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Acute sleep loss results in tissue-specific alterations
in genome-wide DNA methylation state and
metabolic fuel utilization in humans

Jonathan Cedernaes1*, Milena Schönke2†, Jakub Orzechowski Westholm3†, Jia Mi4,5,
Alexander Chibalin2, Sarah Voisin1, Megan Osler2, Heike Vogel6, Katarina Hörnaeus4,
Suzanne L. Dickson7, Sara Bergström Lind4, Jonas Bergquist4,8,9, Helgi B Schiöth1,
Juleen R. Zierath2, Christian Benedict1
Curtailed sleep promotes weight gain and loss of lean mass in humans, although the underlying molecular
mechanisms are poorly understood. We investigated the genomic and physiological impact of acute sleep loss
in peripheral tissues by obtaining adipose tissue and skeletal muscle after one night of sleep loss and after one
full night of sleep. We find that acute sleep loss alters genome-wide DNA methylation in adipose tissue, and
unbiased transcriptome-, protein-, and metabolite-level analyses also reveal highly tissue-specific changes that are
partially reflected by altered metabolite levels in blood. We observe transcriptomic signatures of inflammation
in both tissues following acute sleep loss, but changes involving the circadian clock are evident only in skeletal
muscle, and we uncover molecular signatures suggestive of muscle breakdown that contrast with an anabolic
adipose tissue signature. Our findings provide insight into how disruption of sleep and circadian rhythms may
promote weight gain and sarcopenia.
INTRODUCTION
Chronic sleep loss, social jet lag, and shift work—widespread in our
modern 24/7 societies—are associated with an increased risk of numer-
ous metabolic pathologies, including obesity, metabolic syndrome, and
type 2 diabetes (1–4). Evenminorweekly shifts in sleep timing, or as few
as five consecutive nights of short sleep, have been associated with an
increased risk of weight gain in healthy humans (4, 5).

Many of the adverse effects attributed to sleep loss and circadian
misalignment might arise due to tissue-specific metabolic perturba-
tions in peripheral tissues such as skeletal muscle and adipose tissue
(6–9). Recurrent sleep loss combined with moderate calorie restric-
tion in humans increases the loss of fat-free body mass, while
decreasing the proportion of weight lost as fat (10), suggesting that
sleep loss can promote adverse tissue-specific catabolism and anab-
olism. Human cohort studies and interventional sleep restriction
studies in animals also suggest that sleep loss specifically promotes
loss of muscle mass (11–13), but the underlyingmolecular mechanisms
remain elusive.

Notably, sleep restriction studies controlling for caloric intake
provide evidence that sleep loss reduces the respiratory exchange ratio
(8, 14), indicating a shift toward non-glucose, that is, fatty acid, oxida-
tion. Animal studies have elegantly shown that metabolic fuel selection
and overall anabolic versus catabolic homeostasis are regulated by
tissue-specific rhythms driven by the core circadian clock (15). Key
metabolic processes, for example, glycolysis and mitochondrial oxida-
tive metabolism, exhibit 24-hour rhythms in tissues such as skeletal
muscle (16–18). This is, to a significant extent, orchestrated through
circadian regulation of key transcription factors and enzymes such as
pyruvate dehydrogenase kinase 4 (Pdk4), Ldhb, and phosphofructo-
kinase 2 (Pfk2), which belong to some of themost highly rhythmic tran-
scripts in skeletal muscle across circadian data sets in mice (19).
Correspondingly, ablation of the core clock geneBmal1 altersmetabolic
fuel utilization in mice (20, 21), and circadian desynchrony in humans
results in decreased resting metabolic rate (22). Furthermore, even a
single night of sleep loss has been shown to induce tissue-specific tran-
scriptional and DNA methylation (an epigenetic modification that
can regulate chromatin structure and gene expression) changes to core
circadian clock genes in humans (23), but the downstream tissue-specific
impact onmetabolic pathways remains to be determined. Moreover, it is
presently unknown to what extent DNAmethylationmay bemodulated
throughout the human genome inmetabolic tissues in response to acute
sleep loss, and whether metabolic tissues respond in a tissue-specific
manner across multiple genomic and molecular levels.

On the basis of the above observations, and as a model of shift work
that often entails overnight wakefulness, we hypothesized that acute
sleep loss (that is, overnight wakefulness) would induce tissue-specific
alterations at the genomic and physiological levels in pathways regulat-
ing metabolic substrate utilization and anabolic versus catabolic state.
Specifically, we expected acute sleep loss to increase non-glycolytic
oxidation and protein breakdown in skeletal muscle (12, 13), with the
former favoring hyperglycemia. Since recurrent sleep loss has also been
linked to adverse weight gain (2, 10, 24), we also hypothesized that acute
sleep loss would promote signatures of increased adipogenesis and that
some of these tissue-specific changes would be reflected at the DNA
methylation level, indicating altered “metabolic memory.” To this
end, we carried out a range of molecular analyses in subcutaneous
adipose tissue and skeletal muscle samples, complemented by analyses
in blood, in samples obtained from healthy young men both after a
night of sleep loss and after a night of full sleep.
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RESULTS
Acute sleep loss results in tissue-specific DNA methylation
and transcriptomic changes
To examine whether acute sleep loss induces genome-wide alterations in
epigenetic modifications, we used the Infinium HumanMethylation450
BeadChip (485,764 probes) to interrogate changes in DNAmethylation
in adipose tissue and skeletal muscle samples obtained from 15 healthy
participants in the morning fasting state, both after one night of sleep
loss and after a night of normal sleep (age, 22.3 ± 0.5 years; body mass
index, 22.6 ± 0.5 kg/m2; further characteristics and sleep data are
presented in table S1, and experimental design is shown in Fig. 1A).
We found that sleep loss resulted in 148 significant differentiallymethy-
lated regions (DMRs) [false discovery rate (FDR) < 0.05] in sub-
cutaneous adipose tissue (Fig. 1B and table S2, A and B), most of
which were hypermethylated (92 DMRs) and within 5 kilo–base pairs
of the transcription start site (TSS) (129 DMRs or 87%). To investigate
which gene pathways were associated with altered methylation status
following sleep loss, we used gene ontology (GO) analyses to identify
which biological pathways were enriched for genes close to our signif-
icantDMRs (Fig. 1C).When the directionality ofDNAmethylationwas
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not considered, we found that pathways associated with, for example,
lipid metabolism, cell differentiation, and DNA damage response were
altered (table S2C). Next, to gain a better understanding of whether
these pathways were driven by increased or decreased DNAmethyl-
ation for specific genes in adipose tissue in response to sleep loss, we
separately investigated pathways associated with the identified hyper-
methylated versus hypomethylated DMRs. Notably, hypermethylated
genes were found to enrich for biological pathways such as lipid re-
sponse and cell differentiation, whereas hypomethylated genes were
related to pathways such as DNA damage response regulation and lipid
metabolism (table S2, D and E). We found that sleep loss resulted in
hypermethylation for DMRs near the TSS of genes that have been
observed to be in a hypermethylated state before gastric bypass surgery,
such as TNXB, TRIM2, and FOXP2 (Fig. 1D and table S2A) (25). We
also observed altered methylation near the TSS of genes involved in
adipogenesis: CD36, AKR1CL1 (an aldose reductase), and HOXA2,
with the latter being hypermethylated. Specifically, we found that
HOXA2, a homeobox transcription factor, was hypermethylated
near its TSS, which, through alteredDNAmethylation and gene expres-
sion level, has been found to distinguish adipogenesis in subcutaneous
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Fig. 1. Acute sleep loss induces changes in DNA methylation in adipose tissue in healthy humans. (A) Participants were investigated both after a night of sleep
loss (that is, overnight wakefulness) and after a night of normal sleep, in each condition after an in-lab baseline day and night (26 hours in total, with an 8.5-hour
baseline sleep opportunity) with standardized physical activity levels and isocaloric meals. Biopsies from the vastus lateralis muscle (VLM) and subcutaneous adipose
tissue (SAT), as well as fasting blood sampling, preceded an oral glucose tolerance test (OGTT) and subsequent blood sampling. This was followed by a pipeline of omic
analyses across tissues. (B) Differentially methylated regions (DMRs; FDR < 0.05) in adipose tissue showing DNA methylation (beta levels) after sleep and sleep loss
(wake) across the 15 participants, with hierarchical clustering of DMR beta levels (z scores). (C) Significant gene ontology (GO) annotations based on hypermethylated
(top) and hypomethylated DMRs (bottom) in adipose tissue in response to sleep loss, showing the ratio of differentially expressed gene-associated DMRs (DE) to the
total number (N) of genes in a given pathway (“DE-to-N”) and adjusted P values (q values, FDR< 0.05). (D) Beta levels across some of the most significant DMRs in
adipose tissue, in proximity to the specified genes, following sleep and sleep loss.
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white adipose tissue from that in, for example, brownor visceral adipose
tissue (26–28). Notably, several of the 56 DMRs that were hypomethy-
lated in response to sleep loss were in chromosomal regions or near the
TSS of genes known to be genomically imprinted (such as TSPAN32,
GNAS, INS, andGFI1; Fig. 1D and table S2B) and, through this or other
mechanisms, have been associated with obesity (29, 30). Hypomethy-
lated DMRs were also found at the TSS of genes implicated in insulin
response or type 2 diabetes (for example, INS, CPT1A) as well as lipol-
ysis or beiging (ADORA2A) (31–33). Whereas the average fold change
in methylation for the significant DMRs did not exceed 3% in response
to sleep loss (average, +2.8 ± 0.0% and −2.4 ± 0.0% for hyper- and
hypomethylatedDMRs, respectively), themost highly hypermethylated
DMR (on average +6.9%) was found for CD36 (Fig. 1D and table S2A),
which is involved in fatty acid import and whose expression is dysregu-
lated in obese and type 2 diabetic patients (34).

