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Abstract. In this paper by using the notion of sesquilinear form we
introduce a new class of numerical range and numerical radius in normed
space V , also its various characterizations are given. We apply our results
to get some inequalities.

1 Introduction and preliminaries

A related concept to our work is the notion of sesquilinear form. Sesquilinear
forms and quadratic forms were studied extensively by various authors, who
have developed a rich array of tools to study them; cf. [17, 19]. There is a
considerable amount of literature devoting to the study of sesquilinear form.
We refer to [1, 9, 22] for a recent survey and references therein.
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During the past decades, several definitions of the numerical range in various
settings have been introduced by many mathematicians. For instance, Marcus
and Wang [15] opened the concept of the rth permanent numerical range of
operator A. Furthermore, Descloux in [3] defined the notion of the essential
numerical range of an operator with respect to a coercive sesquilinear form.
In 1977, Marvin [16] and in 1984, independently, Tsing [23] introduce and
characterize a new version of numerical range in a space Cn equipped with
a sesquilinear form. Li in [14], generalized the work of Tsing and explored
fundamental properties and consequences of numerical range in the framework
sesquilinear form. We also refer to another interesting paper by Fox [10] of this
type.

The motivation of this paper is to introduce the notions of numerical range
and numerical radius without the inner product structure. In fact, the result
extends immediately to the case where the Hilbert space H and inner product
〈·, ·〉, replaced by vector space V and sesquilinear form ϕ, respectively. For the
sake of completeness, we reproduce the following definitions and preliminary
results, which will be needed in the sequel.

A functional ϕ : V ×V → C where V is complex vector space, is a sesquilin-
ear form if satisfying the following two conditions:

(a) ϕ (αx1 + βx2, y) = αϕ (x1, y) + βϕ (x2, y),

(b) ϕ (x, αy1 + βy2) = αϕ (x, y1) + βϕ (x, y2),

for any scalars α and β and any x, x1, x2, y, y1, y2 ∈ V .
We now recall that, two typical examples of sesquilinear forms are as follows:

(I) Let A and B be operators on an inner product space V . Then ϕ1 (x, y) =
〈Ax, y〉, ϕ2 (x, y) = 〈x, By〉, and ϕ3 (x, y) = 〈Ax,By〉 are sesquilinear
forms on V .

(II) Let f and g be two linear functionals on a vector space V . Thenϕ (x, y) =
f (x)g (y) is a sesquilinear form on V .

A sesquilinear form ϕ on vector space V is called symmetric if ϕ (x, y) =
ϕ (y, x), for all x, y ∈ V . We say a sesquilinear form ϕ on vector space V is
positive if ϕ (x, x) ≥ 0, for all x ∈ V . If V is a normed space, then ϕ is called
bounded if |ϕ (x, y)| ≤M ‖x‖ ‖y‖ , for some M > 0 and all x, y ∈ V .

It is worth to mention here that for a bounded sesquilinear form ϕ on V we
have

|ϕ (x, y)| ≤ ‖ϕ‖ ‖x‖ ‖y‖ ,
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for all x, y ∈ V .
For each positive sesquilinear form ϕ on vector space V ,

√
ϕ (x, x) is a

semi norm; since satisfied the axioms of a norm exept that the implication√
ϕ (x, x) = 0⇒ x = 0 may not hold; see [18, p. 52]. We notice that the norm

of V , will be denoted by ‖·‖ϕ.
The operator A on the space (V , ‖·‖ϕ) is called bounded (in short A ∈ B (V ))

if
‖Ax‖ϕ ≤M‖x‖ϕ,

for every x ∈ V . The operator A in B (V ) is called ϕ-adjointable if there exist
B ∈ B (V ) such that

ϕ (Ax, y) ≤ ϕ (x, By)

for every x, y ∈ V . In this case, B is ϕ-adjoint of A and it is denoted by A∗.
If A = A∗, then A is called self-adjoint (for more information on related ideas
and concepts we refer the reader to [21, p. 88-90]). Also, an operator A in
B (V ) is called ϕ-positive if it is self-adjoint and ϕ (Ax, x) ≥ 0 for all x ∈ V .
The set of all ϕ-adjointable operators will denote by L (V ).

