role of p53 in 

regulating autophagy, apoptosis, mitochondrial biogenesis and metabolism, have been 

established largely through the use of a whole body p53 knockout model. Though this research 

has elucidated novel roles for p53, recently published work utilizing a muscle-specific p53 

knockout model did not observe any reductions in mitochondrial content or the expression of 

nuclear genes encoding mitochondrial proteins (15, 43). Thus, the purpose of this study was to 

elucidate the role of p53 in regulating skeletal muscle adaptations to endurance training, 

particularly related to the mitochondrial biogenesis, autophagy, and apoptosis pathways. To 

accomplish this, we utilized a muscle-specific p53 deficient mouse and when relevant, compared 
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this model to traditionally employed p53 whole body knockout animals under identical 

endurance training stimuli.  

Methods 

Animal Breeding. The C57Bl/6J whole body (WB) p53 wildtype (WT) and knockout (KO) 

mouse groups originated from two companies, one from Taconic labs (New York, USA) and one 

from the Jackson Laboratory (California, USA). The C57Bl/6J muscle specific (MS) p53 WT 

and KO mice were generously provided by Dr. Christopher M. Adams (Iowa, USA). Mice were 

bred and treated experimentally in accordance with principles of the York University Animal 

Care Committee in accordance with the Canadian Council on Animal Care. Progeny of breeding 

pairs were genotyped using ear clippings obtained from each mouse for crude DNA extraction. 

Extracts were then added to a polymerase chain reaction (PCR) tube containing DNA Taq 

polymerase (Sigma Jumpstart REDtaq Ready Mix PCR Reaction Mix). Forward and reverse 

primers for the WT and KO p53 gene were added to test the genotype of the whole body mice, 

whereas for the muscle-specific mice, a forward and reverse primer for the Cre gene was added. 

Genomic differences were detected using PCR amplification and the reaction products were 

separated on 2% agarose gels at 120 V for ~one hour and visualized with the ethidium bromide. 

Experimental Design. At approximately12-14 weeks of age, male C57Bl/6J WT and KO mice in 

the WB and MS mouse models were matched for sex and body weight. All mice were 

acclimatized to the treadmill for two days prior to the first graded exercise performance test. 

Animals commenced at 5m/min for 5 min, followed by 10 m/min for 10 min, then increasing 

from 15 m/min to 20 to 25 m/min for 5 min each before beginning the exhaustive portion of 

increased the speed by 1 m/min every 3 min until exhaustion. Exhaustion was defined as the 
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point whereby mice remained on an electric shock pad for 10 seconds despite prodding with air 

currents. Lactate measurements were obtained following removal from the treadmill to ensure 

that exhaustion was reached. Mice in both models were then randomized to a sedentary or 

training group. The sedentary group involved no treadmill exercise for 6 weeks, while the 

training group participated in a 6-week training protocol exercising 5 days/week and beginning 

at 5 m/min for 20 min and progressing to 26 m/min for 90 min. Following the 6 weeks, both the 

sedentary and training groups underwent a second exercise performance test following the same 

parameters as the first.  Approximately 48 hours later, all mice underwent an acute bout of 

treadmill exercise at 15 m/min for 90 min. Full details are in Figure 1. All mice were sacrificed 

by cervical dislocation immediately following the acute bout for instantaneous tissue removal.  

Tissue Extraction and Experimental Organization. All mice underwent the same tissue 

extraction protocol. One gastrocnemius (~ 170 mg) and one tibialis anterior (TA) (~50 mg) were 

extracted and immediately snap frozen and stored at -80◦C for mRNA analysis, whole muscle 

western blotting, and COX enzyme activity. Part of one TA (~ 30 mg) was placed in buffer and 

utilized for nuclear/cytosolic fractionation. The rest of the skeletal muscle (one gastrocnemius, 

two quadriceps femoris, two triceps) (~ 1000 mg) was utilized for mitochondrial fractionation 

and subsequent functional testing. The heart and epididymal fat were removed, weighed, and 

frozen in liquid nitrogen for later use. Frozen skeletal muscle samples were pulverized into a 

powder with a stainless steel mortar cooled to the temperature of liquid nitrogen and stored in 

liquid nitrogen for subsequent analysis.  
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Figure 1. Exercise training protocol. Muscle specific (MS) WT and p53 mKO mice and whole 

body (WB) WT and p53 KO mice underwent a two-day acclimatization program to the treadmill 

followed by an exhaustive performance test to measure baseline differences between mouse 

model and genotype. Mice were randomized to a training and sedentary arm. Mice in the training 

group underwent a 6-week progressive training program. Speed was expressed in m/min and 

(time) was measured in minutes. Once individual programs were completed, all mice underwent 

a second exhaustive performance test to measure training adaptations. Following 48 hours, 

animals were subjected to an acute bout of exercise to upregulate transcriptional signaling, 

followed by immediate extraction of the skeletal muscles, heart, and epdididymal fat. 

 

 

6-week Chronic Endurance Exercise Program 

Acute Exercise Bout to induce gene expression 

Immediate Tissue Extraction 

Post-Training Period: Exercise Performance  Stress Test 
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Protein Extraction. Tissue powders were diluted 5X with an extraction buffer containing 

protease and phosphatase inhibitors. Diluted samples were rotated end-over-end at 4°C for one 

hour, followed by sonication at 3x3 at 30% of maximum power. Samples were then centrifuged 

at 4°C for 10 minutes at 16,000g and the supernate was stored at -80°C until required.  

Protein Concentration. The Bradford protein assay was used to determine the protein 

concentration of samples, as previously described (6). Briefly, to standardize for concentration, 

bovine serum albumin (2mg/ml) was combined with double distilled water and Sakamoto 

extraction buffer in eppendorf tubes. Protein extracts were mixed with double- distilled water 

and analyzed in comparison with the standard curve using a Bio-Tek Synergy HT micro plate 

reader. 

Mitochondrial Fractionation. Briefly, approximately 1000 mg of fresh skeletal muscle was 

minced, homogenized, and subjected to differential centrifugation to yield the SS and IMF 

subfractions (11). The mitochondria were re-suspended in a small volume of resuspension buffer 

(100 mM KCl, 10 mM MOPS, and 0.2% BSA at pH=7.4). All centrifugation steps were carried 

out at 4°C. Mitochondrial homogenates were analyzed for protein content using the Bradford 

assay, and used immediately for mitochondrial respiration, ROS analysis, and the protein release 

assay before being frozen at -80°C for later biochemical analysis by immunoblotting.  

Mitochondrial Respiration. Isolated SS and IMF mitochondria (50 μl) were incubated with 250 

μl of V̇O2 buffer (in mM: 250 sucrose, 50 KCl, 25 Tris·HCl, 10 K2HPO4, pH=7.4), at 30°C in a 

water-jacketed respiratory chamber with continuous stirring. Respiration rates (nanoatoms 

O2·min−1·mg−1) were evaluated in the presence of 10 mM glutamate (state 4 or passive 
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respiration) and 0.44 mM ADP (state 3 or active respiration) with the use of a Clark oxygen 

electrode. 

Mitochondrial Reactive Oxygen Species (ROS) Production. SS and IMF mitochondria (50 μg) 

were incubated with 50 μM dichlorodihydro-fluorescein diacetate (H2DCF-DA) and V̇O2 buffer 

at 37°C for 30 min in a polystyrene 96-well plate. The fluorescence emission (between 485 and 

528 nm) is directly proportional to ROS production and was measured with a Synergy HT 

microplate reader. ROS production was assessed during state 4 and state 3 respiration by the 

addition of 10 mM glutamate and 0.44 mM ADP respectively, to isolated mitochondria 

immediately before the addition of H2DCF-DA. 

Nuclear and Cytosolic Fractionation. Nuclear and cytosolic fractions were prepared from 

freshly isolated skeletal muscle using a commercially available nuclear extraction kit (Pierce NE-

PER, Rockford, IL, USA). Approximately 50 mg of skeletal muscle was minced and 

homogenized in CER-I buffer containing protease inhibitor cocktail Complete, EDTA free 

(Roche Applied Sciences, Manheim, Germany). After a series of wash steps, nuclear proteins 

were extracted in high salt NER buffer supplemented with protease-inhibitors. The cytosolic 

fraction was spun at 100,000 x g at 4°C for 60 min to obtain pure cytosolic fraction.  

Cytochrome c Oxidase (COX) Enzyme Activity. Mitochondrial extracts from skeletal muscle 

were added to a test solution containing fully reduced cytochrome c. Enzyme activity was 

determined as the maximal rate of oxidation of fully reduced cytochrome c measured by the 

change in absorbance at 550 nm in a Synergy HT microplate reader at 30°C. Full protocol is 

previously described elsewhere (12). 
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Protein Release Assay. Isolated SS and IMF mitochondrial fractions (150 μg) were incubated in 

resuspension medium for 60 min at 30°C as described previously (3). Reaction mixtures were 

subsequently centrifuged at 14,000 g (4°C) to pellet mitochondria, and the supernate was 

analyzed for cytochrome c and AIF release from the mitochondria by Western blot analysis. 

Immunoblotting. Whole muscle and isolated subfractions including mitochondrial, nuclear, and 

cytosolic protein extracts were separated on a 10% - 15% sodium dodecyl sulfate polyacrylamide 

gel through electrophoresis (SDS-PAGE) at 120V for ~90 minutes. Proteins were then 

transferred onto a nitrocellulose membrane. The membrane was stained with Ponceau Red, cut at 

the appropriate molecular weights, and blocked in 5% skim milk for one hour to prevent non-

specific binding. The membrane strips were immunoblotted overnight at 4°C with a primary 

antibody, as detailed in Table 1. Membranes were washed three times (5 min each) with tris-

buffered-saline-tween-20 (TBST) solution containing 25 mM Tris-HCL (pH=7.5), 1 mM NaCl 

and 0.1% Tween 20. Membranes were incubated with the appropriate secondary antibody 

coupled to horseradish peroxidase at room temperature for one hour. Loading controls were 

utilized for specific extracts. GAPDH was utilized for whole muscle extracts, VDAC for 

mitochondrial subfractions, and histone 2B and α-tubulin were utilized for nuclear and cytosolic 

fractions, respectively. Following incubation, membranes were washed three times again in 

TBST, developed using an enhanced chemiluminescence (ECL) kit and Imager technology, and 

quantified via densitometric analysis based on signal intensity using the Sigma Scan Pro Version 

5 software (Jandel Scientific, San Rafael, CA).  
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Table 1. List of primary and secondary antibodies for immunoblotting.  
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RNA Isolation. Total RNA was isolated from approximately 70 - 80mg of frozen powdered 

muscle tissue according to the manufacturer’s instructions. Briefly, tissue was added to TRIzol ® 

reagent, homogenized, and mixed with choloroform. Samples were centrifuged at 4°C at 16,000g 

for 15 min and the aqueous supernate was transferred to a new tube with the addition of 

isopropanol and left overnight at -20°C to precipitate. Samples were again centrifuged at 16,000 

g for 10 min and the resultant supernate was discarded. The pellet was resuspended in 10-20 µl 

of sterile H2O. RNA concentration and quality were measured using the Nanodrop 2000 (Thermo 

Scientific, Wilmington, DE, USA). SuperScript ® III reverse transcriptase (Invitrogen, Carlsbad, 

CA, USA) was used to reverse transcribe 1.5 µg of total RNA into cDNA.  

mRNA Expression Analyses. The mRNA expression of SCO2, TIGAR, Mdm2, p62, LC3, p52, 

p21, Bax, PGC-1α, and Tfam were quantified using the 7500 Real-Time PCR system (Applied 

Biosystems Inc., Foster City, CA, USA) and SYBR® Green chemistry (PerfeCTa SYBR® Green 

Supermix, ROX, Quanta BioSciences, Gaithersburg, MD, USA). First-strand cDNA synthesis 

from 2µg of total RNA was performed with primers using Superscript III transcriptase 

(Invitrogen) according to the manufacturer’s directions. Forward and reverse primers (Table 2) 

for the aforementioned genes were designed based on sequences available in GenBank 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the MIT Primer 3 designer software 

(http://wi.mit.edu/cgi-bin/primer3/primer3_www.cgi), and were confirmed for specificity using 

the basic local alignment search tool (www.ncbi.nlm.nih.gov/BLAST/). B2M and GAPDH were 

used as housekeeping genes, the expression of which did not change between conditions, 

genotype and rodent model. Each well within a 96-well plate contained: SYBR ® Green 

SuperMix, forward and reverse primers (20 µM), sterile H2O and 10 ng of cDNA, for a final 

reaction volume of 25 µl. All samples were run in duplicate simultaneously with negative 
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controls that contained no cDNA. The PCR program consisted of an initial holding stage (95°C 

for 10 min), an amplification phase (40 cycles at 60°C for 1 min, 95°C for 15 sec), and melting 

stage (95°C for 15 sec, 60°C for 1 min, 95°C for 25 sec). Melting point dissociation curves 

generated by the instrument were used to confirm the specificity of the amplified product. Primer 

efficiency curves were generated for each set to ensure 100 ± 2% efficiency. For quantification, 

the threshold cycle (CT) number of endogenous references genes was subtracted from the CT 

number of the target gene [ΔCT = CT(target) – CT(reference)] . The ΔCT value of the control 

tissue was subtracted from the ΔCT value of the experimental tissue [ΔΔCT = ΔCT 

(experimental) - ΔCT(control}]. Results were reported as fold-changes using the ΔΔCT, 

calculated as 2-ΔΔCT.  

Statistical Analysis. Data were analyzed using the Graph Pad Prism 7.0 software and values are 

reported as means ± SEM. All data was analyzed using a two-way ANOVA and Bonferroni post-

tests unless otherwise indicated. Significance levels were set at p ≤ 0.05. 
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Table 2. List of primer oligonucleotide sequences used in real-time qPCR analysis for 
Mus Musculus. 

PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1 α; Tfam, mitochondrial 
transcription factor; Mdm2, Mouse double minute 2 homolog; SCO2, synthesis of cytochrome-
c oxidase 2;TIGAR, TP53-inducible glycolysis and apoptosis regulator; LC3, light chain 3; 
GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; b2 microglobulin, beta-2 microglobulin.
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Results 

Exercise-induced p53 localization to the nucleus is reduced with training and increases to the 

mitochondria. p53 protein expression in whole muscle, nuclear and cytosolic fractions, as well 

as mitochondrial subfractions was examined following the final acute exercise test in both 

trained and untrained WT mice. Total p53 protein was reduced by 2.6-fold with exercise training 

(Fig. 2A, B). However, the proportion of activated p53, measured by p53-Ser15 phosphorylation, 

was increased by 2.5-fold following exercise in the trained state (Fig. 2A, C).  

p53 was largely localized to the cytosolic fraction in both trained and untrained muscle 

(Fig. 2D, E). However, the distribution of phosphorylated p53 (Ser15) differed. In untrained 

muscle p-p53 was largely (70%) nuclear-localized, whereas trained muscle exhibited only 40% 

of p-p53 in the nucleus (Fig. 2D, F). Exercise training also reduced total p53 levels within SS 

and IMF mitochondria by 2.1-2.6-fold. However, activated p53 localization increased in both 

IMF and SS mitochondrial subfractions by ~2.3-fold following acute exercise in trained muscle 

(Fig. 2, G-K).  

Confirmation of muscle specific mouse model. The muscle-specific genotype was confirmed 

through the Cre recombinase transcript (Fig. 3A). When the Cre recombinase gene is expressed, 

it targets the LoxP restriction sites at exons 2 and 10 of the p53 transcript, allowing for targeted 

excision and deletion of p53 solely within skeletal muscle to create the mKO model. In 

agreement with previous literature (15, 43), this abolished p53 protein expression (Fig. 3B).   

Exercise training induces a leaner phenotype and increases cardiac hypertrophy regardless of 

genotype. The phenotypic characteristics of the p53 WT and mKO mice are described in Table 3. 

No difference in baseline parameters including body mass or exercise capacity were observed 
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Figure 2. p53 subcellular localization with training.  A) Whole muscle B) total p53 protein 

and C) phosphorylated p53-Ser15 protein was measured in WT mice. GAPDH was utilized as the 

loading control for all immunoblotting in whole muscle (n=6-7/group); *p<0.05, **p<0.01, UT 

vs. T, Student’s t-test. D) p53 protein was measured in nuclear and cytosolic fractions in WT 

mice. H2B was used as a nuclear loading control and α-tubulin was used as a cytosolic loading 

control. Basally and with training, nuclear and cytosolic E) total p53 protein, and F) percent total 

of phosphorylated p53-Ser15 protein was measured (n=4-5/group); *p<0.05, UT vs. T; #p<0.05, 

Nuclear vs. Cytosolic (n=4-5/group), Student’s t-test, 2-way ANOVA. A main effect of training 

was observed. G) Mitochondrial p53 protein was examined in SS and IMF mitochondrial 

subfractions. VDAC was utilized as a mitochondrial loading control. Total p53 protein in H) 

IMF, and I) SS mitochondria was measured (n=4-5/group); *p<0.05, **p<0.01, UT vs. T, 

Student’s t-test. Activated p53, corrected for total, was additionally measured in J) IMF, and K) 

SS mitochondria (n=4-5/group); *p<0.05, UT vs. T, Student’s t-test. Data are presented as mean 

± SEM.  
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between genotypes (Table 3A). Training induced a leaner phenotype in both WT and mKO mice 

compared to their untrained counterparts, exemplified by 28% and 56% reduction in epididymal 

fat mass in WT and mKO mice, respectively (Table 3B). No effect of training was observed on 

quadriceps or gastrocnemius skeletal muscle mass (Table 3B). Cardiac hypertrophy (7-21%), a 

typical consequence of training, was also evident (Table 3B). 

p53 is not required for exercise capacity adaptations to a long term training program. A post-

training exercise performance test was employed to examine whether p53 is required for whole 

body performance improvements with training. Both WT and mKO trained mice significantly 

improved their exercise capacity by ~2.3-fold relative to untrained mice (Fig. 3C). Blood lactate 

levels were markedly elevated (>10 mM) in all WT and mKO animals following the exercise 

test, with a 12-27% reduction observed in the trained animals, an expected adaptation to training 

(Fig. 3D). There was no difference in final lactate production levels between genotypes under 

basal conditions. 

p53 is required to maintain basal mitochondrial content and function, but not for exercise 

training-induced adaptations. Untrained mKO mice exhibited a 17% reduction in mitochondrial 

content, as measured by COX activity, compared to the untrained WT mice (Fig. 3E). In 

addition, PGC-1α protein was reduced by 36%, accompanied by a 28% reduction in Tfam levels 

(Fig. 3, F-H). In response to training, both WT and mKO mice increased their mitochondrial 

content by 1.3- and 1.7-fold respectively, relative to untrained counterparts (Fig. 3E). SS and 

IMF mitochondrial yield increased with training by ~31% and ~22% respectively, with no 

reduction observed in the mKO mice under basal conditions (Table 3C). The respiratory control 

ratio measured in mitochondrial subfractions was not significantly affected by training (Table 

3C). Training increased PGC-1α protein levels by 1.8-2.6-fold, regardless of genotype (p<0.05; 
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Fig. 3F, G). Tfam protein levels also increased in the mKO mice with training by 2.1-fold, while 

only a modest increase was observed in the WT mice (Fig. 3F, H). Therefore mitochondrial 

biogenesis markers increase with exercise training, even in the absence of p53.   

Mitochondrial function was assessed by measuring respiration and reactive oxygen 

species production (ROS) in both SS and IMF subfractions. No baseline differences in SS or 

IMF state 4 mitochondrial respiration were observed in the absence of p53 (Fig. 4A, B). 

However, state 3 respiration in SS mitochondria was 2-fold higher in the mKO mice, but was 

22% lower in the IMF subfraction, indicating a differential dependency on p53 (Fig. 4C, D). 

With exercise training, state 4 respiration increased similarly in both genotypes, by ~2.2-fold in 

SS mitochondria and by 1.4-1.7-fold in IMF mitochondria (p<0.05; Fig. 4A, B). State 3 

respiration in SS mitochondria improved by 4.8-fold in the WT mice with training, but only 

increased by 1.7-fold in the mKO mice (Fig. 4C). IMF state 3 respiration did not improve in the 

WT mice with training, but training did attenuate the deficit observed in the mKO mice, such 

that state 3 respiration was similar to control values (Fig. 4D). Therefore, SS mitochondria 

appear to adapt more readily to training stimuli compared to the IMF mitochondria, with only a 

minor dependency on p53.  

In the absence of p53, state 3 and 4 ROS levels were elevated under basal conditions in 

both the SS and IMF subfractions (Fig. 5A, B, D). Exercise training attenuated state 3 and 4 SS 

ROS levels by 23-58% in WT mice and normalized ROS production in both SS and IMF 

subfractions under state 3 and state 4 conditions in mKO mice (p<0.05; Fig. 5, A-D).  Thus, 

although the absence of p53 led to increase ROS levels under basal conditions, p53 is not 

required for the adaptive decreases in mitochondrial ROS production with training.  
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Figure 3. Mitochondrial content, exercise capacity, and lactate handling improves with exercise 
training. The deletion of p53 in skeletal muscle of MS mKO mice was examined through A) 
genotype against the Cre transcript, and B) total p53 protein in whole muscle. Following the 6-week 

training/sedentary protocol, mice were subjected to an exhaustive bout of exercise to determine 

training-induced adaptations by measuring C) distance to exhaustion (n=6-8/group); **p<0.01, UT 

vs. T, 2-way ANOVA, and D) final lactate production levels (n=6-17/group), **p<0.01, UT vs. T, 

Student’s t-test. Mitochondrial biogenesis with training was measured through assessment of E) 
COX enzyme activity, a marker of mitochondrial content (n=6-8/group); **p<0.01, UT vs. T, 2-way 

ANOVA; ††p<0.01, UT WT vs. mKO, Student’s  t-test, and F) mitochondrial biogenesis markers G) 
PGC-1α protein (n=5-8/group); **p<0.01 , UT vs. T, 2-way ANOVA; ††p<0.01, UT WT vs. mKO, 

Student’s  t-test, and H) Tfam protein (n=6-7/group); **p<0.01 , UT vs. T, 2-way ANOVA; †p<0.05, 

UT WT vs. mKO, Student’s  t-test. Data are presented as mean ± SEM. 
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Table 1. Phenotypic alterations and exercise capacity under basal and exercise training 
conditions.  
 

A. Pre-Training WT  mKO 

Initial Body wt, g 30.4 ± 0.4 31.4 ± 1.0 
Distance to Exhaustion (m) 1,286 ± 51 1,156 ± 85 

 
B. Post-Training 

WT mKO 
UT T UT T 

Final Body wt, g 33.2 ± 1.1  30.1 ± 0.3 * 34.8 ± 1.7  27.8 ± 0.4* 
TA wt/ body wt (mg/g) 2.0 ± 0.08 1.6 ± 0.07 * 2.1 ± 0.08 1.8 ± 0.04* 

Gastrocnemius wt/ body wt, 
(mg/g) 

6.3 ± 0.3 5.8 ± 0.2 6.3 ± 0.3 6.2 ± 0.1 

Quadriceps wt/ body wt (mg/g) 6.2 ± 0.1 6.2 ± 0.1 6.6 ± 0.2 6.6 ± 0.08 
Heart wt/body wt, (mg/g) 5.4 ± 0.4 5.8 ± 0.2 4.8 ± 0.2 5.8 ± 0.1* 

Epididymal Fat wt/ body wt 
(mg/g) 

43.6 ± 3.3 31.5 ± 3.5 * 54.6 ± 3.4 † 23.9 ± 1.8 * 

   C. Mitochondrial Parameters 
SS Mitochondrial Yield 0.5 ± 0.07 0.8 ± 0.05 * 0.6 ± 0.09 0.8 ± 0.05 * 

IMF Mitochondrial Yield 1.1  ±  0.02 1.3  ±  0.1 1.0  ±  0.1 1.4  ±  0.08* 
SS RCR 3.8 ± 0.8 12.9 ± 5.3 4.6 ± 0.6 7.2 ± 1.8 

IMF RCR 6.1 ± 0.2 10.1 ± 2.9 7.0 ± 1.1 12.1 ± 4.5 
 
A) Pre-training variables (initial body mass and distance to exhaustion) were compared between 
genotype in the muscle specific (n=13-23/group). B) Phenotypic variables were measured 
following the training or sedentary program (n=6-10/group); *p≤0.05, UT vs. T; †p≤0.05, WT vs. 
mKO, 2-way ANOVA and Student’s t-test. C) Mitochondrial parameters measured in SS and 
IMF mitochondrial subfractions (n=5-10/group); *p≤0.05, UT vs. T, 2-way ANOVA and 
Student’s t-test. Data are presented as mean ± SEM. Abbreviations: RCR, respiratory control 
ratio; TA; tibialis anterior; SS, subsarcolemmal; IMF, intermyofibrillar. 
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Figure 4. Mitochondrial respiration improves with exercise training. State 4 respiration was 

measured in A) SS (n=6-7/group); *p<0.05, **p<0.01, UT vs. T, Student’s t-test and 2-way 

ANOVA, and B) IMF mitochondria (n=6-7/group); *p<0.05, main effect of genotype and 

training, 2-way ANOVA. State 3 respiration was further measured in C) SS 

(n=6/group);*p<0.05, **p<0.01, UT vs. T, Student’s t-test and 2-way ANOVA; †p<0.05, UT 

WT vs. mKO, Student’s  t-test, and D) IMF mitochondria (n=6-7/group); *p<0.05, UT vs. T, 

Student’s t-test; †p<0.05, UT WT vs. mKO, Student’s  t-test. Data are presented as mean ± SEM. 
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Figure 5. Mitochondrial reactive oxygen species (ROS) is reduced with exercise training.  
State 4 ROS levels were measured in A) SS, and B) IMF mitochondria (n=6-8/group); *p<0.05, 

UT vs. T, 2-way ANOVA. State 3 ROS levels were measured in C) SS, and D) IMF 

mitochondria (n=6-8/group); *p<0.05, **p<0.01, UT vs. T, Student’s t-test and 2-way ANOVA; 

†p<0.05, UT WT vs. mKO, 2-way ANOVA. Data are presented as mean ± SEM. 
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Transcripts of genes related to downstream p53 signaling targets alter with exercise training. 

The mRNA transcripts of numerous signaling pathways regulated by p53 were examined. 

Training downregulated p53 (1.4-fold), p21 (~1.4-fold), and Bax (1.2-fold) transcripts (p<0.05; 

Fig. 6A). TIGAR, Mdm2, Tfam, LC3, p62, SCO2, and PGC-1α mRNA transcripts were not 

significantly altered with training in WT mice. In the absence of p53 under basal conditions, 

there was a 1.2-1.6-fold reduction in the transcripts of genes involved in mitochondrial 

biogenesis (Tfam), autophagy (LC3, p62), and cell cycle arrest/cell death (p21, Bax) signaling 

pathways (p<0.05; Fig. 6B). In contrast, TIGAR and SCO2 mRNA levels increased in the 

absence of p53. The effect of training was evaluated to determine if exercise could reverse the 

gene expression pattern defined by the absence of p53. With training, the decrease in PGC-1α 

mRNA was reversed, exhibiting a ~1.3-fold increase above WT untrained levels. The decrease in 

Bax mRNA and the increase in SCO2 were further amplified with training (p<0.05) while the 

reductions in p21, Tfam, and LC3 transcripts were normalized. Thus, these training-induced 

alterations are not dependent on the presence of p53. Changes in the transcripts of TIGAR and 

p62, brought about by p53 deficiency, did not respond to training, indicating a strong 

dependence on p53 for basal expression. Mdm2 expression was not significantly affected by 

either training, or the absence of p53, at the transcript level.  

Targeted regulation of p53 protein. The effect of training was examined on proteins that 

determine p53 steady state levels (Mdm2) and mitochondrial localization (CHCHD4). Mdm2 

levels were unaffected by the absence of p53, and were increased by 1.7-2.1-fold with training  

(Fig. 7A). CHCHD4 protein was reduced by 52% in the absence of p53 under basal conditions 

(p<0.05; Fig. 7B). Training induced modest (1.5-fold) and large (4.6-fold) increases in CHCHD4 

expression in the WT and mKO mice, respectively.  
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Figure 6. mRNA expression of downstream p53-regulated targets and the effect of training. 
A) The effect of training on mRNA transcripts of signaling pathways including cellular 

senescence (p21), apoptosis (Bax), metabolism (TIGAR), autophagy (p62, LC3), oxidative 

phosphorylation (SCO2), mitochondrial biogenesis (PGC-1α, Tfam) and p53 and its negative 

regulator Mdm2, in WT mice. Data are presented as fold change over WT control levels (n=8-

10/group); *p<0.05, UT vs. T, Student’s t-test. B) Effect of the absence of p53, and training on 

mRNA transcripts of signaling pathways. Data presented as fold change of mKO over WT 

untrained levels and as mKO trained over untrained levels (n=7-11/group); *p<0.05, mKO UT 

vs. T, Student’s t-test; †p<0.05, UT WT vs. mKO, Student’s t-test. Data are presented as mean ± 

SEM. 
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Differential apoptotic release occurs in mitochondrial subfractions however, training reduces 

intrinsic mitochondrial apoptosis. To assess mitochondrial apoptotic susceptibility, we 

measured cytochrome c protein release from isolated organelles in the presence (H2O2) and 

absence (basal) of apoptotic stimuli. Under basal conditions, cytochrome c release from SS 

mitochondria was increased by 45% in the absence of p53, but was reduced by 44% in the IMF 

subfraction compared to WT counterparts (Fig. 8A, B). Training attenuated the elevated 

cytochrome c release rate in the SS subfraction of mKO mice to reach WT levels (p<0.05; Fig. 

8A).  An attenuation of cytochrome c release from SS mitochondria by 42-60% in the WT and 

mKO mice was also observed in the presence of H2O2 (Fig. 8C). There was no effect of training 

or genotype on H2O2–induced cytochrome c release in the IMF subfraction (Fig. 8D). Therefore, 

p53 and exercise training result in differential apoptotic adaptations, dependent on the 

mitochondrial subfraction. 

To relate patterns of cytochrome c release to upstream activators, we measured p21, Bax, 

and Bcl-2 protein in whole muscle lysates. In the absence of p53, Bax protein levels increased by 

2.3-fold, whereas Bcl-2 and p21 protein expression was reduced by 49% and 32%, respectively 

(Fig. 8, E-H). Training reduced Bax protein by 43% in the mKO mice, to values reaching WT 

control levels (Fig. 8F). Bcl-2 protein was reduced in both WT and mKO genotypes by ~34% 

with training (Fig. 8G). Though p21 expression was unaffected by training in WT mice, training 

induced a significant augmentation in p21 levels in the mKO mice by 2.1-fold (Fig. 8H). 

Therefore, p53 plays a role in regulating apoptotic protein signaling under basal conditions, but it 

does not appear to be required for the anti-apoptotic adaptations induced by exercise training.   
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Figure 7. Regulators of p53 expression (Mdm2) and its mitochondrial localization 

(CHCHD4). Whole muscle protein expression of A) Mdm2 (n=5-6/group); *p<0.05, **p<0.01, 

UT vs. T, 2-way ANOVA, and B) CHCHD4 (n=5-6/group); **p<0.01, UT vs. T, Student’s t-test 

and 2-way ANOVA; ††p<0.01, UT WT vs. mKO, Student’s t-test, was measured. Data are 

presented as mean ± SEM. 

 

Mdm2 

CHCHD4 

GAPDH 

100  

25  

37  

UT     T      UT     T 
WT           mKO 

* 

** 

WT mKO 
0 

0.2 

0.4 

0.6 

0.8 

1.0 

M
dm

2 
Pr

ot
ei

n 
 (A

.U
.) 

WT mKO 
0 

0.5 

1.0 

1.5 

C
H

C
H

D
4 

Pr
ot

ei
n 

(A
.U

.) ** 

** 

†† 

A 

B 

UT 
T 

Fig. 7  



88 
 

Exercise training increases autophagy signaling. We evaluated the potential role of p53 in 

mediating autophagy signaling through the examination of LC3, p62, Parkin and Beclin-1 

proteins. In the absence of p53 under basal conditions, the autophagy protein markers p62, 

Parkin, and Beclin-1 were upregulated by 2.4-3-fold (Fig. 9, B-D). LC3-I and LC3-II levels were 

unaffected (Fig. 9A). Training induced relatively similar 1.7-2.2-fold increases in all of these 

autophagy proteins in WT mice. This increase was attenuated for LC3-II, and reversed for p62, 

Parkin, and Beclin-1 in the absence of p53, suggesting that training can normalize the aberrant 

expression of these proteins in p53 null mice, through a potential substrate clearance mechanism. 

Signaling pathways and mitochondrial properties in muscle-specific and whole body p53 

deletion models. Since a large number of studies have utilized whole-body (WB) p53 KO 

animals to examine mitochondrial content and function in (32, 33, 35, 37–39) muscle, we 

conducted a limited comparison of mitochondrial parameters between WB and mKO p53 

knockout models under basal conditions. Mitochondrial content in the mKO and WB p53 KO 

mice was reduced by 17% and 27% respectively, with no difference in levels between models 

(Fig. 10A). PGC-1α mRNA was not altered in the mKO mice, however it was reduced by 47% in 

WB KO mice compared to WT counterparts (p<0.05; Fig. 10B). Furthermore, PGC-1α mRNA 

and protein in WB WT mice was higher when compared to their muscle-specific counterparts. 

PGC-1α protein was reduced in the absence of p53 by 36% and 40% in the mKO and WB mice, 

respectively (Fig. 10C). Differences in state 3 respiration were observed in the absence of p53 in 

SS mitochondria whereby mKO mice had 2-fold higher respiration, while WB KO mice had a 

1.4-fold lower state 3 respiration compared to their WT counterparts (Fig. 10D). State 3 ROS in 

SS mitochondria was not elevated in the absence of p53 in either model, however the WB mice 

displayed greater (2.5-4.1-fold) ROS levels overall (Fig. 10E). Basal cytochrome c release 
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Figure 8. Effect of training and p53 on mitochondrially-mediated apoptosis. In the absence 

of p53 basally, A) greater cytochrome c release is observed in SS mitochondria with training 

reducing release (n=5-8/group); *p<0.05, UT vs. T, One-way ANOVA; †p<0.05, UT WT vs. 

mKO, Student’s t-test, and B) reduced basal release is observed in IMF mitochondria (n=7-

14/group); †p<0.05, UT WT vs. mKO, Student’s t-test. Under apoptotic stimuli (H2O2), 

cytochrome c release was reduced with training in C) SS mitochondria (n=6-10/group); *p<0.05, 

UT vs. T, One-way ANOVA, and D) did not change in IMF mitochondria (n=6-12/group). E) 
Apoptosis, anti-apoptosis, and cellular senescent proteins were measured in whole muscle; F) 
Bax protein (n=4-6/group); *p<0.05; UT vs. T, 2-way ANOVA; ††p<0.01, UT WT vs. mKO, 2-

way ANOVA; G) Bcl-2 protein (n=5-8/group); *p<0.05, UT vs. T, Student’s t-test; ††p<0.01, 

UT WT vs. mKO, 2-way ANOVA; H) p21 cellular senescent protein (n=5-6/group); **p<0.01, 

UT vs. T, 2-way ANOVA; †p<0.05, UT WT vs. mKO, Student’s t-test. Data are presented as 

mean ± SEM. 
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Figure 9. Autophagic protein responses in the absence of p53 and with training. A) LC3-

II/LC3-I ratio (n=6-8/group);*p<0.05, **p<0.01, UT vs. T, 2-way ANOVA, B) p62 (n=5-

8/group), *p<0.05, UT vs. T, 2-way ANOVA; ††p<0.01, UT WT vs. mKO, 2-way ANOVA, C) 
Parkin (n=5-7/group); *p<0.05, UT vs. T, Student’s t-test and 2-way ANOVA; ††p<0.01, UT 

WT vs. mKO, 2-way ANOVA, and D) Beclin-1 (n=5-7/group); *p<0.05, UT vs. T, Student’s t-

test; ††p<0.01, UT WT vs. mKO, 2-way ANOVA. Data are presented as mean ± SEM. 
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in SS mitochondria was elevated by ~45% in the absence of p53 in both models compared to WT 

mice (Fig. 10F).Therefore, some differences in gene expression, respiration, and ROS production 

exist between mouse models in the absence of p53. 

 The autophagy signaling pathway was measured through the examination of LC3, p62, 

and Beclin-1 proteins. Though LC3-I remained relatively constant between genotypes, activated 

LC3-II protein was increased in the WB KO mice, leading to an elevation in the LC3 II/I ratio 

(p<0.05; Fig. 11A, B). p62 protein was elevated by 2.4- and 1.6-fold in the mKO and WB KO 

mice (Fig. 11A, C). Beclin-1 protein was increased in the mKO mice by 2.6-fold, but the higher 

level evident in the WB WT control mice precluded a significant increase in the WB KO animals 

(Fig. 11A, D).  

Understanding the combined effect of genotype, training, and mouse model on exercise 

capacity adaptations and mitochondrial biogenesis. We sought to understand whether the 

adaptive response to training would be similar in WB p53 KO and mKO mice. Exercise capacity 

was significantly improved (~2.5-fold) following the training program in all mice regardless of 

genotype or model (Fig. 12A). Training increased mitochondrial content by 27-43% in the KO 

and WT mice, attaining similar levels post-training (Fig. 12B). In the WB mice, training 

increased mitochondrial content by 43% in the WT mice, and by 36% in the KO mice. In the 

absence of p53, training elevated PGC-1α protein levels to a similar extent in both WB p53 KO 

and mKO mice, thus attenuating the deficit induced by p53. Thus, the absence of p53 does not 

impact the improvements in performance, mitochondrial content, or expression of PGC-1α in 

response to training.    
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Figure 10. Basal mitochondrial biogenesis and apoptotic signaling comparisons in mouse 
models. Muscle specific (mKO) and whole body (WB) WT and p53 deletion models were 

compared under basal conditions. Mitochondrial biogenesis was measured through A) COX 

enzyme activity (n=6-8/group); †p<0.05, ††p<0.01, UT WT vs. KO, Student’s t-test and 2-way 

ANOVA, and whole muscle B) PGC-1α mRNA (n=5-10/group); ††p<0.01, UT WT vs. KO, 2-

way ANOVA; ¶p<0.05, WT MS vs. WB, 2-way ANOVA, and C) PGC-1α protein (n=5-

7/group); †p<0.05, ††p<0.01, UT WT vs. KO, Student’s t-test and 2-way ANOVA; ¶p<0.05, 

WT MS vs. WB, Student’s t-test. Immunoblots were retrieved from the same blot but were 

spliced for direct comparison of untrained animals. SS mitochondrial state 3 D) respiration 

(n=6/group); †p<0.05, UT WT vs. KO, Student’s t-test; ¶¶p<0.01, KO MS vs. WB, 2-way 

ANOVA, and E) ROS emission (n=6-7/group); ¶p<0.05, MS vs. WB, Student’s t-test and 2-way 

ANOVA. F) Basal cytochrome c release in SS mitochondria (n=5-9/group); †p<0.05, UT WT vs. 

KO, Student’s t-test and 2-way ANOVA. Data are presented as mean ± SEM. 
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Figure 11. Autophagic signaling occurs similarly between mouse models in the absence of 
p53. The alterations in the autophagy signaling pathway in the absence of p53 was compared 

between MS and WB mouse models. A) Immunoblots of whole muscle autophagic proteins 

including B) LC3-II/LC3-I ratio (n=6-8/group); †p<0.05, UT WT vs. KO, Student’s t-test, C) 

p62 (n=5-8/group); †p<0.05, ††p<0.01, UT WT vs. KO, 2-way ANOVA, and D) Beclin-1 were 

measured (n=5-7/group); ††p<0.01, UT WT vs. KO, 2-way ANOVA; ¶¶p<0.01, WT MS vs. 

WB, Student’s t-test.  Data are presented as mean ± SEM. 
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Figure 12. Adaptive mitochondrial responses with training in two mouse models. Following 

the 6-week training/sedentary protocol, MS and WB mice were subjected to an exhaustive 

exercise test. A) Distance to exhaustion in both mouse models (n=6-9/group); **p<0.01, UT vs. 

T, 2-way ANOVA. B) COX activity (n=6-8/group); *p<0.05, **p<0.01, UT vs. T, Student’s t-

test and 2-way ANOVA; †p<0.05, UT WT vs. KO, Student’s t-test. C) PGC-1α protein (n=5-

10/group); *p<0.05, **p<0.01, UT vs. T, Student’s t-test and 2-way ANOVA; †p<0.05, UT WT 

vs. KO, Student’s t-test; ¶p<0.05, WT MS vs. WB, Student’s t-test. Data are presented as mean ± 

SEM. 
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Discussion  

The function of p53 in the transcriptional regulation of numerous signaling pathways is 

well established. However, its role in maintaining mitochondrial content and function, as well as 

the adaptive responses to endurance training remains unresolved. Thus, we sought to 

comprehensively evaluate this function of p53 by using muscle-specific p53 knockout animals. 

Our results reveal that 1) training reduces p53 at the mRNA and protein levels, but increases the 

proportion of activated p53, particularly within mitochondria, 2) p53 is important for regulating 

basal mitochondrial biogenesis, respiration, ROS emission and apoptosis, but is not essential for 

training-induced adaptations in mitochondrial content, exercise capacity, and lactate handling, 3) 

p53 is not required for autophagy signaling but may be necessary for substrate clearance (21, 

37), a process improved with training, 4) p53 is important for maintaining the expression of 

specific transcripts regulating mitochondrial biogenesis, metabolism, autophagy, apoptosis and 

cellular senescence, both basally and with training, and 5) training can improve mitochondrial 

content and function, as well as attenuate the deficits in mitochondrial function induced by the 

absence of p53.  

It is well-established that acute exercise results in p53 re-localization. We and others have 

shown that p53 can be redirected to the mitochondria (34, 38) and nucleus (17, 44, 50) with acute 

exercise, concomitant with the activation of both AMPK and p38 MAPK kinases (5, 25, 38) and 

the phosphorylation of p53 on Ser15 (4, 38). This is important for the transcriptional activation of 

nuclear and mitochondrial gene products, as well as for the dissociation of p53 from its negative 

regulator Mdm2 (20, 24, 36, 38, 41). The results presented in our study extend these findings to 

show that endurance training modifies this subcellular redistribution during acute exercise. 

