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Abstract: This paper presents the optimization of building envelope design to minimize thermal load
and improve thermal comfort for a two-star green building in Wuhan, China. The thermal load of
the building before optimization is 36% lower than a typical energy-efficient building of the same
size. A total of 19 continuous design variables, including different concrete thicknesses, insulation
thicknesses, absorbance of solar radiation for each exterior wall/roof and different window-to-wall
ratios for each façade, are considered for optimization. The thermal load and annual discomfort
degree hours are selected as the objective functions for optimization. Two prediction models,
multi-linear regression (MLR) model and an artificial neural network (ANN) model, are developed
to predict the building thermal performance and adopted as fitness functions for a multi-objective
genetic algorithm (GA) to find the optimal design solutions. As compared to the original design,
the optimal design generated by the MLRGA approach helps to reduce the thermal load and
discomfort level by 18.2% and 22.4%, while the reductions are 17.0% and 22.2% respectively, using
the ANNGA approach. Finally, four objective functions using cooling load, heating load, summer
discomfort degree hours, and winter discomfort degree hours for optimization are conducted,
but the results are no better than the two-objective-function optimization approach.
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1. Introduction

The energy consumption in building sector accounts for about one third of the primary energy
consumption in the world [1]. About 40% of the total energy in the U.S. was consumed by buildings [2].
The building energy consumption in China is second only to the USA [1] and is increasing with
the great demand for thermal comfort. Therefore, it is very important to design energy efficient
buildings to minimize building energy consumption while maintaining or improving the indoor
thermal comfort level.

The building energy demand can be alleviated through improved/optimized building design to
reduce the thermal load of the buildings [3–5]. Thermal load and thermal comfort of buildings are
affected by a number of factors, among which thermal mass (in particular the thickness of the concrete
slab), insulation level, absorptance of solar radiation of the exterior walls/roof, and glazing ratio
(also known as the window-to-wall ratio) are four factors that have important impacts [6]: (1) thermal
mass can affect the fluctuation of the daily temperature inside the house; (2) insulation can affect the
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conduction heat gain/loss through the opaque envelope; and (3) the absorptance of solar radiation of
the opaque envelope and the location and size of the windows can affect the solar heat gain.

Various approaches have been applied to improve building design through the consideration
of thermal mass, insulation level, absorptance of solar radiation, and glazing ratio, and they
have been studied at different levels of detail, e.g., uniform solar absorptance for all exterior
walls [7–9], different solar absorptance for each external wall [10], one solar absorptance variable
for the roof [8,11], uniform window size for all façades [5,7,9,12–17], different window sizes for
each façade [18–27], uniform insulation level for exterior walls and roof [13,28], uniform external
wall insulation level [17,22,29], one variable for external wall insulation and one variable for roof
insulation [5,11,12,21,30–33], different insulation levels for each wall [34], and uniform thermal mass
for all external walls [20,21,28,29]. By taking into account the building design variables and using
optimization algorithms, the reduction on building energy consumption can be as much as 50% with
thermal comfort improved by 1.5% [23].

So far, no literature has been found that has proposed a design optimization considering thermal
mass, insulation level, absorbance of solar radiation for each exterior wall/roof, and glazing ratio for
each façade at the same time. However, to achieve full potential of energy savings with improved
thermal comfort in building design, all those variables deserve to be fully explored. Optimization
on each of the parameters can result in improvement for the building performance (reduction of
thermal load and discomfort degree hours). When one more parameter is added for optimization,
further improvement can be achieved, which results in a greater reduction on thermal load and
discomfort degree hours. As the number of design variables increases, the level of complexity to obtain
optimal design solutions also increases. One way to solve this problem is to use parallel computing
technology, e.g., the optimization time was reduced from almost 12 days to 4.4 h for the cases with 108
and 1016 possibilities when coupled optimization approach with simulation software [9], and from
118 h to 3 h with 48 processors using parallel computing for the case with six discrete variables [35].
The other way is to use an energy prediction model to characterize building behavior and then
combine this with genetic algorithm, where most of the time was used to generate the sample data,
e.g., it took three weeks to generate the results of thermal load and comfort level of 450 cases for two
residential houses in Canada, and it took around 7 min to complete the optimization process which
may take 10 years when using simulation software coupled with a genetic algorithm directly [20].
As parallel computing resources are not always available, the latter approach is adopted in this paper by
developing prediction models to couple with genetic algorithms to find the optimal design solutions.

In this paper, different variables of thermal mass, insulation, absorbance of solar radiation are
assigned for each exterior wall/roof, and the glazing ratios for each façade are considered separately.
A total of 19 variables are considered, including five variables for concrete thickness, five variables for
insulation thickness, five variables for the absorptance of solar radiation for each exterior walls/roof,
and four variables for the window-to-wall ratio of each façade. In order to reduce the computation
time, the Latin Hypercube Sampling Method is used to create the samples required to generate
prediction models, and the commercial software, DesignBuilder (DesignBuilder Software Ltd, Stroud,
Gloucestershire, UK) [36], is used to calculate the sub-hourly heating load, cooling load, and indoor air
temperature to evaluate the thermal comfort condition. Two typical prediction models, multi-linear
regression (MLR) model and an artificial neural network (ANN) model, are developed based on the
sample data and coupled with a multi-objective genetic algorithm to find the optimal design solutions.
The results from the two objective functions, namely, thermal load and annual discomfort degree
hours, are also compared with the outcomes using the cooling load, heating load, summer discomfort
degree hours, and winter discomfort degree hours as the objective functions for optimization.

