Aequationes Mathematicae

CrossMark

Functions generating (m, M, Ψ)-Schur-convex sums

Silvestru Sever Dragomir and Kazimierz Nikodem

Dedicated to Professor Karol Baron on his 70th birthday.

Abstract

The notion of (m, M, Ψ)-Schur-convexity is introduced and functions generating (m, M, Ψ)-Schur-convex sums are investigated. An extension of the Hardy-Littlewood-Pólya majorization theorem is obtained. A counterpart of the result of Ng stating that a function generates (m, M, Ψ)-Schur-convex sums if and only if it is (m, M, ψ)-Wright-convex is proved and a characterization of (m, M, ψ)-Wright-convex functions is given.

Mathematics Subject Classification. Primary 26A51; Secondary 39B62.
Keywords. Strongly convex functions, (m, M, ψ)-convex (Jensen-convex, Wright-convex) functions, (m, M, Ψ)-Schur-convexity.

1. Introduction

Let $(X,\|\cdot\|)$ be a real normed space. Assume that D is a convex subset of X and c is a positive constant. A function $f: D \rightarrow \mathbb{R}$ is called:

- strongly convex with modulus c if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-c t(1-t)\|x-y\|^{2} \tag{1}
\end{equation*}
$$

for all $x, y \in D$ and $t \in[0,1]$;

- strongly Wright-convex with modulus c if

$$
\begin{equation*}
f(t x+(1-t) y)+f((1-t) x+t y) \leq f(x)+f(y)-2 c t(1-t)\|x-y\|^{2} \tag{2}
\end{equation*}
$$

for all $x, y \in D$ and $t \in[0,1]$;

- strongly Jensen-convex with modulus c if (1) is assumed only for $t=\frac{1}{2}$, that is

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}-\frac{c}{4}\|x-y\|^{2}, \quad x, y \in D . \tag{3}
\end{equation*}
$$

The usual concepts of convexity, Wright-convexity and Jensen-convexity correspond to the case $c=0$, respectively. The notion of strongly convex functions was introduced by Polyak [22] and they play an important role in optimization theory and mathematical economics. Many properties and applications of them can be found in the literature (see, for instance, $[10,15,19,22-$ $24,27]$). Let us also mention the paper [18] by the second author which is a survey article devoted to strongly convex functions and related classes of functions.

In [1] the first author introduced the following concepts of (m, ψ)-lower convex, (M, ψ)-upper convex and (m, M, ψ)-convex functions (see also [2-4]): Assume that D is a convex subset of a real linear space $X, \psi: D \rightarrow \mathbb{R}$ is a convex function and $m, M \in \mathbb{R}$. A function $f: D \rightarrow \mathbb{R}$ is called (m, ψ)-lower convex $((M, \psi)$-upper convex) if the function $f-m \psi$ (the function $M \psi-f)$ is convex. We say that $f: D \rightarrow \mathbb{R}$ is (m, M, ψ)-convex if it is (m, ψ)-lower convex and (M, ψ)-upper convex. Denote the above classes of functions by:

$$
\begin{aligned}
\mathcal{L}(D, m, \psi) & =\{f: D \rightarrow \mathbb{R} \mid f-m \psi \text { is convex }\} \\
\mathcal{U}(D, M, \psi) & =\{f: D \rightarrow \mathbb{R} \mid M \psi-f \text { is convex }\}, \\
\mathcal{B}(D, m, M, \psi) & =\mathcal{L}(D, m, \psi) \cap \mathcal{U}(D, M, \psi)
\end{aligned}
$$

Let us observe that if $f \in \mathcal{B}(D, m, M, \psi)$ then $f-m \psi$ and $M \psi-f$ are convex and then $(M-m) \psi$ is also convex, implying that $M \geq m$ whenever ψ is not trivial (i.e. is not the zero function).

If $m>0$ and $(X,\|\cdot\|)$ is an inner product space (that is, the norm $\|\cdot\|$ in X is induced by an inner product: $\|x\|=\sqrt{\langle x, x\rangle})$ the notions of ($m,\|\cdot\|^{2}$)lower convexity and strong convexity with modulus m coincide. Namely, in this case the following characterization was proved in [19]: A function f is strongly convex with modulus c if and only if $f-c\|\cdot\|^{2}$ is convex (for $X=\mathbb{R}^{n}$ this result can be also found in [8, Prop. 1.1.2]). However, if $(X,\|\cdot\|)$ is not an inner product space, then the two notions are different. There are functions $f \in \mathcal{L}\left(D, m,\|\cdot\|^{2}\right)$ which are not strongly convex with modulus m, as well as there are functions strongly convex with modulus m which do not belong to $\mathcal{L}\left(D, m,\|\cdot\|^{2}\right.$) (see the examples given in [6]).

