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_______________________________________________________________ 
 
Abstract 
 
Background: The Renin Angiotensin System (RAS) is pharmacologically targeted to reduce 

blood pressure, and patient compliance to oral medications is a clinical issue.  The mechanisms 

of action of angiotensin receptor blockers (ARBs) in reducing blood pressure are not well 

understood, and is purported to be via a reduction of angiotensin II signaling.  

Objective: We aimed to develop a transdermal delivery method for ARBs (losartan potassium 

and valsartan) and to determine if ARBs reveal a vasodilatory effect of the novel RAS peptide, 

alamandine. In addition we determined the anti-hypertensive effects of the transdermal delivery 

patch. 

Methods: In vitro and in vivo experiments were performed to develop an appropriate therapeutic 

system, promising an alternative and more effective therapy in the treatment of hypertension. A 

variety of penetration enhancers were selected such as isopropyl myristate, propylene glycol, 

transcutol and dimenthyl sulfoxide to obtain a constant release of drugs through human skin. 

Small resistance vessels (kidney interlobar arteries) were mounted in organ baths and incubated 

with an ARB. Vasodilatory curves to alamandine were constructed 

Results: The in vivo studies demonstrates that systemic absorption of valsartan and losartan 

potassium using the appropriate formulations provides a steady state release and anti-

hypertensive effect even after 24 hours of transdermal administration. No apparent skin 

irritations (erythema, edema) were observed with the tested formulations. We also show that 

blocking the AT1 receptor of rabbit interlobar arteries in vitro reveals a vasodilatory effect of 

alamandine.  
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Conclusion: This study reveals potential mechanism of AT1 receptor blockade via alamandine, 

and is an important contribution in developing a favorable, convenient and painless 

antihypertensive therapy of prolonged duration through transdermal delivery of AT1 blockers. 

 
__________________________________________________________________ 
 
Graphical Abstract 
 
 
 

 

__________________________________________________________________ 
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INTRODUCTION 

 Transdermal drug delivery system (TDDS) is a novel approach for administration of 

drugs. They offer several important pharmacological advantages over conventional dosage 

forms, such as avoidance of first-pass metabolism by the liver, minimizing pain, controlled 

release of drug and prolonged duration [1, 2]. Currently, approximately 74 % of drugs are 

administered orally and have reduced efficacy due to first pass metabolism, as well as related 

side effects.  As well, drugs for several diseases such as diabetes (insulin), multiple sclerosis 

(interferons) and cancer (taxol) taken by injections must be administered in a painless and 

effective manner [3]. In this regard,  transdermal delivery of drugs can bypass these issues.  For 

example, new transdermal drugs are used for multiple sclerosis (MBP85-99, MOG35-55 and PLP139-

155) [4]. Thus, TDDS (transmucosal delivery systems) and controlled release systems have 

emerged to overcome disadvantages of the oral or injection route [5].  However, the stratum 

corneum (SC) is a barrier to the absorbtion of such drugs  [6]. The characteristic requirements for 

a drug to be effective is a small molecular size and weight less than 500 Da, significant 

lipophilicity, efficacy in low plasma concentration and high degree of stability [7-9]. To enhance 

transdermal absorption of the active ingredient, drug derivatives, prodrugs, drug saturated 

systems and physical and chemical enhancers that facilitate permeation of the drug through the 

stratum corneum can be used [10, 11].  

 Herein, we used ethanol (EtOH), isopropyl myristate (IPM), propylene glycol (PG), 

transcutol (TCL) and DMSO as CPEs [11-13]. IPM is an ester, well-known to be an effective 

CPE for a wide variety of drugs including indapamide, S-almodipine, isosorbide dinitrate, 

lincomycin hydrochloride and terbutaline sulfate [8]. PG is a common excipient which promotes 

the flux of heparin sodium, verapamil hydrochloride and ketoprofen [11]. The combination of 
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TCL and PG increases clonazepam permeation [14]. DMSO is one of the earliest and most 

widely studied penetration enhancers. It is used to treat severe herpes infections of the skin and 

as a co-solvent in idoxuridine [11, 13]. In addition, nitroglycerine has been used as a patch for angina. 

A sartan as a patch will be beneficial to all RAS based hypertensive patients [15, 16]. The merits of a 

sartan patch is the continuous control of blood pressure, considering that in the morning patients 

appear to have increased hypertension [17]. Blood pressure could be monitored with suitable 

enhancers allowing appropriate sartan penetration and longer duration. In the current study we aimed 

to develop a transdermal delivery method for angiotensin receptor blockers (ARBs, ie. losartan 

potassium and valsartan), their anti-hypertensive properties and to determine whether ARBs 

reveal a vasodilatory effect of the novel RAS peptide, alamandine.  