In contrast to adipose tissue, no significant DMRs were observed in
skeletal muscle following sleep loss compared with sleep (table S2F).
This finding could indicate that other epigenetic modifications—that
may also respond to environmental changes (for example, at the chro-
matin level) regulate the transcriptional response to sleep loss in skeletal
muscle or, alternatively, that DNAmethylation changes occur at, for ex-
ample, earlier or later time points in our intervention.

To assess genome-wide gene expression changes following acute
sleep loss in humans in the morning hours, we next performed tran-
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scriptomic RNA sequencing (RNA-seq) analyses of total RNA isolated
from the corresponding skeletal muscle and adipose tissue samples.We
found that acute sleep loss altered expression of 117 (19 up-regulated,
98 down-regulated) mRNA transcripts in skeletal muscle, whereas
96 transcripts (59 up-regulated, 37 down-regulated) were significantly
altered in subcutaneous adipose tissue (table S3, A to D). A comparison
of transcripts that were significantly altered either in skeletal muscle or
in subcutaneous adipose tissue revealed that many transcripts exhibited
tissue-specific directionalities (that is, with regard to their fold change)
in response to sleep loss compared with sleep (Fig. 2, A and B). In
addition, almost no overlap was found between the two tissues for
mRNA transcripts that were differentially expressed (Fig. 2C), further
highlighting the tissue specificity of the response to acute sleep loss in
human metabolic tissues. An untargeted analysis of all DNA methyla-
tion values versus all corresponding mRNA transcript levels confirmed
that, overall, the degree of methylation was negatively correlated with the
level of gene expression, a phenomenon observed in both adipose tissue
(Spearman rs = −0.39) and skeletal muscle (Spearman rs=−0.41; fig. S1,
A and B). Notably, however, when we next compared the changes in
DNA methylation and mRNA transcript levels that were observed
following acute sleep loss, neither tissue exhibited any significant corre-
lation between DNA methylation and transcript expression levels (ad-
ipose tissue, Spearman rs = −0.01; skeletal muscle, Spearman rs = 0.00;
fig. S1, C and D). Similarly, no overlap was found when comparing
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Fig. 2. Tissue-specific transcriptomic alterations in response to acute sleep loss in healthy humans. (A) Relative expression levels of differentially expressed genes
(FDR < 0.05) in VLM showing levels across both VLM and SAT in both sleep and wake states (left; normalized by row, that is, all rows share the same mean and the same
variance; the scale is truncated at −1 and 1). The fold changes for each tissue in response to sleep loss (that is, overnight wakefulness, wake) are also shown (right).
(B) Corresponding analysis as shown in (A) for genes differentially expressed in adipose tissue in response to sleep loss. (C) Venn diagram displaying the number and
overlap for significantly up- and down-regulated genes in each tissue following sleep loss. (D) GSEA using the R package GAGE against the KEGG ontology showing
significant pathways (q values, with FDR < 0.05; scale shown to the right) that are down-regulated in VLM compared with pathways up-regulated in SAT in response
to sleep loss (see table S4, A to D, for a complete list of all up- and down-regulated pathways in each tissue). fc, fold change.
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genes with altered mRNA expression with genes that had altered DNA
methylation near the TSS in response to sleep loss in adipose tissue.
Overall, this raises the possibility that these correlations in response
to sleep lossmay have been captured bymore frequent biopsy sampling.

In skeletal muscle, a gene set enrichment analysis (GSEA) using the
KEGG (Kyoto Encyclopedia of Genes and Genomes) database (Fig. 2D
and table S4, A and B) indicated that sleep loss down-regulated genes
associated with ribosomes and oxidative phosphorylation (for example,
NDUFS7 and ATP5D; table S4B). In line with down-regulation of ribo-
somal pathways, our analysis indicated that translational and cellular
protein targeting processes—that is, energy-demanding and stress-
sensitive biological processes—were down-regulated in skeletal muscle
in response to sleep loss. We instead observed up-regulation of meta-
bolic genes such asTXNIP andNNMT in response to sleep loss (Fig. 2A
and table S3A); of these,TXNIPhas consistently found to be up-regulated
in prediabetic to diabetic patients and to be inversely correlated with
glycolysis. Accordingly, its down-regulation in skeletal muscle has been
positively correlatedwith insulin sensitivity during clampmeasurements
in nondiabetic patients (35). Further suggesting that sleep lossmay pro-
mote catabolic stress, several immune-, injury-, and stress-related genes
(such as NNMT, CXCR2, LRRK2, and FCGR3B), as well as several
inflammation-related pathways, were up-regulated in skeletal muscle
following acute sleep loss (tables S3A and S4A). LRRK2 is the most
commonly mutated gene contributing to Parkinson’s disease, a gene
known to be expressed in muscle and immune cells and with a putative
role in autophagy (36).