If $M>0$ and $f \in \mathcal{U}(D, M, \psi)$, then f is a difference of two convex functions. Such functions are called d.c. convex or δ-convex and play an important role in convex analysis (cf. e.g. [26] and the reference therein). Functions from the class $\mathcal{U}\left(D, M,\|\cdot\|^{2}\right)$ with $M>0$ were also investigated in [13] under the name approximately concave functions.

In [5] Dragomir and Ionescu introduced the concept of g-convex dominated functions, where g is a given convex function. Namely, a function f is called g-convex dominated, if the functions $g+f$ and $g-f$ are convex. Note that this concept can be obtained as a particular case of (m, M, ψ)-convexity by choosing $m=-1, M=1$ and $\psi=g$. Observe also (cf. [1]), that in the case
where $I \subset \mathbb{R}$ is an open interval and $f, \psi: I \rightarrow \mathbb{R}$ are twice differentiable, $f \in \mathcal{B}(I, m, M, \psi)$ if and only if

$$
m \psi^{\prime \prime}(t) \leq f^{\prime \prime}(t) \leq M \psi^{\prime \prime}(t), \quad \text { for all } t \in I
$$

In particular, if $I \subset(0, \infty), f: I \rightarrow \mathbb{R}$ is twice differentiable and $\psi(t)=-\ln t$, then $f \in \mathcal{B}(I, m, M,-\ln)$ if and only if

$$
\begin{equation*}
m \leq t^{2} f^{\prime \prime}(t) \leq M, \text { for all } t \in I \tag{4}
\end{equation*}
$$

which is a convenient condition to verify in applications.
Let $I \subset \mathbb{R}$ be an interval and $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in I^{n}$, where $n \geq 2$. Following I. Schur (cf. e.g. $[12,25]$) we say that x is majorized by y, and write $x \preceq y$, if there exists a doubly stochastic $n \times n$ matrix P (i.e. a matrix containing nonnegative elements with all rows and columns summing up to 1) such that $x=y \cdot P$. A function $F: I^{n} \rightarrow \mathbb{R}$ is said to be Schur-convex if $F(x) \leq F(y)$ whenever $x \preceq y, \quad x, y \in I^{n}$.

It is known, by the classical works of Schur [25], Hardy et al. [7] and Karamata [9] that if a function $f: I \rightarrow \mathbb{R}$ is convex then it generates Schur-convex sums, that is the function $F: I^{n} \rightarrow \mathbb{R}$ defined by

$$
F(x)=F\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)
$$

is Schur-convex. It is also known that the convexity of f is a sufficient but not necessary condition under which F is Schur-convex. A full characterization of functions generating Schur-convex sums was given by Ng [16]. Namely, he proved that a function $f: I \rightarrow \mathbb{R}$ generates Schur-convex sums if and only if it is Wright-convex (cf. also [17]). Recently Nikodem et al. [20] obtained similar results in connection with strong convexity in inner product spaces. Let us also mention the paper by Olbryś [21] in which delta Schur-convex mappings are investigated.

The aim of this paper is to present some generalizations and counterparts of the above mentioned results related to (m, ψ)-lower convexity, (M, ψ)-upper convexity and (m, M, ψ)-convexity. We introduce the notion of (m, M, Ψ) -Schur-convex functions and give a sufficient and necessary condition for a function f to generate (m, M, Ψ)-Schur-convex sums. As a corollary we obtain a counterpart of the classical Hardy-Littlewood-Pólya majorization theorem. Finally we introduce the concept of (m, M, ψ)-Wright-convex functions, prove a representation theorem for them and present an Ng-type characterization of functions generating (m, M, Ψ)-Schur-convex sums. It is worth underlining, that our results concern a few different classes of functions related to convexity and are formulated in vector spaces, that is in a much more general setting than the original ones.