 Valsartan and losartan potassium were chosen in this study. Valsartan is an orally active 

angiotensin II (ANGII) type 1 receptor blocker (ARB) and is prescribed for the management of 

hypertension. It is a lipophilic drug with low molecular weight (435.519 g/mol), available as a 

white, microcrystalline powder with a melting range of 105-110 °C with low oral bioavailability 

(25 %). The partition coefficient P is 0.033 (log P=1.499), suggesting that the compound is rather 

hydrophilic at physiological pH and half life is approximately 6 hours [18]. Losartan potassium, 

the first selective AT1 blocker, has a low molecular weight (461.01 g/mol), available as white 

crystalline powder with melting point 183-184 °C with low oral bioavailability (33 %). The log P 

is 3.85 [19] and half life is approximately 2.1±0.70 hours [7].  

 Our interest in the effects of small RAS peptides and ANG II receptor antagonists [20-24] 

could be extended to congestive heart failure, as well as for the pathogenesis of diabetes and 

kidney disease [25, 26]. Selective blockade of the AT1 receptor may prevent the known 

pathologic effects of ANG II associated with its stimulation, whilst allowing the positive effects 
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induced by the AT2 receptor [21, 27, 28]. Previously we designed, synthesized and studied 

biological and physicochemical properties of peptides and non peptide mimetics of ANGII [20, 

22, 23, 29, 30]. Furthermore, the reduction of blood pressure observed by ARBs is claimed to be 

due to the reduction in ANGII/AT1R signaling, yet circulating ANGII is increased nearly 5-fold 

[31] and the kidney plays a significant role in hypertension in rat [32].  We propose that blockade 

of the AT1 receptor could reveal other vasodilative effects in the vasculature, by enhancing the 

vasodilatory peptides of RAS, such as alamandine [33, 34] in kidney blood vessels. Alamandine, 

a novel heptapeptide of the RAS, has been demonstrated to enhance acetylcholine (ACh)-

mediated vasodilation in New Zealand white rabbits in vitro [35] and antihypertensive effects in 

spontaneously hypertensive rats after oral administration [36]. 

 

MATERIALS AND METHODS 

Materials  

 Valsartan and losartan potassium were a gift from pharmaceutical company, Vianex SA. 

PG, TCL, IPM, EtOH and phosphate buffer were purchased from Sigma Aldrich (Germany, 

purity > 98 %). HPLC grade water was obtained from distilled water passed through a milli-Q 

water purification system (Millipore Ltd., Bedford, MA, USA). HPLC-grade acetonitrile 

(MeCN) and methanol (MeOH) were purchased from Panreac Química S.A. DMSO and 

trifluoroacetic acid (TFA) were of HPLC analytical grade and were purchased from Scharlau and 

Alfa Aesar respectively. 

 All chemicals for KREBS (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4 7H2O, 1.2 mM 

KH2PO4, 25 mM NaHCO3 and 11.7 mM glucose), ACh (purity > 99 %), phenylephrine and 

candesartan (purity > 98 %) were purchased from Sigma Aldrich (USA). Alamandine (purity 99 
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%) was purchased from the Mimotopes (Notting Hill, Australia).  

 

Animals 

 Wistar rats (aged 5 months) were purchased from Greek Institute of Pasteur and were 

bred in the animal experimental center of medical department of University of Patras. Animals 

were individually housed and maintained on a 12:12 light:dark cycle (lights on at 7am) at 25 ± 2 

oC with ad libitum access to food and water throughout the experiment. All experimental 

protocols were conducted in accordance with the law of the European convention for the 

protection of animals used for experimental or other research purposes (2010/63/EU) and were 

approved by the institutional animal care and use committee at the school of Medicine, 

University of Patras, Greece (code EL13 BIO 04). Male New Zealand white rabbits (aged 3 

months) were housed in individual cages and maintained at a constant temperature of 21 ºC, 

where food and water were supplied ad libitum. These animals were approved by the Victoria 

University animal ethics committee (VUAEC#03/11) under the guidelines of the National Health 

and Medical Resaerch Council (NHMRC) Australia.  

 

Preparation of human skin 

 Human live skin was collected from unused portion of human female patients from 

General University Hospital of Patras with consent. Subcutaneous adhering fat and connective 

tissues were carefully removed and the excised skin was cut to an appropriate size. Full thickness 

human skins were stored at -20 oC until the day of the experiment.  

 

Preparation of the formulations 
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 Preparation of valsartan formulations V2, V3 and V5 (Table 1): Valsartan (0.625 g) was 

dissolved in EtOH (0.75 g) and the mixture was vortexted for 30 seconds. DMSO (0.125 g) was 

added and the mixture vortexed to achieve a homogenous solution. Additionally, accurately 

weighed quantity of other ingredients: PG (0.75 g), IPM (0.25 g); IPM (0.25 g), TCL (0.75 g); 

PG (0.25 g), IPM (0.75 g) were added into formulations V2, V3 and V5 respectively. A 2-phase 

formulation was produced after the addition of IPM. 