A GSEA of RNA-seq data from adipose tissue revealed that sleep
loss up-regulated KEGG pathways such as oxidative phosphoryl-
ation and ribosome pathways, that is, a direction opposite to that ob-
served for skeletal muscle (Fig. 2D). Pathways related to glycolysis
and Toll-like receptor (TLR) signaling were also up-regulated in ad-
ipose tissue following sleep loss (Fig. 2D and table S4C). Up-regulated
TLR pathway components included CD14 and TLR4 (Fig. 2B and table
S3C), both of which also possibly modulate adipose tissue insulin
sensitivity, possibly through their role in response to bacterial lipo-
polysaccharide by adipocytes or present macrophages (37). Along
with up-regulation of additional genes involved in inflammation
(for example, IL1RAP) and protective cellular responses (such as
TP53IP andGPX1), this suggests that increased inflammation occurs
across tissues following sleep loss in humans. Furthermore, we ob-
served a down-regulation of spliceosome and RNA transport path-
ways in GSEA-derived KEGG pathway analysis in adipose tissue, and
BCL6, a gene that is markedly suppressed by insulin (35), was also
down-regulated in response to sleep loss (table S3D). Compared with
the observed up-regulation of TXNIP mRNA in skeletal muscle, this
could suggest tissue-specific alterations of insulin signaling in these
two tissues after sleep loss.

To determine what transcription factor pathwaysmight be activated
following sleep loss in each tissue, we also carried out chromatin immu-
noprecipitation enrichment analysis against the ChEA database, based
on our RNA-seq data of genes that were up-regulated in either skeletal
muscle or adipose tissue in response to sleep loss. For skeletal muscle,
this analysis revealed enrichment of targets of the transcription factors
PPARG and LXR (such asCPT1a,NNMT, PFKB3, PDK4, and TXNIP),
which regulate, for example, fatty acid uptake in skeletal muscle (table
S4E) (38). In adipose tissue, we found increased enrichment of targets—
for example, THBD,GLYCTK, andGPCPD1—of transcription factors
that promote adipogenesis or adipose tissue inflammation, suchasCEBPD,
FOXA1, and the nuclear factor kB subunit p65 (RELA) (table S4F).
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Acute sleep loss induces tissue-specific changes within
substrate-utilizing and anabolic-versus-catabolic pathways
Given that our transcriptomic analyses revealed changes in pathways
regulating metabolic state and fuel-determining pathways, we next
carried out label-free mass spectrometry to quantify the tissue-specific
impact on relative protein concentrations following our intervention
of sleep loss versus normal sleep. We detected 1264 proteins in the
skeletal muscle samples, and of these, 23 were down-regulated,
whereas 9 were up-regulated (Table 1, A and B). Several of the down-
regulated proteinswere involved in or downstreamof glycolysis, such as
phosphofructokinase-1 (PFK1), phosphoglycerate kinase 1 (PGK1),
and pyruvate kinase (Table 1B). A subsequent KEGG pathway analysis
of pathways that were up- and down-regulated in response to sleep loss
substantiated that glycolysis (FDR-corrected, P < 10−5) was among the
most significantly down-regulated pathways in skeletal muscle (Fig. 3A
and table S5, A and B); this was further supported by independent
validation of down-regulated PFK1 and other glycolytic targets [Western
blot for PFK1: P = 0.009 and quantitative polymerase chain reaction
(qPCR) analyses; Fig. 3, B and C].

Our mass spectrometry data instead indicated that levels of proteins
involved in mitochondrial energy metabolism were up-regulated in
skeletal muscle after our intervention, further suggesting a shift in
metabolic fuel utilization toward non-glycolytic oxidation after a
night of sleep loss (Table 1A). Given that components of oxidative
phosphorylation exhibit circadian rhythms (17), this findingmay repre-
sent a circadian phase misalignment compared with the aforemen-
tioned transcriptomic changes. However, no differences were found
inWestern blot analyses of themajor mitochondrial complexes, sug-
gesting a subtle impact on overall mitochondrial function after acute
sleep loss (fig. S2, A and B).

To quantify whether the shift in glycolytic protein levels correlated
with altered systemic insulin sensitivity, we assessed fasting and post-
prandial systemic insulin sensitivity in our participants in samples ob-
tained on the same day as the biopsies and found increased morning
fasting insulin resistance after sleep loss (P = 0.006; fig. S2, C and D).
A subsequent OGTT revealed significantly higher postprandial levels of
glucose, but not of insulin, following sleep loss, and postprandial insulin
sensitivity was reduced by ~15% (P = 0.033; fig. S2, D and E). Together
with unaltered fasting and postprandial insulin levels, this suggests that
the decreased postprandial insulin sensitivity after sleep loss was pri-
marily driven by altered glucose handling in peripheral tissues, possibly
primarily in skeletal muscle.

