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1 ABSTRACT 19 

A new polymer flow-cell for chemiluminescence detection (CLD) has been designed 20 

and developed by diverging multiple linear channels from a common centre port in a 21 

radial arrangement. The fabrication of radial flow-cell by 3D PolyJet printing and 22 

fused deposition modeling (FDM) has been evaluated, and compared with a similarly 23 

prepared spiral flow-cell design commonly used in chemiluminescence detectors. The 24 

radial flow-cell required only 10 hours of post-PolyJet print processing time as 25 

compared to ca. 360 hours long post-PolyJet print processing time required for the 26 

spiral flow-cell. Using flow injection analysis, the PolyJet 3D printed radial flow-cell 27 

provided an increase in both the signal magnitude and duration, with an average 28 

increase in the peak height of 63% and 58%, peak area of 89% and 90%, and peak 29 

base width of 41% and 42%, as compared to a coiled-tubing spiral flow-cell and the 30 

PolyJet 3D printed spiral flow-cell, respectively. Computational fluid dynamic (CFD) 31 

simulations were applied to understand the origin of the higher CLD signal obtained 32 

with the radial flow-cell design, indicating higher spatial coverage near the inlet and 33 

lower linear velocities in the radial flow-cell. The developed PolyJet 3D printed radial 34 

flow-cell was applied in a new ion chromatography chemiluminescence based assay 35 

for the detection of H2O2 in urine and coffee extracts. 36 
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CLD: Chemiluminescence detection 43 

PMT: Photomultiplier tube 44 

CFD: Computational fluid dynamic 45 

IC-CLD: Ion chromatography coupled chemiluminescence detection 46 

FDM: Fused deposition modeling 47 

RANS: Reynolds-averaged Navier–Stokes (RANS)  48 

SST: Shear stress transport 49 

FOX: Ferrous oxidation-xylenol orange 50 

  51 
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2 INTRODUCTION 52 

Chemiluminescence detection (CLD) is a potential option for the sensitive 53 

determination of solutes which do not possess a strong chromophore or fluorophore, 54 

which has been used for various applications including clinical, agricultural, to 55 

industrial analysis [1-3]. CLD systems have the advantage of requiring relatively 56 

simple instrumentation and can offer extremely high sensitivity for certain solutes. A 57 

CLD system essentially consists of only two components, (1) a transparent reaction 58 

vessel or a flow-cell and (2) a photodetector. The design of CLD flow-cell defines the 59 

sensitivity and reproducibility of the detector, as it influences fluid mixing, band 60 

dispersion, the amount of emitted light transmitted to the detector, and 61 

consequentially the signal magnitude and duration [4]. A flow-cell design which 62 

provides these signal enhancements also enables detector miniaturisation by enabling 63 

the use of low-cost digital imaging detectors, as compared to expensive high 64 

sensitivity photomultiplier tubes. 65 

 66 

Usually, CLD flow-cells are produced by simply coiling polymeric or glass tubing in 67 

a plane [4-6] or by milling/etching channels into polymeric materials [7-10]. Coiled-68 

tubing based flow-cells have been widely used for CLD in flow injection analysis 69 

(FIA) manifolds [11-14]. However, these simple approaches have some 70 

disadvantages, including the rigid nature of most suitable tubing, making the 71 

formation of the flat spiral cell rather difficult and irreproducible [15]. Greater design 72 

flexibility and complexity can be achieved with the use of milling or etching 73 

techniques, with these techniques also providing greater fabrication reproducibility, 74 

and access to a wider range of materials. However, they have some notable 75 

limitations, including limited resolution of closely spaced channels, and inability to 76 



 5 

produce complex 3D channel geometries. Such techniques are also not able to 77 

produce sealed channels, and thus are rather laborious and time consuming, due to the 78 

multiple steps required for the production of the sealed device. 79 

 80 

However, these limitations can potentially be overcome with the use of 3D printing 81 

techniques, which can provide rapid and simple production of complex CLD flow-82 

cells in a variety of materials. With the continual development of higher resolution 3D 83 

printers allowing multi-material printing, these capabilities are expanding rapidly. In 84 

terms of the advantages over other fabrication methods, 3D printing offers (1) the 85 

ability to print complex three-dimensional architectures, (2) low cost and time 86 

efficient production, (3) minimum wastage of material, (4) a “fail fast and often”[16] 87 

approach to prototyping, customisation, and testing, and (5) fabrication of 88 

monolithically integrated systems. Accordingly, 3D printing is rapidly becoming a 89 