In Section 2 we invoke some fundamental facts about the sesquilinear forms
in vector space that are used throughout the paper. Some famous inequalities
due to Kittaneh, Dragomir and Sándor are given. In Section 3 of this paper,
we introduce and study the numerical range and numerical radius by using
sesquilinear form ϕ in normed space V , which we call them ϕ-numerical range
and ϕ-numerical radius, respectively. Also some inequalities for ϕ-numerical
radius are extended. For this purpose, we employ some classical inequalities
for numerical radius in Hilbert space.

2 Some immediate results

We start our work by presenting some simple results. The following lemma is
known as Polarization identity for sesquilinear forms; see [2, Theorem 4.3.7].

Lemma 1 Let ϕ be a sesquilinear form on V , then

4ϕ (x, y) = ‖x+ y‖2ϕ − ‖x− y‖2ϕ + i ‖x+ iy‖2ϕ − i ‖x− iy‖2ϕ . (1)

The next lemma is known as the Cauchy-Schwarz inequality and follows from
Lemma 1.

Lemma 2 For any positive sesquilinear form ϕ on V we have

|ϕ (x, y)| ≤
√
ϕ (x, x)

√
ϕ (y, y).
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Lemma 3 The Schwarz inequality for ϕ-positive operators asserts that if A
is a ϕ-positive operator in L (V ), then

|ϕ (Ax, y)|2 ≤ ϕ (Ax, x)ϕ (Ay, y) , (2)

for all x, y in V .

The following lemma can be found in [13, Lemma 1].

Proposition 1 Let A, B and C be operators in L (V ), where A and B are

ϕ-positive. Then

[
A C∗

C B

]
is a ϕ-positive operator in L (V ⊕ V ) if and only

if
|ϕ (Cx, y)|2 ≤ ϕ (Ax, x)ϕ (By, y) , (3)

for all x, y in V .

Proof. First assume that

[
A C∗

C B

]
is a ϕ-positive operator in L (V ⊕ V ).

Then by (2) we have∣∣∣∣ϕ([A C∗

C B

] [
x

0

]
,

[
0

y

])∣∣∣∣2 ≤ ϕ([A C∗

C B

] [
x

0

]
,

[
x

0

])
ϕ

([
A C∗

C B

] [
0

y

]
,

[
0

y

])
,

for all x, y in V . A direct simplification of above inequality now yields (3).
Conversely, assume that (2) holds, then for every x, y in V ,

ϕ

([
A C∗

C B

] [
x

y

]
,

[
x

y

])
= ϕ (Ax, x) +ϕ (C∗y, x) +ϕ (Cx, y) +ϕ (By, y)

= ϕ (Ax, x) +ϕ (By, y) + 2Reϕ (Cx, y)

≥ 2(ϕ (Ax, x))
1
2 (ϕ (By, y))

1
2 + 2Reϕ (Cx, y)

≥ 2 |ϕ (Cx, y)|+ 2Reϕ (Cx, y)

≥ 2 |ϕ (Cx, y)|− 2 |ϕ (Cx, y)|

= 0.

This completes the proof of the theorem. �

Remark 1 If we put C = AB in (3), then we obtain

|ϕ (ABx, x)|2 ≤ ϕ
(
A2x, x

)
ϕ
(
B2y, y

)
.
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We will need the following definition to obtain our results. For more related
details see [4, p. 1-5].

Definition 1 A functional (·, ·) : V × V → C is said to be a Hermitian form
on linear space V , if

(a) (ax+ by, z) = a (x, z) + b (y, z), for all a, b ∈ C and all x, y, z ∈ V ;

(b) (x, y) = (y, x), for all x, y ∈ V .

Utilizing the Cauchy Schwarz inequality we can state the following result that
will be useful in the sequel (see [7, Theorem 2]).