Ourmass spectrometry analysis also revealed decreased levels of sev-
eral structural proteins in skeletal muscle, such as myosin-1 (encoding
myosin light chain IIx) and troponin C, following sleep loss (Table 1B).
This provides molecular support for earlier indirect evidence that sleep
loss enhances skeletal muscle catabolism, especially of fast (type II)
fibers (that express myosin light chain IIx) (9, 10, 12). Catabolic stress
can up-regulate levels of heat shock proteins (HSPs), in part to protect
against muscle breakdown (39, 40). Our mass spectrometry analysis of
skeletal muscle demonstrated increased levels of HSP beta-6 and HSP
90-beta after sleep loss (Table 1A), indicating that sleep loss acts as a
cellular catabolic stressor in skeletalmuscle. Levels ofHSF1were instead
down-regulated at the mRNA level in our skeletal muscle transcrip-
tomic data (table S3B), consistent with negative feedback due to the
up-regulation of HSP protein levels. Mechanistically, HSP 90-beta sta-
bilizes, for example, glucocorticoid receptors (41), and glucocorticoids
have been implicated in skeletal muscle atrophy in, for example, starva-
tion and diabetes, particularly affecting fast type II fibers (42). Suggesting
4 of 14
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Table 1. Proteins with significantly changed abundance in skeletal muscle and adipose tissue in response to acute sleep loss in humans. Proteins (A) up-
regulated and (B) down-regulated in skeletal muscle (vastus lateralis muscle) and up-regulated in (C) subcutaneous adipose tissue in response to sleep loss
compared with normal sleep. No proteins were found to be down-regulated in subcutaneous adipose tissue. Protein IDs shown are limited to 3. n = 15 pairs for
each tissue; two-sided t tests.
Ced
Protein IDs
ernaes et al., Sci. Adv. 2018;4 : eaa
Protein names (gene name in parentheses)
r8590 22 August 2018
Log2 ratio
(sleep loss/sleep)
SEM
 P
A. Up-regulated proteins in skeletal muscle
O14558
 Heat shock protein beta-6 (HSPB6)
 0.33
 0.43
 0.012
P07195
 L-Lactate dehydrogenase B chain; L-lactate dehydrogenase (LDHB)
 0.37
 0.51
 0.017
P08238
 Heat shock protein HSP 90-beta (HSP90AB1)
 0.12
 0.16
 0.018
P35609; P35609-2
 Alpha-actinin-2 (ACTN2)
 0.09
 0.13
 0.033
Q2TBA0; Q2TBA0-2
 Kelch-like protein 40 (KLHL40)
 0.38
 0.55
 0.035
Q9GZV1
 Ankyrin repeat domain-containing protein 2 (ANKRD2)
 0.44
 0.72
 0.038
Q5XKP0
 Protein QIL1 (QIL1)
 0.22
 0.26
 0.040
C9JFR7; P99999
 Cytochrome c (CYCS)
 0.21
 0.32
 0.042
O14949
 Cytochrome b-c1 complex subunit 8 (UQCRQ)
 0.23
 0.37
 0.049
B. Down-regulated proteins in skeletal muscle
O00757
 Fructose-1.6-bisphosphatase isozyme 2 (FBP2)
 −0.27
 0.28
 0.003
Q9NR12-6
 PDZ and LIM domain protein 7 (PDLIM7)
 −0.31
 0.35
 0.005
P00558; P00558-2
 Phosphoglycerate kinase 1 (PGK1)
 −0.22
 0.22
 0.006
Q9UKS6
 Protein kinase C and casein kinase substrate in neurons protein 3 (PACSIN3)
 −0.18
 0.19
 0.011
P02585
 Troponin C, skeletal muscle (TNNC2)
 −0.27
 0.32
 0.012
P14543-2; P14543
 Nidogen-1 (NID1)
 −0.31
 0.35
 0.013
P14618-2
 Pyruvate kinase (PKM)
 −0.21
 0.26
 0.015
Q08043
 Alpha-actinin-3 (ACTN3)
 −0.40
 0.47
 0.017
Q5T7C4; Q5T7C6; P09429
 High mobility group protein B1 (HMGB1)
 −0.19
 0.23
 0.019
Q8N142; Q8N142-2
 Adenylosuccinate synthetase isozyme 1 (ADSSL1)
 −0.14
 0.20
 0.022
P61586; Q5JR08; P08134
 Transforming protein RhoA; Rho-related guanosine
5′-triphosphate–binding protein RhoC (RHOA; RHOC)
−0.17
 0.22
 0.024
P55786; P55786-2
 Puromycin-sensitive aminopeptidase (NPEPPS)
 −0.08
 0.11
 0.026
Q14324
 Myosin-binding protein C, fast-type (MYBPC2)
 −0.37
 0.56
 0.026
P04075
 Fructose-bisphosphate aldolase A; Fructose-bisphosphate aldolase (ALDOA)
 −0.14
 0.20
 0.027
P50995-2; P50995
 Annexin A11 (ANXA11)
 −0.33
 0.28
 0.028
P62942; Q5W0X3
 Peptidyl-prolyl cis-trans isomerase FKBP1A; peptidyl-prolyl
cis-trans isomerase (FKBP1A; FKBP12-Exip2)
−0.12
 0.17
 0.030
P17612; P17612-2; P22694-4
 cAMP-dependent protein kinase catalytic subunit alpha; cAMP-dependent
protein kinase catalytic subunit beta (PRKACA; PRKACB; KIN27)
−0.13
 0.19
 0.032
P00338; P00338-3; P00338-4
 L-Lactate dehydrogenase A chain (LDHA)
 −0.21
 0.31
 0.036
P07108; P07108-3; P07108-2
 Acyl-CoA–binding protein (DBI)
 −0.17
 0.26
 0.037
P12882
 Myosin-1 (MYH1)
 −0.93
 1.38
 0.038
P08237; P08237-3; P08237-2
 6-Phosphofructokinase, muscle type (PFKM)
 −0.16
 0.26
 0.040
continued on next page
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that glucocorticoids may be involved in acute catabolic effects on
skeletal muscle following sleep loss, we observed significantly elevated
cortisol levels during our morning blood sampling interval [analysis of
variance (ANOVA) wake and time effects: P = 0.029 and P = 0.003,
respectively; fig. S2F].

To investigate whether adipose tissue also exhibits signs of altered
metabolic fuel utilization in response to sleep loss, we also carried out
mass spectrometry–based proteomics on subcutaneous adipose tissue
obtained at the same time as the skeletal muscle biopsies. In an analysis
of the absolute (“static”) levels of proteins compared with mRNA ex-
pression levels (based on our RNA-seq data), we found that mRNA
transcript levels overall correlated positively with protein levels in both
adipose tissue (Spearman rs = 0.29) and skeletal muscle (Spearman rs =
0.55; fig. S3, A and B). However, no correlations were observed when
sleep loss–induced changes in mRNA transcript levels were compared
with the corresponding changes in protein levels (adipose tissue, Spear-
man rs = 0.09; skeletal muscle, Spearman rs = 0.08; fig. S3, C and D),
which could be due to a lack of temporally separated biopsies required
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to identify the delay between changes in gene versus protein expression
following sleep loss.

Of the 1358 identified proteins or protein groups identified in ad-
ipose tissue, we found 3 significantly up-regulated proteins but no
down-regulated proteins after sleep loss compared with sleep (Table
1C). Specifically, levels of PGK1 were significantly increased at the
protein andmRNA level (Fig. 3D and Table 1C) and, thus, consistent
with the observed up-regulation (KEGG-based) of the glycolysis
pathway in our concurrent transcriptomic data set of adipose tissue
(Fig. 2D). This provides further evidence that at least metabolic path-
ways are altered in a directionality opposite to those observed in skeletal
muscle, in response to sleep loss. Enhanced glycolysis in adipose tissue
could possibly be indicative of increased triglyceride synthesis, a process
for which glycolysis can enable greater availability of glycerol as the tri-
glyceride backbone (43).

Our proteomics data further indicated that protein levels of glu-
tathione S-transferase (GSTP) and lactotransferrin increased in sub-
cutaneous adipose tissue following sleep loss. These proteins have
Protein IDs
 Protein names (gene name in parentheses)
 Log2 ratio
(sleep loss/sleep)
SEM
 P
P05976
 Myosin light chain 1/3, skeletal muscle isoform (MYL1)
 −0.16
 0.24
 0.041
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 0.043
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 Glutathione S-transferase (GSTP)
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 0.95
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Fig. 3. Acute sleep loss down-regulates protein levels in the glycolysis pathway in skeletal muscle of healthy young men. (A) KEGG pathway analysis of
significantly altered VLM proteins (via mass spectrometry) in the morning following sleep loss compared with after a night of normal sleep (n = 15 pairs; see also
Table 1 and table S5). Shown as ratio of differentially expressed proteins in relation to total number of proteins in pathway (DE-to-N), and as adjusted P values
(q values; FDR < 0.05) for pathways based on up-regulated (top) and down-regulated (bottom) proteins. (B) Immunoblot analysis of PFK1 in VLM (P = 0.009),
normalized to loading control (loading control shown in fig. S4A; showing 8 representative pairs out of a total of 13 analyzed pairs); quantified in the bottom for sleep
loss [wake (w)] compared with normal sleep (s). qPCR analyses of significant proteomic hits in response to sleep loss in (C) VLM and in (D) SAT (P = 0.027 for FBP2 in
VLM; P = 0.031 for PGK1 in adipose tissue for hypothesized contrasts between sleep versus sleep loss). Solid black bars represent values after sleep (set to 1); white bars
indicate values obtained after sleep loss (n = 15 pairs for both tissues). FBP2, fructose-bisphosphatase 2; LTF, lactotransferrin; PFKM, 6-phosphofructokinase, muscle
type; PKM, pyruvate kinase muscle isozyme. *P < 0.05 and **P < 0.01; two-sided t tests. TH17, T helper 17; IL-17, interleukin 17.
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been linked not only to adipogenesis and adipocyte differentiation
(44, 45) but also to protection from oxidative stress in adipose tissue
(46). Altered expression of GSTP in adipose tissue has been associated
specifically with insulin resistance and obesity, also in humans (47).
Collectively, our findings indicate that subcutaneous adipose tissue
exhibits a state promoting increased glucose utilization and triglyceride
synthesis in the morning following sleep loss, whereas skeletal muscle
concurrently decreases glucose utilization and promotesmuscle protein
breakdown, possibly to increase amino acid efflux to the liver for glu-
coneogenesis and ketone body synthesis. These changes further support
earlier findings that forgoing sleep favors the retention of adipose tissue
over skeletal muscle mass (10).