method of choice for both research and industrial fabrication of polymeric and metal 90 

based macro- and micro-fluidic devices [17-19]. Use of 3D printing in the production 91 

of CLD flow-cells has been recently investigated by Spilstead et al. [20]. However, in 92 

this preliminary work, due to the tortuous nature of the spiral flow-cell design 93 

investigated, the 3D printing process resulted in only partially cleared (of support 94 

material) internal channels [20]. This resulted in significant flow-cell staining, which 95 

was presumed to be due to the formation of Mn(IV) on the remaining wax support 96 

material in the channels. Accordingly, to obtain the support material free channels, 97 

they had to print incomplete channels, and later seal them with transparent films[20]. 98 

This obviously negated one of the core advantages of 3D printing and illustrated 99 

unsuitability of tortuous flow-cell designs in allowing 3D printing fabrication of 100 

analytical flow-cells. 101 
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 102 

Many varied CLD flow-cell designs have been reported to-date, and the following 103 

represents some of the key designs investigated/developed: (1) the most commonly 104 

used spirally coiled tubing based flow-cell by Rule et al. [6]; (2) the fountain flow-cell 105 

design by Scudder et al. [21], where fluid radially flows between two parallel plates 106 

without any channels; (3) the sandwich flow-cell by Pavón et al. [22], which is a 107 

membrane based flow-cell; (4) liquid core waveguide based luminescence detectors 108 

by Dasgupta et al. [23], which utilise fluoropolymer tubing; (5) the bundle flow-cell 109 

by Campíns-Falcó et al. [24], which is based on the random packing of a tube; (6) the 110 

vortex flow-cell by Ibán̅ez-García et al. [25], which consists of a micromixer based 111 

on a vortex structure; (7) the serpentine flow-cell by Terry et al. [10], which consists 112 

of reversing turns, and finally (8) the droplet flow-cell by Wen et al. [26], which is 113 

based on the formation of a small droplet in front of the photodetector. 114 

 115 

Many of the above mentioned flow-cell designs, including the spiral, serpentine, and 116 

bundle flow-cells, exhibit complex and tortuous geometries, which would present 117 

similar difficulties in terms of 3D printing based fabrication as those discussed above 118 

[20]. Whereas, simpler flow-cell designs, such as the fountain flow-cell has resulted 119 

in inferior CLD performance with a lower signal intensity and a poor signal 120 

reproducibility [10]. These issues suggest the need for a new CLD flow-cell design, 121 

which is less tortuous than the conventional flow-cells, enabling 3D printing, while 122 

still providing a reproducibly response, ideally of higher signal magnitude and 123 

duration to the above alternative designs. Thus herein, a new flow-cell has been 124 

designed, developed, and evaluated in comparison with the most commonly used 125 

spiral flow-cell design for CLD. The new flow-cell has been designed by diverging 126 
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multiple linear channels from a common centre port in a radial arrangement and hence 127 

named as a ‘radial’ flow-cell. This radial flow-cell has been produced using both 128 

‘PolyJet’ and fused deposition modeling (FDM) 3D printing techniques. It has been 129 

evaluated and compared quantitatively to a similarly proportioned spiral flow-cell 130 

design on the basis of (1) simplicity of fabrication with the 3D PolyJet printing and 131 

the FDM printing techniques and (2) CLD performance using the cobalt catalysed 132 

reaction of H2O2 with luminol as the model system. The flow behaviour in the radial 133 

flow-cell and spiral flow-cell designs have been simulated through computational 134 

fluid dynamic (CFD) calculations to understand the underlying mechanism for the 135 

observed differences in the CLD signals obtained. Finally, to investigate the practical 136 

application of the developed radial flow-cell, it was evaluated within an ion 137 

chromatographic based assay for the analysis of H2O2 in urine and coffee extract.  138 

 139 

3 MATERIALS AND METHODS 140 

 141 

3.1 Materials 142 

Luminol (Sigma-Aldrich, MO, USA), CoCl2 (Univar, IL, USA), Na3PO4 7H2O 143 

(Mallinckrodt, Surrey, UK), NaOH (BDH, PA, USA), H2O2 (Chem-Supply Pty Ltd, 144 

South Australia, Australia), 5-sulphosalicylic acid (Sigma-Aldrich, MO, USA), 145 

ferrous ammonium sulphate (FeSO4(NH4)2SO4.6H2O) (England, UK), H2SO4 (Merck, 146 

VIC, Australia), xylenol orange (Sigma-Aldrich, MO, USA), Sorbitol (BDH, PA, 147 

USA), 0.45 µM PTFE captiva syringe filters (Agilent, CA, USA). Deionised water 148 

purified through a Milli-Q water purification system (Millipore, MA, USA) with a 149 

final resistance of 18.2 MΩ was used for all preparations unless mentioned otherwise. 150 