 Preparation of valsartan formulations V1 and V4 (Table 1): Valsartan (0.625 g) was 

dissolved in EtOH (0.625 g) and the mixture was mixed for 30 seconds using a vortex mixer. 

IPM (1.25 g) and PG (1.25 g) were added into V1 and V4 formulations respectively to achieve 

the final formulations. A 2 phase formulation was produced after the addition of IPM. 

 Preparation of losartan formulations L1-L5 (Table 1): Losartan potassium (0.625 g) was 

dissolved in H2O (0.498 g) and the mixture was mixed for 30 seconds using a vortex mixer after 

which EtOH (0.287 g) was added and the mixture mixed to achieve a homogenous solution. 

Additionally accurately weighed quantity of other ingredients: PG (0.125 g), IPM (0.839 g), TCL 

(0.125 g); PG (0.125 g), IPM (0.964 g); IPM (1.089 g); PG (1.089 g); IPM (0.544 g), PG (0.544 

g) were added into formulations L1 - L5 respectively. A 2-phase formulation was produced 

following the addition of IPM. 

 Losartan was used in these studies based on a feasibility report that we conducted that 

suggested that the transdermal delivery of losartan was feasible, and thus it was used over 

telmisartan which is more lipophlic than losartan or candesartan. Estimations were based on 

physicochemical properties of losargan, its overal dose and bioavailability. Moreover, valsartan 

was selected since it had similar molecular weight with losartan, was more potent, with lower 

daily dose, and both sartans were available as generics for further development. 
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 Alamandine is a heptapeptide formed from the removal of the 8th peptide from 

angiotensin A, possibly by ACE2. Alamandine differs from angiotensin (1-7) in the primary 

amino acid, alanine (which contains a methyl group on the amino end), compared to aspartate, 

(which contains a carboxy group), respectively [37]. Extensive simulation and modeling studies 

between the octapeptide ANGII and Losartan, based on SAR and NMR findings, had previously 

shown mimicry of the ANGII critical amino acid side chains (Tyr, Val, His, Phe) and the C-

terminal carboxylate with Losartan’s pharmacophoric groups (-CH2OH, imidazole ring, butyl 

side chain, tetrazole) (Scheme 1a) [38]. Deletion of the Phe residue as in Alamandine, deprives 

the heptapeptide from its agonist property rendering the vasodilatory effects (Scheme 1b). These 

studies show the importance of the Phe aromatic ring at position 8 for agonist hypertensive 

activity. 

 

Instrumentation – Liquid Chromatography  

 All analyses were performed on a Waters Alliance HPLCTM system (Waters 2695 

separation module equipped with waters 2996 photodiode array detector and data acquisition 

empower 2). Chromatographic separation was performed on a XBridgeTM C18 (4.6mm ID*150 

mm length) column with 3.5 μm particle size [39]. Under the described experimental conditions, 

the peak was well defined and free from tailing. 

 

Preparation of standard solutions and quality control samples 

 Freshly prepared stock solutions of valsartan and losartan (1 mg/ml) were prepared by 

dissolving 10 mg of the compound in 10 ml of MeOH and purified H2O, respectively. Nine 

working standard solutions of the analyte at concentrations of 0.1, 0.2, 1, 2, 10, 20, 50, 100 and 
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200 μg/ml were prepared by further dilution of the stock solution with appropriate volumes of 

H2O. Low, medium and high quality control (QC) samples of the analytes at concentrations of 8 

μg/ml, 90 μg/ml and 160 μg/ml were similar and prepared by further dilution of the stock 

solution with appropriate volumes of H2O for the evaluation of the methods.  

 

Preparation of internal standard and calibration model 

 The concentration range of the 2 compounds for the construction of the calibration curves 

was between 0.1 and 200 μg/ml, using the internal standard (IS) method. Losartan potassium (20 

μg/ml) and valsartan (40 μg/ml) were used as IS for valsartan and losartan, respectively.  

 The construction of the calibration curve was based on the analysis of the calibration 

standards (n=4) at the 9 concentration levels ranging from 0.1 to 200 μg/ml and plotting the peak 

area ratios of the analyte to IS against the nominal calibration standard concentration. Three 

different calibration curves (n=3) were prepared during two weeks (Table 2). Linearity was 

evaluated by linear regression analysis, which was calculated by the least-square regression 

analysis. LOD was determined as the sample concentration obtaining a peak area of 3 times the 

noise level and LOQ as the sample concentration obtaining a peak area of 10 times the noise 

level [40] and the lower point of the calibration curve is used for estimating [41]. 