Though nuclear accumulation of p53 does occur with acute exercise (17, 27, 29, 38, 44, 50), 
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training resulted in the re-localization of activated p53 out of the nucleus, leading to its cytosolic 

accumulation (Fig. 1F) where it can then localize to mitochondria (Fig. 1J, K). p53 

mitochondrial accumulation was likely facilitated by enhanced CHCHD4 levels (Fig. 5H), a 

component of the mitochondrial import machinery, which specifically targets p53 to increase 

trafficking into the organelle (50). Once inside, p53 can maintain mitochondrial genome integrity 

by interacting with Tfam, increasing mtDNA transcription, and enhancing polymerase-γ activity 

(1, 18, 38, 39, 48).  

We sought to identify the mitochondrial impairments in muscle consequent to the 

absence of p53, and the potential corrective effects of a chronic endurance training program.  

Under basal conditions, the presence of a genome-wide p53 deletion has been shown to result in 

morphological disruptions of SS and IMF mitochondria, reduced mitochondrial content and 

mtDNA copy number, and decreases in numerous transcriptional targets including PGC-1α and 

Tfam (28, 33, 35, 38, 39). Functional deficits include impaired state 3 respiration and elevated 

ROS levels in IMF mitochondria, altered DNA fragmentation and enhanced apoptotic potential, 

evidenced through increased cytochrome c release from SS mitochondria (10, 32, 35).  Our data 

reveal that the muscle-specific absence of p53 results in a modest, but significant reduction in 

mitochondrial content, along with decreases in both Tfam and PGC-1α mRNA and protein. 

Functional mitochondrial deficits were also observed, including impaired state 3 respiration, 

elevated ROS levels and increased pro-apoptotic signaling, accompanied by an increase in the 

Bax:Bcl-2 protein ratio. Interestingly, a recent study employing 8-week old muscle-specific p53 

mKO mice (43) observed no deficits in mitochondrial proteins or mRNA. This difference in 

results may be developmentally-related, as our study was conducted using ~3 month old mice for 

comparison. This would suggest that the influence of p53 on mitochondrial function is dependent 
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on age. Although cage activity, based on voluntary running wheel data, differs markedly between 

whole body p53 knockout and WT animals (35), we found no differences in voluntary wheel 

running activity over a 2-week period between mKO and WT mice (n=3-4). Thus, differences in 

activity level do not appear to be the cause of the reduced mitochondrial content in mKO mice.  

We additionally probed the autophagy pathway, known to be altered in the absence of 

p53 (9, 21, 31, 35, 37, 45, 49). Elevations in p62, Parkin, and Beclin-1 autophagy proteins were 

observed in the absence of p53, with a trend for an increase in the LC3 II/I ratio. These data 

suggest that autophagic signaling is enhanced in the absence of p53, but that clearance of 

autophagosomes, and substrates such as p62, is impaired. Similar results have previously been 

shown (37), whereby the absence of p53 led to elevated p62 protein and reduced ubiquitination. 

This impaired clearance could contribute to the accumulation of dysfunctional mitochondria that 

we observed in the mKO mice (Fig. 3D, H). 

We also examined the consequences of muscle-specific p53 deletion on muscle mass and 

physiological performance. Analogous to previous work (15), our mKO mice revealed no 

baseline differences in body or hindlimb mass, indicating that p53 is not required for the 

maintenance of skeletal muscle mass. While one study identified significant reductions in whole 

body exercise performance and aerobic capacity, evidenced by 3-fold higher lactate levels and 

impaired aerobic swimming performance as a result of p53 deletion (33, 35), another  

investigation revealed  no effect on performance during an acute bout of exhaustive exercise 

(38). We confirmed these findings, whereby our mKO mice displayed similar pre-training 

exercise performance as the WT mice. However, the lower oxidative capacity of these mice 

resulted in higher blood lactate following their exercise test, suggesting a greater reliance on 

glycolysis to achieve this same performance.  
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We sought to determine whether p53 is necessary for adaptations to exercise training. In 

contrast to a previous study using a whole body p53 knockout model in which a reduced adaptive 

capacity was noted (33), we observed that WT and mKO mice respond with similar phenotypic 

and physiological adaptations to training, as shown by >2-fold improvement in exercise capacity 

and an attenuation in final lactate levels. Mitochondrial content was increased in the mKO mice 

by 42%, to attain similar levels as the WT trained mice, which increased their COX activity by 

27%. In the absence of p53, we observed similar elevations in PGC-1α and Tfam proteins. 

Furthermore, mitochondrial respiration was increased while ROS emission was reduced in the 

mKO mice, indicating that training improved the mitochondrial deficits induced basally by the 

absence of p53. Apoptosis was down-regulated with exercise training, as evidenced by reduced 

cytochrome c release from SS mitochondria and attenuated Bax protein levels in the mKO mice. 

Proteins of the autophagy pathway, including Parkin, Beclin-1, and LC3-II were significantly 

upregulated in the WT mice with training, as shown in other models of chronic exercise (7, 8, 

22). In contrast, training reduced the already elevated levels of these proteins in mKO mice 

toward levels observed in the WT trained mice. Of particular relevance is the training-induced 

reduction in p62 protein, in the absence of a change in p62 mRNA, signifying enhanced p62 

degradation via autophagic flux. Thus, training induces the activation of redundant signals to 

increase mitochondrial biogenesis and autophagy, and reduce apoptosis, to compensate for the 

loss of p53, resulting in similar final adaptations between groups.  

As most literature on the role of p53 in skeletal muscle has been performed using a whole 

body (WB) p53 deletion model, we inquired as to whether deficits observed in the WB model are 

a result of the loss of p53 in muscle, or a consequence of its absence in alternative tissues. 

Though we observed similar directional alterations in mitochondrial content, autophagy proteins, 
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PGC-1α mRNA and protein, state 3 respiration and ROS emission in SS mitochondria of both 

WB p53 KO and mKO models basally, the magnitude of change was less pronounced in the 

mKO mice (33, 35, 37, 38). This may be a result of the lingering, yet vanishingly low, p53 

protein in the mKO mice, or a consequence of blood-borne metabolic, endocrine, or 

immunological influences on muscle as a result of a genome-wide p53 deletion. Whatever the 

cause, it is evident that chronic exercise is able to combat these defects to produce similar 

adaptations in performance, mitochondrial function, and PGC-1α protein between these two 

experimental models. 

 This study has sought to provide a greater understanding of the role of p53 in mediating 

exercise-induced adaptations in muscle. Though p53 is required for mitochondrial maintenance 

and function, autophagy and apoptotic regulation, its absence in muscle does not cause an 

impairment in endurance exercise performance. Thus, redundant signaling exists to compensate 

for its loss, allowing for beneficial exercise-induced mitochondrial adaptations to occur, thereby 

improving muscle health. Our data also indicate that exercise, in the form of a progressive and 

regulated endurance training program, can be a viable therapeutic option for individuals with 

mutated or non-functional p53. 
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Future Work 

Based on the present findings and on previous research performed in the field of p53 and 

mitochondrial signaling with exercise, future research could focus on: 

Short-Term Goals 

x Examining glycolytic proteins through immunoblotting to determine metabolic reliance 

on glycolysis rather than oxidative phosphorylation in the mKO mice, basally; 

x Measuring mitophagy flux and lysosomal biogenesis to understand mitochondrial 

turnover with exercise training, and its dependency on p53; 

x Understanding the role of p53 on additional mechanisms that regulate cellular 

homeostasis through protein analysis via immunoblotting for the antioxidant and ROS 

pathways; 

x Evaluating whether additional post-translational modifications are facilitating the 

subcellular re-localization of p53 by immunoblotting for residue modifications. 

x Elucidating transcription factors that may compensate for the loss of p53, allowing for 

training-induced adaptations in mitochondrial biogenesis and gene transcription; 

 

Long-Term 

x Determining the transcription factors that may compensate for the loss of p53 with 

exercise training by performing a microarray; 

x Ascertaining the mechanisms that assist in the re-localization of p53 to alternate cellular 

compartments with exercise, accomplished through in vitro inhibition of channels and 

additional fluorescent tagging to determine transport proteins; 

x Discovering an ideal exercise program by creating a time course with altered exercise 

parameters (length of program, intensity, frequency, duration), to determine the point for 

optimal skeletal muscle mitochondrial adaptations, and the whether there is a dependency 

on p53 within the variable exercise regimens. 
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Appendix A: Manuscript Data and Statistical Analysis 

 

Table 3A: Pre-training body mass and performance test, distance to exhaustion 

Initial Body Mass (g) – Muscle 
Specific Mice 

  Pre-Training Distance to Exhaustion 
(m) – Muscle Specific Mice 

N WT mKO   N WT mKO 
1 30.8 38.4   1 1144.22 1381.40 
2 30.4 28.5   2 1322.50 1012.56 
3 29.6 29.5   3 1597.00 1546.42 
4 26.8 27.2   4 1150.00 1322.50 
5 31.0 29.4   5 970.00 1387.88 
6 31.4 44.4   6 1559.00 477.00 
7 31.5 34.6   7 1578.00 523.25 
8 30.1 27.0   8 962.00 855.23 
9 31.2 36.7   9 1287.50 1466.50 
10 31.3 32.0   10 1189.44 1616.00 
11 30.4 32.8   11 1012.56 1635.00 
12 29.2 29.2   12 1201.00 804.80 
13 31.7 27.8   13 1509.42 922.50 
14  28.8   14 1394.00 876.00 
15  27.8   15 1192.50 970.00 
16  28.2   16 1301.50 1313.75 
17  27.7   17 1485.00 1503.50 
18  36.9   18  1201.00 
19  31.1   X 1285.626 1156.405 
20  31.4   SEM 50.830 85.428 
21  29.5      
X 30.415 31.376      

SEM 0.367 0.985      
 

Unpaired T-test – WT versus KO 
P value 0.4621 

P value summary ns 
Significantly different? (P<0.05) No 

 

 

 

 

 

Unpaired T-test – WT versus KO 
P value 0.2091 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3B: Post-training body mass measurement 

 

 Final Body Mass (g) - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 31.52 29.02 42.40 27.10 
2 31.23 30.52 30.60 27.72 
3 34.03 30.35 33.40 25.61 
4 30.07 30.74 30.40 28.42 
5 36.13 30.07 30.40 28.92 
6 36.15 29.75 43.00 27.06 
7   38.40 26.82 
8   29.10 29.41 
9   38.40 30.10 

10   32.30 27.00 
X 33.188 30.075 34.840 27.816 

SEM 1.072 0.254 1.660 0.434 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1138 ns No 
Mouse Model 0.8017 ns No 

Genotype/Training 0.0002 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 3.113 1.644 >0.05 ns 
WT:UT vs. KO:UT -1.652 0.9750 > 0.05 ns 
WT:UT vs. KO:T 5.372 3.171 ≤ 0.05 * 
WT:T vs. KO:UT -4.765 2.813 > 0.05 ns 
WT:T vs. KO:T 2.259 1.333 > 0.05 ns 

KO:UT vs. KO:T 7.024 4.788 <0.005 *** 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0180 

P value summary * 
Significantly different? (P<0.05) Yes 
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Table 3B: Post-training tibialis anterior (TA) mass measurement, corrected for body mass 

 

 Tibialis Anterior (TA) Skeletal Muscle Mass/Body  
Mass (mg/g) – Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 2.00 1.51 2.57 1.93 
2 2.20 1.62 1.98 1.64 
3 2.20 1.69 1.91 1.82 
4 1.95 1.49 2.06 1.85 
5 1.86 1.83 1.91 1.62 
6 1.68 1.30 2.05 1.72 
7   2.01 1.78 
8   2.21 1.94 
X 1.982 1.573 2.088 1.788 

SEM 0.0822 0.0747 0.0768 0.0429 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4457 ns No 
Mouse Model 0.0311 * Yes 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.4083 3.866 ≤ 0.01 ** 
WT:UT vs. KO:UT -0.1058 1.071 > 0.05 ns 
WT:UT vs. KO:T 0.1942 1.965 > 0.05 ns 
WT:T vs. KO:UT -0.5142 5.204 ≤ 0.005 *** 
WT:T vs. KO:T -0.2142 2.168 > 0.05 ns 

KO:UT vs. KO:T 0.3000 3.280 ≤ 0.05 * 
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Table 3B: Post-training gastrocnemius mass measurement, corrected for body mass 

 

 Gastrocnemius Skeletal Muscle Mass/Body Mass (mg/g) – 
Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 7.42 6.32 8.13 6.24 
2 6.73 6.28 5.88 6.32 
3 5.89 5.56 6.18 6.52 
4 6.10 5.74 6.15 6.14 
5 5.90 5.81 6.16 6.36 
6 6.00 5.34 5.88 5.19 
7   6.25 6.45 
8   5.83 6.19 
X 6.340 5.842 6.308 6.176 

SEM 0.251 0.160 0.267 0.148 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4092 ns No 
Mouse Model 0.4961 ns No 

Genotype/Training 0.1626 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.4983 1.508 > 0.05 ns 
WT:UT vs. KO:UT 0.03250 0.1052 > 0.05 ns 
WT:UT vs. KO:T 0.1638 0.5299 > 0.05 ns 
WT:T vs. KO:UT -0.4658 1.507 > 0.05 ns 
WT:T vs. KO:T -0.3346 1.083 > 0.05 ns 

KO:UT vs. KO:T 0.1313 0.4588 > 0.05 ns 
 

Unpaired T-test – WT UT versus WT T 
P value 0.1246 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3B: Post-training quadriceps mass measurement, corrected for body mass 

 

 Quadriceps Skeletal Muscle Mass/Body Mass (mg/g) – Muscle 
Specific Mice 

 WT mKO 
N UT T UT T 
1 6.56 5.65 7.28 6.56 
2 6.51 5.95 6.96 6.50 
3 5.87 6.58 6.64 6.56 
4 6.15 6.08 6.52 6.45 
5 6.18 6.57 6.05 6.52 
6 6.15 6.22 6.05 6.60 
7   7.61 7.15 
8   5.93 6.73 
X 6.237 6.175 6.630 6.634 

SEM 0.105 0.148 0.218 0.0793 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.8358 ns No 
Mouse Model 0.0117 * Yes 

Genotype/Training 0.8544 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.06167 0.2614 > 0.05 ns 
WT:UT vs. KO:UT -0.3933 1.782 > 0.05 ns 
WT:UT vs. KO:T -0.3971 1.799 > 0.05 ns 
WT:T vs. KO:UT -0.4550 2.062 > 0.05 ns 
WT:T vs. KO:T -0.4588 2.078 > 0.05 ns 

KO:UT vs. KO:T -0.003750 0.01835 > 0.05 ns 
 

Unpaired T-test – WT UT versus KO UT 
P value 0.1708 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3B: Post-training heart mass measurement, corrected for body mass 

 

 Heart Mass/Body Mass (mg/g) – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 6.14 6.04 3.69 5.42 
2 5.71 6.26 4.29 5.69 
3 4.89 5.69 5.07 6.01 
4 3.99 5.13 4.76 5.51 
5 6.59 5.76 5.06 6.13 
6 4.94 5.66 5.14 5.64 
7   5.04 6.10 
8   5.11 6.00 
X 5.377 5.757 4.770 5.813 

SEM 0.388 0.157 0.184 0.0989 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1388 ns No 
Mouse Model 0.2151 ns No 

Genotype/Training 0.0031 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.3800 1.162 > 0.05 ns 
WT:UT vs. KO:UT 0.6067 1.983 > 0.05 ns 
WT:UT vs. KO:T -0.4358 1.425 > 0.05 ns 
WT:T vs. KO:UT 0.9867 3.225 ≤ 0.05 * 
WT:T vs. KO:T -0.05583 0.1825 > 0.05 ns 

KO:UT vs. KO:T -1.043 3.681 ≤ 0.01 ** 
 

Unpaired T-test – WT UT versus WT T 
P value 0.3853 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3B: Post-training epididymal fat mass measurement, corrected for body mass 

 

 Epididymal Fat Mass /Body Mass (mg/g) – Muscle Specific 
Mice 

 WT mKO 
N UT T UT T 
1 33.60 22.25 67.17 26.68 
2 43.06 24.78 59.87 27.04 
3 51.42 29.34 41.71 30.32 
4 38.65 39.98 53.59 24.04 
5 39.77 44.16 39.43 19.37 
6 54.89 28.43 58.87 27.07 
7   59.64 14.52 
8   56.22 22.32 
X 43.565 31.490 54.563 23.920 

SEM 3.307 3.545 3.352 1.792 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0054 ** Yes 
Mouse Model 0.5773 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 12.08 2.633 > 0.05 ns 
WT:UT vs. KO:UT -11.00 2.564 > 0.05 ns 
WT:UT vs. KO:T 19.65 4.579 ≤ 0.005 *** 
WT:T vs. KO:UT -23.07 5.378 ≤ 0.001 **** 
WT:T vs. KO:T 7.570 1.765 > 0.05 ns 

KO:UT vs. KO:T 30.64 7.715 ≤ 0.001 **** 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0319 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.0417 

P value summary * 
Significantly different? (P<0.05) Yes 
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Table 3C: Post-training SS mitochondrial yield  

 

 SS Mitochondrial Yield (µg/mg) - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.47 0.95 0.58 0.80 
2 0.62 0.83 0.44 1.03 
3 0.71 0.89 0.83 0.90 
4 0.22 0.79 0.69 0.76 
5 0.56 0.87 0.036 0.85 
6 0.67 0.61 0.6 0.69 
7   0.59 0.64 
8   0.72  
X 0.542 0.823 0.561 0.81 

SEM 0.0730 0.0481 0.0853 0.0498 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.8178 ns No 
Mouse Model 0.9674 ns No 

Genotype/Training 0.0009 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2817 2.719 > 0.05 ns 
WT:UT vs. KO:UT -0.01908 0.1969 > 0.05 ns 
WT:UT vs. KO:T -0.2683 2.688 > 0.05 ns 
WT:T vs. KO:UT 0.2626 2.710 > 0.05 ns 
WT:T vs. KO:T 0.01333 0.1336 > 0.05 ns 

KO:UT vs. KO:T -0.2493 2.684 > 0.05 ns 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0091 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

 

 

 

Unpaired T-test – KO UT versus KO T 
P value 0.0304 

P value summary * 
Significantly different? (P<0.05) Yes 
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Table 3C: Post-training IMF mitochondrial yield  

 

 IMF Mitochondrial Yield (µg/mg) - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 1.11 1.05 0.98 1.10 
2 1.00 1.06 1.18 1.17 
3 1.09 1.56 1.15 1.35 
4 1.08 1.58 1.06 1.21 
5 1.04 1.14 1.15 1.61 
6  1.38 0.12 1.54 
7   0.96 1.76 
8   0.99 1.44 
X 1.064 1.295 0.949 1.398 

SEM 0.0196 0.0999 0.122 0.0820 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.2909 ns No 
Mouse Model 0.9521 ns No 

Genotype/Training 0.0027 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2305 1.481 > 0.05 ns 
WT:UT vs. KO:UT 0.1153 0.7864 > 0.05 ns 
WT:UT vs. KO:T -0.3335 2.276 > 0.05 ns 
WT:T vs. KO:UT 0.3458 2.490 > 0.05 ns 
WT:T vs. KO:T -0.1030 0.7419 > 0.05 ns 

KO:UT vs. KO:T -0.4488 3.491 ≤ 0.05 * 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0694 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3C: Post-training Respiratory Control Ratio (RCR) (state 3/4) in SS Mitochondria  

 

 SS Respiratory Control Ratio (RCR)- Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 2.09 4.56 3.19 5.00 
2 0.70 3.62 2.52 4.22 
3 5.82 10.30 4.33 5.55 
4 3.56 37.00 7.35 5.64 
5 7.20 17.00 5.44 9.32 
6 3.15 4.71 4.90 4.39 
7 3.93  6.45 4.31 
8   2.75 19.00 
X 3.779 12.865 4.616 7.179 

SEM 0.826 5.251 0.621 1.787 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1917 ns No 
Mouse Model 0.3282 ns No 

Genotype/Training 0.0244 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -9.086 2.513 > 0.05 ns 
WT:UT vs. KO:UT -0.8377 0.2490 > 0.05 ns 
WT:UT vs. KO:T -3.400 1.011 > 0.05 ns 
WT:T vs. KO:UT 8.249 2.350 > 0.05 ns 
WT:T vs. KO:T 5.686 1.620 > 0.05 ns 

KO:UT vs. KO:T -2.563 0.7885 > 0.05 ns 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0911 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test – KO UT versus KO T 
P value 0.1971 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3C: Post-training Respiratory Control Ratio (RCR) (state 3/4) in IMF Mitochondria  

 

 IMF Respiratory Control Ratio (RCR)- Muscle Specific Mice 
 WT KO 

N UT T UT T 
1 6.59 2.82 8.62 7.89 
2 5.43 18.47 5.22 7.97 
3 6.89 4.74 5.77 8.17 
4 5.86 19.06 12.36 1.80 
5 5.64 7.49 7.80 6.27 
6 5.89 8.04 6.66 4.97 
7   2.85 18.36 
8    41.50 
X 6.0500 10.103 7.0400 12.116 

SEM 0.232 2.847 1.134 4.521 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.8692 ns No 
Mouse Model 0.6296 ns No 

Genotype/Training 0.1508 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -4.053 0.8862 > 0.05 ns 
WT:UT vs. KO:UT -0.9900 0.2246 > 0.05 ns 
WT:UT vs. KO:T -6.066 1.418 > 0.05 ns 
WT:T vs. KO:UT 3.063 0.6950 > 0.05 ns 
WT:T vs. KO:T -2.013 0.4705 > 0.05 ns 

KO:UT vs. KO:T -5.076 1.238 > 0.05 ns 
 

Unpaired T-test –WT UT versus WT T 
P value 0.1863 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test –  KO UT versus KO T 
P value 0.3257 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 2B: Whole muscle total p53 protein – WT Muscle-Specific Mice 

 Total-p53 Protein Expression – Whole 
Muscle Extracts - Muscle Specific Mice 

 WT 
N UT T 
1 0.74 0.29 
2 0.35 0.41 
3 1.29 0.28 
4 0.63 0.13 
5 0.47 0.050 
6 0.75 0.44 
7  0.28 
X 0.704 0.269 

SEM 0.133 0.0528 
 

Unpaired T-test-  WT UT versus T 
P value 0.0080 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

 

Figure 2C: Whole muscle phosphorylated-p53 (Ser15) protein – WT Muscle-Specific Mice 

 Phospho-p53/ Total p53 Protein Expression – 
Whole Muscle Extracts - Muscle Specific Mice 

 WT 
N UT T 
1 0.60 0.67 
2 0.11 0.66 
3 0.48 0.58 
4 0.24 0.65 
5 0.60 1.55 
6 0.42 2.039 
X 0.407 1.0254 

SEM 0.0809 0.251 
 

Unpaired T-test-  WT UT versus T 
P value 0.0413 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 2E: Total p53 protein in nuclear and cytosolic cellular compartments - WT Muscle-
Specific Mice 

 Nuclear/Cytosolic – Total p53 Protein - Muscle Specific Mice 
 Nuclear Cytosolic 

N UT T UT T 
1 1.012 0.32 1.25 0.65 
2 0.74 0.50 0.96 1.22 
3 0.43 0.22 1.29 0.83 
4 0.47 0.13 1.54 0.41 
5    0.98 
X 0.661 0.295 1.257 0.816 

SEM 0.136 0.0793 0.119 0.139 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9730 ns No 
Mouse Model 0.0025 ** Yes 

Genotype/Training 0.0086 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Nuc:UT vs. Nuc:T 0.3659 2.018 > 0.05 ns 
Nuc:UT vs. Cyto:UT -0.5968 3.291 ≤ 0.05 # 
Nuc:UT vs. Cyto:T -0.1554 0.9033 > 0.05 ns 
Nuc:T vs. Cyto:UT -0.9627 5.309 ≤ 0.005 *** 
Nuc:T vs. Cyto:T -0.5213 3.030 > 0.05 ns 

Cyto:UT vs. Cyto:T 0.4414 2.566 > 0.05 ns 
 

Unpaired T-test- Nuc UT versus Nuc T 
P value 0.0552 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  Cyto UT versus Cyto T 
P value 0.0525 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  Nuc T versus Cyto T 
P value 0.0194 

P value summary # 
Significantly different? (P<0.05) Yes 
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Figure 2E: Phosphorylated p53 (Ser15) protein in nuclear and cytosolic cellular 
compartments, percentage of total - WT Muscle-Specific Mice 

 

 Phospho-p53 (% Total) Nuc/Cyto - Muscle Specific Mice 
 UT T 

N NUC CYTO NUC CYTO 
1 0.73 – 73.0% 0.27 – 27.0% 0.31 – 31.0% 0.69 – 69.0% 
2 0.62 – 62.0% 0.38 – 38.0% 0.43 – 43.0% 0.57 – 57.0% 
3 0.71 – 71.0% 0.29 – 29.0% 0.33 – 33.0% 0.67 – 67.0% 
4 0.82 – 82.0% 0.18 – 18.0% 0.44 – 44.0% 0.56 – 56.0% 
X 0.722 – 72.2% 0.278 – 27.8% 0.378 – 37.8% 0.623 – 62.3% 

SEM 0.0418 0.0418 0.0345 0.0345 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction < 0.0001 **** Yes 
Mouse Model > 0.9999 ns No 

Genotype/Training 0.0222 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

UT:Nuc vs. UT:Cyto 0.4443 3.428 ≤ 0.001 #### 
UT:Nuc vs. T:Nuc 0.3436 3.006 ≤ 0.005 *** 
UT:Nuc vs. T:Cyto 0.1006 2.049 > 0.05 ns 
UT:Cyto vs. T:Nuc -0.1006 0.2590 > 0.05 ns 
UT:Cyto vs. T:Cyto -0.3436 1.267 ≤ 0.005 *** 

T:Nuc vs. T:Cyto -0.2430 0.9566 ≤ 0.01 ## 
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Figure 2H: Total p53 protein in IMF mitochondria - WT Muscle-Specific Mice 

 

 IMF Mitochondria –Total p53 Protein - 
Muscle Specific Mice 

 WT 
N UT T 
1 0.81 0.31 
2 1.09 0.42 
3 0.93 0.36 
4 1.50 0.48 
5 0.73  
X 1.0124 0.393 

SEM 0.136 0.0368 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0056 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

 

Figure 2I: Total p53 protein in SS mitochondria - WT Muscle-Specific Mice 

 

 SS Mitochondria –Total p53 Protein - Muscle 
Specific Mice 

 WT 
N UT T 
1 0.95 0.78 
2 0.56 0.20 
3 0.69 0.38 
4 1.36 0.30 
5 0.75  
X 0.863 0.416 

SEM 0.139 0.128 
 

Unpaired T-test-  WT UT versus WT T 
P value 0.0544 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 2J: Phosphorylated p53 (Ser15) protein in IMF mitochondria - WT Muscle-Specific 
Mice 

 IMF Mitochondria – Phospho-p53/ Total p53 
Protein - Muscle Specific Mice 

 WT 
N UT T 
1 0.34 1.85 
2 0.41 1.62 
3 0.56 0.78 
4 0.68 0.71 
5 0.41 0.91 
X 0.479 1.173 

SEM 0.0418 0.0345 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0209 

P value summary * 
Significantly different? (P<0.05) Yes 

 

 

 

Figure 2K: Phosphorylated p53 (Ser15) protein in SS mitochondria - WT Muscle-Specific 
Mice 

 SS Mitochondria – Phospho-p53/ Total p53 
Protein - Muscle Specific Mice 

 WT 
N UT T 
1 0.63 1.29 
2 0.66 1.79 
3 0.34 0.73 
4 0.50 0.82 
5 0.53  
X 0.530 1.160 

SEM 0.0560 0.244 
 

Unpaired T-test-  WT UT versus WT T 
P value 0.0257 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 3C: Post-training performance test, distance to exhaustion  

 

 Post-Training Performance Stress Test – Distance to 
Exhaustion (m)- Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 891.50 1623.60 726.00 1731.50 
2 1349.00 2990.30 1067.00 2555.00 
3 922.50 1376.00 1059.00 2117.00 
4 852.80 1578.00 1084.00 2465.00 
5 1252.50 2834.00 1150.00 2487.50 
6 830.00 2992.70 926.00 1946.90 
7   400.00 2112.80 
8   557.00 1533.10 
X 1016.383 2232.433 871.125 2118.600 

SEM 91.705 318.679 98.330 131.523 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9275 ns No 
Mouse Model 0.4559 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -1216 4.705 ≤ 0.005 *** 
WT:UT vs. KO:UT 145.3 0.6009 > 0.05 ns 
WT:UT vs. KO:T -1102 4.559 ≤ 0.005 *** 
WT:T vs. KO:UT 1361 5.631 ≤ 0.001 **** 
WT:T vs. KO:T 113.8 0.4709 > 0.05 ns 

KO:UT vs. KO:T -1247 5.574 ≤ 0.001 **** 
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Figure 3D: Post-training performance test, final lactate levels  

 Post-Training Performance Stress Test - Post-Exercise 
Lactate Levels (mM)- Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 12.3 10.9 11.9 7.9 
2 11.4 7.8 11.5 8 
3 12.2 10.7 12.2 7.4 
4 9.5 8.8 10.8 11.3 
5 11.1 11.7 17.8 9.5 
6 11.5 11.8 13.9 9.3 
7 10.6  10.9 12.6 
8 10.5  12.7 9.4 
9 8.8  13.4  

10 10  12  
11 11.8  10.9  
12 12.8  18.6  
13 9  13.2  
14   14.2  
15   12.2  
16   13.8  
17   13.3  
X 10.885 10.283 13.135 9.425 

SEM 0.356 0.664 0.531 0.628 
 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 1.122 1.375 > 0.05 ns 
WT:UT vs. KO:UT -2.251 3.364 ≤ 0.01 ** 
WT:UT vs. KO:T 1.46 1.789 > 0.05 ns 
WT:T vs. KO:UT -3.373 4.332 ≤ 0.005 *** 
WT:T vs. KO:T 0.3375 0.3717 > 0.05 ns 

KO:UT vs. KO:T 3.71 4.765 ≤ 0.005 *** 
 

Unpaired T-test – WT UT versus WT T 
P value 0.1002 

P value summary ns 
Significantly different? (P<0.05) No 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0268 * Yes 
Mouse Model 0.0972 ns No 

Genotype/Training 0.0001 *** Yes 
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Figure 3E: Post-Training COX Enzyme Activity, marker of mitochondrial content 

 

 COX Enzyme Activity (µmol/min/g tissue)– 
Mitochondrial Content - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 19.21 19.63 14.84 22.22 
2 16.66 21.86 11.04 22.61 
3 13.76 21.52 12.21 24.46 
4 16.87 20.65 14.41 22.49 
5 15.90 24.89 13.29 25.42 
6 16.80 20.09 14.65 22.34 
7  22.98 14.66 21.18 
8  26.86 14.50 25.49 
X 16.533 22.310 13.700 23.276 

SEM 0.718 0.881 0.495 0.572 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0105 * Yes 
Mouse Model 0.1868 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -5.777 5.716 ≤ 0.001 **** 
WT:UT vs. KO:UT 2.833 2.804 > 0.05 ns 
WT:UT vs. KO:T -6.743 6.672 ≤ 0.001 **** 
WT:T vs. KO:UT 8.610 9.203 ≤ 0.001 **** 
WT:T vs. KO:T -0.9662 1.033 > 0.05 ns 

KO:UT vs. KO:T -9.576 10.24 ≤ 0.001 **** 
 

Unpaired T-test –WT UT versus KO UT 
P value 0.0056 

P value summary †† 
Significantly different? (P<0.05) Yes 
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Figure 3G: Post-training whole muscle PGC-1α protein 

 

 Whole Muscle PGC-1α Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.35 0.93 0.39 0.69 
2 0.40 0.74 0.27 0.89 
3 0.43 0.71 0.21 0.41 
4 0.58 1.17 0.42 0.93 
5 0.52 0.73 0.30 0.93 
6  0.88 0.24 0.69 
7  0.71 0.21 0.61 
8    0.91 
X 0.456 0.840 0.291 0.759 

SEM 0.0410 0.0641 0.0321 0.0675 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4746 ns No 
Mouse Model 0.0452 * Yes 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.3841 4.429 ≤ 0.01 ** 
WT:UT vs. KO:UT 0.1646 1.898 > 0.05 ns 
WT:UT vs. KO:T -0.3036 3.596 ≤ 0.01 ** 
WT:T vs. KO:UT 0.5487 6.931 ≤ 0.001 **** 
WT:T vs. KO:T 0.08049 1.050 > 0.05 ns 

KO:UT vs. KO:T -0.4682 6.108 ≤ 0.001 **** 
 

Unpaired T-test-  WT UT versus KO UT 
P value 0.0094 

P value summary †† 
Significantly different? (P<0.05) Yes 
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Figure 3H: Post-training whole muscle Tfam protein 

 

 Whole Muscle Tfam Protein Expression - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.56 0.55 0.47 0.72 
2 0.52 0.65 0.31 0.80 
3 0.74 0.75 0.59 0.92 
4 0.71 0.53 0.30 0.91 
5 0.43 0.78 0.49 0.95 
6 0.47 0.88 0.33 0.89 
7    0.81 
X 0.573 0.691 0.414 0.855 

SEM 0.0512 0.0559 0.0479 0.0314 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0023 ** Yes 
Mouse Model 0.9634 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.1180 1.762 > 0.05 ns 
WT:UT vs. KO:UT 0.1594 2.381 > 0.05 ns 
WT:UT vs. KO:T -0.2818 4.366 ≤ 0.01 ** 
WT:T vs. KO:UT 0.2774 4.143 ≤ 0.01 ** 
WT:T vs. KO:T -0.1637 2.537 > 0.05 ns 

KO:UT vs. KO:T -0.4412 6.837 ≤0.001 **** 
 

Unpaired T-test-  WT UT versus WT T 
P value 0.1505 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test-  WT UT versus KO UT 
P value 0.0462 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 4A: Post-training state 4 (basal) respiration in SS mitochondria  

 

 State 4 Respiration (natoms O2/mg protein/min) – SS 
Mitochondria- Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 4.08 2.63 3.05 7.75 
2 3.26 3.54 7.49 8.48 
3 4.87 8.87 2.82 7.80 
4 1.28 3.96 2.43 11.15 
5 3.06 11.01 3.23 8.39 
6 1.67 10.68 6.32 11.07 
7 3.26   8.18 
X 3.069 6.782 4.223 8.974 

SEM 0.476 1.561 0.868 0.561 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.5755 ns No 
Mouse Model 0.0803 ns No 

Genotype/Training 0.0001 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -3.713 2.876 > 0.05 ns 
WT:UT vs. KO:UT -1.155 0.8944 > 0.05 ns 
WT:UT vs. KO:T -5.906 4.761 ≤ 0.005 *** 
WT:T vs. KO:UT 2.558 1.909 > 0.05 ns 
WT:T vs. KO:T -2.193 1.698 > 0.05 ns 

KO:UT vs. KO:T -4.751 3.680 ≤ 0.01 ** 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0331 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.2499 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 4B: Post-training state 4 (basal) respiration in IMF mitochondria  
 

 State 4 Respiration (natoms O2/mg protein/min) – IMF 
Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 16.12 23.62 12.68 27.73 
2 6.77 19.64 16.96 19.67 
3 4.12 6.04 15.10 13.61 
4 5.61 19.13 10.36 13.05 
5 10.39 14.11 10.19 12.55 
6 12.46 9.24 11.77 27.66 
7   16.20 14.64 
X 9.245 15.297 13.323 18.416 

SEM 1.867 2.748 1.047 2.556 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.8249 ns No 
Mouse Model 0.1069 ns No 

Genotype/Training 0.0162 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -6.052 1.926 > 0.05 ns 
WT:UT vs. KO:UT -4.078 1.347 > 0.05 ns 
WT:UT vs. KO:T -9.171 3.029 ≤ 0.05 * 
WT:T vs. KO:UT 1.974 0.6519 > 0.05 ns 
WT:T vs. KO:T -3.119 1.030 > 0.05 ns 

KO:UT vs. KO:T -5.093 1.751 > 0.05 ns 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0985 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.0732 

P value summary ns 
Significantly different? (P<0.05) No 

 

 

 

 

Unpaired T-test – KO UT versus KO T 
P value 0.0900 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 4C: Post-training state 3 (active) respiration in SS mitochondria  

 

 State 3 Respiration (natoms O2/mg protein/min) – SS 
Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 8.53 84.37 31.93 42.97 
2 10.89 91.41 34.80 47.79 
3 17.80 55.31 13.20 48.98 
4 12.01 67.38 25.16 26.79 
5 16.16 30.21 11.91 47.67 
6 12.82 50.28 40.79 47.03 
X 13.035 63.160 26.298 43.538 

SEM 1.396 9.271 4.809 3.453 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0076 ** Yes 
Mouse Model 0.5728 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -50.13 6.392 ≤ 0.001 **** 
WT:UT vs. KO:UT -13.26 1.691 > 0.05 ns 
WT:UT vs. KO:T -30.50 3.890 ≤ 0.01 ** 
WT:T vs. KO:UT 36.86 4.701 ≤ 0.005 *** 
WT:T vs. KO:T 19.62 2.502 > 0.05 ns 

KO:UT vs. KO:T -17.24 2.199 > 0.05 ns 
 

Unpaired T-test – KO UT versus KO T 
P value 0.0155 

P value summary † 
Significantly different? (P<0.05) Yes 

 

 

 

 

 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0244 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 4D: Post-training state 3 (active) respiration in IMF mitochondria  

 State 3 Respiration (natoms O2/mg protein/min) – IMF 
Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 106.21 66.68 88.48 67.67 
2 122.63 111.53 87.14 107.29 
3 94.36 90.78 79.44 103.95 
4 110.43 90.34 86.33 102.55 
5 120.03 105.65 78.36 130.77 
6 71.54 74.30 46.20 91.83 
7 73.03   157.57 
X 99.747 89.880 77.658 108.804 

SEM 7.912 7.070 6.520 10.808 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0249 * Yes 
Mouse Model 0.8543 ns No 

Genotype/Training 0.2247 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 9.867 0.8193 > 0.05 ns 
WT:UT vs. KO:UT 22.09 1.834 > 0.05 ns 
WT:UT vs. KO:T -9.057 0.7827 > 0.05 ns 
WT:T vs. KO:UT 12.22 0.9779 > 0.05 ns 
WT:T vs. KO:T -18.92 1.571 > 0.05 ns 

KO:UT vs. KO:T -31.15 2.586 > 0.05 ns 
 

 

 

 

 

 

 

 

 

 

Unpaired T-test –WT UT versus WT T 
P value 0.3796 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – KO UT versus KO T 
P value 0.0377 

P value summary * 
Significantly different? (P<0.05) Yes 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0549 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 5A: Post-training state 4 (basal) reactive oxygen species (ROS) in SS mitochondria  

 State 4 ROS (natoms O2/mg protein/min) –  
SS Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 56.33 19.14 32.69 30.67 
2 8.58 32.07 36.12 25.32 
3 50.22 9.38 36.87 30.52 
4 20.80 28.67 43.90 22.53 
5 47.18 22.45 62.50 16.15 
6 58.54 22.18 187.55 30.91 
7   148.74 16.64 
8    30.95 
X 40.275 22.315 78.339 25.461 

SEM 8.410 3.230 23.858 2.259 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1987 ns No 
Mouse Model 0.1319 ns No 

Genotype/Training 0.0132 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 17.96 0.9143 > 0.05 ns 
WT:UT vs. KO:UT -38.06 2.011 > 0.05 ns 
WT:UT vs. KO:T 14.81 0.8062 > 0.05 ns 
WT:T vs. KO:UT -56.02 2.960 > 0.05 * 
WT:T vs. KO:T -3.146 0.1712 > 0.05 ns 

KO:UT vs. KO:T 52.88 3.003 > 0.05 * 
 

Unpaired T-test – WT UT versus WT T 
P value 0.0742 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.1872 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 5B: Post-training state 4 (basal) reactive oxygen species (ROS) in IMF mitochondria  

 State 4 ROS (natoms O2/mg protein/min) –  
IMF Mitochondria- Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 5.83 1.51 10.27 3.09 
2 6.24 5.46 5.31 2.50 
3 10.07 6.74 5.67 6.52 
4 11.93 3.49 8.29 5.68 
5 7.06 4.78 10.75 4.95 
6 2.59 11.82 17.61 9.05 
7   16.26 2.92 
8   25.46 2.70 
X 7.287 5.633 12.453 4.676 

SEM 1.350 1.436 2.436 0.822 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0877 ns No 
Mouse Model 0.2329 ns No 

Genotype/Training 0.0114 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 1.653 0.6359 > 0.05 ns 
WT:UT vs. KO:UT -5.166 2.124 > 0.05 ns 
WT:UT vs. KO:T 2.610 1.073 > 0.05 ns 
WT:T vs. KO:UT -6.819 2.804 > 0.05 ns 
WT:T vs. KO:T 0.9571 0.3936 > 0.05 ns 

KO:UT vs. KO:T 7.776 3.454 ≤ 0.05 * 
 

Unpaired T-test – WT UT versus WT T 
P value 0.4211 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.1179 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 5C: Post-training state 3 (active) reactive oxygen species (ROS) in SS mitochondria  

 

 State 3 ROS (natoms O2/mg protein/min)  –  
SS Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 1.91 7.07 6.56 3.41 
2 11.94 7.32 5.36 2.85 
3 3.91 1.91 5.81 2.49 
4 16.04 1.33 9.40 3.01 
5 10.95 1.35 5.70 4.23 
6 12.26 1.19 8.99 5.00 
7  7.72 8.66 5.81 
8  4.22  2.89 
X 9.502 4.014 7.211 3.711 

SEM 2.216 1.042 0.657 0.419 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3953 ns No 
Mouse Model 0.2700 ns No 

Genotype/Training 0.0006 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 5.488 3.307 ≤ 0.05 * 
WT:UT vs. KO:UT 2.290 1.340 > 0.05 ns 
WT:UT vs. KO:T 5.790 3.489 ≤ 0.05 * 
WT:T vs. KO:UT -3.198 2.011 > 0.05 ns 
WT:T vs. KO:T 0.3025 0.1969 > 0.05 ns 