The advantage of using the described method is that each component of the building envelope
can be customized and the values of the building design parameters do not have to be the same if
their orientations are different. The optimal model can be achieved by performing optimization with
as many measures as possible, so that the least amount of materials can be determined to construct
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a building with a high indoor thermal comfort level and low thermal load. The accurate modeling
can ensure utilizing the least amount of materials to achieve optimal building performance. Optimal
usage of material for different building components can be selected to achieve a minimum thermal
load and discomfort degree hours, which is different from traditional design, and can improve the
quality of construction project. This is coincidence with 3D printing technology where the material for
each component can be tailored. It is expected that advancement of 3D house printing technology will
make it possible for wide application in design practice in the future.

2. Optimization Approach

2.1. Formulation of the Problem

2.1.1. Objective Functions to be Optimized

The following two objective functions are used in this study to find the optimal building design,
and they are described as follows:

Min f1(x), f2(x), x = [x1, x2 · · · , xn]. (1)

The first objective function is the annual thermal load, which was also investigated by [5,37].
The total building thermal load, calculated by DesignBuilder (DesignBuilder Software Ltd., Stroud,
Gloucestershire, UK) [36], was composed of a cooling load and heating load:

f1(x) = QC(x) + QH(x). (2)

The second objective function is the total number of discomfort degree hours, which was proposed
by Zhang et al. [38]. The total number of discomfort degree hours is composed of two parts. The first
part is the cooling discomfort degree hours, which can be calculated as [37,38]:

Is(x) = ∑8760
i=1 (ti(x)− tH) (if ti(x) > tH). (3)

where ti(x) is the indoor air temperature at time i; and tH is the higher limit temperature in the
thermal comfort range, taken as 26 ◦C according to the energy efficient building design standard
JGJ134-2010 [39].

The second part is the heating discomfort degree hours, which can be calculated as [38]:

Iw(x) = ∑8760
i=1 (tL − ti(x))(if ti(x) < tL). (4)

where tL is the lower limit temperature in the thermal comfort range, taken as 18 ◦C according to
JGJ134-2010 [39].

The total number of discomfort degree hours is then calculated as:

f2(x) = Is(x) + Iw(x). (5)

2.1.2. Base Model

The base building (see Figure 1) is a two-star green building, which was designed to meet the
China Assessment Standard for Green Building GB-T50378 2014 [40]. It is a three-story building
with a height of 11.77 m, floor area of 146.43 m2, and a total construction area of 303.9 m2. Exterior
insulation and finish systems (EIFS) are adopted. The extruded polystyrene form board (XPS) is used
for exterior wall and roof insulation. The double-layer low-E windows ensure enough daylighting,
while effectively reducing the unwanted solar radiation in the daytime. Optimal building orientation of
15◦ west-to-south, as recommended by the building energy efficiency design standard JGJ134-2010 [39],
is applied. The design helps to achieve thermal load reduction of 36% compared to a typical energy
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efficient building of the same size before further optimization is applied. The typical energy efficient
building was built to meet the standard JGJ134-2010 [39] with K values of 0.974 W/m-K for the exterior
walls, 0.592 W/m-K for the roof, and 3.835 W/m-K for the window, respectively. The thermal load of
the energy efficient building is 36,301.50 kWh, while the one of the green building is 23,233.00 kWh.
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Figure 1. Overview of the base building.

Table 1 lists the values of design parameters of the base building and the requirements from the
energy efficient building design standard JGJ134-2010 [39]. It can be found that the K values of the
external walls/roof and window-to-wall ratio far exceed the requirements from JGJ134-2010 [39].

Table 1. Values of the design parameters for the base building.

Design Parameter Value of the Base Building Requirements from
JGJ134-2010 [39]

Floor area (m2) 146.43 -
Building height (m) 11.77 -

Total construction area (m2) 303.9 -
Shape factor 0.53 ≤0.55

Heating temperature setpoint (◦C) 18 18
Cooling temperature setpoint (◦C) 26 26

K value of the external wall (W/m-K) 0.383 ≤1.0
K value of the roof (W/m-K) 0.402 ≤0.6

Window-to-wall ratio, East (%) 18 ≤35
Window-to-wall ratio, South (%) 20 ≤45
Window-to-wall ratio, West (%) 15 ≤35

Window-to-wall ratio, North (%) 16 ≤40
Building orientation 15◦ west-to-south -

A total of 19 design variables are selected for study, which are concrete thickness, insulation
thickness, and absorptance of solar radiation for each external wall/roof, and window-to-wall ratio for
each façade. Table 2 lists the variable types and value ranges.



Sustainability 2018, 10, 336 5 of 15

Table 2. Variable types and value ranges.

Design Variable Range Value for Base Building

Concrete thickness (m)

East (x1) [0.05, 0.25] 0.24
South (x2) [0.05, 0.25] 0.24
West (x3) [0.05, 0.25] 0.24

North (x4) [0.05, 0.25] 0.24
Roof (x5) [0.05, 0.25] 0.24

Insulation thickness (mm)

East (x6) [10, 100] 50
South (x7) [10, 100] 50
West (x8) [10, 100] 50

North (x9) [10, 100] 50
Roof (x10) [10, 100] 60

Absorption of solar radiation

East (x11) [0.1, 0.9] 0.7
South (x12) [0.1, 0.9] 0.7
West (x13) [0.1, 0.9] 0.7

North (x14) [0.1, 0.9] 0.7
Roof (x15) [0.1, 0.9] 0.7

Window-to-wall ratio (%)

East (x16) [10, 80] 18
South (x17) [10, 80] 20
West (x18) [10, 80] 15

North (x19) [10, 80] 16

The climatic information of Wuhan is listed in Table 3.