 

Intra- and inter- day precision and accuracy 

 Precision of the analytical method was defined as relative standard deviation (% RSD) 

and was evaluated in terms of intra-day and inter-day precision for four samples (n=4) at 

concentrations of QC samples at three levels (low QC, medium QC and high QC). Accuracy of 

the method was determined by relative error (% RE) [42]. 
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In vitro skin permeability studies 

 A vertical Franz-type glass, jacketed diffusion cell system with a magnetic stirrer and a 

thermostatic water bath was used for the studies [8, 43, 44]. The full-thickness excised human 

skin (bround to room temperature) was mounted on the top of the Franz diffusion cell (vertical 

available diffusion area, 1.77 cm2; volume of receiver cell, 12 ml) and was fastened with a rigid 

clamp. The temperature was maintained at 32 ± 1 oC using a thermostatic water bath. The SC 

side of the skin sample was facing upward into the donor compartment and the dermal side was 

facing downward into the receptor compartment. The receptor compartment was filled with 

phosphate buffered saline (pH 7.4) and stirred by magnetic bar to ensure adequate mixing and 

maintenance of sink conditions. For each experiment, the donor compartment was loaded with 

300 μl of the formulation of the drug to the SC side of the skin. Samples (480 μl) were 

withdrawn every 3, 6, 8, 24, 30 hours and equal volume of blank solution was immediately 

added. Six replicates of each experiment were performed. At the end of the experiment the skin 

remained intact and undamaged. The standard curve was used for estimating the concentration of 

valsartan and losartan in samples using HPLC.  

 

Mechanistic assessment of AT1 receptor blockade in organ bath studies 

 Rabbits were used to assess the mechanism of AT1 receptor blockade due to their 

sensitivity to ANGII blood vessel constriction similar to human arteries [45, 46].  Rabbits were 

killed by exsanguination after anesthesia with 4 % isoflurane,  followed by the extraction of 

interlobar arteries from kidneys (VUAEC#03/11). Interlobar arteries were cleaned of fat and 

connective tissue then cut into 3 mm arterial rings and mounted onto organ baths attached to 
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force displacement transducers in order to measure the response of arterial rings in grams (OB8, 

Zultek Engineering, Melbourne, Australia [47]). The organ baths were filled with KREBS which 

was at a constant temperature of 37 ºC with continuous bubbling of carbogen (95 % O2 and 5 % 

CO2). Phenylephrine (Phen) was used to pre-constrict the arterial rings until a plateau was 

reached. Candesartan (10-5 M) [48, 49] was added for 5 mins prior to the first dose of alamandine 

dose response curve. ACh was added after the final dose of alamandine to indicate functional 

arterial rings. Candesartan was used in organ baths as it has direct effects on renal blood vessels 

[48, 49] as well as being commonly used in animal models of blood pressure studies [48]. 

 

In vivo biological evaluation  

 The time-dependent antihypertensive efficacy of valsartan and losartan potassium 

formulations via transdermal administration in Wistar rats (370 ± 80 g) was evaluated by the 

modulations of the hypertensive response elicited by subcutaneous bolus injections of ANG II 

(50 μg/kg body weight) were recorded in eight Wistar rats (370 ± 80 g) using at 0, 3, 6, 8 and 24 

hours. The mean arterial blood pressure was recorded using a Coda, non-invasive blood presure 

system (Kent Scientific) [50]. Fourty eight hours prior to the treatment, hair from the dorso-

lumbar region at two contralateral sites of each rat was depilated. A volume of 300 μl of V2 

formulation for valsartan (n=6), L1 formulation for losartan (n=6) and placebo (n=2) were 

applied transdermally in a depilated area, of approximately 10 cm2, and a membrane was over it 

to secure the formulation in place and prevent the evaporation of the volatile solvents. In 

addition, the treated site was covered with gauze and secured at the margins to prevent leakage of 

the test substance and to ensure that the rats did not bite and remove the formulation.  
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Data analysis 

 The permeation of valsartan and losartan using different enhancers was assayed for 30 

hours and plots of the cumulative amount of the permeated drug (μg/cm2) through human skin 

were plotted versus time (hours). The transdermal flux (J, μg/cm2*h), the rate of change of the 

cumulative amount of drug passes per unit area and time through the skin, was calculated from 

the steady-state part of the curve. Lag time (Tlag) is obtained by the extrapolation of the linear 

portion to the x-axis [2]. The release data was fitted into various mathematical models using 

software to know which mathematical model will best fit to obtained release profiles. To 

determine the effects of penetration enhancers on the skin permeation of valsartan and losartan 

GraphPad Prism (Version 7, GraphPad Software Inc, USA) was used to perform two-way 

ANOVA (dose vs flux) followed by Tukeys multiple comparisons test to determine significance 

between each group, with p < 0.05 considered significant. For the organ bath procedures, the 

response given in grams was translated into % of response against each cumulative doses of 

alamandine. GraphPad Prism was also used to perform a two-way ANOVA (dose vs response) 

repeated measures followed by a Sidak’s multiple comparisons post hoc test to determine 

significances between doses of alamandine. p < 0.05 was considered a significant.    
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RESULTS 