Lemma 4 Let (V , ϕ (·, ·)) be a complex vector space, then(
‖a‖2ϕ ‖b‖

2
ϕ − |ϕ (a, b)|2

)(
‖b‖2ϕ ‖c‖

2
ϕ − |ϕ (b, c)|2

)
≥
∣∣∣ϕ (a, c) ‖b‖2ϕ −ϕ (a, b)ϕ (b, c)

∣∣∣2. (4)

Proof. Let us consider the mapping pb : V × V → C, with pb (a, c) =
ϕ (a, c) ‖b‖2ϕ − ϕ (a, b)ϕ (b, c), for each b ∈ V \ {0}. Obviously pb (·, ·) is a
non-negative Hermitian form and then writing Schwarz’s inequality

|pb (a, c)|
2 ≤ pb (a, a)pb (c, c) , (a, c ∈ V )

we obtain the desired inequality (4). �

The following refinement of the Schwarz inequality holds (see [8, Theorem 4]):

Theorem 1 Let a, b ∈ V and e ∈ V with ‖e‖ϕ = 1, then

‖a‖ϕ‖b‖ϕ ≥ |ϕ (a, b)ϕ (a, e)ϕ (e, b)|+ |ϕ (a, e)ϕ (e, b)| ≥ |ϕ (a, b)| . (5)

Proof. Applying the inequality (4), we can state that(
‖a‖2ϕ − |ϕ (a, e)|2

)(
‖b‖2ϕ − |ϕ (b, e)|2

)
≥ |ϕ (a, b) −ϕ (a, e)ϕ (e, b)|2. (6)

Utilizing the elementary inequality for real numbers(
m2 − n2

)(
p2 − q2

)
≤ (mp− nq)2,

we can easily see that

(‖a‖ϕ‖b‖ϕ − |ϕ (a, e)ϕ (e, b)|)2 ≥
(
‖a‖2ϕ − |ϕ (a, e)|2

)(∣∣∣‖b‖2ϕ − |ϕ (b, e)|2
∣∣∣) ,
(7)
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for any a, b, e ∈ V with ‖e‖ϕ = 1. Since, by the Schwarz’s inequality

|ϕ (a, e)ϕ (e, b)| ≤ ‖a‖ϕ‖b‖ϕ.

Hence, by (6) and (7) we deduce the first part of (5). The second part of (5)
is obvious. �

If ϕ (x, y) = 0, x is said to be ϕ-orthogonal to y, and notation x⊥ϕy is used.
If ϕ (x, x) = 0 implies x = 0, then the relation ⊥ϕ is symmetric. The notation
U ⊥ϕW means that x⊥ϕy when x ∈ U and y ∈ W . Also U ⊥ is the set of all
y ∈ V that are orthogonal to every x ∈ U . The following lemmas are known
in the literature (see [21, p. 307-308]).

Lemma 5 If x, y ∈ V , and ϕ (x, x) = 0 implies x = 0, then

‖y‖ϕ ≤ ‖λx+ y‖ϕ (λ ∈ C) ,

if and and only if x⊥ϕy.

Lemma 6 Every non empty closed convex set U ⊂ V contains a unique x of
minimal norm.

The next assertion is interesting on its own right.

Theorem 2 If M is a closed subspace of V , then

V = M ⊕M⊥.

3 ϕ-numerical range and ϕ-numerical radius

This section deals with the theory of sesquilinear forms, its generalizations
and applications to numerical range and numerical radius of operators. The
basic notions of numerical range and numerical radius can be found in [11].
Moreover, for a host of numerical radius inequalities, and for diverse applica-
tions of these inequalities, we refer to [6, 5, 20], and references therein. Before
stating the results, we establish the notation some results from the literature.

Definition 2 The ϕ-numerical range of an operator A on vector space V is
the subset of the complex numbers C, given by

Wϕ (A) = {ϕ (Ax, x) : x ∈ V ,‖x‖ϕ = 1} .
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Proposition 2 The following properties of Wϕ (A) are immediate.