Table 3. Climatic information.

City Latitude
(◦)

Longitude
(◦)

HDD18
(◦C·d)

CDD26
(◦C·d)

Average OAT
(◦C) Climatic Region

Wuhan 30.62 114.13 1501 283 16.7 Hot Summer & Cold
Winter Region

2.2. Optimization Framework

The optimization framework of this study is summarized in Figure 2, and is divided into three
steps. In the first step the simulation software obtained the thermal load and discomfort degree hours
for a selected number of samples, which are generated based on the ranges of the 19 design variables as
shown in Table 2. In the second step the samples from the database is used to develop two prediction
models, the MLR model and the ANN model. In the third step, the MLR model and the ANN model
are used to couple with a multi-objective genetic algorithm to find the optimal solutions. Finally,
the results of the optimal solutions based on different prediction models and objective functions are
compared and discussed.
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3. Prediction Model

3.1. Creation of the Sample Dataset

The Latin Hypercube Sampling Method (LHSM) [41] was used to generate the distribution
of the simulation parameters used for constructing the sampling database. The LHSM generates
a near-random sample of parameter values and ensures that the ensemble of random numbers is
representative of the real variability. McKay [41] determined that a sample of 2 × N sampling data is
enough (where N is the number of variables). However, Conraud [42] and Magnier and Haghighat [20]
found 22.5 × N sampling data is more appropriate to accurately sample the search space. In this
study, a total of 450 cases were generated, which is slightly higher than the numbers recommended
by Conraud [42] and Magnier and Haghighat [20]. Visualizations of selected design parameters from
each of the four categories, x1 for the thickness of concrete, x6 for the insulation thickness, x11 for the
absorption of solar radiation, and x16 for the window-to-wall ratio (WWR), are presented in Figure 3.
It can be observed that the 19-dimensional spaces are well covered with the 450 samples.
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All the simulation cases were run using DesignBuilder (DesignBuilder Software Ltd, Stroud,
Gloucestershire, UK) with a time step of 30 min. It took around 45 days to create the 450 sample
buildings and perform simulations using a desktop computer configured with an Intel i5 CPU @
1.60 GHz with 4 GB of memory.

3.2. MLR Model

A multi-linear regression model is a very popular approach and was proved to be able to predict
annual building energy consumption by Asadi et al. [43]. The regression model can be presented as:
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f(x) = a0 +
n

∑
i=1

aixi. (6)

where a0, a1, ..., and an are the estimations of the regression parameters, based on the
least-square method.

The regression model for the total building thermal load and discomfort degree hours can be
presented as:

f1(x) = 23029.4 + 158.9 ∗ x1 + 242.6 ∗ x2 + 701.5 ∗ x3 + 238.8 ∗ x24 + 1284.1 ∗ x5−
9.6 ∗ x6 − 10.99 ∗ x7 − 15.62 ∗ x8 − 11.15 ∗ x9 − 16.12 ∗ x10 − 2633.4 ∗ x11−
2420.8 ∗ x12 − 3749.1 ∗ x13 − 3472.7 ∗ x14 − 4228.5 ∗ x15 + 101.4 ∗ x16 + 62.21 ∗ x17+

125.0 ∗ x18 + 71.33 ∗ x19.

(7)

f2(x) = 3649.3 − 4.85 ∗ x1 + 12.55 ∗ x2 + 42.38 ∗ x3 + 15.75 ∗ x24 + 118.6 ∗ x5−
0.5732 ∗ x6 − 0.4843 ∗ x7 − 0.9149 ∗ x8 − 0.5462 ∗ x9 − 0.7036 ∗ x10 − 85.95 ∗ x11−
112.9 ∗ x12 − 203.2 ∗ x13 − 139.7 ∗ x14 − 172.9 ∗ x15 + 11.06 ∗ x16 + 7.377 ∗ x17+

10.94 ∗ x18 + 8.125 ∗ x19.

(8)

The regressions between the target simulated outputs and MLR predictions are presented in
Figure 4. Good agreements are found between the simulations and predictions, as the regression
coefficients for both models are higher than 0.9889. A total of 405 (90%) sample data points were used
for training and the remaining 45 (10%) sample data points were used for validation, which is the
same as in Magnier and Haghighat [20]. For the thermal load model, the R2 values for training and
validation are 0.9840 and 0.9922, respectively. For the discomfort degree hour model, the R2 values are
0.9763 and 0.9860, respectively.
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Figure 4. Regression between MLR outputs and simulated targets.

3.3. ANN Model

ANN mimics the animal brain neural network behaviors in handling distributed parallel
information. The ANN is interconnected with a number of joins (called neurons). Each join is
connected with a number of inputs and outputs for information processing. The ANN learns the
relationship between inputs and outputs through training data [44]. The ANN model was applied
by Magnier and Haghighat [20] to predict the building thermal load and energy consumption with a
maximum relative error of less than 10%.
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A complete ANN model includes the inputs and corresponding weight values, thresholds, one or
more hidden layers, and outputs. In this case, there are 19 inputs, one hidden layer, and one output
layer. The number of nodes at the hidden layer is determined according to the following formulas [45]:

m < a − 1. (9)

m <
√
(a + b) + c. (10)

m = log2 a (11)

where m is the number of nodes at the hidden layer; a is the number of nodes at the input
layer (equal to 19 in this study); b is the number of output nodes; and c is a constant, which is
between 0 and 10. The optimal number of nodes in the hidden layer in this study is 8.