 151 
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3.2 3D printing 152 

The flow-cells and the black boxes were designed with the Solidworks 3D modelling 153 

and CAD software 2014-2015 (Dassault Systѐmes SE, France). The PolyJet printed 154 

flow-cells were fabricated using an Eden 260VS PolyJet 3D printer (Stratasys, VIC, 155 

Australia) with VeroClear-RGD810 resin (Stratasys, VIC, Australia) as the build 156 

material and SUP707 (Stratasys, VIC, Australia) as the support material. Post-PolyJet 157 

printing, the support material was removed by soaking and intermittent sonication of 158 

the flow-cells in a 2% w/v NaOH solution. The FDM printed flow-cells and the black 159 

boxes were fabricated using a Felix 3.0 Dual Head FDM 3D printer (IJsselstein, 160 

Netherlands) using clear ABS and black PLA filament (Matter Hackers, CA, USA), 161 

respectively.  162 

 163 

3.3 UV-VIS spectroscopy 164 

UV-VIS spectroscopy was performed on the PolyJet printed chips using SP8001 UV-165 

VIS spectrophotometer (Metertech, Taipei, Taiwan). Rectangular chips were designed 166 

and printed to fit inside a standard quartz cuvette filled with Millipore water. The UV-167 

VIS spectroscopy was performed from 200 nm to 1000 nm and the transmittance was 168 

recorded while using Millipore water as the blank. 169 

 170 

3.4 Flow injection analysis based chemiluminescence setup 171 

A FIA setup for the CLD of H2O2 was established using an in-house built pneumatic 172 

assembly for pumping the sample carrier (water) and the reagent (luminol-Co(II)) 173 

streams, a six port injection valve (VICI Valco, TX, USA) with 2 𝜇L injection loop, a 174 

MINIPULS 3 peristaltic pump (Gilson, WI, USA) to fill the injection loop with the 175 

sample (H2O2), a T-piece to mix the reagent with the sample, 1/16” OD and 0.008” ID 176 
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PTFE tubing (IDEX Health & Science (Kinesis), Qld, Australia), and short tefzel nut 177 

1/16 black (IDEX Health & Science (Kinesis), Qld, Australia). Each flow-cell and a 178 

R960 Photomultiplier tube (PMT) (Hamamatsu (Stantron), NSW, Australia) were 179 

enclosed in a light tight dark box. The PMT signal was recorded with respect to time 180 

through a Powerchrome 280 system (eDAQ, NSW, Australia) by converting the 181 

produced current into voltage through an online resistor. The luminol-Co(II) reagent 182 

was prepared as described previously [27]. 183 

 184 

3.5 Computational fluid dynamic simulations 185 

Computational fluid dynamic simulations were performed using ANSYS 17.0 186 

software with CFX solver. The radial and spiral flow-cell designs were meshed 187 

similarly, resulting in the number of nodes as 4 million and 6 million, respectively. 188 

Reynolds-averaged Navier–Stokes (RANS) simulations were performed using the 189 

shear stress transport (SST) turbulence model with water as the fluid material. A no-190 

slip wall condition with a roughness of 20 µm was prescribed for the walls. The 191 

iterations were manually observed for the convergence of the turbulence kinetic 192 

energy, velocity, pressure, and shear stress user points. On successful completion of 193 

each run, the results were analysed as required with the CFX-Post. 194 

 195 

3.6 FOX assay 196 

A ferrous oxidation-xylenol orange (FOX) assay reagent was prepared following the 197 

recipe reported by Yuen et al.[28]. Briefly, 1 mL of ferrous ammonium sulphate 198 

solution was mixed with 100 mL of xylenol orange-sorbitol solution. The ferrous 199 

ammonium sulphate solution was prepared by dissolving 25 mM ferrous ammonium 200 

sulphate in 2.5 M H2SO4. The xylenol orange-sorbitol solution was prepared by 201 
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dissolving 125 µM of xylenol orange and 100 mM of sorbitol in water. The FOX 202 

reagent was freshly prepared just before each analysis. The FOX assay itself involved 203 

adding 100 µL of a sample to 1 mL of the FOX reagent into 2 mL amber coloured 204 

centrifuge vials (Eppendorf, Hamburg, Germany), which were incubated at room 205 

temperature for 20 min (Pierce Chemical Company, Rockford, USA). The absorbance 206 

of each sample at 560 nM was measured against a reference blank using the above-207 

mentioned UV-VIS spectrophotometer. 208 

 209 

3.7 Ion chromatography 210 

The chromatographic analysis was performed using Waters Alliance 2695 HPLC 211 

system (Waters, MA, USA), controlled with Empower Pro software using IonPac®, 212 

using the following columns: IonPac CG10 (column size: 50 x 4 mm ID, particle size: 213 