KO:UT vs. KO:T 3.500 2.201 > 0.05 ns 
 

Unpaired T-test – KO UT versus KO T 
P value 0.0005 

P value summary *** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WT UT versus KO UT 
P value 0.3112 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 5D: Post-training state 3 (active) reactive oxygen species (ROS) in IMF 
mitochondria  

 

 State 3 ROS (natoms O2/mg protein/min) –  
IMF Mitochondria - Muscle Specific Mice 

 WT mKO 
N UT T UT T 
1 0.78 0.68 1.19 0.63 
2 0.60 0.69 1.05 0.60 
3 0.85 0.90 1.09 0.65 
4 0.66 0.48 1.38 0.53 
5 0.40 0.39 1.58 0.66 
6 1.38 1.31 1.35 1.03 
7 0.94  3.80 0.39 
8 0.35  1.15 0.51 
X 0.745 0.742 1.574 0.625 

SEM 0.116 0.135 0.324 0.0660 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0237 * Yes 
Mouse Model 0.0818 ns No 

Genotype/Training 0.0228 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.003333 0.01155 > 0.05 ns 
WT:UT vs. KO:UT -0.8288 3.101 ≤ 0.05 † 
WT:UT vs. KO:T 0.1200 0.4491 > 0.05 ns 
WT:T vs. KO:UT -0.8321 2.883 ≤ 0.05 * 
WT:T vs. KO:T 0.1167 0.4042 > 0.05 ns 

KO:UT vs. KO:T 0.9488 3.550 ≤ 0.01 ** 
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Figure 6: mRNA expression (ΔCt) of genes examined basally in the absence of p53, under 
the influence of training, and training reversal of basal p53-induced deficits  

 

 p53 mRNA – Muscle Specific Mice 
 WT 

N UT T 
1 4.32 2.74 
2 3.99 3.47 
3 3.96 1.74 
4 3.81 3.62 
5 3.53 1.43 
6 3.85 1.25 
7  2.90 
8  3.67 
9  1.033 

10  1.43 
X 3.910 2.327 

SEM 0.106 0.334 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired T-test – p53 WT UT versus WT T 
P value 0.0031 

P value summary ** 
Significantly different? (P<0.05) Yes 

 p21 mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 6.53 3.50 3.50 6.04 
2 6.66 2.99 4.71 5.41 
3 4.61 4.40 4.69 3.65 
4 5.38 3.74 4.20 3.81 
5 4.90 3.69 4.76 5.79 
6  2.92 3.73 7.08 
7  4.35 4.41 5.09 
8  2.70 1.93 6.65 
9   4.68  
X 5.614 3.536 4.068 5.441 

SEM 0.419 0.226 0.307 0.436 

Unpaired T-test – p21 WT UT versus WT T 
P value 0.0006 

P value summary *** 
Significantly different? (P<0.05) Yes 

Unpaired T-test – p21 KO UT versus KO T 
P value 0.0193 

P value summary * 
Significantly different? (P<0.05) Yes 

Unpaired T-test – p21 WT UT versus KO UT 
P value 0.0112 

P value summary † 
Significantly different? (P<0.05) Yes 
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 Bax mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 8.81 5.18 4.78 4.93 
2 7.48 6.48 5.33 4.54 
3 8.00 7.21 4.11 4.21 
4 9.00 7.20 5.30 4.93 
5 8.00 6.64 6.09 2.08 
6  7.16 4.79 2.28 
7  6.90 6.02 2.34 
8  6.93 4.86 2.34 
9   4.38 2.59 
10   4.97  
X 8.260 6.712 5.065 3.361 

SEM 0.282 0.239 0.202 0.417 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Unpaired T-test – Bax WT UT versus WT T 
P value 0.0017 

P value summary ** 
Significantly different? (P<0.05) Yes 

Unpaired T-test – Bax WT UT versus KO UT 
P value < 0.0001 

P value summary †††† 
Significantly different? (P<0.05) Yes 

Unpaired T-test – Bax KO UT versus KO T 
P value 0.0014 

P value summary ** 
Significantly different? (P<0.05) Yes 

 TIGAR mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 3.70 3.22 6.72 5.49 
2 4.90 4.19 5.25 5.84 
3 4.40 3.62 5.59 5.38 
4 3.84 4.14 5.98 5.84 
5 3.93 4.50 6.36 5.70 
6 3.75 3.85 6.91 2.99 
7  3.64 5.90 3.22 
8  2.00 5.17  
9  2.62 5.17  
10   3.18  
11   3.16  
X 4.089 3.533 5.398 4.922 

SEM 0.193 0.267 0.377 0.475 

Unpaired T-test – TIGAR WT UT versus WT T 
P value 0.1524 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – TIGAR WT UT versus KO UT 
P value 0.0276 

P value summary † 
Significantly different? (P<0.05) Yes 

Unpaired T-test – TIGAR KO UT versus KO T 
P value 0.4428 

P value summary ns 
Significantly different? (P<0.05) No 
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 Mdm2 mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 3.41 2.28 2.84 2.84 
2 3.72 2.50 2.78 2.63 
3 3.37 3.02 2.58 2.46 
4 3.01 3.99 3.21 2.56 
5 2.86 3.50 2.47 3.53 
6 2.21 3.06 2.92 3.23 
7  3.21 3.03 3.25 
8  1.36  1.52 
9  1.85  1.80 
X 3.098 2.752 2.834 2.648 

SEM 0.217 0.277 0.0953 0.221 
 

 

 

 

 

 

 

 

 

 

Unpaired T-test – Tfam WT UT versus KO UT 
P value < 0.0001 

P value summary †††† 
Significantly different? (P<0.05) Yes 

 

 

 

 

 

 

Unpaired T-test – Mdm2 WT UT versus WT T 
P value 0.3842 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – Mdm2 WT UT versus KO UT 
P value 0.2649 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – Mdm2 KO UT versus KO T 
P value 0.4957 

P value summary ns 
Significantly different? (P<0.05) No 

 Tfam mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 6.38 5.19 3.84 3.93 
2 6.52 5.67 3.71 3.69 
3 6.93 5.42 3.55 3.76 
4 6.86 6.76 4.07 4.72 
5 6.32 6.88 3.85 3.72 
6 5.53 5.57 3.71 4.06 
7  5.04 3.33 4.90 
8   3.56 5.95 
9   2.10 3.12 
10   2.61 4.52 
11   1.05  
X 6.425 5.790 3.216 4.237 

SEM 0.206 0.278 0.279 0.256 

Unpaired T-test – Tfam WT UT versus WT T 
P value 0.1023 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – Tfam KO UT versus KO T 
P value 0.0148 

P value summary * 
Significantly different? (P<0.05) Yes 
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Unpaired T-test – SCO2 WT UT versus KO UT 
P value < 0.0001 

P value summary †††† 
Significantly different? (P<0.05) Yes 

 

 

 

 

 

 

 

 

 

 

Unpaired T-test – p62 WT UT versus KO UT 
P value 0.0093 

P value summary †† 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – SCO2 WT UT versus WT T 
P value 0.9306 

P value summary ns 
Significantly different? (P<0.05) No 

 SCO2 mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 1.76 1.22 5.11 6.53 
2 1.83 1.49 5.84 5.70 
3 1.61 1.90 5.85 6.42 
4 1.40 1.86 4.85 7.64 
5 1.62 1.88 6.70 7.23 
6  1.86 6.95 6.34 
7  2.17 4.46 6.53 
8  1.27 4.76 6.46 
9  1.32 6.00 5.92 
10  1.34   
X 1.645 1.631 5.614 6.531 

SEM 0.0747 0.107 0.292 0.199 
Unpaired T-test – SCO2 KO UT versus KO T 

P value 0.0194 
P value summary * 

Significantly different? (P<0.05) Yes 

 p62 mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 5.68 5.21 5.34 4.75 
2 5.38 5.51 4.85 3.78 
3 5.64 5.47 4.31 5.34 
4 6.05 5.95 5.10 4.17 
5 5.51 5.91 4.59 4.89 
6  5.04 4.57 5.36 
7  5.76 4.29 5.92 
8   3.43 5.61 
9   3.26 4.75 
10   5.73 4.76 
X 5.655 5.550 4.548 4.934 

SEM 0.113 0.131 0.246 0.205 

Unpaired T-test – p62 WT UT versus WT T 
P value 0.5791 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – p62 KO UT versus KO T 
P value 0.2440 

P value summary ns 
Significantly different? (P<0.05) No 
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 LC3 mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 4.93 4.37 3.30 2.92 
2 6.66 4.39 1.86 3.17 
3 4.70 4.77 2.67 3.85 
4 3.51 4.50 2.91 3.89 
5 4.51 6.69 3.05 3.69 
6  5.81 2.85 3.70 
7  4.19 3.01 3.58 
8  4.69 2.84 3.85 
9   2.86 3.02 
10   2.50 3.21 
11   1.83  
X 4.863 4.927 2.699 3.487 

SEM 0.510 0.307 0.141 0.117 
 

Unpaired T-test – LC3 WT UT versus KO UT 
P value < 0.0001 

P value summary †††† 
Significantly different? (P<0.05) Yes 

 

 

 PGC-1α mRNA – Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 5.76 6.29 4.64 7.27 
2 5.56 4.43 3.92 5.70 
3 4.46 4.70 5.44 6.99 
4 5.08 5.53 5.42 6.59 
5 5.20 5.81 4.74 5.55 
6  6.31 5.45 5.36 
7  4.66 4.58 8.31 
8   2.83 7.88 
9   5.11  
10   1.28  
X 5.212 5.391 4.342 6.706 

SEM 0.225 0.299 0.426 0.390 
 

Unpaired T-test – PGC-1α WT UT versus KO UT 
P value 0.1921 

P value summary ns 
Significantly different? (P<0.05) No 

 
 

Unpaired T-test – LC3 WT UT versus WT T 
P value 0.9116 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – LC3 KO UT versus KO T 
P value 0.0004 

P value summary *** 
Significantly different? (P<0.05) Yes 

Unpaired T-test – PGC-1α  WT UT versus WT T 
P value 0.6668 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – PGC-1α KO UT versus KO T 
P value 0.0010 

P value summary ** 
Significantly different? (P<0.05) Yes 
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Figure 6A: mRNA expression of genes in response to exercise training in WT mice, 
expressed as fold change 

 

mRNA WT T/ mRNA WT UT (Fold Change) - Muscle Specific Mice 
N p53 p21 Bax TIGAR Mdm2 Tfam p62 SCO2 LC3 PGC-1α 
1 0.70 0.62 0.63 0.79 0.73 0.81 0.92 0.74 0.90 1.21 
2 0.89 0.53 0.78 1.026 0.81 0.88 0.97 0.91 0.90 0.85 
3 0.45 0.78 0.87 0.88 0.98 0.84 0.97 1.15 0.98 0.90 
4 0.92 0.67 0.87 1.014 1.29 1.052 1.053 1.13 0.93 1.060 
5 0.37 0.66 0.80 1.099 1.13 1.071 1.044 1.14 1.38 1.12 
6 0.32 0.52 0.87 0.94 0.99 0.87 0.89 1.13 1.19 1.21 
7 0.74 0.77 0.84 0.89 1.04 0.78 1.019 1.32 0.86 0.89 
8 0.94 0.48 0.84 0.49 0.44   0.77 0.96  
9 0.26   0.64 0.60   0.80   
10 0.36       0.82   
X 0.595 0.630 0.813 0.864 0.890 0.901 0.981 0.991 1.0130 1.0344 

SEM 0.0854 0.0403 0.0289 0.0653 0.0892 0.0432 0.0231 0.0650 0.0631 0.0575 
∆ ↓1.405 

 

↓1.370 
 

↓1.187 
 

↓1.136 
 

↓1.110 
 

↓ 1.099 
 

↓ 1.019 
 

↓ 1.009 
 

↑ 1.013 
 

↑ 1.034 
 

 

 

Figure 6B: mRNA expression of genes in the absence of p53 basally, and the response of 
training on restoring deficits induced by the absence of p53 basally; expressed as fold 
change 

 

mRNA KO UT/ mRNA WT UT and mRNA KO T/mRNA WT T – Muscle Specific Mice 
 p21 Bax TIGAR Mdm2 Tfam p62 SCO2 LC3 PGC-1α 

N KO 
UT 

KO T KO 
UT 

KO T KO 
UT 

KO T KO 
UT 

KO 
UT 

KO 
UT 

KO T KO 
UT 

KO T KO 
UT 

KO T KO 
UT 

KO T KO 
UT 

KO T 

1 0.62 1.077 0.58 0.60 1.64 1.34 0.92 0.92 0.60 0.61 0.94 0.84 3.11 3.97 0.68 0.60 0.89 1.39 
2 0.84 0.96 0.65 0.55 1.29 1.43 0.90 0.85 0.58 0.57 0.86 0.67 3.55 3.46 0.38 0.65 0.75 1.09 
3 0.84 0.65 0.50 0.51 1.37 1.32 0.83 0.79 0.55 0.59 0.76 0.95 3.55 3.90 0.55 0.79 1.04 1.34 
4 0.75 0.68 0.64 0.60 1.46 1.43 1.04 0.83 0.63 0.74 0.90 0.74 2.95 4.65 0.60 0.80 1.04 1.27 
5 0.85 1.031 0.74 0.25 1.56 1.39 0.80 1.14 0.60 0.58 0.81 0.87 4.07 4.40 0.63 0.76 0.91 1.07 
6 0.66 1.26 0.58 0.28 1.69 0.73 0.94 1.04 0.58 0.63 0.81 0.95 4.23 3.86 0.59 0.76 1.05 1.03 
7 0.79 0.91 0.73 0.28 1.44 0.79 0.98 1.05 0.52 0.76 0.76 1.05 2.71 3.97 0.62 0.74 0.88 1.60 
8 0.34 1.19 0.59 0.28 1.27   0.49 0.55 0.93 0.61 0.99 2.89 3.93 0.58 0.79 0.54 1.51 
9 0.83  0.53 0.31 1.26   0.58 0.33 0.49 0.58 0.84 3.65 3.60 0.60 0.62 0.98  

10   0.60  0.78    0.41 0.70 1.01 0.84   0.51 0.66 0.25  
11     0.77    0.16      0.38    
X 0.725 0.969 0.613 0.407 1.321 1.204 0.915 0.855 0.501 0.659 0.804 0.873 3.412 3.970 0.555 0.717 0.833 1.287 

SEM 0.055 0.078 0.025 0.051 0.092 0.116 0.031 0.072 0.043 0.040 0.044 0.036 0.177 0.121 0.029 0.024 0.082 0.075 

∆ ↓1.28 
 

↓1.03 
 

↓1.39 
 

↓1.59 
 

↑1.32 
 

↑1.20 
 

↓ 1.09 
 

↓ 1.15 
 

↓ 1.50 
 

↓ 1.34 
 

↓ 1.20 
 

↓ 1.13 
 

↑3.41 
 

↑ 3.97 
 

↓ 1.45 
 

↓ 1.28 
 

↓ 1.17 
 

↑1.29 
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Figure 7A: Post-training whole muscle Mdm2 protein  

 

 Whole Muscle - Mdm2 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.32 0.69 0.34 0.65 
2 0.48 0.48 0.46 0.94 
3 0.40 0.44 0.40 0.63 
4 0.19 0.47 0.34 0.74 
5 0.44 0.55 0.22 0.73 
6 0.18 0.74   
X 0.336 0.561 0.352 0.738 

SEM 0.0519 0.0510 0.0395 0.0542 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1267 ns No 
Mouse Model 0.0712 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2253 3.320 ≤ 0.05 * 
WT:UT vs. KO:UT -0.01588 0.2232 > 0.05 ns 
WT:UT vs. KO:T -0.4024 5.654 ≤ 0.005 *** 
WT:T vs. KO:UT 0.2094 2.943 > 0.05 ns 
WT:T vs. KO:T -0.1771 2.488 > 0.05 ns 

KO:UT vs. KO:T -0.3865 5.199 ≤ 0.005 *** 
 

 

 

 

 

 

 

 

 



146 

 

Figure 7B: Post-training whole muscle CHCHD4 protein  

 

 Whole Muscle - CHCHD4 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.44 0.84 0.22 0.99 
2 0.33 0.67 0.38 0.73 
3 0.45 0.65 0.19 0.98 
4 0.54 0.67 0.16 1.84 
5 0.58 0.71 0.18 0.70 
6  0.60   
X 0.469 0.688 0.226 1.0492 

SEM 0.0431 0.0336 0.0386 0.206 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0096 ** Yes 
Mouse Model 0.5762 ns No 

Genotype/Training 0.0001 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2190 1.530 > 0.05 ns 
WT:UT vs. KO:UT 0.2430 1.625 > 0.05 ns 
WT:UT vs. KO:T -0.5799 3.879 ≤ 0.01 ** 
WT:T vs. KO:UT 0.4620 3.227 ≤ 0.05 * 
WT:T vs. KO:T -0.3609 2.521 > 0.05 ns 

KO:UT vs. KO:T -0.8229 5.504 ≤ 0.005 *** 
 

Unpaired T-test-  WT UT versus WT T 
P value 0.0028 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  WT UT versus KO UT 
P value 0.0030 

P value summary †† 
Significantly different? (P<0.05) Yes 
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Figure 8A: Post-training cytochrome c protein release from SS mitochondria under basal 
conditions 

 

 Cytochrome C Protein Release – Basal – SS Mitochondrial - 
Muscle Specific Mice  

 
N 

WT mKO 
UT T UT T 

1 639.36 635.94 2459.55 887.55 
2 1087.31 1021.79 1042.72 1048.89 
3 1000.00 1674.26 1129.84 739.48 
4 1044.012 1020.21 1340.31 1110.96 
5 1024.033 1475.38 1719.96 704.21 
6 757.033  2238.96 1065.89 
7 

  
1519.79 836.50 

8 
  

1911.43 2252.13 
X 925.290 1165.513 1670.319 1080.701 

SEM 74.329 183.991 180.495 175.740 
 

One-Way ANOVA 
P value 0.0195 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT versus WT T -240.2 0.9074 > 0.05 ns 
WT UT versus KO UT -745 3.155 ≤ 0.05 † 
WT UT versus KO T -155.4 0.6582 > 0.05 ns 
WT T versus KO UT -504.8 2.025 > 0.05 ns 
WT T versus KO T 84.81 0.3403 > 0.05 ns 

KO UT versus KO T 589.6 2.697 > 0.05 ns 
 

Unpaired T-test – KO UT versus KO T 
P value 0.0346 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 8B: Post-training cytochrome c protein release from IMF mitochondria under basal 
conditions 

 Cytochrome C Protein Release - Basal - IMF Mitochondria – 
Muscle Specific Mice  

 WT mKO  
N UT T UT T 
1 14777.075 4417.15 11805.23 8125.28 
2 10879.30 13339.98 876.77 8153.28 
3 5276.39 8788.91 8269.96 8690.47 
4 10847.033 13100.61 7693.74 11403.33 
5 12690.50 10239.98 15333.42 9175.10 
6 16205.13 15551.18 840.96 18378.42 
7 13608.81 2707.55 10962.15 15938.78 
8 

 
1727.67 10698.42 13659.49 

9   2861.15 958.89 
10   790.69 1353.72 
11   9118.45  
12   3422.40  
13   1381.96  
14   11137.79  
X 12040.605 8734.129 6799.506 9583.675 

SEM 1347.328 1856.789 1327.0812 1779.248 
 

One-Way ANOVA 
P value 0.1636 

P value summary ns 
Significantly different? (P<0.05) No 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT versus WT T 3306 1.278 > 0.05 ns 
WT UT versus KO UT 5241 2.265 > 0.05 ns 
WT UT versus KO T 2457 0.9973 > 0.05 ns 
WT T versus KO UT 1935 0.8731 > 0.05 ns 
WT T versus KO T -849.5 0.3583 > 0.05 ns 

KO UT versus KO T -2784 1.345 > 0.05 ns 
 

Unpaired T-test - WT UT versus KO UT 
P value 0.0228 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 8C: Post-training cytochrome c protein release from SS mitochondria treated with 
apoptotic stimulus (H2O2), presented as fold change 

 Cytochrome C Protein Release - Treated/Control - SS 
Mitochondria – Muscle Specific Mice 

 WT mKO  
N UT T UT T 
1 11.063 3.22 2.14 1.12 
2 5.13 2.63 5.73 1.70 
3 2.29 2.33 1.58 3.27 
4 10.80 9.39 8.15 1.75 
5 11.60 4.42 7.98 1.022 
6 6.45 5.75 1.79 4.32 
7 

  
1.73 

 8 
  

8.076 
 9   10.66  

10   7.41  
X 7.888 4.624 5.524 2.197 

SEM 1.564 1.0830 1.0783 0.536 
 

One-Way ANOVA 
P value 0.0276 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT versus WT T 3.263 1.859 > 0.05 ns 
WT UT versus KO UT 2.364 1.506 > 0.05 ns 
WT UT versus KO T 5.69 3.242 ≤ 0.05 * 
WT T versus KO UT -0.8998 0.5732 > 0.05 ns 
WT T versus KO T 2.427 1.383 > 0.05 ns 

KO UT versus KO T 3.327 2.119 > 0.05 ns 
 

Unpaired T-test – KO UT versus KO T 
P value 0.0399 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test –WT UT versus WT T 
P value 0.1170 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 8D: Post-training cytochrome c protein release from IMF mitochondria treated 
with apoptotic stimulus (H2O2), presented as fold change 

 Cytochrome C Protein Release - Treated/Control - IMF 
Mitochondria - Muscle Specific Mice  

 WT mKO 
N UT T UT T 
1 1.19 4.20 1.24 2.56 
2 1.61 1.31 2.21 1.54 
3 1.75 2.26 1.95 2.97 
4 1.69 1.22 1.27 1.16 
5 1.19 2.13 6.50 1.53 
6 1.23 1.32 1.49 16.74 
7 

  
1.52 

 8 
  

4.90 
 9   8.00  

10   1.38  
11   8.076  
12   1.84  
X 1.443 2.0717 3.362 4.417 

SEM 0.110 0.464 0.785 2.481 
 

One-Way ANOVA 
P value 0.3852 

P value summary ns 
Significantly different? (P<0.05) No 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT versus WT T -0.6284 0.3361 > 0.05 ns 
WT UT versus KO UT -1.919 1.185 > 0.05 ns 
WT UT versus KO T -2.974 1.59 > 0.05 ns 
WT T versus KO UT -1.291 0.797 > 0.05 ns 
WT T versus KO T -2.345 1.254 > 0.05 ns 

KO UT versus KO T -1.055 0.6514 > 0.05 ns 
 

Unpaired T-test –WT UT versus KO UT 
P value 0.1087 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test –WT UT versus WT T 
P value 0.2165 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 8F: Post-training whole muscle Bax protein  

 

 Whole Muscle - Bax Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.31 0.5 0.59 0.57 
2 0.2 0.29 0.64 0.31 
3 0.38 0.24 0.65 0.32 
4 0.11 0.41 0.49 0.38 
5  0.27 0.64 0.11 
6  0.59 0.5 0.32 
X 0.25 0.383 0.585 0.335 

SEM 0.0596 0.0575 0.0297 0.0603 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0022 ** Yes 
Mouse Model 0.0157 * Yes 

Genotype/Training 0.2920 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.1333 1.664 > 0.05 ns 
WT:UT vs. KO:UT -0.3350 4.182 ≤ 0.01 †† 
WT:UT vs. KO:T -0.08500 1.061 > 0.05 ns 
WT:T vs. KO:UT -0.2017 2.815 > 0.05 ns 
WT:T vs. KO:T 0.04833 0.6746 > 0.05 ns 

KO:UT vs. KO:T 0.2500 3.489 ≤ 0.05 * 
 

Unpaired T-test – WT UT versus WT T 
P value 0.1593 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 8G: Post-training whole muscle Bcl-2 protein  

 

 Whole Muscle - Bcl-2 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.59 0.21 0.22 0.16 
2 0.84 0.71 0.16 0.27 
3 0.86 0.73 0.52 0.24 
4 0.54 0.29 0.46 0.14 
5 0.70 0.55 0.41 0.24 
6  0.23 0.30 0.38 
7  0.58 0.48 0.34 
8  0.44 0.35 0.11 
X 0.705 0.468 0.363 0.237 

SEM 0.0640 0.0738 0.0457 0.0333 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3394 ns No 
Mouse Model < 0.0001 **** Yes 

Genotype/Training 0.0039 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.2369 2.761 > 0.05 ns 
WT:UT vs. KO:UT 0.3422 3.989 ≤ 0.01 †† 
WT:UT vs. KO:T 0.4679 5.455 ≤ 0.001 **** 
WT:T vs. KO:UT 0.1053 1.400 > 0.05 ns 
WT:T vs. KO:T 0.2310 3.071 ≤ 0.05 * 

KO:UT vs. KO:T 0.1257 1.671 > 0.05 ns 
 

Unpaired T-test- WT UT versus WT T 
P value 0.0488 

P value summary * 
Significantly different? (P<0.05) Yes 

 

 

 

 

Unpaired T-test-  KO UT versus KO T 
P value 0.0431 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 8H: Post-training whole muscle p21 protein  

 

 Whole Muscle - p21 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.35 0.24 0.28 0.53 
2 0.23 0.24 0.29 0.53 
3 0.56 0.33 0.34 0.54 
4 0.46 0.42 0.28 0.88 
5 0.42 0.46 0.30 0.48 
6 0.51  0.24  
X 0.420 0.339 0.288 0.592 

SEM 0.0491 0.0447 0.0134 0.0724 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0008 *** Yes 
Mouse Model 0.2182 ns No 

Genotype/Training 0.0308 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.08095 1.202 > 0.05 ns 
WT:UT vs. KO:UT 0.1317 2.052 > 0.05 ns 
WT:UT vs. KO:T -0.1723 2.559 > 0.05 ns 
WT:T vs. KO:UT 0.05079 0.7544 > 0.05 ns 
WT:T vs. KO:T -0.2532 3.601 ≤ 0.05 * 

KO:UT vs. KO:T -0.3040 4.515 ≤ 0.01 ** 
 

Unpaired T-test-  WT UT versus WT T 
P value 0.2621 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test-  WT UT versus KO UT 
P value 0.0271 

P value summary † 
Significantly different? (P<0.05) Yes 

 

 



154 

 

Figure 9A: Post-training whole muscle LC3 II/ LC3 I protein  

 

 Whole Muscle - LC3 II/LC3 I Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.37 0.57 0.62 0.66 
2 0.60 1.087 0.32 0.60 
3 0.34 0.57 0.35 0.62 
4 0.16 0.80 0.37 0.77 
5 0.22 0.59 0.46 0.69 
6 0.36 0.79 0.45 0.51 
7  0.93 0.56 0.41 
8  0.52   
X 0.343 0.732 0.447 0.609 

SEM 0.0613 0.0718 0.0419 0.0446 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0618 ns No 
Mouse Model 0.8749 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.3896 4.728 ≤ 0.005 *** 
WT:UT vs. KO:UT -0.1044 1.229 > 0.05 ns 
WT:UT vs. KO:T -0.2668 3.143 ≤ 0.05 * 
WT:T vs. KO:UT 0.2853 3.612 ≤ 0.01 ** 
WT:T vs. KO:T 0.1228 1.555 > 0.05 ns 

KO:UT vs. KO:T -0.1625 1.992 > 0.05 ns 
 

Unpaired T-test-  WT UT versus KO UT 
P value 0.1777 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test-  KO UT versus KO T 
P value 0.0222 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 9B: Post-training whole muscle p62 protein  

 

 Whole Muscle - p62 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.24 0.87 0.93 0.63 
2 0.47 0.76 1.17 0.76 
3 0.53 0.74 0.76 0.54 
4 0.47 0.51 0.88 0.59 
5 0.41 0.47 0.85 0.74 
6  1.10 1.27 0.73 
7  0.78 1.13 1.024 
8   1.079  
X 0.425 0.747 1.00699 0.715 

SEM 0.0505 0.0809 0.0633 0.0605 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0002 *** Yes 
Mouse Model 0.0005 *** Yes 

Genotype/Training 0.8279 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.3225 3.149 ≤ 0.05 * 
WT:UT vs. KO:UT -0.5824 5.840 ≤ 0.005 †††† 
WT:UT vs. KO:T -0.2900 2.831 > 0.05 ns 
WT:T vs. KO:UT -0.2599 2.871 > 0.05 ns 
WT:T vs. KO:T 0.03257 0.3483 > 0.05 ns 

KO:UT vs. KO:T 0.2925 3.230 ≤ 0.05 * 
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Figure 9A: Post-training whole muscle Parkin protein  

 

 Whole Muscle - Parkin Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.19 0.49 0.77 0.46 
2 0.30 0.49 0.72 0.47 
3 0.25 0.55 0.69 0.31 
4 0.31 0.54 0.63 0.84 
5 0.12 0.47 0.62 0.48 
6   0.56 0.55 
7   0.95  
X 0.234 0.509 0.705 0.518 

SEM 0.0360 0.0153 0.0489 0.0717 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0003 *** Yes 
Mouse Model 0.0002 *** Yes 

Genotype/Training 0.4081 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2745 3.543 ≤ 0.05 * 
WT:UT vs. KO:UT -0.4710 6.566 ≤ 0.001 †††† 
WT:UT vs. KO:T -0.2837 3.825 ≤ 0.01 ** 
WT:T vs. KO:UT -0.1964 2.738 > 0.05 ns 
WT:T vs. KO:T -0.009180 0.1238 > 0.05 ns 

KO:UT vs. KO:T 0.1872 2.747 > 0.05 ns 
 

Unpaired T-test-  KO UT versus KO T 
P value 0.0490 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 9A: Post-training whole muscle Beclin-1 protein  

 

 Whole Muscle - Beclin-1 Protein - Muscle Specific Mice 
 WT mKO 

N UT T UT T 
1 0.24 0.76 0.69 0.31 
2 0.18 0.50 0.69 0.48 
3 0.32 0.55 1.028 0.56 
4 0.40 0.73 0.65 0.60 
5 0.41 0.41 0.99 0.75 
6  0.40 0.85 0.54 
7  0.36 0.67 0.72 
X 0.308 0.531 0.796 0.567 

SEM 0.0453 0.0612 0.0608 0.0563 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0009 *** Yes 
Mouse Model 0.0002 *** Yes 

Genotype/Training 0.9582 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.2227 2.558 > 0.05 ns 
WT:UT vs. KO:UT -0.4880 5.605 ≤ 0.001 †††† 
WT:UT vs. KO:T -0.2590 2.975 ≤ 0.05 * 
WT:T vs. KO:UT -0.2653 3.338 ≤ 0.05 * 
WT:T vs. KO:T -0.03636 0.4574 > 0.05 ns 

KO:UT vs. KO:T 0.2289 2.880 > 0.05 ns 
 

 

 

Unpaired T-test-  KO UT versus KO T 
P value 0.0171 

P value summary * 
Significantly different? (P<0.05) Yes 

 

 

Unpaired T-test-  WT UT versus WT T 
P value 0.0223 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 10A: COX Enzyme Activity, marker of mitochondrial content, in untrained Muscle 
Specific (MS) versus Whole Body (WB) mice  

 

 COX Enzyme Activity (µmol/min/g tissue)  – Untrained MS 
versus WB Mice 

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 19.21 14.84 22.49 11.59 
2 16.66 11.04 19.12 12.30 
3 13.76 12.21 12.88 13.00 
4 16.87 14.41 22.31 14.93 
5 15.90 13.29 16.76 17.58 
6 16.80 14.65 13.56 8.88 
7  14.66   
8  14.50   
X 16.533 13.700 17.853 13.047 

SEM 0.718 0.495 1.706 1.213 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3657 ns No 
Mouse Model 0.7579 ns No 

Genotype/Training 0.0017 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO 2.833 1.941 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -1.320 0.8461 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO 3.487 2.235 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:WT -4.153 2.846 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO 0.6533 0.4477 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO 4.807 3.081 ≤ 0.05 † 
 

Unpaired T-test-  MS WT UT versus mKO UT 
P value 0.0056 

P value summary †† 
Significantly different? (P<0.05) Yes 
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Figure 10B: PGC-1α mRNA in untrained Muscle Specific (MS) versus Whole Body (WB) 
mice 

 

 PGC-1α mRNA – Untrained MS versus WB Mice  
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 5.76 4.64 6.89 2.61 
2 5.56 3.92 7.21 4.43 
3 4.46 5.44 5.31 3.47 
4 5.08 5.42 6.64 1.23 
5 5.20 4.74 7.94 3.66 
6  5.45 7.19 4.48 
7  4.58 5.51 4.75 
8  2.83 7.10 3.61 
9  5.11  4.10 

10    3.19 
X 5.212 4.342 6.722 3.553 

SEM 0.225 0.426 0.316 0.330 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0004 *** Yes 
Mouse Model 0.5619 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO 0.5309 1.066 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -1.512 2.971 ≤ 0.05 ¶ 
Muscle Specific:WT vs. Whole Body:KO 1.659 3.394 ≤ 0.05 * 
Muscle Specific:KO vs. Whole Body:WT -2.043 4.710 ≤ 0.005 *** 
Muscle Specific:KO vs. Whole Body:KO 1.128 2.751 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO 3.171 7.490 ≤ 0.001 †††† 
 

Unpaired T-test-  MS WT UT versus mKO UT 
P value 0.2340 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 10C: PGC-1α protein in untrained Muscle Specific (MS) versus Whole Body (WB) 
mice 

 

 PGC-1α Protein – Untrained MS versus WB Mice  
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 0.35 0.39 0.43 0.50 
2 0.40 0.27 0.37 0.33 
3 0.43 0.21 0.70 0.50 
4 0.58 0.42 0.66 0.077 
5 0.52 0.30 0.70 0.52 
6  0.24 0.83 0.40 
7  0.21 0.75 0.35 
X 0.456 0.291 0.633 0.382 

SEM 0.0410 0.0321 0.0650 0.059 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4194 ns No 
Mouse Model 0.0183 * Yes 

Genotype/Training 0.0007 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO 0.1646 2.102 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -0.1787 2.282 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO 0.07319 0.9348 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:WT -0.3433 4.803 ≤ 0.005 *** 
Muscle Specific:KO vs. Whole Body:KO -0.09143 1.279 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO 0.2519 3.524 ≤ 0.05 † 
 

Unpaired T-test-  MS WT UT versus mKO UT 
P value 0.0094 

P value summary †† 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.0133 

P value summary ¶ 
Significantly different? (P<0.05) Yes 
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Figure 10D: State 3 respiration in the SS mitochondria of untrained Muscle Specific (MS) 
versus Whole Body (WB) mice 

 State 3 Respiration – SS Mitochondria – Untrained MS versus 
WB Mice  

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 8.53 31.93 5.50 6.47 
2 10.89 34.80 6.51 15.24 
3 17.80 13.20 27.50 9.51 
4 12.01 25.16 21.37 2.34 
5 16.16 11.91 14.40 12.89 
6 12.82 40.79 11.46 5.80 
X 13.035 26.298 14.457 8.708 

SEM 1.396 4.809 3.513 1.956 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0077 ** Yes 
Mouse Model 0.0205 * Yes 

Genotype/Training 0.2557 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -13.26 2.921 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -1.422 0.3130 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO 4.327 0.9527 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:WT 11.84 2.608 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO 17.59 3.873 ≤ 0.01 ¶¶ 

Whole Body:WT vs. Whole Body:KO 5.748 1.266 > 0.05 ns 
 

Unpaired T-test-  MS WT UT versus mKO UT 
P value 0.0244 

P value summary † 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.7147 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test-  WB WT UT versus KO UT 
P value 0.1833 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 10E: State 3 reactive oxygen species (ROS) in the SS mitochondria of untrained 
Muscle Specific (MS) versus Whole Body (WB) mice 

 

 State 3 ROS - SS Mitochondria - Untrained MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 1.91 6.56 18.25 26.02 
2 11.94 5.36 15.58 18.63 
3 3.91 5.81 47.29 62.22 
4 16.04 9.40 17.70 7.39 
5 10.95 5.70 12.46 8.34 
6 12.26 8.99 31.39 55.22 
7  8.66   
X 9.502 7.211 23.778 29.637 

SEM 2.216 0.657 5.396 9.659 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4605 ns No 
Mouse Model 0.0028 ** Yes 

Genotype/Training 0.7453 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO 2.290 0.3045 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -14.28 1.829 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO -20.14 2.580 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:WT -16.57 2.203 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO -22.43 2.982 ≤ 0.05 ¶ 

Whole Body:WT vs. Whole Body:KO -5.858 0.7506 > 0.05 ns 
 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.0344 

P value summary ¶ 
Significantly different? (P<0.05) Yes 
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Figure 10F: Basal cytochrome c protein release in the SS mitochondria of untrained 
Muscle Specific (MS) versus Whole Body (WB) mice  

 

 Cytochrome C Protein Release – Basal - SS Mitochondria –- 
Untrained MS versus WB Mice  

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 639.36 2459.55 877.48 1246.67 
2 1087.31 1042.72 571.96 1907.21 
3 1000.00 1129.84 554.55 1279.26 
4 1044.012 1340.31 1399.13 972.77 
5 1024.033 1719.96 688.26 2038.98 
6 757.033 2238.96   
7  1519.79   
8  1911.43   
X 925.290 1670.319 818.275 1488.976 

SEM 74.329 180.495 156.210 205.741 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.8287 ns No 
Mouse Model 0.4052 ns No 

Genotype/Training 0.0005 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -745.0 3.383 ≤ 0.05 † 
Muscle Specific:WT vs. Whole Body:WT 107.0 0.4335 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO -563.7 2.283 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:WT 852.0 3.666 ≤ 0.01 ** 
Muscle Specific:KO vs. Whole Body:KO 181.3 0.7802 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO -670.7 2.601 > 0.05 ns 
 

Unpaired T-test-  WB WT UT versus KO UT 
P value 0.0318 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 11B: Whole muscle LC3 II/ LC3 I protein in untrained Muscle Specific (MS) versus 
Whole Body (WB) mice  

 

 LC3 II/ LC3 I Protein- Untrained MS versus WB Mice  
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 0.37 0.62 0.30 0.41 
2 0.60 0.32 0.45 0.96 
3 0.34 0.35 0.56 0.60 
4 0.16 0.37 0.48 0.53 
5 0.22 0.46 0.47 0.66 
6 0.36 0.45 0.54 0.55 
7  0.56 0.21  
8   0.27  
X 0.343 0.447 0.411 0.619 

SEM 0.0613 0.0419 0.0465 0.0770 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3641 ns No 
Mouse Model 0.0443 * Yes 

Genotype/Training 0.0105 * Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -0.1044 1.295 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT -0.06748 0.8627 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO -0.2758 3.298 ≤ 0.05 * 
Muscle Specific:KO vs. Whole Body:WT 0.03687 0.4919 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO -0.1715 2.128 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO -0.2083 2.663 > 0.05 ns 
 

Unpaired T-test-  MS mKO UT versus WB KO UT 
P value 0.0649 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test-  WB WT UT versus KO UT 
P value 0.0302 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 11C: Whole muscle p62 protein in untrained Muscle Specific (MS) versus Whole 
Body (WB) mice 

 

 p62 Protein- Untrained MS versus WB Mice  
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 0.24 0.93 0.64 1.033 
2 0.47 1.17 0.75 1.021 
3 0.53 0.76 0.81 1.29 
4 0.47 0.88 0.44 0.84 
5 0.41 0.85 0.21 0.90 
6  1.27 0.76 0.75 
7  1.13   
8  1.08   
X 0.425 1.007 0.601 0.971 

SEM 0.0505 0.0633 0.0949 0.0771 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1750 ns No 
Mouse Model 0.3558 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -0.5824 5.495 ≤ 0.005 ††† 
Muscle Specific:WT vs. Whole Body:WT -0.1771 1.573 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO -0.5478 4.865 ≤ 0.005 *** 
Muscle Specific:KO vs. Whole Body:WT 0.4053 4.036 ≤ 0.01 ** 
Muscle Specific:KO vs. Whole Body:KO 0.03465 0.3451 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO -0.3707 3.453 ≤ 0.05 † 
 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.1567 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 11D: Whole muscle Beclin-1 protein in untrained Muscle Specific (MS) versus 
Whole Body (WB) mice 

 

 Beclin-1 Protein- Untrained MS versus WB Mice  
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 0.24 0.69 0.40 0.73 
2 0.18 0.69 0.73 1.59 
3 0.32 1.03 0.56 0.75 
4 0.40 0.65 0.58 0.80 
5 0.41 0.99 0.79 0.67 
6  0.85 0.62 0.99 
7  0.67 1.018 0.49 
X 0.308 0.796 0.671 0.859 

SEM 0.0453 0.0608 0.0751 0.134 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1185 ns No 
Mouse Model 0.0302 * Yes 

Genotype/Training 0.0013 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -0.4880 3.589 ≤ 0.01 †† 
Muscle Specific:WT vs. Whole Body:WT -0.3629 2.669 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:KO -0.5517 4.058 ≤ 0.01 ** 
Muscle Specific:KO vs. Whole Body:WT 0.1251 1.008 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO -0.06377 0.5138 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO -0.1889 1.522 > 0.05 ns 
 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.0039 

P value summary ¶¶ 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  WB WT UT versus KO UT 
P value 0.2423 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 12A: Post-training performance test, exercise capacity comparison between Muscle 
Specific (MS) versus Whole Body (WB) mice 

 Post-Training Performance Stress Test – Distance to Exhaustion (m) 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 891.5 1623.6 726.0 1731.5 1258.1 2382.6 661.0 2317.04 
2 1349.0 2990.3 1067.0 2555.0 477.0 3002.5 1111.0 1715.9 
3 922.5 1376.0 1059.0 2117.0 980.6 2202.0 755.0 2033.0 
4 852.8 1578.0 1084.0 2465.0 662.4 1836.0 332.0 2345.2 
5 1252.5 2834.0 1150.0 2487.5 982.8 1830.0 970.0 2127.5 
6 830.0 2992.7 926.0 1946.9 944.4 2064.5 733.0 2210.6 
7   400.0 2112.8 726.0 3027.0 1117.0 2810.5 
8   557.0 1533.1 1043.9 1946.9 1084.0 2519.0 
9     1245.5 2270.8 915.0 2568.8 
X 1016.383 2232.433 871.125 2118.600 924.522 2284.700 853.111 2294.171 

SEM 91.705 318.679 98.330 131.523 86.913 151.545 86.559 107.565 
 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.7933 ns No 
Mouse Model 0.7646 ns No 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -1216 5.445 ≤ 0.001 **** 
Muscle Specific:WT UTvs.Muscle Specific:KO UT 145.4 0.696 > 0.05 ns 
Muscle Specific:WT UT vs. Whole Body:WT UT 91.86 0.4506 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T 113.8 0.5449 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -52.28 0.2564 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -1248 6.451 ≤ 0.001 **** 
Muscle Specific:KO UT vs. Whole Body:KO UT 17.99 0.0957 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T -175.6 0.9342 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -1360 7.46 ≤ 0.001 **** 

Whole Body:WT UT vs. Whole Body:KO UT 71.53 0.3923 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T -9.471 0.0519 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -1441 7.904 ≤ 0.001 **** 
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Figure 12B: Post-training COX Enzyme Activity, a marker of mitochondrial content, and 
the comparison between Muscle Specific (MS) versus Whole Body (WB) mice 

 COX Enzyme Activity – Muscle Specific Mice versus Whole Body Mice 
 Muscle Specific Mice Whole Body Mice 

 WT mKO WT KO 
N UT T UT T UT T UT T 
1 19.21 19.63 14.84 22.22 22.49 37.96 11.59 19.80 
2 16.66 21.86 11.04 22.61 19.12 39.13 12.30 26.16 
3 13.76 21.52 12.21 24.46 12.88 37.71 13.00 19.82 
4 16.87 20.65 14.41 22.49 22.31 31.72 14.93 18.66 
5 15.90 24.89 13.29 25.42 16.76 28.80 17.58 24.33 
6 16.80 20.09 14.65 22.34 13.56 22.79 8.88 17.83 
7  22.98 14.66 21.18  30.12  19.34 
8  26.86 14.50 25.49  21.53  18.03 
X 16.533 22.310 13.700 23.276 17.853 31.220 13.047 20.496 

SEM 0.718 0.881 0.495 0.572 1.706 2.399 1.213 1.082 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0001 *** Yes 
Mouse Model 0.0604 ns No 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -6.111 3.233 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT 2.499 1.322 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -1.656 0.8193 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.9663 0.5522 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -8.909 5.091 ≤ 0.005 *** 
Muscle Specific:KO UT vs. Muscle Specific:KO T -9.576 5.472 ≤ 0.001 **** 
Muscle Specific:KO UT vs. Whole Body:KO UT 0.6516 0.3448 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 2.779 1.588 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -13.36 7.071 ≤ 0.001 **** 

Whole Body:WT UT vs. Whole Body:KO UT 4.806 2.379 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 10.72 6.127 ≤ 0.001 **** 

Whole Body:KO UT vs. Whole Body:KO T -7.448 3.941 ≤ 0.01 ** 
 

Unpaired T-test – MS WT UT versus MS WT T 
P value 0.0003 

P value summary *** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WB WT UT versus WB KO UT 
P value 0.0446 

P value summary † 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS WT UT versus MS KO UT 
P value 0.0140 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 12C: Post-training whole muscle PGC-1α protein comparison between Muscle 
Specific (MS) versus Whole Body (WB) mice 

 Whole Muscle PGC-1α Protein Expression 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 0.35 0.93 0.39 0.69 0.43 0.38 0.50 0.66 
2 0.40 0.74 0.27 0.89 0.37 0.38 0.33 0.51 
3 0.43 0.71 0.21 0.41 0.70 0.47 0.50 0.93 
4 0.58 1.17 0.42 0.93 0.66 0.85 0.077 0.73 
5 0.52 0.73 0.30 0.93 0.70 0.66 0.52 0.93 
6  0.88 0.24 0.69 0.83 1.24 0.40 0.66 
7  0.71 0.21 0.61 0.75 1.31 0.35 0.80 
8    0.91  0.78  0.40 
9      0.43  0.53 
10      1.05   
X 0.456 0.840 0.291 0.759 0.633 0.755 0.382 0.683 

SEM 0.041 0.064 0.0321 0.068 0.0650 0.112 0.0585 0.0611 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.2697 ns No 
Mouse Model 0.6093 ns No 

Genotype/Training < 0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -0.3841 3.182 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT 0.1646 1.364 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -0.1787 1.480 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T 0.08049 0.7543 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T 0.08471 0.8337 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -0.4682 4.388 ≤ 0.01 ** 
Muscle Specific:KO UT vs. Whole Body:KO UT -0.09143 0.8296 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 0.07589 0.7575 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -0.1207 1.188 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.2519 2.285 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.07167 0.7565 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -0.3009 2.896 > 0.05 ns 
 

Unpaired T-test-  MS WT UT versus T 
P value 0.0011 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  WB KO UT versus T 
P value 0.0038 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test-  WB WT UT versus T 
P value 0.4166 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test-  MS WT UT versus KO UT 
P value 0.0095 

P value summary †† 
Significantly different? (P<0.05) Yes 

Unpaired T-test-  WB WT UT versus KO UT 
P value 0.0133 

P value summary † 
Significantly different? (P<0.05) Yes 

Unpaired T-test-  MS WT UT versus WB WT UT 
P value 0.0604 

P value summary ns 
Significantly different? (P<0.05) No 
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Appendix B: Supplementary and Additional Data 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Antibody concentrations for western blot analyses.  
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Table 2. Phenotypic alterations and exercise capacity under basal and exercise training 
conditions in MS and WB mice.  
  