2. Main results

Let X be a real vector space. Similarly as in the classical case we define majorization in the product space X^{n}. Namely, given two n-tuples $x=\left(x_{1}, \ldots\right.$, $\left.x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in X^{n}$ we say that x is majorized by y, written $x \preceq y$, if

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \cdot P
$$

for some doubly stochastic $n \times n$ matrix P.
In what follows we will assume that D is a convex subset of a real vector space $X, \psi: D \rightarrow \mathbb{R}$ is a convex function and $m, M \in \mathbb{R}$. For any $n \geq 2$ define $\Psi_{n}: D^{n} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Psi_{n}\left(x_{1}, \ldots, x_{n}\right)=\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right), \quad x_{1}, \ldots, x_{n} \in D \tag{5}
\end{equation*}
$$

We say that a function $F: D^{n} \rightarrow \mathbb{R}$ is $\left(m, M, \Psi_{n}\right)$-Schur-convex if for all $x, y \in D^{n}$

$$
\begin{equation*}
x \preceq y \quad \Longrightarrow \quad F(x) \leq F(y)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x \preceq y \Longrightarrow F(x) \geq F(y)-M\left(\Psi_{n}(y)-\Psi_{n}(x)\right) . \tag{7}
\end{equation*}
$$

If only condition (6) [condition (7)] is satisfied, we say that F is $\left(m, \Psi_{n}\right)$-lower ($\left(M, \Psi_{n}\right)$-upper) Schur-convex.

Note that if $x \preceq y$ then $\Psi_{n}(x) \leq \Psi_{n}(y)$. It follows from the fact that the function ψ is convex and so it generates Schur-convex sums Ψ_{n}.

Given a function $f: D \rightarrow \mathbb{R}$ and an integer $n \geq 2$ we define the function $F_{n}: D^{n} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F_{n}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right)+\cdots+f\left(x_{n}\right), \quad x_{1}, \ldots, x_{n} \in D \tag{8}
\end{equation*}
$$

Now, let D be a convex subset of a real vector space X, and let $m, M \in \mathbb{R}$. Assume that $\psi: D \rightarrow \mathbb{R}$ is a convex function and $\Psi_{n}: D^{n} \rightarrow \mathbb{R}$ is defined by (5). We will prove now that (m, M, ψ)-convex functions generate $\left(m, M, \Psi_{n}\right)$ -Schur-convex sums.

Theorem 1. (i) If $f \in \mathcal{L}(D, m, \psi)$, then the function F_{n} defined by (8) is (m, Ψ_{n})-lower Schur-convex;
(ii) If $f \in \mathcal{U}(D, M, \psi)$, then the function F_{n} defined by (8) is $\left(M, \Psi_{n}\right)$-upper Schur-convex;
(iii) If $f \in \mathcal{B}(D, m, M, \psi)$, then the function F_{n} defined by (8) is $\left(m, M, \Psi_{n}\right)$ -Schur-convex.

Proof. To prove (i) fix $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in D^{n} with $x \preceq y$. There exists a doubly stochastic $n \times n$ matrix $P=\left[t_{i j}\right]$ such that $x=y \cdot P$. Then

$$
x_{j}=\sum_{i=1}^{n} t_{i j} y_{i}, \quad j=1, \ldots, n
$$

Since $f \in \mathcal{L}(D, m, \psi)$, the function $g=f-m \psi$ is convex and hence

$$
\begin{aligned}
g\left(x_{1}\right)+\cdots+g\left(x_{n}\right) & =\sum_{j=1}^{n} g\left(\sum_{i=1}^{n} t_{i j} y_{i}\right) \leq \sum_{j=1}^{n} \sum_{i=1}^{n} t_{i j} g\left(y_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} g\left(y_{i}\right)=\sum_{i=1}^{n} g\left(y_{i}\right) \sum_{j=1}^{n} t_{i j}=g\left(y_{1}\right)+\cdots+g\left(y_{n}\right) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
F_{n}(x)= & f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) \\
= & g\left(x_{1}\right)+\cdots+g\left(x_{n}\right)+m\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right. \\
\leq & g\left(y_{1}\right)+\cdots+g\left(y_{n}\right)+m\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right) \\
= & f\left(y_{1}\right)+\cdots+f\left(y_{n}\right)-m\left(\psi\left(y_{1}\right)+\cdots+\psi\left(y_{n}\right)\right) \\
& +m\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right) \\
= & F_{n}(y)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right) .
\end{aligned}
$$

This shows that F_{n} satisfies (6), i.e. it is $\left(m, \Psi_{n}\right)$-lower Schur-convex.
The proof of part (ii) is similar. Since $f \in \mathcal{U}(D, M, \psi)$, the function $h=$ $M \psi-f$ is convex. Hence, for x and y as previously, we have

$$
\begin{aligned}
F_{n}(x)= & f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) \\
= & +M\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right)-h\left(x_{1}\right)-\cdots-h\left(x_{n}\right) \\
\geq & M\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right)-h\left(y_{1}\right)-\cdots-h\left(y_{n}\right) \\
= & M\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right)-M\left(\psi\left(y_{1}\right)+\cdots+\psi\left(y_{n}\right)\right) \\
& +f\left(y_{1}\right)+\cdots+f\left(y_{n}\right) \\
= & F_{n}(y)-M\left(\Psi_{n}(y)-\Psi_{n}(x)\right) .
\end{aligned}
$$

Part (iii) follows from (i) and (ii).
As an immediate consequence of the above theorem, we obtain the following counterpart of the classical Hardy-Littlewood-Pólya majorization theorem [7].

