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Abstract. The notion of (m, M, Ψ)-Schur-convexity is introduced and functions generating
(m, M, Ψ)-Schur-convex sums are investigated. An extension of the Hardy–Littlewood–Pólya
majorization theorem is obtained. A counterpart of the result of Ng stating that a function
generates (m, M, Ψ)-Schur-convex sums if and only if it is (m, M, ψ)-Wright-convex is proved
and a characterization of (m, M, ψ)-Wright-convex functions is given.
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1. Introduction

Let (X, ‖ · ‖) be a real normed space. Assume that D is a convex subset of X
and c is a positive constant. A function f : D → R is called:

– strongly convex with modulus c if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) − ct(1 − t)‖x − y‖2 (1)

for all x, y ∈ D and t ∈ [0, 1];
– strongly Wright-convex with modulus c if

f(tx + (1 − t)y) + f((1 − t)x + ty) ≤ f(x) + f(y) − 2ct(1 − t)‖x − y‖2 (2)

for all x, y ∈ D and t ∈ [0, 1];
– strongly Jensen-convex with modulus c if (1) is assumed only for t = 1

2 ,
that is

f

(
x + y

2

)
≤ f(x) + f(y)

2
− c

4
‖x − y‖2, x, y ∈ D. (3)
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The usual concepts of convexity, Wright-convexity and Jensen-convexity
correspond to the case c = 0, respectively. The notion of strongly convex
functions was introduced by Polyak [22] and they play an important role in
optimization theory and mathematical economics. Many properties and appli-
cations of them can be found in the literature (see, for instance, [10,15,19,22–
24,27]). Let us also mention the paper [18] by the second author which is
a survey article devoted to strongly convex functions and related classes of
functions.

In [1] the first author introduced the following concepts of (m,ψ)-lower
convex, (M,ψ)-upper convex and (m,M,ψ)-convex functions (see also [2–4]):
Assume that D is a convex subset of a real linear space X, ψ : D → R is a
convex function and m,M ∈ R. A function f : D → R is called (m,ψ)-lower
convex ((M,ψ)-upper convex ) if the function f − mψ (the function Mψ − f)
is convex. We say that f : D → R is (m,M,ψ)-convex if it is (m,ψ)-lower
convex and (M,ψ)-upper convex. Denote the above classes of functions by:

L(D,m,ψ) = {f : D → R | f − mψ is convex},

U(D,M,ψ) = {f : D → R | Mψ − f is convex},

B(D,m,M,ψ) = L(D,m,ψ) ∩ U(D,M,ψ).

Let us observe that if f ∈ B(D,m,M,ψ) then f − mψ and Mψ − f are
convex and then (M − m)ψ is also convex, implying that M ≥ m whenever ψ
is not trivial (i.e. is not the zero function).

If m > 0 and (X, ‖ · ‖) is an inner product space (that is, the norm ‖ · ‖ in
X is induced by an inner product: ‖x‖ =

√〈x, x〉) the notions of (m, ‖ · ‖2)-
lower convexity and strong convexity with modulus m coincide. Namely, in
this case the following characterization was proved in [19]: A function f is
strongly convex with modulus c if and only if f − c‖ · ‖2 is convex (for X = R

n

this result can be also found in [8, Prop. 1.1.2]). However, if (X, ‖ · ‖) is not an
inner product space, then the two notions are different. There are functions
f ∈ L(D,m, ‖ · ‖2) which are not strongly convex with modulus m, as well as
there are functions strongly convex with modulus m which do not belong to
L(D,m, ‖ · ‖2) (see the examples given in [6]).

If M > 0 and f ∈ U(D,M,ψ), then f is a difference of two convex functions.
Such functions are called d.c. convex or δ-convex and play an important role
in convex analysis (cf. e.g. [26] and the reference therein). Functions from the
class U(D,M, ‖ · ‖2) with M > 0 were also investigated in [13] under the name
approximately concave functions.