A) Pre-training variables (initial body mass and distance to exhaustion) were compared in the 

absence of p53 between mouse models (n=13-23/group); ¶p≤0.05, ¶¶p≤0.01, MS vs. WB; 

††p≤0.01, WT vs. KO, 2-way ANOVA. B) Phenotypic variables were measured following the 

training or sedentary program (n=6-10/group); *p≤0.05, **p≤0.01, UT vs. T; ¶p≤0.05, 

¶¶p≤0.01, MS vs. WB; †p≤0.05, MS WT vs. KO, Student’s t-test and 2-way ANOVA. C) 

Mitochondrial parameters including yield and RCR values in both SS and IMF mitochondrial 

subfractions were measured (n=6-11/group); *p≤0.05, **p≤0.01, UT vs. T; ¶p≤0.05, MS vs. 

WB, Student’s t-test. Data are presented as mean± SEM. Abbreviations: RCR, respiratory 

control ratio; TA; tibialis anterior; SS, subsarcolemmal; IMF, intermyofibrillar. 
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Increased expression is measured through fold change and reduced expression is 

measured as a percent difference. Patterns in mRNA and protein regulation are 

similar for p53, p21, Tfam, PGC-1α, LC3, but are different for Bax and Mdm2 

(n=4-11/group); *p≤0.05, **p≤0.01, UT vs. T, Student’s t-test and 2-way ANOVA; 

†p≤0.05, ††p≤0.01, Student’s t-test and 2-way ANOVA. NS= non-significant.  

Table 3. mRNA and protein fold-change comparison to examine the effect of genotype 
and training in muscle-specific mice. 



173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To examine  the transcription factors that may compensate for the lack of p53 with exercise, 

structural similarities were compared from similar proteins to p53 (393 aa, chr 17p13.1, 53 kDA, 

28 exons). Using the Dali Server and PSI-BLAST search against the p53 2GEQA region, which 

contains the DNA binding region in mus musculus, and examined  the structural similarities of 

proteins. This server utilizes a sum of pairs method which analyzes intramolecular distances; a 

high z score indicates similar distances between structures. This analysis concluded six  

noteworthy transcription factors. Additional transcriptional regulators, determined through 

review of literature, include 16 proteins (12, 20, 35, 49). Further analysis is required to provide a 

complete inquiry into viable compensatory mechanisms. Details on the aforementioned proteins 

are listed in the order of amino acid (aa) length, kilo dalton size, number of exons, chromosome 

(chr) location, and number of isomers. Abbreviations: Bcl-2A1, BCL2 related protein 1; 

NFATC1, Nuclear factor of activated T-cells 1; p65/NF-kB1, Nuclear factor kappa B subunit 1; 

Table 4. Structural protein analysis to determine analogous features to the p53 transcription 
factor. 
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RELB, RELB proto-oncogene, NF-kB subunit; SIRT1, Sirtuin 1; FOXO1, Forkhead Box O1; 

IGF-1, Insulin like growth factor 1; NR4A1, Nuclear receptor subfamily 4 group 1 member 1; 

JUNB, JunB proto-oncogene; Myc, Myc proto-oncogene; FOS, Fos proto-oncogene, ATF3, 

Activating transcription factor 3; ID1-3, Inhibitor of DNA binding 3, HLH protein; CTGF, 

Connective tissue growth factor; HIF1-a, Hypoxia inducible factor 1 alpha subunit; MEF2A, 

Myocyte enhancer factor 2A; HDAC1, histone de-acetylase 1;  NRF1, nuclear respiratory factor 

1; CREB1, CAMP responsive element binding protein 1. 
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Figure 1. Detailed exercise protocol for sedentary and exercise grouped mice. Muscle 

specific and whole body WT and KO mice underwent a two-day acclimatization program to the 

treadmill. 24 hours following the second day of acclimatization, all mice underwent a pre-

training exhaustive stress test. A 48 hour time delay occurred between the first exhaustive stress 

test and the initiation of the 6-week exercise training or sedentary program. 48 hours following 

the exercise/sedentary intervention, a second exhaustive exercise stress test was performed to 

measure the adaptations with training. After a 48 hour wait period, all mice were subjected to an 

acute bout of exercise prior to euthanization and tissue extraction immediately following the 90 

min bout. Acute exercise was employed prior to tissue extraction to upregulate signaling 

transcription for mRNA analysis.  
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Figure 2. Differences in baseline exercise performance. MS and WB mice were subjected to a 

pre-training exhaustive bout of exercise. Exercise performance was measured by recording A) 

distance to exhaustion (n=17-18/group); N.S. p>0.05, 2-way ANOVA, and B) lactate production 

before and after exercise (n=7-20/group); †p≤0.05, ††p≤0.01, WT vs. KO, 2-way ANOVA; 

****p≤0.001, Pre-lactate vs. Post-lactate (effect of exercise), 2-way ANOVA. Red line indicates 

an exhaustive lactate threshold (>8mM). Data are presented as mean ± SEM.  
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Figure 3. The absence of p53 does not impact skeletal muscle strength. Skeletal muscle 

strength in whole body mice was measured through a cage hanging test. Strength was measured 

by A) length of time spent hanging (n=14/group). N.S., p>0.05, WT vs KO, student’s T-test, and 

by the B) holding impulse (n=14/group). N.S., p>0.05, WT vs KO, student’s T-test. Data are 

presented as mean ± SEM. This model for resistance exercise indicated that WB KO mice, 

though not significantly different from the WT mice, did display an increased trend for improved 

strength capacity. N.S.= non-significant. 
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Figure 4. Neurological testing to assess cerebral function in the absence of p53. To examine 

walking synchronization in the WB mice, a balance beam test was employed to measure the A) 
time to cross (n=14/group); †p≤0.05, WT vs. KO, Student’s t-test, and the B) number of paw 

slips (n=14/group); N.S., p>0.05, Student’s t-test. A pole test was employed to examine motor 

coordination and synchronization for correct paw placement during vertical navigation down a 

pole by measuring C) the time to traverse down the pole (n=14/group);N.S., p>0.05, Student’s t-

test. To establish central neural activity for voluntary movement identified through spatial 

learning, memory, and behavioural parameters, a cylinder escape test was employed. D) The 

time to escape the cylinder was measured (n=14/group); N.S., p>0.05. Data are presented as 

mean ± SEM. N.S. = non-significant 
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Figure 5. Reduced DNA fragmentation and apoptosis with training. DNA fragmentation was 

measured following training in both mouse models. Though no significant differences are 

detected with training and genotype, the WB mice do experience greater apoptosis than the MS 

mice (n=6-8/group); ¶ p≤0.05, WB vs. MS, Student’s t-test. Furthermore, a trend for reduced 

DNA fragmentation with training in the WB WT and KO mice was observed. Data are presented 

as mean ± SEM.  
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Figure 6. AIF mitochondrial protein release. Mitochondrial AIF protein release was measured 

from SS and IMF subfractions under basal conditions in A) MS mice (n=7-14/group); ##p≤0.01, 

main effect of SS mitochondria, 2-way ANOVA, and B) WB mice (n=10-13/group); #p≤0.05, 

main effect of IMF mitochondria, 2-way ANOVA. AIF protein release was further measured in 

SS and IMF mitochondria when activated through apoptotic stimuli (H2O2)  in C) MS mice 

(n=6-11/group); ##p≤0.01, main effect of IMF mitochondria, 2-way ANOVA, and D) WB mice 

(n=8-12/group); #p≤0.05, main effect of SS mitochondria, 2-way ANOVA. Data are presented as 

mean ± SEM.  
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Figure 7. Respiration analysis of permeabilized fibres in WB mice.  A) Mitochondrial 

respiration for Complex I (state 4 and state 3) Complex I & II (state 3), and Complex II (state 3) 

was performed on a subset of whole body mice (n=2-5/group); *p≤0.05, UT vs. T; †p≤0.05, WT 

vs. KO, Student’s t-test and 2-way ANOVA. B) The fold change on the effect of training on 

respiration was calculated between WT and KO mice (n=2-5/group); ††p≤0.01, main effect of 

genotype, 2-way ANOVA. C) Mitochondrial respiration corrected for total mitochondrial 

volume was measured (n=2-5/group); N.S., p>0.05, 2-way ANOVA. D) Fold change on the 

effect of training on corrected respiration was measured (n=2-5/group); ††p≤0.01, main effect of 

genotype, 2-way ANOVA. Data are presented as mean ± SEM. N.S. = non-significant. 

Abbreviations: P/M, pyruvate/malate; ADP, adenosine diphosphate; Succ, succinate; CI, 

Complex I; CII, Complex 2.  
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Figure 8.  Reactive Oxygen Species (ROS) analysis in permeabilized fibers in WB mice. A) 
Mitochondrial ROS in Complex I (state 4 and state 3), Complex I & II (state 3), and Complex II 

(state 3) was measured using the Oroboros instrument on a subset of whole body mice (n=2-

5/group); N.S., p>0.05, 2-way ANOVA. B) The fold change on the effect of training on ROS 

was calculated between WT and KO mice (n=2-5/group); N.S., p>0.05, 2-way ANOVA. C) 
Mitochondrial ROS corrected for total mitochondrial volume was measured (n=2-5/group); 

*p≤0.05, UT vs. T, Student’s t-test. D) Fold change on the effect of training on corrected ROS 

was measured (n=2-5/group); †p≤0.05, WT vs. KO, Student’s t-test. Data are presented as mean 

± SEM. N.S.= non-significant. Abbreviations: P/M, pyruvate/malate; ADP, adenosine 

diphosphate; Succ, succinate; CI, Complex I; CII, Complex 2.  
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Figure 9. Antioxidant regulation with exercise training.  A) The major antioxidant 

transcriptional regulator Nrf2, and its B) negative regulator KEAP1 were examined in the 

context of exercise training (n=4-5/group); *p≤0.05, **p≤0.05, UT vs. T,  2-way ANOVA . Data 

are presented as mean ± SEM.  
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Figure 10. Signaling regulation in untrained and trained MS and WB mice. A) p53 mRNA 

was reduced with training in MS mice (n=6-10/group); **p≤0.01, UT vs. T, Student’s t-test. B) 
Mitochondrial biogenesis was measured through COX IV protein in whole muscle lysates of MS 

mice (n=5-7/group); **p≤0.01, UT vs. T, 2-way ANOVA; †† p≤0.01, UT WT vs. KO, 2-way 

ANOVA. C) The effects of the absence of p53 on apoptotic signaling in untrained MS and WB 

mice was measured through protein analysis of D) Bax (n=4-6/group); †p≤0.05; ††p≤0.01, UT 

WT vs. KO; ¶¶p≤0.01, MS vs. WB, 2-way ANOVA, E) Bcl-2 (n=5-8/group); †p≤0.05, UT WT 

vs. KO, 2-way ANOVA; ¶p≤0.05, MS vs. WB, Student’s t-test, and F) p21 (n=6-8/group); 

†p≤0.05, ††p≤0.01, UT WT vs. KO, Student’s t-test and 2-way ANOVA; ¶¶p≤0.01, MS vs. WB, 

2-way ANOVA. Data are presented as mean  ±  SEM.  
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Figure 11. IMF mitochondrial functional (respiration and ROS) and apoptosis signaling 
comparison between MS and WB mice in the absence of p53. IMF mitochondrial function 

was measured through state 3 A) respiration (n=6-8/group); †p≤0.05, UT WT vs, KO; ¶p≤0.05, 

MS vs. WB, Student’s t-test, and B) ROS (n=7-8/group); †p≤0.05, UT WT vs, KO, Student’s t-

test. C) Apoptosis was basally measured through cytochrome c release from IMF mitochondria 

(n=6-14/group); †p≤0.05, UT WT vs, KO, Student’s t-test. Data are presented as mean ±  SEM.  
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Appendix C: Data and Statistical Analysis for Supplementary 

Table 2A: Pre-training initial body mass measurement, comparison between Muscle-
Specific (MS) and Whole-Body (WB) Mice 

 Pre-Training Initial Body Mass – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 30.8 38.4 28.4 34.1 
2 30.4 28.5 17.7 25.5 
3 29.6 29.5 19.5 33.5 
4 26.8 27.2 23.4 39.5 
5 31.0 29.4 27.6 30.3 
6 31.4 44.4 26.2 29.3 
7 31.5 34.6 23.9 25.6 
8 30.1 27.0 25.4 28.8 
9 31.2 36.7 28.8 24.8 

10 31.3 32.0 25.6 25.1 
11 30.4 32.8 26.3 26.9 
12 29.2 29.2 20.3 27.6 
13 31.7 27.8 20.2 25.9 
14  28.8 25.6 29.4 
15  27.8 19.5 30.7 
16  28.2 19.8 29.4 
17  27.7 24.8 29.1 
18  36.9 24.2 28.2 
19  31.1 26.4 27.7 
20  31.4 26.5 29.5 
21  29.5 26.0  
22   27.2  
23   25.0  
X 30.415 31.376 24.274 29.045 

SEM 0.367 0.984 0.667 0.789 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0329 * Yes 
Mouse Model <0.0001 **** Yes 

Genotype/Training 0.0010 *** Yes 
 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO -0.9608 0.8352 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT 6.141 5.429 ≤ 0.001 ¶¶¶¶ 
Muscle Specific:KO vs. Whole Body:KO 2.831 2.78 ≤ 0.05 ¶ 

Whole Body:WT vs. Whole Body:KO -4.271 4.285 ≤ 0.005 ††† 
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Table 2A: Pre-training initial body mass measurement, comparison between Muscle-
Specific (MS) and Whole-Body (WB) Mice 

 

 Pre-Training Performance Test – Distance to Exhaustion (m)  - MS 
versus WB Mice 

 Muscle-Specific Mice Whole-Body Mice 
N WT mKO WT KO 
1 1144.22 1381.40 1173.80 1067.00 
2 1322.50 1012.56 1124.75 1277.00 
3 1597.00 1546.42 1102.00 1485.00 
4 1150.00 1322.50 1091.75 1439.00 
5 970.00 1387.88 1077.89 668.00 
6 1559.00 477.00 1261.25 1167.00 
7 1578.00 523.25 1394.00 894.60 
8 962.00 855.23 794.00 1129.70 
9 1287.50 1466.50 1067.00 1197.60 
10 1189.44 1616.00 1150.00 1218.00 
11 1012.56 1635.00 1386.80 1422.80 
12 1201.00 804.80 1503.50 1386.80 
13 1509.42 922.50 1444.40 1433.60 
14 1394.00 876.00 1496.10 1175.50 
15 1192.50 970.00 1577.50 1235.00 
16 1301.50 1313.75 1397.60 1291.00 
17 1485.00 1503.50 1322.50 1221.40 
18  1201.00 1358.00 1042.25 
X 1285.626 1156.405 1262.380 1208.403 

SEM 50.830 85.428 47.654 48.436 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significant? 

Interaction 0.5361 ns No 
Mouse Model 0.8129 ns No 

Genotype 0.1347 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT vs. Muscle Specific:KO 129.2 1.5 > 0.05 ns 
Muscle Specific:WT vs. Whole Body:WT 23.25 0.2698 > 0.05 ns 
Muscle Specific:KO vs. Whole Body:KO -52 0.6123 > 0.05 ns 

Whole Body:WT vs. Whole Body:KO 53.98 0.6356 > 0.05 ns 
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Table 2B: Post-training final body mass measurement, comparison between Muscle-
Specific (MS) and W hole-Body (WB) Mice 

 Post-Training Final Body Mass (g) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 31.52 29.02 42.40 27.10 22.83 20.09 33.40 22.76 
2 31.23 30.52 30.60 27.72 22.82 20.46 28.90 26.32 
3 34.03 30.35 33.40 25.61 28.70 23.30 31.50 25.79 
4 28.07 30.74 30.40 28.42 29.30 19.39 32.50 21.29 
5 36.13 30.07 30.40 28.92 28.10 19.28 29.60 28.80 
6 36.15 29.75 43.00 27.06 28.50 26.50 31.40 28.50 
7   38.40 26.82 31.70 25.80 28.20 30.00 
8   29.10 29.41 30.00 27.00 27.90 22.80 
9   38.40 30.10 30.6 26.30   
10   32.30 27.00     
X 32.855 30.075 34.840 27.816 28.061 23.124 30.425 25.783 

SEM 1.295 0.254 1.660 0.434 1.057 1.110 0.727 1.140 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1983 ns No 
Mouse Model <0.0001 **** Yes 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 2.78 1.511 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT -1.98 1.203 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT 4.794 2.854 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T 2.259 1.373 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T 6.951 4.139 ≤ 0.01 ¶¶ 
Muscle Specific:KO UT vs. Muscle Specific:KO T 7.019 4.925 ≤ 0.005 *** 
Muscle Specific:KO UT vs. Whole Body:KO UT 4.416 2.922 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 2.034 1.346 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T 4.937 3.287 ≤0.05 * 

Whole Body:WT UT vs. Whole Body:KO UT -2.357 1.522 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T -2.658 1.716 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T 4.637 2.91 > 0.05 ns 
 

Unpaired T-test – MS WT UT versus MS WT T 
P value 0.0478 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test - MS WT UT versus WB WT UT 
P value 0.0132 

P value summary ¶ 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WB WT UT versus KO UT 
P value 0.0926 

P value summary ns 
Significantly different? (P<0.05) No 

 

Unpaired T-test – WB KO UT versus WB KO T 
P value 0.0041 

P value summary ** 
Significantly different? (P<0.05) Yes 

Unpaired T-test - MS KO UT versus WB KO UT 
P value 0.0401 

P value summary ¶ 
Significantly different? (P<0.05) Yes 
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Table 2B: Post-training tibialis anterior (TA) mass, corrected for body mass, comparison 
between Muscle-Specific (MS) and Whole-Body (WB) Mice 
 

 Tibialis Anterior (TA) Skeletal Muscle Mass/Body Mass (mg/g) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 2.00 1.51 2.57 1.93 2.09 1.65 2.37 1.72 
2 2.20 1.62 1.98 1.64 2.03 1.61 2.87 1.52 
3 2.20 1.69 1.91 1.82 2.11 1.62 1.69 1.83 
4 1.95 1.49 2.06 1.85 1.84 1.57 1.70 1.63 
5 1.86 1.83 1.91 1.62 1.95 1.40 1.55 1.59 
6 1.68 1.30 2.05 1.72 1.70 1.54 1.61 1.55 
7   2.01 1.78 1.69 1.54 1.56 1.80 
8   2.21 1.94   1.62 1.70 
X 1.982 1.573 2.088 1.788 1.916 1.561 1.871 1.668 

SEM 0.0822 0.0747 0.0768 0.0429 0.0665 0.0311 0.171 0.0403 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.6817 ns No 
Mouse Model 0.1068 ns No 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 0.4076 3.003 > 0.05 ns 
Muscle Specific:WT UT vs.Muscle Specific:KO UT -0.1059 0.8344 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT 0.06336 0.4844 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.2138 1.684 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T 0.01088 0.0832 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T 0.2998 2.55 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT 0.2153 1.832 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 0.1188 1.011 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T 0.3551 2.826 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.04604 0.3784 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T -0.1058 0.8697 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T 0.2033 1.729 > 0.05 ns 
 

Unpaired T-test – MS WT UT versus MS WT T 
P value 0.0045 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WB WT UT versus WB WT T 
P value 0.0004 

P value summary *** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS KO UT versus MS KO T 
P value 0.0043 

P value summary ** 
Significantly different? (P<0.05) Yes 
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Table 2B: Post-training gastrocnemius mass, corrected for body mass, comparison between 
Muscle-Specific (MS) and Whole-Body (WB) Mice 

 

 Gastrocnemius Muscle Mass/Body Mass (mg/g) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 7.42 6.32 8.13 6.24 6.58 6.94 6.50 6.20 
2 6.73 6.28 5.88 6.32 6.57 6.35 6.37 6.65 
3 5.89 5.56 6.18 6.52 6.90 6.22 5.50 6.31 
4 6.10 5.74 6.15 6.14 5.98 5.97 5.00 5.78 
5 5.90 5.81 6.16 6.36 5.90 6.05 5.70 6.03 
6 6.00 5.34 5.88 5.19 6.71 6.39 6.14 5.95 
7   6.25 6.45 5.48 6.39 5.76 6.42 
8   5.83 6.19   6.29 6.43 
X 6.340 5.842 6.308 6.176 6.303 6.330 5.908 6.221 

SEM 0.251 0.160 0.267 0.148 0.196 0.120 0.180 0.102 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1415 ns No 
Mouse Model 0.8459 ns No 

Genotype/Training 0.5897 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 0.5022 1.745 > 0.05 ns 
Muscle Specific:WT UT vs.Muscle Specific:KO UT 0.03814 0.1417 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT 0.03465 0.1249 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.3361 1.248 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -0.4899 1.766 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T 0.1279 0.5133 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT 0.3969 1.592 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T -0.04472 0.1794 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -0.02235 0.0839 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.4004 1.552 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.1091 0.4227 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -0.3137 1.259 > 0.05 ns 
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Table 2B: Post-training quadriceps mass, corrected for body mass, comparison between 
Muscle-Specific (MS) and Whole-Body (WB) Mice 

 

 Quadriceps Muscle Mass/Body Mass (mg/g) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 6.56 5.65 7.28 6.56 8.49 7.75 7.53 5.85 
2 6.51 5.95 6.96 6.50 7.58 7.48 6.29 6.65 
3 5.87 6.58 6.64 6.56 8.32 6.08 5.54 6.70 
4 6.15 6.08 6.52 6.45 6.54 7.51 5.44 6.56 
5 6.18 6.57 6.05 6.52 6.22 5.46 5.89 6.37 
6 6.15 6.22 6.05 6.60 7.16 6.65 7.91 6.38 
7   7.61 7.15 5.33 6.13 5.79 6.19 
8   5.93 6.73   6.73 6.95 
X 6.237 6.175 6.630 6.634 7.091 6.723 6.390 6.456 

SEM 0.105 0.148 0.218 0.0793 0.433 0.331 0.327 0.120 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0966 ns No 
Mouse Model 0.1771 ns No 

Genotype/Training 0.8766 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 0.06081 0.1542 > 0.05 ns 
Muscle Specific:WT UTvs.Muscle Specific:KO UT -0.3929 1.065 > 0.05 ns 
Muscle Specific:WT UT vs. Whole Body:WT UT -0.8553 2.251 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.4573 1.24 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -0.5487 1.444 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -0.003661 0.0107 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT 0.239 0.6997 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 0.1759 0.515 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T 0.3675 1.007 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.7014 1.984 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.2672 0.7559 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -0.06675 0.1955 > 0.05 ns 
 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.1708 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 2B: Post-training heart mass, corrected for body mass, comparison between Muscle-
Specific (MS) and Whole-Body (WB) Mice 

 

 Heart Mass/Body Mass (mg/g) – MS versus WB Mice 

 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 6.14 6.04 3.69 5.42 4.44 6.87 6.11 6.48 
2 5.71 6.26 4.29 5.69 6.00 6.56 6.07 6.33 
3 4.89 5.69 5.07 6.01 5.65 7.15 6.64 6.23 
4 3.99 5.13 4.76 5.51 5.82 7.04 5.56 6.99 
5 6.59 5.76 5.06 6.13 5.67 6.79 4.78 7.76 
6 4.94 5.66 5.14 5.64 5.46 9.62 4.56 7.09 
7   5.04 6.10 4.98 6.30 5.13 7.33 
8   5.11 6.00   4.32 6.59 
X 5.377 5.757 4.770 5.813 5.431 7.190 5.396 6.850 

SEM 0.388 0.157 0.184 0.0989 0.205 0.419 0.294 0.189 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0772 ns No 
Mouse Model <0.0001 **** Yes 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -0.3815 0.9603 > 0.05 ns 
Muscle Specific:WT UTvs.Muscle Specific:KO UT 0.6059 1.63 > 0.05 ns 
Muscle Specific:WT UT vs. Whole Body:WT UT -0.05545 0.1448 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.05429 0.1461 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -1.433 3.743 ≤ 0.05 * 
Muscle Specific:KO UT vs. Muscle Specific:KO T -1.042 3.028 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT -0.6252 1.817 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T -1.039 3.019 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -1.759 4.782 ≤ 0.005 *** 

Whole Body:WT UT vs. Whole Body:KO UT 0.03617 0.1016 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.34 0.9547 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -1.455 4.23 ≤ 0.01 ** 
 

Unpaired T-test – MS KO UT versus MS KO T 
P value 0.0002 

P value summary *** 
Significantly different? (P<0.05) Yes 
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Table 2B: Post-training epididymal fat mass, corrected for body mass, comparison between 
Muscle-Specific (MS) and Whole-Body (WB) Mice 
 

 Epididymal Fat Muscle Mass/Body Mass (mg/g) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 33.60 22.25 67.17 26.68 29.06 18.64 49.44 17.50 
2 43.06 24.78 59.87 27.04 35.80 21.60 40.08 14.09 
3 51.42 29.34 41.71 30.32 22.18 23.89 39.33 16.55 
4 38.65 39.98 53.59 24.04 29.74 21.75 52.07 17.03 
5 39.77 44.16 39.43 19.37 22.51 22.73 46.69 17.33 
6 54.89 28.43 58.87 27.07 33.29 22.14 23.70 20.86 
7   59.64 14.52 38.43 21.57 32.48 20.58 
8   56.22 22.32    17.18 
X 43.565 31.490 54.563 23.920 30.144 21.760 40.541 17.640 

SEM 3.307 3.545 3.352 1.792 2.358 0.606 3.780 0.773 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4031 ns No 
Mouse Model <0.0001 **** Yes 

Genotype/Training <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 12.07 2.989 > 0.05 ns 
Muscle Specific:WT UTvs.Muscle Specific:KO UT -11 2.911 > 0.05 ns 
Muscle Specific:WT UT vs. Whole Body:WT UT 13.42 3.447 ≤ 0.05 * 
Muscle Specific:WT T vs. Muscle Specific:KO T 7.569 2.003 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T 9.731 2.5 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T 30.64 8.76 ≤ 0.001 **** 
Muscle Specific:KO UT vs. Whole Body:KO UT 14.02 3.872 ≤ 0.01 ¶¶ 

Muscle Specific:KO T vs. Whole Body:KO T 6.282 1.796 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T 8.387 2.243 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT -10.4 2.78 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 4.12 1.138 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T 22.9 6.326 ≤0.001 **** 
 

Unpaired T-test – MS WT UT versus MS WT T 
P value 0.0320 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.0062 

P value summary ¶¶ 
Significantly different? (P<0.05) Yes 

 

 

Unpaired T-test – WB WT UT versus WB WT T 
P value 0.0049 

P value summary ** 
Significantly different? (P<0.05) Yes 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0417 

P value summary † 
Significantly different? (P<0.05) Yes 
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Table 2C: Post-training SS mitochondrial yield comparison between Muscle-Specific (MS) 
and Whole-Body (WB) Mice 

 SS Mitochondrial Yield (µg/mg) – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 0.47 0.95 0.58 0.8 0.46 0.76 0.51 0.6 
2 0.62 0.83 0.44 1.03 0.69 1 0.85 0.54 
3 0.71 0.89 0.83 0.9 0.59 1.01 0.69 0.59 
4 0.22 0.79 0.69 0.76 1.14 0.72 0.78 0.74 
5 0.56 0.87 0.036 0.85 0.73 0.8 0.43 0.58 
6 0.67 0.61 0.6 0.69 0.5 1.5 0.6 0.72 
7   0.59 0.64 0.61 1.15 0.76 0.73 
8   0.72  1.55 1.81 0.59 0.72 
9     0.52 1.82  0.72 

10     0.54   0.66 
11        0.91 
X 0.541 0.823 0.561 0.81 0.733 1.174 0.651 0.683 

SEM 0.0730 0.0481 0.0852 0.0498 0.110 0.144 0.0508 0.0314 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0358 * Yes 
Mouse Model 0.0141 * Yes 

Genotype/Training 0.0027 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -0.2809 1.763 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT -0.01550 0.104 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -0.3908 2.743 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T 0.01575 0.1026 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -0.3502 2.408 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -0.2496 1.748 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT -0.09303 0.6742 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 0.1256 0.9411 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -0.2402 1.895 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.2823 2.157 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.4915 3.963 ≤ 0.01 ** 

Whole Body:KO UT vs. Whole Body:KO T -0.03101 0.2418 > 0.05 ns 
 

Unpaired T-test – MS WT UT versus T 
P value 0.0089 

P value summary ** 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – WB WT UT versus WT T 
P value 0.0247 

P value summary * 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS KO UT versus T 
P value 0.0166 

P value summary * 
Significantly different? (P<0.05) Yes 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.2339 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 2C: Post-training IMF mitochondrial yield comparison between Muscle-Specific 
(MS) and Whole-Body (WB) Mice 

 IMF Mitochondrial Yield (µg/mg) – MS versus WB 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 1.11 1.047 0.98 1.1 0.7 1.17 0.67 1.35 
2 1.00 1.017 1.18 1.17 1.04 1.45 0.78 1.4 
3 1.22 1.06 1.22 1.35 0.94 1.21 1.26 1.1 
4 1.09 1.56 1.15 1.21 1.51 0.85 1.16 1.31 
5 1.08 1.58 1.06 1.61 0.5 1.24 0.97 1.35 
6 1.04 1.14 1.15 1.76 1.15 1.29 1.05 1.31 
7  1.38 0.12 1.54 1.42 1.3 1.25 1.41 
8   0.96 1.76 1.82 1.15 1.21 1.2 
9   1.23 1.44 0.73 2.11 1.25 1.37 

10   0.99  0.55 2.58 0.89  
11     1.78 2.18   
X 1.0903 1.255 1.004 1.438 1.104 1.503 1.049 1.311 

SEM 0.0308 0.0933 0.103 0.0828 0.143 0.162 0.0676 0.0336 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.2100 ns No 
Mouse Model 0.2508 ns No 

Genotype/Training 0.0008 *** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -0.1655 0.9203 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT 0.08605 0.5155 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -0.1042 0.6351 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.1820 1.117 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -0.3376 2.16 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -0.4335 2.919 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT -0.04359 0.3015 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 0.1274 0.836 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -0.3989 2.894 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.1467 1.038 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.2830 1.948 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -0.2625 1.768 > 0.05 ns 
 

Unpaired T-test – MS WT UT versus WT T 
P value 0.1455 

P value summary ns 
Significantly different? (P<0.05) No 

 

 

Unpaired T-test – WB WT UT versus WT T 
P value 0.0796 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – MS KO UT versus KO T 
P value 0.0050 

P value summary ** 
Significantly different? (P<0.05) Yes 

Unpaired T-test – WB KO UT versus KO T 
P value 0.0038 

P value summary ** 
Significantly different? (P<0.05) Yes 
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Table 2C: Post-training respiratory control ratio (RCR) in SS mitochondria, comparison 
between Muscle-Specific (MS) and Whole-Body (WB) Mice 

 SS Mitochondria RCR – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 2.09 4.56 3.19 5.00 1.36 11.00 1.09 4.25 
2 0.70 3.62 2.52 4.22 1.05 7.50 9.13 2.32 
3 5.82 10.30 4.33 5.55 10.00 8.29 2.00 4.00 
4 3.56 37.00 7.35 5.64 8.70 13.00 0.14 11.2 
5 7.20 17.00 5.44 9.32 3.56 11.00 1.50 7.25 
6 3.15 4.71 4.90 4.39 1.00 2.60 4.57 5.29 
7 3.93  6.45 4.31 0.40 5.08  2.67 
8   2.75 19.00 0.50    
9     3.67    
X 3.779 12.865 4.616 7.179 3.360 8.353 3.072 5.283 

SEM 0.826 5.251 0.621 1.787 1.205 1.381 1.355 1.167 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.7667 ns No 
Mouse Model 0.1352 ns No 

Genotype/Training 0.0029 ** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -9.086 3.139 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT -0.8377 0.3111 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT 0.4186 0.1597 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T 5.686 2.024 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T 4.512 1.559 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -2.563 0.9851 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT 1.545 0.5497 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T 1.896 0.7041 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -4.993 1.904 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.2883 0.1052 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 3.070 1.104 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -2.211 0.7640 > 0.05 ns 
 

 

 

 

 

Unpaired T-test – MS WT UT versus WT T 
P value 0.0911 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – WB WT UT versus WT T 
P value 0.0164 

P value summary * 
Significantly different? (P<0.05) Yes 

Unpaired T-test – MS KO UT versus KO T 
P value 0.1971 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 2C: Post-training respiratory control ratio (RCR) in SS mitochondria, comparison 
between Muscle-Specific (MS) and Whole-Body (WB) Mice 

 IMF Mitochondria RCR – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 6.59 2.82 8.62 7.89 20.14 12.36 21.47 11.3 
2 5.43 18.47 5.22 7.97 15.9 12.33 3.82 9.72 
3 6.89 4.74 5.77 8.17 3.83 7.43 7.06 9.42 
4 5.86 19.06 12.36 1.80 4.50 13.04 11.22 15.64 
5 5.64 7.49 7.80 6.27 9.14 27.87 10.49 22.12 
6 5.89 8.04 6.66 4.97 11.37 25.04 11.98 12.73 
7   2.85 18.36 15.88 15.77  39.1 
8    41.50 9.66    
X 6.0500 10.103 7.0400 12.116 11.303 16.263 11.007 17.147 

SEM 0.232 2.847 1.134 4.521 2.025 2.808 2.436 4.016 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9879 ns No 
Mouse Model 0.0199 * Yes 

Genotype/Training 0.1217 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T -4.053 0.9000 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT -0.9900 0.2281 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -5.253 1.247 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -2.013 0.4778 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -6.160 1.419 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -5.076 1.257 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT -3.967 0.9140 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T -5.031 1.246 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T -4.960 1.229 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.2958 0.07023 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T -0.8843 0.2121 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T -6.140 1.415 > 0.05 ns 
 

 

 

Unpaired T-test – MS WT UT versus WT T 
P value 0.1863 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.0468 

P value summary ¶ 
Significantly different? (P<0.05) Yes 

Unpaired T-test – WB WT UT versus WT T 
P value 0.1682 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – WB KO UT versus KO T 
P value 0.2367 

P value summary ns 
Significantly different? (P<0.05) No 
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Table 3: mRNA and protein fold comparison, average values and fold change 

mRNA and Protein Comparison – Muscle Specific Mice 
mRNA/protein WT KO Δ WT UT 

vs. mKO 
Δ WT UT 

vs. T 
Δ mKO 
UT vs. T UT T UT T 

p53 mRNA 3.9 2.3 n/a n/a n/a ↓ 41.0% n/a 
p53 protein 0.70 0.27 n/a n/a n/a ↓ 61.4% n/a 
p21 mRNA 5.6 3.5 4.1 5.4 ↓ 26.8% ↓ 37.5% ↑ 1.3-fold 
p21 protein 0.42 0.34 0.29 0.59 ↓ 31.0 % NS ↑ 2.0-fold 
Bax mRNA 8.3 6.7 5.1 3.4 ↓ 38.6 % ↓ 19.3% ↓ 33.3% 
Bax protein 0.25 0.38 0.59 0.34 ↑ 2.4-fold NS ↓ 42.4% 

Mdm2 mRNA 3.1 2.8 2.8 2.6 NS NS NS 
Mdm2 protein 0.34 0.56 0.35 0.74 NS ↑ 1.6-fold ↑ 2.1-fold 
Tfam mRNA 6.4 5.8 3.2 4.2 ↓ 50% NS ↑ 1.3-fold 
Tfam protein 0.57 0.69 0.41 0.86 ↓ 28.1% NS ↑ 2.1-fold 

PGC-1α mRNA 5.2 5.4 4.3 6.7 NS NS ↑ 1.6-fold 
PGC-1α protein 0.46 0.84 0.29 0.76 ↓ 37.0% ↑ 1.8-fold ↑ 2.6-fold 

p62 mRNA 5.7 5.6 4.5 4.9 ↓ 21.1% NS NS 
p62 protein 0.43 0.75 1.01 0.72 ↑ 2.3-fold ↑ 1.7-fold ↓ 28.7% 
LC3 mRNA 4.9 4.9 2.7 3.5 ↓ 44.9 % NS ↑ 1.3-fold 
LC3 protein 0.34 0.73 0.45 0.61 NS ↑ 2.1-fold ↑ 1.4-fold 
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Figure 2B: Pre-Training performance test, initial and final blood lactate comparison 
between Muscle-Specific (MS) and Whole-Body (WB) mice 

 
 

Pre-Training Stress Performance Test – Lactate Production (mM) – MS versus WB Mice 