Corollary 2. Let $I \subset \mathbb{R}$ be an interval and $n \geq 2$. Assume that $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in I^{n}$ satisfy:
(a) $x_{1} \leq \cdots \leq x_{n}, y_{1} \leq \cdots \leq y_{n}$;
(b) $y_{1}+\cdots+y_{k} \leq x_{1}+\cdots+x_{k}, \quad k=1, \ldots, n-1$;
(c) $y_{1}+\cdots+y_{n}=x_{1}+\cdots+x_{n}$.

Assume also that $f, \psi: I \rightarrow \mathbb{R}$ and ψ is convex.
(i) If $f \in \mathcal{L}(D, m, \psi)$, then

$$
f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) \leq f\left(y_{1}\right)+\cdots+f\left(y_{n}\right)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right)
$$

(ii) If $f \in \mathcal{U}(D, M, \psi)$, then

$$
f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) \geq f\left(y_{1}\right)+\cdots+f\left(y_{n}\right)-M\left(\Psi_{n}(y)-\Psi_{n}(x)\right) ;
$$

(iii) If $f \in \mathcal{B}(D, m, M, \psi)$, then

$$
\begin{aligned}
& f\left(y_{1}\right)+\cdots+f\left(y_{n}\right)-M\left(\Psi_{n}(y)-\Psi_{n}(x)\right) \leq f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) \\
& \quad \leq f\left(y_{1}\right)+\cdots+f\left(y_{n}\right)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right) .
\end{aligned}
$$

Proof. Note that assumptions (a)-(c) imply $x \preceq y$ (see e.g. [12]) and apply Theorem 1.

Remark 3. Specifying the functions ψ and f in Corollary 2 above, one can get various analytic inequalities. For example, if $I \subset(0, \infty)$ and $f \in \mathcal{B}(I, m, M,-\ln)$, then for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in I^{n}$ satisfying conditions (a)-(c), we get

$$
m \ln \prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right) \leq \sum_{i=1}^{n} f\left(y_{i}\right)-\sum_{i=1}^{n} f\left(x_{i}\right) \leq M \ln \prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right),
$$

or, equivalently,

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right)^{m} \leq \frac{\exp \left[\sum_{i=1}^{n} f\left(y_{i}\right)\right]}{\exp \left[\sum_{i=1}^{n} f\left(x_{i}\right)\right]} \leq \prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right)^{M} \tag{9}
\end{equation*}
$$

If we take, for instance, $I=[k, K] \subset(0, \infty)$ and $f(t)=\frac{1}{p(p-1)} t^{p}$, with $p>0, p \neq 1$, then $t^{2} f^{\prime \prime}(t)=t^{p} \in\left[k^{p}, K^{p}\right.$], which means [cf. (4)] that $f \in \mathcal{B}\left(I, k^{p}, K^{p},-\ln \right)$. Therefore, by (9), we then have

$$
\prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right)^{p(p-1) k^{p}} \leq \frac{\exp \left(\sum_{i=1}^{n} y_{i}^{p}\right)}{\exp \left(\sum_{i=1}^{n} x_{i}^{p}\right)} \leq \prod_{i=1}^{n}\left(\frac{x_{i}}{y_{i}}\right)^{p(p-1) K^{p}}
$$

One can give other examples by choosing $f(t)=t^{q}$ with $q<0, f(t)=t \ln t$, etc.

We say that a function $f: D \rightarrow \mathbb{R}$ is (m, ψ)-lower Jensen-convex $((M, \psi)$ upper Jensen-convex) if the function $f-m \psi$ (the function $M \psi-f$) is Jensenconvex, i.e. satisfies (3) with $c=0$. We say that $f: D \rightarrow \mathbb{R}$ is (m, M, ψ)-Jensenconvex if it is (m, ψ)-lower Jensen-convex and (M, ψ)-upper Jensen-convex.

In the next theorem we show that functions generating $\left(m, M, \Psi_{n}\right)$-Schurconvex sums must be (m, M, ψ)-Jensen-convex.