Figure 5 presents the diagram of the ANN model in this study. The maximum number of epochs
is 200. The learning speed is 0.03, and the target error precision is 5 × 10−5. The number of sample
data for training and for validation are 405 (90%) and 45 (10%), respectively.
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3.4. Comparisons on Different Prediction Models

The comparisons on the performance of the two prediction models are presented in Table 4.
It can be found that both the regression coefficients are higher than 0.989, which indicates very good
agreements between the simulation and prediction outcomes. The ANN models perform better with
higher regression coefficients and lower standard deviations. It can also be found that the relative errors
of the discomfort degree hour models are always lower than the thermal load models. The maximum
errors for all the models are less than 8%.

Table 4. Comparison on the performance of the four prediction models.

Method

Thermal Load Discomfort Degree Hour

Regression
Coefficient

Standard
Deviation

(kWh)

Maximum Relative
Error/Maximum

Absolute Error (kWh)

Regression
Coefficient

Standard
Deviation

(◦C·h)

Maximum Relative
Error/Maximum

Absolute Error (◦C·h)

MLR 0.992 514.183 7.01%/1930.72 0.989 61.689 6.91%/354.32
ANN 0.996 362.28 6.01%/1380.70 0.996 36.235 3.51%/145.05

4. Results and Discussion

Since the prediction results from all models are in good agreement with simulation results,
the ANN models and MLR models are coupled with a multi-objective genetic algorithm to find the
optimal design solutions.

4.1. MLR with GA

The regression models (Equations (7) and (8)) are used as the fitness functions for a multi-objective
optimization program using genetic algorithm developed in MATLAB. The constraints of the variables
are presented as follows:

0.05 ≤ x1, x2, x3, x4, x5 ≤ 0.25 (12)

10 ≤ x6, x7, x8, x9, x10 ≤ 100 (13)

0.1 ≤ x11, x12, x13, x14, x15 ≤ 0.9 (14)

10 ≤ x16, x17, x18, x19 ≤ 80 (15)

The program ran a number of times and each time came out with 1–4 Pareto front solutions
when converged. A total of 45 solutions are obtained after 29 runs, after which the ranges of the
outcomes for each design parameter stays unchanged. The maximum, minimum, median, average
values, and standard deviations for the outcomes of the thermal load, number of discomfort degree
hours, and each variable are summarized in Table 5.

Table 5. Statistical values of the objective functions and design variables for MLRGA.

Item Minimum Maximum Median Average Standard Deviation

Thermal load (kWh) 19,568.9 20,868.4 20,127.2 20,162.6 333.3
Ndis (◦C·h) 3721.2 3822.1 3767.4 3766.7 23.8

x1 (m) 0.1553 0.2500 0.2466 0.2369 0.0221
x2 (m) 0.1564 0.2500 0.2428 0.2351 0.0230
x3 (m) 0.1947 0.2500 0.2498 0.2436 0.0111
x4 (m) 0.1775 0.2500 0.2493 0.2425 0.0155
x5 (m) 0.1751 0.2500 0.2500 0.2455 0.0126

x6 (mm) 31.5311 84.9766 52.9107 54.2241 13.5953
x7 (mm) 31.8788 74.5924 54.3463 54.5520 10.9994
x8 (mm) 42.5186 78.8962 63.8735 62.7198 9.6804
x9 (mm) 36.1280 79.5128 63.2697 58.2602 11.8191
x10 (mm) 37.0395 78.5900 63.0025 63.1980 9.4988
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Table 5. Cont.

Item Minimum Maximum Median Average Standard Deviation

x11 0.1881 0.8366 0.4236 0.4398 0.1299
x12 0.2061 0.6710 0.3713 0.4325 0.1551
x13 0.1105 0.5694 0.2520 0.2656 0.0892
x14 0.1643 0.7348 0.3544 0.3960 0.1348
x15 0.1059 0.4254 0.1665 0.1865 0.0856

x16 (%) 10.4783 14.4398 11.2875 11.4404 0.8348
x17 (%) 10.5023 15.7129 12.1651 12.4202 1.4820
x18 (%) 10.3139 12.8394 11.1387 11.2782 0.6253
x19 (%) 10.5941 14.3469 11.7449 11.9172 0.8638

It is observed that the medians for the thickness of the concrete layer are higher than 0.24 m;
for the insulation layer, are 52.9–63.9 mm; for the absorptance of solar radiation, are 0.167–0.424; and for
the window-to-wall ratio, are 11.1–12.2%. There are differences on the values of design variables at
different orientations, meaning the building can be adaptively designed to minimize the impact of
outside weather conditions on the indoor environment.

The thermal load and number of discomfort degree hours for the best solution are 19,568.9 kWh
and 3721.2 ◦C·h (19,000.4 kWh and 3755.4 ◦C·h from DesignBuilder (DesignBuilder Software Ltd.,
Stroud, Gloucestershire, UK)), while the ones for the base building are 23,233.0 kWh and 4840.0 ◦C·h.
The reduction on the thermal load and number of discomfort degree hours are 18.2% and 22.4%,
respectively. The relative errors on the predictions of the thermal load and discomfort degree hours
are 2.99% and −0.91%, respectively.