 MS WT MS mKO WB WT WB KO 
N Pre-

Lactate 
Post-

Lactate 
Pre-

Lactate 
Post-

Lactate 
Pre-

Lactate 
Post-

Lactate 
Pre-

Lactate 
Post-

Lactate 
1 2.9 11.1 1.5 12.7 1.1 10.6 1.1 14.7 
2 1.1 11.5 2.0 13.4 1.4 9.6 2.3 9.1 
3 2.1 10.6 1.8 12.0 1.3 9.2 1.9 11.2 
4 2.2 10.5 2.0 10.9 2.2 8.5 2.4 15.3 
5 2.3 8.4 1.8 9.5 1.4 9.2 1.9 11.4 
6 2.3 8.8 1.6 18.6 1.7 10.8 2.3 10.6 
7 2.3 10.0 1.5 13.2 2.1 10.0 2.0 10.9 
8 2.6 11.8 1.8 9.3 2.6 8.7  11.5 
9 1.2 12.8 2.1 14.2 1.9 9.6  10.3 
10 2.5 13.5 2.3 12.2 1.6 11.9  14.4 
11 1.6 9.0 2.3 13.8 1.5 10.3  10.3 
12 1.3 8.7 2.6 13.3 2.2 8.8  11.0 
13 2.9 7.8 1.7 9.4  9.5  15.0 
14 2.4  1.5 9.7  10.3  10.6 
15 1.2  1.9 10.7  9.2  11.7 
16 2.1  2.1 9.7  10.3  12.0 
17 1.3  2.1 10.7  9.9  10.8 
18   1.6   8.8   
19      9.4   
20      10.8   
X 2.018 10.346 1.900 11.959 1.750 9.770 1.986 11.812 

SEM 0.148 0.490 0.0741 0.584 0.130 0.193 0.167 0.451 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0071 ** Yes 
Mouse Model/Genotype 0.0025 ** Yes 

Pre/Post Lactate <0.0001 **** Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS WT:Pre-Lactate vs. MS WT:Post-Lactate -8.329 16.56 ≤0.001 **** 
MS WT:Pre-Lactate vs. MS KO:Pre-Lactate 0.1176 0.2548 > 0.05 ns 
MS WT:Pre-Lactate vs. WB WT:Pre-Lactate 0.2676 0.5199 > 0.05 ns 

MS WT:Post-Lactate vs. MS KO:Post-Lactate -1.613 3.206 ≤ 0.05 † 
MS WT:Post-Lactate vs. WB WT:Post-Lactate 0.5762 1.184 > 0.05 ns 
MS KO:Pre-Lactate vs. MS KO:Post-Lactate -10.06 21.78 ≤0.001 **** 
MS KO:Pre-Lactate vs. WB KO:Pre-Lactate -0.08571 0.1409 > 0.05 ns 

MS KO:Post-Lactate vs. WB KO:Post-Lactate 0.1471 0.314 > 0.05 ns 
WB WT:Pre-Lactate vs. WB WT:Post-Lactate -8.02 16.09 ≤0.001 **** 
WB WT:Pre-Lactate vs. WB KO:Pre-Lactate -0.2357 0.363 > 0.05 ns 

WB WT:Post-Lactate vs. WB KO:Post-Lactate -2.042 4.533 ≤0.005 ††† 
WB KO:Pre-Lactate vs. WB KO:Post-Lactate -9.826 16.02 ≤0.001 **** 
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Figure 3A: Cage hanging grip strength test, time hanging   

Cage Hanging Grip Strength Test – Time (sec) – Whole Body Mice 
N WT KO 
1 105.17 278.02 
2 84.42 123.30 
3 171.70 129.30 
4 42.62 551.30 
5 254.38 143.67 
6 172.60 332.29 
7 179.80 156.71 
8 232.91 354.34 
9 114.77 280.00 
10 212.09 262.00 
11 272.90 85.99 
12 129.59 271.78 
13 164.75 334.33 
14 375.14 74.11 
X 179.489 241.224 

SEM 23.066 35.180 
 

Unpaired T-test – WT versus KO 
P value 0.1542 

P value summary ns 
Significantly different? (P<0.05) No 

 

Figure 3B: Cage hanging grip strength test, holding impulse   

Cage Hanging Grip Strength Test – Holding Impulse –Whole Body Mice 
N WT KO 
1 3018.379 7562.144 
2 2237.13 3723.66 
3 5030.81 4072.95 
4 1099.596 17035.17 
5 6944.574 4381.935 
6 4850.06 10799.43 
7 5124.3 5375.153 
8 6288.57 10204.99 
9 3638.209 7980 
10 5577.967 7755.2 
11 7422.88 2700.086 
12 3317.504 8153.4 
13 4332.925 9428.106 
14 9378.5 2067.669 
X 4875.815 7231.421 

SEM 586.216 1062.210 
 

Unpaired T-test – WT versus KO 
P value 0.0631 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 4A: Balance Beam Test, time to cross  
 

 

Unpaired T-test – WT versus KO 
P value 0.0519 

P value summary † 
Significantly different? (P<0.05) Yes 

 

Figure 4B: Balance Beam Test, number of paw slips  

Balance Beam Test – Number of Paw Slips – Whole Body Mice 
N WT KO 
1 0 1 
2 2 4 
3 0 3 
4 0 2 
5 4 2 
6 2 5 
7 1 5 
8 9 2 
9 8 2 

10 4 9 
11 2 8 
12 1 1 
13 1 7 
14 3 4 
X 2.643 3.929 

SEM 0.753 0.691 
 

Unpaired T-test – WT versus KO 
P value 0.2196 

P value summary ns 
Significantly different? (P<0.05) No 

 

Balance Beam Test – Time to Cross (sec) – Whole Body Mice 
N WT KO 
1 6 5 
2 12 6 
3 4 9 
4 4 6 
5 8 27 
6 5 25 
7 4 14 
8 5 9 
9 5 5 

10 3 8 
11 3 5 
12 5 5 
13 7 8 
14 6 4 
X 5.500 9.714 

SEM 0.627 1.971 
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Figure 4C: Vertical pole test, time traversing down the pole 

Vertical Pole Test – Time (sec) – Whole Body Mice 
N WT KO 
1 4.077 4.157 
2 4.753 3.393 
3 3.403 4.137 
4 4.377 4.347 
5 3.630 5.013 
6 4.543 3.750 
7 3.840 3.987 
8 5.577 6.073 
9 3.710 4.033 

10 6.083 4.310 
11 6.760 4.583 
12 5.200 4.027 
13 4.087 2.947 
14 5.090 2.443 
X 4.652 4.086 

SEM 0.265 0.232 
 

Unpaired T-test – WT versus KO 
P value 0.1195 

P value summary ns 
Significantly different? (P<0.05) No 

 

Figure 4D: Cylinder escape test, time to escape cylinder 

Cylinder Escape Test – Time (sec) – Whole Body Mice 
N WT KO 
1 231.00 600.00 
2 537.75 600.00 
3 343.85 186.53 
4 588.04 98.62 
5 366.31 177.40 
6 345.82 600.00 
7 108.16 265.69 
8 600.00 217.87 
9 173.64 502.39 
10 244.34 466.83 
11 600.00 198.78 
12 281.10 403.9 
13 320.48 499.00 
14 319.83 162.96 
X 361.451 355.712 

SEM 43.021 49.788 
 

Unpaired T-test – WT versus KO 
P value 0.9312 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 5: Post-training DNA fragmentation, Muscle-Specific (MS) versus Whole-Body 
(WB) Mice 

 DNA Fragmentation – MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 
 WT mKO WT KO 

N UT T UT T UT T UT T 
1 0.77 0.72 0.69 0.87 0.93 1.11 0.88 0.94 
2 0.72 0.84 0.83 0.76 1.71 0.88 1.13 0.93 
3 0.90 0.77 0.79 0.92 1.22 1.10 1.25 1.16 
4 0.77 0.83 0.81 1.06 1.13 1.28 1.20 1.25 
5 0.97 0.90 0.86 0.87 1.46 1.22 1.13 1.27 
6 1.51 0.84 1.37 0.94 1.28 1.07 1.46 0.15 
7 0.76 0.80 1.03 1.02 1.48    
8    0.94     
X 0.914 0.814 0.911 0.923 1.316 1.110 1.175 0.950 

SEM 0.105 0.0218 0.0856 0.0330 0.0972 0.0565 0.0771 0.171 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1921 ns No 
Mouse Model 0.0003 *** Yes 

Genotype/Training 0.1729 ns No 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

Muscle Specific:WT UT vs. Muscle Specific:WT T 0.1000 0.8194 > 0.05 ns 
Muscle Specific:WT UT vs. Muscle Specific:KO UT 0.002857 0.02341 > 0.05 ns 

Muscle Specific:WT UT vs. Whole Body:WT UT -0.4014 3.289 > 0.05 ns 
Muscle Specific:WT T vs. Muscle Specific:KO T -0.1082 0.9158 > 0.05 ns 

Muscle Specific:WT T vs. Whole Body:WT T -0.2957 2.328 > 0.05 ns 
Muscle Specific:KO UT vs. Muscle Specific:KO T -0.01107 0.09369 > 0.05 ns 
Muscle Specific:KO UT vs. Whole Body:KO UT -0.2636 2.075 > 0.05 ns 

Muscle Specific:KO T vs. Whole Body:KO T -0.0275 0.2230 > 0.05 ns 
Whole Body:WT UT vs. Whole Body:WT T 0.2057 1.619 > 0.05 ns 

Whole Body:WT UT vs. Whole Body:KO UT 0.1407 1.108 > 0.05 ns 
Whole Body:WT T vs. Whole Body:KO T 0.1600 1.214 > 0.05 ns 

Whole Body:KO UT vs. Whole Body:KO T 0.2250 1.707 > 0.05 ns 
 

Unpaired T-test – MS KO UT versus WB KO UT 
P value 0.0434 

P value summary ¶ 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS WT T versus WB WT T 
P value 0.0003 

P value summary ¶¶¶ 
Significantly different? (P<0.05) Yes 

 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.0158 

P value summary ¶ 
Significantly different? (P<0.05) Yes 

Unpaired T-test – WB WT UT versus WB WT T 
P value 0.1084 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – MS KO T versus WB KO T 
P value 0.8585 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 6A: Post-training AIF protein release from SS and IMF mitochondria under basal 
conditions 

 AIF Protein Release - Basal – SS & IMF Mitochondria – Muscle-Specific Mice 
 SS IMF 
 WT mKO WT mKO 

N UT T UT T UT T UT T 
1 2294.13 340.41 2919.26 12049.57 693.06 1564.26 826.01 2765.08 
2 2016.72 9556.91 11410.15 7472.45 495.58 3846.26 280.09 698.86 
3 1291.48 13763.81 345.53 520.36 251.97 354.305 340.24 337.48 
4 784.72 3254.91 319.46 496.65 451.01 729.8 426.68 137.97 
5 556.31 610.6 5800.08 291.49 459.58 367.94 162.26 426.44 
6 7734.15 446.82 353.6 949.41 283.23 351.16 50.9 300.85 
7 1074.89 2492.26 4672.5 1976.18 522.89 355.9 237.87 113.78 
8  1212.77 416.06 1178.53  294.26 202.7 332.09 
9  1678.79 923.28 629.28  719.79 230.11 961.48 
10  573.72 694.06 510.68  819.28 836.06 690.58 
11   1026.16 10476.57   868.06 1102.35 
12   1386.43 1372.08   892.81  
13   1057.96    939.21  
14   3592.03    599.34  
X 2250.343 3393.100 2494.04 3160.271 451.046 940.296 492.310 715.178 

SEM 944.250 1444.369 831.900 1231.770 56.396 345.100 85.674 226.692 
 

 

 

 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT:SS vs. WT UT:IMF 1904 1.316 > 0.05 ns 
WT UT:SS vs. WT T:SS -1049 0.7869 > 0.05 ns 

WT UT:SS vs. KO UT:SS -139.3 0.1112 > 0.05 ns 
WT UT:IMF vs. WT T:IMF -489.2 0.3669 > 0.05 ns 

WT UT:IMF vs. KO UT:IMF -41.26 0.03294 > 0.05 ns 
WT T:SS vs. WT T:IMF 2464 2.036 > 0.05 ns 
WT T:SS vs. KO T:SS 243.7 0.2104 > 0.05 ns 

WT T:IMF vs. KO T:IMF 202.3 0.1746 > 0.05 ns 
KO UT:SS vs. KO UT:IMF 2002 1.957 > 0.05 ns 

KO UT:SS vs. KO T:SS -666.3 0.6259 > 0.05 ns 
KO UT:IMF vs. KO T:IMF -245.7 0.2308 > 0.05 ns 

KO T:SS vs. KO T:IMF 2422 2.193 > 0.05 ns 
 

Unpaired T-test – IMF WT UT versus WT T 
P value 0.2614 

P value summary ns 
Significantly different? (P<0.05) No 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9826 ns No 
Genotype/Training 0.7779 ns No 

Mitochondrial Subfraction 0.0005 ### Yes 

Unpaired T-test – IMF KO UT versus T 
P value 0.2607 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 6B: Post-training AIF protein release from SS and IMF mitochondria under basal 
conditions 

 AIF Protein Release - Basal – SS & IMF Mitochondria – Whole-Body Mice 
 SS IMF 
 WT KO WT KO 

N UT T UT T UT T UT T 
1 663.82 2670.5 632.06 675.01 5741.9 501.28 5772.6 1960.7 
2 16699.1 788.01 526.31 1099.52 791.5 2701.52 2591.62 10169.21 
3 561.58 874.06 527.75 535.53 6295.62 10118.69 1675.84 808.84 
4 610.33 951.33 758.26 866.5 5981.9 650.26 827.03 3626.3 
5 510.33 641.43 4921.03 1486.03 4618.21 661.89 541.91 2328.4 
6 1471.69 709.77 1121.4 926.91 4663.08 780.84 6607.03 6676.62 
7 4572.26 666.06 537.74 147.21 388.23 9439.4 775.79 8036.15 
8 691.96 671.67 765.5 637.74 850.67 801.96 6063.18 6102.81 
9 590.77 4176.13 1229.15 1247.23 788.94 401.97 790.36 2182.45 

10 976.5 807.13 1004.82 2108.15 544.46 476.48 540.89 418.87 
11 3780.55 727.23  2785.05 245.97 428.16  1520.27 
12  551.36    671.06   
13  1058.31    2872.55   
X 2829.899 1176.384 1202.402 1137.716 2810.044 2346.620 2618.625 3984.602 

SEM 1450.087 291.828 420.872 227.956 780.908 943.402 797.131 979.268 
 

 

 

 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT:SS vs. WT UT:IMF 300.7 0.2561 > 0.05 ns 
WT UT:SS vs. WT T:SS 1662 1.473 > 0.05 ns 

WT UT:SS vs. KO UT:SS 1636 1.360 > 0.05 ns 
WT UT:IMF vs. WT T:IMF 190.7 0.1691 > 0.05 ns 

WT UT:IMF vs. KO UT:IMF -81.31 0.06759 > 0.05 ns 
WT T:SS vs. WT T:IMF -1170 1.084 > 0.05 ns 
WT T:SS vs. KO T:SS 38.67 0.03428 > 0.05 ns 

WT T:IMF vs. KO T:IMF -1638 1.452 > 0.05 ns 
KO UT:SS vs. KO UT:IMF -1416 1.150 > 0.05 ns 

KO UT:SS vs. KO T:SS 64.68 0.05376 > 0.05 ns 
KO UT:IMF vs. KO T:IMF -1366 1.135 > 0.05 ns 

KO T:SS vs. KO T:IMF -2847 2.425 > 0.05 ns 
 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3131 ns No 
Genotype/Training 0.5861 ns No 

Mitochondrial Subfraction 0.0306 * Yes 
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Figure 6C: Post-training AIF protein release from SS and IMF mitochondria treated with 
apoptotic stimulus (H2O2), presented as fold change 

 
 

AIF Protein Release – Treated/Control – SS & IMF Mitochondria – Muscle-Specific Mice 

 SS IMF 
 WT mKO WT mKO 

N UT T UT T UT T UT T 
1 6.04 2.76 6.16 1.43 16.95 10.63 11.10 4.61 
2 7.79 1.36 1.04 2.29 15.88 20.34 19.75 14.91 
3 10.75 1.20 2.88 8.30 11.95 19.88 8.27 22.45 
4 15.91 5.24 3.38 18.17 14.97 21.32 29.12 18.24 
5 2.67 8.10 6.85 7.40 14.91 7.31 25.87 23.96 
6 14.35 9.50 9.00 15.36 16.12 21.73 11.58 22.69 
7  14.10 15.59 1.91  24.72 14.80 22.96 
8   20.45 13.00  20.74 7.12 17.86 
9   18.97    22.05 10.64 

10   5.98    21.60  
11       18.31  
X 9.585 6.037 9.030 8.483 15.130 18.334 17.234 17.591 

SEM 2.063 1.812 2.181 2.291 0.708 2.131 2.182 2.184 
 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.5493 ns No 
Genotype/Training 0.9603 ns No 

Mitochondrial Subfraction <0.0001 #### Yes 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT:SS vs. WT UT:IMF -5.544 1.573 > 0.05 ns 
WT UT:SS vs. WT T:SS 3.546 1.044 > 0.05 ns 

WT UT:SS vs. KO UT:SS 0.5538 0.1757 > 0.05 ns 
WT UT:IMF vs. WT T:IMF -3.204 0.9717 > 0.05 ns 

WT UT:IMF vs. KO UT:IMF -2.103 0.6788 > 0.05 ns 
WT T:SS vs. WT T:IMF -12.29 3.891 ≤ 0.01 ** 
WT T:SS vs. KO T:SS -2.446 0.774 > 0.05 ns 

WT T:IMF vs. KO T:IMF 0.7412 0.2498 > 0.05 ns 
KO UT:SS vs. KO UT:IMF -8.201 3.074 > 0.05 ns 

KO UT:SS vs. KO T:SS 0.5466 0.1887 > 0.05 ns 
KO UT:IMF vs. KO T:IMF -0.3595 0.131 > 0.05 ns 

KO T:SS vs. KO T:IMF -9.107 3.07 > 0.05 ns 
 

 

 

 

Unpaired T-test – WT UT IMF vs WT T IMF 
P value 0.2344 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 6D: Post-training AIF protein release from SS and IMF mitochondria treated with 
apoptotic stimulus (H2O2), presented as fold change 

 AIF Protein Release – Treated/Control – SS & IMF Mitochondria – Whole-Body Mice 
 SS IMF 
 WT KO WT KO 

N UT T UT T UT T UT T 
1 9.73 4.23 10.56 12.75 1.78 4.01 2.13 8.47 
2 23.62 22.91 9.31 22.25 8.80 1.63 3.42 1.63 
3 28.80 17.62 4.47 6.28 1.05 10.51 7.56 3.06 
4 39.74 14.15 8.90 19.97 3.16 13.28 2.08 8.26 
5 13.18 21.18 24.49 29.89 2.54 1.17 1.10 2.33 
6 3.62 21.95 17.73 14.19 2.19 6.40 5.22 0.57 
7 5.28 7.90 19.69 10.20 18.49 1.30 2.81 1.96 
8 17.79 8.90 18.21 11.39 20.95 4.70 17.72 4.85 
9 12.57 2.09   6.36 15.00  30.01 

10 21.16 25.31   8.21 43.64  8.03 
11  24.44   15.60 6.06   
12  17.01       
X 17.549 15.641 14.170 15.865 8.103 9.791 5.255 6.917 

SEM 3.525 2.338 2.407 2.709 2.159 3.672 1.923 2.732 
 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT UT:SS vs. WT UT:IMF 9.447 2.453 > 0.05 ns 
WT UT:SS vs. WT T:SS 1.909 0.5059 > 0.05 ns 

WT UT:SS vs. KO UT:SS 3.379 0.8083 > 0.05 ns 
WT UT:IMF vs. WT T:IMF -1.689 0.4495 > 0.05 ns 

WT UT:IMF vs. KO UT:IMF 2.848 0.6953 > 0.05 ns 
WT T:SS vs. WT T:IMF 5.848 1.59 > 0.05 ns 
WT T:SS vs. KO T:SS 0.02642 0.0066 > 0.05 ns 

WT T:IMF vs. KO T:IMF 2.873 0.746 > 0.05 ns 
KO UT:SS vs. KO UT:IMF 8.915 2.023 > 0.05 ns 

KO UT:SS vs. KO T:SS -1.444 0.3276 > 0.05 ns 
KO UT:IMF vs. KO T:IMF -1.664 0.398 > 0.05 ns 

KO T:SS vs. KO T:IMF 8.695 2.08 > 0.05 ns 
 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9071 ns No 
Genotype/Training 0.6847 ns No 

Mitochondrial Subfraction 0.0001 ### Yes 
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Figure 7A: Post-training state 3 and 4 respiration in permeabilized fibers, WB Mice 

 

 
N 

KO UT KO T 
+P/M (CI) +ADP 

(CI) 
+SUCC 

(CI&CII) 
+Succ 
(CII) 

+ADP 
(CII) +P/M (CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 41.85 164.84 222.05 58.6 105.83 19.88 115.24 153.54 65 119.59 
2 11.91 78.81 93.63 57.13 96.56 20.51 171.81 230.18 46.65 68.41 
3 19.87 128.6 161.67 74.26 166.26      
4 29.57 134.46 181.73 59.87 117.99      
5           
X 25.80 126.68 164.77 62.47 121.66 20.20 143.52 191.86 55.83 94.00 

SEM 17.823 26.831 3.971 15.501 0.315 28.285 38.320 9.175 25.590 17.823 
 

 

 

 

 

 

 

 

 
 

N 

O2 Consumption  (pmol/s/mg tissue) - (Oroboros technology) – WB Mice 
WT UT WT T 

+P/M (CI) +ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 23.38 101.4 145.31 63.25 138.09 26.79 190.1 236.4 98.54 191.48 
2 6.25 57.35 68.2 77.32 138.95 17.18 139.48 170.87 60.67 107.11 
3 12.21 53.82 119.12 53.16 121.45 27.87 95.74 226.5 68.72 170.57 
4 15.6 85.7 116.32 76.62 134.1 21.02 103.58 137.22 76.07 119.36 
5 13.66 64.08 80.52 45.4 79.6 10.6 108.05 136.86 68.24 124.38 
X 14.22 72.47 105.89 63.15 122.4 20.69 127.39 181.57 74.45 142.58 

SEM 2.772 9.107 13.968 6.313 11.157 3.186 17.351 21.337 6.497 16.283 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0573 ns No 
Substrate < 0.0001 **** Yes 

Genotype/Training 0.0014 ** Yes 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT UT vs. +P/M:WT T -6.473 0.346 > 0.05 ns 
+P/M:WT UT vs. +P/M:KO UT -11.58 0.5835 > 0.05 ns 

+P/M:WT T vs. +P/M:KO T 0.496 0.02004 > 0.05 ns 
+P/M:KO UT vs. +P/M:KO T 5.603 0.2187 > 0.05 ns 

+ADP:WT UT vs. +ADP:WT T -54.92 2.935 > 0.05 ns 
+ADP:WT UT vs. +ADP:KO UT -54.2 2.731 > 0.05 ns 

+ADP:WT T vs. +ADP:KO T -16.13 0.6518 > 0.05 ns 
+ADP:KO UT vs. +ADP:KO T -16.85 0.6576 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T -75.68 4.044 ≤ 0.05 * 

+Succ:WT UT vs. +Succ:KO UT -58.88 2.967 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T -10.29 0.4157 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T -27.09 1.057 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T -11.3 0.604 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT 0.6853 0.03453 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T 18.63 0.7526 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T 6.642 0.2592 > 0.05 ns 
+ADP:WT UT vs. +ADP:WT T -20.14 1.076 > 0.05 ns 

+ADP:WT UT vs. +ADP:KO UT 0.7781 0.03921 > 0.05 ns 
+ADP:WT T vs. +ADP:KO T 48.58 1.963 > 0.05 ns 

+ADP:KO UT vs. +ADP:KO T 27.66 1.08 > 0.05 ns 

Unpaired T-test – + ADP WT UT versus WT T 
P value 0.0231 

P value summary * 
Significantly different? (P<0.05) Yes 

Unpaired T-test – + ADP WT UT versus KO UT 
P value 0.0233 

P value summary † 
Significantly different? (P<0.05) Yes 

Unpaired T-test – + P/M WT UT versus KO UT 
P value 0.1172 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – + Succ WT UT versus KO UT 
P value 0.0768 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 7B: Post-training fold change in state 3 and 4 respiration in permeabilized fibers, 
WB Mice 

 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT (T/UT) vs. +P/M:KO (T/UT) 0.6725 2.043 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) 0.6248 1.899 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.5502 1.672 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.2853 0.8669 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) 0.3919 1.191 > 0.05 ns 

 

 

 

 

 

 

 

 

 

 

 
 

N 

Fold Change O2 Consumption  (pmol/s/mg tissue - (Oroboros technology) – WB Mice 
WT T/UT KO T/UT 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 1.88 2.62 2.23 1.56 1.56 0.77 0.91 0.93 1.04 0.98 
2 1.21 1.92 1.61 0.96 0.87 0.8 1.36 1.4 0.75 0.56 
3 1.96 1.32 2.14 1.09 0.39      
4 1.48 1.43 1.3 1.2 0.97      
5 0.75 1.49 1.29 1.08 1.02      
X 1.456 1.756 1.714 1.178 0.962 0.785 1.135 1.165 0.895 0.770 

SEM 0.223 0.239 0.201 0.103 0.187 0.015 0.225 0.235 0.145 0.210 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9108 ns No 
Substrate 0.1439 ns No 

Genotype/Training 0.0021 †† Yes 
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Figure 7C: Post-training state 3 and 4 respiration in permeabilized fibers, corrected for 
mitochondrial content in WB Mice 

 

 
N 

KO UT KO T 
+P/M (CI) 

+ADP (CI) 
+SUCC 

(CI&CII) 
+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 3.4 13.4 18.05 4.76 8.6 1 5.81 7.75 3.28 6.03 
2 0.58 4.55 4.55 2.78 4.69 1.06 8.88 11.9 2.41 3.54 
3 1.13 9.19 9.19 4.22 9.46      
4 3.33 20.46 20.46 6.74 13.28      
5    3.17 5.78      
X 2.11 11.9 13.0625 4.334 8.362 1.03 7.345 9.825 2.845 4.785 

SEM 0.733 3.378 3.731 0.698 1.510 0.030 1.535 2.075 0.435 1.245 
 

 

 

 

 

 

 

 
 

N 

O2 Consumption/COX Activity  (pmol/s/mg tissue/COX Activity) (Oroboros technology) – WB Mice 
WT UT WT T 

+P/M (CI) 
+ADP (CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) +ADP (CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 2.06 8.93 12.8 5.57 12.17 0.93 6.6 8.21 3.42 6.65 
2 0.49 4.45 5.29 6 10.79 0.75 6.12 7.5 2.66 4.7 
3 0.55 2.41 5.34 2.38 5.44 1.49 5.13 12.14 3.68 9.14 
4 0.93 5.11 6.94 4.57 8 0.7 3.44 4.56 2.53 3.96 
5 1.22 5.72 7.19 4.05 7.11 0.49 5.02 6.36   
X 1.05 5.324 7.512 4.514 8.702 0.872 5.262 7.754 3.0725 6.1125 

SEM 0.285 1.060 1.379 0.636 1.226 0.170 0.544 1.258 0.282 1.158 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.5030 ns No 
Substrate < 0.0001 **** Yes 

Genotype/Training 0.0073 ** Yes 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT UT vs. +P/M:WT T 0.1749 0.09733 > 0.05 ns 
+P/M:WT UT vs. +P/M:KO UT -1.061 0.5569 > 0.05 ns 

+P/M:WT T vs. +P/M:KO T -0.1582 0.06655 > 0.05 ns 
+P/M:KO UT vs. +P/M:KO T 1.078 0.4381 > 0.05 ns 

+ADP:WT UT vs. +ADP:WT T 0.06488 0.0361 > 0.05 ns 
+ADP:WT UT vs. +ADP:KO UT -4.593 2.41 > 0.05 ns 
+ADP:KO UT vs. +ADP:KO T 2.571 1.045 > 0.05 ns 
+ADP:KO T vs. +Succ:WT T -0.4024 0.1693 > 0.05 ns 

+Succ:WT UT vs. +Succ:WT T -0.238 0.1324 > 0.05 ns 
+Succ:WT UT vs. +Succ:KO UT -5.55 2.912 > 0.05 ns 

+Succ:WT T vs. +Succ:KO T -2.073 0.872 > 0.05 ns 
+Succ:KO UT vs. +Succ:KO T 3.239 1.316 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T 1.444 0.7574 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT 0.1821 0.1013 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T 0.2276 0.09251 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T 1.489 0.6264 > 0.05 ns 
+ADP:WT UT vs. +ADP:WT T 2.588 1.358 > 0.05 ns 

+ADP:WT UT vs. +ADP:KO UT 0.339 0.1886 > 0.05 ns 
+ADP:WT T vs. +ADP:KO T 1.328 0.5397 > 0.05 ns 

+ADP:KO UT vs. +ADP:KO T 3.577 1.505 > 0.05 ns 

Unpaired T-test – +P/M WT UT versus KO UT 
P value 0.1848 

P value summary ns 
Significantly different? (P<0.05) No 

Unpaired T-test – +Succ (CII) WT UT versus WT T 
P value 0.1007 

P value summary ns 
Significantly different? (P<0.05) No 
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Figure 7C: Post-training fold change state 3 and 4 respiration in permeabilized fibers, 
corrected for mitochondrial content in WB Mice 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT (T/UT) vs. +P/M:KO (T/UT) 0.3442 1.572 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) 0.2470 1.128 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.2796 1.277 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.06954 0.3176 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) 0.1637 0.7475 > 0.05 ns 

 

 

 

 

 

 

 

 

 

 

 
 

N 

Fold Change O2 Consumption  (pmol/s/mg tissue/COX Activity) corrected for COX- (Oroboros technology) – 
WB Mice 

WT T/UT KO T/UT 
+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 0.89 1.24 1.09 0.76 0.76 0.48 0.59 0.59 0.71 0.67 
2 0.72 1.15 1 0.59 0.54 0.5 0.9 0.91 0.52 0.39 
3 1.42 0.96 1.62 0.82 1.05      
4 0.67 0.65 0.61 0.56 0.46      
5 0.47 0.94 0.85 0.7 0.66      
X 0.834 0.988 1.034 0.686 0.694 0.490 0.745 0.750 0.615 0.530 

SEM 0.161 0.102 0.168 0.0494 0.103 0.01 0.155 0.160 0.095 0.140 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9145 ns No 
Substrate 0.2508 ns No 

Genotype/Training 0.0331 † Yes 
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Figure 8A: Post-training state 3 and 4 reactive oxygen species (ROS) emission rate from 
permeabilized fibers, WB Mice 

 

 
N 

KO UT KO T 
+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 0.52 0.015 0.0078 0.62 0.023 0.32 0.019 0.015 0.69 0.028 
2 0.61 0.018 0.055 0.15 0.036 0.25 0.011 0.013 0.19 0.023 
3 0.49 0.0086 0.0059 0.41 0.018      
4 0.3 0.0077 0.0055 0.32 0.016      
5           
X 0.48 0.0123 0.0186 0.375 0.0233 0.285 0.015 0.014 0.44 0.0255 

SEM 0.0652 0.00249 0.0122 0.0979 0.00450 0.035 0.004 0.001 0.25 0.0025 
 

 

 

 

 

 
 

N 

H2O2 Emission Rate  (pmol H2O2/pmol O2 consumed) (Oroboros technology) – WB Mice 
WT UT WT T 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 0.52 0.019 0.011 0.47 0.017 0.48 0.0091 0.0076 0.29 0.015 
2 0.57 0.02 0.017 0.2 0.012 0.28 0.0086 0.01 0.16 0.022 
3 0.36 0.035 0.017 0.3 0.049 0.93 0.061 0.013 0.25 0.02 
4 0.22 0.014 0.011 0.33 0.021 0.31 0.013 0.011 0.2 0.022 
5 0.35 0.012 0.011 0.21 0.03 0.45 0.019 0.013 0.38 0.016 
X 0.404 0.02 0.0134 0.302 0.0258 0.49 0.02214 0.01092 0.256 0.019 

SEM 0.0631 0.00404 0.00147 0.0489 0.00651 0.117 0.00989 0.00101 0.0380 0.00148 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.5680 ns No 
Substrate < 0.0001 **** Yes 

Genotype/Training 0.8224 ns No 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT UT vs. +P/M:WT T -0.0833 1.198 > 0.05 ns 
+P/M:WT UT vs. +P/M:KO UT -0.07751 1.051 > 0.05 ns 

+P/M:WT T vs. +P/M:KO T 0.2053 2.232 > 0.05 ns 
+P/M:KO UT vs. +P/M:KO T 0.1995 2.096 > 0.05 ns 

+ADP:WT UT vs. +ADP:WT T -0.002025 0.02913 > 0.05 ns 
+ADP:WT UT vs. +ADP:KO UT 0.007556 0.1025 > 0.05 ns 

+ADP:WT T vs. +ADP:KO T 0.00708 0.07698 > 0.05 ns 
+ADP:KO UT vs. +ADP:KO T -0.002502 0.02628 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T 0.002804 0.04033 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT -0.004937 0.06695 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T -0.00332 0.0361 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T 0.004421 0.04644 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T 0.04617 0.664 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT -0.07504 1.018 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T -0.1859 2.022 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T -0.06473 0.68 > 0.05 ns 
+ADP:WT UT vs. +ADP:WT T 0.006602 0.09496 > 0.05 ns 

+ADP:WT UT vs. +ADP:KO UT 0.002576 0.03493 > 0.05 ns 
+ADP:WT T vs. +ADP:KO T -0.006496 0.07063 > 0.05 ns 

+ADP:KO UT vs. +ADP:KO T -0.00247 0.02594 > 0.05 ns 
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Figure 8B: Post-training fold change in state 3 and 4 reactive oxygen species (ROS) 
emission rate from permeabilized fibers, WB Mice 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT (T/UT) vs. +P/M:KO (T/UT) 0.6203 1.298 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) -0.09961 0.2084 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.03231 0.06759 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) -0.3250 0.68 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) -0.3615 0.7562 > 0.05 ns 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

N 

H2O2 Emission Rate  Fold Change (pmol H2O2/pmol O2 consumed) (Oroboros technology) – WB Mice 
WT T/UT KO T/UT 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 1.18 0.45 0.56 0.95 0.58 0.66 1.54 0.82 1.83 1.22 
2 0.68 0.43 0.75 0.54 0.86 0.52 0.86 0.7 0.52 0.99 
3 2.3 3.05 0.94 0.82 0.78      
4 0.75 0.65 0.79 0.67 0.87      
5 1.12 0.93 0.92 1.25 0.63      
X 1.206 1.102 0.792 0.846 0.744 0.59 1.2 0.76 1.175 1.105 

SEM 0.291 0.495 0.0685 0.122 0.0594 0.0700 0.340 0.0600 0.655 0.115 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.6074 ns No 
Substrate 0.8499 ns No 

Genotype/Training 0.9015 ns No 
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Figure 8C: Post-training state 3 and 4 reactive oxygen species (ROS) emission rate from 
permeabilized fibers, corrected for mitochondrial content, in WB Mice 

 

 
N 

KO UT KO T 
+P/M (CI) +ADP 

(CI) 
+SUCC 

(CI&CII) 
+Succ 
(CII) 

+ADP 
(CII) +P/M (CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 6.45 0.19 0.096 7.64 0.28 6.26 0.38 0.3 2.77 0.26 
2 12.52 0.38 1.13 3.04 0.73 4.8 0.21 0.25 3.76 0.44 
3 8.66 0.15 0.1 7.26 0.32      
4 2.68 0.068 0.049 2.87 0.15      
5           
X 7.578 0.197 0.344 5.203 0.370 5.530 0.295 0.275 3.265 0.350 

SEM 2.0587 0.0661 0.262 1.300 0.125 0.730 0.0850 0.0250 0.495 0.0900 
 

 

 

 

 

 
 

 

 
 

N 

H2O2 Emission Rate (pmol H2O2/pmol O2 consumed/COX Activity) corrected for mitochondrial content (Oroboros 
technology) – WB Mice 

WT UT WT T 
+P/M (CI) +ADP 

(CI) 
+SUCC 

(CI&CII) 
+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 5.9 0.22 0.12 5.31 0.2 13.69 0.26 0.22 8.22 0.43 
2 7.34 0.26 0.22 2.51 0.15 6.28 0.2 0.23 3.72 0.51 
3 8.06 0.77 0.39 6.7 1.1 17.32 1.14 0.24 1.62 0.38 
4 3.69 0.24 0.18 5.59 0.35 9.19 0.39 0.32 6.07 0.68 
5 3.92 0.13 0.13 2.37 0.34 9.76 0.4 0.27 8.15 0.35 
X 5.782 0.324 0.208 4.496 0.428 11.248 0.478 0.256 5.556 0.47 

SEM 0.880 0.114 0.0489 0.871 0.172 1.923 0.170 0.0181 1.284 0.0591 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0814 ns No 
Substrate < 0.0001 **** Yes 

Genotype/Training 0.0166 * Yes 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT UT vs. +P/M:WT T -5.466 -9.906 to -1.027 > 0.05 ns 
+P/M:WT UT vs. +P/M:KO UT -1.796 -6.505 to 2.913 > 0.05 ns 

+P/M:WT T vs. +P/M:KO T 5.714 -0.1592 to 11.59 > 0.05 ns 
+P/M:KO UT vs. +P/M:KO T 2.043 -4.036 to 8.123 > 0.05 ns 

+ADP:WT UT vs. +ADP:WT T -0.1529 -4.593 to 4.287 > 0.05 ns 
+ADP:WT UT vs. +ADP:KO UT 0.1283 -4.581 to 4.837 > 0.05 ns 

+ADP:WT T vs. +ADP:KO T 0.1834 -5.690 to 6.057 > 0.05 ns 
+ADP:KO UT vs. +ADP:KO T -0.09783 -6.177 to 5.982 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T -0.04779 -4.488 to 4.392 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT -0.1352 -4.844 to 4.574 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T -0.01951 -5.893 to 5.854 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T 0.06787 -6.012 to 6.147 > 0.05 ns 
+Succ:WT UT vs. +Succ:WT T -1.663 -6.103 to 2.777 > 0.05 ns 

+Succ:WT UT vs. +Succ:KO UT -0.7127 -5.422 to 3.996 > 0.05 ns 
+Succ:WT T vs. +Succ:KO T 2.891 -2.982 to 8.765 > 0.05 ns 

+Succ:KO UT vs. +Succ:KO T 1.941 -4.139 to 8.020 > 0.05 ns 
+ADP:WT UT vs. +ADP:WT T -0.04265 -4.483 to 4.397 > 0.05 ns 

+ADP:WT UT vs. +ADP:KO UT 0.05599 -4.653 to 4.765 > 0.05 ns 
+ADP:WT T vs. +ADP:KO T 0.1161 -5.757 to 5.989 > 0.05 ns 

+ADP:KO UT vs. +ADP:KO T 0.01745 -6.062 to 6.097 > 0.05 ns 

Unpaired T-test – P/M (CI) WT UT versus WT  T 
P value 0.0324 

P value summary * 
Significantly different? (P<0.05) Yes 
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Figure 8D: Post-training fold change in state 3 and 4 reactive oxygen species (ROS) 
emission rate from permeabilized fibers, corrected for mitochondrial content, in WB Mice 

 

 

 

 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

+P/M:WT (T/UT) vs. +P/M:KO (T/UT) 1.215 2.344 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) -0.02744 0.05294 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.4255 0.8208 > 0.05 ns 
+Succ:WT (T/UT) vs. +Succ:KO (T/UT) 0.7428 1.433 > 0.05 ns 
+ADP:WT (T/UT) vs. +ADP:KO (T/UT) 0.1471 0.2839 > 0.05 ns 

 

 

 

 

 

 

 

 

 

 

 
 

N 

H2O2 Emission Rate Fold Change (pmol H2O2/pmol O2 consumed/COX Activity) corrected for mitochondrial content 
(Oroboros technology) – WB Mice 

WT T/UT KO T/UT 
+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

+P/M 
(CI) 

+ADP 
(CI) 

+SUCC 
(CI&CII) 

+Succ 
(CII) 

+ADP 
(CII) 

1 2.37 0.81 1.05 1.83 1.01 0.83 1.94 0.88 0.53 0.7 
2 1.09 0.6 1.11 0.83 1.19 0.63 1.06 0.73 0.72 1.2 
3 3 3.51 1.15 1.03 0.88      
4 1.59 1.21 1.55 1.35 1.59      
5 1.69 1.23 1.29 1.81 0.82      
X 1.948 1.472 1.230 1.370 1.098 0.730 1.500 0.805 0.625 0.95 

SEM 0.333 0.523 0.0892 0.202 0.138 0.100 0.440 0.075 0.095 0.25 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.4730 ns No 
Substrate 0.5680 ns No 

Genotype/Training 0.0406 † Yes 
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Figure 9A: Post-training whole muscle Nrf2 protein 

 

 Whole Muscle Nrf2 Protein - Muscle 
Specific Mice 

 WT mKO 
N UT T UT T 
1 0.31 0.26 0.32 0.19 
2 0.38 0.25 0.34 0.22 
3 0.22 0.20 0.30 0.15 
4 0.34 0.22 0.32 0.24 
5 0.36 0.17   
X 0.324 0.220 0.321 0.199 

SEM 0.0276 0.016 0.007 0.020 
 

 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.1020 3.708 ≤ 0.05 * 
WT:UT vs. KO:UT 0.002000 0.06855 > 0.05 ns 
WT:UT vs. KO:T 0.1220 4.182 ≤ 0.01 ** 
WT:T vs. KO:UT -0.1000 3.428 ≤ 0.05 * 
WT:T vs. KO:T 0.0200 0.6855 > 0.05 ns 

KO:UT vs. KO:T 0.1200 3.902 ≤ 0.01 ** 
 

 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.6693 ns No 
Substrate 0.6022 ns No 

Genotype/Training < 0.0001 **** Yes 
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Figure 9B: Post-training whole muscle KEAP1 protein 

 

 Whole Muscle KEAP1 Protein - Muscle 
Specific Mice 

 WT KO 
N UT T UT T 
1 0.69 0.23 0.93 0.17 
2 1.01 0.16 0.71 0.56 
3 0.84 0.61 1.04 0.19 
4 1.11 0.24 0.90 0.70 
X 0.910 0.311 0.894 0.406 

SEM 0.094 0.101 0.070 0.132 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T 0.5995 4.161 ≤ 0.01 ** 
WT:UT vs. KO:UT 0.01600 0.1110 > 0.05 ns 
WT:UT vs. KO:T 0.5046 3.502 ≤ 0.05 * 
WT:T vs. KO:UT -0.5835 4.050 ≤ 0.01 ** 
WT:T vs. KO:T -0.09495 0.6590 > 0.05 ns 

KO:UT vs. KO:T 0.4886 3.391 ≤ 0.05 * 
 

 