Theorem 4. Let $f: D \rightarrow \mathbb{R}$.
(i) If for some $n \geq 2$ the function F_{n} defined by (8) is (m, Ψ_{n})-lower Schurconvex, then f is (m, ψ)-lower Jensen-convex;
(ii) If for some $n \geq 2$ the function F_{n} defined by (8) is $\left(M, \Psi_{n}\right)$-upper Schurconvex, then f is (M, ψ)-upper Jensen-convex;
(iii) If for some $n \geq 2$ the function F_{n} defined by (8) is (m, M, Ψ_{n})-Schurconvex, then f is (m, M, ψ) - Jensen-convex.

Proof. To prove (i) take $y_{1}, y_{2} \in D$ and put $x_{1}=x_{2}=\frac{1}{2}\left(y_{1}+y_{2}\right)$. Consider the points

$$
y=\left(y_{1}, y_{2}, y_{2}, \ldots, y_{2}\right), \quad x=\left(x_{1}, x_{2}, y_{2}, \ldots, y_{2}\right)
$$

(if $n=2$, then we take $y=\left(y_{1}, y_{2}\right), x=\left(x_{1}, x_{2}\right)$). One can check easily that $x \preceq y$. Therefore, by (6),

$$
F_{n}(x) \leq F_{n}(y)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right)
$$

that is

$$
2 f\left(\frac{y_{1}+y_{2}}{2}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)-m\left(\psi\left(y_{1}\right)+\psi\left(y_{2}\right)-2 \psi\left(\frac{y_{1}+y_{2}}{2}\right)\right)
$$

Hence, for $g=f-m \psi$ we have

$$
\begin{aligned}
2 g\left(\frac{y_{1}+y_{2}}{2}\right) & =2 f\left(\frac{y_{1}+y_{2}}{2}\right)-2 m \psi\left(\frac{y_{1}+y_{2}}{2}\right) \\
& \leq f\left(y_{1}\right)+f\left(y_{2}\right)-m\left(\left(\psi\left(y_{1}\right)+\psi\left(y_{2}\right)\right)=g\left(y_{1}\right)+g\left(y_{2}\right)\right.
\end{aligned}
$$

which means that f is (m, ψ)-lower Jensen-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii).
We say that a function $f: D \rightarrow \mathbb{R}$ is (m, ψ)-lower Wright-convex $((M, \psi)$ upper Wright-convex) if the function $f-m \psi$ (the function $M \psi-f$) is Wrightconvex, i.e. satisfies (2) with $c=0$. We say that $f: D \rightarrow \mathbb{R}$ is (m, M, ψ) -Wright-convex if it is (m, ψ)-lower Wright-convex and (M, ψ)-upper Wrightconvex.

As was shown above in Theorems 1 and 2, if a function $f: D \rightarrow \mathbb{R}$ is (m, M, ψ)-convex, then for every $n \geq 2$ the corresponding function F_{n} defined by (8) is (m, M, Ψ_{n})-Schur-convex and if for some $n \geq 2$ the function F_{n} is $\left(m, M, \Psi_{n}\right)$-Schur-convex, then f is (m, M, ψ)-Jensen-convex. The next theorem characterizes all the functions f for which F_{n} are (m, M, Ψ_{n})- Schurconvex. It is a counterpart of the result of Ng [16] on functions generating Schur-convex sums.

Recall also that a subset D of a vector space X is said to be algebraically open if for every $x \in D$ and for every $y \in X$ there exists $\varepsilon>0$ such that

$$
\{t y+(1-t) x \mid t \in(-\varepsilon, \varepsilon)\} \subset D
$$

Theorem 5. Let $f: D \rightarrow \mathbb{R}$, where D is an algebraically open convex subset of a vector space X. Then:
(i) If f is (m, ψ)-lower Wright-convex, then for every $n \geq 2$ the function F_{n} defined by (8) is $\left(m, \Psi_{n}\right)$-lower Schur-convex. Conversely, if for some $n \geq 2$ the function F_{n} is $\left(m, \Psi_{n}\right)$-lower Schur-convex, then f is (m, ψ) lower Wright-convex;
(ii) If f is (M, ψ)-upper Wright-convex, then for every $n \geq 2$ the function F_{n} defined by (8) is $\left(M, \Psi_{n}\right)$-upper Schur-convex. Conversely, if for some $n \geq 2$ the function F_{n} is $\left(M, \Psi_{n}\right)$-upper Schur-convex, then f is (M, ψ) upper Wright-convex;
(iii) If f is (m, M, ψ) - Wright-convex, then for every $n \geq 2$ the function F_{n} defined by (8) is $\left(m, M, \Psi_{n}\right)$ - Schur-convex. Conversely, if for some $n \geq 2$ the function F_{n} is $\left(m, M, \Psi_{n}\right)$ - Schur-convex, then f is (m, M, ψ) -Wright-convex.