4.2. ANN with GA

The ANN models developed in Section 3.3 are used as the fitness functions for the multi-objective
optimization program, and the same constraints of the variables as in Section 4.1 are applied.

The program ran for a number of times and each time came out with 1–12 Pareto front solutions.
A total of 44 solutions are obtained after 14 runs. The maximum, minimum, median, average values,
and standard deviation for the outcomes of the thermal load, number of discomfort hours, and each
variable are summarized in Table 6.

Table 6. Statistical values of the objective functions and design variables for ANNGA.

Item Minimum Maximum Median Average Standard Deviation

Thermal load (kWh) 18,938.4 20,694.8 20,017.3 19,986.7 342.4
Ndis (◦C·h) 3592.8 3778.8 3738.1 3724.0 43.2

x1 (m) 0.1469 0.2499 0.2439 0.2273 0.0310
x2 (m) 0.1495 0.2500 0.2473 0.2343 0.0254
x3 (m) 0.1385 0.2500 0.2454 0.2233 0.0342
x4 (m) 0.1568 0.2500 0.2122 0.2113 0.0303
x5 (m) 0.1929 0.2500 0.2397 0.2297 0.0212

x6 (mm) 65.1231 81.3189 66.8935 69.2039 4.3327
x7 (mm) 35.9832 78.4017 58.5429 57.3585 12.2252
x8 (mm) 47.1732 81.7260 75.1834 70.6674 10.7494
x9 (mm) 45.8759 83.8319 68.4857 67.4576 9.2205
x10 (mm) 45.4588 83.8540 61.3895 64.6777 8.7629

x11 0.1397 0.5344 0.2390 0.2894 0.1280
x12 0.1180 0.7384 0.5406 0.4750 0.1364
x13 0.1111 0.5697 0.4214 0.3798 0.1432
x14 0.2277 0.7140 0.4712 0.4468 0.1258
x15 0.1069 0.5553 0.1944 0.2312 0.1167

x16 (%) 10.6752 13.4761 12.1307 12.4271 0.8153
x17 (%) 12.0535 18.2364 15.4413 15.7119 2.0794
x18 (%) 10.9451 14.7791 12.2079 12.4518 0.9828
x19 (%) 11.7572 14.9198 13.8030 13.7202 1.0660
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It is observed that the medians for the thickness of the concrete layer are higher than 0.21 m,
for the insulation layer are 58.5–75.2 mm, for the absorbance of solar radiation are 0.194–0.5406, and for
the window-to-wall ratio are 12.1–15.4%.

The thermal load and number of discomfort degree hours for the best solution are 18,938.4kWh
and 3592.8 ◦C·h (19,276.63 kWh and 3773.5 ◦C·h from DesignBuilder (DesignBuilder Software Ltd.,
Stroud, Gloucestershire, UK)). The reduction on the thermal load and number of discomfort degree
hours are 17.0% and 22.2%, respectively. The relative errors on the predictions of the thermal load and
discomfort degree hours are 1.75% and 4.76%, respectively.

4.3. Optimization with Different Combinations of Parameters

The ANNGA approach is applied for optimization on different combinations of parameters.
The results on the optimization are presented in Table 7, where “1” refers to the concrete thickness;
“2” refers to the insulation thickness; “3” refers to the absorptance of solar radiation; and “4” refers to
the window-to-wall ratio. The results clearly show that when one more group of parameters is added,
there is a further improvement on the building performance.

Table 7. Comparison on the optimal solutions using different combinations of design parameters.

Optimization
Parameter

Thermal
Load

Increase in
Thermal

Discomfort
Degree Hours

Increase In Discomfort
Degree Hours

(kWh) Load (%) (◦C·h) (%)

1 23,795.0 * 25.6% 4087.6 13.8%
2 21,194.8 11.9% 3861.6 7.5%
3 22,271.7 17.6% 3947.2 9.9%
4 21,810.9 15.2% 3889.3 8.3%

1&2 21,159.9 11.7% 3856.4 7.3%
1&3 22,238.5 17.4% 3943.4 9.8%
1&4 21,698.8 14.6% 3883.7 8.1%
2&3 20,346.4 7.4% 3768.3 4.9%
2&4 21,096.2 11.4% 3836.8 6.8%
3&4 20,572.4 8.6% 3780.5 5.2%

1&2&3 20,273.3 7.0% 3761.1 4.7%
1&2&4 21,064.6 11.2% 3832.9 6.7%
1&3&4 20,538.2 8.4% 3775.8 5.1%
2&3&4 19,780.7 4.4% 3674.6 2.3%

1&2&3&4 18,938.4 0.0% 3592.8 0.0%

* The prediction on the thermal load of the base case building is 24,000.9 kWh. Through optimization, only 46.8% of
concrete for the east wall is needed as compared to the base building. It is found that when the insulation thickness
is higher than 60 mm, the reduction on thermal load and discomfort degree hours by increasing the insulation
thickness is very small (less than a 2% reduction on thermal load per 10 mm increase in insulation thickness and no
reduction when insulation thickness increases to 200 mm). The thickness of insulation needs to be at least 200 mm
(about four times the thickness of the optimal solution) to reduce the same thermal load as the optimal solution.
However, the discomfort degree hour stays at 3831.3 ◦C·h. The thermal load and discomfort degree hours do not
decrease with further increase in the insulation thickness. The cost of changing all this variables to get the optimized
solution is ¥23,686.911 less than by simply increasing the thickness of insulation to 200 mm. In addition, the increase
of wall thickness will lead to less internal space for same floor area, which is not a preferred option.