In [5] Dragomir and Ionescu introduced the concept of g-convex dominated
functions, where g is a given convex function. Namely, a function f is called
g-convex dominated, if the functions g + f and g − f are convex. Note that
this concept can be obtained as a particular case of (m,M,ψ)-convexity by
choosing m = −1, M = 1 and ψ = g. Observe also (cf. [1]), that in the case
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where I ⊂ R is an open interval and f, ψ : I → R are twice differentiable,
f ∈ B(I,m,M,ψ) if and only if

mψ′′(t) ≤ f ′′(t) ≤ Mψ′′(t), for all t ∈ I.

In particular, if I ⊂ (0,∞), f : I → R is twice differentiable and ψ(t) = − ln t,
then f ∈ B(I,m,M,− ln) if and only if

m ≤ t2f ′′(t) ≤ M, for all t ∈ I, (4)

which is a convenient condition to verify in applications.
Let I ⊂ R be an interval and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In, where

n ≥ 2. Following I. Schur (cf. e.g. [12,25]) we say that x is majorized by y, and
write x � y, if there exists a doubly stochastic n × n matrix P (i.e. a matrix
containing nonnegative elements with all rows and columns summing up to 1)
such that x = y · P . A function F : In → R is said to be Schur-convex if
F (x) ≤ F (y) whenever x � y, x, y ∈ In.

It is known, by the classical works of Schur [25], Hardy et al. [7] and Kara-
mata [9] that if a function f : I → R is convex then it generates Schur-convex
sums, that is the function F : In → R defined by

F (x) = F (x1, . . . , xn) = f(x1) + · · · + f(xn)

is Schur-convex. It is also known that the convexity of f is a sufficient but not
necessary condition under which F is Schur-convex. A full characterization
of functions generating Schur-convex sums was given by Ng [16]. Namely, he
proved that a function f : I → R generates Schur-convex sums if and only if it
is Wright-convex (cf. also [17]). Recently Nikodem et al. [20] obtained similar
results in connection with strong convexity in inner product spaces. Let us
also mention the paper by Olbryś [21] in which delta Schur-convex mappings
are investigated.

The aim of this paper is to present some generalizations and counterparts
of the above mentioned results related to (m,ψ)-lower convexity, (M,ψ)-upper
convexity and (m,M,ψ)-convexity. We introduce the notion of (m,M,Ψ)-
Schur-convex functions and give a sufficient and necessary condition for a
function f to generate (m,M,Ψ)-Schur-convex sums. As a corollary we obtain
a counterpart of the classical Hardy–Littlewood–Pólya majorization theorem.
Finally we introduce the concept of (m,M,ψ)-Wright-convex functions, prove
a representation theorem for them and present an Ng-type characterization
of functions generating (m,M,Ψ)-Schur-convex sums. It is worth underlining,
that our results concern a few different classes of functions related to convexity
and are formulated in vector spaces, that is in a much more general setting
than the original ones.
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2. Main results

Let X be a real vector space. Similarly as in the classical case we define
majorization in the product space Xn. Namely, given two n–tuples x = (x1, . . . ,
xn), y = (y1, . . . , yn) ∈ Xn we say that x is majorized by y, written x � y, if

(x1, . . . , xn) = (y1, . . . , yn) · P

for some doubly stochastic n × n matrix P .
In what follows we will assume that D is a convex subset of a real vector

space X, ψ : D → R is a convex function and m,M ∈ R. For any n ≥ 2 define
Ψn : Dn → R by

Ψn(x1, . . . , xn) = ψ(x1) + · · · + ψ(xn), x1, . . . , xn ∈ D. (5)

We say that a function F : Dn → R is (m,M,Ψn)-Schur-convex if for all
x, y ∈ Dn

x � y =⇒ F (x) ≤ F (y) − m
(
Ψn(y) − Ψn(x)

)
(6)

and
x � y =⇒ F (x) ≥ F (y) − M

(
Ψn(y) − Ψn(x)

)
. (7)

If only condition (6) [condition (7)] is satisfied, we say that F is (m,Ψn)-lower
((M,Ψn)-upper) Schur-convex.

Note that if x � y then Ψn(x) ≤ Ψn(y). It follows from the fact that the
function ψ is convex and so it generates Schur-convex sums Ψn.