8.5 𝜇m), IonPac CG11 (column size: 50 x 2 mm ID, particle size: 7.5 𝜇m), and 214 

IonPac CS11 (column size: 250 x 2 mm ID, particle size: 7.5 𝜇m) (Thermo Fisher 215 

Scientific, MA, USA). The column temperature was maintained at 24 ℃ and the 216 

sample temperature was maintained at 4 ℃. An injection volume of 10 μL was used. 217 

Isocratic separation of H2O2 was performed using 100% water as the mobile phase at 218 

a flow rate of 800 μL min-1 and a 5 min post-run clean-up was performed with 100 219 

mM NaCl at a flow rate of 1 mL min-1. UV detection was performed with Waters 996 220 

PDA detector (Waters, MA, USA) at 210 nm. CLD was performed as described 221 

above. Both UV and CLD were performed during separate runs to prevent any 222 

degradation of H2O2 due to UV exposure. A pneumatic pressure of 200 kPa (~800 μL 223 

min-1) was used for the luminol-Co(II) reagent stream. 224 

 225 
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3.8 Urine analysis 226 

On spot midstream urine samples were collected from a non-fasting healthy 227 

individual male and were analysed within 30 mins (including pre-sample treatment). 228 

Urine samples were collected in an aluminium foil lined 20 mL glass vial, and were 229 

centrifuged and protein precipitated in 2 mL amber centrifuge vials. Centrifugation 230 

was performed in an Eppendorf 5424 centrifuge (Eppendorf, Hamburg, Germany). 231 

 232 

3.9 Coffee analysis 233 

Freshly grounded coffee beans were extracted on a Café Expresso II coffee machine 234 

(Sunbeam, NSW, Australia), using 19 g of coffee powder and made to a final volume 235 

of 220 mL. Coffee was brewed in drinking water following the same procedure as 236 

typically used to make coffee. Coffee samples were analysed immediately, without 237 

any further treatment.  238 

 239 

4 RESULTS AND DISCUSSION 240 

 241 

4.1 Flow-cell designs 242 

The radial flow-cell was developed by arranging 16 channels in a parallel radial 243 

arrangement as shown in Figure 1 (a). All channels were designed with a 700 μm ID 244 

and were connected to a common inlet at the centre and a common outlet galley of 245 

1800 μm ID at the circumference. The galley exited with a single outlet of 1500 μm 246 

ID. The galley and outlet dimensions were optimised empirically with the help of 247 

computational fluid dynamic (CFD) simulations and visual inspection, by pumping a 248 

food dye, to prevent any re-circulation from the galley into the channels. Each 249 

individual channel consisted of (1) a 3.63 mm long linear section and (2) a 1.62 mm 250 
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long curved section with a fillet radius of 1.5 mm near the inlet and a total flow-cell 251 

volume of 32 µL as shown in Figure 1 (a). The channel lengths were designed to 252 

completely occupy the PMT window, and the galley was kept out of the PMT 253 

window. A bottom layer of 1 mm thickness was included to provide robustness, 254 

allowing the use of flow-cells up to at least a pressure of 2 MPa. Both the inlet and the 255 

outlet were connected to a ¼ unified fine pitch thread (UNF) port to enable a unibody 256 

design and allow their easy assembly and disassembly within any conventional FIA 257 

manifold.  258 

 259 

A conventional coiled-tubing flow-cell was fabricated by spirally coiling a 1/16” OD 260 

and 0.02” ID PTFE tubing within a circular diameter of 10 mm and a total flow-cell 261 

volume of 13 µL. The coiled-tubing based flow-cell was glued to a black platform, 262 

which was trimmed to fit in a similar black box as used with the 3D printed flow-cells 263 

as described below. Additionally, a spiral flow-cell design with the similar outer 264 

diameter and the number of turns as of the coiled-tubing flow-cell was developed for 265 