 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.5961 ns No 
Substrate 0.7052 ns No 

Genotype/Training 0.0002 *** Yes 
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Figure 10A: Post-training p53 mRNA transcript 

 p53 mRNA - Muscle Specific Mice 
 WT 

N UT T 
1 4.32 2.74 
2 3.99 3.47 
3 3.96 1.74 
4 3.81 3.62 
5 3.53 1.43 
6 3.85 1.25 
7  2.90 
8  3.67 
9  1.03 
10  1.43 
X 3.910 2.327 

SEM 0.106 0.334 
 

 

 

 

Figure 10B: Post-training whole muscle COX IV protein 

 Whole Muscle COX IV Protein - Muscle Specific Mice 
 WT KO 

N UT T UT T 
1 0.38 0.70 0.82 0.67 
2 0.24 0.69 0.95 0.58 
3 0.49 1.00 1.11 0.65 
4 0.54 1.12 1.21 0.84 
5 0.33 0.66 0.94 0.77 
6  0.68 1.34 0.74 
7   0.92 0.67 
X 0.398 0.807 1.041 0.702 

SEM 0.053 0.082 0.070 0.033 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

WT:UT vs. WT:T -0.4123 4.387 ≤ 0.01 ** 
WT:UT vs. KO:UT -0.6454 7.101 ≤ 0.001 †††† 
WT:UT vs. KO:T -0.3069 3.376 ≤ 0.05 * 
WT:T vs. KO:UT -0.2331 2.699 > 0.05 ns 
WT:T vs. KO:T 0.1055 1.221 > 0.05 ns 

KO:UT vs. KO:T 0.3386 4.080 ≤ 0.01 ** 
 

Unpaired T-test – MS WT UT versus WT T 
P value 0.0032 

P value summary ** 
Significantly different? (P<0.05) Yes 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction < 0.0001 **** Yes 
Substrate 0.0003 *** Yes 

Genotype/Training 0.5626 ns No 
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Figure 10D: Whole muscle Bax protein, untrained Muscle-Specific (MS) and Whole-Body 
(WB) Mice 

 Whole Muscle Bax Protein– Untrained MS versus WB 
Mice 

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 0.31 0.59 0.61 0.17 
2 0.20 0.64 0.73 0.56 
3 0.38 0.65 0.83 0.24 
4 0.11 0.49 0.70 0.73 
5  0.64 0.91 0.36 
6  0.50 0.84  
X 0.250 0.585 0.770 0.412 

SEM 0.060 0.030 0.045 0.103 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO -0.3350 3.652 ≤ 0.05 † 
MS:WT vs. WB:WT -0.5200 5.669 ≤ 0.005 ¶¶¶ 
MS:WT vs. WB:KO -0.1620 1.700 > 0.05 ns 
MS:KO vs. WB:WT -0.1850 2.255 > 0.05 ns 
MS:KO vs. WB:KO 0.1730 2.011 > 0.05 ns 
WB:WT vs. WB:KO 0.3580 4.161 ≤ 0.01 †† 

 

 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction < 0.0001 **** Yes 
Substrate 0.0134 * Yes 

Genotype/Training 0.8570 ns No 
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Figure 10E: Whole muscle Bcl-2 protein, untrained Muscle-Specific (MS) and Whole-Body 
(WB) Mice 

 

 Whole Muscle Bcl-2 Protein– Untrained MS versus WB Mice 
 Muscle Specific Mice Whole Body Mice 

N WT mKO WT KO 
1 0.59 0.22 0.31 0.24 
2 0.84 0.16 0.45 1.09 
3 0.86 0.52 0.61 0.54 
4 0.54 0.46 0.34 0.88 
5 0.70 0.41 0.56 0.32 
6  0.30  0.81 
7  0.48   
8  0.36   
X 0.705 0.363 0.496 0.587 

SEM 0.064 0.0457 0.0910 0.129 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO 0.3422 2.954 ≤ 0.05 † 
MS:WT vs. WB:WT 0.2508 1.952 > 0.05 ns 
MS:WT vs. WB:KO 0.05882 0.4781 > 0.05 ns 
MS:KO vs. WB:WT -0.09135 0.7886 > 0.05 ns 
MS:KO vs. WB:KO -0.2834 2.582 > 0.05 ns 
WB:WT vs. WB:KO -0.1920 1.561 > 0.05 ns 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0049 ** Yes 
Substrate 0.8493 ns No 

Genotype/Training 0.3847 ns No 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.0202 

P value summary ¶ 
Significantly different? (P<0.05) Yes 
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Figure 10F: Whole muscle p21 protein, untrained Muscle-Specific (MS) and Whole-Body 
(WB) Mice 

 

 Whole Muscle p21 Protein– Untrained MS versus WB 
Mice 

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 0.35 0.28 1.56 0.45 
2 0.23 0.29 1.18 0.23 
3 0.56 0.34 0.54 0.43 
4 0.46 0.28 1.18 0.78 
5 0.42 0.30 0.68 0.57 
6 0.51 0.24 0.95 0.15 
7    0.14 
8    0.11 
X 0.420 0.288 1.0154 0.357 

SEM 0.049 0.013 0.152 0.0854 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO 0.1317 0.9866 > 0.05 ns 
MS:WT vs. WB:WT -0.5948 4.455 ≤ 0.01 ¶¶ 
MS:WT vs. WB:KO 0.06267 0.5017 > 0.05 ns 
MS:KO vs. WB:WT -0.7266 5.441 ≤ 0.005 *** 
MS:KO vs. WB:KO -0.06907 0.5530 > 0.05 ns 
WB:WT vs. WB:KO 0.6575 5.264 ≤ 0.005 ††† 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.0088 ** Yes 
Substrate 0.0015 ** Yes 

Genotype/Training 0.0003 *** Yes 

 Unpaired T-test – MS WT UT versus KO UT 
P value 0.0240 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 11A: State 3 respiration in IMF mitochondria, untrained Muscle-Specific (MS) and 
Whole-Body (WB) Mice 

 State 3 Respiration (natoms O2/mg protein/min) – IMF 
Mitochondria – Untrained MS versus WB Mice 

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 106.21 88.48 61.28 18.35 
2 122.63 87.14 78.42 79.49 
3 94.36 79.44 44.38 60.10 
4 110.43 86.33 46.17 104.98 
5 120.03 78.36 60.22 65.81 
6 71.54 46.20 79.56 104.27 
7 73.03  91.24  
8   91.94  
X 99.747 77.658 69.151 72.167 

SEM 7.912 6.520 6.661 13.220 
 

 

 

 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO 22.09 1.765 > 0.05 ns 
MS:WT vs. WB:WT 30.60 2.629 > 0.05 ns 
MS:WT vs. WB:KO 27.58 2.204 > 0.05 ns 
MS:KO vs. WB:WT 8.507 0.7004 > 0.05 ns 
MS:KO vs. WB:KO 5.492 0.4229 > 0.05 ns 
WB:WT vs. WB:KO -3.015 0.2483 > 0.05 ns 

 

 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.1634 ns No 
Substrate 0.0499 * Yes 

Genotype/Training 0.2854 ns No 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0549 

P value summary † 
Significantly different? (P<0.05) Yes 

Unpaired T-test – MS WT UT versus WB WT UT 
P value 0.0106 

P value summary ¶ 
Significantly different? (P<0.05) Yes 
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Figure 11B: State 3 reactive oxygen species (ROS) emission in IMF mitochondria, 
untrained Muscle-Specific (MS) and Whole-Body (WB) Mice 

 State 3 ROS (natoms O2/mg protein/min) – IMF Mitochondria – 
Untrained MS versus WB Mice 

 Muscle Specific Mice Whole Body Mice 
N WT mKO WT KO 
1 0.78 1.19 1.03 0.92 
2 0.60 1.05 1.20 1.04 
3 0.85 1.09 0.94 3.24 
4 0.66 1.38 0.77 1.11 
5 0.40 1.58 1.24 0.86 
6 1.38 1.35 0.93 1.08 
7 0.94 3.80 0.70 0.98 
8 0.35 1.15 0.65  
X 0.745 1.574 0.933 1.319 

SEM 0.116 0.324 0.0774 0.322 
 

 

 

 

 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO -0.8288 2.559 > 0.05 ns 
MS:WT vs. WB:WT -0.1875 0.5790 > 0.05 ns 
MS:WT vs. WB:KO -0.5736 1.711 > 0.05 ns 
MS:KO vs. WB:WT 0.6413 1.980 > 0.05 ns 
MS:KO vs. WB:KO 0.2552 0.7613 > 0.05 ns 
WB:WT vs. WB:KO -0.3861 1.152 > 0.05 ns 

 

 

 

 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.3506 ns No 
Substrate 0.8856 ns No 

Genotype/Training 0.0147 * Yes 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0304 

P value summary † 
Significantly different? (P<0.05) Yes 
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Figure 11C: Cytochrome c protein release from IMF mitochondria under basal conditions, 
untrained Muscle-Specific (MS) and Whole-Body (WB) Mice 

 Cytochrome C Protein Release – Basal - IMF 
Mitochondria 

 Muscle Specific Mice Whole Body Mice 
N WT UT KO UT WT UT KO T 
1 14777.075 11805.23 8882.55 4828.72 
2 10879.30 876.77 5446.012 5942.84 
3 5276.39 8269.96 8798.84 821.31 
4 10847.033 7693.74 10278.13 4366.74 
5 12690.50 15333.42 9556.74 7076.21 
6 16205.13 840.96 16467.20 4715.72 
7 13608.81 10962.15  

 8  10698.42   
9  2861.15   
10  790.69   
11  9118.45   
12  3422.40   
13  1381.96   
14 

 
11137.79  

 X 12040.605 6799.506 9904.910 4625.255 
SEM 1347.328 1327.0812 1477.323 862.741 
 

 

 

 
 

Post-Hoc Test 
Bonferroni Mean Diff. t-value P-value Summary 

MS:WT vs. MS:KO 5241 2.770 > 0.05 ns 
MS:WT vs. WB:WT 2136 0.9391 > 0.05 ns 
MS:WT vs. WB:KO 7415 3.261 ≤ 0.05 * 
MS:KO vs. WB:WT -3105 1.557 > 0.05 ns 
MS:KO vs. WB:KO 2174 1.090 > 0.05 ns 
WB:WT vs. WB:KO 5280 2.237 > 0.05 ns 

 

 

Two-Way ANOVA 
Source of Variation P value P value summary Significance 

Interaction 0.9899 ns No 
Substrate 0.1649 ns No 

Genotype/Training 0.0016 ** Yes 

Unpaired T-test – MS WT UT versus KO UT 
P value 0.0228 

P value summary † 
Significantly different? (P<0.05) Yes 

Unpaired T-test – WB WT UT versus KO UT 
P value 0.0115 

P value summary † 
Significantly different? (P<0.05) Yes 
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Fischerbrand Animal Ear-Punch 
and Tags tool (13-812-201) 

Appendix D: Laboratory Methods and Protocols 

Genotyping – p53 Whole Body mice and Muscle Specific Mice 
 

Reagents: 

1. Proteinase K (Pro K) from Tritirachium Album (Sigma-Aldrich, cat#: P6556-100 
mg). Store at -20°C 

2. Sterile Molecular Grade Water (Wisent Inc., cat#: 809-115-66). Store at room 
temperature. 

3. Lysis Buffer for DNA Extraction: Measure out 10 mM TRIS HCl (0.121g/100 mL) 
(Hydroxymethyl) Aminomethane (TRIS), Bioshop, cat#: 77-86-1, store at room 
temperature), 150 mM NaCl (0.8766g/100 mL) (Sodium Chloride, Bioshop, cat#: 7647-
14-5, stored at room temperature), and 20 mM EDTA (0.744g/100 mL) (Bioshop, cat#: 
6381-92-6, store at room temperature) and add the appropriate amount of ddH2O 
depending on measurements. Then pH to 8.0. Autoclave for 30 min and store at room 
temperature. 

4. Jumpstart REDTaq ReadyMix Reaction Mix for PCR (cat#: P0982-100RXN, Sigma 
Life Sciences, Store at -20°C).  

5. Mineral Oil (PE Express, material#: 01862302, cat#: 87200827, Store at room 
temperature). 

6. 1.5% Agarose (Bioshop, cat#: 9012-36-6). Store at room temperature. 
7. 50X TAE: Weigh out 242 g TRIS (Hydroxymethyl) Aminomethane (TRIS), Bioshop, 

cat#: 77-86-1, store at room temperature), add 500 mL ddH2O, add 57.1 mL Acetic Acid 
(Glacial, cat#64-19-7, stored at room temperature) into a beaker. Then prepare the 0.5M 
EDTA by adding 93.06 g of EDTA (Bioshop, cat#: 6381-92-6, store at room 
temperature) in 300 mL ddH2O, pH with NAOH to 8.0; volume up to 500 mL total. Then 
add 100 mL of the EDTA solution to the beaker with TRIS, ddH2O, and acetic acid. 
Autoclave and split the solution into sterile bottles. 

a. 1X TAE: Combine 80 mL of 50X TAE with 4 L of ddH2O. 
8. Ethidium Bromide (Sigma-Aldrich, cat#: E-8751). Store at 4°C. Make 10 mg/mL of 

ddH2O.  

Procedure: 

1. Prepare sterile 1.5 mL (MCT Graduated Natural Eppendorfs; cat# 05-
408-129; Fischer Brand) labeled eppendorf tubes on ice.  

2. Obtain a small ear clipping from each mouse using an ear-punch tool. 
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Mice should be held by pinching the skin along the spine and pulling back to prevent 
movement. Clippings should be placed in specified eppendorfs and placed on ice. 

3. Next prepare a fresh mixture of ProK by first measuring out approximately 1 mg of ProK 
and adding the associated ratio of 1000 µl of sterile ddH2O. If more ProK is added, add 
the correct ratio of water (i.e. 1.3 mg ProK to 1300 µl sterile ddH2O). 

4. Then make a 9:1 mixture of lysis buffer to the ProK solution made in step 3. This can be 
accomplished by adding 900 µl of lysis buffer and 100 µl of ProK solution to a new 
sterile 1.5 ml eppendorf. Vortex (Mini Vortex, cat#: 02215365, Fischer Scientific) this 
new ProK/Lysis buffer solution. 

5. Then add 20 µl of this ProK/Lysis buffer solution to each of the eppendorfs containing 
the ear clipping. Ensure that the ear clipping is submerged in solution. Then vortex to mix 
the solution with the ear clipping and tap the eppendorf on the bench to bring the ear 
clipping into the solution at the bottom of the eppendorf.  

6. Next, incubate the ear clipping and solution in the 55°C water bath (model 1122S, cat#: 
13271-138, VWR) for 30 min. Eppendorfs should be placed in floating foam pads. After 
the initial 15 min, take the ear clippings out of the water bath and vortex. Tap again to 
ensure the clipping is submerged in the fluid at the bottom of the eppendorf. Place back 
in the water bath for the remaining 15 min. Once completed, vortex one last time and 
place tubes on ice.  

7. Then add 180 µl of sterile ddH2O to each of the ear clipping containing eppendorfs and 
mix up and down with the pipette.  

8. Finally, place the tubes on the hot plate (VWR Block Heater, cat#: 12621-104) set to~95-
100°C for 5 min. Once completed, briefly tap the tubes to mix. 

9. Then store at -20°C or use immediately for PCR. 

 

PCR-Amplification Procedure: 

1. The mastermix solution must first be created. This solution contains the specific primers 
required for mouse breed/brand. This information can be found on the animal companies 
website. Three different mastermixes were required as there were three mouse 
breed/brand (p53 muscle specific mice (donated by Dr. Christopher Adams), Taconic p53 
whole body mice (Donehower et al., Nature, 1992), Jackson p53 whole body mice 
(B6.129S2-Trp53<tm1Tyj>/J)). Mastermix contains: *solutions are made either in 1.5 
mL sterile eppendorfs or sterile 15 mL polystyrene conical tubes (cat#: 352095, Falcon). 

a. Jumpstart Taq Polymerase *added first  
b. Sterile ddH2O *added second 
c. Forward and Reverse primers for specific mouse brand * add last 

i. Taconic p53 Mice:  
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1. p53 WT Reverse: ATGGGAGGCTGCCAGTCCTAACCC 
2. p53 WT Forward: GTGTTTCATTAGTTCCCCACCTTGAC 
3. p53 KO Reverse: TTTACGGAGCCCTGGCGCTCGATGT 
4. p53 KO Forward: GGGAATTCTGGGACAGCCAAGTCTGT 

ii. p53 Muscle Specific Mice *Cre Recombinase (~357 bp band) 
1. Cre Forward: TGCAACGAGTGATGAGGTTC 
2. Cre Reverse: ACGAACCTGGTCGAAATCAG 

iii. p53 Jackson Mice (Mutant band = 110 bp, HT = 110 & 321 bp, WT = 321 
bp) 

1. Common: TGGATGGTGGTATACTCAGAGC 
2. Mutant Forward: CAGCCTCTGTTCCACATACACT 
3. Wild Type Forward: AGGCTTAGAGGTGCAAGCTG 

2. Prior to using the primers, the primers had to be diluted to a 500 µmol concentration 
according to the equation X/1000/500*1000*1000 where x equals the nmol concentration 
on the primer ordered from customdna@sial.com, and the value of this equation is the 
amount of sterile ddH2O required to add in the primer bottle. Mix up and down 
repetitively for one minute.  

3. To get a 50µM stock, in a sterile 1.5 ml eppendorf, add 180 µl of sterile ddH2O and 20 µl 
of the 500 µM primer stock. 
 

** FULL MASTERMIX PLAN CAN BE OBSERVED BELOW** 

 

 

 

4. Next, label 0.5 mL Flat-Cap PCR Tubes (cat#: 87-C500-F, Ultident Scientific) 
microcentrifuge eppendorfs for each sample. If WT and KO primers exist such as for the 

               p53 Taconic Mice                         p53 Muscle Specific Mice                       p53 Jackson Mice 

50 
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Taconic mice, two sets of tubes are required (one with the WT primers and one with the 
KO primers). For the muscle specific and Jackson mice, all primers go into one tube. 

5. Then add the appropriate amount of mastermix to the 0.5 mL “mini” eppendorfs (30-48 
µl). 

6. Next add 20 µl of DNA from the ear clipping and solution eppendorf to the mastermix 
mini eppendorfs. Centrifuge the samples to ensure mixing using the eppendorf centrifuge 
54150 (Brinkmann Instruments, 5425-41150) machine.  

7. Add two drops of mineral oil to each tube to prevent evaporation of solution during PCR 
amplification cycling.  

8. Turn on the DNA Thermal Cycler (Perkin Elmer, model TC480) and place the mini 
eppendorfs inside the rack. Cycling times are different for each mouse breed/brand and 
must be set appropriately: 

a. p53 Taconic Mice: 
Initial Denaturing: 94° C for 2 min 
Amplification Cycles:  Denaturing Æ 95°C for 30 sec 
    Annealing Æ 60°C for 30 sec 
    Extension Æ 72°C for 45 sec 
Final Extension: 72°C for 5 min 
Hold at 4°C 

b. p53 Muscle Specific Mice:  
Initial Denaturing: 94° C for 3 min 
Amplification Cycles:  Denaturing Æ 94°C for 30 sec  
    Annealing Æ 56°C for 1 min 

       Extension Æ 72°C for 1 min 
Final Extension: 72°C for 2 min 
Hold at 4 °C 

c. p53 Jackson Mice:  
Initial Denaturing: 94° C for 2 min 
1st Amplification Cycle:  Denaturing Æ 94°C for 20 sec  
    Annealing Æ 65°C for 15 sec 

       Extension Æ 68°C for 10 sec 
2nd Amplification Cycle:  Denaturing Æ 94°C for 15 sec  
    Annealing Æ 60°C for 15 sec 

       Extension Æ 72°C for 10 sec 
Final Extension: 72°C for 2 min 
Hold at 10 °C 

 
9. Near the end of the PCR amplification, you can begin preparing the agarose gel required 

to visualize the genotype. The gel is prepared using the following recipe and ratio 
measured into an 500 mL Erlenmeyer flask: 

a. 1.5 g of 1.5% Agarose 
b. 3 mL of 50X TAE  

35 cycles 

35 cycles 

10 cycles 

28 cycles 
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c. 150 mL of sterile ddH2O 
d. 25 µl of Ethidium Bromide ** added last to solidify the gel. Add once the mixture 

has cooled. 
**these volumes are for a small gel. For one larger gel, double this amount. For two large 
gels, triple this amount. 
10. Microwave the mixture (Agarose powder, TAE, sterile ddH2O) for 2 min, adding 30 

second intervals until no more bubbles or opaque powder is visualize. Once sufficiently 
heated and mixed, leave on a stir plate (A. Thermo Scientific, model# S131125Q; B. 
Fischer Scientific, cat#: 11-000-49S; C. Fischer Scientific, cat# 11-600-49S) with a 
stirring rod to let it cool.  

11. In the meantime, set up the electrophoresis machine (BioRad PowerPac HC, serial# 
043BR59656) and apparatus (Electrophoresis Systems Large Horizontal System, FB-SB-
2025, Fischer Scientific). Make sure the black end is at the back – this is the direction of 
the current so that it moves down the gel). Once ready and the solution is warm to the 
touch, add the ethidium bromide. Seal in the chamber of the apparatus to prevent any 
leakage and allow time to solidify. Once the seal is solidified, pour in the remainder of 
the solution. Add in the well comb. The solution will turn opaque once solidified.  

12. Once solidified, pour 50x TAE around the gel so that it is submerged. Remove the well 
comb. 

13. When the samples in the PCR machine are finished their cycles, remove the samples. 
Using a glass pipette (50 µl Hamilton glass syringe, cat# 1482432), pipette 30 µl of the 
sample into the wells of the gel.  

14. Run the gel at 150-180 V until the sample has visually run approximately ¾ the length of 
the gel. Turn off the machine once at the appropriate distance. 

15. Remove the gel and place on an imager (Bio/CAN Scientific, model# 3-3035) to view the 
genotype of the samples. Record values.  
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Example of gels: 

 
p53 Muscle Specific Mice 

 

 

p53 Taconic Mice 

 

 

p53 Jackson Mice 

 

To visualize the molecular weights on the gel, use a 1 Kb DNA Ladder (Frogga Bio – BIO-
HELIX, Cat # DM010-R500). 

 

 

 

 

 

WT    WT   WT   WT   KO    WT   WT   WT  KO  WT 

 

HT           HT          HT         WT        HT          HT        WT          HT          HT          HT          KO         HT  

 

HT     HT   HT    WT  KO   HT    HT   HT    HT   WT   HT   HT    HT    KO   HT   WT   HT   HT    KO   HT 
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 Mitochondrial Isolations from Skeletal Muscle 
 

References:  Cogswell et al. Am J Physiol, 1993, 264: C388-C389; Krieger et al. J Appl Physiol, 
1980, 48: 23-28 

Reagents: 

1. Potassium Chloride (KCl) (Sigma-Aldrich, cat#: P3911-1kg, store at room 
temperature). 

2. Magnesium Sulfate Certified Anhydrous (MgSO4) (Fischer Scientific, cat#: M65-500, 
store at room temperature). 

3. Disodium Salt, Dihydrate (EDTA) (Bioshop, cat#: 6381-92-6, store at room 
temperature).  

4. Tris (Hydroxymethyl) Aminomethane (TRIS) (Bioshop, cat#: 77-86-1, store at room 
temperature). 

5. Adenosine 5’-Triphosphate Disodium Salt Hydrate (ATP) (Sigma-Aldrich, cat#: 
A7699-10G, store at -20°C) 

6. Ethylene glycol-bis (2-amino-ethylether)- N, N, N, N’- tetraacetic acid (EGTA) 
(Sigma-Aldrich, E4378-100C, store at room temperature). 

7. 3-(N-morpholino) propanesulfonic acid (MOPS) (Bioshop, cat# 1132-61-2, store at 
room temperature).  

8. Bovine Serum Albumin (BSA) (Sigma-Aldrich, cat#: A2153-50G, store at 4°C). 
9. Sucrose (C2H22O11) (Caledon Laboratories Inc., cat# 8270-1, store at room temperature). 
10. Potassium Phosphate (K2HPO4) (Fischer Scientific, cat#: P288-500, store at room 

temperature). 
11. Protease from Bacillus licheniformis (Nagarse) (Sigma-Aldrich, cat#: P-5380-1G, 

store at -20°C). 

 

Preparation:  

1. Prepare one glass scintillation vial per mouse analyzed and fill with buffer 1. 
Label. 

2. Label two 1.5 mL eppendorfs (MCT Graduated Natural Eppendorfs; cat# 05-
408-129; Fischer Brand) for SS and IMF subfractions per mouse.  

3. Prepare mitochondrial isolation buffers (only good for one week). Prepared in appropriate 
sized flasks. First measure out each powder into a labelled beaker. Add less volume of 
ddH2O than final volume listed. pH to 7.4 for all solutions. Then pour solution into 
graduated cylinder and volume up to the appropriate volume listed. Pour into the labelled 
flask and store at 4°C. 
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Buffer 1        
100 mM KCl       0.745 g 1.863 g 3.725 g 
5 mM MgSO4       0.06 g  0.15 g  0.30 g 
5 mM EDTA       0.186 g 0.465 g 0.93 g 
50 mM Tris base      0.604 g 1.51 g  3.02 g 
 
Buffer 1 + ATP 
100 mM KCl      0.745 g 1.863 g 3.725 g  
5 mM MgSO4      0.06 g  0.15 g  0.30 g 
5 mM EDTA      0.186 g 0.465 g 0.93 g 
50 mM Tris base     0.604 g 1.51 g  3.02 g 
1 mM ATP       0.055 g 0.138 g 0.275 g 
 
Buffer 2 
100 mM KCl      0.745 g 3.725 g 7.45 g 
5 mM MgSO4      0.06 g   0.300 g  0.600 g 
5 mM EGTA       0.19 g  0.95 g  1.900 g 
1 mM ATP      0.055 g 0.275 g 0.550 g 
50 mM Tris Base     0.604 g 3.02 g  6.040 g 
 
Resuspension Buffer 
100 mM KCl      0.075 g 0.15 g  0.45 g 
10 mM MOPS      0.021 g 0.042 g 0.063 g 
0.2% BSA       0.02 g  0.04 g  0.120 g 
 
VO2 Buffer 
250 mM sucrose      1.71 g  3.42 g  5.13 g 
50 mM KCl      0.074 g 0.148 g 0.222 g 
25 mM Tris Base     0.06 g  0.12 g  0.18 g 
10 mM K2HPO4      0.034 g 0.068 g 0.104 g 
 
Procedure: 
 

1. Obtain all hindlimb and forelimb muscle masses and place into the Buffer 1 scintillation 
vial at the time of extraction. Must be kept on ice. 

2. Next, place the tissue onto a curved watch glass dish on ice. Dab away extra Buffer 1 
solution. Trim away any fat and connective tissue. Then using tweezers and scissors, 
proceed mince the muscle with forceps and scissors until it resembles the consistency of 
jam and no large pieces remain.  

3. Prepare a 50 mL plastic centrifuge tube (Nalgene, Thermo Scientific, cat#: 3119-0050) 
with 2 mL of Buffer 1 + ATP. Zero the scale using this filled plastic tube. Then place the 
minced tissue into the vial using the tweezers, ensuring that it is placed within the liquid 
at the bottom. Then place on the scale (Mettler-Toledo Scale, Fischer Scientific, cat#: 
MS104TS) to record the final weight. Volume up with Buffer 1 + ATP (i.e. if weight of 

100 mL  250 mL  500 mL 

100 mL  500 mL  1000 mL 

10 mL  20 mL  60 mL 

20 mL  40 mL  60 mL 
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minced tissue is 895 mg Æ 0.895 g Æ 10 x mince tissue = 8.95 mL; 8.95 mL – 2 mL 
(previously added) = 6.95 mL Buffer 1+ATP to now add to volume up). 

4. Next, homogenize with the IKA T25 Digital Ultra-Turrax polytron machine (model# 
T25DS1) at 40% power output (9.8 Hz) for 10 seconds moving the tube around rapidly. 
Between samples, rinse the homogenizing tip with ddH2O.  

5. Then place the plastic centrifuge tube into the Beckman JA 25.50 rotor and spin in the 
ultracentrifuge (Beckman Coulter Avanti J-25 Centrifuge, Sys ID: 297812, CAN: 
605169-AA) at 800 g for 10 min. This step divides the IMF and SS mitochondrial 
subfractions. The supernate will contain the SS mitochondria and the pellet will contain 
the IMF mitochondria. 

* SS and IMF Isolations are performed simultaneously  
 
SS Mitochondrial Isolation: 

1. Filter the supernate through a double layer of cheesecloth gauze into a second set of 50 
ml plastic centrifuge tubes.  

2. Spin tubes at 9000 g for 10 min. Upon completion of the spin discard the supernate and 
gently resuspend the pellet in 3.5 ml of Buffer 1 + ATP with a p-1000. Since the 
mitochondria are easily damaged, it is important that the resuspension of the pellet is 
done carefully.  

3. Repeat the centifugation of the previous step (9000 g for 10 min) and discard the 
supernate.  

4. Resuspend the pellet in 100 μl of Resuspension medium (using the p-200 to dispense the 
100 μl; use the p-1000 to resuspend), being gentle so as to prevent damage to the SS 
mitochondria. Some extra time is needed during this final resuspension to ensure the SS 
pellet is completely resuspended (there should be no large chunks left).  

5. Keep the SS samples on ice while proceeding to islolate the IMF subfraction.  
 
IMF mitochondrial isolation: 

1. Gently resuspend the pellet (from step 5) in a 10-fold dilution of Buffer 1 + ATP using a 
teflon pestle (i.e. if the weight of the minced tissue is 0.895 g Æ 10 x mince = 8.95 mL to 
add). Pour in the 10-fold dilution and then use the P-1000 to spray the pellet gentle of the 
wall. Once off, use the pestle to lightly break apart the pellet. 

2. Using the Ultra-Turrax polytron set at 40% power output (9.8 Hz), homogenize and mix 
around the resuspended pellet for 10 sec. Rinse the shaft with ddH2O in between samples.  

3. Spin at 800 g for 10 min. Discard the resulting supernate.  
4. Resuspend the pellet in a 10-fold dilution of Buffer 2 (i.e. 8.95 mL). Use the p-1000 to 

lift the pellet of the wall and then use the teflon pestle to lightly break apart the pellet. 
5. Next, add the appropriate amount of nagarse which is 25x the minced weight. To make 

the nagarse solution, weigh out between 7 – 10 mg nagarse into a 1.5 ml eppendorf and 
then add the appropriate ratio of Buffer 2. For example, if 9.8 mg of nagarse is weighed 
out, add 980 μl of Buffer 2. Then add this solution to the plastic centrifuge tube. For 
example, if the amount of tissue you have is 895 mg Æ 0.895 g Æ 0.895 x 25 = 22.375 μl 
of the nagarse solution. The calculation for the appropriate volume is 0.025 ml/g of 
tissue. Mix gently back and forth 3-4 times and let it lie flat on ice for exactly 5 min. 
Every 1 min, gentle 3-4 times mix the tube back and forth. 
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6. After the 5 min, dilute the nagarse by adding 20 ml of Buffer 2. Mix back and forth 3-4 
times. 

7. Then, spin the diluted samples at 5000 g for 5 min. Discard the resulting supernate.  
8. Resuspend the pellet in a 10-fold dilution of Buffer 2 (i.e 8.95 mL). Use the P-1000 to lift 

the pellet off the wall and then gently resuspend with a teflon pestle until the pellet is 
broken down.  

9. Spin the samples at 800 g for 15 min.  
10. Upon the completion of the spin, the supernate is poured into a new set of 50 ml plastic 

tubes (on ice); the pellet is discarded.  
11. Spin the supernate at 9000 g for 10 min. The supernate is then discarded and the pellet is 

resuspended in 3.5 ml of Buffer 2. Use the p-1000 to lift the pellet off the wall and then 
mix up and down with the p-1000 to break apart the pellet. 

12. Spin samples at 9000 g for 10 min. Discard the supernate.  
13. Gently resuspend the pellet in 200 μl of Resuspension medium (use the p-200 to deliver 

the resuspension buffer and use the p-1000 to break down the pellet until no large pieces 
remain). 
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Mitochondrial Respiration 
 

Reference: Estabrook, R.W., Meth. Enzymol., 10: 41-47 (1967) 

The rate of mitochondrial respiration is an important consideration in the biochemical 
analysis of mitochondria.  There are three phases of interest in analyzing the respiratory ability of 
mitochondria.  Mitochondria produce ATP in the presence of oxygen.  The respiratory ability of 
the freshly isolated IMF and SS mitochondrial fractions and the homogenates can be illustrated 
by measuring the rate of oxygen consumption using a Clark oxygen electrode in the presence of 
a) the substrate alone (e.g. glutamate for state 4 or resting respiration); b) ADP, (state 3 or active 
respiration); and c) NADH+, which is used to measure the amount of damage that has occurred to 
the mitochondria, since the inner membrane is impermeable to NADH+. 

Reagents (prepare first): 

1. VO2 Buffer for muscle mitochondria (please see instructions to make this buffer in the 
mitochondrial isolation protocol). Leave in the 4°C fridge until ready to use. Take out 30 
min before use to allow it to reach room temperature. 

2. Glutamate: measure 123.34 mg of glutamate (L-glutamic acid potassium salt monohydrate, 
Sigma-Aldrich, cat#: G1501-100G, Store at room temperature)   into a 1.5 mL eppendorf 
(MCT Graduated Natural Eppendorfs; cat# 05-408-129; Fischer Brand). Add 1 mL of 
ddH2O. Vortex (Mini Vortex, cat#: 02215365, Fischer Scientific) to ensure adequate mixing. 
The final concentration will be a 11.1 mM solution. Discard after use.  

3. ADP: measure 11.29 mg of ADP (Adenosine 5’-diphosphate sodium salt, Sigma-Aldrich, 
cat#: A2754-500 mg, store at -20°C) into a 1.5 mL eppendorf. Add 1 mL of ddH2O. Vortex 
to ensure adequate mixing. The final concentration will be a 0.44 mM solution. Discard after 
use. 

4. NADH: measure 30 mg of NADH (β-nicotinamide adenine dinucleotide reduced disodium 
salt hydrate, Sigma-Aldrich, cat#: N8129-1G, store at -20°C)   into a 1.5 mL eppendorf. Add 
250 µl of ddH2O. Vortex to ensure adequate mixing. The final concentration will be a 2.8 
mM solution. Discard after use. 

 

 Procedure: 

1. Set the water bath to 25-30oC. Turn this on prior to opening the system. Take out the VO2 
buffer 30 min prior to using to allow to reach room temperature. 

2. Then turn on the computer. Go to START Æ Windows Virtual PC Æ Windows XP mode. 
Turn on the Strathkelvin 928 Oxygen Meter System (Strathkelvin Instruments, Model 782, 
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serial# 2214) and ensure that it is plugged into the computer. Go to USB Æ Attach 782 Æ 
Open 782 Oxygen System Æ Open Experiment. 

3. Then take off the parafilm cover on the Clark oxygen electrode (Strathkelvin Instruments, 
Mitocell-MT200, serial# 2158). Clean out the chamber with ddH2O and suction repeatedly 
(~3 times). Prepare the respiration glass 25 µl Hamilton glass syringe, mini stir bar, metal 
rod to remove the stir bar and plastic stopper. 

4. Into the electrode, add 250 µl of VO2 Buffer and then very slowly add 50 µl of the 
mitochondrial subfraction (add slow to not damage the mitochondria). Insert the stir bar and 
press the button on the electrode to turn on. Then insert the rubber stopper slowly making 
sure the volume that moves up the stopper is about half-way up canula in the centre of the 
stopper.  

5. Then calibrate: Set-up Experiment Æ Calibrate Æ Calibrate High Æ Continue 
a. Will take approximately 1 min to calibrate. Then click Accept Values Æ Calibration 

Complete Æ press START 
6. Let the electrode run for the first 2 minutes. This is the drift which analyzes basal 

mitochondrial respiration.  
7. After 2 minutes, you will then pick up 5 µl of the glutamate solution with the 25 µl Hamilton 

glass syringe and insert the syringe through the canula into the solution located at the base of 
the electrode. Make sure not to touch the stir bar as it could stall. Then press MARKER and 
type in glutamate to identify where is has been added. Then let it run with glutamate for 2 
min. This is STATE 4 RESPIRATION. 

8. After 2 minutes, you will then pick up 5 µl of the ADP solution with the 25 µl Hamilton 
glass syringe and insert the syringe through the canula into the solution located at the base of 
the electrode. Make sure not to touch the stir bar as it could stall. Then press MARKER and 
type in ADP to identify where is has been added. Then let it run with ADP for 2 min. This is 
STATE 3 RESPIRATION. 

9. After 2 minutes, you will then pick up 5 µl of the NADH solution with the 25 µl Hamilton 
glass syringe and insert the syringe through the canula into the solution located at the base of 
the electrode. Make sure not to touch the stir bar as it could stall. Then press MARKER and 
type in NADH to identify where is has been added. Then let it run with NADH for 2 min. 
This is a control check to assess the integrity of the mitochondria. If NADH decreases 
rapidly, it may mean that the mitochondria may have been damaged during the process of 
extraction. If the mitochondria are intact and function, the graph will run at a slight decline 
in this section. 

10. Once the 8-10 minute run is complete, press STOP and save the file (go to respiration and 
save under appropriate folder). 

11. Stop the electrode by pressing the button, this will turn off the stir bar. Take out the stopper 
and then remove the stir bar with the metal rod. Wipe both the stopper and stir bar dry. Then 
suction out the VO2 Buffer/Mitochondria out and rinse with ddH2O 3 times with suction.  
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12. At the end of the entire analysis, put away the stopper, stir bar, metal rod, and glass syringe. 
Turn off the electrode and the computer system. Fill up the electrode with ddH2O and then 
place parafilm  laboratory film (Bemis, PM-996) over the lid to cover.  

a. File Æ Exit from Program Æ USB Æ Release 
13. Repeat from step 4 for the next mitochondrial subfraction. This is completed for both 

SS and IMF curves. Below is an example of the curve you will likely observe: 

 

 

 

 

 

 

 

 

 

 

Analysis: 

1. On the computer that is used for respiration with the clark electrode, open the Windows XP 
mode. Instead of clicking experiment this time, click ANALYZE. This will then take you to 
your previous respiration folder (click on the specific graph to analyze).  

2. A window will open where you will need to adjust the “edit experiment values”. 
Temperature = 30°C; Oxygen Consumption at Saturation = 28.5; Water Volume = 300 (for 
both text sections). Press Okay and your graph will automatically adjust. 

3. Open the excel spreadsheet and input the appropriate values into the red boxes below. Each 
animal should have both their SS and IMF analyzed. To input the values you are required to 
move the two sectional lines on the graph on the computer within the drift, glutamate, ADP 
and NADH sections to find a section that is 1 min in length and representative of that 
section. Input the time for the first line and the second line and the total time length. Each of 
these lines will have an associated %saturation value that you will then input for the start 
(first line) and end (second line). 

a. The difference in saturation is calculated by: Start % saturation – Final % 
saturation 

b. % saturation/min is calculated by: Saturation difference/time of line analysis 
c. Corrected %saturation/min is calculated by: (%saturation/min of glutamate OR 

ADP OR NADH)/ (%saturation/min of drift) 

Glut            ADP               NADH Glut          ADP          NADH 
IMF Curve SS Curve 
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d. Protein is calculated by: (Protein concentration from Bradford/5)*50 
e. Respiration Glutamate is calculated by: (Corrected %saturation/min for 

glutamate*1112.5)/Protein 
f. Respiration ADP is calculated by: (Corrected %saturation/min for 

ADP*1112.5)/Protein 
g. RCR is calculated by: Respiration ADP/Respiration glutamate 

i. RCR values need to be above 3 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RCR 

RCR 

The units for respiration is expressed in units of natoms. Thus State 3 or 4/mg protein x 
968 natoms O2 = x natoms O2/mg protein/min. 
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Mitochondrial Reactive Oxygen Species (ROS) Emission 
 

Background: Mitochondria are the primary source of reactive oxygen species (ROS) to the cell.  
It is estimated that about 2% of total cellular oxygen is converted ROS by the inappropriate 
reduction of molecular oxygen by intermediate members of the electron transport chain (ETC).  
ROS are damaging molecules that are capable of compromising the integrity of macromolecules 
within the mitochondria and may lead to overall organelle dysfunction.  In particular, mtDNA 
may be prone to attack by ROS because 1) mtDNA is located in close proximity to the ETC, 2) 
mtDNA lacks the protective sheath of histones compared to nuclear DNA and, 3) mitochondria 
have an insufficient repair system for mtDNA mutations.   ROS can exist in a variety of 
molecular permutations such as superoxide  (O2

-), hydroxyl radical (OH-) and hydrogen peroxide 
(H2O2).    

DCF (2,7,-dichloro-fluorescein; Fig.1) is a reagent that is non-fluorescent until the acetate groups 
are removed by intracellular esterases and oxidation occurs within the mitochondria (Fig.1).  
DCF is oxidized by all of the different forms of ROS and this can be detected by monitoring the 
increase in fluorescence with a fluorometric plate reader.  The appropriate plate reader filter 
settings for fluorescein are the following: Excitation 485/20 and Emission 528/20 (Fig.2).    

 

  Fig.1-DCF molecule and oxidation of DCF resulting in fluorescence 

    

 

 

 

Fig.2-Absorption and Emission Spectra of oxidized dye               
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Reagents: 

1. DCF (2,7,-dichlorodihydrofluorescein diacetate – H2DCFDA) reagent MW=487.29 (Life 
Technologies, cat#: 1871963, store at -20°) * very light sensitive when added to liquid 

a. Stock solution is made by measuring 24 mg into a 1.5 mL eppendorf (MCT 
Graduated Natural Eppendorfs; cat# 05-408-129; Fischer Brand). Then add 1 mL 
of 100% anhydrous ethanol (ethyl alcohol anhydrous, Commercial Alcohols, lot#: 
022933). Wrap the eppendorf in aluminum foil and vortex (Mini Vortex, cat#: 
02215365, Fischer Scientific) until no chunks are visible in the solution. This is to 
be stored at -20°C for multiple uses. 

b. Working solution (used for experiment and must be made fresh) is made by 
adding 990 µl of 100% anhydrous ethanol to a 1.5 mL eppendorf and then adding 
10 µl of the H2DCFDA stock solution. The eppendorf is immediately covered in 
aluminum foil and vortexed. 