Given a function f : D → R and an integer n ≥ 2 we define the function
Fn : Dn → R by

Fn(x1, . . . , xn) = f(x1) + · · · + f(xn), x1, . . . , xn ∈ D. (8)

Now, let D be a convex subset of a real vector space X, and let m,M ∈ R.
Assume that ψ : D → R is a convex function and Ψn : Dn → R is defined by
(5). We will prove now that (m,M,ψ)-convex functions generate (m,M,Ψn)-
Schur-convex sums.

Theorem 1. (i) If f ∈ L(D,m,ψ), then the function Fn defined by (8) is
(m,Ψn)-lower Schur-convex;

(ii) If f ∈ U(D,M,ψ), then the function Fn defined by (8) is (M,Ψn)-upper
Schur-convex;

(iii) If f ∈ B(D,m,M,ψ), then the function Fn defined by (8) is (m,M,Ψn)-
Schur-convex.

Proof. To prove (i) fix x = (x1, . . . , xn) and y = (y1, . . . , yn) in Dn with x � y.
There exists a doubly stochastic n × n matrix P = [tij ] such that x = y · P .
Then

xj =
n∑

i=1

tijyi, j = 1, . . . , n.
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Since f ∈ L(D,m,ψ), the function g = f − mψ is convex and hence

g(x1) + · · · + g(xn) =
n∑

j=1

g
( n∑
i=1

tijyi

)
≤

n∑
j=1

n∑
i=1

tijg(yi)

=
n∑

i=1

n∑
j=1

tijg(yi) =
n∑

i=1

g(yi)
n∑

j=1

tij = g(y1) + · · · + g(yn).

Consequently,

Fn(x) = f(x1) + · · · + f(xn)

= g(x1) + · · · + g(xn) + m
(
ψ(x1) + · · · + ψ(xn

)
≤ g(y1) + · · · + g(yn) + m

(
ψ(x1) + · · · + ψ(xn)

)
= f(y1) + · · · + f(yn) − m

(
ψ(y1) + · · · + ψ(yn)

)
+ m

(
ψ(x1) + · · · + ψ(xn)

)
= Fn(y) − m

(
Ψn(y) − Ψn(x)

)
.

This shows that Fn satisfies (6), i.e. it is (m,Ψn)-lower Schur-convex.
The proof of part (ii) is similar. Since f ∈ U(D,M,ψ), the function h =

Mψ − f is convex. Hence, for x and y as previously, we have

Fn(x) = f(x1) + · · · + f(xn)

= +M
(
ψ(x1) + · · · + ψ(xn)

) − h(x1) − · · · − h(xn)

≥ M
(
ψ(x1) + · · · + ψ(xn)

) − h(y1) − · · · − h(yn)

= M
(
ψ(x1) + · · · + ψ(xn)

) − M
(
ψ(y1) + · · · + ψ(yn)

)
+ f(y1) + · · · + f(yn)

= Fn(y) − M
(
Ψn(y) − Ψn(x)

)
.

Part (iii) follows from (i) and (ii). �

As an immediate consequence of the above theorem, we obtain the following
counterpart of the classical Hardy–Littlewood–Pólya majorization theorem [7].

Corollary 2. Let I ⊂ R be an interval and n ≥ 2. Assume that x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ In satisfy:

(a) x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn;
(b) y1 + · · · + yk ≤ x1 + · · · + xk, k = 1, . . . , n − 1;
(c) y1 + · · · + yn = x1 + · · · + xn.

Assume also that f, ψ : I → R and ψ is convex.

(i) If f ∈ L(D,m,ψ), then

f(x1) + · · · + f(xn) ≤ f(y1) + · · · + f(yn) − m
(
Ψn(y) − Ψn(x)

)
;
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(ii) If f ∈ U(D,M,ψ), then

f(x1) + · · · + f(xn) ≥ f(y1) + · · · + f(yn) − M
(
Ψn(y) − Ψn(x)

)
;

(iii) If f ∈ B(D,m,M,ψ), then

f(y1) + · · · + f(yn) − M
(
Ψn(y) − Ψn(x)

) ≤ f(x1) + · · · + f(xn)

≤ f(y1) + · · · + f(yn) − m
(
Ψn(y) − Ψn(x)

)
.