(a) If ϕ is symmetric then, Wϕ (A∗) =
{
λ : λ ∈Wϕ (A)

}
.

(b) Wϕ (αI+ βA) = α+ βWϕ (A).

(c) Wϕ (U∗AU) =Wϕ (A), for any unitary operator U.

Further, we list some basic properties of Wϕ (A):

Proposition 3 Let A ∈ L (V ), ϕ be a sesqulinear form on vector space V ,
then

(a) Wϕ (A) is convex.

(b) Sp (A) ⊆Wϕ (A), where Sp (A) denotes the spectrum of A.

(c) If ϕ is symmetric then, A is real if and only if Wϕ (A) is real.

Definition 3 The ϕ-numerical radius of an operator A on V given by

ωϕ (A) = sup {|ϕ (Ax, x)| : ‖x‖ϕ = 1} .

Note that, if ϕ (x, x) = 0 implies x = 0 then ωϕ (·) is a norm on the L (V ) of
all bounded linear operators A : V → V , that is

(a) ωϕ (A) ≥ 0 for any A ∈ L (V ) and ωϕ (A) = 0 if and only if A = 0;

(b) ωϕ (λA) = |λ|ωϕ (A) for any λ ∈ C and A ∈ L (V );

(c) ωϕ (A+ B) ≤ ωϕ (A) +ωϕ (B) for any A,B ∈ L (V ).

This norm is equivalent with the operator norm. In fact, the following more
precise result holds:

Proposition 4 For each A ∈ L (V )

ωϕ (A) ≤ ‖A‖ϕ ≤ 2ωϕ (A) , (8)

where
‖A‖ϕ = sup {|ϕ (Ax, y)| : ‖x‖ϕ = ‖y‖ϕ = 1} .

We are now ready to construct our main results of this section.

Theorem 3 Let ϕ be a symmetric sesquilinear form. Then A is self-adjoint
if and only if Wϕ (A) is real.
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Proof. If A is self-adjoint, we have, for all f ∈ V , ϕ (Af, f) = ϕ (f,Af) =
ϕ (Af, f), and henceWϕ (A) is real. Conversely, if ϕ (Af, f) is real for all f ∈ V ,
we have ϕ (Af, f) = ϕ (f,Af) = 0 = ϕ ((A−A∗) f, f) . Thus the operator
A−A∗ has only {0} in its ϕ-numerical range. So A−A∗ = 0 and A = A∗. �

Theorem 4 Let A ∈ L (V ). If R (A)⊥ϕR (A∗), then ωϕ (A) = 1
2‖A‖ϕ.

Proof. Let x ∈ V , ‖x‖ϕ = 1. We can write x = x1+x2, where x1 ∈ N (A), the

null space of A, and x2 ∈ R (A∗). Thus we have

ϕ (Ax, x) = ϕ (A (x1 + x2) , x1 + x2) = ϕ (Ax2, x1) .

Since Ax1 = 0 and ϕ (Ax2, x2) = ϕ (x2, A
∗x2) = 0. Thus

|ϕ (Ax, x)| ≤ ‖A‖ϕ ‖x1‖ ‖x2‖ ≤
1

2
‖A‖ϕ (‖x1‖+ ‖x2‖)

(by the inequality ‖a‖ ‖b‖ ≤ 1
2

(
‖a‖2 + ‖b‖2

)
)

=
1

2
‖A‖ϕ (since ‖x1‖+ ‖x2‖ = 1).

Since x is arbitrary, we have

ωϕ (A) ≤ 1
2
‖A‖ϕ ≤ ωϕ (A) .

This completes the proof. �

Our ϕ-numerical radius inequality for bounded operators can be stated as
follows.

Theorem 5 Let A,X ∈ L (V ), then

ωϕ (AXA∗) ≤ ‖A‖2ϕωϕ (X) . (9)

Proof. Let x ∈ V be a unit vector. Then

|ϕ (AXA∗x, x)| = |ϕ (XA∗x,A∗x)|

≤ ‖A∗x‖2ϕωϕ (x)

≤ ‖A∗‖2ϕωϕ (x)

= ‖A‖2ϕωϕ (x) .

