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ABSTRACT 

Uniform corrosion of copper can occur in spent nuclear fuel canisters placed in deep 

geological repositories (DGR). To estimate the minimum thickness for safe design of 

canisters, it is necessary to analyze the corrosion rate. Copper Corrosion Model (CCM) 

has been used to model the corrosion process taking into account processes including 

adsorption/desorption, precipitation/dissolution, oxidation, and parameters including 

oxygen concentration, chloride, moisture and associated rate constants. In this work, 

CCM has been incorporated in COMSOL and validated with CCM. Once validated, the 

COMSOL model was used to examine the sensitivity of various parameters with respect 

to copper corrosion. It was found that initial chloride concentration, adsorption/desorption 

of cupric ions are parameters that most effect copper corrosion. The developed model 

can be used to simulate the uniform corrosion process under DGR conditions with more 

complexity including variation in temperature, saturation and pressure, and aid in the 

design of copper canisters. 
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1 CHAPTER ONE: BACKGROUND 

1.1 Introduction 

There are over four hundred nuclear reactors worldwide under operation for power 

generation and sixty new nuclear plants are under construction as of April 2017 (NEI, 

2017). In Canada, 16% of electricity is generated from nuclear power with eighteen 

nuclear reactors located in Ontario and one in New Brunswick (WNA, 2017). These 

reactors are responsible for more than 50% of Ontario’s power (OPG, 2017) and therefore 

are an important part of Ontario’s energy production. Nuclear power generation requires 

the use of radioactive fuel. After the nuclear fuel in these reactors is used, the spent fuel 

needs to be properly disposed of, such that the radioactivity remaining in the UFC does 

not come into contact with the biosphere.  

Canada has more than 32 million kg of spent nuclear fuel (SNF) with more than 1 

million kg generated every year (NWMO, 2016). There are different types of nuclear 

waste which are categorized based on the level of radioactivity: 

• LLW - Low Level Waste (e.g. Mops, clothes used in vicinity of nuclear reactors) 

• ILW - Intermediate Level Waste (e.g. heat exchangers) 

• HLW - High Level Waste (e.g. fuel bundles) 

For HLW, the radioactivity levels of the SNF may not be safe for up to 100,000 

years, whereas LLW has a half-life of less than 500 years (NEI, 2014) 

After the removal of the SNF from the reactor, it is placed in pools for up to 10 

years where their heat and radioactivity decreases. The cooled SNF is then placed in 

thick concrete containers to contain the radiation which have a minimum design life of 50 

years. The SNF can then be placed in a new concrete container until a permanent solution 

is designed. This is a temporary solution for the current situation (NWMO, 2017a). 

A permanent solution to storing SNF has been proposed by many countries, 

including Canada, which typically involves the burial of the SNF in deep geological 

repositories (DGRs).  
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1.1.1 Examples of Current or Previously Operational DGRs 

Waste Isolation Pilot Plant (WIPP) (USA): 

The WIPP repository began its operation in 1999 with a design capacity of more 

than 170,000 m3 (equivalent to 30 blimps). The wastes are stored in plastic lined steel 

drums and wooden boxes. The repository is over 650 m deep and stores intermediate 

level radioactive wastes (actinides) from USA’s defense program (NRC, 1996).  

Morsleben Repository (Germany): 

The Morsleben repository was a potash and rock salt mine which was later used 

for storing LLW and ILW. This repository was in operation for 25 years, storing over 

35,000 m3 of radioactive waste (BfS, 2016). The repository was shut down in 1991 due 

to structural collapse (WISE, 1991). 

Asse II Mine (Germany): 

The Asse II repository is 765 m deep and, similarly to the Morseleben repository, 

it was previously a rock salt and potash mine. This repository was used for LLW and ILW 

storage but was shut down due to brine contamination (BfS, 2017).    

Yucca Mountain Nuclear Waste Repository (USA): 

Yucca Mountain is located in Nevada, USA. This repository was under construction 

for many decades and was supposed to be used for HLW and ILW. However, due to 

funding and regulatory concerns, construction was halted (Eureka, 2017). 

1.1.2 Testing areas and planned repositories 

Mont Terri Rock Laboratory is an underground repository lab being used by the 

Swiss nuclear agency (NAGRA) for various tests including the analysis of corrosion of 

carbon steel. It is a 50 m long test tunnel with a diameter of 3 m located at a depth of 300 

m. This tunnel has dummy containers backfilled with bentonite to analyze the effects of 

corrosion. The dummy containers had heating elements to mimic radioactive conditions. 

It was found that the corrosion rate decreases with time due to the formation of protective 

corrosion layer of oxides in geological conditions. The average corrosion rate was found 

to be between 1-5 um/year (Nagra, 2014; Necib et al., 2017; Thury and Bossart, 1999). 

Moreover, another laboratory, GRIMSEL test site (GTS), in Switzerland developed by 
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NAGRA, has extensive research and development works ongoing for safe disposal of 

nuclear waste (Kallio, 1997).  

Onkalo spent nuclear fuel repository is being constructed by Posiva (Finland) and 

will extend up to 450 m in depth. The disposal of radioactive materials is based on the 

KBS-3 concept developed by SKB (Sweden) and Posiva, where the radioactive materials 

will be placed inside copper canisters that are deposited in vertical tunnels and 

surrounded by bentonite (Posiva, 2018). 

The French nuclear waste agency, Andra, is planning to dispose highly radioactive 

waste produced from generating 75% of the country’s electric power, near the village of 

Bure (Broomby, 2014).  

Site selection in Switzerland is currently ongoing for deep geological repository (Le 

News, 2017). The required containment period is around two hundred thousand years for 

disposal of the HLW. Retrieval of the HLW after placement in DGR is also taken into 

account as the spent fuel containing uranium and plutonium can be used in energy 

production by future generations with advanced technology (Nagra, 2018).  

Spent fuel repository is being planned to be constructed at Forsmark, Sweden by 

SKB. Construction is expected to take around 10 years, starting at 2020. This repository 

can store over 6000 canisters at a depth of 500 m covering an area of three to four square 

kilometers (SKB, 2018). 

Countries including Czech, China and Switzerland are considering carbon steel for 

the use of canister material (Rani and Shrivastava, 2016; Zhang et al., 2017), whereas 

Russia and Japan are considering the use various materials, including vitrified glass, in 

the disposal of spent nuclear fuel (Kitamura et al., 2016; Poluektov et al., 2017). 

1.1.3 Canadian Deep Geological Repository 

In Canada, the Nuclear Waste Management Organization (NWMO) is responsible 

for designing the Canadian DGR. The plan is for the repository to be 500 m below the 

earth’s surface away from the surface biosphere.  

To prevent the interaction of SNF with the surface biosphere, a multi-barrier 

system is planned for the DGR which would provide different levels of protection to 

prevent exposure of radioactive materials to the biosphere. The system consists of: 
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1) the hardened ceramic pellet of uranium  

2) zirconium alloy tubes  

3) copper-coated steel canister (UFC) 

4) bentonite layer 

5) bedrock  

Each item in the multi-barrier system has a specific purpose. The ceramic uranium 

pellets are inserted inside Zirconium alloy tubes (corrosion resistant) which are then 

inserted inside the steel canister (structurally durable), coated with copper (corrosion 

resistant) surrounded by bentonite layer (NWMO, 2017b). Bentonite consists mainly of 

montmorillonite which has the ability to swell upon contact with water. This property, along 

with the low permeability of the material, adds to the protection of the UFC (Suorsa, 2017). 

This clay layer will be surrounded by a natural geological sedimentary or crystalline rock 

layer (bedrock). The container, bentonite, and copper coating (items 3&4) make up the 

Engineered Barrier system (EBS). 

1.2 Copper coating 

UFCs are coated with copper to form a corrosion barrier, however when copper is 

exposed to moisture, oxygen, or chloride, it can deteriorate or undergo corrosion. This 

can potentially lead to UFC failure and therefore it is necessary to find out the maximum 

amount of copper that could corrode, given the repository conditions, in order to establish 

a minimum thickness for the UFC copper coating.  

The main purpose of the copper barrier is to ensure that the fuel inside the 

container remains intact for up to a period of million years (Canadian design life) and to 

prevent the structural steel support from being exposed to groundwater. Studies on the 

feasibility of copper being used as canister material has been considered for nearly 40 

years by several nuclear agencies, including the Swedish and Finnish agencies. Copper 

is considered for the UFC because of its thermodynamic ability to have immunity against 

spontaneous corrosion in anoxic oxygen free water conditions of DGR. In addition, it is a 

cheaper material than noble metals which also have these corrosion-resistant properties 

(Scully and Edwards, 2013; King et al., 2012). 
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Oxygen-free phosphorus doped (OFP) copper can be used for the outer UFC 

coating in cases where deformation is expected under mechanical stresses. OFP can 

contain oxygen up to 3 ppm and phosphorus in the range of 40-60 ppm. This grade of 

copper is both structurally and thermally stable (Aalto et al., 1996) and the addition of 

phosphorus increases the creep strength of copper (Pettersson, 2010). 

In the case of Canada, the copper is used as a coating and the steel canister 

provides the structural support, therefore OFP copper is not required. 

1.2.1 Mark II UFC Design 

The previous Canadian UFC design (Mark I) consisted of 100 mm thick steel 

coated with 25 mm thick copper. Mark II, has 3 mm copper coating making it thinner, 

lighter and thereby with a higher degree of flexibility in handling (Scully et al., 2016) 

(Figure 1.1). Mark II also has a semi-spherical cap end, as opposed to the flat end of the 

Mark I design. The switch to the Mark II design was based on improvements in 

manufacturing technologies (Standish et al., 2016). The thickness of 3mm copper was 

chosen since NWMO’s current corrosion allowance is 1.27 mm for 1 million years – based 

on preliminary studies (Scully and Edwards, 2013). This allowance is continually being 

reviewed based on site-specific data and modelling efforts.  
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Figure 1.1: Comparison of Mark I and Mark II designs (Courtesy of NWMO) 
 

1.3 Conditions in Canadian DGR 

The conditions in the DGR will be different from that of the surface. The 

temperature can be higher by as much as 7oC from the surface temperature (Carvalho et 

al., 2013). Initially this will not affect the conditions near the vicinity of the radioactive 

waste as the canisters temperature will be quite high due to radioactivity (as much as 

80oC during the first hundred years. The oxygen levels in the repository may accumulate 

during excavation and construction. In general, the DGR will experience an initial warm 

oxidation period followed by a cool anoxic period. The presence of oxygen and high 

temperature may enhance the corrosion process initially which would decrease gradually 

with time (Standish et al., 2016). 
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1.3.1 Possible copper corrosion processes 

Several processes lead to different types of corrosion such as uniform corrosion, 

pitting corrosion, stress corrosion, and microbial influenced corrosion (MIC). 

Pitting or localized corrosion refers to pits or holes developed on the surface due 

to chemical reactions or mechanical damage e.g. stainless steel in chloride solutions can 

develop pits. Some studies including the ones done by King and Lilja (2014) and Scully 

and Edwards (2013) indicate that pitting is less likely to occur in DGR conditions. 

Stress corrosion occurs when the metal is subjected to tensile stress in a corrosive 

environment (e.g. stainless steel in hydrogen sulfide media). However, in the DGR 

system, the canister will likely experience compressive stress due to bentonite and rock 

surrounding the copper canister. Therefore, stress corrosion will have limited effect on 

the canister. 

Microbial influenced corrosion (MIC) of copper occurs when sulfides and sulfide 

reducing bacteria are present. This kind of corrosion can occur during anaerobic 

conditions which might occur after 100 years in DGR (Standish et al., 2016).  

Uniform corrosion of copper occurs in DGR environments containing oxygen and 

chlorides (King, 2016). Previous NWMO studies have shown that the UFC will be primarily 

subjected to uniform corrosion (Kwong, 2011). Therefore, this study focuses on uniform 

corrosion modelling.  

To date, predictions of corrosion have been based on a custom-designed code 

known as the Copper Corrosion Model (CCM) (King et al., 2008; King and Kolar, 2000). 

This study considers the uniform corrosion version of CCM i.e. CCM-UC for predicting 

the extent of corrosion in the DGR. However, CCM is limited in use due to its single 

dimensionality, lack of support (it is non-commercial) and difficulty to parameterize. 

Therefore, this project focuses on developing a COMSOL version of the CCM, validating 

and verifying the code, and using it to understand the effect of various parameters on 

UFC corrosion. 
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1.4 Conclusion 

There is a growing amount of spent nuclear fuel generated from nuclear power 

plants that needs appropriate disposal. Permanent solution of disposal involves burying 

the spent nuclear fuel 500 m deep underground in copper canisters surrounded by 

bentonite. Under deep repository conditions, the copper canister is susceptible to 

corrosion which may be uniform, pitting and/or microbial. Uniform corrosion will likely have 

the most impact during the initial period of canister burial and therefore it is important to 

understand the effects of uniform corrosion on the canister. This study aims to do that, 

with the use of a numerical model. 
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2 CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction and background 

Copper is among the first metals used by civilization. Artifacts dating back to 9000 

BC made of copper have been excavated from Mesopotamian civilization - now Egypt 

(De Ryck et al., 2005). Copper has been used for sea water application due to its ability 

to form a complex surface film which protects the metal layers below thereby leading to 

low corrosion potential (Huh et al., 2014). Due to the stability of copper metal evidenced 

by its electrochemistry and the availability of data from past copper artifacts, among other 

properties, copper is considered a suitable material for the protection of long-lived nuclear 

fuel canisters by many nuclear agencies (Kitamura et al., 2016), including the Canadian 

Nuclear Waste Management Organization (NMWO). 

NWMO is implementing Adaptive Phased Management (APM), the approach 

selected by the Government of Canada in 2007 for long-term management of used 

nuclear fuel.  The goal of APM is long-term containment and isolation of used nuclear fuel 

in a Deep Geological Repository (DGR) constructed in a suitable formation in either 

sedimentary or crystalline rock at a depth of approximately 500 meters. The design of a 

DGR includes an engineered barrier system (EBS) consisting of a suitably low 

permeability rock to act as a natural barrier. Within the EBS, a steel used fuel container 

(UFC) is coated in copper and encapsulated within an engineered bentonite clay buffer 

(Figure 2.1). 
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Figure 2.1: Canadian deep geological repository design concept for the long-term 
management of used nuclear fuel (Courtesy of NWMO, 2018).  

 

While stable in many environments, copper can still be susceptible to corrosion in 

the DGR due to the presence of oxygen, chloride, and water. Of interest, therefore, is 

various reactions that could take place and their respective reaction rates. In the DGR, 

corrosion will be limited by the amount of oxidant present and the mass transfer 

restrictions by highly compacted bentonite. However, during the construction and 

emplacement period, there will be oxygen present in the DGR which would enter the 

repository. The oxygen content of groundwater in DGR is expected to be less than 0.1 

mg/l which would be negligible compared to the oxygen trapped during construction 

(Mattsson, 1980). In addition, shortly after emplacement of the used fuel containers, there 

will be elevated temperature in the repository due to the heat generated from radioactivity. 

This warm oxidation period can extend up to hundreds of years favoring aerobic corrosion 
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processes. The trapped oxygen is gradually consumed during the corrosion process and 

as oxygen is depleted, copper corrosion will decrease unless sulfide is present which 

could lead to microbially influenced corrosion (MIC) (Johansson et al., 2017). Radiolysis 

of water could also produce oxidants, however these oxidants will be limited by the low 

humidity environment in the vicinity of the canister because of high temperature (King et 

al. 2002, Standish et al. 2016).  