4.4. Optimization with Four Objective Functions

The ANN models for the total hourly cooling load (QC), heating load (QH), discomfort heating
degree hours (IW), and cooling degree hours (IS) are developed and used as fitness functions for
the multi-objective optimization program. A total of 70 Pareto front solutions are generated and
summarized as in Table 8.
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Table 8. Pareto front solutions characteristic for four objective functions.

Thermal
Load Ndis Cooling

Load
Heating

Load
Discomfort Heating

Degree Hours
Discomfort Cooling

Degree Hours

(kWh) (◦C·h) (kWh) (kWh) (◦C·h) (◦C·h)

Minimum 19,518.5 3691.6 12,078.5 3810.3 2117.3 1031.5
Maximum 35,841.7 5488.9 31,015.7 9479.6 4457.4 1644.9

Median 23,603.2 4303.9 18,605.5 5041.4 3017.7 1288.2
Average 25,028.5 4389.8 19,482.3 5546.2 3091.5 1298.3

Standard deviation 4590.0 545.0 5753.6 1491.8 716.5 176.3

Notes: minimum cooling load, and minimum heating load might not happen at the same time; similarly, minimum
discomfort heating degree hours and minimum discomfort cooling degree hours might not occur at the same time.

It can be found that although a few solutions can achieve total thermal load and number of
discomfort degree hours as low as the ones presented in Sections 4.1 and 4.2, the average values of
which are much higher, indicating lower optimization performance. Therefore, two objective functions
are sufficient for optimization purpose.

5. Conclusions

In this paper, an MLR model and ANN model are developed to predict the building thermal
load and the number of discomfort degree hours considering the variable thermal mass, insulation,
absorptance of solar radiation, and glazing ratio. The MLR models and ANN models are coupled with
a multi-objective genetic optimization algorithm to minimize the building thermal load and improve
the thermal comfort for a very energy-efficient two-star green building in China. Finally, optimization
with four objective functions is also performed. The following conclusions can be made:

(1) The ANN models perform better than the MLR models in terms of regression coefficients,
standard deviations, and absolute errors. The relative errors of the discomfort degree hour
models are always lower than the thermal load models.

(2) When used as fitness functions for GA to obtain the optimal building design solutions, the MLR
model and ANN model have similar performances.

(3) The optimal solutions prefer concrete layer with median thickness higher than 0.21 m; insulation
layer, 52.9–75.2 mm; absorbance of solar radiation, 0.167–0.5406; and window-to-wall ratio,
11.1–15.4%.

(4) The optimal design solutions help to reduce the thermal load and the number of discomfort
hours of the two-star green building by up to 18.2% and 22.4%, respectively.

(5) The two objective functions are better than the four objective functions to perform the
optimization on thermal load and thermal comfort.
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Abbreviations

ANN Artificial neural network
CDD Cooling degree day
GA Genetic algorithm
HDD Heating degree day
MLR Multi-linear regression
OAT Outdoor air temperature
a Number of nodes at the input layer
ai Coefficient for the regression model
b Number of output nodes
c Constant, between 0 and 10
f1 Total building thermal load, kWh
f2 Total number of discomfort degree hours, ◦C·h
IS Cooling discomfort degree hours, ◦C·h
IW Heating discomfort degree hours, ◦C·h
m Number of nodes at the hidden layer
n Number of the design variables, equal to 19 in this study
QC Total hourly cooling load, kWh
QH Total hourly heating load, kWh
tH Higher limit temperature in the thermal comfort range, ◦C
ti Indoor air temperature at time i, ◦C
tL Lower limit temperature in the thermal comfort range, ◦C
x Combination of the design-variables (x1, x2, ..., xn)

References

1. IEA. 2015. Buildings Energy Use in China, Transforming Construction and Influencing Consumption to
2050. Available online: http://www.iea.org (assessed on 5 October 2017).

2. EAI. 2017. How Much Energy Is Consumed in U.S. Residential and Commercial Buildings? Available online:
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1 (assessed on 5 October 2017).

3. Filippin, C.; Larsen, S.F.; Beascochea, A.; Lesino, G. Response of conventional and energy-saving buildings
to design and human dependent factors. Sol. Energy 2005, 78, 455–470. [CrossRef]

4. Badescu, V.; Laaser, N.; Crutescu, R.; Crutescu, M.; Dobrovicescu, A.; Tsatsaronis, G. Modeling, validation and
time-dependent simulation of the first large passive building in Romania. Renew. Energy 2011, 36, 142–157.
[CrossRef]

5. Gong, X.; Akashi, Y.; Sumiyoshi, D. Optimization of passive design measures for residential buildings in
different Chinese areas. Build. Environ. 2012, 58, 46–57. [CrossRef]

6. Zhu, Y. Built Environment, 4th ed.; China Architectural Engineering Industrial Publishing Press: Beijing,
China, 2016.