2. VO2 Buffer: Refer to the mitochondrial isolation protocol for making this buffer. It should 
be left out for 20-30 minutes to stabilize to room temperature.  

3. Glutamate: measure 51.4 mg of Glutamate (L-glutamic acid potassium salt monohydrate, 
Sigma-Aldrich, cat#: G1501-100G, Store at room temperature) into a 1.5 mL eppendorf. 
Add 1 mL of ddH2O. Vortex to ensure adequate mixing.  

4. ADP: measure 4.69 mg of ADP (Adenosine 5’-diphosphate sodium salt, Sigma-Aldrich, 
cat#: A2754-500 mg, store at -20°C) into a 1.5 mL eppendorf. Add 1 mL of ddH2O. Vortex 
to ensure adequate mixing.  

Procedure: 

1. Prior to setting up the plate, the KC4 plate reader (Program KC4 V3.1 Rev 15, License#: 
5YNM-66P96) set up to the Synergy HT (BioTek) Plate Reader, must be prepared. The 
following are the parameters that need to be changed in order to utilize the DCF and 
measure time-dependent ROS production from isolated mitochondria: 

a. Open WIZARD to access the Reading Parameters Settings 
b. Reading Type: Options “End Point, Kinetic, Spectrum” - choose Kinetic 

i. Click on larger box labeled Kinetic to set parameters- Run Time 0:30:00, 
Interval time – for minimal interval time, measure every 3 minutes, 
click on box labeled Individual Well Auto Scaling- The Auto scaling 
allows for monitoring each individual well during the experiment and 
scales it appropriately. For the scales – click Auto for both options. 

c. Synergy HT-I On: Options “Absorbance, Fluorescence, Luminescence” – choose 
Fluorescence 

d. Then adjust the following options: 
i. Filter Set = choose #1 and set the excitation to 485/20 

ii. Emission = 528/20 
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iii. Optics Position= The optics position should be set to the TOP (i.e. 
readings are taken from the top of the well) 

iv. Sensitivity = set at 50 (depending upon the amount and/or nature of the 
sample). 

e. Plate-Type-choose 96-well plate (8 x 12), choose which wells are to be read i.e. 
C1-D9 

f. Shaking-Intensity set at 1, Duration set at 15s and then click the box that is 
labeled before every reading (it shakes the samples for 15 s before every 
reading). 

g. Temperature Control- Click on the box indicating YES, also click on box labeled 
pre-heating, and put 37°C into the temperature box. Once the heating is reached, 
and your plate is loaded with the mitochondrial sample and VO2 buffer, press start 
as the heating lamp will require an additional 2 minutes to reach temperature. 
During this time, rapidly add the glutamate, ADP and DCF. 

 

Procedure: 

Below is a typical pipette plan for layout. All mitochondrial concentrations obtained through a 
Bradford Assay must be divided by 5 first and then placed into the pipette plan in the [mito] 
column. 

 

1. SS and IMF mitochondria are isolated as described in the mitochondrial isolation 
protocol.  Only fresh mitochondria may be used for this functional assessment. 
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2. Prepare a solid white 96-well plate (96-nontreated white microwell SI, Thermo Scientific, 
cat#: 236105). In the specified rows add the appropriate level of VO2 Buffer to each well. 
Then add the mitochondria (SS and IMF) according to the volume as seen in the pipette 
plan. Remember to include a control with only VO2 buffer and DCF reagent as in Well 
#1 *at this point, begin the count-down timer for 2 min for heating the KC4 reader lamp. 

3. Next add 10 µl of the glutamate solution rapidly to all wells (both State 4 and 3 ROS). Do 
not change tips in between adding glutamate to each well.  

4. Next add 10 µl of the ADP solution rapidly to only State 3 ROS wells. Do not change tips 
in between adding ADP to each well.  

5. As the final concentration of DCF is 50 µM and the total volume of the reaction mixture 
is 250 µl, 25 µl of DCF is used in the reaction mixture since this represents a 10-fold 
dilution.  Add the DCF rapidly to the reaction mixture. Once added, immediately place 
the plate into the KC4 reader and press READ. 

6. Once completed, go to REPORT to print. Under Availab Data/Select add KINETIC 
CURVES and M485/528. Then click add to move to selected data, then print. Documents 
can be visualized below: 
 

Kinetic Curve 

 
 
 
 
 
 
 
 
Analysis of ROS: 

1. ROS is analyzed by inputting the following values in the pipette plan below. The initial 
reading on the chart (time 0) and the final reading on the chart (time 28:49) are put into 
the initial and final sections of the table and the difference is calculated. Example of the 
M458/528 is below:  
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2. Then values are corrected for respiration in the following pre-existing excel spreadsheet. The 
final values in the highlighted section are what is analyzed in graphpad.  

 

 

STATE III ROS 

 
CON 132 SS 133 SS 163 SS 164 SS 132 IMF 133 IMF 163 IMF 164 IMF 

Initial Value 2472 2828 2936 2941 3086 3419 3298 3235 3265 
Final Value 2930 13040 8616 9152 8875 9320 7351 7872 7990 
Difference 458 10212 5680 6211 5789 5901 4053 4637 4725 

STATE IV ROS 

 
CON 132 SS 133 SS 163 SS 164 SS 132 IMF 133 IMF 163 IMF 164 IMF 

Initial Value 2583 3084 3046 3061 3166 3553 3459 3336 3380 
Final Value 2906 8228 8142 10861 12888 9276 8019 8011 8667 
Difference 323 5144 5096 7800 9722 5723 4560 4675 5287 

0 min time point 

30 min time point 
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Equations: 

x State 4 & 3 Control, IMF and SS are the difference values inputted from the above chart. 
x Corrected 4 SS = State 4 SS – State 4 Control 
x Corrected 3 SS = State 3 SS – State 3 Control 
x Corrected 4 IMF = State 4 IMF – State 4 Control 
x Corrected 3 IMF = State 3 IMF – State 3 Control 
x State 4 & 3 SS resp and State 4 & 3 IMF resp values are the respiration values from the 

mitochondrial respiration procedure once quantified.  
x SS Corrected 4/ug = corrected 4 SS/75 (*repeat for IMF) 
x Corrected 3/ug = corrected 3 SS/75 (* repeat for IMF) 
x SS State 4 ROS = Corrected SS 4/ug /  SS state 4 resp 
x SS State 3 ROS = Corrected SS 3/ug   /   SS state 3 resp 
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Western Blotting 
 

Reagents: 

1. Acrylamide/Bis-Acrylamide, 30% Solution 37.5:1 (BioShop, ACR010.500, store at 
4°C). 

2. Under Tris Buffer: Measure out 1 M of Tris-HCL (Tris (Hydroxymethyl) 
aminomethane, Bioshop, cat#: 77-86-1, stored at room temperature) which is 60.5 g into 
400 mL of ddH2O. Then, with acid, pH to 8.8. Volume up with ddH2O to a total of 500 
mL. Store at 4°C. 

a. 5N HCl Acid: Combine 82 mL of HCl (Caledon, 6025-1-29) with 118 mL 
ddH2O. Pour the acid over the water. 

3. Over Tris Buffer: Measure out 1 M of Tris-HCL (Tris (Hydroxymethyl) aminomethane, 
Bioshop, cat#: 77-86-1) which is 12.1 g into 80 mL of ddH2O. Then pH to 6.8. Add 
Bromophenol Blue (Electrophoresis Purity Reagent, Bio-Rad, cat# 161-0404, stores at 
room temperature) after pH is done for colour. Volume up with ddH2O to a total of 100 
mL. Store at 4°C. 

4. Ammonium Persulfate (APS) Buffer: Add10% (w/v) APS (Siglma-Aldrich, cat# 
A3678-25G, stored at room temperature) in ddH20 (1g/10mL ratio). Store at 4°C. 

5. Sodium Dodecyl Sulfate (SDS) Buffer: Add 10% (w/v) SDS (Bioshop, cat#: 151-21-3, 
stored at room temperature) in ddH20 (1g/10mL ratio). Store at room temperature 
(solidifies at 4°C). 

6. TEMED (N,N,N’,N’-tetramethyl-ethylenediamine) (Sigma-Aldrich, T-9281-50ml, 
stored at 4°C). 

7. Electrophoresis Buffer: Add 25mM Tris (30.34g), 192mM Glycine (144g) (Bioshop, 
56-40-6, stored at room temperature), 0.1% SDS (10g) into a large nalgene bucket. Add 4 
L of ddH2O and stir. Using the pH meter, pH to 8.3. Add acid very slowly, the buffer 
takes time to adjust to the pH. Then pour into the large jug containing 6 L of ddH2O for a 
total volume of 10L. Store at room temperature, 

8. Blocking Solution: 5% Skim Milk Powder, 10% Skim Milk Powder, stored at 4°C. 
a. 5% (w/v) skim milk powder (pasteurized instant skim milk powder, Loblaws/No 

Frills, stored at room temperature) in wash buffer (more common) OR 
i. For example, for 400 mL of blocking solution, measure out 20 mg. 

Calculate this by 400 x 0.05 = 20 mg skim milk powder to add. 
b. 5% (w/v) Bovine Serum Albumin (Sigma-Aldrich, cat#: A2153-50G, stored at 

4°C) in wash buffer 
9. Transfer Buffer: Measure out 0.025M TRIS (12.14g), 0.15M Glycine (45.05g), 20% 

methanol (800 mL) (CH3OH, Caledon, cat#: 6700-1-42, stored at room temperature). 
Add 4 L of ddH20 and leave it on the stirring plate to mix. Store at 4°C. 

10. Wash Buffer: Measure out TRIS (12 g), NaCl (58.5g) (Sodium Chloride, Bioshop, cat#: 
7647-14-5, stored at room temperature), and 0.1% TWEEN 20 (10 mL) (Sigma-Aldrich, 
cat#: P1379-500ml, stored at room temperature) into a large nalgene bucket. Add 4 L of 
ddH2O and stir. Using the pH meter, pH to 7.5. Add acid very slowly, the buffer takes 
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time to adjust to the pH. Then pour into the large jug containing 6 L of ddH2O for a total 
volume of 10L. Store at room temperature 

11. Sample Dye: Make up 40% of sucrose (C2H22O11) (Caledon Laboratories Inc., cat# 
8270-1) in electrophoresis buffer (4g / 10 mL buffer). Add a spatula tip-full of 
Bromophenol Blue (Electrophoresis Purity Reagent, Bio-Rad, cat# 161-0404, stores at 
room temperature) to obtain the colour required. Store in 1 mL aliquots at -20°C. 

12. Beta-mercaptoethanol (Sigma-Aldrich, M6250, stored at room temperature) 
13. 2X Lysis Buffer: Measure out 100% glycerol (heated) (50 mL) (Caledon, 5650-14-40), 

SDS (11.5 g), and 1M TRIS (weigh out 12.1 g TRIS/ 100 mL ddH2O, pH to 6.8, then add 
31.25 mL of this solution) and add 400 mL of ddH2O. Then pH to 6.8. Volume up with 
ddH2O to a total of 500 mL. Store at 4°C. 

14. 6X SDS (not used frequently): Warm 100% glycerol in water bath at 65°C for 30 
minutes. Measure out SDS (1.2 g), Bromophenol Blue (0.06 g), 1M Tris (weigh out 12.1 
g TRIS/ 100 mL ddH2O, pH to 6.8, then add 3 mL of this stock solution to the SDS and 
Bromophenol Blue) and ddH20 (1 mL) in a beaker. Then stir at 4°C for 5 minutes. Add 
the glycerol (6 mL) to the beaker, stir and aliquot the mixture. Store at -20°C. Add 5% 
(v/v) ß-mercaptoethanol to the 6X SDS just prior to use 

15. Ponceau Stain (Red): Measure out 0.1% (w/v) Ponceau S (200 mg) (Sigma-Aldrich, 
cat#: P3504-10G, stored at room temperature), 0.5% (v/v) Acetic Acid (10 mL) (Glacial, 
cat#64-19-7, stored at room temperature) and 94% ddH20 (190 mL). Store at room 
temperature. 

16. Butanol (2-methyl-2-butanol, Sigma-Aldrich, cat#:152463-1L, stored at room 
temperature) 

17. Enhanced Chemiluminescence Fluid (ECL) (Santa Cruz, cat#:sc-2048, stored at room 
temperature) 

18. Protein Ladder (Precision Plus Protein Kaleidoscope, Bio-Rad, cat#: 161-0375, stored 
at -20°C) 

19. Nitrocellulose Membrane (0.45µm, Bio-Rad, cat#:10484060, stored at room 
temperature) 

20. 1 X TBS: Dilute 10X TBS in a 1:10 ratio. For example, add 100 mL 10X TBS: 900 mL 
ddH2O. 

a. 10X TBS: Measure out NaCl (80 g) (Sodium Chloride, Bioshop, cat#: 7647-14-5, 
stored at room temperature), KCl (2 g) (Sigma-Aldrich, cat#: P3911-1kg, stored at 
room temperature), TRIS (30 g) in 900 mL of ddH20. Then pH to 7.4. Volume up 
for a total of 1000 mL or 1 L. Store at -4°C, 

21. Stripping Buffer: Measure TRIS (7.6 g), SDS (20 g), β-mercaptoethanol (7 mL) in 700 
mL of ddH20. pH to 6.8. Volume up for a total of 1000 mL or 1 L. Store at room 
temperature.  

* All Western Blot experimental equipment is from Bio-Rad 
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Procedure: 

1. Prepare electrophoresis separating gels: 
a. Clean 1.5 mm spacer plates (Glass Plates, Bio-Rad, cat# 1653312) and short glass 

plates (Short Plates, Bio-Rad, cat# 1653308) thoroughly with soap followed by a 
rinse with 95% wash ethanol. Let them dry naturally.  

b. Then assemble glass plates by attaching together the spacer plate and short plate 
and fit them into the green holder. In the gel holding rack, place sponges along the 
bottom grooves and then clip the green holder.  

c. Next, check the seal by adding ddH20 until the top, then pour off and dry the 
plates using air suction.  

d. Then prepare to make the separating gel according to the percentage and volume 
requirements listed below. These volumes are listed per one gel, multiply volumes 
by however many gels are being made. 

 
 8% 10% 12% 15% 18% 

Acrylamide 2.7 ml 3.3 ml 4.0 ml 5.0 ml 6.0 ml 

ddH20 4.1 ml 3.5 ml 2.8 ml 1.8 ml 0.8 ml 

Under Tris 3.0 ml 3.0 ml 3.0 ml 3.0 ml 3.0 ml 

SDS 100µl 100µl 100µl 100µl 100µl 

APS 100µl 100µl 100µl 100µl 100µl 

TEMED 10µl 10µl 10µl 10µl 10µl 

Benefits of making different percentage gels allows for greater separation of bands at certain 
molecular weights. For example, an 8 or 10% gel will cutoff around the 37 kDa mark and 
upwards, thus providing large separation for higher molecular weight proteins. On the other hand 
the 12 and 15% gels will allow for a full analysis of all of the molecular weight markers with 
greater separation occurring at the lower molecular weights.  

e. To a 200 mL beaker, add the solution volumes of the gel in order, adding first 
acrylamide, ddH2O, Under Tris, SDS, and APS. Place on the stir plate with a stir 
bar and allow to mix.  When ready to pour into the plate, add TEMED and let stir 
for 10 sec.  

f. Slowly pour the solution into the space between the two plates while keeping 
plates tilted to prevent bubble formation. Pour just above the first green line of the 
green holder. 

g. Then add 1000 µl of butanol to coat top surface of gel solution and prevent 
evaporation. 

h. Allow 30-40 minutes for gel polymerization. Keep the beaker with the remaining 
solution to observe when solidified. 
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i. Remove the butanol by pouring it off and remove any remainder with a small 
piece of whatman paper.  

j. Next, prepare the stacking gel by adding the following solutions below in order to 
a 50 mL beaker. Place on a stir plate with a stir bar until ready to use.  
 

 Large Volume (4-5 gels) Small Volume (2-3 gels) 

Acrylamide 1000 µl 500 µl 

Over Tris 1.25 mL 625 µl 

ddH20 7.5 mL 3.75 mL 

SDS 100 µl 50 µl 

APS 100 µl 50 µl 

TEMED 15 µl 7.5 µl 

k. When ready to pour into the plate, add TEMED and let stir for 10 sec. Then 
slowly pour until it overflows the space between the glass plates. 

l. Add 10 well or 15 well comb (Bio-Rad, 1.5 mm wells) for the desired number of 
wells. 

m. Allow ~40 minutes for gel polymerization. 
n. Once solidified, wrap each gel in wet paper towel and cover with plastic wrap to 

prevent gel dehydration. Store at 4°C. Good for 2-3 days stored.  
 

2. Preparation of samples: 
a. Taking the concentration of the sample from the Bradford assay, place into the 

“protein for 5 ul” row in the pipette plan observed below. Adjust the total protein 
used. The more total protein, the greater the concentration and thus increased 
density of the bands.  

i. Protein ug/ul =  Protein for 5 ul / 5 
ii. Total protein = Protein Concentration (40) / Protein ug/ul 

iii. 2X lysis buffer = total protein 
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b. Prepare 1.5 mL eppendorfs (MCT Graduated Natural Eppendorfs; cat# 05-408-

129; Fischer Brand) labelled with the appropriate sample ID.  
c. Prepare the lysis buffer solution. Add a ratio of 475 µl 2x lysis buffer with 25 µl 

of beta mercaptoethanol. A larger ratio can be used of 950:50 µl if required. 
Vortex (Mini Vortex, cat#: 02215365, Fischer Scientific) to mix. 

d. Add the appropriate volume of lysis buffer solution to each labelled eppendorf. 
The volume of lysis buffer to sample is a 1:1 ratio. 

e. Next add the sample to the labelled eppendorfs. 
f. Lastly add 5 µl of sample dye to each tube.  
g. Briefly centrifuge each sample using the eppendorf centrifuge 54150 (Brinkmann 

Instruments, 5425-41150) machine to bring volume to the bottom of the 
eppendorf and to mix. 

h. Turn on the block heater to 95ºC and incubate each sample at 95 ºC for 5 minutes 
in the heating block to denature the proteins.  

i. Briefly spin again to return volume to the bottom of the eppendorf and store in the 
-20°C freezer until ready to use or use immediately.  

 

3. Assemble Mini-PROTEAN gel caster system: 
a. If one gel is only being run, a plastic rectangular pseudo 

plate (Buffer Dam, Bio-Rad) must be clamped on the 
other side of the gasket to still create the well. Place the correct way so that the 
ridges of the pseudo plate are facing towards the inside (or towards the gasket). If 
using two gels, fit appropriately so that the short place on either side is facing 
towards the inside of the gasket.   

b. Place the gasket apparatus with the gels into a plastic castor (2 gels = Mini-
Protean 3 Cell, Bio-Rad, cat#: 525BR-049940; 4 gels = Mini-Trans-Blot Cell, 
Bio-Rad, cat#: 153BR81099). The square castor is sufficient to hold two gels. 
However the rounded castor is sufficient to hold 4 gels. Two gaskets (one with 
pointed prong conductors and one with flat conductors) will be used, each able to 
hold two gels. 

c. Fill the castor with electrophoresis buffer by first filling in the well created 
between the plates, allowing the buffer to overflow and fill the rest of the castor. 
Fill to the top. ** very important that the well space between the plates is always 
filled to the top, otherwise the proteins may run down the gel on an angle.  

d. Slowly remove the comb using both hands (one on each side) by pulling the comb 
straight upwards.  

e. Rinse out each well with a small and gentle flush of electrophoresis buffer using a 
B-D (10 mL) syringe. Fix any wells that are deformed using the syringe. 

f. Place 13 µl of protein ladder into the first well. This allows you to visualize the 
molecular weights along the gel. 

g. Withdraw the entire volume of the sample using a 25 µl Hamilton syringe. Inject 
volume slowly into the bottom of the well, being careful of losing solution with 
bubbles that form. Then pick up 5-8 µl of the electrophoresis buffer and place 
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back into the empty eppendorf. Swirl around, then pick it up to obtain any leftover 
sample and place back into the same well.  

h. Once all the samples are loaded into the wells, refill the center well between the 
plates with more electrophoresis buffer so that it is overflowing.  

 

4. Gel electrophoresis  
a. Immediately after all samples are loaded place the lid on the gel chamber. 
b. Place positive (red) and negative (black) plugs into the power supply and turn on 

power supply. Ensure colour coding is correct. 
c. Set power supply to 120V. Gel will run for ~1.5- 2 hours depending on percent 

gel made. 
d. When the bromophenol blue sample dye has run off the bottom of the gel (or 

when gel has separated the desire amount) turn off the power supply to the 
electrophoresis machine. Remove plugs from power supply and remove lid. 

e. Prepare for electrotransfer of proteins from the gel to nitrocellulose membrane.  
 

 
5. Western Blotting Transfer 

a. Prior to shutting off the electrophoresis machine, prepare the following set-up 
i. Small rectangular glass dish with a test tube;  

ii. Paper towel with green wedge (Bio-Rad) and water bottle with a thin 
pipette tip attached; 

iii. Square dish containing Whatman paper (GE Healthcare-Life Sciences, 
cat#: 3030-917) sliced 8 ½ cm by 6 cm. You will need 6 pieces per gel, 
they must be placed in groups of 3 pieces; 

iv. Another square dish containing nitrocellulose membrane sliced 8 ½ cm by 
6 cm. You will need one membrane per gel; 

v. One plastic sandwhich Cassette per gel containing one thicker green 
sponge placed on the black side of the cassette and two thin black sponges 
placed on the clear side of the cassette; 

vi. Transfer buffer that has been refrigerated at 4°C; 
vii. Black and Red Transfer chamber with prongs, placed inside a 2-gel square 

castor. Place a stir bar at the bottom of the castor underneath the transfer 
chamber. Place the entire apparatus into a glass dish placed on a stir plate. 

b. Once set-up, shut off the electrophoresis machine and remove the electrophoresis 
glass plates from chamber. 

c. Lay the glass plate down on the paper towel and use the green wedge to lift 
between the plates, thus lifting away the short plate. With the wedge, cut away the 
stacking gel wells. 

d. Next, in the glass dish, place the cassette with the 
sponges so that the black side is facing down in the 
glass dish. Pour a small amount of transfer buffer 
over top and use the test tube (Corex 15 mL, cat#: 
8441) to roll out the thick green sponge with the 
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liquid. Then place a set of 3 Whatman paper onto the green sponge. Roll out to 
make flat. 

e. Then using the water bottle with the thin tip, gently slide under the gel and spray 
the water to lift the gel up off the 1.5 mm glass spacer plate. Go around all edges 
of the gel. Using the green wedge/spatula, lift under the ladder section of the gel 
and lift off the 1.5 mm spacer plate and lie flat along the Whatman paper on the 
cassette. The ladder on the gel MUST be on the right side. Roll out with the test 
tube gently to ensure the gel is flattened.  

f. Then, removing the protective blue sheets around the white nitrocellulose 
membrane, place the membrane directly over the gel. Roll out repeatedly with the 
test tube to ensure there are no bubbles trapped between the membrane and the 
gel. 

g. Then place another stack of 3 Whatman papers on top of the nitrocellulose 
membrane as a protective layer. Roll out with the test tube.  

h. Clamp together the cassette and place in the transfer chamber with the black side 
of the cassette facing the black side of the chamber.  

i. Place an ice pack in the chamber to prevent over-heating of the membrane/gel. 
Place ice around the base of the castor as well.  

j. Fill up the castor with transfer buffer until it reaches the top of the castor. 
k. Place lid on the chamber and connect the leads to the power supply.  
l. Turn on the power supply and run at 120V for 1 hour and 45 minutes.  

 

6. Removal of transfer membrane: 
a. After the 1 hour and 45 minutes, turn off the power supply and disconnect leads 

from the power supply, then remove the lid from the chamber. 
b. Remove each cassette from the chamber one at a time by pulling upwards. 
c. Open the cassette, remove the Whatman paper and gel and place the nitrocellulose 

membrane in a plastic dish so that it is upright, with the ladder now on the left 
side of the square plastic dish. 

d. Add Ponceau S stain on the membrane, enough so that is it submerged, and gently 
swirl.  

e. Drain off the remaining Ponceau S and save for reuse. Repeat for all blots 
simultaneously. 

f. Rinse the membrane with ddH20 and swirl to reduce the red background; rinse 
approximately 3-4 times. Lay the blot face up on top of plastic wrap and label 
with a sticker to keep track of the membranes. Then wrap with the plastic wrap 
and use a kim wipe to smooth out any creases. Either take a picture or scan the 
image (allows you to keep your ponceau for use as a loading control later on, if 
required). 

g. Next, prepare a faux gel plan of the proteins to be analyzed, their molecular 
weight and where to cut along the membrane. Refer to this prior to cutting the 
membrane. Once satisfied, use a scalpel and a ruler to precisely cut at the planned 
sections. Cut while the blot is still in the plastic wrap. Use a pen to label at the end 
(where no protein is) the ID of the gel as well as the protein being analyzed. 
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Using forceps, take the membrane strip and place in a square plastic dish. Repeat 
for all other proteins, placing similar proteins in similar plastic dishes.  

h. Then add enough wash buffer to submerge the blots. Swirl on a mixing plate 
(GFL (3017) Man-Tech Associates Inc Mixing Plate, Sarstedt, ref#: 62-151.006, 
lot#: 6092911) at room temperature until the remaining red Ponceau S has been 
removed. Remove the plastic wrap bits with forceps while stirring. 

i. Next, incubate the blots for 1 hour with 5% skim milk blocking solution while on 
rotation at room temperature. 

i. During this hour, prepare the primary antibodies. Depending on the 
primary volume, use either1.5 mL eppendords, 2 mL eppendorfs or 13 mL 
Rhohr tubes (Sarstedt, ref#: 62-515.006, lot# 6092911). Add first the 5 or 
10% skim milk blocking solution and then add the specific antibody 
(stored at either 4°C, -20°C or -80°C) ordered from the company.  

ii. Prepare the dish to place the blots in overnight. Using a large glass dish, 
set up a small plastic square dish upside down as a support. Then take a 
glass plate and wrap it in parafilm to prevent creases. Place four kimwipe 
balls (2 kimwipes wrapped together, sprayed with water, and rolled into a 
ball) into each corner of the -glass dish. Place plastic wrap overtop the 
glass dish to prevent evaporation.  

j. Once the blocking is complete, lift each blot and place it face up onto the parafilm 
dish. Spread each blot as far apart as possible to prevent accidental mixtures of 
primary antibody. Then place the glass dish into the 4ºC fridge. Vortex primary 
antibody and place 1000 µl of primary antibody over each specific blot to cover. 
Once all is added, cover the plastic wrap and close the fridge door.  

 

7. Immunodetection 
a. The next day, take the glass dish out of the 4ºC fridge and place on the bench. 

Remove the blots and place them into a square plastic dish. Wash the blots in 
wash buffer with gentle rotation for 5 minutes, repeat this wash 3 times. Pour out 
wash buffer and add new wash buffer in between each rinse. 

i. During these washes, wipe off the excess primary antibody from the 
parafilmed glass plate. Re-soak the kimwipe balls with ddH2O. 

ii. Prepare the secondary antibodies using rabbit, mouse or goat (stored at -
20°C) added to 5% blocking skim milk. Again, prepare this in a 1.5 mL, 
2.0 mL eppendorf or a 13 mL Rhohr tube.  

b. Once the 3 by 5 min washes are complete, lay the blots face up onto the parafilm 
plate. Incubate the blots for 1 hour in room temperature with 1000 µl of the 
appropriate secondary antibody diluted in blocking solution. Vortex before 
adding.  

c. Once the one hour is up, then lightly dab the blot to remove excess secondary 
onto a kimwipe, transfer to a plastic square dish, and then repeat the 3 by 5 min 
washes with wash buffer. Pour out wash buffer and add new wash buffer in 
between each rinse. 
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8. Enhanced Chemiluminescence Detection 
a. Mix ECL fluids “A” and “B” in a 1:1 ratio in a disposable Rohr tube. For each 

blot, 1000 µl of solution is required (i.e. 500 µl of A and 500 µl of B). The ECL 
in the brown bottle is extremely light sensitive – only add when immediately 
ready to use. When ready mix the two solutions vigourously. 

b. Place blots on plastic wrap face up and apply ECL solution for 5 minutes.  
c. Dab off excess ECL on a kimwipe and place blots face down on a fresh piece of 

plastic folder and seal tightly. 
d. Place the blot face down onto the imager and latch close the machine. 
e. Open the Carestream Molecular Imaging Software connected to the Carestream 

Imaging Apparatus (K4589-0020). Make sure the machine is turned on. Go to 
Capture In Vivo FX. Settings should be already pre-set at Matt Chemi. Settings 
will look like below: 

 

 
 
 

f. Click “Preview” to detect how long the first exposure must be. The preview will 
run for 10 sec. If distinct blots can be viewed through the preview, then expose 
for less time (around 2 min). If not blots can be visualized from the preview, 
expose for longer (around 10 min and up). Adjust the exposure time value and 
click “Expose”.  

g. Expose blot to film (time will vary depending on protein and antibody).  
h. Once the exposure if completed, play with the contrast and background using the 

blue and red lines respectively on the righthand Image Display panel. Move them 
along the scale to create the perfect image. 

i. Click “Auto” to go back to the initial exposure contrast. 
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i. Save the Carestream image. Then go to Export Data Æ Image Æ File type Æ 
JPEG. This is so that later analysis can be performed. 

j. Repeated exposures can then be made for the same blot. There is an approximate 
20 min ECL lifetime. 

k. Once completed, discard blot and shut down the program. Retrieve images off the 
program using a USB to then analyze with the Image J software.  

 

         9. Western Blot Analysis 

a. Open the image J software. Within the software click OPEN Æ select blot to 
analyze. 

b. Click the         button to highlight the blot. If multiple bands, highlight the specific 
band interested in analyzing.  

i. You can crop and adjust the rotation as well during this time to ensure 
only the bands interested in highlighting are highlighted. Click Image Æ 
Crop. Then click Image Æ Transform Æ Rotate Æ Input Angle (degrees) 
Æ negative number turns the image counter clockwise and a positive 
number turns the image clockwise. Start with a small number.  

c. Then click the number“1” to confirm the highlighted region and that the line is 
horizontal, then click the number“3” to analyze. A new window will open 
containing peaks for each specific band shown: 

 

d. Select the       function and then connect the base of the peak by drawing a line 
from one point to the next. Do this for all of the peaks. 
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e. Click on the   *     button. Then click on the inside of each of the peaks. The peaks 
will be highlighted and a new window will open containing the volume under 
each peak. These are the final quantified values of the contrast of each blot.  

f. Place these values into an excel spreadsheet.  Perform steps 2-5 for the control 
protein. Then divide the values of the protein of interest by the control proteins to 
obtain the final protein value which can then be grouped and graphed using the 
Graphpad Prism 6.0 software. 

            10. Stripping & Re-probing 

This process is required to analyze more than one protein at a similar molecular weight to 
another, without having to re-do the entire western blot process.  Another method is the 
Arturo stripping method, however that is only recommended for stripping the blot for the 
same protein, rather than a different one which is what this method is beneficial for. 

a. Once the original protein has been developed using the Carestream imager 
software, do not throw out the blot; instead, place the blot in a square plastic dish. 
Then wash the blot in wash buffer 3 times for 5 min intervals. 

b. After the final wash, remove the excess wash buffer and add 1 x TBS. Then seal 
the plastic container and leave in the fridge until ready to use.  

i. If stripping right after developing, ignore the 3 by 5 min washes and the 
1X TBS and proceed directly to step C. 

c. Empty the wash buffer or TBS that the blot is submerged in. Add in fresh wash 
buffer into the plastic dish and wash on the mixing plate for 15 min. Repeat this 
for a total of two times. 

d. Then turn on the rotating heating oven (NIO/CAN Scientific TEK STAR 
Hybridization Oven) and set it to 56°C. Prepare two long glass cylinder 
containers.  

e. Once the blots are washed, take the blot and lie it face up, flat along the inside of 
the glass container. The blot should be placed near the lid of the container, with 
the ladder facing towards the bottom of the cylinder. If multiple blots, place the 
blots across from each other and not directly beside. 

f. Then, add 4 mL of stripping buffer to the bottom of each container. The stripping 
buffer is light sensitive, only add when the blots are placed. Close the lid of the 
glass container. 

g. Place the glass containers into the rotating oven making sure that they are equally 
balanced. Then begin the rotation, close the door and time for 30 minutes.  

h. Once completed, remove the blots and place them back into the square dish and 
repeat the 2 times 15 minute washes with wash buffer on the mixing plate. 

i. Next, empty out the wash buffer and add the 5% skim milk blocking solution to 
the plastic dish. Leave on the mixing plate for 1 hour. 
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i. In the meantime, prepare similarly to how you prepare for step I and J in 
the Removal of transfer membrane section. 

i. Prepare primer antibodies and prepare glass dish for incubation. 
j. Continue with the method dictated in Step 7 (Immunodetection) and proceed 

onwards. 
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COX Enzyme Activity Assay 
 

The COX Enzyme activity assay is an indirect measure of mitochondrial content. This assay is 
based on observation of the decrease in absorbance of ferrocytochrome c measured at 550 nm, 
which is caused by its oxidation to ferricytochrome c by cytochrome c oxidase. This kit is 
suitable for the detection of mitochondrial outer membrane integrity/mitochondrial stress and for 
the detection of mitochondria in subcellular fractions. 

Reagents 

1. Muscle Enzyme Extraction Buffer: Measure out 20 mM Hepes (2.383 g/500 mL 
ddH2O) (Sigma-Aldrich, cat#H3375-500G) and pH to 7.4. Then in a separate beaker, 
measure out 2 mM EGTA (0.3804 g/500 mL) (Sigma-Aldrich, E4378-100C, store at 
room temperature), 1% Trition-X-100 (5 mL/500 mL), 50% glycerol (10 mL/500 mL) 
(Caledon, 5350-1-40), and 50 mM β-glycerophosphate (5.4 g/500 mL) into 400 mL of 
ddH2O and pH to 7.4. Then volume up to 500 mL total and store at 4°C.  

2. Cytochrome c from equine heart (Sigma-Aldrich, cat#: C2506-1G, store at -20°C) 
3. Sodium Dithionite (Sodium hydrosulfite, Sigma-Aldrich, cat#: 157953-5G, store at 

room temperature) 
4. 10 mM KPO4: Dilute 0.1 M KPO4 buffer prepared below with ddH2O in a 1:10 ratio 

(exp. 10 mL buffer + 90 mL ddH2O). Store at 4°C. 
5. 100 mM KPO4: Measure 0.1 M KH2PO4 (13.6 g/1000 mL ddH2O) (Potassium Phosphate 

Monobasic, Fischer Scientific, cat#: P285-500) and pH to about 5. Then prepare the 0.1 
M K2HPO4.3H2O (17.4 g/ 1000 mL ddH2O) (Potassium Phosphate, Fischer Scientific, 
P288B-500) and pH this solution to 8. Then mix these two solutions in equal proportions 
and pH to 7.0. Store at 4°C. 

Procedure: 

1. Prepare the appropriate set-up: 
a. Beige two-section dish; 
b. Metal tool with a small scoop at one end and a metal clamp for samples; 
c. Prepare a small liquid nitrogen tank containing the powdered samples in 

cryotubes (2 mL micro tube, Sarstedt, ref# 72.694.003, lot#: 3084701). 
d. Prepare two sets of 1.5 mL eppendorfs (MCT Graduated Natural Eppendorfs; cat# 

05-408-129; Fischer Brand) with the ID of the powdered samples. Label one tube 
with a 20 (for the 20-fold dilution) and label the other set of tubes with an 80 (for 
the 80-fold dilution). 

2. Add 50 µl of muscle enzyme extraction buffer to the 20-fold dilution labelled 1.5 mL 
eppendorfs. 
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3. Next, pour liquid nitrogen into the beige dish. Place the metal clamp and metal tool into 
the liquid nitrogen. Remove a powdered sample (in a crytotube) from the liquid nitrogen. 
Tap 3-4 times on the table and slightly twist the top open to let out extra gas from the 
cryotube. Then remove the lid and place the cryotube in the clamp in the liquid nitrogen. 
**The sample must always be stored in liquid nitrogen.  

4. Then, place the 20-fold dilution eppendorf with the 50 µl of muscle enzyme extraction 
buffer onto the scale and zero it. 

5. Next, using the metal tool, scoop out 5-7.5 mg of powdered tissue and place it in the 20-
fold eppendorf. Record the final measurement. 

6. Once correctly measured, remove the cryotube from the metal clamp and close the lid. 
Tap and open and close the lid multiple times until there is no more sound of gas 
escaping. 

7. Then volume up for the sample according to the following calculation. For example, if 
6.2 mg was measured Æ 6.2 x 19 – 50 =  67.8 µl of muscle enzyme extraction to volume 
up.  

8. Complete steps 2-7 for all samples. 
9. Next, place the samples on an aluminum eppendorf block on ice in a small plastic 

container. Ensure ice is surrounding the block. Place all samples inside the block, open 
the lids and place inside each one a mini stirring rod.  

10. Place the plastic container onto a mixing plate and turn on. Ensure that all of the stirring 
rods are moving in a circular motion. Start a timer for 15 min.  

11. While mixing, the cytochrome c test solution can be prepared.  
a. Turn on the large 30°C oven and allow to heat up. 
b. In a small glass scintillation vial, weigh out 20 mg of horse heart cytochrome c 

(stored normally at -20°C). 
c. Add 1 mL of 10 mM KPO4 buffer to the scintillation vial and swirl around with 

the cytochrome c to mix. This should be a dark red colour. 
d. In a 1.5 mL eppendorf, weight out between 7-10 mg of sodium dithionite. Add the 

equivalent of 10 mM KPO4 buffer. For example, if 8.3 mg was measured, then 
add 830 µl of 10 mM KPO4 buffer. Vortex vigorously to mix.  

e. Next, prepare three items: two pieces of aluminum foil (large enough to cover the 
scintillation vial), 8 mL of ddH2O, and 1 mL of 100 mM KPO4 buffer. 

f. Add 40 µl of the sodium dithionite solution to the cytochrome c solution and swirl 
to mix. There should be an immediate colour change to a light red/orange. As 
soon as this colour change occurs, quickly add the 8 mL of ddH2O and the 1 mL 
of 100 mM KPO4 buffer and cover in aluminum foil. 

g. Place in the 30°C oven for ~30 minutes.  
12. Once the eppendorfs with the 20-fold dilution are finished mixing, remove the stir bars 

with a magnet and rinse with ethanol to clean. Leave the eppendorfs in the aluminum 
block. 
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13. Sonicate with the Microson Ultrasonic Cell Disruptor machine (model MS-50) at 30% 
power three times for three rounds. One round consists of sonicating all the samples three 
times consecutively. Repeat this for an additional two rounds. Clean the probe with a 
kimwipe in between each sample. Move slowly during sonication. 

14. Once sonication is complete, in the 80-fold labelled eppendorfs, add 150 µl of the muscle 
extraction buffer.  

15. To these eppendorfs, then add 50 µl of the 20-fold solution. When picking up the 20-fold 
solution, pipette from the bottom rather than near the top where bubbles may be located. 
Leave the new 80-fold dilution samples on ice. The leftover 20-fold solution can be 
thrown out. 

16. In a clear 96 well-plate, quickly add 280 µl of the cytochrome c test solution to Row A 
for trial 1. Add into the wells depending on how many samples being analyzed. If 6 
samples, only add from A1-A6. Once added cover the plate immediately with aluminum 
foil, wrap up the test solution with aluminum foil, and place the 96-well plate into the 
oven for 10 min. 

17. In another 96-well plate, add the 80-fold samples into Row A. Add 30 µl of each sample 
into its own well. For example, if 6 samples, add from A1-A6 consecutively. Cover with 
a kim wipe until ready to use.  

18. Then prepare the KC4 plate reader while the test solution is heating up. Open Wizard to 
access the Reading Parameters Settings. 

a. Reading Type: Options “End Point, Kinetic, Spectrum” - choose Kinetic 
i. Click on larger box labeled Kinetic to set parameters- Run Time 0:01:00, 

Interval time – for minimal interval time, select minimum (under 
these conditions, it should measure the plate every 3 seconds), click on 
box labeled Allow Well Zoom- This allows to see the data in real time. 
Do not select individual well auto scaling (takes too long to occur). For the 
scales – click Auto for both options. 

b. Synergy HT-I On: Options “Absorbance, Fluorescence, Luminescence” – choose 
Absorbance and set the wavelength to 550 nm. 

c. Select Sweep for Read Mode 
d. Plate-Type-choose 96-well plate (8 x 12), choose which wells are to be read i.e. 

A1-A6 
i. 4 trials will be completed for the 6 samples. The plate will read therefore: 

A1-A6, C1-C6, E1-E6, G1-G6 
e. Shaking-Intensity set at 0, Duration set at 0s. Shaking is not necessary as it will 

delay the first reading. 
f. Select yes for temperature control and check pre-heating. Enter 30 for temperature 

control.  
19. Once the test solution is ready, remove it from the oven. With a multi-pipette, pick up 

250 µl of the test solution from the wells at the same time and quickly add it to the 
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samples in the other 96-well plate. Immediately, place the sample plate into KC4 reader 
and press start.  

20. During the reading time, add the test solution to the next set of wells on the clear 96-well 
plate– row C this time, filling one well for each of the number of required samples. Place 
the plate into the oven for 10 minutes. 

21. Once finished reading, save the first trial and remove the 96-well plate with the samples. 
To prevent analysis of the entire curve (all 21 points) which can increase variability 
between trials, only take the average of the first 8 points. On the chart table, press shift 
and then click of the graphs. Once all are highlighted, like the finger off the shift button 
and a chart will open. Click options and the adjust the final point number from 21 to 8. 
Then to print, go to Report Æ Add Well Zoom (for wells A1-A6Æ overlay wells) and 
Add the Kinetic Curve. Print and record the sample ID.  

22. Then in this same plate that was just read, add in the samples for the next trial – this time 
row C. 

23. Alter the settings for the KC4 reader this time, making sure that the wells being read are 
the C row between C1 to C4 for example. 