Now the result follows immediately by taking supremum over all unit vectors
in V . �
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Remark 2 Let A,X ∈ L (V ), then

ωϕ (AXA∗) ≤ ‖A‖2ϕ ‖X‖ϕ. (10)

Note that, by (8) we can easily see that inequality (9) is sharper than inequality
(10).

The following result holds (see [12, Theorem 1], for the case of inner product):

Theorem 6 Let A,B ∈ L (V ) and ϕ is a bounded sesquilinear form, then

1

4
‖A∗A+AA∗‖ϕ ≤ (ωϕ (A))2 ≤ ‖A∗A+AA∗‖ϕ.

Proof. Let A = B + iC be the Cartesian decomposition of A. Then B and
C are self-adjoint, and A∗A + AA∗ = 2

(
B2 + C2

)
. Let x be any vector in V .

Then by the convexity of the function f (t) = t2, we have

|ϕ (Ax, x)|2 = (ϕ (Bx, x))2 + (ϕ (Cx, x))2

≥ 1
2
(|ϕ (Bx, x)|+ |ϕ (Cx, x)|)2

≥ 1
2
|ϕ ((B± C) x, x)|2.

Taking supremum over x ∈ V with ‖x‖ϕ = 1, produces

1

2
‖B± C‖2ϕ ≤ (ωϕ (A))2.

Since

2(ωϕ (A))2 ≥ 1
2

(
‖B+ C‖2ϕ + ‖B− C‖2ϕ

)
≥ 1
2

∥∥∥(B+ C)2 + (B− C)2
∥∥∥
ϕ

=
∥∥∥B2 + C2∥∥∥

ϕ

=
1

2
‖A∗A+AA∗‖ϕ,

and hence

(ωϕ (A))2 ≤ 1
4
‖A∗A+AA∗‖ϕ.

On the other hand

|ϕ (Ax, x)|2 = (ϕ (Bx, x))2 + (ϕ (Cx, x))2 ≤ 2
∥∥∥B2 + C2∥∥∥

ϕ
.
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Now by taking the supremum over x ∈ V , with ‖x‖ϕ = 1 in the above in-
equality we infer that Theorem 6. �

Now we state, another related ϕ-numerical radius inequality that has been
given in [6, Theorem 36], for Hilbert space case.

Theorem 7 Let A ∈ L (V ), then

ω2ϕ (A) ≤ 1
2

(
ωϕ

(
A2
)
+ ‖A‖2ϕ

)
. (11)

Proof. By Theorem 1 observing that

|ϕ (a, b) −ϕ (a, e)ϕ (e, b)| ≥ |ϕ (a, e)ϕ (e, b)|− |ϕ (a, b)| ,

hence by first inequality in (5) we deduce

1

2
(‖a‖ϕ‖b‖ϕ + |ϕ (a, b)|) ≥ |ϕ (a, e)ϕ (e, b)| . (12)

Choose in (12), e = x, ‖x‖ϕ = 1, a = Ax and b = A∗x to get

1

2
‖Ax‖ϕ‖A

∗x‖ϕ +
∣∣∣ϕ(A2x, x)∣∣∣ ≥ |ϕ (Ax, x)|2, (13)

for any x ∈ V with ‖x‖ϕ = 1. Taking the supremum in (13) over x ∈ V with
‖x‖ϕ = 1, we deduce the desired inequality (11). �

Remark 3 The concept of a sesquilinear form and quadratic form do not re-
quire the structure of an inner product space. They can be defined in any vector
space. Something to notice about the definition of a sesquilinear form is the
similarity it has with an inner product. In essence, a sesquilinear form is a
generalization of an inner product. (Note that the inner product is a sesquilin-
ear form but the converse is not true.)

With regard to the point mentioned above, we can say that all of the inequal-
ities which are obtained by Dragomir in [6] can be extended to vector space in
a similar way. The details are left to the interested readers.
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