2.1.1 Corrosion allowance 

Different corrosion processes may occur in DGR namely uniform, pitting, stress 

and microbial influenced corrosion. Preliminary estimate for uniform corrosion in the DGR 

was estimated to be 0.17 mm based on initial oxygen content expected in the  repository 

(King, 2005; Kwong, 2011) . For pitting corrosion, the initial estimate of 0.1 mm is 

predicted based on surface roughening in the form of under-deposit corrosion over 

distinct pitting (King, 2005). Stress corrosion cracking occurs due to tensile stress and is 

not considered the to be a significant contributor to corrosion since the canister is more 

likely to be under compressive stress in the DGR (King and Kolar, 2005). Preliminary 

corrosion allowance for microbial corrosion is based on sulfate reducing bacteria 

producing a continuous concentration of 3 ppm of hydrogen sulfide which is estimated to 

result in a corrosion rate of 1 mm for 1 million years (King and Kolar, 1996).  

The total copper corrosion allowance would therefore amount to: 1.27 mm (0.17 

mm from uniform corrosion, 0.1 mm for pitting corrosion, and 1 mm for microbial 

corrosion) (Kwong, 2011). This value is a preliminary estimate based on different 

assumptions.  

2.2 Copper Corrosion Model 

To better understand the different mechanisms that can lead to uniform corrosion, 

the Copper Corrosion Model (CCM) was developed by King and Kolar (2000). This model 

calculates the corrosion potential under different conditions and considers reactions such 

as redox, precipitation/dissolution, adsorption/desorption and mass transport of different 

species.  

Uniform corrosion is when the surface of the metal is covered by a thin layer of 

corrosion which may include compounds of oxides, sulfides, hydroxides and chlorides. 
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When modelling uniform corrosion, CCM considers ten chemical species including 

oxygen, chloride, cuprite, paratacamite and iron. To determine the corrosion rate or the 

extent of corrosion, it is necessary to determine the speed of the individual reactions. In 

other words, the kinetics of the reactions involved in corrosion processes which can aid 

in the estimation of corrosion extent. The rate constants used in CCM for the DGR 

environment have been obtained based on previous qualitative or quantitative analysis. 

These are described in this chapter. 

 

Figure 2.2: Uniform Corrosion Schematic (King et al, 2008). The above diagram shows 
the different reactions along with their associated rate constants (ki).  
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2.3 Kinetics 

The rate of corrosion depends on the kinetics of several reactions including 

adsorption/desorption, precipitation/dissolution and oxidation/reduction as shown in 

Figure 2.2. These are described below. 

2.3.1 Homogenous Oxidation of Copper Chloride by Oxygen (k1) 

The homogenous reaction of copper chloride oxidation by O2 is included in the 

CCM reaction scheme: 

  4CuCl2- + O2 + 2H2O      4Cu2+ + 8Cl- + 4OH- 2.1 

The rate of consumption of oxygen can be expressed as: 

  −
∂c0
∂t
=
k1
4
c0c1 2.2 

This rate constant is dependent upon the formation of copper chloride ions and the 

presence of oxygen. This constant influences the formation of cupric ions which can 

undergo adsorption or interfacial reductions which can significantly affect the corrosion 

process.  

A study conducted by Jhaveri and Sharma (1967) indicates that cuprous ions have 

high affinity for forming chloride compounds over oxychlorides in aerated chloride media. 

The rate constant involved depends upon the ionic strength and the pH of the media. As 

seen from the reaction and equation, this rate constant affects the availability of copper 

ions and oxygen. This in turn can have chain effect on other products formed including 

atacamite and adsorption of copper on bentonite thereby affecting the corrosion process 

significantly, as seen in the CCM. 

From experiments on Red Sea water conducted by Sharma and Millero (1988a), 

the following equation for k1 has been derived (King, 2016): 

log k1  = 11.38 − 2064/ T − 3.69 √
c6

1 − 0.1103 c6
+ 0.73  √

c6
1 − 0.1103 c6

  2.3 
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where, 

c0 Dissolved O2 

c1 Dissolved CuCl2- 

c6 Dissolved Cl- 

T Temperature 

 

The value of k1
 is dependent upon the concentration of chloride and temperature 

of the system. Moreover, at a constant chloride solution, the presence of ions of 

magnesium and calcium reduces the rate of reaction (Sharma and Millero, 1988b). The 

temperature in the simulation is assumed to be at 25oC though the temperature in the 

DGR will be higher at the beginning of the DGR lifecycle and decrease with time (Guo, 

2011).  

2.3.2 Precipitation and Dissolution of Solid Cuprite (k2/k-2) 

The precipitation and dissolution of cuprite is given by King (2016): 

 2CuCl2- + H2O 

k2
⇌
k−2

 Cu2O + 4Cl- + 2H+ 2.4 

There is uncertainty in the mechanism of the formation of cuprous oxide. In 

presence of chloride ions, the anodic reaction will involve the formation of CuCl and 

Cu(OH)ads. With high pH, the adsorbed copper ions can react to form monolayer of Cu2O. 

Moreover, the formation of Cu2O is independent of chloride and is dependent on pH 

(Elsner et al., 1988). Furthermore, in an experiment conducted by Hutchison et al. (2017), 

Cu2O and CuCl were the primary corrosion product when copper and its alloys are 

exposed to artificial human perspiration (pH 6.5).  

The rate of precipitation of cuprite can be expressed as: 

 
∂(Sc2)

∂t
= εaS

k2
2
max(0, c1 − c1

sat) 2.5 
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The rate of dissolution can be shown as (King, 2016): 

 −
∂(Sc2)

∂t
= k−2c2 2.6 

where, 

c1 Dissolved CuCl2- 

c1
sat Concentration of CuCl2- at saturation 

c2 Precipitated Cu2O 

εa Accessible porosity 

S Water Saturation 

 

Since there are no known reported values of k2 and k-2, precipitation and 

dissolution of cuprite in the CCM model was taken as 1 s-1 and 0.1 s-1, respectively based 

on limited experimental works conducted by King and Légère (King, 2016). 

Using these values, it was found that no Cu2O is formed in the CCM model 

(Chapter 3). These results are reasonable since pH was not taken into account (i.e. pH 

was assumed to be neutral). In addition, the experiments conducted by Cano et al. (2005) 

indicate that the formation of cuprite is observed at 160oC. The temperature in the CCM 

and COMSOL simulations was taken as 25oC. Furthermore, another study indicates that 

the formation of Cu2O occur generally in atmospheric environments containing hydrogen 

sulfide (Tran et al., 2003; Watanabe et al., 2009b; Watanabe et al., 2009a). In sea water 

and marine atmosphere, cuprite and paratacamite were the major components of copper 

corrosion (patina). In this case, where copper was completely immersed in marine 

environments, cuprite formation decreased with time until the patina component was 

predominantly paratacamite (Veleva and Farro, 2012). Therefore, the temperature, pH 

and absence of sulfide assumption can affect the prediction of formation of Cu2O in CCM. 

2.3.3 Dissolution and Precipitation of Paratacamite (k3/k-3)   

Paratacamite/atacamite is named after the Atacama Desert in northern Chile. It 

normally occurs as powdery light green corrosion on copper (Scott, 2000).  The 

precipitation of paratacamite (CuCl2.3Cu(OH)2) occurs from a supersaturated solution of 

dissolved Cu(II) (King et al., 2001; King et al., 2002b) while atacamite formation is 

dependent on the concentration of chloride. With the presence of chloride and in low 
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sulfate concentration, atacamite was found to precipitate from chalcopyrite (mineral of 

copper). This was observed under low acidity of pH > 2.8 (McDonald and Muir, 2007). In 

the DGR model considered, sulfur is not considered during the warm oxidizing period and 

the pH is taken as neutral. The precipitation/dissolution of paratacamite is represented by 

the kinetic rate constants k3/k-3 and expressed as: 

 4Cu2+ + 6OH- + 2Cl-   CuCl2.3Cu(OH)2 2.7 

where the rate of precipitation (k3) is given by: 

 
∂c4
∂t
= εaS

k3
4
max(0, c3 − c3

sat) 2.8 

and the expression for dissolution (k-3) from (King, 2016) is: 

 
−
∂c4
∂t
= k−3c4 

2.9 

 

where 

c3 Dissolved Cu2+ 

c3sat Dissolved Cu2+ at saturation 

c4 Precipitated CuCl2.3Cu(OH)2 

εa Accessible porosity 

S Saturation 

 

Atacamite is formed from interaction of copper ions with bentonite based on 

unpublished work of King and Strandlund. Moreover, it was found that coverage of the 

copper surface by paratacamite would form a passive film ((King et al., 2001).   

Others have found that under tropical atmospheric conditions, paratacamite was 

present as one of the components  of corrosion of copper (Mendoza et al., 2004). Under 

marine conditions, cuprite (Cu2O) changes to paratacamite with time (Veleva et al., 1996). 

In a study conducted by Kosec et al. (2015), cuprous oxide and paratacamite was found 

to be the products of corrosion. Here the copper was placed in aerated saline solutions 

to study the extent of corrosion. The corrosion rate decreased from 15 um/yr (initially) to 

less than 1 um/yr for a four-year exposure period. In the simulation, paratacamite is 

formed and not cuprous oxide. Moreover, according to this study the copper in bentonite 
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underwent pitting corrosion. This might be attributed to different methods (or sources of 

error) of measurement i.e. the sensors used in this experiment were themselves 

susceptible to localized corrosion. 

Few dissolution and precipitation rates for atacamite/paratacamite are found in 

literature. The dissolution rate of atacamite was reported to be 10-7.55–10-5.14 mol dm-2 s-1 

for pH 5.5-4 (Le Roux et al., 2016). This range is based on experiments conducted in arid 

conditions. The absolute value for the corresponding rate constant (k-3) for the CCM 

model was taken as 10-6 s-1 based on King (2016). 

2.3.4 Adsorption and Desorption of Copper Ions (k4/k-4) 

How an element adsorbs to a surface is typically a function of temperature, species 

type, and surface type. For example, Cu2+ can adsorb strongly onto sodium bentonite 

(Ryan and King, 1994) and possibly other mineral surfaces within the repository and 

geosphere.  Conversely, Cu2+ species in the form of anionic species like CuCl2- do not 

adsorb strongly onto bentonite (King et al. 1992, 2001, 2002b). 

Sorption isotherms are used to quantify the amount of sorption occurring. Linear 

isotherms are commonly used when describing the adsorption of radionuclides on clay 

(Cook 1988), since the concentration of species is small compared with the cation-

exchange capacity (CEC) of the clay and sorption and desorption are assumed to be fast 

relative to the rate of diffusion (King 2016).  However, buffer material experiments have 

shown that the copper concentration close to the corroding surface can actually exceed 

the CEC of the bentonite and therefore a linear isotherm does not capture the exchange 

accurately (King et al. 1992, Litke et al. 1992).  A Langmuir-type isotherm has been 

suggested by Ryan and King (1994) after conducting equilibrium adsorption studies on 

loose and compacted Na-bentonite. In addition, a study conducted by Bhattacharyya and 

Gupta (2006) showed that copper adsorption onto montmorillonite and kaolinite followed 

a Langmuir isotherm. They found the rate constant to be 7.7 x 10-2 to 15.4 x 10-2 g/mg-

min. This implies that based on the constituents of different clays, there will be different 

adsorption characteristics. The adsorption characteristics of copper in bentonite is 

dependent upon several factors including pH, temperature and surface area (Gupta and 

G. Bhattacharyya, 2012). 
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The rate of adsorption and desorption of copper ions can be described by the 

equation 

 Cu2+ + 2Y-   

k4
⇌
k−4

   CuY2 2.10 

where Y represents a monovalent adsorption site 

Assuming a Langmuir isotherm, the rate of the forward reaction for adsorption 

mechanism can be expressed as: 

  
∂c5
∂t
= εaSk4c3(c5

max − c5) 2.11 
 

 

and the rate of reverse reaction (adsorption) from King (2016): 

  −
∂c5
∂t
= k−4c5 2.12 

 

 

where  

c3 Dissolved Cu2+ 

c5 Adsorbed Cu(II) 

c5
max Maximum adsorption capacity of bentonite for Cu(II) 

 

Ryan and King (2016) calculated the rate constant, k4 to be 2 x 10-3 dm3mol-1s-1 

and the rate of desorption, k-4, to be 1 x 10-6 s-1.  

Experiments conducted by Al-Qunaibit et al. (2005) indicate that the rate constant 

observed for different bentonite masses (0 – 2 g) for copper adsorption was observed to 

be in the range of 10-4 to 10-3 min-1.  This experiment was conducted for 80 ppm Cu2+ with 

copper nitrate solution with dry bentonite. The amount adsorbed was calculated using 

initial and final concentration of copper ions in the solution. Desorption was estimated by 

placing the clay pellets in water and calcium chloride solution. This was calculated from 

equilibrium concentration obtained from sorption.  No desorption was observed in case 

of deionized water. In calcium chloride solution, the exchange of copper ions was around 

1% for 24 hours of shaking. The maximum adsorption obtained was 0.9 g/g clay. The 

corresponding value for c5
max was 0.3 mol/kg i.e. 0.02 g/g clay (King, 2016). The difference 

might be attributed to the fact that the clay types are different (as clay from Saudi Arabia 

was used for former and Saskatchewan for latter). Regardless, all experiments showed 
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the desorption was low compared to adsorption (Al-Qunaibit et al., 2005). This is also 

reflected in the CCM.  

With a decrease in pH, the adsorption of copper decreases in sodium bentonite 

based on a study conducted by Abollino et al. (2003). Moreover, another study with 

natural bentonite indicate that the removal of copper is increased with increasing pH with 

optimum efficiency for copper removal at pH 7 (Veli and Alyüz, 2007). pH was not 

considered in the CCM but may influence the adsorption and desorption of Cu(II).  

Experiments conducted on bentonite with temperature variations (20-50oC) 

indicated that the adsorption of copper decreases with increase in temperature (Bereket 

et al., 1997). The temperature considered in the CCM was 25oC. The initial temperature 

in the DGR will be high extending up to 80oC during the first hundred years. With time, 

this temperature would decrease, and the adsorption of copper would increase.  

2.3.5 Interfacial Reactions (ka, kbb, kaf, kbf, kab, kc, kd) 

There are several species that can react on the UFC surface including O2(aq), 

CuCl2-, Cu2+ and Cl-. These reactions are called interfacial and are made up of anodic 

dissolution of copper (Equation 2.13 and 2.14 ) and cathodic reduction of dissolved 

oxygen (Equation 2.17).  

The anodic reactions between copper and chlorides can be represented by: 

 Cu + Cl-   

kaf
⇌
kab

   CuClADS + e- 2.13 

 

 
CuClADS + Cl-   

kbf
⇌
kbb

   CuCl2- 
2.14 

A combined electrochemical rate constant (ka) can be used when expressing the 

anodic current as shown in the equation below: 

 ka = 
kafkbf
kab

 2.15 

King et al. (1995) found that ka has a value of 3.3 x 10-8 m4/mol-s based on 

experiments conducted on copper covered in bentonite placed in copper chloride 

solutions of different concentrations in the range of 0.1 – 1.0 mol/dm-3. The reverse 
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reaction rate, for the conversion of CuCl2- to adsorbed CuCl, kbb, has value of 1.42 x 10-4 

m/s. The corresponding anodic current generated can be expressed as (King and Litke 

(unpublished data); King (2016)): 

 ia = na F {ka [Cl
−]2 exp

F

RT
 (E − Ea) − kbb [CuCl2

−]} 2.16 

where, 

[Cl−] Concentration of chloride 

[CuCl2
−] Concentration of cuprous chloride ions 

ia Current for anodic dissolution of Cu 

F Faraday’s constant (96487 C/mol) 

R Universal gas constant 

Ea Anodic potential under standard conditions 

E Potential in the system 

 

The reduction of oxygen can occur in steps involving the formation of intermediate 

peroxide under acidic conditions. This was observed with experiments conducted with 

sulfuric acid where oxygen was bubbled through (Hsueh et al., 1983). The formation of 

intermediate peroxide is not considered in the CCM model since a neutral pH was 

assumed within the repository.   