Proof. To prove (i) assume that f is (m, ψ)-lower Wright-convex and fix an $n \geq 2$. Since the function $g=f-m \psi$ is Wright-convex, it is of the form $g=g_{1}+a$, where g_{1} is convex and a is additive (cf. [11]; here the assumption that D is algebraically open is needed). Therefore it generates Schur-convex sums. Thus, for $x=\left(x_{1}, \ldots, x_{n}\right) \preceq y=\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
g\left(x_{1}\right)+\cdots+g\left(x_{n}\right) \leq g\left(y_{1}\right)+\cdots+g\left(y_{n}\right) .
$$

Hence

$$
\begin{aligned}
& f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)-m\left(\psi\left(x_{1}\right)+\cdots+\psi\left(x_{n}\right)\right) \\
& \quad \leq g\left(y_{1}\right)+\cdots+g\left(y_{n}\right)-m\left(\psi\left(y_{1}\right)+\cdots+\psi\left(y_{n}\right)\right)
\end{aligned}
$$

which means that

$$
F_{n}(x) \leq F_{n}(y)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right),
$$

that is F_{n} is $\left(m, \Psi_{n}\right)$-lower Schur-convex. Now, assume that for some $n \geq 2$ the function F_{n} is $\left(m, \Psi_{n}\right)$-lower Schur-convex. Take $y_{1}, y_{2} \in D$ and $t \in(0,1)$. Put

$$
x_{1}=t y_{1}+(1-t) y_{2}, \quad x_{2}=(1-t) y_{1}+t y_{2}
$$

and, if $n>2$, take additionally $x_{i}=y_{i}=z \in D$ for $i=3, \ldots, n$. Then $x=\left(x_{1}, \ldots, x_{n}\right) \preceq y=\left(y_{1}, \ldots, y_{n}\right)$. Therefore, by (6),

$$
F_{n}(x) \leq F_{n}(y)-m\left(\Psi_{n}(y)-\Psi_{n}(x)\right),
$$

that is

$$
\begin{aligned}
& f\left(t y_{1}+(1-t) y_{2}\right)+f\left((1-t) y_{1}+t y_{2}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)-m\left(\psi\left(y_{1}\right)\right. \\
& \left.\quad+\psi\left(y_{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}\right)\right) .
\end{aligned}
$$

Hence, for $g=f-m \psi$ we get

$$
\begin{aligned}
& g\left(t y_{1}+(1-t) y_{2}\right)+g\left((1-t) y_{1}+t y_{2}\right) \\
& \quad=f\left(t y_{1}+(1-t) y_{2}\right)+f\left((1-t) y_{1}+t y_{2}\right)-m \psi\left(t y_{1}+(1-t) y_{2}\right) \\
& \quad-m \psi\left((1-t) y_{1}+t y_{2}\right) \\
& \leq f\left(y_{1}\right)+f\left(y_{2}\right)-m \psi\left(y_{1}\right)-m \psi\left(y_{2}\right)=g\left(y_{1}\right)+g\left(y_{2}\right)
\end{aligned}
$$

Thus g is Wright-convex, which means that f is (m, ψ)-lower Wright-convex. The proof of part (ii) is similar. Part (iii) follows from (i) and (ii).

Remark 6. In the special case where $(X,\|\cdot\|)$ is an inner product space, $\psi=\|\cdot\|^{2}$ and $m=c>0$, parts (i) of the above Theorems $1,4,5$ reduce to the results obtained in [20] for strong Schur-convexity. For $m=0$ and $X=\mathbb{R}^{n}$ they coincide with the Ng theorem [16].

Finally, we give a representation theorem for (m, M, ψ)-Wright-convex functions. It is known (and easy to check) that every convex function is Wrightconvex, and every Wright-convex function is Jensen-convex, but not the converse (some examples can be found in [18]). In [16] Ng proved that a function f defined on a convex subset of \mathbb{R}^{n} is Wright-convex if and only if it can be represented in the form $f=f_{1}+a$, where f_{1} is a convex function and a is an additive function (see also [18]). Kominek [11] extended that result to functions defined on algebraically open subset of a vector space. An analogous result for strongly Wright-convex functions was obtained in [14]. In the next theorem we give a similar representation for (m, M, ψ)-Wright-convex functions. In the proof we will use the following fact:

Lemma 7. Assume that $f, g: D \rightarrow \mathbb{R}$ are convex functions, $a: X \rightarrow \mathbb{R}$ is additive and $a(x)=f(x)-g(x)$ for all $x \in D$. Then a is an affine function on D.