Proof. Note that assumptions (a)–(c) imply x � y (see e.g. [12]) and apply
Theorem 1. �

Remark 3. Specifying the functions ψ and f in Corollary 2 above, one can get
various analytic inequalities. For example, if I ⊂(0,∞) and f ∈B(I,m,M,−ln),
then for all (x1, . . . , xn), (y1, . . . , yn) ∈ In satisfying conditions (a)–(c), we get

m ln
n∏

i=1

(
xi

yi

)
≤

n∑
i=1

f (yi) −
n∑

i=1

f (xi) ≤ M ln
n∏

i=1

(
xi

yi

)
,

or, equivalently,
n∏

i=1

(
xi

yi

)m

≤ exp [
∑n

i=1 f (yi)]
exp [

∑n
i=1 f (xi)]

≤
n∏

i=1

(
xi

yi

)M

. (9)

If we take, for instance, I = [k,K] ⊂ (0,∞) and f (t) = 1
p(p−1) t

p, with
p > 0, p �= 1, then t2f ′′ (t) = tp ∈ [kp,Kp] , which means [cf. (4)] that
f ∈ B(I, kp,Kp,− ln). Therefore, by (9), we then have

n∏
i=1

(
xi

yi

)p(p−1)kp

≤ exp (
∑n

i=1 yp
i )

exp (
∑n

i=1 xp
i )

≤
n∏

i=1

(
xi

yi

)p(p−1)Kp

.

One can give other examples by choosing f (t) = tq with q < 0, f (t) = t ln t,
etc.

We say that a function f : D → R is (m,ψ)-lower Jensen-convex ((M,ψ)-
upper Jensen-convex ) if the function f −mψ (the function Mψ −f) is Jensen-
convex, i.e. satisfies (3) with c = 0. We say that f : D → R is (m,M,ψ)-Jensen-
convex if it is (m,ψ)-lower Jensen-convex and (M,ψ)-upper Jensen-convex.

In the next theorem we show that functions generating (m,M,Ψn)-Schur-
convex sums must be (m,M,ψ)-Jensen–convex.

Theorem 4. Let f : D → R.
(i) If for some n ≥ 2 the function Fn defined by (8) is (m,Ψn)-lower Schur-

convex, then f is (m,ψ)-lower Jensen-convex;
(ii) If for some n ≥ 2 the function Fn defined by (8) is (M,Ψn)-upper Schur-

convex, then f is (M,ψ)-upper Jensen-convex;
(iii) If for some n ≥ 2 the function Fn defined by (8) is (m,M,Ψn)-Schur-

convex, then f is (m,M,ψ)- Jensen-convex.
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Proof. To prove (i) take y1, y2 ∈ D and put x1 = x2 = 1
2 (y1 + y2). Consider

the points
y = (y1, y2, y2, . . . , y2), x = (x1, x2, y2, . . . , y2)

(if n = 2, then we take y = (y1, y2), x = (x1, x2)). One can check easily that
x � y. Therefore, by (6),

Fn(x) ≤ Fn(y) − m
(
Ψn(y) − Ψn(x)

)
,

that is

2f
(y1 + y2

2

)
≤ f(y1) + f(y2) − m

(
ψ(y1) + ψ(y2) − 2ψ

(y1 + y2
2

))
.

Hence, for g = f − mψ we have

2g
(y1 + y2

2

)
= 2f

(y1 + y2
2

)
− 2mψ

(y1 + y2
2

)

≤ f(y1) + f(y2) − m
(
(ψ(y1) + ψ(y2)

)
= g(y1) + g(y2),

which means that f is (m,ψ)-lower Jensen-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). �

We say that a function f : D → R is (m,ψ)-lower Wright-convex ((M,ψ)-
upper Wright-convex ) if the function f −mψ (the function Mψ−f) is Wright-
convex, i.e. satisfies (2) with c = 0. We say that f : D → R is (m,M,ψ)-
Wright-convex if it is (m,ψ)-lower Wright-convex and (M,ψ)-upper Wright-
convex.

As was shown above in Theorems 1 and 2, if a function f : D → R is
(m,M,ψ)-convex, then for every n ≥ 2 the corresponding function Fn de-
fined by (8) is (m,M,Ψn)-Schur-convex and if for some n ≥ 2 the function
Fn is (m,M,Ψn)-Schur-convex, then f is (m,M,ψ)-Jensen-convex. The next
theorem characterizes all the functions f for which Fn are (m,M,Ψn)- Schur–
convex. It is a counterpart of the result of Ng [16] on functions generating
Schur–convex sums.