Method Validation 

 The calibration standard samples analyzed by the developed analytical methodology 

showed that the retention time of valsartan and losartan was 9.43±0.03 min and 4.85±0.03 min, 

respectively. Over the concentration range from 0.1 to 200 μg/ ml regression analysis indicated 

that there was an excellent linearity between UV absorption and valsartan and losartan 

concentrations (Table 2). The limit of quantification (LOQ) of the developed methodology was 

0.1 μg/ml and the limit of detection (LOD) was 0.03 μg/ml. The methods were evaluated in 

terms of intra-day precision and accuracy by assaying (n=3) QC samples at low QC (8 μg/ml), 

medium QC (90 μg/ml) and high QC (160 μg/ml). Table 3 shows the precision and accuracy of 

the analytical method of valsartan and losartan calculated in values of % RSD and % RE. 

 

Effects of penetration enhancers on the skin permeation of valsartan and losartan 

 The effects of CPEs on the permeation of valsartan and losartan from formulations (V1-

V5, L1-L5) through full thickness human skin are summarized in Table 4. It is well known that 

the penetration of a drug through rat skin is considerably greater than that through human skin 

[8]. Therefore, human skin was used to obtain a better estimation of the drug permeation in 

humans. Among all portions, V2 and V1 for valsartan (Fig. 1) with a flux value of J=0.5024 

μg/cm2*h and J=0.3774 μg/cm2*h, respectively (Table 4) and L1 for losartan (Fig. 2) with a flux 

value of J=0.2652 μg/cm2*h (Table 4) had the most conspicuous effect. Accordingly, 

formulation V2 which contained 30 % w/w PG, 10 % w/w IPM and 5 % w/w DMSO showed a 

significant increase of permeation flux within 3 hours (p < 0.0001 V2 compared to V1, p < 0.01 

V2 compared to V3 and p < 0.01 V2 compared to V5) which continued to significantly increase 
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up to 30 hours (p < 0.05 V2 compared to V1, p < 0.0001 V2 compared to V3,  p < 0.0001 V2 

compared to V4, and p < 0.0001 V2 compared to V5) (Fig. 1).  In addition, L1 which contained 

33.57 % w/w IPM, 5 % w/w PG and 5 % w/w TCL showed significant increase of permeation 

flux compared to L2, L3, L4 and L5 within 6 hours and remained significant up to 30 hours (p < 

0.0001) (Fig. 2). It is reported that the purposed formulation containing two or three enhancers 

showed significantly enhanced permeation. Specifically, the addition of PG, IPM and DMSO 

(V2) and the addition of PG, IPΜ and TCL (L1) resulted in a synergistic penetration 

enhancement effect on valsartan and losartan, respectively. In general, enhancers may change the 

structure of the lipids in the SC, denature the skin proteins and changes the properties of the 

horny layer, and as a consequence the SC becomes more permeable for drugs [51-53]. The 

enhancement resulting from the presence of IPM is connected with its increased fluidity in the 

lipids of the skin as well as with the lipid disruption due to high affinity between IPM and the 

components of the skin [8, 51]. 

 

In vivo evaluation studies 

 In order to investigate the in vivo transdermal process of valsartan and losartan, the more 

efficient formulation resulting from the in vitro studies was estimated by the effects of 

antihypertensive evaluation in Wistar rats (Fig 3). Mean arterial blood pressure (MABP) was 

recorded after 3, 6, 8 and 24 hours of subcutaneous bolus injections of ANGII in order to 

evaluate the antihypertensive activity of valsartan and losartan following transdermal delivery to 

the systematic circulation. As shown in Fig. 3, losartan showed a significant decrease in MABP 

by 24 hours (p < 0.00001), however, valsartan was more potent showing significant reduction in 

MABP within 3 hours (p < 0.05) which remained significant at 6, 8 and 24 hours (p < 0.01) 
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following administration. Since there was no observable skin irritation in the animals during the 

study, these 2 transdermal formulations can be  used for further development. 

 

Assessment of AT1 receptor blockade in organ bath studies 

 In order to determine the pathway of which blocking the AT1 receptor exerts vasodilatory 

effects, we conducted a dose response curve to alamandine with candesartan (an active in vitro 

ARB).  The addition of candesartan had no effect on vasoconstriction caused by phenylephrine. 

Alamandine induced direct vasoconstriction on interlobar artery in a dose dependent manner (10-

8 M, 10-7 M and 10-6 M corresponded to 5.4±1.3 %, 12.2±1.9 % and 15.2±0.9 % of constriction, 

respectively). However, candesartan revealed a vasodilatory effect of alamandine in the 

interlobar arteries, to 1±1.7 %, -6.7±3.0 % (p<0.001) and -10.1±5.0 % (p<0.001) (Fig. 4A). Real 

time trace of the experiments are also shown (Fig. 4B). 