The reducing reaction can be stated as follows: 

 O2 + 2 H2O + 4 e-  
kc
→    4 OH- 2.17 

A value for the electrochemical constant for the reduction of oxygen (kc) was found 

to be 1.7 x 10-9 dm/s, is based on the reduction of copper in 1 mol/dm3 of NaCl under 

standard conditions of unit activity with 1 atmospheric pressure and 25oC  (King et al., 

1995). The reaction can lead to increase in the value of pH which can favor the formation 

of Cu2O. This reduction of oxygen at the copper bentonite interface can influence the 

cathodic current (ic). This can be expressed as the following form of Nernst equation (King 

et al., 1994; King et al., 1995; King, 2016): 
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 ic = − nc F kc [O2] exp
αcF

RT
 (E − Ec)
 

 2.18 

where, 

ic Cathodic reduction of O2 

nc Number of electrons involved in reduction of O2 

[O2] Concentration of oxygen 

αc Cathodic mass transfer coefficient 

Ec Cathodic potential at standard conditions 

E Potential in the system 

 

The other cathodic reaction that can occur at the bentonite-UFC interface is the 

reduction of Cu2+:  

 Cu2+ + 2 Cl- + e-   
𝐤𝐝
→   CuCl2- 2.19 

Experiments conducted by Morel et al. (1979) indicate that copper placed in 

chloride media had copper (II) from the bulk solution reduced at the electrode surface to 

copper (I). This is then stabilized by forming complexes with chloride. Moreover, another 

study by Oglesby et al. (1977) indicates that the potentiometric response of copper(II) 

ions in chloride media increases with ionic activity. This indicates that the potential 

increases with more chloride activity. 

The value of kd was found out to be 2 x 10-8 dms-1 at 25 oC based on studies 

conducted by Hurlen (1961). This value was derived from current potential curves 

obtained from dissolution of copper in chloride solution.  

The corresponding cathodic current for this reaction can be expressed as (King, 

2016): 

 id = − nd F kd [Cu
2+] exp (−

αdF

RT
 (E − Ed))  2.20 

where, 

id Current for reduction of Cu2+ 

nd Number of electrons involved in reduction of Cu2+ 

[Cu2+] Concentration of cupric ions 
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αd Cathodic mass transfer coefficient 

Ed Cathodic potential at standard conditions 

E Potential in the system 

 

2.4 Copper in different environments 

For the prediction of corrosion behavior of copper, several experiments have been 

analyzed taking into consideration the behavior in aqueous solutions, atmospheric 

conditions and bentonite. These are discussed below.  

2.4.1 Copper in aqueous solutions 

Experiments conducted by Lal and Thirsk (1953) indicate that in neutral and 

alkaline chloride solutions, the anodic behavior of copper generates cuprous chloride film 

through dissolution and precipitation processes. Copper metal gets dissolved in the 

electrolyte as ions. These ions precipitate and reversibly get deposited forming cuprous 

chloride film. It was observed that with the increase in the chloride concentration, there is 

an increase in current density. Moreover, it was also found that the potentials obtained 

from neutral chloride solutions were slightly lower than that of alkaline solutions.  

Under acidic conditions, copper in the presence of chloride solutions results in the 

formation of complexes including CuCl2- and CuCl3-. The process is controlled by 

activation or concentration polarization rather than by diffusion indicating that the rate of 

chemical reactions is faster compared to the transport of chemical species present 

(Hurlen, 1961).  

Extensive studies conducted by Ives and Rawson (1962) show that copper has a 

strong tendency to react with dissolved oxygen to form cuprite (Cu2O) - the primary 

product in acidic aqueous media (k2 in CCM). A thin layer (20 Å) of this cuprous oxide is 

produced which can easily break up with mechanical strains. Therefore, this layer does 

not provide a corrosion protective surface. The change in potential (in volts) due to the 

presence of Cu-Cu2O couple in an acidic medium can be expressed as: 

 ECu|Cu2O, H+ = 0.471 – 0.0592 pH 2.21 
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As the film grows, it breaks up and can lead to the formation of CuO. The change 

in potential due to Cu-CuO couple can be expressed in a similar way as: 

 ECu|CuO,  H+ = 0.570 – 0.0592 pH 2.22 

 

This formation of copper (I) oxide may be thermodynamically favored. This 

compound then dissolves to provide copper (II) ions. The change in potential can be given 

as: 

 ECu2O, Cu2+, H+ = 0.203 + 0.0592 pH + 0.0592 log [Cu2+] 2.23 

where  

[Cu2+] = concentration of copper (II) ions 

This study by Ives and Rawson (1962) proposed a duplex film corrosion model. In 

this model, the copper metal is surrounded by a layer of Cu2O followed by a porous film 

which is formed by the disruption of the oxide film below it. The disruption of the oxide 

film occurs as the oxide, which is insulated from the metal, falls off or dissolves into the 

solution. The kinetics of the reactions for the formation of Cu2O is first order with respect 

to the dissolved oxygen  (Ives and Rawson, 1962). Moreover, as seen from previous 

equations, the pH of the solution is one factor in determining the potentials. Other factors 

may include environment, presence of oxygen or other redox active species, temperature, 

etc. 

The passivation of the surface of copper in 3% NaCl solution (with applied external 

potential) consisted of Cu2O and CuCl. The surface film is weak and is easily displaced 

by mechanical abrasion. With the increase in potential, the cuprous ions react with 

chloride ions resulting formation of CuCl2- ions (Sugawara et al., 1965). This supports the 

CCM model for the rate constants kbf and kbb.  

Copper can exist in both monovalent and divalent states. Experiments conducted 

on copper tubes with aerated supply water shows that chloride can react with cuprous 

ions to form CuCl (Cornwell et al., 1973). As expected, increase in the chloride led to an 

increase in the corrosion rate as these chlorides can hydrolyze to form Cu2O precipitates 

(k2/k-2) in neutral pH media. The stability of the Cu2O scales was found to be dependent 

upon both pH and chloride concentrations (Palit and Pehkonen, 2000). Furthermore, tests 

conducted by Boulay and Edwards (2001) in alkaline soft water containing dissolved 
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oxygen of about 9 mg/L, indicate that pH of 7 results in five times higher corrosion rate 

(high copper corrosion by-products) than pH of 9.5 (high copper particulates). 

In case of long-term stagnation experiments for tap water in copper pipes indicate 

that the consumption of oxygen can be described by 1st order kinetic law. Moreover, the 

corrosion scales formed consisted primarily of Cu2O and a carbonate compound of 

copper (Merkel et al., 2002).  

Experiments conducted in neutral tap water indicate that initially the surface of 

copper is covered by cuprous, cupric oxides and cupric hydroxide. With the passage of 

time, the copper surface is covered by a uniform layer of cuprous oxide which is stable 

and retards the corrosion process (Shim and Kim, 2004). This indicates that the stability 

of cuprous oxide is influenced by the presence of hard water (contain calcium and 

magnesium minerals) or soft water (contains sodium) (Diffen, 2014) .  

Another experiment conducted by Vargas et al. (2009) state that the corrosion due 

to DO (Dissolved Oxygen) for tap water can be described by zeroth-order kinetic rate law.  

The oxidation of copper is limited by pH which is controlled by the nature of the corrosion 

scale. Transport diffusion is negligible for experiments conducted with dissolved oxygen 

in tap water in copper pipes. The main parameters that control the oxidation of copper 

kinetics are pH and temperature (Vargas et al., 2010).   

Studies conducted by González-Dávila et al. (2009) in seawater and NaCl solution 

indicate that oxidation of Cu(II) to Cu(I) is dependent upon both the chloride concentration 

and the pH. The rate can be expressed as 

 
d[Cu(I)]

dt
=  −k [Cu(I)][O2]  2.24 

 

where k is in kg/mol-min 

  



25 

 

In case of the presence of excess oxygen, the reaction may follow pseudo 1st order 

kinetics. The expressions obtained for the rate constant for the oxidation of Cu(I) for 

sodium chloride (0.1-0.7 M ionic strength) solution and seawater are as follows: 

 

 log kNaCl = 5.221 + 0.609 pH − 1915 T − 1.818 √I + 0.408 I  2.25 

 log ksea water = 5.036 + 0.514 pH − 1765 T − 1.101 √I + 0.233 I  2.26 

 

A similar experiment was conducted earlier by Sharma and Millero (1988) and the 

rate constant was expressed as: 

 log k = 12.32 + 0.12 pH − 2064 / T − 3.69 √I + 0.73 I  2.27  

This above equation was modified in terms of chloride concentration (King, 2016).  

This is expressed as: 

log k1  = 11.38 − 2064/ T − 3.69 √
[Cl−]

1 − 0.1103 [Cl−]
+ 0.73  √

[Cl−]

1 − 0.1103 [Cl−]
  2.28 

Investigations conducted on the anodic dissolution of copper in flowing sodium 

chloride solutions with a temperature range between 25 - 175 oC indicate that the process 

is diffusion controlled with primary product being CuCl2-. This study indicates that the 

anodic process depended on the square of the chloride concentration and independent 

of the pH (Bacarella and Griess, 1973). The corresponding reaction can be expressed 

as: 

 Cu + 2 Cl- = CuCl2- 2.29 

This supports the equations obtained from King 2016. The corresponding current 

for the anodic process in terms of reaction rates was expressed as: 

 ia =  na F {ka [Cl
−]2 exp

F

RT
 (E − Ea) − kbb [CuCl2

−]}  2.30 
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A study conducted with copper in O2 free water indicate that a monolayer of Cu2O 

is formed after 6 months of exposure. Hydrogen gas was produced as per the following 

reaction: 

 Cu + H2O      Cu2O + H2 2.31 

The copper present in the aqueous solution had a concentration range of 4-5 ug/L 

(Boman et al., 2014).  

The major products of Cu corrosion are Cu2O (s) and Cu (II) (aq) for tap water. 

Mass and charge balance indicated that most Cu (II) species are soluble in water leaving 

behind a film of Cu2O. The kinetic investigation demonstrated that the mechanism 

involves simultaneous dissolution and formation of the film rather than a stepwise 

mechanism (Zhou et al., 2016).   

2.4.2 Copper in atmospheric conditions 

According to a study conducted by Odnevall and Leygraf (1995), the atmospheric 

corrosion of copper is highly dependent upon the relative humidity. With the increase in 

relative humidity, there is an increase in the thickness of the cuprite layer. This means 

that increasing moisture can lead to increase in growth of cuprite. 

Moreover, under atmospheric conditions, a layer of only a few nanometers thick 

forms on the surface of copper which is greenish in color consisting of mainly copper (I) 

oxide. This reaction proceeds if sufficient oxygen is available (Clarelli et al., 2014).  

2.4.3 Copper in bentonite 

Bentonite is considered for surrounding the copper canisters in the DGR by many 

countries including Canada, Sweden, Finland and Korea (KAERI; NMWO, 2018). It is 

composed primarily of hydrous magnesium-calcium-aluminum silicate called 

montmorillonite which is under a clay group known as smectite. It is formed in nature from 

volcanic ash.  
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A study conducted by Finnish nuclear disposal program for 10 months (Huttunen-

Saarivirta et al., 2016) indicate that when copper is placed in an abiotic system (sterilized 

artificial groundwater) Cu2O is the major corrosion product. The anodic reaction proceeds 

as follows: 

 2 Cu + H2O      Cu2O + 2 H+ + 2 e- 2.32 

In case of presence of oxygen, the mechanisms of cathodic reactions could be: 

 O2 + 4 H+ + 4 e-      2 H2O 2.33 

or 

 O2 + H2O + 4 e-      4 OH- 
2.34 

The former cathodic reaction has been used to describe the formation of cuprite 

where the hydrogen ions produced in the anodic reactions gets consumed. There were 

two layers of Cu2O film produced: an inner protective thin layer which was surrounded by 

a porous outer layer (Huttunen-Saarivirta et al., 2016; Vargas et al., 2009). This 

observation is consistent with the studies of copper in aqueous solutions ‘duplex film 

corrosion model’ (Ives and Rawson 1962). 

With organo-bentonite, adsorption of copper ions followed the Sips adsorption 

model over Langmuir or Freundlich models. The adsorption process was found to occur 

through chemisorption with the process being endothermic, irreversible and non-

spontaneous. With the increase in pH from 1 to 3, there was an increase in adsorption. 

Moreover, the kinetic data followed pseudo-second-order over a pseudo-first order model 

(Sandy et al., 2012). This indicates that the initial conditions of DGR with high 

temperature, there would be high adsorption which would gradually decrease with a 

decrease in temperature. Moreover, since the process is irreversible, the desorption rate 

would be low or negligible compared to the adsorption rate. According to a study by 

Glatstein and Francisca (2015), copper adsorption follows both linear and Freundlich 

models for experiments conducted on copper (nitrate compound) with sodium bentonite 

which show that ionic strength does not influence the adsorption process. The equilibrium 

was reached in this laboratory experiment within few hours for the solution concentration 

of 1-500 mg/L. Reaction kinetics over diffusion kinetics was the main driver for adsorption 

(Glatstein and Francisca, 2015).  
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For pH 1.5-2, no adsorption of Cu(II) was observed by Gok et al. (2008). This 

changes as the pH is increased from 2-5.5 indicating that with higher pH there is more 

adsorption of copper onto bentonite (Gok et al., 2008). Moreover, another study indicated 

that Cu2+ ions with bentonite show higher adsorption with an increase in pH. Langmuir 

isotherm corresponded to the adsorption trend over Freundlich with adsorption kinetics 

following pseudo-second order (Melichová and Hromada, 2013).  

With the increase in pH, there are more Cu (II) ions adsorbed onto bentonite clay. 

However, with a decrease in pH, there is hydration of the metal followed by hydrolysis 

giving acidic properties to the metal solution (Uddin, 2017). Under acid activated 

conditions, there is more adsorption Cu(II) onto bentonite. This is indicated by Koyuncu 

and Kul (2014) who state that acid activation condition results in the formation of smaller 

pores in solid particles resulting in higher adsorption. A study conducted by Anna et al. 

(2015) indicated that in case of Ca-bentonite, similar to that of Na-bentonite, increasing 

pH favors more adsorption of Cu2+. 

A study conducted in case of binary solutions of Cu(II)/Cr(III) on GMZ bentonite 

indicate that Cr(III) have greater tendency to be adsorbed than Cu(II). This leads to Cu(II) 

remaining in the solution. This shows that in presence of other ions, the adsorption of 

Cu(II) can be preferred or inhibited depending upon their nature (Chen et al., 2015). 
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2.5 Corrosion models 

CCM was developed to aid in understanding of copper corrosion mechanisms 

under DGR conditions. It is one of the only computer models capable of estimating the 

corrosion potentials, current densities, and species concentrations. There are other 

computational models that include corrosion in their calculations, although none are as 

robust and detailed as CCM. These other models are described in the following sections. 

2.5.1 STEADYQL model 

This model was developed initially for study of soil solutions by Furrer et al. (1989) 

for SKB. This model is used considering the thermodynamic boundary conditions of 

copper in bentonite under anoxic conditions. This model uses partial or quasi steady state 

assumption for the development of kinetic model based on thermodynamic and kinetic 

information (Werme et al., 1992). The basics of this model is shown in Figure 2.3, where 

the domain is represented by a “box”. The interaction of water along with the dissolved 

solutes and the materials within the box can be represented by slow and fast processes. 