24. Then repeat steps 19-22 for trial 2 (row C). 
25. Repeat steps 19-23 for trial 3 (row E) 
26. Repeat steps 19-23 for trial 4 (row G) 
27. Below is an example of the graph and values. The graph should be starting around or 

above 2 on the y-axis.  
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To analyze the results, take the average Mean V value across all four trials. Exclude any values 
that are outliers from the average calculation. Do this for all of the samples. Then, divide the 
Mean V by 1000 and enter the Mean V values into the below calculation. Values to enter include 
the volume of the sample (30µl/1000=0.030), total well volume (30µl sample + 250µl test 
solution = 280 µl/1000=0.280), and the fold dilution (80): 

𝐶𝑂𝑋 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
(𝑀𝑒𝑎𝑛 𝑉)(𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑙𝑙 𝑉𝑜𝑙𝑢𝑚𝑒)(𝐹𝑜𝑙𝑑 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛)

(18.5)(𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒)  

 

Therefore, an example calculation for a mean V of -284.2 would be: 

𝐶𝑂𝑋 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (0.284)(0.280)(80)
(18.5)(0.030)

= 11.462 µmol/min/g tissue OR U/g tissue 
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Muscle Extraction Procedure – Protein Extracts 
 

Reagents: 

1. Sakamoto Buffer: For a volume of 10 mL, add muscle extraction buffer (9.8 mL), 1 mM 
DTT (10 µl), 1 mM PMSF (100 µl), 1 mM Sodium Orthovanadate (50 µl), 2 µl/ml 
leupeptin (20 µl), 1 µl/ml pepstatin A (10 µl), and 1 µl/ml aprotinin (10 µl). Store at 4°C. 

2. Protease Inhibitor Buffer (Protease Inhibitor Cocktail Tablets, Roche, cat#: 
11697498001, store at 4°C): Measure out 1 tablet with 1000 µl ddH2O. Vortex until 
tablet is dissolved. Store at -20°C. 

3. Phosphatase Inhibitor Cocktail 2 (Sigma-Aldrich, cat#: P726-5ml, store at 4°C) 
4. Phosphatase Inhibitor Cocktail 3 (Sigma-Aldrich, cat#: P0044-5ml, store at 4°C) 

 

Procedure: 

1. Label two sets of 1.5 mL eppendorfs (MCT Graduated Natural Eppendorfs; cat# 05-408-
129; Fischer Brand) with the sample ID. The second set, label more extensively with the 
date, animal ID, animal conditions, and personal initials.  

2. Prepare the muscle extraction buffer in a 15 mL Falcon polystyrene conical tubes 
(Falcon, cat#: 352095). 

a. For however many samples you have, multiple this number by 200 µl and this is 
how much Sakamoto Buffer you will add to the Falcon tube. 

b. Then add 10 µl of the phosphate buffers and the protease buffers per 1 mL of 
Sakamoto buffer. 

i. For example, if you have 9 samples, 9x200 = 1800 µl OR 1.8 mL of 
Sakamoto Buffer. Then you would add 18 µl of the phosphate and 
protease buffers. 

c. Vortex to ensure adequate mixing.  
2. Add 50 µl of this muscle extraction buffer to the first ID labelled 1.5 mL eppendorfs. 

Place these tubes on ice in a Styrofoam cooler. 
3. Prepare the appropriate set-up: 

a. Beige two-section dish filled with liquid nitrogen; 
b. Metal tool with a small scoop at one end and a metal clamp for samples; placed 

inside the liquid nitrogen of the beige dish; 
c. Take a medium sized cooler and fill it up with liquid nitrogen. A small pee cup 

will be required; 
d. Small liquid nitrogen canister with the cryotubes to make protein extract samples 

from. 
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4. Remove one of the cryotubes and open and close to remove excess gas. Once opened, 
place it inside the beige dish into the liquid nitrogen using the clamp to hold it upright. 

5. Place the corresponding 1.5 mL eppendorf with the 50 µl Muscle extraction buffer on the 
scale. Zero the scale. 

6. Measure out 15-20 mg of the powdered sample. Record the value.  
7. Then volume up for the sample according to the following calculation. For example, if 

16.3 mg was measured Æ 16.3 x 10 – 50 = 113 µl of muscle extraction buffer to volume 
up.  

8. Complete steps 5-8 for other samples. 
9. Rotate all homogenates end over end using the Barnstead Thermolyne “LabQuake” 

Shaker (model 415110) in a 4°C fridge. 
10. Then place the 1.5 mL eppendorfs in an aluminum block on ice.  
11. Sonicate with the Microson Ultrasonic Cell Disruptor machine (model MS-50) machine 

at 30% power three times for three rounds. One round consists of sonicating all the 
samples three times consecutively. Repeat this for an additional two rounds. Clean the 
probe with a kimwipe in between each sample. Move slowly during sonication. 

12. Centrifuge samples using the eppendorf centrifuge 54150 (Brinkmann Instruments, 5425-
41150) machine at 14, 000 ref for 10 min at 4°C.  

13. Then extract the supernate from the 1.5 mL eppendorfs and place the supernate into the 
second set of extensively labelled eppendorf tubes. Dispose of the pellet. Repeat for all 
samples. 

14. Store protein extracts at -80°C until use for Bradford assay to determine protein 
concentration, OR until required to make protein samples for Western blotting.  
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Mitochondrial Protein Release Assay for Cytochrome C and AIF 
 

Reagents: 

1. Hydrogen Peroxide: Prepare a 15 mL Falcon polystyrene conical tubes (cat#: 352095, 
Falcon) tube with 10 mL of ddH2O. Add 10 µl of 30% H2O2 (Hydrogen Peroxide 
Solution (30%) w/w in H2O, contains stabilizer, Sigma-Aldrich, cat#: H1009-100ml, 
store at 4°C) to the falcon tube and vortex prior to using. Leave on ice until ready to use. 

2. Ferrous Sulfate: Measure 278 mg of FeSO4 (Ferrous Sulfate, BDH Chemicals, 
cat#ACS354, store at room temperature) into a 15 mL falcon tube. Add 10 mL of ddH2O 
to the falcon tube and vortex until completely mixed. Leave on ice until ready to use. 

3. Mitochondrial Isolation Resuspension Buffer (see recipe above) 

Procedure: 

1. Prepare mitochondrial SS and IMF subfractions. Refer to the mitochondrial isolation 
procedure. Prepare a Bradford on these subfractions and enter the concentrations into the 
pipette plan as observed below: 

 

 

 

 

Equations: 
x Protein ug/ul = Protein for 5 ul / 5 
x Total Protein = 150 / Protein ug/ul 
x Resuspension Buffer = Total – (Total Protein + H202 + FeSO4 + ddH20) 
x H202 (constant- 10), FeSO4 (constant -2), ddH20 (constant -12) 

 

2. Prepare two sets of 1.5 mL eppendorfs (MCT Graduated Natural Eppendorfs; cat# 05-
408-129; Fischer Brand) for each sample. The second set of tubes should be more 
distinctly labelled including the animals conditions, experimental information, date and 
personal initials.  

3. Next, prepare the hydrogen peroxide and ferrous sulfate and leave on ice.  
4. Then add the mitochondrial subfractions to all of the tubes first. Prepare the control tubes 

first. Add the ddH2O and then add the resuspension buffer last. Next prepare the treated 
tubes. Add the H2O2 first, then add the FeSO4, last add the resuspension buffer. Tap all 
the tubes to mix. 
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5. Incubate the eppendorfs in the water bath (model 1122S, cat#: 13271-138, VWR) for 90 
min at 30°C. Take out the eppendorfs and flick every 30 min to mix, place back in the 
water bath. 

6. Once completed, centrifuge in the eppendorf centrifuge 54150 (Brinkmann Instruments, 
5425-41150) machine at 9000 g for 5 min at 4°C.  

7. Carefully extract the supernate (without touching the pellet) and transfer to the second 
labelled tubes. Discard the pellet. The supernate will contain the final released products 
from the mitochondria. 

8. Better to prepare samples fresh and utilize immediately in a western blot or can store the 
samples at -80°C until ready for western blot analysis. 

Sample Preparation: 

1. To prepare samples, add 30 µl of the mitochondrial supernate, 10 µl of 2x Lysis Buffer, 
and 5 µl of sample dye. Add the lysis buffer first, then the mitochondrial supernate and 
lastly the sample dye. Tap to mix the solution together. 

2. Heat on the hot plate(VWR Block Heater, cat#: 12621-104) for 3-5 min.  
3. Utilize samples immediately, or store at -20 °C for later use.  
4. Run on a 15 % gel and follow the Western protocol. Probe for cytochrome c (15 kDa) 

and AIF (67 kDa). No control protein is required as analysis is performed by dividing the 
treated sample by the control sample for each mitochondrial subfraction. 
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Nuclear and Cytosolic Fractionation 
 

Reagents: 

1. D-PBS (Dulbecco’s Phosphate Buffered Saline 1X (DPBS), Wisent Inc, cat# 311-425-
CL, store at 4°C). 

2. Protease Inhibitor Buffer (Protease Inhibitor Cocktail Tablets, Roche, cat#: 
11697498001, store at 4°C): Measure out 1 tablet with 1000 µl ddH2O. Vortex (Mini 
Vortex, cat#: 02215365, Fischer Scientific) tablet is dissolved. Store at -20°C. 

3. Phosphatase Inhibitor Cocktail 2 (Sigma-Aldrich, cat#: P726-5ml, store at 4°C) 
4. Phosphatase Inhibitor Cocktail 3 (Sigma-Aldrich, cat#: P0044-5ml, store at 4°C) 
5. NE-PER Nuclear and Cytoplasmic Extraction Reagent kit (Thermo Scientific, cat#: 

78835) 
a. Cytoplasmic Extraction Reagent I (CER I), cat#: 78835A 
b. Cytoplasmic Extraction Reagent II (CER II), cat#: 78835B 
c. Nuclear Extraction Reagent (NER), cat#: 78835C 

Procedure: 

1. Prior to tissue extraction, prepare a 1.5 mL eppendorf (MCT Graduated Natural 
Eppendorfs; cat# 05-408-129; Fischer Brand) for the number of animal tissues to extract.  

a. Each eppendorf will require the addition of 500 µl of PBS, 5 µl of the protease 
inhibitor solution, and 5 µl of the phosphatase inhibitors 2 and 3. Leave 
eppendorfs on ice during tissue collection. 

b. If more than one tissue, prepare a stock solution in 15 mL Falcon polystyrene 
conical tubes (cat#: 352095, Falcon), following the above ratio of 500 µl PBS: 5 
µl of inhibitors for each sample (multiple values) and then aliquot to the number 
of 1.5 mL eppendorfs. 

2. Place the extracted tissue (one TA) into the prepared eppendorf. 
3. Next, prepare the reagent volume by adding the appropriate volume of CER I reagent 

which is equal to 400 µl x the number of samples. Prepare this in a 10 mL falcon tube. 
Then add the protease inhibitor and the phosphatase 2 & 3 inhibitors for a volume of 10 
µl for each 1 mL of CER I buffer. 

4. Next, place the tissue onto a curved watch glass dish on ice. Dab away extra solution. 
Trim away any fat and connective tissue. Then using tweezers and scissors, proceed 
mince the muscle with forceps and scissors until it resembles the consistency of jam and 
no large pieces remain.  

5. Once minced, place the tissue on the inside of the small glass test tube specific for the 
Fischer Scientific homogenizer machine (Eberbach Corporation). Place it near the top of 
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the inside. Next with a p-1000, add 400 µl of the CER I buffer solution into the test tube, 
washing down the minced tissue to the bottom of the test tube.  

6. Fit the mini pestle into the homogenizer. Then turning the machine on, place the pestle 
tightly into the test tube and move up and down until the tissue is broken down (10-30 
sec).  

7. Once the homogenization is complete, pour the tissue solution into a new labelled 1.5 mL 
eppendorf making sure to obtain the majority of the tissue chunks. Place on ice. Wipe 
down the test tube and the pestle and prepare for the next sample. 

8. Then add 20 µl of the CERII reagent to each eppendorf and vortex vigorously for 10-15 
sec. Shake 3 times to mix. Leave the tube on ice to sit for 1 min. Then vortex again for 15 
seconds vigorously and shake up and down once more to mix.  

9. Centrifuge at maximum speed (16 000 g) in the eppendorf centrifuge 54150 (Brinkmann 
Instruments, 5425-41150) in the 4°C fridge. If the tubes are still very murky after the spin 
and not clearly separated, centrifuge for another 5 minutes. 

10. Using a p-200, take up the supernate and place in a new 1.5 mL labelled eppendorf. This 
is the cytoplasm. Store on ice. 

11. The leftover pellet then needs to be washed. Slowly, with a p-1000, pour 1 mL of PBS 
into the eppendorf, being careful not to touch the pellet. Then centrifuge the sample in the 
centrifuge located in the 4 °C fridge for 30 sec. Then slowly pick up the supernate and 
discard it (be careful to not pick up the pellet). Repeat this wash step another two more 
times for a total of 3 washes. 

12. After the last wash, add between 150 – 200 µl of the NER reagent. The amount added 
depends on the size of the pellet. The larger the pellet, the more NER reagent you will 
add.  

13. Next place the eppendorfs on an aluminum block on ice. Sonicate each eppendorf using 
the Microson Ultrasonic Cell Disruptor machine (model MS-50) machine set to 30% 
power output. Sonicate 3 by 3 (sonicate in order). Wipe the tip with a kim wipe between 
the sonication of each sample.  

14. After sonication, place the samples on ice for 40 min. Every 10 min, vortex each sample 
vigorously for 15 sec. 

15. Then place the samples in the 4°C centrifuge for 10 min at maximum speed (16 000 g). 
Take up the supernate and transfer it to a new labelled 1.5 mL eppendorf. This is the 
nuclear fraction. The pellet is discarded.  

a. If after the centrifugation, there are two phases, take up the clear supernate. 
However, if there are three phases, take up the clear and murky sections, but not 
the bottom pellet. 

16. Once completed, store the cytoplasm and nuclear subfractions in the -80°C freezer. 
Utilize samples for the Bradford assay to determine protein concentration for later 
western blot analyses. 
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RNA Isolation 
 
**RNA isolation is a sterile procedure. Use sterile pipette tips, sterile eppendorfs and tubes, 
and continually wash hands and items being handled with ethanol to prevent any 
contamination of the sample. TriZol is a dangerous solution to work with, work with care.** 
 
Reagents: 
 

1. TriZol Reagent (Life Technologies, Ref#: 15596018, lot# 111701) 
2. 0.1 M NaOH (Sodium Hydroxide, Caledon, 7860-1) 
3. Chloroform (Caledon, 3000-1) 
4. Isopropanol (2-propanol, Caledon, 8600-1) 
5. 75% ethanol: Combine 100% anhydrous ethanol (ethyl alcohol anhydrous, Commercial 

Alcohols, lot#: 022933) to ddH2O, in a ratio of 75 mL: 25 mL respectively. 

 
Procedure: 
Day 1 
 

1. The homogenizer tip for the IKA T25 Digital Ultra-Turrax polytron machine (model# 
T25DS1) must be sterilized in 0.1M NaOH and rinsed in sterile water prior to use. Rinse 
homogenizer in sterile water between samples. 

2. On ice, prepare one 13 mL Rhorh (Sarstedt, ref#: 62-515.006, lot# 6092911) tube per 
sample. In each Rhorh tube, under the fumehood, carefully add 1 mL of TRIzol reagent.  

3. Prepare two sets of 1.5 mL sterile eppendorfs (MCT Graduated Natural Eppendorfs; cat# 
05-408-129; Fischer Brand) and label accordingly.  

4. Prepare the appropriate set-up: 
a. Beige two-section dish filled with liquid nitrogen; 
b. Metal tool with a small scoop at one end and a metal clamp for samples, placed in 

the beige dish in liquid nitrogen; 
c. Prepare a small liquid nitrogen tank containing the powdered samples in 

cryotubes (2 mL micro tube, Sarstedt, ref# 72.694.003, lot#: 3084701). 
5. Remove a powdered sample (in a crytotube) from the liquid nitrogen. Tap 3-4 times on 

the table and slightly twist the top open to let out extra gas from the cryotube. Then 
remove the lid and place the cryotube in the clamp in the liquid nitrogen. **The sample 
must always be stored in liquid nitrogen.  

6. Place the rhorh tube on the measuring scale and zero the scale. Then measure out 70-80 
mg of powdered tissue. Tap the rhorh tube to mix. Record the measured value.  

7. Remove the homogenizer tip from the NAOH solution and attach to the IKA T25 Digital 
Ultra-Turrax polytron homogenizer machine (model# T25DS1)set  at 40% power output 
(9.8 Hz). Homogenize each tube at 9000 g for 10 sec. During the 10 seconds vigorously 
move around the bottom of the rhorh tube. Do this for each tube 2-3 times if required. 
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There should be no visible chunks present at the bottom of the rhorh tube. Work through 
each sample once and then repeat if required.  

a. Have a cup of ddH2O to rinse the homogenizer tip between each sample. Use 
tweezers to remove any large pink chunks stuck within the homogenizer tip. Wipe 
with a kim wipe.  

b. The homogenizer tip must be taken apart and cleaned intensely, removing 
remaining clumps of pink solidified Trizol and sample solution. Do not re-add to 
NAOH to sterilize in between each 2-3 samples. 

8. Once completed, transfer homogenized solution to a sterile 1.5mL labelled eppendorf, 
and let stand for 5 min at room temperature. 

9. Add 200µl of chloroform and shake vigorously for 15 sec, let stand for 2-3 min at 
room temperature. Solution should turn a bubblegum pink once shaking is complete. 

10. Spin at maximum speed (16 000 g) for 15 min in the eppendorf centrifuge 54150 
(Brinkmann Instruments, 5425-41150) in the 4°C fridge. 

11. Following centrifugation, carefully transfer the clear aqueous phase to a new sterile 
1.5 mL eppendorf, making sure not to pick up any of the remaining pink solution. 
a. If the pink solution is picked up, place the remaining supernate picked up and 

centrifuge for 1 min to allow for separation. 
b. Discard of the remaining pink solution properly in the phenol waste bag. 

12. Add 500 µl of the isopropanol solution. Shake vigorously for 15 seconds until 
bubbles are visible. Place in the -20°C freezer over night to allow for RNA 
precipitation overnight so as to continue the experimentation the next day, OR place 
in the -80°C freezer for one hour and then continue. The -20°C option is preferred.  

 
Day 2 

 
1. Remove the RNA samples from the freezer and lit it sit at room temperature for 10 

min to allow for thawing.  
2. Next, spin the samples at maximum speed (16 000 g) for 10 min, in the centrifuge 

located in the 4°C fridge.  
3. Remove the supernate by pouring it into an empty beaker and discarding the contents.  
4. Add 700 µl of the 75% ethanol. During this addition process, slowly and carefully 

wash the white pellet at the bottom of the eppendorf, off of the wall so that it is 
floating in the tube.  

5. Spin the samples at maximum speed (16 000 g) for 10 min, in the centrifuge located 
in the 4°C fridge 

6. Discard the supernate by pouring it into the beaker. Use the p-20 to suck up any 
additional left at the bottom of the eppendorf, while carefully avoiding the pellet.  

7. Next, the pellet must air-dry for about 1 hour.  
8. Dissolve the pellet in 20 µl of sterile water. Pipette up and down to mix for 1 min. 

Repeat for all samples.  
9. Next, the RNA concentration is measured using the Nanodrop 2000 

Spectrophotometer (Thermo Scientific, Serial# M757) at an absorbance at 260 nm 
and 280 nm to determine RNA purity and concentration. 

a. Open the Nanodrop 2000 Program 



272 

 

b. Click Nucleic Acid option. Remove the kim wipe placed between the lid and 
base of the nanodrop machine. 

c. Change the Type to RNA and alter the concentration to read µg/µl 
d. With a sterile p-10, pick up 1 µl of sterile grade water and place it gently on 

the top of the nanodrop machine on the centre of the metal tip. Do not touch 
the surface. Close the lid of the nanodrop machine. 

e. Click Blank in the top left corner and write Blank into the sample ID space in 
the top right of the program. Then press measure. The value located under the 
Nucleic Acid Concentration column should be as close to 0 as possible. Take 
multiple readings of the same drop if required to obtain a concentration close 
to 0. If unattainable, open the nanodrop lid, lightly wipe off the drop of water 
with a kim wipe, and then redo steps d-e with another fresh drop of sterile 
water.  

f. Once a water drop concentration of 0 has been read, wipe away the water drop 
with a kim wipe. Then pipette 1 µl of the RNA sample from step 8. Place it on 
the centre of the metal tip of the nanodrop reader and close the lid. Type in the 
sample ID and click measure for a total of 3 trials. This will ensure a more 
accurate reading when obtaining the average of the 3 trials for the 
concentration of the RNA. 

i. To ensure the measurement is accurate, the 260/280 column ratio 
should have a value around 2, with an appropriate deviation of 0.03. If 
it is not around 2, it may mean the sample is contaminated (often less 
than 2 if you measure powdered tissue <50 mg). Therefore, repeated 
measures may sometimes be required (remove the current RNA drop, 
clean the tip and place a new drop). 

g. Repeat steps d-f for each sample, always place a fresh drop of sterile water on 
the nanodrop machine prior to adding the RNA. Need to zero before every 
RNA trial. 

h. To print the document with all of the RNA values, go to Reports Æ Print tab 
(landscape) Æ Print (top left). Below is an example of the RNA report. 

 

 
 

i. Once printed, shut down the program and place a kim wipe between the 
nanodrop base and lid for protection. 

 



273 

 

Reverse Transcription 
 
First-strand cDNA synthesis is performed following the manufacturer's recommendations that 
are outlined below. Performed on the same day as “Day 2” of RNA isolations. 

 
Reagents: 
 

1. Total RNA (isolated as described above) 
2. Oligo(dT)20 (Invitrogen, cat#: 18418020) 
3. 10 Mm dNTP (each dATP, dTTP, dCTP, dGTP is diluted in sterile DEPC treated water) 
4. Sterile DEPC treated ddH2O (Sterile Molecular Grade Water, Wisent Inc., cat#: 809-

115-66, Store at room temperature) 
5. RNAse OUT (Ribonucleotide Inhibitor [recombinant], Invitrogen, cat#: 10777-019)], 

store at -20°C) 
6. 0.1M Dithiothreitol (DTT) (Invitrogen, P/N Y00147, cat#: 1305696, store at -20°C) 
7. 5X First-strand Buffer (Invitrogen, P/N Y02321, cat# 1788535, store at -20°C) 
8. SuperScript III Reverse Transcriptase (Life Technologies, cat#: 18080-044, store at -

20°C) 
9. PerfeCTA SYBR Green Supermix ROX (Quanta Biosciences, P/N 84018, lot# 015507, 

store in aluminum foil at - 20°C). 
 
Procedure: 
 

1. Prepare the pipette plan below. Add in the RNA concentrations into the highlighted 
regions at the bottom and the rest of the reagent concentrations will adjust accordingly: 
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Equations: 
x RNA (1.5 ug) = 1.5 / RNA ug/ul  
x RNA (ul) = RNA (1.5 ug) 
x DEPC st. H20 = 20 – (oligo20 + 10 mM dNTP + RNA (ul) + 5x First Strand + 0.1m DTT 

+ RNAse OUT + SuperScript III RT) 
 

2. Next, prepare in a 1.5 mL sterile eppendorf mastermix 1 which contains an equal volume 
of oligo(dT)20 and the 10 mM dNTP. 1 µl of each is added to each sample. Prepare a 
volume +2 (room for error) into the eppendorf. Pipette up and down to mix. Leave on ice 
until ready to use.  

3. Label 0.5 mL Flat-Cap PCR “mini” eppendorf tubes (cat#: 87-C500-F, Ultident 
Scientific) according to the number of samples. Then follow the first section of the 
pipette plan above. First add the sterile water to each of the mini eppendorfs. Then add 
the RNA to the appropriate tubes. Lastly add 2 µl of the mastermix 1 solution to each 
tube. Pipette repeatedly to ensure adequate mixing. 

4. Employ the DNA Thermal Cycler (Perkin Elmer, model TC480)  to heat mixture to 65°C 
for 5 minutes.  Do not let the thermal cycler cool down and immediately once the 5 
minutes is done, leave the mini eppendorfs on ice for 1 min. Remove from ice and leave 
at room temperature while performing the next steps. 

5. In a second 1.5 mL sterile eppendorf, prepare mastermix 2. This contains 4 µl of the 5x 
first strand buffer and 1 µl of the 0.1 m DTT. Once again, prepare a volume +2 (room for 
error) in the eppendorf. Pipette up and down to mix. Leave on ice until ready to use.  

6. Then add 5 µl of mastermix 2 to each of the mini eppendorfs with the RNA. 
7. Once added, remove superscript III RT from the -20°C freezer. This solution is light 

sensitive and should not be left out for long. Only remove from the freezer immediately 
prior to using. Add 1 µl to each mini eppendorf.  

8. Next, remove RNAse OUT from the -20°C freezer. This solution is light sensitive and 
should not be left out for long. Only remove from the freezer immediately prior to using. 
Add 1 µl to each mini eppendorf. Pipette up and down to fully mix mini eppendorf. 

9. Using a thermal cycler, incubate at 50°C for 50 minutes, and then inactivate the reaction 
by heating at 72°C for 20 minutes. In the meantime, keep the original 1.5 mL RNA 
eppendorfs on ice.  

10. During the cycling process, prepare and label another set of sterile mini eppendorfs. 
These eppendorfs will be used to dilute the cDNA (currently in the thermal cycler) to a 
more manageable concentration to utilize for experimentation.  

11. Once the thermal cycler is completed, add 29 µl of sterile water to the newly labelled 
(empty) mini eppendorfs. Then add 1 µl of the cDNA. Mix up and down repeatedly to 
mix. This is a 1:30 ratio. As this volume is low and will be used up rapidly, make a large 
ratio; for example, prepare 4 µl cDNA: 116 µl sterile water.  

12. The diluted cDNA is now ready for use in PCR amplification. Both the diluted cDNA 
and the original amplified cDNA can be stored at -20°C until further use.  
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Oligonucleotide Primer Design 
 

Websites required: 

x Pubmed Nucleotide Search 
x Primer3 Primer Design Program Æ http://Frodo.wi.mit.edu/primer3 
x BLAST – http://www.ncbi.nlm.nih.gov/tools/primer-blast/ 
x IDT website – http://www.idtdna.com/calc/analyzer 

 

Process: 

1. Know the gene of interest. Search up the protein/gene ahead of time to determine relevant 
associated information. Determine if there are alternative names the genes is called in the 
same species or different species.  

a. Useful website is “Gene Card” under google. 
2. Go to the Pubmed.com cite; click on the nucleotide option in the drop down menu. Type in 

the gene and then the species. 
a. For example: p53 mus 
b. Mus= mus muscularis (mouse)  
c. Pick the option that best fits the gene description (i.e. in the above example, the 

best option that fits p53 mRNA in mouse). There may be many options available, 
therefore choose the best fit for specific experimental protocol. Investigate the 
different contenders by viewing the publications/sources available in the 
description of the option clicked.  

3. Once the best option has been chosen, click the “Fasta” hyperlink under the blue title 
(underlined) on the option page. This will give the entire sequence of the gene at interest.  

4. Copy and paste the sequence and into a word document and save it. 
5. Open the Primer3program. If the program is not bookmarked, it can be found at the 

weblink above. Click on “go to new version.” Copy the entire sequence from the word 
document and paste into the large text space at the bottom of the web page. Remove 
numbers from the copied sequence because the program will treat them as nucleotides. 
Then make the following changes to the options on the web page. 

a. Product Size Ranges: 100-150 (nucleotides) 
b. Number to Return: 10 
c. Primer Size: 18         Opt: 20        Max:22 
d. Primer TM: 58          Opt: 60        Max: 62 
e. Max TM Difference: 2 
f. Primer GC%:   Min: 40    Opt: 50      Max: 60 
g. Max Self Complementary: 6 
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h. Max 3’ Self Complementary: 2 
i. Max Poly-X: 3 
j. End Stability: 9 
k. Click on the “Pick Primers” button. 

6. Open the IDT website (oligo analyzer website). The webpage is listed above. After 
clicking pick primers, a list of primers at the bottom of the web page will be generated. 
This list will contain primary and secondary sequences. You will have to test both of the 
primary and secondary sequences for each primer to determine if the primer fits or fails 
with your conditions. To do this, follow the steps below: 

a. For copying the primary or secondary sequence (found at the bottom of the web 
page under additional oligos), make sure that the row doesn’t end in a G or C (if it 
does, do not highlight the G or C when copying). 

b. Copy the primary sequence for the first primer set and past it into the top text box 
on the EDT web page. Click analyze. 

c. Next click “Hairpin.” This determines if the primer folds back on itself. Scroll 
down the page and if the ΔG is >-9, then it passes this test. 

d. Next click “Self-Dimer.” This determined if the primer binds to itself. Scroll 
down the page and if the ΔG is >-9, then it passes this test 

7. Then go back to the additional oligo page and take the secondary sequence of the primer 
set (do not highlight G or C again when copying). Copy the secondary and place it into the 
secondary sequence box on the IDT web page. Click calculate and the value should be 
greater than -9.   

8. Click NCBI Blact first. Then to check specificity using BLAST (big blue button). Which 
will open a new tab with information mentioning if any other genes bind to the gene of 
interest.Go through the list. You only want to see your gene of interest in your species (i.e. 
mus. Muscularis).  

9. Return to the IDT webpage and repeat steps 10b-d for the secondary sequence. If the 
values are < -9, then it fails the test. Will then need to try the second primer set and if both 
the primary and secondary of the second set fail, then move onto the third set, so on and so 
forth until you obtain a primer set that passes all the tests. When you find the one that does, 
this will be the primer sequence to be ordered.  
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Polymerase Chain Reaction (qPCR) 
 

1. Primers must first be optimized prior to analyzing the cDNA with the primer of interest. 
Primers are either designed as indicated by the instructions above or are borrowed from 
previous studies in the laboratory (no expiration date on the primers). All primers can be 
orders from customdna@sial.com. 

a. Once Forward and Reverse primers for each mRNA are received, they must be 
diluted to 300 µmol. On the primer, there is a nmol concentration. Enter that into 
the shaded pipette plan below. 
Automatically the sterile H2O volume will 
adjust according to the equation 
(=X/1000/300*1000*1000) where X is 
the nmol concentration and that µl sterile 
H2O volume is how much is required to 
be added to the primer bottle. Constant 
pipetting up and down for 1 min is 
required for adequate mixing.  

b. Once diluted appropriately, prepare separate sterile 1.5 mL eppendorfs for the 
Forward and Reverse primers. To create a 20 µM stock, add 186.67 µl of sterile 
water to the eppendorf. Then add 13.3 µl of the 300 µM stock primer. As these 
are low volumes and are utilized quickly, you can make a larger volume by 
multiplying this ratio. For example, if multiplied by 4, add 746.68 µl of sterile 
water first and then add 53.2 µl of the appropriate stock primer. You should 
always have a forward and reverse tube (2 tubes) for each RNA. Leave on ice to 
thaw until ready to use. 

2. Next, prepare 5 mini sterile eppendorfs. Label 1:1, 1:2, 1:4, 1:8, and 1:16 ratios on the 5 
tubes respectively. As you want to find the appropriate primer concentrations to use for 
your conditions, you will need 2-3 representative samples for each condition for each 
primer. For example, if using the conditions Whole Body (WB) mouse WT UT, WB WT 
T, WB KO UT, WB KO T and Muscle Specific (MS) mouse WT UT, MS WT T, MS KO 
UT, MS KO T, that involves a total of 8 conditions and therefore 8 required samples. It is 
a better representation however if you obtain 2 samples for each condition, for a total of 
16 samples. 

a. In the 1:1 tube, you will add 4 µl from each condition (any samples you decide), 
obtaining a volume of 64 µl total of RNA (two samples from each condition). 
These samples are all being mixed into the same tube. Then you will add the 
corresponding 64 µl of sterile water to satisfy the 1:1 ratio. 
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3. Prepare the serial dilutions as follows. The total volume is the volume present in each 
tube after the dilutions are completed. 

 

 

 

 

 

 

 

4. Once the dilutions are completed, prepare the mastermixes for each table (3 tables) 
according to the plan below. You will prepare the volumes in the 14x column only. In 1.5 
mL sterile eppendorfs, first add the sterile ddH2O, next add the already prepared (step 1) 
20 µM forward and reverse primer solutions, and last add the SYBR Green Master Mix 
(extremely light sensitive – must be in 
a black sterile ice box with a lid at all 
times). Mix up and down to mix as the 
SYBR green is viscous and required 
multiple pipetting (10 times) to mix 
fully. When everything is added to the 
eppendorf, place in the black sterile 
lidded box as well until ready to use. 
Prepare all tables for each mRNA (two 
– as only two can fit in one table) 
ahead of time prior to loading the 
plate. There should then be a total of 6 
eppendorfs with the table optimization 
mixtures (3 per mRNA).  

5. Then organize the 96-well RNA plate 
(96-nontreated white microwell SI, Thermo Scientific, cat#: 236105) according to the 
plan below. Each plate can be used for two primer optimizations only. Samples must be 
duplicated to ensure accuracy. 

 

1:1                                   1:2                               1:4                               1:8                                1:16 

64 µl of sample 
(4 µl each sample) 

* 16 samples (2/condition) 
+ 

64 µl sterile water 
TOTAL VOLUME = 96 µl 

32 µl from 1:1  
+ 

32 µl sterile water 
TOTAL VOLUME = 32 µl 

 
 

32 µl from 1:2  
+ 

32 µl sterile water 
TOTAL VOLUME = 32 µl 

 
 

32 µl from 1:4  
+ 

32 µl sterile water 
TOTAL VOLUME = 32 µl 

 
 

32 µl from 1:8  
+ 

32 µl sterile water 
TOTAL VOLUME = 64 µl 
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6. Add first 2 µl of the serial dilution cDNA to the appropriate wells of the plate.  Check the 
bottom of the plate to ensure a small visible drop of the cDNA in each well (often wells 
can be skipped – must check prior to adding the mastermix). Then quickly add 23 µl the 
appropriate table 1, table 2 and table 3 mastermixes to the associated wells. Do not need 
to change pipette tips between each well – only change between each table mastermix.     

a. Total reaction volumes are always 25 μl 
b. Use negative wells to monitor contamination, using 2 µl sterile ddH₂O in place of 

cDNA. 
7. Once all is added, place an adhesive cover over the plate and smooth down. Cover then 

with aluminum foil to prevent excessive light exposure as the SYBR green is light 
sensitive. 

8. Remove the aluminum foil and spin the plate in the Sorval ST16R centrifuge (Thermo 
Scientific, cat#: 75004381) for 2 min at 4000 g to mix the cDNA with the mastermix and 
to bring solution to the bottom of the wells. Re-cover with the aluminum foil to minimize 
light exposure. 

a. If making multiple plates at once and one plate is currently reading in the Applied 
Biosystems StepONEPLUS Real-Time PCR System (serial#: 272002347), store the 
ready-made plate at 4°C for later use. One plate may be stored overnight if 
required and put through the reader early the next morning. 

9. Set-up the PCR machine.  
a. Allow time for the PCR machine to connect with the computer program – may 

take a couple minutes if just turned on. Place the plate into the machine by fitting 
it within the well template. 

b. Once on and connected, open the StepOne Software program. 
c. Use Guest Æ click OK 
d. Ignore calibration and continue 
e. Click Run/Quickstart option. 

i. Enter the experiment title and browse through documents for where the 
results will be saved 

ii. Quantitation, SYBR Green + Melt Curve, 2 hours, cDNA options. 
iii. On the next tab labelled “Run”, enter 25 μl to be read. 
iv. Then click Start at the bottom 
v. Ignore the calibration settings and continue 

vi. The machine lid will move upwards once it has start running – confirm 
this movement. 

vii. Next, set-up the plate reader to mimick the template of the plate with the 
template on the program. Go to Set-up Æ Plate Set-up 

1. Under Assign Targets, write gene name and Table #, for example 
PGC-1a Table 1. Add a new target to continue adding until you 
have all of the targets listed (should be 6 targets for the plate above 
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– for example: PGC-1a Plate 1, PGC-1a Plate 2, PGC-1a Plate 3, 
Tfam Plate 1, Tfam Plate 2, Tfam Plate 3). 

2. Next under Assign samples, in this case, adding the serial dilution 
ID. For example, 1:1, 1:2, 1:4, 1:8, and 1:16.  

3. Click the tab “Assign Target and Sample” and you will mimic the 
plate set-up. Highlight the appropriate wells in the example plate 
on the program and assign the targets. Then highlight the specific 
wells associated with the appropriate serial dilutions. Once 
everything is assigned, you do not need to save (automatically 
saves the layout). Wait for the 2 hour run to be completed. 

f. Save the file once completed. Save on the computer and then save on the USB to 
bring over to another computer (not hooked up to the machine) to then analyze the 
curves. 

i. Open the StepOne Software on the KC4 reader. Continue the program 
without the connection the PCR machine. 

ii. Click Analyze Experiment (top right corner). Open the file from the USB. 
iii. The file will open to the curve graph with the layout beside. If there is a 1 

or 2 in the layout wells, it means that the duplicates of the same serial 
dilution is not identical (some variation is present). Highlight each 
duplicate to see how different the curves are from each other. Want the 
curves to overlay perfectly. Make a note of the tables/samples that may 
not have a perfect overlap. 

iv. Then go to Plate Set-Up Æ Assign Targets & Samples Æ At the bottom, 
select dye and change from ROX to None (must turn ROX off to analyze 
the melt curve stage). 

v. Then go to Analysis Æ Melt Curve 
1. Multiple curves in the lines means that two separate products are 

melting and the primer only binds to one, OR the primer is binding 
to multiple sites OR it binds to itself if there is too much primer 
volume in the mastermix.  

2. Therefore, highlight each table, 1, 2 and 3, and see if there are 
bumps in the curves (do not highlight the negative). Record the 
best looking curves for each primer.  

a. Curves of different heights are normal because of the serial 
dilutions 

3. Then highlight the whole table by clicking the small white square 
in the top left corner of the plate. Click Export Data. Select 
Results, then save the appropriate folder, and export. This will 
export all the data in an excel spreadsheet.  
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4. In the Excel exported file, only look at the CT values. This is the 
cycle threshold values. These are the values that will be inputted 
into the Threshold cycle column in the excel spreadsheet below. 
Everything else will be pre-calculated. The mean is just the 
average of the two duplicates for each serial dilution; the 
log[cDNA] column =LOG[cDNA]; the graph is a combination of 
the log[cDNA] and mean. 

a. In terms of selection for the best table – require an R2 > 
0.99 and an m value of around – 3.32 (this is the more 
important requirement). Therefore, pick the graph with the 
best values and also take into account any variabilities that 
were seen in the melt curves. 

5. Save the file, take note of the appropriate table selection. Repeat 
for all primers including the control primers. 

 

 

 

 

 

 

 

 

 

 

 

 

10. Now that the primers have been optimized, prepare the pipette plans for analyzing the 
diluted cDNA samples. A maximum of 16 diluted cDNA samples can be analyzed per 
plate as each plate is required to also analyze two control primers. Example plates can be 
seen below. For PGC-1a for example, all three primers (PGC-1a, GAPDH and B2M) 
have all been optimized for table 1. On the other hand however, GAPDH and B2M are 
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optimized for Table 1 and Tfam is optimized for Table 3. Other controls can be used, 
GAPDH and B2M are just examples. 

 

 

11. Before loading the plate, prepare 1.5 mL sterile eppendorfs, one for each primer. Multiple 
the values by the number of rows being utilized for each primer. Prepare extra. For 
example, if 2.5 rows are being used, then prepare the mastermix for 3 rows, i.e. multiple 
the values by 3 (as shown below). Add the ddH2O first, then add the already prepared 
forward and reverse primers for the 
specified mRNA being analyzed. 
DO NOT ADD THE SYBR 
GREEN YET (add only 
immediately prior to use). Leave 
these samples on ice.  

12. In the 96 well mRNA plate, add the 
2 µl of the diluted cDNA as shown 
in the layout plate example above. 
Add in duplicates. Check the 
bottom to ensure that the diluted 
cDNA has been added to the 
appropriate wells.  

13. Once the diluted cDNA has been 
added to all of the appropriate wells add the SYBR green to the three mastermixes 
prepared (i.e. PGC-1a, GAPDH and B2M). Mix up and down to mix as the SYBR green 
is viscous and required multiple pipetting (10 times) to mix fully. When everything is 
added to the eppendorf, place in the black sterile lidded box as well until ready to use.  
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14. Add 23 µl of the PGC-1a to each of the wells listed on the pipette plan containing the 
diluted cDNA. Do not change tips when adding. Add quickly as the mastermix is now 
light sensitive with the SYBR green. Next add the GAPDH mastermix solution to the 
appropriate wells. Lastly add the B2M mastermix solution to the appropriate wells. Once 
all is added, place an adhesive cover over the plate and smooth down. Cover then with 
aluminum foil to prevent excessive light exposure as the SYBR green is light sensitive. 

15. Remove the aluminum foil and spin the plate in the Sorval ST16R centrifuge (Thermo 
Scientific, cat#: 75004381) for 2 min at 4000 g to mix the cDNA with the mastermix and 
to bring solution to the bottom of the wells. Re-cover with the aluminum foil to minimize 
light exposure. 

a. If making multiple plates at once and one plate is currently reading in the Applied 
Biosystems StepONEPLUS Real-Time PCR System (serial#: 272002347), store the 
ready-made plate at 4°C for later use. One plate may be stored overnight if 
required and put through the reader early the next morning. 

16. Then set-up the plate reader the exact same way as indicated in step 10 and onwards. Run 
the plate for two hours and save the file onto the computer and onto a USB. 

17. To analyze the plates, continue on from step 10f.  
a. The only alteration to the analysis process is that there is no need to make note of 

any differences in the curves and melt curves as they have already been adjusted 
for. Export data the same way. 

b. Then taking the values from the excel spreadsheet, place the CT values into the 
spreadsheet below. Enter the CT values from the exported excel spreadsheet into 
the highlighted column on the left (should be two values for each sample). The 
mean will be taken for these sampled and the STD will be calculated. From the 
sample exported file, you will also have the control values – enter those into the 
GAPDH and B2M column. The value you require is 2*-X which is then 
multiplied by 100 to create a whole number. This is the value that is then analyzed 
in Graphpad. 
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