Recall also that a subset D of a vector space X is said to be algebraically
open if for every x ∈ D and for every y ∈ X there exists ε > 0 such that

{ty + (1 − t)x | t ∈ (−ε, ε)} ⊂ D.

Theorem 5. Let f : D → R, where D is an algebraically open convex subset of
a vector space X. Then:

(i) If f is (m,ψ)-lower Wright-convex, then for every n ≥ 2 the function
Fn defined by (8) is (m,Ψn)-lower Schur-convex. Conversely, if for some
n ≥ 2 the function Fn is (m,Ψn)-lower Schur-convex, then f is (m,ψ)-
lower Wright-convex;

(ii) If f is (M,ψ)-upper Wright-convex, then for every n ≥ 2 the function Fn

defined by (8) is (M,Ψn)-upper Schur-convex. Conversely, if for some
n ≥ 2 the function Fn is (M,Ψn)-upper Schur-convex, then f is (M,ψ)-
upper Wright-convex;
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(iii) If f is (m,M,ψ)- Wright-convex, then for every n ≥ 2 the function
Fn defined by (8) is (m,M,Ψn)- Schur-convex. Conversely, if for some
n ≥ 2 the function Fn is (m,M,Ψn)- Schur-convex, then f is (m,M,ψ)-
Wright-convex.

Proof. To prove (i) assume that f is (m,ψ)-lower Wright-convex and fix an
n ≥ 2. Since the function g = f − mψ is Wright-convex, it is of the form
g = g1 + a, where g1 is convex and a is additive (cf. [11]; here the assumption
that D is algebraically open is needed). Therefore it generates Schur-convex
sums. Thus, for x = (x1, . . . , xn) � y = (y1, . . . , yn), we have

g(x1) + · · · + g(xn) ≤ g(y1) + · · · + g(yn).

Hence

f(x1) + · · · + f(xn) − m
(
ψ(x1) + · · · + ψ(xn)

)
≤ g(y1) + · · · + g(yn) − m

(
ψ(y1) + · · · + ψ(yn)

)
,

which means that

Fn(x) ≤ Fn(y) − m
(
Ψn(y) − Ψn(x)

)
,

that is Fn is (m,Ψn)-lower Schur-convex. Now, assume that for some n ≥ 2
the function Fn is (m,Ψn)-lower Schur-convex. Take y1, y2 ∈ D and t ∈ (0, 1).
Put

x1 = ty1 + (1 − t)y2, x2 = (1 − t)y1 + ty2

and, if n > 2, take additionally xi = yi = z ∈ D for i = 3, . . . , n. Then
x = (x1, . . . , xn) � y = (y1, . . . , yn). Therefore, by (6),

Fn(x) ≤ Fn(y) − m
(
Ψn(y) − Ψn(x)

)
,

that is

f(ty1 + (1 − t)y2) + f((1 − t)y1 + ty2) ≤ f(y1) + f(y2) − m
(
ψ(y1)

+ψ(y2) − ψ(x1) − ψ(x2)
)
.

Hence, for g = f − mψ we get

g(ty1 + (1 − t)y2) + g((1 − t)y1 + ty2)
= f(ty1 + (1 − t)y2) + f((1 − t)y1 + ty2) − mψ(ty1 + (1 − t)y2)

−mψ((1 − t)y1 + ty2)
≤ f(y1) + f(y2) − mψ(y1) − mψ(y2) = g(y1) + g(y2).