Fast reactions include equilibrium reactions between dissolved solid and surface 

constituents. Slow reactions include diffusion and kinetic reactions. This algorithm of this 

model takes into account mass, flux and mole balance. This steady state model can be 

used for single ‘box’. This model was later modified to multi-box model to take into account 

diffusion processes as shown in Figure 2.5.  

 

Figure 2.3: The basics used in STEADYQL model  
(Reproduced from Wersin et al., 1993) 

 
In the case of copper corrosion, this model considers the equilibrium reactions of 

copper, iron, hydrogen, hydrogen sulfide, calcium and carbonates (Figure 2.5). A steady 

state approach can approximate the slow kinetically driven processes in the DGR but 

does not allow for simulating changes from an aerobic to anaerobic environment. 

Therefore, corrosion is evaluated under anoxic and oxic cases separately but the 
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transition between the two conditions is not modelled (Wersin et al., 1994). For oxic and 

anoxic conditions, reactions are divided into fast and slow processes. For the anoxic case, 

fast processes include complexation reactions between porewater and solid matrix, while 

slow processes include transport related processes such as diffusion through bentonite 

and corrosive oxidation of copper by Fe(III) (Wersin et al., 1994). Oxic fast processes 

include interactions of dissolved species with the solid matrix and CuS precipitation, while 

copper corrosion (oxidation) and diffusion to the bentonite and canister are assumed to 

be slow processes. 

 

Figure 2.4: Single box model of canister bentonite interaction (Reproduced from Wersin 
et al., 1993) 

 

 

Figure 2.5: Multi-box model of copper bentonite interaction (Reproduced from Wersin et 
al., 1994) 
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2.5.2 T2GGM model 

T2GGM is a numeric model developed for gas generation and transport in the 

DGR. This model is a combination of gas generation model (GGM) which calculates water 

consumption and gas generation due to corrosion and microbial degradation, and 

TOUGH2 flow code which models the two-phase transport through the DGR shafts and 

geosphere. Pressure, temperature, saturation, etc. are passed in GGM compartment 

which calculates gas and water generation rates. These are sent to TOUGH2 elements 

as sources (Avis et al., 2014). The flow of data within this model is shown in Figure 2.6.  

 

Figure 2.6: Flow of data within T2GGM code (Reproduced from Avis et al. 2014) 
 

This model is not applied for copper canister corrosion but can take into account 

enhanced steel corrosion due to high CO2 partial pressure, oxidation-reduction reactions 

for the consumption of oxygen, nitrates, iron (III), sulfates. T2GGM can simulate some 

corrosion and microbial degradation processes including: corrosion product and 

hydrogen gas generation from steel corrosion and other alloys under aerobic and 

anaerobic conditions; CO2 and CH4 gas generation from degradation of organic materials 

under aerobic and anaerobic conditions; H2 gas generation, including methanogenesis 

from CO2; biomass generation, decay and recycling; limitation of microbial and corrosion 

reactions by the availability of water; exchange of gas and water between the repository 

and surrounding geosphere; and two phase flow of water and gas inside geosphere 

(Suckling et al., 2012; Humphreys, 2011).  All microbial and corrosion processes are 
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modelled as kinetic reactions. The data used for this model are gathered from site and 

waste characterization and repository engineering programs. This model is applied in the 

repository, considering saturation, and oxidation conditions. 

2.5.3 DRINK model 

DRINK stands for DRIgg Near field Kinetic. Drigg is a low level radioactive waste 

repository located in UK. Unlike DGR which will accommodate ILW/HLW, this site stores 

LLW and has been in operation since 1959 (Jason Nisse, 2005). DRINK code is used to 

simulate the evolution of biogeochemical processes for long term in Drigg. This code 

considers the microbial activity, radionuclide chemistry, ambient chemistry with the 

changing/development of pH, redox potential and bulk geochemistry which are directly 

influenced by microbial activity. It is technically a 2D geochemical transport code which 

includes modules for steel corrosion, sorption, microbiology, radioactive decay, mineral 

precipitation/dissolution and gaseous release.  The geochemistry in DRINK is modified 

version of PHREEQE code. The main role of PHREEQE in DRINK is to modelling of 

mineral precipitation/dissolution, speciation of dissolved species and calculation of pH 

(Humphreys et al., 1997).  

2.5.4 Other models/experiments/simulations  

Experiments in laboratory and field scale were conducted in Germany to analyze 

the effects of chloride rich solutions of magnesium and sodium on cemented low (L) and 

ILW. Laboratory experiments were conducted over a period of 3 years with powdered 

hydrated cement paste and full-scale field experiments were conducted for 20 years in 

the Asse II salt mine located in Saxony using uranium doped cemented L/ILW. 

Geochemist’s Workbench (GWB) software package was used for simulation. It was 

inferred that the corrosion with magnesium ion rich solutions was greater than that of 

sodium ion rich solutions. This might be attributed to the extensive exchange of 

magnesium with calcium in the cementitious solid (Bube et al., 2013). Equilibrium 

conditions were achieved after ~14 years for the full-scale experiments as indicated from 

the laboratory data. The laboratory and simulation were found to be in agreement with 

one another. This experiment demonstrated the applicability of thermodynamic 
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methods/simulations to describe the effects of L/ILW with cementitious materials (Bube 

et al., 2013).  

In Japan, effects of pH and redox conditions on corrosion of subsurface disposal 

systems were analyzed. Simulations were performed at different pH using a finite 

difference computer code using PHREEQC-TRANS and then the consumption of residual 

oxygen in the backfill was calculated.  The dissolved oxygen in the groundwater which 

could result in corrosion in the engineered barrier was also estimated. It was found that 

basic pH level of 12.5 would remain for more than 100 years in the system. Moreover, the 

rate of oxygen supply from groundwater was low due to the low permeability and low 

diffusivity layer of backfill. It was found that the residual oxygen would be consumed within 

13 years by corrosion reactions. The aerobic corrosion rate was found to be limited at 

1x10-3 um/year. Thus, it was inferred that the aerobic condition influence on corrosion 

was limited and long-term effects on corrosion would be due to anaerobic conditions. So, 

the engineered barriers have to be designed accordingly (Ooma et al., 2014). 

 

Figure 2.7: Reaction scheme for Steel Corrosion Model (SCM). Here k indicates the rate 

constants and J indicates the diffusive fluxes (King et al. 2014) 
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In Canada, a model for anaerobic corrosion of steel in carbon-steel containers to 

be used for DGR was developed by King et al. (2014). This model deals with interfacial 

reactions occurring in buffer, backfill material and host rock. Simulations were performed 

for sedimentary rock with a groundwater chloride concentration of 4.75 mol/L. This model 

takes into account the periodic build up and release of hydrogen. Moreover, the 

precipitation of Fe3O4 and the conversion of montmorillonite to a non-swelling clay is also 

taken into consideration. The steel corrosion model (SCM) is summarized in Figure 2.7. 

According to King et al. (2014), oxygen gets consumed in approximately 5,000 years and 

then commences anaerobic corrosion. Another study by Ooma et al. (2014) shows that 

anaerobic corrosion begins just after 13 years. The significant difference in result can be 

attributed to the methods and conservatism assumed and is an area of ongoing research. 

 

Figure 2.8: Reaction scheme for Copper Sulphide Model (CSM). Here k indicates the 
rate constants and J indicates the diffusive fluxes. This is an extension to CCM -UC 

(Reproduced from King et al., 2011) 
 

A copper sulfide model (CSM) was developed by King et al (2011) to examine the 

reactions taking place in repositories that use copper lined UFCs during anaerobic phases 
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(Figure 2.8).  This model examines the influence of corrosion with sulfide, 

chloride, saturations, and microbial scenarios is described by King et al. (2011).  The 

predicted depth of corrosion over a period of 1 million years was found to be less than 1 

mm. Most of the depth is achieved during the anaerobic period rather than the aerobic 

period because of the formation of Cu2S  

2.6 Implication for corrosion modelling in a DGR 

• Since early times, copper has been used for making tools. This has led to the 

availability of data from archaeological artifacts indicating its corrosion resistance and 

stability making it suitable for use in disposal of spent nuclear fuel. 

• Presence of oxygen, chloride, and water can lead to copper corrosion in the DGR. 

Laboratory experiments conducted under different conditions can give an indication 

of the estimation of corrosion rate. 

• Increase in chloride concentration leads to increase in corrosion current density 

indicating the concentration of chloride is a major factor in corrosion. A similar scenario 

is observed for oxygen concentration. 

• Alkaline conditions have lesser tendency to corrode copper over acidic conditions. In 

the DGR, the nature of the pH of the surrounding environment around copper would 

affect the corrosion rate. Furthermore, adsorption of copper onto bentonite is affected 

by pH. Low pH shows less adsorption compared to high pH.   

• High temperature leads to increase in corrosion of copper. During the initial period, 

there will be a high temperature in DGR due to radioactivity. This implies that the 

corrosion rate may be initially high. 

2.7 Conclusion 

There is a lot of data regarding copper obtained from archaeological artifacts. 

Different kinetic studies of interaction of copper with chloride, oxygen and water in 

different environments have been conducted which can lead to the formation compounds 

including cuprite, paratacamite and copper chloride. Moreover, different models including 

STEADYQL, CSM, CCM have been developed in the past for modelling corrosion 

phenomena on copper.  
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3 CHAPTER THREE: MODEL DEVELOPMENT 

3.1 Introduction 

Prediction of copper canister behavior in the DGR requires the development and 

use of computer models. The models consider the impact of different species (i.e. 

chloride, oxygen) and DGR conditions (i.e. moisture, temperature) on the canister to aid 

in design. The Copper Corrosion Model (CCM) developed by King and Kolar (1995) is 

has been widely used to predict copper corrosion of UFCs. This model uses the 

TRANSIENT Solver, written in C, to solve the partial differential equations involved in 

calculating the transport of species through the engineered barrier system (EBS) to the 

copper container. CCM is a one-dimensional (1D) model and is limited in terms of 

usability. Therefore, the objective of this study was to develop the CCM model in 

COMSOL which overcomes these drawbacks. To ensure accuracy of the new COMSOL 

model, validation and verification activities were performed. Firstly, the COMSOL model 

was verified against CCM for a variety of parameters (Chapter 4). Secondly, laboratory 

experiments, that were conducted for the development of the CCM model, were used to 

validate the accuracy of the COMSOL model (Chapter 5). This chapter describes how the 

CCM model was developed in COMSOL and the experiments performed to validate the 

COMSOL model. 

The CCM model is based on experiments conducted by King et al. (1995) which 

are described in Section 5.1. There are several versions of the CCM model including 

microbial influenced corrosion (MIC), stress corrosion cracking (SCC), uniform corrosion 

(UC), etc. The CCM – UC is used in this study.  
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3.2 Description 

COMSOL is a finite element software with predefined engineering and 

mathematical equations for solving multiphysics based systems of partial and ordinary 

differential equations. This software can also add/customize physical phenomena based 

on user requirements. COMSOL can simulate electrochemical equations using the 

Electroanalysis Module which was used herein to simulate the corrosion of copper 

canisters. This module has built-in physics for the corrosion and transport processes. 

Moreover, there is a multi-dimension capability in COMSOL (i.e. the corrosion model is 

currently modeled in 1-D) which allows for the extension of CCM to 2D and 3D.  

A step-wise approach was taken in the development of the CCM-UC model in 

COMSOL. This approach was developed by King (2016) The steps progress with 

increasing complexity by addition of species, rate constants, dimensions and other 

variables. The reactions occurring in the interface are the determining factors for the 

corrosion process. The components/species available for the interfacial reactions are 

influenced by the reactions involving diffusion, precipitation, adsorption, etc.  

Details of the steps are shown in Table 3.1. The steps involved can be summarized 

as: 

Step 1: Simplified steady-state model 

Step 2: Simplified transient state model 

Step 3a-f: Transient model with progressive complexity for reaction schemes 

Step 4: Non-isothermal model 

Step 5: Variable saturation model 

Step 6: Multi-dimensional model 

Steps 4 to 6 include temperature, saturation, and dimensionality variation and are 

outside the scope of the current work. 
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Table 3.1: Steps involved in modelling process (King, 2016) 
 

Step Additional processes 
Additional 

Species 

1 • Steady State O2, Cl-, CuCl2- 

2 • Transient O2, Cl-, CuCl2- 

3a • Homogeneous oxidation of CuCl2- (k1) 

• Interfacial reduction of Cu2+ (kD) 
Cu2+ 

3b • Precipitation/dissolution of solid Cu(II) (k3/k-3) CuCl2.3Cu(OH)2 

3c • Precipitation/dissolution of solid Cu2O (k2/k-2) Cu2O 

3d • Adsorption/desorption of Cu2+ (k4/k-4) Cu(II)ADS 

3e • Aerobic respiration (k9) _ 

3f • Reactions involving dissolved and precipitated 
Fe(II) (k5, k6, k7/k-7) 

Fe(II)AQ 

 Fe(II)PPT 

4 
• Spatial and temporal variation in temperature 

• Temperature dependence of rate constants, 
diffusion coefficients, and other input data 

_ 

5 

• Oxygen dissolution (k8) 

• Spatial and temporal variation in saturation 

• Effects of saturation on interfacial reactions 

• Effective diffusion coefficients, and solute 
concentration 

Gaseous O2 

6 • 2D/3D dimensionality of Mark II DGR _ 

 

Using the step wise approached discussed above, the model was developed up to 

and including Step 3d, the precipitation and dissolution of Cu2O.  It does not model later 

steps involving microbial activity (Step 3e), iron reactions (Step 3f) which are left for future 

work.  
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The current implementation of the model in COMSOL consists of a 1D system with 

the copper electrode on the left-hand side, saturated and isothermal conditions (25°C) as 

shown in Figure 3.1. 

 

Figure 3.1: Schematic diagram for the interface between copper and bentonite along 
with associated corrosive reactions (Adapted from King, 2016). 

 

The COMSOL Multiphysics Electroanalysis Module was used with adaptive time 

stepping methods and a maximum element size of 10-7 m. The initial corrosion potential 

is taken as -0.25 VSCE
 (Voltage with respect to Standard Calomel Electrode). The 

experimental value is -0.2 VSCE. Taking the initial corrosion potential close to the 

experimental value aids in faster convergence or avoidance of numerical error in 

COMSOL simulation.  

Since the model incorporates transport of different species including chloride and 

oxygen through a bentonite layer, which is a low permeability soil, mass transfer is 

assumed to be diffusion dominated (no advection). The diffusion coefficient is a function 

of free species-specific diffusion coefficient (D0), tortuosity (f) and effective porosity (e). 
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The effective diffusion coefficient is given by: 

 𝐷𝐸𝐹𝐹 = 𝜀𝑒𝜏𝑓𝐷0 3.1 
 

Typically, a multi-porosity model is assumed in which the total porosity () is divided 

into accessible (a) and non-accessible (na) porosity, representing connected and 

isolated pores, respectively. The accessible porosity is further divided into a storage 

porosity (s) and the effective porosity for mass transport (e).  The values of tortuosity 

and porosities would change based on the soil layers’ properties while the free diffusion 

coefficient is species-specific. Currently, this model only simulates one layer, bentonite, 

in which both the effective and storage porosity are taken as 0.205. Moreover, the 

tortuosity is taken as 0.05. These values are based on the properties of bentonite (King, 

2016). 

3.2.1 Step 1: Steady State Model with Simplified Reaction Scheme 

In Step 1, three species are initially considered: dissolved O2, Cl- and CuCl2-. 

These species are free to diffuse to and from the left-hand boundary which represents 

the container surface (Figure 3.2). There are two interfacial electrochemical reactions 

(Equation 3.3 and 3.4) and no homogeneous reactions.  Corrosion of the copper surface 

is considered under isothermal and saturated conditions.  