 

DISCUSSION 

 In this study, we show that ARBs can be formulated so that they are better absorbed 

through the skin to reduce blood pressure, possibly via a vasodilatory effect of alamandine in 

kidney blood vessels. 

 

In vitro evaluation of Valsartan 

 In this study, a combination of penetration enhancers were used to evaluate the drug 

release of valsartan and losartan potassium. Valsartan is a poorly water - soluble drug with poor 

oral bioavailability (approximately 25%). Permeation enhancers such as IPM, EtOH, DMSO 

improves drug solubility and penetration into the skin. The formulations V1 and V4 constituted 
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of EtOH as main solvent and IPM and PG respectively. The V2 formulation, which contained a 

mixture of these two enhancers showed a significant increase of permeation flux. From the data 

obtained from V3 and V5 formulation, changing the proportions of enhancers (PG and IPM), 

showed less permeation flux indicating the necessity of PG. However, the formulation V2 

showed to be the most effective delivery. The presence of DMSO, PG and higher percentage of 

EtOH compared to V1 formulation, improved drug solubility and changed the thermodynamic 

activity of valsartan. The solubility of valsartan in stratum corneum was improved and this 

caused an overall improvement in permeation behavior of valsartan across the human skin. It is 

likely that these conventional chemical enhancers disrupt the highly ordered bilayer structures of 

the intracellular lipids found in stratum corneum by inserting amphiphilic molecules into these 

bilayers to disorganize molecular packing.  

 

In vitro evaluation of Losartan potassium 

 There are several publications in the literature demonstrating that molecules in neutral 

form have better permeation rates compared to charged molecules in transdermal transport [54].  

Human skin is hydrophobic and the salt from the original drug molecule has poor permeability 

across the skin as compared to its neutral or base form. However in this study we have chosen 

losartan potassium, as the best candidate to be tested. Losartan potassium yielded additional 

advances compared to neutral form. In particular the salt form is soluble in water which was used 

as a solvent in the formulations tested. In addition, losartan potassium is the active 

pharmaceutical ingredient that has been used in numerous transdermal patches designed and 

demonstrated in the literature [55-57].  
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 Losartan potassium is freely soluble in water with oral bioavailability of 33 % due to first 

pass metabolism in liver. It is also soluble in alcohols. All produced formulations of losartan 

potassium contained water and EtOH as main solvents in equal proportions. EtOH was also used 

to enhance penetration. DMSO was avoided to be used in high concentrations in the prepared 

formulations due to the known toxic side effects. The potential advantage was that the produced 

formulations did not have any pathological effects on the skin. The formulations L3 and L4 

(solvents and IPM and PG respectively), were the guide to modify and produce improved 

formulation consisted of a mixture of IPM and PG. According to the analysis the formulation L1 

showed the best permeation, which appears to be twice as high compared to formulations L2 and 

L5. The presence of TCL in formulation L1, -not in the other formulations- indicates the 

importance of this ingredient for enhancing permeability and showing a constant release profile. 

It seems that the lipophilic alkyl chain length of TCL is an important parameter in the promotion 

of penetration enhancement. It is reported that the lipid layers of stratum corneum play a 

significant role in skin permeation for lipophilic drugs. 

 

In vivo studies for valsartan and losartan potassium 

 The antihypertensive effect of transdermal administration of valsartan and losartan 

potassium were evaluated in Wistar rats. Animals treated with formulations V2 (valsartan) and 

L1 (losartan), showed a significant decreased in MABP even after 24 hours of administration. 

Transdermal delivery is a “slow intravenous infusion” with 100 % bioavailability. Findings from 

the in vivo studies indicated that both sartans had the ability to penetrate through rat skin. A 

therapeutic response was achieved 3 hours after administration. Furthermore, no skin irritation 

was observed in both cases which indicated that these particular formulations could be used for 
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further development. V2 significantly lowered blood pressure as early as 3 hours which remained 

until 24 hours and L1 was shown to lower blood pressure induced by ANGII as early as 3 hours 

although not significant, which was further decreased and showed significance by 24 hours.  

 

In vitro studies for the mechanism of AT1 receptor blockade 

 As blocking the AT1 receptor results in beneficial antihypertensive effects, we used rabbit 

interlobar arteries to determine if other vasodilators could be involved in this hypotensive effect. 