3D printing, as shown in Figure 1 (b), to allow closer comparison with the radial 266 

flow-cell. The 3D printed spiral flow-cell was developed using an Archimedes spiral 267 

with an inner diameter of 1 mm, an outer diameter of 10 mm, a pitch of 1.20 mm, and 268 

a total flow-cell volume of 25 µL. The channel inner diameter, outer diameter, and the 269 

bottom layer thickness of the spiral flow-cell were kept as similar as possible to the 270 

radial flow-cell. The spiral was connected to an inlet at the centre and an outlet at the 271 

end. Both the inlet and the outlet were again connected to a ¼ UNF threaded port. 272 

 273 
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 274 

Figure 1. Chemiluminescence flow-cells: (a) render of the 3D printed radial flow-cell 275 

and (b) render of the 3D printed spiral flow-cell. 276 

 277 

4.2 3D printing 278 

Two complimentary 3D printing techniques, namely PolyJet printing and FDM were 279 

applied to the fabrication of radial and spiral flow-cells. The PolyJet printing 280 

technique utilises foreign support material and hence allows fabrication of complex 281 

structures, whereas, the FDM printing technique can be used without any support 282 

material, allowing easy fabrication of simple structures. The use of PolyJet printing 283 

for the production of a spiral flow-cell has been previously discussed by Spilstead et 284 

al. [20]. They highlighted the issue of incomplete removal of the wax support material 285 

from the flow channels as mentioned above. In the current work, this limitation was 286 

overcome with the use of a water-soluble support material, namely SUP707. Use of 287 

the SUP707 support material as opposed to the wax support material facilitated its 288 

complete removal from the tortuous flow channels. However, complete removal of 289 

the support material from the 3D printed spiral flow-cell required soaking and 290 

intermittent sonication in a 2% (w/v) NaOH solution for ca. 360 hours. This lengthy 291 

cleaning protocol enabled the direct formation of closed and completely clear flow-292 
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cell channels. Complete removal of the support material was confirmed by visual 293 

inspection, lack of channel staining, and a reproducible signal from successive 294 

injections of H2O2. 295 

 296 

As compared to the spiral design, the radial flow-cell was found to be free of any 297 

support material within 10 hours, applying the same post-processing protocol. The 298 

significant reduction in time required for removal of the support material from the 299 

radial flow-cell was facilitated by the linear configuration of the channels, the 300 

presence of wide galley providing additional solvent reserve in the flow-cell, the 301 

availability of two entry points for the solvent into each channel that are inlet and 302 

galley, and the parallel arrangement of the channels allowing simultaneous cleanup of 303 

multiple channels. These features allowed successful 3D fabrication of the radial 304 

flow-cell with flow channels of less than 500 µm ID, whereas a spiral flow channel of 305 

less than 700 µm ID required more than a month to fully remove the water soluble 306 

support material. This greatly reduced post-processing time enabled the entire process 307 

of fabrication and post-processing to be accomplished in under a day. Attempting the 308 

fabrication of the 700 μm ID spiral flow-cell with an FDM printer resulted in 309 

complete channel collapse and blockage, whereas FDM fabrication of the 700 μm ID 310 

radial flow-cell resulted in a successful print with open channels.  311 

 312 

4.3 PolyJet printed chemiluminescence detection flow-cells 313 

PolyJet printing was the only technique that allowed successful fabrication of both the 314 

radial and spiral flow-cells. Accordingly, the PolyJet printed flow-cells were used for 315 

the remainder of the study. The optical transmittance of PolyJet printed chips was 316 

studied to evaluate the suitability of PolyJet printed flow-cells for the CLD of H2O2 317 
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using luminol-Co(II) reagent. The chemiluminescence emission wavelengths from the 318 

H2O2 and luminol-Co(II) reaction range from 380 nm to 600 nm [29]. Accordingly, 319 

the transmittance of PolyJet printed chips was recorded for wavelengths ranging from 320 

200 nm to 1000 nm. As shown in Figure 2, 1 mm and 100 µm thick PolyJet printed 321 

chips resulted in 89% and 94% transmittance, respectively at 430 nm (highest 322 

emission wavelength of H2O2-luminol-Co(II) chemiluminescence reaction [29]). The 323 

transparency of these flow-cells can be further improved in future through various 324 

surface treatments such as polishing, polydimethylsiloxane coating, polystyrene 325 

coating, etc. [30]. PolyJet printed flow-cells were transparent in nature and lacked any 326 

reflective or opaque backing. Accordingly, black boxes were designed for each flow-327 

cell to (1) provide an opaque backing, (2) ensure a light tight environment around the 328 

flow-cell and the PMT, and (3) closely align the flow-cell and the PMT. The black 329 

box was designed and 3D printed in two parts (a top and a bottom half) with negative 330 

contours to that of the respective flow-cell, as shown in the Supporting information 331 

