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Abstract. The notion of (m, M, ¥)-Schur-convexity is introduced and functions generating
(m, M, ¥)-Schur-convex sums are investigated. An extension of the Hardy-Littlewood—Pdlya
majorization theorem is obtained. A counterpart of the result of Ng stating that a function
generates (m, M, ¥)-Schur-convex sums if and only if it is (m, M, 1)-Wright-convex is proved
and a characterization of (m, M, 1)-Wright-convex functions is given.
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1. Introduction

Let (X,] - ||) be a real normed space. Assume that D is a convex subset of X
and c is a positive constant. A function f: D — R is called:

— strongly convex with modulus c if

fltz+ (1 —ty) < tf(@) + Q- )f@) — @ —Dllz—yl2 (1)
for all z,y € D and ¢t € [0, 1];
— strongly Wright-convex with modulus c if
Flt -+ (1= 1))+ F(L= )+ ty) < f(2) + f) = 2001 =)o = yI* (2)

for all z,y € D and t € [0, 1];
— strongly Jensen-convex with modulus ¢ if (1) is assumed only for ¢t = %,
that is

f<x+y> _ @)+ 1)

c
5 < 5 — Z||a:—y||27 z,y € D. (3)
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The usual concepts of convexity, Wright-convexity and Jensen-convexity
correspond to the case ¢ = 0, respectively. The notion of strongly convex
functions was introduced by Polyak [22] and they play an important role in
optimization theory and mathematical economics. Many properties and appli-
cations of them can be found in the literature (see, for instance, [10,15,19,22—
24,27]). Let us also mention the paper [18] by the second author which is
a survey article devoted to strongly convex functions and related classes of
functions.

In [1] the first author introduced the following concepts of (m,)-lower
convex, (M, )-upper convex and (m, M,)-convex functions (see also [2—4]):
Assume that D is a convex subset of a real linear space X, ¥ : D — R is a
convex function and m, M € R. A function f : D — R is called (m,)-lower
convex ((M,v)-upper conver) if the function f — ma (the function My — f)
is convex. We say that f : D — R is (m, M,)-convex if it is (m,)-lower
convex and (M, )-upper convex. Denote the above classes of functions by:

L(D,m,y)={f:D —R | f—m is convex},
UD,M,)={f:D—R | M) — f is convex},
B(D,m, M) = L(D,m, ) NUD, M, ).

Let us observe that if f € B(D,m,M,vy) then f —mwy and My — f are
convex and then (M —m)1 is also convex, implying that M > m whenever
is not trivial (i.e. is not the zero function).

If m >0 and (X, | -||) is an inner product space (that is, the norm || - || in
X is induced by an inner product: ||z|| = \/{(z,z)) the notions of (m, || - ||?)-
lower convexity and strong convexity with modulus m coincide. Namely, in
this case the following characterization was proved in [19]: A function f is
strongly convex with modulus c if and only if f —c||- || is convex (for X = R"
this result can be also found in [8, Prop. 1.1.2]). However, if (X, || -||) is not an
inner product space, then the two notions are different. There are functions
f € L(D,m,] -|*) which are not strongly convex with modulus m, as well as
there are functions strongly convex with modulus m which do not belong to
L(D,m,| - ||?) (see the examples given in [6]).

If M >0and f € U(D, M,)), then f is a difference of two convex functions.
Such functions are called d.c. convex or §-convexr and play an important role
in convex analysis (cf. e.g. [26] and the reference therein). Functions from the
class U(D, M, || -||?) with M > 0 were also investigated in [13] under the name
approximately concave functions.

In [5] Dragomir and Ionescu introduced the concept of g-convex dominated
functions, where ¢ is a given convex function. Namely, a function f is called
g-convex dominated, if the functions g + f and g — f are convex. Note that
this concept can be obtained as a particular case of (m, M,)-convexity by
choosing m = —1, M = 1 and ¢ = g. Observe also (cf. [1]), that in the case
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where I C R is an open interval and f,1¢ : I — R are twice differentiable,
f e B(I,m, M, 1) if and only if

my” (t) < f(t) < My (t), forall tel.

In particular, if I C (0,00), f: I — R is twice differentiable and ¥ (t) = —Int,
then f € B(I,m,M,—1In) if and only if

m < t2f"(t) < M, forall tel, (4)

which is a convenient condition to verify in applications.