Proof. Fix $x, y \in D$ and consider the function $\varphi:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi(s)=a(s x+(1-s) y)=f(s x+(1-s) y)-g(s x+(1-s) y), s \in[0,1] .
$$

As a difference of convex functions on $[0,1], \varphi$ is continuous on $(0,1)$. Fix any $t \in(0,1)$ and take a sequence $\left(q_{n}\right)$ of rational numbers in $(0,1)$ tending to t. By the additivity of a we have

$$
a\left(q_{n} x+\left(1-q_{n}\right) y\right)=q_{n} a(x)+\left(1-q_{n}\right) a(y)
$$

whence

$$
\varphi\left(q_{n}\right)=q_{n} a(x)+\left(1-q_{n}\right) a(y)
$$

Going to the limit we get

$$
\varphi(t)=t a(x)+(1-t) a(y)
$$

Hence

$$
a(t x+(1-t) y)=t a(x)+(1-t) a(y)
$$

which proves that a is affine on D.
Theorem 8. Let $f: D \rightarrow \mathbb{R}$, where D is an algebraically open convex subset of a vector space X. Then:
(i) f is (m, ψ)-lower Wright-convex if and only if $f=g_{1}+a_{1}$, where $g_{1} \in$ $\mathcal{L}(D, m, \psi)$ and $a_{1}: X \rightarrow \mathbb{R}$ is additive;
(ii) f is (M, ψ)-upper Wright-convex if and only if $f=g_{2}+a_{2}$, where $g_{2} \in$ $\mathcal{U}(D, M, \psi)$ and $a_{2}: X \rightarrow \mathbb{R}$ is additive;
(iii) f is (m, M, ψ) - Wright-convex if and only if $f=g+a$, where $g \in$ $\mathcal{B}(D, m, M, \psi)$ and $a: X \rightarrow \mathbb{R}$ is additive.

Proof. To prove (i) assume first that f is (m, ψ)-lower Wright-convex, that is $h=f-m \psi$ is Wright-convex. By the Ng representation theorem [16] (extended by Kominek [11] to functions defined on algebraically open domains), there exist a convex function $h_{1}: D \rightarrow \mathbb{R}$ and an additive function $a_{1}: X \rightarrow \mathbb{R}$ such that $h=h_{1}+a_{1}$ on D. Then $g_{1}=h_{1}+m \psi$ belongs to $\mathcal{L}(D, m, \psi)$ and

$$
f=h+m \psi=h_{1}+a_{1}+m \psi=g_{1}+a_{1}
$$

which was to be proved. Conversely, if $f=g_{1}+a_{1}$ with some $g_{1} \in \mathcal{L}(D, m, \psi)$ and a_{1} additive, then $f-m \psi=g_{1}-m \psi+a_{1}$ is Wright-convex as a sum of a convex function and an additive function. This shows that f is (m, ψ)-lower Wright-convex.
The proof of part (ii) is analogous.
Part (iii). If $f=g+a$, where $g \in \mathcal{B}(D, m, M, \psi)$ and $a: X \rightarrow \mathbb{R}$ is additive, then, by (i) and (ii) f is (m, ψ)-lower Wright-convex and (M, ψ)-upper Wrightconvex. Consequently, it is (m, M, ψ)-Wright-convex.

The proof in the opposite direction is more delicate. If f is (m, M, ψ) -Wright-convex, then $f-m \psi$ and $M \psi-f$ are Wright-convex. Then

$$
f-m \psi=h_{1}+a_{1} \quad \text { and } \quad M \psi-f=h_{2}+a_{2}
$$

with some convex functions h_{1}, h_{2} and additive functions a_{1}, a_{2}. Hence

$$
a_{1}+a_{2}=(M-m) \psi-\left(h_{1}+h_{2}\right)
$$

which, by Lemma 5, implies that $A=a_{1}+a_{2}$ is affine. Denote $a=a_{1}$ and $g=f-a$. Then