It is well established that the endothelium layer of arteries plays a major role in exerting 

beneficial effects such as vasodilation via releasing  nitric oxide [58], suggesting that 

candesartan, losartan and valsartan as AT1 receptor blockers, could cause the release of nitric 

oxide in order to induce vasodilation to exhibit antihypertensive effects. However, in our present 

study we have shown that upon AT1 receptor blockade, the vasodilative effect of the RAS 

heptapeptide, alamandine, is revealed within renal interlobar arteries. However, in animals that 

respond poorly to angII, such as rat aorta, alamandine is not a vasoconstrictor but instead a 

vasodilator [36], supporting our results [59, 60]. Interestingly, in rabbit aorta, we have shown 

that alamandine does not constrict nor dilate rabbit aorta (unpublished observation), but does 

enhance ACh mediated vasodilation [35], demonstrating that each vascular bed could respond 

differently to peptides.        

 The vasodilatory beneficial antihypertensive effect of alamandine is due to its structural 

features, which are in line with our previous studies about the role and importance of 

phenylalanine aromatic amino acid at position 8 triggering agonist activity [26, 27, 29, 61, 62]. 

Structure activity studies on Angiotensin analogues have shown that replacement of the Phe 

aromatic residue at position 8 with an aliphatic amino acid such as Ile, results in an antagonist 



20 
 

peptide with antihypertensive activity. Deletion of the Phe residue at position 8 of the 

octapeptide ANG II results in the novel RAS heptapeptide Alamandine, as well as Aspartic Acid  

at position 1 replaced by Alanine. Both modifications, replacements of Phe at position 8 with an 

aliphatic amino acid or deletion of the Phe, amino acid result in peptides with antagonists 

antihypertensive vasodilatory effects. Biological effects are in line with the documented evidence 

that the Phe amino acid in position 8 is critical for agonist hypertensive activity.  Our laboratory 

has been engaged for many years in the conformation analysis study of ANGII. Its superagonist 

[Sar1] ANGII in DMSO supports a bioactive conformation characterized by (a) a Tyr4-Ile5-His6 

bend, (b) a major His6-Pro7 trans conformer, (c) a cluster of the side chain aromatic rings of the 

triad key amino acids Tyr4, His6, Phe8, which drives the formation of the charge relay system 

between Tyr4 Hydroxyl, His6 imidazole and Phe8 carboxylate, analogues to that found in serine 

proteases. This relay system appears to be responsible for ANGII and [Sar1] ANGII biological 

activity. Disruption of this system, which occurs upon the replacement of the Phe ring with an 

aliphatic or deletion of the Phe amino acid in Angiotensin, results in antagonists antihypertensive 

beneficial effect as in the case of alamandine. Alamandine is a novel peptide of the RAS system 

and evidence is accumulating to show a vasodilatory beneficial effect. 

 

CONCLUSION 

 In summary, we demonstrated the effect of various formulations of the transdermal 

delivery of valsartan and losartan potassium. The formulations V2 and L1 for valsartan and 

losartan potassium respectively have great potential of transdermal administration, promising an 

alternative and more effective therapy in the treatment of hypertension. Moreover the results 

indicate a controlled delivery rate through the skin suggesting potential for conversion to a 
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matrix system. Results also indicate that another possible mechanism by which AT1 blockade 

exerts its vasodilatory/hypotensive effects is through the vasodilatory effect of alamandine in the 

kidney. 

 In conclusion, transdermal administration of sartans could be a feasible alternative route 

for prolonged hypertensive therapy, acting via ANGII type 1 receptor blockade and alamandine 

vasodilation.  

 

List of Abbreviations 
ACh, acetylcholine; ANGII, angiotensin II; AT1, angiotensin II type 1 receptor; AT2, angiotensin 

II type 2 receptor;  CPE, chemical penetration enhancers; DMSO, dimethyl sulfoxide; EtOH, 

ethanol; h, hour; HPLC, high performance liquid chromatography; IPM, isopropyl myristate; IS, 

internal standard; LOD, limit of detection; LOQ, limit of quantification; MABP, mean arterial 

blood pressure; MeCN, acetonitrile; MeOH, methanol; min, minutes; PG, propylene glycol; 

Phen, phenylephrine; RAS, renin-angiotensin system; RE, relative error; RSD, relative standard 

deviation; SC, stratum cornuem; SD, standard deviation; SEM, standard error of the mean; 

TDDS, transdermal drug delivery systems; TCL, transcutol; TFA, trifluoracetic acid; QC, quality 

control. 
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FIGURE LEGENDS 

Scheme (1). Schematic representation of (A) angiotensin II (ANGII) and losartan, and, (B) 

alamandine and losartan. 

 

Fig. (1). In vitro diffusion of valsartan versus time in hours, using franz diffusion cells and full-

thickness human skin. Each point and data represents the mean ± standard error of the mean 

(SEM) of 6 replicates. * = p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = no 

significance. Statistics shown in each are for V2 compared to V1, V3, V4, V5. 

 

Fig. (2). In vitro diffusion of losartan versus time in hours, using franz diffusion cells and full-

thickness human skin. Each point and data represents the mean ± standard error of the mean 

(SEM) of 6 replicates. * = p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = no 

significance. Statistics shown in each are for L1 compared to L2, L3, L4, L5. 