Let I C R be an interval and = = (z1,...,2,), y = (y1,...,yn) € I", where
n > 2. Following I. Schur (cf. e.g. [12,25]) we say that z is majorized by y, and
write x = y, if there exists a doubly stochastic n x n matrix P (i.e. a matrix
containing nonnegative elements with all rows and columns summing up to 1)
such that x = y - P. A function F' : I™ — R is said to be Schur-convex if
F(z) < F(y) whenever z <y, x,y € I"™.

It is known, by the classical works of Schur [25], Hardy et al. [7] and Kara-
mata [9] that if a function f: I — R is convex then it generates Schur-convex
sums, that is the function F : I™ — R defined by

F(x)=F(x1,...,xn) = f(x1)+ -+ f(an)

is Schur-convex. It is also known that the convexity of f is a sufficient but not
necessary condition under which F' is Schur-convex. A full characterization
of functions generating Schur-convex sums was given by Ng [16]. Namely, he
proved that a function f : I — R generates Schur-convex sums if and only if it
is Wright-convex (cf. also [17]). Recently Nikodem et al. [20] obtained similar
results in connection with strong convexity in inner product spaces. Let us
also mention the paper by Olbry$ [21] in which delta Schur-convex mappings
are investigated.

The aim of this paper is to present some generalizations and counterparts
of the above mentioned results related to (m,¥)-lower convexity, (M, 1))-upper
convexity and (m, M,)-convexity. We introduce the notion of (m, M, ¥)-
Schur-convex functions and give a sufficient and necessary condition for a
function f to generate (m, M, ¥)-Schur-convex sums. As a corollary we obtain
a counterpart of the classical Hardy—Littlewood—Pdlya majorization theorem.
Finally we introduce the concept of (m, M, )-Wright-convex functions, prove
a representation theorem for them and present an Ng-type characterization
of functions generating (m, M, ¥)-Schur-convex sums. It is worth underlining,
that our results concern a few different classes of functions related to convexity
and are formulated in vector spaces, that is in a much more general setting
than the original ones.
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2. Main results

Let X be a real vector space. Similarly as in the classical case we define
majorization in the product space X™. Namely, given two n—tuples x = (21, ...,
ZTn)y Y= (Y1,-.-,yn) € X™ we say that x is majorized by y, written z <y, if

(:rh...,xn)=(y1,.~->yn)'P

for some doubly stochastic n X n matrix P.

In what follows we will assume that D is a convex subset of a real vector
space X, ¥ : D — R is a convex function and m, M € R. For any n > 2 define
v, : D" - R by

U (21, .. xn) = (@) + -+ Y(x), x1,...,2, € D. (5)

We say that a function F' : D™ — R is (m, M, ¥,,)-Schur-convez if for all
z,y € D"
and
If only condition (6) [condition (7)] is satisfied, we say that F' is (m, ¥,,)-lower
((M,¥,)-upper) Schur-convex.

Note that if x < y then ¥, (z) < ¥, (y). It follows from the fact that the
function 1 is convex and so it generates Schur-convex sums V,,.

Given a function f : D — R and an integer n > 2 we define the function
F, : D" — R by

Fo(z1,...,20) = f(x1)+ -+ flan), x1,...,2, € D. (8)

Now, let D be a convex subset of a real vector space X, and let m, M € R.
Assume that ¢ : D — R is a convex function and ¥,, : D" — R is defined by
(5). We will prove now that (m, M,)-convex functions generate (m, M, ¥, )-
Schur-convex sums.

Theorem 1. (i) If f € L(D,m,v), then the function F, defined by (8) is
(m, U,,)-lower Schur-convex;
(ii) If f e U(D, M,), then the function F, defined by (8) is (M, ¥,,)-upper
Schur-convex;
(iil) If f € B(D,m, M, ), then the function F,, defined by (8) is (m, M, ¥,,)-
Schur-conver.