Evidence for muscle-specific alterations in the core circadian
clock after acute sleep loss
The coremolecular clock—specifically through the component BMAL1—
affects metabolic fuel utilization in the liver and skeletal muscle in
mice (19–21), and several glycolytic genes exhibit circadian expression
patterns (17, 19). As we have previously demonstrated, tissue-specific
changes in DNA methylation and transcription that are indicative
of circadian misalignment occur following one night of sleep loss in
humans (23). Herein, we found that protein levels of the core clock
component BMAL1 were significantly higher in skeletal muscle (P =
0.017) but were unaltered in adipose tissue (P = 0.51) in response to
Cedernaes et al., Sci. Adv. 2018;4 : eaar8590 22 August 2018
sleep loss (Fig. 4, A to C). Furthermore, for several clock genes, fold
changes at the descriptive transcriptomic level were opposite in skeletal
muscle versus adipose tissue (these, however, did not survive FDR
correction), providing further preliminary support for tissue-specific
circadian misalignment after sleep loss in humans (Fig. 4D).

Notably, in our skeletal muscle RNA-seq data set, the clock gene–
regulated (19, 48) and substrate-determining gene PDK4 was the most
up-regulated transcript following sleep loss (table S3A; also confirmed
by qPCR, Fig. 4E). Mechanistically, PDK4 directs glucose utilization
away from glycolysis toward beta oxidation: Fasting glucose is thus
reduced inmice lacking thePdk4 gene (49), whereasPDK4 expression is
increased in states of insulin resistance and in mouse models of type 2
diabetes (50, 51). Our RNA-seq in skeletal muscle also revealed up-
regulation of PFKFB3, which is also involved in regulation of glucose
metabolism in skeletal muscle. Across time course transcriptomic
data sets in murine skeletal muscle, PDK4 and PFKFB3 have been
found to be among the top five most highly regulated transcripts by
the circadian clock and are also among the only transcripts associated
with metabolism that show a high circadian amplitude in skeletal
muscle (19). Altogether, these findings hint at the potential involvement
of themolecular circadian clock in dysregulation of glucosemetabolism
in skeletal muscle following acute sleep loss.

In contrast to PDK4, qPCR-assessed levels of PPARD, which can
regulate PDK4 expression, and the glucose transporter GLUT4 (also
A

B

C

D E

F

Fig. 4. Acute sleep loss induces tissue-specific changes in clock genes and downstream pathways in healthy young men. Representative blots for protein
abundance of BMAL1 in (A) skeletal muscle (VLM; P = 0.017; showing 8 representative pairs out of a total of 13 analyzed pairs) and in (B) SAT (P = 0.51; 6 representative
pairs out of 11 analyzed pairs shown), (C) with quantification, after a night of sleep (s) and a night of sleep loss (wake or w). Western blots were normalized to loading
control (see fig. S4, B and C; expression shown relative to controls that were set to 1). (D) Transcriptomic changes in core circadian clock genes, with log2 fold change for
each of the investigated tissues (VLM and SAT, n = 15 pairs for each tissue), after sleep loss (wake) compared with after normal sleep (all FDR > 0.05). (E and F) Relative
gene expression of targeted genes based on qPCR (PDK4: P = 0.007; all other P > 0.10, n = 15 pairs for each tissue). BMAL1, brain and muscle Arnt-like protein-1; GLUT4,
glucose transporter 4; PDK4, pyruvate dehydrogenase kinase isozyme 4; PPARD/PPARG, peroxisome proliferator–activated receptor delta (PPARD)/gamma (PPARG); s,
sleep; w, wake (sleep loss). *P < 0.05 and **P < 0.05; two-sided t tests.
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assessed at the protein level) were unaltered in skeletal muscle after
sleep loss (Fig. 4E and fig. S3E), suggesting that other components
that are regulated by the circadian clock in animal models and human
myotubes (18, 19, 48) are at least not as acutely affected in skeletal
muscle by sleep loss in humans. Corresponding analyses in sub-
cutaneous adipose tissue, that is, overall RNA-seq, as well as qPCR
of PDK4, PPARG (the corresponding major isoform of PPARD in
adipose tissue) (Fig. 4F), andGLUT4 (qPCR and protein level), demon-
strated no similar changes in the morning after sleep loss (Fig. 4F and
fig. S3, F and G).

Metabolomic changes indicate altered metabolic substrate
utilization following acute sleep loss
To assess whether the transcriptomic and proteomic changes due to
acute sleep loss are reflected in altered metabolic flux, we also carried
out metabolomic analyses by gas chromatography coupled to mass
spectrometry (GCMS) in the previously analyzed skeletal muscle,
subcutaneous adipose tissue, and venous blood samples, to also allow
us to assess how tissue-specific changes were reflected by systemic
changes.

Fasting compared with post-OGTT blood sampling demonstrated
that most serum metabolites changed significantly in response to
an OGTT (ANOVA time effect) following both sleep loss and sleep
(table S6A). Further suggesting that sleep loss alters amino acidme-
tabolism, possibly to promote skeletal muscle protein breakdown, we
observed decreased fasting serum levels of several (some essential)
amino acids such as arginine, asparagine, and threonine (table S6B)
as well as lower levels of glycine in skeletal muscle (table S6C). Levels
of glutamic acid and aspartic acid were instead significantly increased
in subcutaneous adipose tissue (table S6D). In both the fasting and
post-OGTT state, serum levels of ornithine and urea were decreased,
coupled with trends for lower levels of muscle urea and post-OGTT
serum uric acid (table S6, B and C). Together with altered levels of
structural muscle proteins, these changes support the notion that
sleep loss promotes skeletal muscle breakdown by increasing amino
acid flux.

In adipose tissue, we observed increased levels of both malic acid
and glyceric acid–3-phosphate in response to sleep loss compared
with sleep (table S6D), possibly indicative of increased fatty acid syn-
thesis via glycerol synthesis (52). Levels of the ketone 3-hydroxybutyric
acid were significantly increased in subcutaneous adipose following
sleep loss, supported by a similar directionality for ketone bodies in
serum (rs = 0.703, P = 0.007) and a decrease in levels of the ketogenic
amino acid threonine in skeletal muscle (P = 0.051) and fasting blood
serum (table S6, B and C).We also observed lower fasting serum levels
of 1,5-anhydro-D-glucitol (table S6B), a marker that decreases in re-
sponse to hyperglycemia in, for example, diabetes, altogether further
arguing for impaired glucose handling and altered metabolic substrate
utilization after sleep loss.