Thus g is Wright-convex, which means that f is (m,ψ)-lower Wright-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). �
Remark 6. In the special case where (X, ‖ · ‖) is an inner product space,
ψ = ‖ · ‖2 and m = c > 0, parts (i) of the above Theorems 1, 4, 5 reduce to
the results obtained in [20] for strong Schur-convexity. For m = 0 and X = R

n

they coincide with the Ng theorem [16].
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Finally, we give a representation theorem for (m,M,ψ)-Wright-convex func-
tions. It is known (and easy to check) that every convex function is Wright-
convex, and every Wright-convex function is Jensen-convex, but not the con-
verse (some examples can be found in [18]). In [16] Ng proved that a function
f defined on a convex subset of Rn is Wright-convex if and only if it can be
represented in the form f = f1 + a, where f1 is a convex function and a is an
additive function (see also [18]). Kominek [11] extended that result to functions
defined on algebraically open subset of a vector space. An analogous result for
strongly Wright-convex functions was obtained in [14]. In the next theorem
we give a similar representation for (m,M,ψ)-Wright-convex functions. In the
proof we will use the following fact:

Lemma 7. Assume that f, g : D → R are convex functions, a : X → R is
additive and a(x) = f(x) − g(x) for all x ∈ D. Then a is an affine function
on D.

Proof. Fix x, y ∈ D and consider the function ϕ : [0, 1] → R defined by

ϕ(s) = a(sx + (1 − s)y) = f(sx + (1 − s)y) − g(sx + (1 − s)y), s ∈ [0, 1].

As a difference of convex functions on [0, 1], ϕ is continuous on (0, 1). Fix any
t ∈ (0, 1) and take a sequence (qn) of rational numbers in (0, 1) tending to t.
By the additivity of a we have

a(qnx + (1 − qn)y) = qna(x) + (1 − qn)a(y),

whence

ϕ(qn) = qna(x) + (1 − qn)a(y).

Going to the limit we get

ϕ(t) = ta(x) + (1 − t)a(y).

Hence

a(tx + (1 − t)y) = ta(x) + (1 − t)a(y),

which proves that a is affine on D. �

Theorem 8. Let f : D → R, where D is an algebraically open convex subset of
a vector space X. Then:

(i) f is (m,ψ)-lower Wright-convex if and only if f = g1 + a1, where g1 ∈
L(D,m,ψ) and a1 : X → R is additive;

(ii) f is (M,ψ)-upper Wright-convex if and only if f = g2 + a2, where g2 ∈
U(D,M,ψ) and a2 : X → R is additive;

(iii) f is (m,M,ψ)- Wright-convex if and only if f = g + a, where g ∈
B(D,m,M,ψ) and a : X → R is additive.
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Proof. To prove (i) assume first that f is (m,ψ)-lower Wright-convex, that is
h = f−mψ is Wright-convex. By the Ng representation theorem [16] (extended
by Kominek [11] to functions defined on algebraically open domains), there
exist a convex function h1 : D → R and an additive function a1 : X → R such
that h = h1 + a1 on D. Then g1 = h1 + mψ belongs to L(D,m,ψ) and

f = h + mψ = h1 + a1 + mψ = g1 + a1,

which was to be proved. Conversely, if f = g1 + a1 with some g1 ∈ L(D,m,ψ)
and a1 additive, then f − mψ = g1 − mψ + a1 is Wright-convex as a sum of
a convex function and an additive function. This shows that f is (m,ψ)-lower
Wright-convex.
The proof of part (ii) is analogous.

Part (iii). If f = g+a, where g ∈ B(D,m,M,ψ) and a : X → R is additive,
then, by (i) and (ii) f is (m,ψ)-lower Wright-convex and (M,ψ)-upper Wright-
convex. Consequently, it is (m,M,ψ)-Wright-convex.

The proof in the opposite direction is more delicate. If f is (m,M,ψ)-
Wright-convex, then f − mψ and Mψ − f are Wright-convex. Then

f − mψ = h1 + a1 and Mψ − f = h2 + a2

with some convex functions h1, h2 and additive functions a1, a2. Hence

a1 + a2 = (M − m)ψ − (h1 + h2)

which, by Lemma 5, implies that A = a1 + a2 is affine. Denote a = a1 and
g = f − a. Then

g − mψ = f − a − mψ = h1,

which implies that g ∈ L(D,m,ψ) because h1 is convex. Also

Mψ − g = Mψ − f + a = h2 + a2 + a = h2 + A,

which implies that g ∈ U(D,m,ψ) because h2 + A is convex. Thus g ∈
B(D,m,ψ) and f = g + a, which finishes the proof. �

Open Access. This article is distributed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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