7. Delgarm, N.; Sajadi, B.; Delgarm, S. Multi-objective optimization of building energy performance and indoor
thermal comfort: A new method using artificial bee colony (ABC). Energy Build. 2016, 131, 42–53. [CrossRef]

8. Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. A new comprehensive approach for
cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems.
Sustain. Cities Soc. 2017, 31, 136–150. [CrossRef]

9. Brea, F.; Fachinotti, V.D. A computational multi-objective optimization method to improve energy efficiency
and thermal comfort in dwelling. Energy Build. 2017, 154, 283–294. [CrossRef]

10. Brea, F.; Silva, A.S.; Ghisi, E.; Fachinotti, V.D. Residential building design optimisation using sensitivity
analysis and genetic algorithm. Energy Build. 2016, 133, 853–866. [CrossRef]

11. Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. A new methodology for cost-optimal analysis
by means of the multi-objective optimization of building energy performance. Energy Build. 2015, 88, 78–90.
[CrossRef]

12. Ihm, P.; Krarti, M. Design optimization of energy efficient residential buildings in Tunisia. Build. Environ.
2012, 58, 81–90. [CrossRef]

http://www.iea.org
https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
http://dx.doi.org/10.1016/j.solener.2004.05.021
http://dx.doi.org/10.1016/j.renene.2010.06.015
http://dx.doi.org/10.1016/j.buildenv.2012.06.014
http://dx.doi.org/10.1016/j.enbuild.2016.09.003
http://dx.doi.org/10.1016/j.scs.2017.02.010
http://dx.doi.org/10.1016/j.enbuild.2017.08.002
http://dx.doi.org/10.1016/j.enbuild.2016.10.025
http://dx.doi.org/10.1016/j.enbuild.2014.11.058
http://dx.doi.org/10.1016/j.buildenv.2012.06.012


Sustainability 2018, 10, 336 14 of 15

13. Evins, R. Multi-level optimization of building design, energy system sizing and operation. Energy 2015,
90, 1775–1789. [CrossRef]

14. Krarti, M.; Deneuville, A. Comparative evaluation of optimal energy efficiency designs for French and
US office buildings. Energy Build. 2015, 93, 332–344. [CrossRef]

15. Xu, J.; Kim, J.; Hong, H.; Koo, J. A systematic approach for energy efficient building design factors
optimization. Energy Build. 2015, 89, 87–96. [CrossRef]

16. Delgarm, N.; Sajadi, B.; Delgarm, S.; Kowsary, F. A novel approach for the simulation-based optimization
of the buildings energy consumption using NSGA-II: Case study in Iran. Energy Build. 2016, 127, 552–560.
[CrossRef]

17. Yong, S.; Kim, J.; Gim, Y.; Kim, J.; Cho, J.; Hong, H.; Baik, Y.; Koo, J. Impacts of building envelope design
factors upon energy loads and their optimization in US standard climate zones using experimental design.
Energy Build. 2017, 141, 1–15. [CrossRef]

18. Caldas, L.G.; Norford, L.K. A design optimization tool based on a genetic algorithm. Automat. Constr. 2002,
11, 173–184. [CrossRef]

19. Wang, W.; Zmeureanu, R.; Rivard, H. Applying multi-objective genetic algorithms in green building design
optimization. Build. Environ. 2005, 40, 1512–1525. [CrossRef]

20. Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic
algorithm, and Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [CrossRef]

21. Bichiou, Y.; Krarti, M. Optimization of envelope and HVAC systems selection for residential buildings.
Energy Build. 2011, 43, 3373–3382. [CrossRef]

22. Ramallo-González, A.P.; Coley, D.A. Using self-adaptive optimisation methods to perform sequential
optimisation for low-energy building design. Energy Build. 2014, 81, 18–29. [CrossRef]

23. Yu, W.; Li, B.; Ji, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy
efficiency and thermal comfort in building design. Energy Build. 2015, 88, 135–143. [CrossRef]

24. Liu, S.; Meng, X.; Tam, C. Building information modeling based building design optimization for
sustainability. Energy Build. 2015, 105, 139–153. [CrossRef]

25. Lin, Y.; Tsai, K.; Lin, M.; Yang, M. Design optimization of office building envelope configurations for energy
conservation. Appl. Energy 2016, 171, 336–346. [CrossRef]

26. Azari, R.; Garshasbi, S.; Amini, P.; Rashed-Ali, H.; Mohammadi, Y. Multi-objective optimization of building
envelope design for life cycle environmental performance. Energy Build. 2016, 126, 524–534. [CrossRef]

27. Zhang, A.; Bokel, R.; Dobbelsteen, A.V.D.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and
daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of
China. Energy Build. 2017, 139, 371–384. [CrossRef]

28. Bambrook, S.M.; Sproul, A.B.; Jaco, D. Design optimisation for a low energy home in Sydney. Energy Build.
2011, 43, 1702–1711. [CrossRef]

29. Baglivo, C.; Congedo, P.M.; Fazio, A. Multi-criteria optimization analysis of external walls according to
ITACA protocol for zero energy buildings in the mediterranean climate. Build. Environ. 2014, 82, 467–480.
[CrossRef]

30. Hamdy, M.; Hasan, A.; Siren, K. Applying a multi-objective optimization approach for Design of
low-emission cost-effective dwellings. Build. Environ. 2011, 46, 109–123. [CrossRef]

31. Romani, Z.; Draoui, A.; Allard, F. Metamodeling the heating and cooling energy needs and simultaneous
building envelope optimization for low energy building design in Morocco. Energy Build. 2015, 102, 139–148.
[CrossRef]