Proof. To prove (i) fix x = (21,...,2,) and y = (y1,...,yn) in D™ with z < y.
There exists a doubly stochastic n x n matrix P = [t;;] such that = =1y - P.
Then

n
l‘jzztijyi, j:l,...,n.
i=1
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Since f € L(D,m,1)), the function g = f — ma) is convex and hence

n

g(xl)—l—“-—i—g(mn) :Zg(ztijyi) < ZZ ng yz

j=1 =1 j=1i=1

=D > tisgw) =Y 9w Ztu =91)+ - +9n)

3

Consequently,
Fo(@) = flz1) + - + f(zn)
=g(z1) + -+ gzn) + m(Y(@1) + - + ()
<gy) + -+ g(yn) +m(d(@n) + -+ P(an)
= f(y1) + -

= Fu(y) = m(¥n(y) — Un(x)).
This shows that F,, satisfies (6), i.e. it is (m, ¥, )-lower Schur-convex.
The proof of part (ii) is similar. Since f € U(D, M, ), the function h =
M+ — f is convex. Hence, for z and y as previously, we have
Falw) = F(a2) + + f(a)
= +M (p(x1) + -+ p(xn)) = h(21) — - = h(2,)
> M(p(z1) + - +9(@n)) = h(y1) = — h(yn)
= M(¥(1) + -+ ¥(@n)) = M($(y) + - + ()
+ )+ + fyn)
= Fu(y) — M(Un(y) — Un(z)).
Part (iii) follows from (i) and (ii). O
As an immediate consequence of the above theorem, we obtain the following
counterpart of the classical Hardy-Littlewood-Pdélya majorization theorem [7].
Corollary 2. Let I C R be an interval andn > 2. Assume that x = (x1,...,2Ty),
y=y1,---,yn) € I™ satisfy:
(@) 21 < <@, 1 < Sy
b) i+ +yp<a1+---+a, k=1,...,n—1;
Assume also that f,v) : I — R and v is convex.
(i) If f € L(D,m,), then

Flan) + -4 flan) < Fly) + o+ Flyn) = m(Taly) — Tu(@));
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(ii) If f e U(D, M, 1)), then
Fln)+ ot flan) = fln) + -+ fyn) = M(Taly) — Tn(2));
(iil) If f € B(D,m, M, 1)), then
Flyn) + -+ fyn) = M(¥n(y) = Wn(@) < fl@r) +- -+ flan)
< flyn) + o+ fyn) = m(Ta(y) — Ual2)).
Proof. Note that assumptions (a)—(c) imply < y (see e.g. [12]) and apply
Theorem 1. O

Remark 3. Specifying the functions ¥ and f in Corollary 2 above, one can get
various analytic inequalities. For example, if I C (0, 00) and f € B(I, m, M, —In),
then for all (x1,...,2y), (Y1,...,yn) € I" satisfying conditions (a)—(c), we get

T (2) <3500 3 e < a0 T (%),

i=1

or, equivalently,

0(G) <mEef=nG) o

If we take, for instance, I = [k, K] C (0,00) and f(t) = mt”, with
p > 0, p # 1, then t2f"(t) = t* € [kP,KP], which means [cf. (4)] that
f e B(I,k?, K?,—1In). Therefore, by (9), we then have

ﬁ (xl)p(pl)k" _exp (09 - ﬁ (%) p(p—1)K?
S\ Toexp (il @) T Yi

One can give other examples by choosing f (t) = t? with ¢ < 0, f(¢t) = tInt,
etc.

We say that a function f: D — R is (m,v)-lower Jensen-convex ((M,)-
upper Jensen-converz) if the function f —ma (the function M1 — f) is Jensen-
convex, i.e. satisfies (3) with ¢ = 0. We say that f : D — Ris (m, M, ¢)-Jensen-
conver if it is (m,)-lower Jensen-convex and (M, )-upper Jensen-convex.

In the next theorem we show that functions generating (m, M, ¥,,)-Schur-
convex sums must be (m, M, 1)-Jensen—convex.

Theorem 4. Let f: D — R.

(i) If for some n > 2 the function F,, defined by (8) is (m,¥,,)-lower Schur-
convez, then f is (m,1)-lower Jensen-convex;
(ii) If for some n > 2 the function F,, defined by (8) is (M, V,,)-upper Schur-
convex, then f is (M,)-upper Jensen-convex;
(iii) If for some n > 2 the function F,, defined by (8) is (m, M, ¥,,)-Schur-
convez, then f is (m, M,v)- Jensen-convez.
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Proof. To prove (i) take y1,y2 € D and put x; = z9 = %(yl + y2). Consider
the points

y=(Y1,92,92,---,Y2), T=(T1,T2,Y2,-.-,Y2)
(if n = 2, then we take y = (y1,y2), © = (x1,22)). One can check easily that
2 < y. Therefore, by (6),

that is

27 (U2 < flyn) + Flao) — m(w) + 0(w2) — 2021 22)).
Hence, for g = f — m we have

Y1 t+y2\ Y1+ Y2 Y1+ Y2
29( 2 )_2f< 2 )_Qmw( 2 )
< flyn) + fly2) = m((W (1) + ¥(y2)) = g(yr) + 9(y2),

which means that f is (m,1)-lower Jensen-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). O