$$
g-m \psi=f-a-m \psi=h_{1}
$$

which implies that $g \in \mathcal{L}(D, m, \psi)$ because h_{1} is convex. Also

$$
M \psi-g=M \psi-f+a=h_{2}+a_{2}+a=h_{2}+A
$$

which implies that $g \in \mathcal{U}(D, m, \psi)$ because $h_{2}+A$ is convex. Thus $g \in$ $\mathcal{B}(D, m, \psi)$ and $f=g+a$, which finishes the proof.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Dragomir, S.S.: On the reverse of Jessen's inequality for isotonic linear functionals. J. Inequal. Pure Appl. Math. 2(3), 1-13 (2001). (Art. 36)
[2] Dragomir, S.S.: Some inequalities for (m, M)-convex mappings and applications for Csiszár Φ-divergence in information theory. Math. J. Ibaraki Univ. 33, 35-50 (2001)
[3] Dragomir, S.S.: On the Jessen's inequality for isotonic linear functionals. Nonlinear Anal. Forum 7(2), 139-151 (2002)
[4] Dragomir, S.S.: A survey on Jessen's type inequalities for positive functionals. In: Pardalos, P.M., et al. (eds.) Nonlinear Analysis. Springer Optimmization and Its Applications 68, pp. 177-232. Springer, New York (2012)
[5] Dragomir, S.S., Ionescu, N.M.: On some inequalities for convex-dominated functions. L'Anal. Num. Théor. L'Approx. 19(1), 21-27 (1990)
[6] Dragomir, S.S., Nikodem, K.: Jensen's and Hermite-Hadamard's inequalities for lower and strongly convex functions on normed spaces. Bull. Iranian Math. Soc. (in press)
[7] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952)
[8] Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)
[9] Karamata, J.: Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ. Belgrade 1, 145-148 (1932)
[10] Klaričić, Bakula M., Nikodem, K.: On the converse Jensen inequality for strongly convex functions. J. Math. Anal. Appl. 434, 516-522 (2016)
[11] Kominek, Z.: On additive and convex functionals. Radovi Mat. 3, 267-279 (1987)
[12] Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications, Mathematics in Science and Engineering 143. Academic Press Inc., New York (1979)
[13] Merentes, N., Nikodem, K.: Strong convexity and separation theorems. Aequat. Math. 90, 47-55 (2016)
[14] Merentes, N., Nikodem, K., Rivas, S.: Remarks on strongly Wright-convex functions. Ann. Polon. Math. 103(3), 271-278 (2011)
[15] Montrucchio, L.: Lipschitz continuous policy functions for strongly concave optimization problems. J. Math. Econ. 16, 259-273 (1987)
[16] Ng C. T.: Functions generating Schur-convex sums, In: Walter, W. (ed.) General Inequalities 5 (Oberwolfach, 1986), Internat. Ser. Numer. Math. vol. 80, pp. 433-438. Birkhäuser Verlag, Basel-Boston (1987)
[17] Nikodem, K.: On some class of midconvex functions. Ann. Polon. Math. 72, 145-151 (1989)
[18] Nikodem, K.: On strongly convex functions and related classes of functions. In: Rassias, T.M (ed.) Handbook of Functional Equations. Functional Inequalities. Springer Optimization and Its Application 95, pp. 365-405. Springer, New York (2014).
[19] Nikodem, K., Páles, Zs: Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83-87 (2011)
[20] Nikodem, K., Rajba, T., Wa̧sowicz, Sz: Functions generating strongly Schur-convex sums. In: Bandle, C., et al. (eds.) Inequalities and Applications 2010, International Series of Numerical Mathematics 161, pp. 175-182. Springer, New York (2012)
[21] Olbryś, A.: On delta Schur-convex mappings. Publ. Math. Debrecen 86, 313-323 (2015)
[22] Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72-75 (1966)
[23] Rajba, T., Wa̧sowicz, Sz: Probabilistic characterization of strong convexity. Opusc. Math. 31(1), 97-103 (2011)
[24] Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
[25] Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges. 22, 9-20 (1923)
[26] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Dissert. Math. 289, PWN, Warszawa (1989)
[27] Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187-205 (1982)

Silvestru Sever Dragomir Mathematics, College of Engineering and Science
Victoria University
P.O. Box 14428 Melbourne VIC 8001
Australia
e-mail: sever.dragomir@vu.edu.au
and
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics
University of the Witwatersrand (Wits)
Private Bag 3 Johannesburg 2050
South Africa
Kazimierz Nikodem
Department of Mathematics
University of Bielsko-Biala
ul. Willowa 2
43-309 Bielsko-Biała
Poland
e-mail: knikodem@ath.bielsko.pl
Received: January 20, 2018
Revised: April 17, 2018