The cathodic reduction of O2, which diffuses from the right boundary, results in 

copper corrosion of the copper container. In addition, dissolution of copper consumes 

Cl- ions (in the form of CuCl2- complex ions).  In this step, chloride is generally in excess 

(i.e., the concentration of Cl- is much greater than the concentration of CuCl2-), but in 

general it is also supplied by diffusion from the source at the right-hand boundary (Figure 

3.1). 

CuClADS is the intermediate species which is consumed in the interface and not 

explicitly modelled. The OH- species are also not modelled as they are the product of the 

cathodic reduction of O2 (Equation 3.2) that is irreversible (i.e., the rate does not depend 

on the reverse reaction involving the oxidation of OH-). 
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In this step, the cathodic reaction is the reduction of oxygen: 

 O2 + 2 H2O + 4 e-  
𝑘𝑐
→   4 OH- 3.2 

The rate constant associated with the above reaction is kc with an assumed value of 1.7 

x 10-10 m/s (King et al., 1995) (see Chapter 2 for rate constant review).   

The anodic reaction for the dissolution of copper is: 

 Cu + Cl-   
𝑘𝑎𝑓
⇌
𝑘𝑎𝑏

   CuClADS + e- 3.3   

 
CuClADS + Cl-   

𝑘𝑏𝑓
⇌
𝑘𝑏𝑏

   CuCl2- 
3.4   

The reversible reaction of adsorption of copper and chloride has rate constants of 

kaf and kab for forward and reverse reactions respectively. Similarly, the formation of 

cuprous chloride ions has rate constants of kbf and kbb.  

A combined rate constant, ka, is used to denote kaf x kbf / kab. This has a value of 

3.3 x 10-8 m4/mol-s (King et al., 1995) while the value of kbb is assumed to be 1.42 x 10-4 

m/s (Hurlen, 1961). 

The relationship between current and potential can be expressed using Butler-

Volmer equations for both anodic and cathodic reactions as follows: 

 𝑖𝑎 = 𝑛𝑎 𝐹 {𝑘𝑎 [𝐶𝑙
−]2 exp

𝐹

𝑅𝑇
 (𝐸 − 𝐸𝑎) − 𝑘𝑏𝑏 [𝐶𝑢𝐶𝑙2

−]} 3.5 

 

 
𝑖𝑐 = − 𝑛𝑐 𝐹 𝑘𝑐 [𝑂2] exp

𝛼𝑐𝐹

𝑅𝑇
 (𝐸 − 𝐸𝑐)  

 
3.6 

Where the various coffieicients are defined in the glossary.  

The length of the bentonite layer on the copper electrode in the experiment was 

1mm and 10mm. The boundary condition for concentration was taken as constant for O2 

and Cl- at the right-hand boundary with the concentration of O2 (range between 0.2- 

0.0007 mol/m3) as summarized in Table 5.1, and the concentration of Cl- as taken 1000 

mol/m3 (with activity coefficient of 0.657). Moreover, the concentration for CuCl2- was 

taken as zero for the same lengths and boundary. 
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3.2.2 Step 2: Transient Model with Simplified Reaction Scheme 

Step 2 is identical to Step 1 except that a transient solution is calculated. The time 

simulated is for 250 hours and 2500 hours for 1 mm and 10 mm respectively. 

3.2.3 Step 3a: Homogeneous oxidation of Cu(I) and Interfacial Reduction of Cu(II) 

In Steps 3a-d, additional chemical species, reactions, and/or processes are 

introduced.  Step 3a includes one additional species (Cu2+ (concentration c3)), diffusion 

of Cu2+ towards and away from the container surface, oxidation of CuCl2- (concentration 

c1) by dissolved O2 (concentration c0) and an additional cathodic reaction. These 

processes are described below and shown in Figure 3.2. In the figure, the new 

species/processes are shown in red font while the existing species and processes from 

Steps 1 are shown in black. 

Figure 3.2: Reaction scheme for Step 3a in CCM-UC model (King, 2016) 
 

In Step 3a, the interfacial reactions are influenced by homogeneous reactions in 

the bulk solution. In this step an additional chemical species is considered, namely cupric 
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ions, along with the rate constants for the homogeneous oxidation of copper chloride ions 

(k1) and the reduction of cupric ions at the interface of copper bentonite (kd).  

 Cu2+ + 2 Cl- + e-   
𝑘𝑑
→     CuCl2- 3.7  

Evans diagrams can be used for analyzing the corrosion process. These diagrams 

represent the relation between an electrode’s kinetic behavior i.e. current density and 

thermodynamics i.e. potential (Corrosionpedia, 2018).  

An example presented by Tavakoli et al, (2017) considers a system containing 

chloride, chromium and magnesium. There can be two anodic reactions and one cathodic 

reactions as shown in the Evans diagram (Figure 3.3). The intersectional point of cathodic 

and anodic reaction represents the corrosion potential (Ecorr). In the absence of 

magnesium, the intersectional point is higher indicating the influence of the anodic 

reactions is greater. The corresponding currents are represented by icorr (Tavakoli et al., 

2017). 

 

Figure 3.3: Corrosion potential for chloride, copper and magnesium system  
(Tavakoli et al., 2017) 

 

As in case of Step 1, Butler-Volmer expressions are used for determining the 

current at the interface. Another cathodic reaction is included in addition to the previous 

ones from Step 1 and 2: 



44 

 

 𝑖𝑑 = − 𝑛𝑑  𝐹 𝑘𝐷 [𝐶𝑢
2+] exp (−

𝛼𝑑𝐹

𝑅𝑇
 (𝐸 − 𝐸𝑑))  3.8 

At the left-hand boundary condition, at the copper surface, the sum of the anodic 

and cathodic reaction is set to zero in order to solve for the corrosion potential. 

 𝑖𝑎 + 𝑖𝑐 + 𝑖𝑑= 0 3.9 

The boundary condition of zero net current condition is considered on the left side 

boundary. From this condition, the corrosion potential (Ecorr) can be determined from the 

equation involving relation of icorr and Ecorr.  

 

This corrosion potential can be used to determine the corrosion current which can 

be used to calculate the corrosion rate through the following expression: 

 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝑖𝑐𝑜𝑟𝑟 𝑀𝐶𝑢
𝐹𝜌𝐶𝑢

 3.10 

where 𝑖𝑐𝑜𝑟𝑟 is the corrosion current density determined from the model, 𝑀𝐶𝑢 is the 

atomic mass of copper and 𝜌𝐶𝑢 is the density of copper (see Appendix A for the derivation 

of this equation). 

Step 3a also includes a homogeneous oxidation reaction of CuCl2- by O2: 

 4CuCl2- + O2 + 2H2O   
𝒌𝟏
→   4Cu2+ + 8Cl- + 4OH- 

 

3.11 

The consumption rate of O2 can be expressed as: 

 −
𝜕𝑐0
𝜕𝑡
=
𝑘1
4
𝑐0𝑐1 3.12 

This expression is dependent on the expression of both oxygen and copper 

chloride.  

The expression for the rate constant, k1 (Equation 3.13) is derived from 

experiments conducted by Sharma and Millero (1988), where c6 is the aqueous 

concentration of chloride.  

log 𝑘1  = 11.38 − 2064/ 𝑇 − 3.69 √
𝑐6

1 − 0.1103 𝑐6
+ 0.73  √

𝑐6
1 − 0.1103 𝑐6

  3.13 
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The reaction-diffusion equations for Step 3a are: 
 

 
𝜀𝑎
𝜕(𝑆𝑐0)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷0

𝜕𝑐0
𝜕𝑥
) − 𝜀𝑎𝑆

𝑘1
4
𝑐0𝑐1 

 
3.14 

 
𝜀𝑎
𝜕(𝑆𝑐1)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷1

𝜕𝑐1
𝜕𝑥
) − 𝜀𝑎𝑆𝑘1𝑐0𝑐1 

 
3.15 

 
𝜀𝑎
𝜕(𝑆𝑐3)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷3

𝜕𝑐3
𝜕𝑥
) + 𝜀𝑎𝑆𝑘1𝑐0𝑐1 

 
3.16 

 𝜀𝑎
𝜕(𝑆𝑐6)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷6

𝜕𝑐6
𝜕𝑥
) + 2𝑘1𝑐0𝑐1𝜀𝑎𝑆 3.17 

 

These equations are incorporated into the COMSOL model. 

3.2.4 Step 3b: Precipitation/dissolution of Solid Cu(II) 

In this step, precipitation of paratacamite (CuCl2. 3Cu(OH)2) and dissolution of 

copper (II) with their respective rate constant (k3/k-3) are considered. 

The rate constant, k3, is assumed to be 1 x 10-5 s-1 at 25oC. Moreover, the value of 

k-3 is taken as 1/10th of the k3 value based on a limited number of measurements (King 

2016, King and Strandlund - unpublished data). The associated reactions are highlighted 

in red in Figure 3.4. 

The reaction is: 

 4Cu2+ + 6 OH- + 2Cl-    
𝑘3
⇌
𝑘−3

   CuCl2.3Cu(OH)2 3.18 
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Figure 3.4: Reaction scheme for Step 3b in CCM-UC model (King, 2016) 

 

The rate of precipitation can be given by: 

 
𝜕𝑐4
𝜕𝑡
= 𝜀𝑎𝑆

𝑘3
4
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡) 3.19 

 

The ‘max’ function takes into account that the solution is not supersaturated with 

Cu2+ ions. The expression for the rate of dissolution can be given by: 

 
−
𝜕𝑐4
𝜕𝑡
= 𝑘−3𝑐4 

 
3.20 

The modified and the extended equations for the reaction-diffusion equations are 

as follows: 
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𝜀𝑎
𝜕(𝑆𝑐0)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷0

𝜕𝑐0
𝜕𝑥
) − 𝜀𝑎𝑆

𝑘1
4
𝑐0𝑐1 

 
3.21 

 
𝜀𝑎
𝜕(𝑆𝑐1)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷1

𝜕𝑐1
𝜕𝑥
) − 𝜀𝑎𝑆𝑘1𝑐0𝑐1 

 
3.22 

 

𝜀𝑎
𝜕(𝑆𝑐3)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷3

𝜕𝑐3
𝜕𝑥
) + 𝜀𝑎𝑆[𝑘1𝑐0𝑐1 − 𝑘3𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡)]

+ 4𝑘−3𝑐4 

 

3.23 

 

𝜕𝑐4
𝜕𝑡
= 𝜀𝑎𝑆

𝑘3
4
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡) − 𝑘−3𝑐4 

 
3.24 

 

𝜀𝑎
𝜕(𝑆𝑐6)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷6

𝜕𝑐6
𝜕𝑥
) + 𝜀𝑎𝑆 [2𝑘1𝑐0𝑐1 −

𝑘3
2
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡)]

+ 2𝑘−3𝑐4 

 

3.25 

The equations are appended with the ones included in the previous step into the 

COMSOL model. 

3.2.5 Step 3c: Precipitation/dissolution of Solid Cu2O 

The precipitation and dissolution of cuprous oxide (Cu2O) is considered in this 

step, with a rate constant of k2/k-2, respectively. The rate constant (k2) is assumed to be 

1 s-1 at 25oC based on limited measurements (see Chapter 2). The reaction is dependent 

on pH and independent of chloride concentration. The reverse reaction rate constant, k-

2, is assumed to be 0.1 s-1 which is based on limited measurements (King 2016, King and 

Legere -unpublished data). The associated reactions are highlighted in red in Figure 3.5. 
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Figure 3.5: Reaction scheme for Step 3c in CCM-UC model (King, 2016) 

 

The concentration of Cu2O can be expressed as: 

 2CuCl2- + H2O 
𝑘2
⇌
𝑘−2

 Cu2O + 4Cl- + 2H+  3.26 

 

The rate expression can be given by: 

 
𝜕(𝑆𝑐2)

𝜕𝑡
= 𝜀𝑎𝑆

𝑘2
2
𝑚𝑎𝑥(0, 𝑐1 − 𝑐1

𝑠𝑎𝑡) 3.27 

 

The c1
sat term ensures the rate is valid for the cuprous oxide precipitating from 

saturated solutions and no supersaturation occurs. This reduces the numerical errors in 

solving the equations. 

−
𝜕(𝑆𝑐2)

𝜕𝑡
= 𝑘−2𝑐2 

 
3.28 
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𝜀𝑎
𝜕(𝑆𝑐0)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷0

𝜕𝑐0
𝜕𝑥
) − 𝜀𝑎𝑆

𝑘1
4
𝑐0𝑐1 

 
3.29 

𝜀𝑎
𝜕(𝑆𝑐1)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷1

𝜕𝑐1
𝜕𝑥
) + 𝜀𝑎𝑆[−𝑘1𝑐0𝑐1 − 𝑘2𝑚𝑎𝑥(0, 𝑐1 − 𝑐1

𝑠𝑎𝑡)] + 2𝑘−2𝑐2 

 
3.30 

𝜕(𝑆𝑐2)

𝜕𝑡
= 𝜀𝑎𝑆

𝑘2
2
𝑚𝑎𝑥(0, 𝑐1 − 𝑐1

𝑠𝑎𝑡) − 𝑘−2𝑐2 

 
3.31 

𝜀𝑎
𝜕(𝑆𝑐3)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷3

𝜕𝑐3
𝜕𝑥
) + 𝜀𝑎𝑆[𝑘1𝑐0𝑐1 − 𝑘3𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡)] + 4𝑘−3𝑐4 

 
3.32 

𝜕𝑐4
𝜕𝑡
= 𝜀𝑎𝑆

𝑘3
4
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡) − 𝑘−3𝑐4 

 
3.33 

𝜀𝑎
𝜕(𝑆𝑐6)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷6

𝜕𝑐6
𝜕𝑥
)

+ 𝜀𝑎𝑆 [2𝑘1𝑐0𝑐1 + 2𝑘2𝑚𝑎𝑥(0, 𝑐1 − 𝑐1
𝑠𝑎𝑡) −

𝑘3
2
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡)]

+ 2𝑘−3𝑐4 − 4𝑘−2𝑐2 

3.34 

As in the previous steps, these equations were implemented into COMSOL. 

3.2.6 Step 3d: Adsorption/desorption of Cu(II) 

The adsorption and desorption process of Cu(II) to and from bentonite is included 

in this step. The associated rate constants considered are k4/k-4. 

The rate constant k4 is assumed to be 2 x 10-6 m3/mol-s based on experiments 

conducted on loose clay (King 2016, King and Ryan -unpublished data). The reverse rate 

constant (k-4) which is the desorption of Cu2+ ion from bentonite is taken as 1/10th of the 

forward reaction. The associated reactions are highlighted in red in Figure 3.6. 
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Figure 3.6: Reaction scheme for Step 3d in CCM-UC model (King, 2016) 

 

The reaction is as follows: 

 Cu2+ + 2Y-   
𝑘4
⇌
𝑘−4

   CuY2 3.35 

where Y indicates a charged adsorption site on bentonite  

The rate of the forward reaction: 

 
𝜕𝑐5
𝜕𝑡
= 𝜀𝑎𝑆𝑘4𝑐3(𝑐5

𝑚𝑎𝑥 − 𝑐5) 3.36 

for c5<c5
max 

c5
max indicates the maximum surface coverage of copper. 