32. Carreras, J.; Boer, D.; Cabeza, L.F.; Jiménezc, L.; Guillén-Gosálbez, G. Eco-costs evaluation for the optimal
design of buildings with lower environmental impact. Energy Build. 2016, 119, 189–199. [CrossRef]

33. Pal, S.K.; Takano, A.; Alanne, K.; Siren, K. A life cycle approach to optimizing carbon footprint and costs of a
residential building. Build. Environ. 2017, 123, 146–162. [CrossRef]

34. Shi, X. Design optimization of insulation usage and space conditioning load using energy simulation and
genetic algorithm. Energy 2011, 36, 1659–1667. [CrossRef]

35. Yang, C.; Li, H.; Rezgui, Y.; Petri, I.; Yuce, B.; Chen, B.; Jayan, B. High throughput computing based
distributed genetic algorithm for building energy consumption optimization. Energy Build. 2014, 76, 92–101.
[CrossRef]

36. Design Builder. 2016. Available online: http://www.designbuilder.co.uk/ (accessed on 1 September 2016).

http://dx.doi.org/10.1016/j.energy.2015.07.007
http://dx.doi.org/10.1016/j.enbuild.2015.01.046
http://dx.doi.org/10.1016/j.enbuild.2014.12.022
http://dx.doi.org/10.1016/j.enbuild.2016.05.052
http://dx.doi.org/10.1016/j.enbuild.2017.02.032
http://dx.doi.org/10.1016/S0926-5805(00)00096-0
http://dx.doi.org/10.1016/j.buildenv.2004.11.017
http://dx.doi.org/10.1016/j.buildenv.2009.08.016
http://dx.doi.org/10.1016/j.enbuild.2011.08.031
http://dx.doi.org/10.1016/j.enbuild.2014.05.037
http://dx.doi.org/10.1016/j.enbuild.2014.11.063
http://dx.doi.org/10.1016/j.enbuild.2015.06.037
http://dx.doi.org/10.1016/j.apenergy.2016.03.018
http://dx.doi.org/10.1016/j.enbuild.2016.05.054
http://dx.doi.org/10.1016/j.enbuild.2017.01.048
http://dx.doi.org/10.1016/j.enbuild.2011.03.013
http://dx.doi.org/10.1016/j.buildenv.2014.09.019
http://dx.doi.org/10.1016/j.buildenv.2010.07.006
http://dx.doi.org/10.1016/j.enbuild.2015.04.014
http://dx.doi.org/10.1016/j.enbuild.2016.03.034
http://dx.doi.org/10.1016/j.buildenv.2017.06.051
http://dx.doi.org/10.1016/j.energy.2010.12.064
http://dx.doi.org/10.1016/j.enbuild.2014.02.053
http://www.designbuilder.co.uk/


Sustainability 2018, 10, 336 15 of 15

37. Gossard, D.; Lartigue, B.; Thellier, F. Multi-objective optimization of a building envelope for thermal
performance using genetic algorithms and artificial neural network. Energy Build. 2013, 67, 253–260.
[CrossRef]

38. Zhang, Y.; Lin, K.; Zhang, Q.; Di, H. Ideal thermophysical properties for free-cooling (or heating) buildings
with constant thermal physical property material. Energy Build. 2006, 38, 1164–1170. [CrossRef]

39. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD)
JGJ134-2010. Residential Building Energy Efficiency Design Standard for Hot Summer/Cold Winter Region; China
Architectural Engineering Industrial Publishing Press: Beijing, China, 2010.

40. GB-T50378 2014. Ministry of Housing and Urban-Rural Construction of the People’s Republic of China.
Assessment Standard for Green Building; China Architectural Engineering Industrial Publishing Press: Beijing,
China, 2014.

41. McKay, M.D. Sensitivity Arid Uncertainty Analysis Using a Statistical Sample of Input Values, Uncertainty Analysis;
CRC Press: Boca Raton, FL, USA, 1988; pp. 145–186.

42. Conraud, J. A Methodology for the Optimization of Building Energy, Thermal, and Visual Performance.
Master’s Thesis, Concordia University, Montreal, QC, Canada, 2008.

43. Asadi, S.; Amiri, S.S.; Mottahedi, M. On the development of multi-linear regression analysis to assess energy
consumption in the early stages of building design. Energy Build. 2014, 85, 246–255. [CrossRef]

44. Kalogirou, S.A. Applications of artificial neural networks in energy systems. Energy Convers. Manag. 1999,
40, 1073–1087. [CrossRef]

45. Wang, X.; Shi, F.; Yu, L.; Li, Y. Analysis on 43 Neural Network Application Cases Using MATLAB; Beijing
University of Aeronautics and Astronautics Publishing Press: Beijing, China, 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enbuild.2013.08.026
http://dx.doi.org/10.1016/j.enbuild.2006.01.008
http://dx.doi.org/10.1016/j.enbuild.2014.07.096
http://dx.doi.org/10.1016/S0196-8904(99)00012-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Optimization Approach 
	Formulation of the Problem 
	Objective Functions to be Optimized 
	Base Model 

	Optimization Framework 

	Prediction Model 
	Creation of the Sample Dataset 
	MLR Model 
	ANN Model 
	Comparisons on Different Prediction Models 

	Results and Discussion 
	MLR with GA 
	ANN with GA 
	Optimization with Different Combinations of Parameters 
	Optimization with Four Objective Functions 

	Conclusions 
	References