 

 
Fig. (3). Mean arterial blood pressure (MABP) of Wistar rats (n=6/group), showing normal 

MABP, the increase of MABP after ANG II administration (ANGII) and the MABP after 3, 6, 8 

and 24 h of sartan transdermal administration. Each point and data represents the mean ± 

standard deviation (SD) of n=6 rats.  * = p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001, ns = no significance (upper statistics losartan compared to ANGII control, lower 

statistics valsartan compared to ANGII control). 

 

Fig. (4). (A) Blocking the AT1 R in in vitro reveals the vasodilative effect of alamandine in 

rabbit resistant arteries (interlobar). (B) Real time traces of alamandine dose response curve (in 
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green) and in candesartan incubated interlobar rings (red) after phenylephrine constrictions. ACh 

demonstrates that the endothelium was intact and therefore the blood vessels were functional. 

Each point and data represents the mean ± standard error of the mean (SEM) of n=3 rabbits.  * = 

p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = no significance 

 
 
 
  



29 
 

 
 
Scheme (1). 
 
 

 
 
  



30 
 

 
Fig. (1). 
 
 

 
 
  



31 
 

 
Fig. (2). 
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Fig. (3). 
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Fig. (4).  
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Table 1 
Composition of valsartan and losartan formulations 
 
A Formulations 
 % w/w g 
Ingredients  V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 
Valsartan 25 25 25 25 25 0.625 0.625 0.625 0.625 0.625 
EtOH 25 30 30 25 30 0.625 0.750 0.750 0.625 0.750 
PG - 30 - 50 10 - 0.750 - 1.250 0.250 
TCL - - 30 - - - - 0.750 - - 
IPM 50 10 10 - 30 1.250 0.250 0.250 - 0.750 
DMSO - 5 5 - 5 - 0.125 0.125 - 0.125 
Batch Size 100 100 100 100 100 2.5 2.5 2.5 2.5 2.5 
 

 

 

 

Table 2  
Inter-day slopes, intercepts and square correlation coefficients (r2) of calibration curves (n=3) 
 

 Slope Intercept r2 
Valsartan Losartan Valsartan Losartan Valsartan Losartan 

1 0.9376 1.1313 0.0267 0.0114 0.9984 0.9997 
2 1.0143 1.1022 0.0079 0.0045 0.9995 0.9994 
3 0.9723 1.0534 0.0071 0.0220 0.9999 0.9994 
 

 

 

B Formulations 
 % w/w g 
Ingredients  L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 
Losartan 25 25 25 25 25 0.6250 0.6250 0.6250 0.6250 0.6250 
EtOH 11.5 11.5 11.5 11.5 11.5 0.2875 0.2875 0.2875 0.2875 0.2875 
PG 5 5 - 43.57 21.78 0.1250 0.1250 - 1.0893 0.5445 
TCL 5 - - - - 0.1250 - - - - 
IPM 33.57 38.57 43.57 - 21.78 0.8393 0.9643 1.0893 - 0.5445 
H2O 19.93 19.93 19.93 19.93 19.93 0.4983 0.4983 0.4983 0.4983 0.4983 
Batch Size 100 100 100 100 100 2.5 2.5 2.5 2.5 2.5 
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Table 3 
Precision (% RSD) and accuracy (% RE) data for valsartan and losartan 
 

 

 

Table 4  
Effects of penetration enhancers on the permeation of valsartan and losartan 
 

Formulations Flux [μg/(cm2*h)] Lag Time (h) 
V1 0.3774 1.0029 
V2 0.5024 5.9960 
V3 0.0445 2.3656 
V4 0.0097 5.5077 
V5 0.0241 2.1073 
L1 0.2652 5.2518 
L2 0.1080 5.8099 
L3 0.0225 5.6345 
L4 0.0656 4.2871 
L5 0.0999 4.3721 

 

Actual 
concentration 

Detected concentration 
(mean ± SD, n=4) % RSD % RE 

Valsartan Intra-day 
8 μg/ml 7.59±0.13 1.68 -5.14 
90 μg/ml 87.74±1.13 1.28 -2.51 
160 μg/ml 159.29±2.31 1.45 -0.44 
 Inter-day 
8 μg/ml 8.07±0.82 10.16 0.92 
90 μg/ml 86.93±1.31 1.50 -3.41 
160 μg/ml 166.60±10.43 6.26 4.13 
    
Losartan  Intra-day 
8 μg/ml 8.37±0.12 1.41 4.64 
90 μg/ml 84.74±0.65 0.77 -5.84 
160 μg/ml 153.97±1.82 1.18 -3.77 
 Inter-day 
8 μg/ml 7.94±0.37 4.67 -0.71 
90 μg/ml 83.67±1.91 2.28 -7.03 
160 μg/ml 156.97±5.00 3.18 -1.89 