 
−
𝜕𝑐5
𝜕𝑡
= 𝑘−4𝑐5 

 
3.37 

The associated reaction-diffusion equations are defined as follows: 

𝜀𝑎
𝜕(𝑆𝑐0)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷0

𝜕𝑐0
𝜕𝑥
) − 𝜀𝑎𝑆

𝑘1
4
𝑐0𝑐1 

           
3.38 
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𝜀𝑎
𝜕(𝑆𝑐1)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷1

𝜕𝑐1
𝜕𝑥
) + 𝜀𝑎𝑆[−𝑘1𝑐0𝑐1 − 𝑘2𝑚𝑎𝑥(0, 𝑐1 − 𝑐1

𝑠𝑎𝑡)] + 2𝑘−2𝑐2 

 
3.39 

𝜕(𝑆𝑐2)

𝜕𝑡
= 𝜀𝑎𝑆

𝑘2
2
𝑚𝑎𝑥(0, 𝑐1 − 𝑐1

𝑠𝑎𝑡) − 𝑘−2𝑐2 

 
3.40 

𝜀𝑎
𝜕(𝑆𝑐3)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷3

𝜕𝑐3
𝜕𝑥
)

+ 𝜀𝑎𝑆[𝑘1𝑐0𝑐1 − 𝑘3𝑚𝑎𝑥(0, 𝑐3 − 𝑐3
𝑠𝑎𝑡) − 𝑘4𝑐3(𝑐5

𝑚𝑎𝑥 − 𝑐5)𝜌𝑑]

+ 4𝑘−3𝑐4 + 𝑘−4𝑐5𝜌𝑑 

 

3.41 

𝜕𝑐4
𝜕𝑡
= 𝜀𝑎𝑆

𝑘3
4
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡) − 𝑘−3𝑐4 

 
3.42 

𝜌𝑑
𝜕𝑐5
𝜕𝑡
= 𝜀𝑎𝑆𝑘4𝑐3(𝑐5

𝑚𝑎𝑥 − 𝑐5)𝜌𝑑 − 𝑘−4𝑐5𝜌𝑑 

 
3.43 

𝜀𝑎
𝜕(𝑆𝑐6)

𝜕𝑡
=
𝜕

𝜕𝑥
(𝜏𝑓𝜀𝑒𝑆𝐷6

𝜕𝑐6
𝜕𝑥
)

+ 𝜀𝑎𝑆 [2𝑘1𝑐0𝑐1 + 2𝑘2𝑚𝑎𝑥(0, 𝑐1 − 𝑐1
𝑠𝑎𝑡) −

𝑘3
2
𝑚𝑎𝑥(0, 𝑐3 − 𝑐3

𝑠𝑎𝑡)]

+ 2𝑘−3𝑐4 − 4𝑘−2𝑐2 

3.44 

 

As in the previous steps, these equations were implemented in COMSOL. 

 

The rate constants used in the development of CCM-UC in COMSOL has been 

summarized in Table 3.2.  
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RATE 
CONSTANT 

UNITS REACTION ASSUMPTIONS EXPRESSION REFERENCES 

k1 

For c6 
[Cl-] 
unit: 
mol. 
dm-3, 

k1 has 
unit: 
dm3. 
mol-1. 

s-1 

Oxidation 
of CuCl2- 

by O2 

*Value based 
on experiment 

*pH 6-9 
*5-45oC 

*Activation 
energy, Ea: 

39.5-
45.4 kJ·mol-1 

*seawater and 
Red Sea waters 

*Derivation 
from Sharma & 
Millero’s 1988 

equation 

 

(King, 2016) 
Referenced as 
(Sharma and 

Millero, 1988a) 

For c6 
unit: 
mol. 
m-3, 

k1 has 
unit: 
m3. 

mol-1. 
s-1 

   

Personal 
correspondence 
(King,  2016 (SI 

Units) 

    

Originally in 
(Sharma and 

Millero, 1988a) 
 




























6

6

2/1

6

6
1

1103.01
73.0

1103.01
69.3

2064
38.11log

c

c

c

c

T
k




























6

6

2/1

6

6
1

1103.01000
73.0

1103.01000
69.3

2064
38.8log

c

c

c

c

T
k

II
T

pHk 73.069.3
2064

)(12.032.12log 2/1

1 

Table 3.2: Rate constant values or expressions used in the development of copper 
corrosion model in COMSOL  
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RATE 
CONSTANT 

UNITS REACTION ASSUMPTIONS EXPRESSION REFERENCES 

k2 s-1 
Rate of 

hydrolysis 
of CuCl2- 

*25oC 
*Assumed 

value 

k2=1. There is uncertainty in the mechanism of 
formation of Cu2O. This value of k2 assumes of 

hydrolysis of CuCl2-. It is set 10 higher than k-2 to 
simulate experimentally observed formation of 

Cu2O 

(King, 2016) 
 

k-2 s-1 
Rate of 

dissolution 
of Cu2O 

*25oC 
*Assumed 

value 

k-2=0.1. This value is based on some experimental 
data on the dissolution rate of Cu2O in Cl- solutions 
as function of pH. Considered independent of [Cl-]. 

Dependent upon specific surface area of Cu2O 
which is unknown and is dependent upon 

environmental conditions under which precipitation 
occurs. 

King and Legere, 
unpublished 

data 

k3 s-1 

Rate 
constant for 

the 
precipitation 

of CuCl2

3Cu(OH)2 

*25oC 
*Assumed 

value 

k3=1 x 10-5. No kinetic data available. Taken as 10 
times higher than the dissolution rate constant to 

account for the experimental observation of 
precipitated CuCl23Cu(OH)2. 

(King, 2016) 
 

k-3 s-1 

Rate 
constant for 

the 
dissolution 
of CuCl2

3Cu(OH)2 

*25oC 
*Assumed 

value 

k-3=1 x 10-6. Based on limited number of 
experimental measurements. Dependent on 
specific surface area (similar to k-2 for Cu2O). 

King and 
Strandlund, 

unpublished 
data 
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RATE 
CONSTANT 

UNITS REACTION ASSUMPTIONS EXPRESSION REFERENCES 

k4 
dm3. 
mol-1. 

s-1 

Rate constant 
for the 

adsorption of 
Cu2+ on Na-

bentonite 

25oC 

k4= 2 x 10-3. Based on kinetic studies of 
loose clay. According to Fraser’s TM 

file, this value is consistent with 
Langmuir adsorption data of paper of 

Ryan and King 1994 

King and Ryan, 
unpublished 

data 

k-4 s-1 

Rate constant 
for the 

desorption of 
Cu2+ 

25oC 
k-4=1 x 10-6. Based on desorption of 

loose clay systems 

King and Ryan, 
unpublished 

data 

k5 
dm3. 
mol-1. 

s-1 

Rate constant 
for the reaction 

between O2 
and dissolved 

Fe(II) 

*25oC (Temp. 
unquoted in Wehrli 

paper. So, 
assumed) 

*[O2] = 1.26 x 10-3 
mol. dm-3 

*reaction is 1st 
order wrt [O2] 

 

k5=2.9. Based on pH=7 experiment of 
Wehrli with k=3.7 x 10-3 s-1. It is stated 
the reaction is highly pH dependent. 

Wehrli (1990) 

k6 
dm3. 
mol-1. 

s-1 

Rate constant 
for the reaction 
between Cu2+ 

and Fe(II) 

*25o 

*No experimental 
data 

*Based on the 
assumption 

homogenous 
kinetics are rapid 
*Assumed value 

k6=10 
King (2016) 
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RATE 
CONSTANT 

UNITS REACTION ASSUMPTIONS EXPRESSION REFERENCES 

k7 s-1 

Rate constant 
for the rate of 
precipitation 
of Fe(II) solid 

*25oC 
*No experimental 

data 
*Assumed value 

k7=1. Based on precipitation of Cu2O 
King (2016) 

 

k-7 s-1 

Rate constant 
for the 

dissolution of 
a Fe(II) 

*25oC 
*Assumed value 

 
k-7=0.1. Based on dissolution of Cu2O 

King (2016) 
 

k8 s-1 

Rate constant 
for the 

dissolution of 
O2(g) 

25oC k8=0.0122 
King (2016) 

 

k9 s-1 

Rate constant 
for microbial 

aerobic 
respiration 

25oC k9=2.2 x 10-9. 
King (2016), 

King and Kolar 
2006 
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RATE 
CONSTANT 

UNITS REACTION ASSUMPTIONS EXPRESSION REFERENCES 

ka dm. s-1 

Combined 
electrochemical 
rate constant for 

anodic 
dissolution of 

Cu 

*25oC 
*Based on 

mean value for 
0.1 mol.dm-3 
and 1.0 mol. 

dm-3 Cl- solution 

ka = kafkbf/kab = 3.3 x 10-4. 
King et al. (1995) 

 

kbb dms-1 

Rate constant 
for the reverse 

reaction 
involving CuCl2- 

25oC kbb= 1.42 x 10-3. 
King et al. (1995) 

 

kc dm. s-1 
Electrochemical 
rate constant for 

O2 reduction 
25oC kc=1.7 x 10-9 

 
King et al. (1995) 

 

kd dms-1 

Electrochemical 
rate constant for 
the reduction of 

Cu2+ 

*25 oC 
*Based on i/E 

curves 
kd = 2 x 10-8 Hurlen (1961) 
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3.3 Conclusion 

The development of CCM-UC model has been divided into several steps (Step 1 

to Step 6) with increasing complexity. These steps were used to develop CCM 

using COMSOL Multiphysics, incorporating interfacial current equations (Butler-

Volmer) along with diffusion equations. The COMSOL model has been completed 

up to Step 3d which includes reduction of copper ions, oxidation of copper chloride 

ions, precipitation and dissolution of paratacamite. 
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4 CHAPTER FOUR: COMSOL MODEL VERIFICATION  

4.1 Description 

The CCM model was used to verify the COMSOL model. In order to do that, the 

CCM model was modified to align with the step-wise approach taken in this work.  The 

same parameters were used, as input for both COMSOL and CCM.  Although most of the 

results matched extremely well between the two models, some variation was observed in 

Step 2, as well as, the current density outputs. This may be due to various reasons. First, 

COMSOL is solved using finite elements method while CCM is solved using finite 

difference methods. Although the two models have similar outputs and have been tested 

to be independent of both time and space discretization, the solvers are different, and it 

is possible for this to be reflected in the results.  For example, both models use 

approximately the same initial time step, 10-7 hours. However, each model uses a different 

method for determining dynamic time stepping throughout the run of each simulation 

(CCM results are only reported starting at 10-4 hours).  Similarly, while the smallest space 

discretization is also the same between each model, the CCM model uses an increasing 

grid size moving away from the copper surface where the COMSOL model uses a 

constant grid size.  Other factors (i.e. time dependent boundary conditions) could lead to 

a difference in solution and while the COMSOL code is controlled for many of these 

factors, the CCM code is not controlled by or run by the author of this work directly. 

To verify the COMSOL model, all the specie concentrations were compared, as 

well as, the current density and corrosion potential. For the species concentrations, 

excellent agreement was obtained between the two models. All parameters in the 

COMSOL code are able to reproduce the same behavior and trend compared to CCM, 

and in most cases the absolute values of species concentration are also reproduced.  

However, the species concentration plots of Step 2 for 1 mm bentonite layer differs slightly 

during the initial time (0-10 hours) although the same step for 10 mm matches up well. 

Similarly, although the trend is similar, there is slight deviation with the current 

density absolute value shown for both Step 2 and 3d. The following chapter shows the 

comparison between the two models for only Step 2 and 3d, the rest of the steps are 

shown in the Appendix B.  
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4.1.1 Assumptions 

Several assumptions were taken when running the CCM and COMSOL models: 

I. The tortuosity was taken as 0.12195 instead of 0.05 as indicated in Fraser (2016) 

document. Moreover, the maximum Cu (II) adsorbed (c5max) was taken as zero 

instead of 0.3 mol/kg as indicated in the same reference document. This was done 

to match all the CCM input parameters.  

II. The temperature of the system is taken to be 25 oC, unlike in the DGR where the 

temperature will be initially high (up to 80 oC) and gradually decrease with time.  

III. The system is assumed to be completely saturated. This is not the case for the 

DGR, as saturation will be low initially. 

IV. Pressure of the DGR is not taken into account 

V. The system has been designed based on CCM-UC until Step 3d. Future steps 

overcomes the following shortcomings: 

a. The system considered to be in 1 D 

b. Influence of microbes are absent  

c. There is no sulfide in the system 

4.2 Comparison of CCM and COMSOL Plots 

The concentration profiles of different species (O2, Cl-, CuCl2-, Cu2O, 

CuCl2.3Cu(OH)2) with time have been plotted along with the variation of current density 

with distance from the interface of copper and bentonite. Moreover, the variation of 

corrosion potential with time has been plotted for both CCM and the COMSOL model. In 

all plots the solid line represents the COMSOL results while the dots represent CCM 

results. 

• Figure 4.1 to Figure 4.6 shows the profile for Step 2 for the 1mm bentonite case. 

Although there is some deviation from the CCM profile, the later complex steps 

involving more reactions matches accurately.  

• Figure 4.7 to Figure 4.14 shows the profile for Step 3d for 1 mm layer of bentonite 

and Figure 4.15 to Figure 4.22 shows the profile for Step 3d for 10 mm layer. It can 

be seen that the concentration profiles of CCM and COMSOL match accurately for 

both the layers of bentonite.  
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• The current density profiles (Figure 4.3, Figure 4.11 and Figure 4.19) show a slight 

deviation from the CCM profiles, but there is perfect overlap of corrosion potential 

profile (Figure 4.6, Figure 4.14 and Figure 4.22) in all the cases.  

• The reason for deviations of current profiles and Step 2 is not fully clear even 

though numerous debugging were done. 
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4.2.1 1 mm Bentonite Layer 

 

Figure 4.1: Concentration profile of chloride over bentonite thickness (1 mm), Step 2 
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Figure 4.2: Concentration profile of copper chloride ions over bentonite thickness (1 

mm), Step 2 
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 Figure 4.3: Current density profile over time for 1 mm bentonite thickness, Step 2 
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Figure 4.4: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2 over bentonite thickness (1 mm), Step 2 
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Figure 4.5: Concentration profile of oxygen over bentonite thickness (1 mm), Step 2  
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Figure 4.6: Variation of corrosion potential with time for 1 mm bentonite thickness 
with changing oxygen concentration for Step 2 
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Figure 4.7: Concentration profile of copper chloride ions over bentonite thickness 
(1 mm), Step 3d 
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Figure 4.8: Concentration profile of copper ions over bentonite thickness (1 mm), 

Step 3d  
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Figure 4.9: Concentration profile of paratacamite over bentonite thickness (1 

mm), Step 3d 
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Figure 4.10: Concentration profile of copper chloride ions over bentonite 

thickness (1 mm), Step 3d 
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 Figure 4.11: Current density profile over time for 1 mm bentonite thickness,  

Step 3d 
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Figure 4.12: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 
CuCl2.3Cu(OH)2) over bentonite thickness (1 mm), Step 3d 
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Figure 4.13: Concentration profile of oxygen over bentonite thickness (1 mm), Step 3d  
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Figure 4.14: Variation of corrosion potential with time for 1 mm bentonite thickness with 

changing oxygen concentration for Step 3d 
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4.2.2 10 mm Bentonite thickness 

 

 
Figure 4.15: Concentration profile of paratacamite over bentonite thickness (10 mm), 

Step 3d 
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Figure 4.16: Concentration profile of copper chloride ions over bentonite thickness (10 

mm), Step 3d 
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Figure 4.17: Concentration profile of copper ions over bentonite thickness (10 

mm), Step 3d  
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 Figure 4.18: Concentration profile of chloride ions over bentonite thickness (10 

mm), Step 3d  
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Figure 4.19: Current density profile over time for 10 mm bentonite thickness, 

Step 3d  
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Figure 4.20: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 
CuCl2.3Cu(OH)2) over bentonite thickness (10 mm), Step 3d 
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Figure 4.21: Concentration profile of oxygen over bentonite thickness (10 mm), 

Step 3d  
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Figure 4.22: Variation of corrosion potential with time for 10 mm bentonite 

thickness with changing oxygen concentration for Step 3d 
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4.3 Conclusion 

Outputs from COMSOL was verified against CCM outputs for the same input 

parameters. A slight deviation for Step 2 was observed for the two models as well as in 

the current density profile. Numerous debugging was done but the matching was still not 

ideal. The concentration profiles with distance and corrosion potential profile with time 

match the outputs of that of CCM with high accuracy. Since the latter, more complex steps 

matched the CCM model, it was determined that the COMSOL model has been verified. 
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5 CHAPTER FIVE: MODEL VALIDATION 

5.1 Description 

Once the COMSOL model was verified, it was validated by comparing it with an 

experiment conducted by King et al. (1995). This experiment consisted of two copper 

samples covered in a 1 mm and 10 mm layer of bentonite respectively. These were placed 

in separate NaCl bulk solutions (with an initial NaCl concentration 1000 mol/m3 with an 

activity coefficient of 0.657) and equilibrated with compressed air with an initial 

concentration of 20 vol% O2/N2. This was progressively reduced to 2 vol% O2/N2 and 0.2 

vol% O2/N2 and finally resulting in deaerated conditions using ultra-high purity Ar or N2.  