We say that a function f: D — R is (m,)-lower Wright-convex ((M,)-
upper Wright-convez) if the function f —ma (the function My — f) is Wright-
convex, i.e. satisfies (2) with ¢ = 0. We say that f : D — R is (m, M,v)-
Wright-convez if it is (m,)-lower Wright-convex and (M, ))-upper Wright-
convex.

As was shown above in Theorems 1 and 2, if a function f : D — R is
(m, M,1)-convex, then for every n > 2 the corresponding function F), de-
fined by (8) is (m, M, V,,)-Schur-convex and if for some n > 2 the function
F, is (m, M, ¥, )-Schur-convex, then f is (m, M,1)-Jensen-convex. The next
theorem characterizes all the functions f for which F,, are (m, M, ¥,,)- Schur—
convex. It is a counterpart of the result of Ng [16] on functions generating
Schur—convex sums.

Recall also that a subset D of a vector space X is said to be algebraically
open if for every x € D and for every y € X there exists € > 0 such that

{ty+ (1 —t)x |t € (—e,e)} CD.

Theorem 5. Let f: D — R, where D is an algebraically open convex subset of
a vector space X. Then:

(i) If f is (m,))-lower Wright-convex, then for every n > 2 the function
F,, defined by (8) is (m, ¥, )-lower Schur-convex. Conversely, if for some
n > 2 the function F, is (m,V,)-lower Schur-convez, then f is (m,v)-
lower Wright-convex;

(i) If f is (M, ))-upper Wright-convez, then for every n > 2 the function F,
defined by (8) is (M,¥,)-upper Schur-convex. Conversely, if for some
n > 2 the function F,, is (M, ¥,)-upper Schur-convez, then [ is (M,)-
upper Wright-convex;
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(iil) If f is (m, M, ¢)- Wright-convex, then for every m > 2 the function
F,, defined by (8) is (m, M, ¥, )- Schur-convex. Conversely, if for some
n > 2 the function F,, is (m, M, ¥,,)- Schur-convez, then f is (m, M, 1)-
Wright-convex.

Proof. To prove (i) assume that f is (m,)-lower Wright-convex and fix an
n > 2. Since the function ¢ = f — m is Wright-convex, it is of the form
g = g1 + a, where g7 is convex and a is additive (cf. [11]; here the assumption
that D is algebraically open is needed). Therefore it generates Schur-convex
sums. Thus, for x = (21,...,2,) <y = (y1,...,Yn), we have

g(@1) + -+ g(n) <glyr) + -+ 9(yn)-

Hence
Flxn) + -+ flzn) = m((zr) + - + ()
<g(n) + -+ 9Yn) = m(P(y) + -+ ¢(yn),
which means that
Fn(x) < Fn(y) - m(\pn(y) - \Ijn(x))a

that is F), is (m, ¥,,)-lower Schur-convex. Now, assume that for some n > 2
the function F,, is (m, ¥,,)-lower Schur-convex. Take y1,y2 € D and ¢t € (0, 1).
Put

1 =ty + (1 —t)y2, 2= (1-1t)y1 +1ty2
and, if n > 2, take additionally z; = y; = z € D for i = 3,...,n. Then
x=(x1,...,Zn) XY= (y1,...,Yn). Therefore, by (6),
Fo(z) < Fn(y) - m(\I/n(y) - \I/n(m)),
that is
fltyr + (1= t)y) + F((1— )y +ty2) < f(y1) + Fly2) — m(¥(y1)
F(y2) — (1) — P(a2)).
Hence, for g = f — my we get
9(tyr + (1 = )y2) + g((1 = t)y1 + ty2)
= ftyr + (1 = )y2) + f((1 = D)1 + ty2) — m(tyr + (1 — t)ya)
—m((1 = t)yr + tys)
< fy) + fly2) = mip(yr) — mab(y2) = g(y1) + g(y2).
Thus g is Wright-convex, which means that f is (m,v)-lower Wright-convex.
The proof of part (ii) is similar. Part (iii) follows from (i) and (ii). O