Through hierarchical clustering, we found tissue-specific changes
in sharedmetabolite levels in skeletal muscle and adipose tissue to be
reflected by overlapping changes in blood serum in the fasting state
in response to sleep loss (Fig. 5A). Shared overall changes in metab-
olite levels were significant at the correlational level between skeletal
muscle and serum (r = 0.606, P < 0.001; fig. S3H), and a metabolite
enrichment analysis combining data from serum and skeletal muscle
indicated that changes in protein biosynthesis and in the urea cycle
occurred following sleep loss (Fig. 5B). In contrast, correlations in
GCMS-based metabolites following sleep loss in subcutaneous adipose
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tissue appeared to be reflected to a much lesser extent by serum (rs =
0.023, P = 0.91; fig. S3I). A subsequent pathway analysis in adipose
tissue revealed significant changes in the malate-aspartate shuttle
pathway in response to sleep loss (Fig. 5C), a pathway that can be used
to produce NADH (reduced form of nicotinamide adenine di-
nucleotide) for glyceroneogenesis and lipid synthesis (43).
DISCUSSION
Shift work often entails overnight work, forgoing sleep and concom-
itantly incurring acute circadian misalignment, both of which are as-
sociated with a range of metabolic disruptions. Sleep loss can promote
both catabolism (9, 12) and anabolism—for example, via increased risk
of weight gain (2, 5)—yet few studies have focused on the underlying
tissue-specific molecular responses to acute sleep loss. Here, by parallel
sampling of skeletal muscle and adipose tissue, we provide insight into
the tissue-specific mechanisms by which acute sleep loss affects key
metabolic tissues in humans, demonstrating critical differences in
how these tissues respond at a number of molecular levels to acute sleep
loss.Our results indicate that sleep loss is associatedwithdown-regulation
of the glycolytic pathway in skeletal muscle, whereas this pathway
instead is up-regulated in subcutaneous adipose tissue. Our analyses
further suggest that these changes may be due to acute tissue-specific
circadian misalignment and provide evidence that acute sleep loss may
reprogram DNA methylation in adipose tissue to promote increased
adiposity. Our observations indicate that levels of structural proteins
in skeletal muscle decrease in response to sleep loss, contrasting with
increased levels of proteins linked to adipogenesis in adipose tissue.
These observations are thus the first to offer an explanation at the tissue
level for two seemingly contrasting clinical phenotypes seen following
experimental sleep loss in humans: gain of fat mass occurring concom-
itantly with loss of lean mass (10).

Our findings support the notion that curtailed sleep can promote a
catabolic state in skeletalmuscle. Recent studies have demonstrated that
rats exposed to extended rapid eye movement sleep deprivation exhibit
atrophy in glycolytic and mixed but not in oxidative muscles (13, 53).
Notably, a similar down-regulation at the genetic transcript levels for
fast muscle fibers is observed in isolated human myotubes when the
circadian clock is genetically disrupted (18), possibly linking our al-
terations in structural muscle protein levels to our observed muscle-
specific changes in BMAL1 protein levels. Together with increased
levels of adipogenesis-promoting proteins and a DNA methylation
profile that shares features of the obese state, these observations pro-
vide molecular-level observations for the altered body composition that
was previously first observed by Nedeltcheva et al. (10) via whole-body
dual-energy x-ray absorptiometry, in subjects exposed to several days of
partial sleep loss compared with normal sleep. Metabolomic studies
have also indicated that sleep loss promotes a catabolic state in blood
and urine (9, 54), and two recent cohort studies of middle-age and
older community-dwelling adults have indeed found insufficient sleep
to be associated with lower skeletal muscle mass (11, 12). Increased
catabolism in response to acute sleep loss may be driven by hormonal
disruptions that regulate the anabolic versus catabolic state in skeletal
muscle and adipose tissue. As foundherein, acute sleep loss can increase
levels of the catabolic hormone cortisol. Concomitantly, sleep loss can
reduce testosterone levels (55) and abolish nocturnal growth hor-
mone release, which normally occurs during slow-wave sleep (56).

In response to one night of sleep loss, we observed DNA methyl-
ation changes for genes that have previously been demonstrated to
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be differentially methylated in adipose tissue of obese and type 2 di-
abetes patients, including several imprinted genes. Recent evidence
suggests that differences in imprinted genes can distinguish obese
from nonobese subjects (57), and hence, recurrent disruption of sleep
and circadian rhythms may promote obesity development by repro-
gramming DNA methylation or other environmentally plastic epi-
Cedernaes et al., Sci. Adv. 2018;4 : eaar8590 22 August 2018
genomic modifications in adipose tissue to favor adipogenesis and
lipogenesis. The modulation and duration of these changes following
additional stressful or protective stimuli such as shifts in diet and
physical exercise remain to be determined.

It should furthermore be noted that the present study was a short-
term acute intervention that was restricted to young male Caucasians,
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Fig. 5. Hierarchical clustering analyses reveal close relationship between changes in serum and skeletal muscle metabolite levels in response to acute sleep
loss. (A) Shared metabolites across subcutaneous adipose tissue, skeletal muscle, and fasting serum. Rows indicate metabolites—based on gas chromatography mass
spectrometry (GCMS) metabolomic data—and have been ranked according to relatedness in terms of (i) changes across tissues (column-wise ranking) and (ii) fold
changes across metabolites, following sleep loss (wake) (using log2 values for the sleep loss/sleep ratio). The degree of changes in metabolites following sleep loss is
color-coded, with red indicating increased levels and blue indicating decreased levels (sleep loss/sleep). Metabolite set enrichment analysis for (B) skeletal muscle and
serum metabolites and for (C) subcutaneous adipose tissue metabolites. n = 13 for each tissue.
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with a limited number of analytical time points. Hence, it is presently
unknown whether the observed tissue-specific changes in response to
acute sleep loss also extend to, for example, different age groups, females,
or other ethnicities. It is also not known whether the observed short-
term effects might differ from the effects of chronic sleep restriction.

In summary, our results indicate that acute sleep loss results in a
tissue-specific switch in metabolic fuel utilization, which may be asso-
ciated with changes in the core circadian clock due to acute circadian
misalignment. Furthermore, we find that sleep loss induces a molecular
catabolic signature in skeletal muscle, mirrored by changes in blood,
and that this contrasts with an adiposity-promoting molecular and
DNAmethylation signature in adipose tissue. These tissue-specific find-
ings thus provide novel insight intowhy chronic sleep loss and circadian
misalignment may promote adverse weight gain in humans.
MATERIALS AND METHODS
Experimental design
This was a randomized, two-session, within-subject crossover design
study in which participants took part in two experimental conditions—
acute sleep loss (that is, overnight wakefulness) versus sleep. Written
informed consent was obtained from a total of 17 male Caucasian
participants who were deemed eligible and, thus, were included in the
study; out of these, 16 partook in both sessions. Fifteen participants
successfully adhered to the sleep protocol of the study (one subject was
unable to sleep during the sleep session). All participants received finan-
cial reimbursement for participating in the study.

Participants were screened by a medical doctor (J.C.) who assessed
questionnaires about sleep and general health and recorded anthropo-
morphic data. Extrememorningness or eveningness was excluded with
the morningness-eveningness questionnaire (see table S1), and only
participants with normal self-reported sleeping habits (7 to 9 hours of
sleep per night) and normal sleep quality (as assessed by the Pittsburgh
Sleep Quality Index; score ≤5) were included in the study. All partici-
pants were of self-reported good health and were free from chronic
medical conditions and chronic medications as assessed by a medical
interview by J.C. No participant drank more than 5 U of alcohol on
average per week, and all were nonsmokers. Participants were further-
more screened for normal blood cell counts and fasting glucose levels.

Before final participation, the participants underwent a separate
electroencephalography (EEG)–monitored adaptation night, whereby
theywere habituated to the sleep environment. Participants also completed
sleep, food, and activity diaries as part of their screening, as well as during
the week before each study session. There was no significant difference in
the average nighttime, self-reported sleep duration in the week leading
up to each intervention (8 hours 3 min ± 10 min for the wake condi-
tion versus 8 hours 7 min ± 10 min for the sleep condition; P = 0.71).