In the 1 mm experiment, there was an accidental overpurge of oxygen at 70 hours, which 

led to Ecorr fluctuations as shown in Figure 5.2. This indicates that the corrosion potential 

is significantly sensitive to oxygen concentration.  

Table 5.1: Change in oxygen concentration with time for both 1 mm and 10 mm 
bentonite layers dipped in NaCl (King et al., 1995) 

Oxygen concentration 

(mol/m3) 

Time (h) 

1 mm  10 mm 

0.2 0-5.5 0-107.4 

0.02 5.5-43.5 107.4-673 

0.002 43.5-90 673-2500 

0.0007 >90 (till ~250 h) >2500 (till ~2700 h) 

 

Figure 5.1 shows the experimental setup. The copper sample was covered by a 

bentonite layer of 1 mm or 10 mm and then covered by a platinum mesh which also 

allowed for contact with the bulk solution of NaCl. The solution was aerated with oxygen 

through the inlet as shown in the figure. The potential in the copper sample was measured 

with a saturated calomel reference electrode (SCE). 
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Figure 5.1: Schematic diagram of the experimental setup (King et al., 1995) 
 

The variation of potential with time is shown on Figure 5.2. The graphs’ trend 

shows considerable fluctuations in later time which was due to oxygen purging problem 

during the experiment. The potential can be used to calculate the corrosion current which 

could be used to calculate the extent of corrosion as explained in Section 3.2.3. 

The COMSOL mixed potential model was able to predict the trends associated 

with the corrosion potential reported in the experiment when the reactions of Step 3d are 

considered.  The model captured the steady state conditions reached before each change 

in oxygen concentration and the change in potential following a drop in oxygen 

concentration.  The COMSOL model captured steady state corrosion potential within 10% 

of the experiment for the 10 mm case.  The steady state corrosion potentials in the 1 mm 

case are more difficult to compare due to the experimental errors discussed above, 

however the overall fit of the COMSOL model to the experimental observations are 

comparable as they follow the same trend. 

The initial two graphs (Figure 5.3 and Figure 5.4) show the variation of trend in 

COMSOL with increasing steps (Step 2 to Step 3d) for 1 mm and 10 mm layer of 

bentonite. There is relatively low variation in case of 1 mm layer compared to 10mm 
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indicating that the diffusion distance has a significant effect on corrosion potential.  This 

will be later discussed in Chapter 6.  

The comparison of experimental plots with COMSOL is the following section. 

 
Figure 5.2: Experimental corrosion potential with time for 1 mm (top) and 10mm 

(bottom) bentonite thickness on copper. 
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5.2 Comparison of COMSOL Model with Experiments 

The following section shows the comparison of the COMSOL model with the 

experiments. Figure 5.3 and Figure 5.4 shows the variation of potential (Ecorr) for different 

steps of the CCM-UC model implemented in COMSOL. It can be seen that the trend for 

1 mm layer of bentonite seems to follow the outputs of the experiment more closely 

relative to the 10 mm layer. This indicates that the time period, as well as, the diffusion 

distance can play a major role in the variation of corrosion potential.  

One of the assumption used in the simulation was on the value of kd which is 

originally indicated in King (2016) as 2 x 10-6 dm/s was taken as 1/100th of this value as 

the original value was based on limited experiments and studies (e.g. Al-Qunaibit et al. 

(2005)) show that desorption is negligible. This is further investigated in Chapter 6. 
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Figure 5.3: Variation of corrosion potential with time for 1 mm bentonite layer, 
with changing oxygen concentration for Step 2 to 3d in comparison with experimental 

results (King et. al, 1995) 
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Figure 5.4: Variation of corrosion potential with time for 10 mm bentonite layer, 
with changing oxygen concentration for Step 2 to 3d in comparison with experimental 

results (King et. al, 1995) 
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5.3 Conclusion 

The profile of corrosion potential obtained from COMSOL was compared with an 

experiment (King et al., 1995) conducted with 1 mm and 10 mm layer of bentonite 

covering a copper sample. The COMSOL model was able to capture the trend of the 

experiment for 1 mm bentonite layer fairly well. However, there is a deviation observed 

for the 10 mm experiment indicating that diffusion distance and time can be a major factor 

influencing corrosion potential.  
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6 CHAPTER SIX: SENSITIVITY ANALYSIS 

6.1 Description 

A sensitivity analysis was performed using COMSOL for different factors, fx, that 

correspond to different rate constants, kx obtained from (King, 2016). Initial chloride 

concentration was also included in the analysis as it is a significant contributor to 

corrosion. The analysis was run for Step 3d for both the 1 and 10 mm scenario. All rate 

constants were varied with different orders of magnitude corresponding to a range of 

values typically seen in literature (Chapter 2) or values seen as appropriate, if literature 

ranges did not exist. When one rate was changing, the others were kept at their original 

values. These values, as well as, the ranges are listed in Table 6.1. The sensitivity 

analysis was conducted to observe if any changes these parameters would significantly 

affect the overall corrosion potential. 
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Table 6.1: Factors used in sensitivity study 
 

S. No Variable 

(kx) 

Description Original Value Factors (fx) 

1 k1 
Homogenous oxidation 

of CuCl2- by oxygen 

Expression 

based* 
0, 1/100, 1, 100 

2 k2 
Precipitation of Solid 

Cuprite 
1 s-1 

 

0, 1/100, 1, 100 

3 k3 
Precipitation of 

paratacamite 
1 x 10-5 s-1 0, 1/100, 1, 100 

4 k4 
Adsorption of copper 

ions 
2 x 10-6 m3/mol-s 0, 1/100, 1, 100 

5 k-4 
Desorption of copper 

ions 
1 x 10-6 s-1 0, 1/100, 1, 100 

6 ka 
Interfacial reaction for 

formation of CuCl2- 

3.3 x 10-8 m4/mol-

s 
1/1000, 1/100, 1, 10 

7 kbb 
Conversion of CuCl2- to 

CuCl 
1.42 x 10-4 m/s 1/10, 1/2, 1, 2 

8 kc 
Interfacial reaction for 

reduction of O2 
1.7 x 10-10 m/s 1/1000, 1/100, 1, 100 

9 kd 
Interfacial reaction for 

reduction of Cu2+ 
2 x 10-9 m/s 0, 1/100, 1, 100 

10 [Cl-] 
Concentration of 

chloride 

1000 mol/m3 [657 

mol/m3 was taken 

as the default 

value for all the 

above previous 

rate variable] 

0.657, 7, 1, 2 

 

*log 𝑘1  = 11.38 − 2064/ 𝑇 − 3.69 √
𝑐6

1−0.1103 𝑐6
+ 0.73  √

𝑐6

1−0.1103 𝑐6
   

where c6
 is the chloride concentration. 
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6.2 k1 (Homogenous oxidation of CuCl2- by oxygen) 

 

Figure 6.1: Sensitivity of corrosion potential with changing rate constant, k1 by 
multiplying with factor, f1 for 1 mm (left) and 10 mm (right) bentonite 

 

Figure 6.1 shows the effect of changing k1 on Ecorr for both bentonite thicknesses. It can 

be seen that the rate at which CuCl2- is oxidized has a significant effect on the corrosion 

potential. In most cases, an increase in k1 decreases Ecorr. This is due to the greater 

consumption of cuprous chloride ions to form cupric ions and releasing chloride ions 

(Equation 6.1). For the case of 1 mm bentonite, Ecorr decreases as k1 increases, except 

when k1 becomes significantly large (f1 =100) and corresponding oxygen level is low (time 

> 90 h). In this case, the potential starts increasing. 

For 10 mm bentonite thickness, it can be seen that not including k1 (f1 =0) keeps 

the corrosion potential high and a low value of k1 (f1 = 0.01) shows a trend similar to the 

1 mm bentonite case. However, as k1 increases, the trend deviates and the corrosion 

potential increases as oxygen is decreased. From equations 6.1 and 6.2, it can be seen 
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that k1 affects both chloride and oxygen concentration which are among the main factors 

which produces significant changes in corrosion potential.  

 4CuCl2- + O2 + 2H2O   
𝑘1
→   4Cu2+ + 8Cl- + 4OH- 6.1 

 

log 𝑘1  = 11.38 − 2064/ 𝑇 − 3.69 √
𝑐6

1 − 0.1103 𝑐6
+ 0.73  √

𝑐6
1 − 0.1103 𝑐6

  

 

6.2 
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6.3 k2 (Precipitation of solid cuprite) 

 

Figure 6.2: Sensitivity of corrosion potential with changing rate constant, k2 by 
multiplying with factor, f2 for 1 mm (left) and 10 mm (right) bentonite 

 

 2CuCl2- + H2O 
𝑘2
⇌
𝑘−2

 Cu2O + 4Cl- + 2H+ 6.3 

There is no effect on corrosion potential with variation of k2 / k-2 as seen in Figure 6.2 (k-2 

trends not shown here). The formation of cuprous oxide is dependent on the pH which is 

not considered in this study (Cano et al., 2005). 
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6.4 k3 (Precipitation of paratacamite) 

 

Figure 6.3: Sensitivity of corrosion potential with changing rate constant, k3 by 
multiplying with factor, f3 for 1 mm (left) and 10 mm (right) bentonite 

 

The formation/dissolution of paratacamite does not have a significant effect on corrosion 

potential as shown in the above figures (Figure 6.3). This might be attributed to the fact 

that in the simulation the amount of paratacamite generated is nearly one-tenth lower 

than cupric ions or cuprous chloride thereby leading to less significant effects compared 

to other ions.  
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6.5 k4/k-4 (Adsorption and desorption of copper ions) 

 

Figure 6.4: Sensitivity of corrosion potential with changing rate constant, k4 by 
multiplying with factor, f4 for 1 mm (left) and 10 mm (right) bentonite  

 

The adsorption and desorption of cupric ions has a significant effect on the corrosion 

process as can be seen from Figure 6.4, as it determines the availability of cupric ions in 

the system. The scenario with the thicker bentonite layer (Figure 6.4, right) seems to have 

a more significant effect compared to the 1 mm layer of bentonite. Since adsorption is 

dependent on the number of vacant surface sites, a thicker bentonite layer will have more 

sites for adsorption.  

In the 10 mm case, the increase in k4 leads to a general decrease in Ecorr. However, in 

the 1 mm case, the trend is not as straight forward as the impact of k4 seems to also be 

a function of oxygen content. It can be seen from Figure 6.4 (left) that at high oxygen 



98 

 

levels, a higher adsorption value decreases Ecorr. As oxygen is reduced, (time = 50 hours), 

higher adsorption values (f4 = 100), actually have higher Ecorr values than lower k4 values.  

 Cu2+ + 2Y-   
𝑘4
⇌
𝑘−4

   CuY2 6.4 

Although adsorption by bentonite is high with increased pH (Veli and Alyüz, 2007), this 

factor was not considered in this study. 

 

Figure 6.5: Sensitivity of corrosion potential with changing rate constant, k-4 by 
multiplying with factor, f-4 for 1 mm (left) and 10 mm (right) bentonite  

 

The desorption of adsorbed copper tends to have no effect on the corrosion potential for 

1 mm (Figure 6.5, left). However, in case of 10 mm layer of bentonite, an increase in 

desorption tends to increase the corrosion potential for lower oxygen concentrations 

(Figure 6.5, right). This might be attributed to more cupric ions being available for 

influencing cathodic current thereby increasing the potential.  
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6.6 ka (Interfacial reaction for formation of CuCl2-) 

 

Figure 6.6: Sensitivity of corrosion potential with changing rate constant, ka by 
multiplying with factor, fa for 1 mm (left) and 10 mm (right) bentonite  

 

Figure 6.6 shows that an increase in ka leads to an increase in adsorption of chloride by 

copper. 

 Cu + Cl-   
𝑘𝑎𝑓
⇌
𝑘𝑎𝑏

   CuClADS + e- 6.5   

 
CuClADS + Cl-   

𝑘𝑏𝑓
⇌
𝑘𝑏𝑏

   CuCl2- 
6.6 

where     

 𝑘𝑎 = 
𝑘𝑎𝑓𝑘𝑏𝑓

𝑘𝑎𝑏
   6.7 
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Increasing ka leads to increase in anodic current (Equation 6.8), which will lead to 

decrease in potential i.e. potential moving towards more negative. 

 𝑖𝑎 = 𝑛𝑎  𝐹 {𝑘𝑎 [𝐶𝑙
−]2 exp

𝐹

𝑅𝑇
 (𝐸 − 𝐸𝑎) − 𝑘𝑏𝑏 [𝐶𝑢𝐶𝑙2

−]} 6.8 

 

This trend is observed in case of both 1 mm and 10 mm bentonite layers on copper.  

Unlike the homogeneous kinetics, it can be seen that changing ka results in a shift in the 

Ecorr value and not a change in figure shape, signifying that the anodic dissolution of 

copper only effects the initial corrosion potential. 
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6.7 kbb (Conversion of CuCl2- to CuCl) 

 

Figure 6.7: Sensitivity of corrosion potential with changing rate constant, kbb by 
multiplying with factor, fbb for 1 mm (left) and 10 mm (right) bentonite  

 

High kbb indicates that the reverse reaction involving cuprous chloride ions is occurring, 

as per Equation 6.6. kbf is included in the expression of ka as indicated in Equation  6.7 

With increasing kbb, the corrosion potential tends to move towards the positive value. This 

is because the anodic current will decrease leading to increase in potential as expressed 

by Equation 6.8. 

As seen in Figure 6.7, a similar trend is observed for both 1 mm and 10 mm bentonite 

layers on copper. Similar to ka, the change in kbb only affects the initial corrosion potential. 
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6.8 kc (Interfacial reaction for reduction of oxygen) 

 

Figure 6.8: Sensitivity of corrosion potential with changing rate constant, kc by 
multiplying with factor, fc for 1 mm (left) and 10 mm (right) bentonite  

 

The change in corrosion potential with varying kc is not significant except in cases of low 

values of kc (fc =0.01, 0.001) (Figure 6.8). In this case, the trend deviates slightly and is 

magnified in case of 10 mm at time 107 h where the oxygen concentration is reduced by 

one-tenth of its original amount. Here the potential moves towards the positive direction. 

This indicates that when the reduction of oxygen decreases or is low, the cathodic 

influence is higher.  

O2 + 2 H2O + 4 e-  
𝑘𝑐
→   4 OH- 6.9 
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6.9 kd (Interfacial reaction for reduction of Cu2+) 

 

Figure 6.9: Sensitivity of corrosion potential with changing rate constant, kd by 
multiplying with factor, fd for 1 mm (left) and 10 mm (right) bentonite  

 

Increase in the value of kd leads to an increase in the formation of copper chloride ions 

(from cupric ions) at the interface. As seen in Figure 6.9, the result of fd = 1 and fd = 100 

overlap, indicating that higher kd have no significant effect on corrosion rates. 