Remark 6. In the special case where (X,|| - ||) is an inner product space,
= |- ||* and m = ¢ > 0, parts (i) of the above Theorems 1, 4, 5 reduce to
the results obtained in [20] for strong Schur-convexity. For m = 0 and X = R"
they coincide with the Ng theorem [16].
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Finally, we give a representation theorem for (m, M, 1))-Wright-convex func-
tions. It is known (and easy to check) that every convex function is Wright-
convex, and every Wright-convex function is Jensen-convex, but not the con-
verse (some examples can be found in [18]). In [16] Ng proved that a function
f defined on a convex subset of R™ is Wright-convex if and only if it can be
represented in the form f = f; + a, where f; is a convex function and a is an
additive function (see also [18]). Kominek [11] extended that result to functions
defined on algebraically open subset of a vector space. An analogous result for
strongly Wright-convex functions was obtained in [14]. In the next theorem
we give a similar representation for (m, M, ¢)-Wright-convex functions. In the
proof we will use the following fact:

Lemma 7. Assume that f,g : D — R are convex functions, a : X — R is
additive and a(x) = f(x) — g(z) for all x € D. Then a is an affine function
on D.

Proof. Fix x,y € D and consider the function ¢ : [0,1] — R defined by
p(s) = a(sz+ (1 =s)y) = flsz+ (1 —s)y) —g(sz + (1 = s)y), s €[0,1].

As a difference of convex functions on [0, 1], ¢ is continuous on (0, 1). Fix any
t € (0,1) and take a sequence (g,) of rational numbers in (0,1) tending to ¢.
By the additivity of a we have

a(qnz + (1 = gn)y) = gna(z) + (1 — gn)a(y),

whence

e(qn) = qna(x) + (1 — gn)a(y).
Going to the limit we get

Hence
a(tz + (1 —t)y) = ta(z) + (1 — t)a(y),

which proves that a is affine on D. O

Theorem 8. Let f : D — R, where D is an algebraically open convexr subset of
a vector space X. Then:

(i) f is (m,)-lower Wright-convex if and only if f = g1 + a1, where g1 €
L(D,m,v) and a; : X — R is additive;
(ii) f is (M,1))-upper Wright-convex if and only if f = go + as, where go €
U(D,M,y) and as : X — R is additive;
(iii) f is (m, M,)- Wright-convex if and only if f = g+ a, where g €
B(D,m,M,) and a : X — R is additive.
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Proof. To prove (i) assume first that f is (m,1)-lower Wright-convex, that is
h = f—ma is Wright-convex. By the Ng representation theorem [16] (extended
by Kominek [11] to functions defined on algebraically open domains), there
exist a convex function h; : D — R and an additive function a; : X — R such
that h = hy 4+ a3 on D. Then g; = hy + m) belongs to L(D,m, 1)) and

f=h+myp=h+a+myp =g +a,

which was to be proved. Conversely, if f = g1 + a; with some g1 € L(D, m, )
and ap additive, then f —mwy = g1 — my + ay is Wright-convex as a sum of
a convex function and an additive function. This shows that f is (m,v)-lower
Wright-convex.

The proof of part (ii) is analogous.

Part (iii). If f = g+a, where g € B(D,m, M,®) and a : X — R is additive,
then, by (i) and (ii) f is (m, ¥ )-lower Wright-convex and (M, v)-upper Wright-
convex. Consequently, it is (m, M, ¢)-Wright-convex.

The proof in the opposite direction is more delicate. If f is (m, M, 1)-
Wright-convex, then f —m) and My — f are Wright-convex. Then

f—m¥=hy+a and My — f=hy+as
with some convex functions hi, ho and additive functions a1, as. Hence
a1+ az = (M —m)y — (h1 + ha)

which, by Lemma 5, implies that A = a; + a- is affine. Denote a = a; and
g = f —a. Then

g—myp=f—a—my=h,
which implies that g € £(D,m, ) because h; is convex. Also
Mip—g=Mp—f+a=hy+a+a=hs+ A4,

which implies that g € U(D, m,v) because he + A is convex. Thus g €
B(D,m,v) and f = g + a, which finishes the proof. O
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