Study design and procedure
Two evenings before each session’s final experimental morning during
which biopsies were collected, participants came to the laboratory
(day 0), where they remained under constant supervision until the
end of the experimental session (total time in the laboratory for each
session, ~42 hours).

At 1930 h on the evening of day 0, participants were provided with a
dinner that provided a third of their total daily energy requirement (the
Harris-Benedict equation was factored 1.2 for light physical activity to
calculate each individual’s daily energy requirements). All served meals
were of low sugar and fat content. Furthermore, while meals varied be-
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tween breakfast, lunch, and dinner, meals were isocaloric and identical
for a given recurring time point (that is, breakfast, lunch, and dinner),
and meals were kept identical between sessions (that is, sleep loss and
normal sleep).

During the first (baseline) night in each condition, participants had
an 8.5-hour-long sleep opportunity (2230 to 0700 h); baseline sleep
characteristics were typical for laboratory conditions andwere not sig-
nificantly different between the two conditions (P = 0.21 for total sleep
duration). The following day, the participantswere provided three iso-
caloric meals—each had to be consumed within 20 min after being
served—and participants were taken on two standardized and supervised
15-min long walks.

Throughout each session, participants were restricted to their rooms
but were free to engage in sedentary-level activities and were instructed
not to exert themselves physically in anyway. Participants were further-
more blinded to the experimental condition (sleep or sleep loss) during
the second night, until 90 min in advance of the intervention onset at
2230 h, and the nighttime intervention lasted until 0700 h the following
morning. Under the sleep loss (overnight wakefulness) condition, room
lights were kept on (250 to 300 lux at eye level) and participants were
confined to their beds from 2230 to 0700 h to approximate sleep-like
activity levels, while continuing to be constantly monitored to ensure
complete wakefulness. Every 2 hours, participants were provided with
water (1.5 dl; with the possibility to obtain more if requested) to avoid
dehydration throughout the nocturnal wakefulness; however, no food
intake was allowed. Room lights were kept off during the nighttime
intervention in the sleep condition, and EEG, electrooculography, and
electromyography were used to record sleep with Embla A10 recorders
(Flaga hf, Reykjavik). For sleep stage assessment, standard criteria were
used by a scorer blinded to the study hypothesis (58). Before biopsy col-
lection in themorning after sleep or sleep loss, participants completed a
short computer task to assess cognitive function, the results of which
have been previously published (59).

Participants continued to be closely monitored and were instructed
to remain sedentary throughout the intervention morning following
sleep or sleep loss and were not allowed to support their body weight
using their legs, but rather to primarily reclinewith leg support. Biopsies
were collected after an initial blood sample in the fasting state. The
subcutaneous adipose tissue biopsy collection preceded the muscle
biopsy collection; the timing of each type of biopsy collection was kept
the same for each participant for both sessions (±15 min). Sub-
cutaneous adipose tissue and skeletal muscle were collected from
the left or right subcutaneous fat and vastus lateralis muscle, respec-
tively, in a randomized counterbalanced order for the first session.
During the second session, the biopsies were obtained from the con-
tralateral sideof the abdomenand leg. For the subcutaneous adipose tissue
biopsy, the skin of the left or right umbilical regionwas first anesthetized
using lidocaine (10mg/ml) without epinephrine. Amillimeter-large in-
cision was made through the skin, after which a large-caliber needle
(14 gauge) was used to collect subcutaneous fat [as described in (23)].
For the skeletal muscle biopsy, the skin and fascia overlying the left or
right vastus lateralis were anesthetized, and a conchotome was used to
obtain skeletal muscle biopsies (23). Collected subcutaneous adipose
tissue and skeletal muscle samples were quickly washed in phosphate-
buffered saline to remove visible blood and connective tissue before
snap-freezing the samples in liquid nitrogen. All biopsy specimens were
thereafter stored at −80°C.

After biopsy sampling, participants underwent an OGTT before
leaving the facility. Before the OGTT, fasting blood samples were
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obtained around 1030 h using an indwelling venous catheter. Par-
ticipants then consumed a glucose solution (75 g of glucose in 300ml of
water) within 2min. To ensure equal initial physiological distribution of
the consumed OGTT solution, participants were instructed to lie on
their right side for the next 5 min and were not allowed to walk around
until after the final post-OGTT blood sample had been collected. Ad-
ditional blood samples were obtained 30, 60, 90, and 120 min after
having consumed the solution.

To ensure full recovery following each session, at least 4 weeks
elapsed between the two different sessions (sleep loss versus normal
sleep) that the 15 included subjects participated in. The study was ap-
proved by the Ethical Review Board in Uppsala (EPN 2012/477/1) and
was conducted in accordance with the Helsinki Declaration.

Genomic and molecular analyses
More detailed descriptions of genomic and molecular analyses are
provided in the Supplementary Materials. For all biochemical runs and
tissue extractions, as well as for all subsequent runs (for example, for
DNA/RNA extractions, mass spectrometry, and GCMS), samples from
both conditions (sleep loss and sleep) were always extracted in the same
batch for a given individual to avoid interbatch effects.

Genome-wide DNA methylation
For genome-wide DNAmethylation analysis, the samples were ana-
lyzed via Uppsala SciLifeLab core facility services (Uppsala). The
HumanMethylation450 BeadChip (Illumina; examines 485,764
CpG dinucleotides) was run, and changes in DNAmethylation levels
were assessed using differences in mean beta values (range, 0 to
1 corresponding to 0 to 100%methylation) for the sleep loss (overnight
wakefulness) versus sleep condition (wake-sleep).P values are presented
as FDR-corrected (Benjamini-Hochberg–adjusted). All processing and
statistical analyses of the DNA methylation 450K BeadChip data were
carried out using the statistical software R (version 3.1.1; www.r-project.
org), with software and statistical packages detailed in the Supplemen-
tary Materials.

qPCR and RNA-sequencing
Applied Biosystem’s 7500 Fast Real-Time PCR System (Applied
Biosystems) was used to analyze gene expression by qPCR of the
collected skeletal muscle and adipose tissue biopsies, and RNA-seq
analysis was carried out for genome-wide analysis of transcription.
The TruSeq stranded total RNA library preparation kit with Ribo-
Zero Gold treatment (Illumina) was used to prepare libraries for
sequencing. FastQ files generated from RNA-seq were run through
the RNA-seq pipeline [National Genomics Infrastructure (NGI) Sweden;
https://github.com/ewels/NGI-RNAseq] for basic processing of RNA-
seq data, as detailed in the Supplementary Materials. Data from adi-
pose and muscle were analyzed separately. Following initial read count
analysis with featureCounts, the R packages edgeR and GAGE (Gen-
erally Applicable Gene-set Enrichment) were used for differential gene
expression and GSEA, respectively (see Supplementary Materials).

Mass spectrometry–based protein quantification
For label-free quantification of relative protein expression in skeletal
muscle and adipose tissue samples, protein identification was per-
formed following mass spectrometry analysis against a FASTA database,
which contained proteins from Homo sapiens extracted from the
UniProtKB/Swiss-Prot database (December 2014). A decoy search
database including common contaminants and a reverse database were
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used to estimate the identification FDR. The search parameters included
the following:maximum10parts permillion and0.6-Da error tolerances
for the survey scan and tandemmass spectrometry analysis, respectively;
enzyme specificity was trypsin; maximum one missed cleavage site
allowed; cysteine carbamidomethylation was set as static modification;
and oxidation (M) was set as variable modification. A total label-free in-
tensity analysis was performed for each individual sample, followed by
bioinformatic analyses of the generated results. Proteins that were
present in at least 12 of the 15 subject pairs for each tissue type were
included in the subsequent analyses of group-level expression level dif-
ferences. For eachprotein, a log2 ratio between the sample obtained after
sleep loss and the sample obtained after normal sleep was calculated for
the individual participants, followed by one-sample Student’s t test.