 
Cu2+ + 2 Cl- + e-   

𝑘𝑑
→     CuCl2- 6.10 

The cathodic current is directly associated with the value of kd in accordance with 

Equation 6.11. When kd increases, the cathodic current increases leading to moving of 

corrosion potential towards the positive direction.  
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 𝑖𝑑 = − 𝑛𝑑  𝐹 𝑘𝑑  [𝐶𝑢
2+] exp (−

𝛼𝑑𝐹

𝑅𝑇
 (𝐸 − 𝐸𝑑))  6.11 

In case of 1 mm, the potential moves towards the positive direction initially which changes 

for fd = 0.01 (time = 43.5 h) where it coincides and then moves below as shown (time = 

90). In case of 10 mm, when the cathodic reaction is absent (kd = 0), the trend does not 

move upward. High value of kd (fd = 100) leads to Ecorr moving towards positive. 
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6.10 [Cl-] (Concentration of chloride) 

 

Figure 6.10: Sensitivity of corrosion potential with changing chloride 
concentration, [Cl-] by multiplying with factor, fcl for 1 mm (left) and 10 mm (right) 

bentonite  
 

The increasing concentration of chloride decreases the corrosion potential as the anodic 

current is directly dependent on the chloride concentration (Equation 6.8). With increase 

in chloride concentration, the anodic current will increase. This in turn will decrease the 

electrode potential in accordance to Evans diagrams. This trend is observed in the above 

figure (Figure 6.10). 
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6.11 Current Density plots 

 

Figure 6.11: Current densities and ratio of ic/ia  for 1 mm (left) and 10 mm (right) 
bentonite for Step 3d. The cathodic currents have been multiplied with -1 for visual ease  

 
The above graphs (Figure 6.11) show that the oxygen concentration is a significant 

factor in influencing corrosion potential. Oxygen being a major cathodic reactant can lead 

to ‘bumps’ in which is observed with changing oxygen concentration.  

 

ic =  − nc F kc [O2] exp
αcF

RT
 (E − Ec)
 

 6.12 
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6.12 Conclusion 

A sensitivity analysis for different rate constants and chloride concentrations was 

done using the COMSOL model. This was performed by keeping various constants the 

same and changing one factor at a time. The analysis was run for Step 3d for both 1 and 

10 mm scenarios. 

The following trends were found for both the 1 mm and 10mm bentonite thickness: 

• homogenous oxidation of CuCl2- (k1) had a large impact on the corrosion 

rate; for the 10 mm case the effect of k1 was more significant at lower values 

of oxygen 

• precipitation of solid cuprite (k2) and paratcamite (k3) had little effect the 

corrosion potential 

• adsorption of Cu2+ (k4) had a significant effect on both cases while 

desorption of copper (k-4) only effected the corrosion potential in the 10 mm 

case  

• interfacial reactions (ka, kbb) only affected the initial corrosion potential 

• interfacial reaction for reduction of oxygen (kc) has a slight effect on the 

copper potentials but only at lower values 

• the corrosion potential changes at low values of kd (reduction of Cu2+)  

Overall, k1, k4 and kc are the factors most sensitive in the copper corrosion process. Since 

there is significant uncertainty regarding these factors and little information is found in 

literature regarding their values, it would be recommended that further studies or 

experiments be performed to identify these factor under DGR conditions. Doing so would 

allow for a better estimation of the corrosion depth. 
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7 CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 

To ensure safe and reliable disposal, NWMO has implemented APM, the approach 

selected by the Government of Canada in 2007 for long-term management of used 

nuclear fuel. In support of APM, NWMO is pursuing an active Technical Program 

addressing a wide range of relevant topics in collaboration with Canadian universities, 

consultants and other countries pursuing the development of DGRs for used nuclear fuel. 

This project is part of one of Technical Programs that is currently refining generic 

engineering designs and safety cases in support of APM.  

One uncertainty of the current NWMO plan is how prevalent UFC corrosion will be 

in the DGR. Corrosion can lead to deterioration of the copper layer due to interaction with 

the surrounding environment. Once corroded, the UFC may be compromised. To ensure 

this doesn’t happen, models of the subsurface environment are often used. The model 

that has been commonly used by NWMO is the Copper Corrosion Model (CCM) 

developed by King et al. (1995). Due to some of the limitations imposed by CCM, including 

dimensionality and usability, a new corrosion model was developed in this study. The 

model was developed using COMSOL and represents a mixed potential model for the 

corrosion of copper. This model is capable of predicting corrosion potentials in a simplified 

1D DGR environment. 

The model is based on the copper corrosion mixed potential model (CCM) 

developed by King and Kolar (2000). The COMSOL model was verified against CCM to 

ensure that all equations were implemented accurately and it was found that the 

COMSOL model was able to reproduce the expected trends and behaviors. The 

COMSOL model was also validated against reproduced results from a copper corrosion 

experiment by King et al (1995). 

Once validated, the model was used to run various sensitivity studies to assess 

the effect of different parameters on UFC corrosion. The analysis indicated that some of 

the rate constants involving adsorption of Cu2+, homogenous oxidation of CuCl2- and 

interfacial reduction of oxygen are among the main factors which can influence corrosion 

potential, and thereby to corrosion, to a significant level relative to other rate constants.  
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Future works may involve: 

• continuation of steps of CCM-UC from Step 3e to Step 6 to include other 

conditions expected in a deep geological repository.  

• experimental program to identify the parameters that are most uncertain (k1, 

k4 and kc) 

• implementation of CCM in two dimensions 

• integration of CCM with other programs (transport or reactive) to give a 

complete picture of the DGR repository  
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9 GLOSSARY 

 

Notation Species 

𝑖𝑐𝑜𝑟𝑟 Corrosion current 

𝑖𝑎 Current for anodic dissolution of Cu 

𝑖𝑐 Current for reduction of O2 

𝑖𝑑 Current for reduction of Cu2+ 

𝑀𝐶𝑢 Atomic mass of Cu (63.546 g/mol) 

F Faraday’s constant (96487 C/mol) 

𝜌𝐶𝑢 Density of Cu (8.96 x 106 g/m3) 

cA Gaseous O2 

c0 Dissolved O2 

c1 Dissolved CuCl2- 

c2 Precipitated Cu2O 

c3 Dissolved Cu2+ 

c4 Precipitated CuCl23Cu(OH)2 

c5 Adsorbed Cu(II) 

c6 Dissolved Cl- 

c7 Dissolved Fe(II) 

c8 Precipitated Fe(II) 

T Temperature 

S Saturation (100%) 

𝜀𝑎 Accessible porosity 

𝜀𝑒 Effective porosity 

𝜏𝑓 Tortuosity 

𝐷0 Bulk-solution diffusion coefficient of O2 

𝐷1 Bulk-solution diffusion coefficient of CuCl2- 
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Notation Species 

𝐷3 Bulk-solution diffusion coefficient of Cu2+ 

𝐷6 Bulk-solution diffusion coefficient of Cl- 

𝑘1 Rate constant for homogenous oxidation of CuCl2- 

𝑘2/𝑘−2 Rate constant for precipitation/dissolution of Cu2O 

𝑘3/𝑘−3 Rate constant for precipitation/dissolution of CuCl2.3Cu(OH)2 

𝑘4/𝑘−4 Rate constant for adsorption/desorption of Cu2+ 

𝑘𝑎𝑓/𝑘𝑎𝑏 
Rate constant for Cu conversion to CuClADS/ Reverse rate 

constant 

𝑘𝑏𝑓/𝑘𝑏𝑏 
Rate constant for conversion of CuClADS to CuCl2- /Reverse rate 

constant 

𝑘𝑎 
Combined electrochemical constant for anodic dissolution of Cu 

(kaf x kbf)/kab 

𝑘𝑐 Electrochemical rate constant for the reduction of oxygen 

𝑘𝑑 Electrochemical rate constant for the reduction of Cu2+ 
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10 APPENDIX A: CORROSION RATE EXPRESSION 

 

Corrosion Rate (CR) = 
𝑖𝑐𝑜𝑟𝑟 𝑀𝐶𝑢

𝐹𝜌𝐶𝑢
 

Derivation: 

From Faraday’s law of electrolysis: 

𝜔

𝑀
=
𝐼𝑡

𝑧𝐹
 

Rearranging 

𝐼 = 𝜔
𝐹

𝑡

𝑧

𝑀
 

As Mass = Density x Volume: 

𝐼 = 𝑉𝜌
𝐹

𝑡

𝑧

𝑀
 

As Volume = Area x Length 

𝐼 = (𝐴𝑙)𝜌
𝐹

𝑡

𝑧

𝑀
 

𝐼

𝐴
=
𝑙

𝑡
𝜌
𝐹𝑧

𝑀
 

𝑖𝑐𝑜𝑟𝑟 = 𝐶𝑅𝜌
𝐹𝑧

𝑀
 

Rearranging: 

𝐶𝑅 =
𝑖𝑐𝑜𝑟𝑟𝑀

𝐹𝜌
 

Where z=1 as the interfacial copper ions involve one electron 
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11 APPENDIX B: VERIFICATION 

 

B1. Verification  

COMSOL outputs are compared with that of CCM as shown in Chapter 4. Section 

B2 shows the profile of plots obtained for 1 mm layer of bentonite and Section B3 for 10 

mm layer. As stated in Chapter 4, it can be seen that all the plots, except the current 

density, overlap each other.   

 

B2. 1 mm bentonite thickness 

Figure B1 to Figure B7 shows the plots obtained for Step 3a which involves 

reduction of Cu2+ and homogenous oxidation of CuCl2- in addition to the previous steps.  

Outputs obtained for Step 3b (precipitation and dissolution of solid Cu(II) in 

addition to previous steps) is indicated by Figure B8 to Figure B15.  

Step 3c which involves the precipitation and dissolution of Cu2O is shown by 

Figure B16 to Figure B23.  

Step 2 and Step 3d are included with Chapter 4 
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Figure B1: Concentration profile of chloride with distance for 1 mm, Step 3a   
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Figure B2: Concentration profile of copper ions with distance for 1 mm, Step 3a   
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Figure B3: Concentration profile of copper chloride ions with distance for 1 mm, 

Step 3a 
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Figure B4: Current density profile over time for 1 mm bentonite thickness, Step 
3a 
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Figure B5: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2) with distance for 1 mm, Step 3a 
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Figure B6: Concentration profile of oxygen with distance for 1 mm, Step 3a  



130 

 

 
 

Figure B7: Variation of corrosion potential with time for 1 mm bentonite thickness 
with changing oxygen concentration for Step 3a 
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Figure B8: Concentration profile of oxygen with distance for 1 mm, Step 3b  
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Figure B9: Concentration profile of chloride with distance for 1 mm, Step 3b  
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Figure B10: Concentration profile of copper ions with distance for 1 mm, Step 3b  
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Figure B11: Concentration profile of paratacamite with distance for 1 mm, Step 3b 
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Figure B12: Concentration profile of copper chloride ions with distance for 1 mm, 

Step 3b 
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Figure B13: Current density profile over time for 1 mm bentonite thickness, Step 3b 

 



137 

 

  
Figure B14: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2) with distance for 1 mm, Step 3b 
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Figure B15: Variation of corrosion potential with time for 1 mm bentonite 
thickness with changing oxygen concentration for Step 3b 
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Figure B16: Concentration profile of chloride with distance for 1 mm, Step 3c   
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Figure B17: Concentration profile of copper ions with distance for 1 mm, Step 3c   
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Figure B18: Concentration profile of paratacamite with distance for 1 mm, Step 3c 
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 Figure B19: Concentration profile of copper chloride ions with distance for 1 mm, Step 

3c 
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Figure B20: Current density profile over time for 1 mm bentonite thickness, Step 3c    
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Figure B21: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 
CuCl2.3Cu(OH)2) with distance for 1 mm, Step 3c 
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Figure B22: Concentration profile of oxygen with distance for 1 mm, Step 3c  
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Figure B23: Variation of corrosion potential with time for 1 mm bentonite thickness with 

changing oxygen concentration for Step 3c 
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B3. 10 mm bentonite thickness  

Similar to 1 mm layer (Section 0), 10 mm profiles of COMSOL are compared to 

that of CCM outputs. 

Figure B24 to Figure B29 show the initial transient state (Step 2). 

Figure B30 to Figure B36 indicate Step 3a outputs comparison 

Figure B37 to Figure B44 show the outputs obtained for Step 3b 

Figure B45 to Figure B52 indicate comparison of outputs obtained for Step 3c 

Step 3d comparisons are included in Chapter 4 
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Figure B24: Concentration profile of chloride with distance for 10 mm, Step 2   
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Figure B25: Concentration profile of copper chloride ions with distance for 10 

mm, Step 2 
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Figure B26: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2) with distance for 10 mm, Step 2 
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Figure B27: Current density profile over time for 10 mm bentonite thickness, Step 2   
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Figure B28: Concentration profile of oxygen with distance for 10 mm, Step 2  
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Figure B29: Variation of corrosion potential with time for 10 mm bentonite thickness with 
changing oxygen concentration for Step 2 
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 Figure B30: Concentration profile of chloride ions with distance for 10 mm, Step 

3a 
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Figure B31: Concentration profile of copper ions with distance for 10 mm, Step 3a  
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 Figure B32: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2) with distance for 10 mm, Step 3a 
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Figure B33: Concentration profile of oxygen with distance for 10 mm, Step 3a 
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Figure B34: Concentration profile of copper chloride ions with distance for 10 mm, Step 

3a 
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Figure B35: Current density profile over time for 10 mm bentonite thickness, Step 3a 
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 Figure B36: Variation of corrosion potential with time for 10 mm bentonite 

thickness with changing oxygen concentration for Step 3a 
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 Figure B37: Concentration profile of chloride ions with distance for 10 mm, Step 3b 
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Figure B38: Concentration profile of copper ions with distance for 10 mm, Step 3b 
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Figure B39: Concentration profile of paratacamite with distance for 10 mm, Step 3b 
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Figure B40: Concentration profile of copper chloride ions with distance for 10 mm, Step 
3b 
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Figure B41: Concentration profile of oxygen with distance for 10 mm, Step 3b  
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Figure B42: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 

CuCl2.3Cu(OH)2) with distance for 10 mm, Step 3b 
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Figure B43: Current density profile over time for 10 mm bentonite thickness, Step 3b 
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Figure B44: Variation of corrosion potential with time for 10 mm bentonite 

thickness with changing oxygen concentration for Step 3b 
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Figure B45: Concentration profile of chloride ions with distance for 10 mm, Step 3c  
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Figure B46: Concentration profile of copper chloride ions with distance for 10 mm, Step 

3c 
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Figure B47: Concentration profile of copper ions with distance for 10 mm, Step 3c  
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Figure B48: Current density profile over time for 10 mm bentonite thickness, Step 3c 
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Figure B49: Concentration profile of oxygen with distance for 10 mm, Step 3c  
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Figure B50: Concentration profile of paratacamite with distance for 10 mm, Step 3c 
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Figure B51: Concentration profile of total amount of copper (CuCl2-, Cu2+, Cu2O, 
CuCl2.3Cu(OH)2) with distance for 10 mm, Step 3c 
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Figure B52: Variation of corrosion potential with time for 10 mm with changing 

oxygen concentration for Step 3c 
  



177 

 

APPENDIX C: SCREEN SHOTS OF MODEL DATA AND COMSOL 

 

 
Figure C1: Raw parameters used in the COMSOL model (Most of the 

parameters are obtained from King (2016)) 
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Figure C2: Oxygen concentration variation (10 mm) 
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Figure C3: Diffusion constants incorporation 
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Figure C4: Butler-Volmer equations incorporation 
 

 