Western blot
Aliquots of the skeletal muscle biopsies (20 to 30mg) were freeze-dried,
followed by microscopy-assisted fine dissection to remove any visible
blood and connective tissue. The aliquotswere homogenized in homog-
enization buffer [500 ml of ice-cold buffer, containing 2.7 mM KCl,
1 mM MgCl2, 137 mM NaCl, 20 mM tris (pH 7.8), 1 mM EDTA,
10mMNaF, 5mMNa pyrophosphate, 10% (v/v) glycerol, 1% Triton
X-100, 0.2mMphenylmethylsulfonyl fluoride, 0.5mMNa3VO4, and
protease inhibitor cocktail; Set I, 1×; Calbiochem, EMDBiosciences].
Samples were then rotated at 4°C for 1 hour, followed by centrifugation
at 12,000g for 10 min, both at 4°C.

For the adipose tissue, the aliquoted (20 to 35 mg) biopsies were
first ground in liquid nitrogen to a fine powder using a mortar and
pestle, after which the samples were immersed in roughly 400 ml of
homogenization buffer. The samples were then rapidly homogenized
using a motor-driven pestle while maintained on ice and were centri-
fuged at 12,000g for 10 min at 4°C. Following centrifugation, insoluble
material was removed from processed muscle and adipose tissue pro-
tein lysates, and protein concentration for each sample was determined
with duplicate samples runwith the Bradford ProteinAssayKit (Thermo
Scientific).

Protein aliquots were suspended in equal amounts in Laemmli
sample buffer, followed by SDS–polyacrylamide gel electrophoresis sep-
aration using precast gels (Criterion XT; Bio-Rad). Following protein
separation, proteinswere transferred to polyvinylidene difluoridemem-
branes and Ponceau staining was used to verify equal protein loading.
Protein extraction was unsuccessful for two muscle samples (from two
separate individuals). Therefore, these two subjects were not included in
Western blot analyses, yielding a total of 13 paired skeletal muscle
samples used for Western blot analysis. Subcutaneous adipose tissue
samples were prepared and run similarly to the muscle samples but
on separate gels. Because of the low startingmaterial, a total of 11 paired
subcutaneous adipose tissue protein samples (that is, including both the
sleep loss and sleep condition biopsy samples from a given subject)
were available forWestern blot analysis. Furthermore, because of the
low total protein content, we were unable to further validate themass
spectrometry proteomic hits in adipose tissue protein lysates with
immunoblotting.

Following loading verification, transferredmembranes were blocked
with 5% nonfat dry milk for 90 min at room temperature. Skeletal
muscle and subcutaneous adipose tissue membranes were then incu-
bated overnight at 4°C with primary antibodies against BMAL1
(1:2000; Santa Cruz Biotechnology), GLUT4 (1:1000; 07-741, Millipore),
mitochondrial complexes I-V (1:1000; ab110411, Abcam), and phospho-
fructokinase 1 (PFK1; 1:1000; sc-67028, SantaCruz Biotechnology). After
11 of 14
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repeated washing in Tris Buffered Saline, with Tween 20 (TBST), the
membranes were incubated with appropriate secondary antibodies
(anti-goat, anti-mouse, or anti-rabbit) for 60 min. Enhanced chemi-
luminescence (Amersham) was used to visualize detected proteins.

Quantification of protein densitometry was done with the
software Fiji/ImageJ (v2.0.0) (60); normalization of protein content
was done to Ponceau staining to normalize to total protein content
and avoid bias from variation in housekeeping protein (for example,
due to circadian variation) content in individual samples (61). Because
the number of analyzed samples per tissue exceeded the amount
permitted by a single gel, protein quantification for each tissuewas done
by running two gels, which together contained all samples for each
tissue at the same time. Samples from both conditions (that is, the wake
and sleep samples) from each individual were always run together on
the same gel, but to account for possible intergel variation, ratios (sleep
loss/sleep) were calculated for each subject and assessed using one-
sample t tests.

Metabolomic analyses
For metabolite analyses in sampled tissues and serum, following mass
spectrometry and initial analysis (see SupplementaryMaterials), identi-
fied retention indices and mass spectra were compared with libraries of
retention time indices and mass spectra to identify the extracted mass
spectra. Compound identification was based on comparison with mass
spectra libraries (in-house database) and the retention index. All meta-
bolomic data were normalized to internal standards, and muscle and
adipose tissue samples were also normalized to the mass of each indi-
vidual sample, determined with 0.1-mg resolution in the frozen state.
Metabolomic data were analyzed following log2 transformation with
one-sample Student’s t tests of protein and metabolite ratios (sleep
loss/sleep). Correlational analyses of metabolomic data were carried
out with the Morpheus tool (https://software.broadinstitute.org/
morpheus/) using hierarchical clustering (1 − Pearson correlation) for
bothmetabolites and subjects; pathway enrichment analyses were per-
formed with MetaboAnalyst using pathway-associated metabolite
sets (http://www.metaboanalyst.ca/). A total of 15 pairs of sub-
cutaneous adipose tissue samples were included in the metabolomic
analyses of sleep loss compared with normal sleep; however, because
of two outlier samples for two separate subjects (>2 SDs for multiple
metabolites), the metabolomic analysis in skeletal muscle included only
13 paired samples.

Serum insulin and cortisol values were analyzed with commercial
enzyme-linked immunosorbent assay (ELISA) kits (Human Insulin
ELISA, Mercodia AB, Uppsala; Cortisol Parameter Assay Kit, R&D
Systems). Plasma glucose levels were analyzedwith a chemistry analyzer
(Architect C16000, Abbott Laboratories). Serum aliquots (100 ml) from
the fasting pre-OGTT and 120-min post-OGTT were used for serum
GCMS analyses as described above.

Statistics
Normally distributed data (Kolmogorov-Smirnov’s test, P > 0.05) were
analyzed with paired Student t tests (qPCR data), one-sample t tests
(Western blot data), or Pearson’s correlation; nonparametric variables
were analyzed with the Wilcoxon signed-rank test or Spearman’s rank
test. Repeatedly measured biochemical and metabolomic parameters
were analyzed with ANOVA with the factors “wake” (reflecting sleep
condition) and “time” (reflecting time point, that is, before and up until
120min after theOGTT).ANOVAsphericity deviationswere corrected
with the Greenhouse-Geisser method; post hoc comparisons were
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carried out with the paired Student’s t test. For RNA-seq analyses, genes
with >1 count per million in at least five samples were included in the
analysis. For genome-wide DNA methylation and transcriptomic
analyses, only hits with FDR < 0.05 were considered significantly dif-
ferent; in GSEA and classical pathway analysis, only gene sets with
FDR < 0.05 were reported. Unless otherwise specified, values are re-
ported as mean ± SEM and P values < 0.05 were considered signif-
icant. Biochemical and metabolomic data were analyzed with SPSS
(v.23, SPSS Inc.). Additional details on statistical methods are described
for individual methods in the Supplementary Materials.
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