Figure S-1. Holders were included for the PMT and the screws. Both parts were 332 

sealed together through a 3D printed lego-type interlock between them. A tight seal 333 

was observed between the two halves of the black box and the black box, the flow 334 

cell, and the PMT. 335 

 336 

The PolyJet resin used in this work was an acrylate based polymer composed of 337 

complex mixture of monomers including exo-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl 338 

acrylate or acrylic acid isobornyl ester (CAS 5888-33-5, 20-30%); tricyclodecane 339 

dimethanol diacrylate (CAS 42594-17-2, 15-30%); 2-hydroxy-3-phenoxypropyl 340 

acrylate (CAS 16969-10-1), 4-(1-oxo-2propenyl)morpholine (CAS 5117-12-4); 341 

Bisphenol A containing acrylate oligomer treated with epichlorohydrin (5-15%), and 342 
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2,4,6-trimethylbenzoyldiphenylphosphine oxide as photoinitiator (0.1-2%) [31]. The 343 

polyacrylates should provide reasonable chemical resistance to most dilute acids, 344 

bases and oils. However, their use with organic solvents is not recommended as per 345 

the known incompatibilities of acrylates with organic solvents. Repetitive injections 346 

of 10 μM H2O2 at a rate of 150 injections per hour resulted in reproducible 347 

chemiluminescence signal with an RSD (n=13) of 1.01% and 0.91% with the use of 348 

the 3D printed radial flow-cell and the 3D printed spiral flow-cell, respectively as 349 

shown in Figure 3. This indicates the absence of any flow-cell staining or carryover 350 

effects, and an ability to perform high throughput CLD studies with the use of these 351 

3D printed flow-cells. In terms of stability, no visible signs of damage were observed 352 

to either the 3D printed spiral or 3D printed radial flow-cells throughout this entire 353 

study, which was performed over a period of more than one year, with more than 354 

1000 injections on each flow-cell. 355 

 356 

 357 

Figure 2. UV-VIS transmittance of the PolyJet 3D printed 1 mm and 0.1 mm thick 358 

chips. 359 

 360 
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 361 

Figure 3. Successive FIA injections of 10 µM H2O2 using the PolyJet 3D printed (a) 362 

radial flow-cell and (b) spiral flow-cell. 363 

 364 

4.4 Chemiluminescence system optimisation 365 

An FIA-chemiluminescence system was setup as shown in Figure 4 (a). Its various 366 

parameters were optimised to obtain the maximum reproducible signal intensity. 367 

Following our previous work [32], 50 mM Na3PO4 at pH 12 was used to prepare the 368 

luminol-Co(II) chemiluminescence reagent. Following the previous work of 369 

Greenway et al. [33] and Marle et al. [34], 10 μM CoCl2 solution was used to obtain 370 

the maximum reproducible signal intensity while avoiding any precipitation. The 371 

luminol concentration and the carrier/reagent flow rate ratio were optimised 372 

experimentally through iterative univariate analysis since their optimum values were 373 

mutually dependent. This provided an optimum luminol concentration of 0.29 mM as 374 

shown in Figure 4 (b) and an optimum pneumatic pressure ratio of 1.4 as shown in 375 

Figure 4 (c). Accordingly, a luminol-Co(II) solution with 0.29 mM luminol and 10 376 

μM CoCl2 solution in 50 mM Na3PO4 buffer with pH 12 was used as the 377 

chemiluminescence reagent. As shown in Figure 4 (d), the maximum reproducible 378 

signal intensity was observed at the highest total (carrier stream + reagent stream) 379 

flow rate. This is presumably due to (1) the higher resultant turbulence at the T-piece, 380 
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which facilitates better mixing of the sample and the reagent and (2) rapid transfer of 381 

the chemiluminescence products from the T-piece to the flow-cell. Accordingly, a 382 

pneumatic pressure of 160 kPa was used for the carrier stream. As per the optimised 383 

carrier/reagent pneumatic pressure ratio of 1.4, the reagent stream pneumatic pressure 384 

should be 114 kPa. However, the here used pneumatic assembly only allowed to 385 

reproducibly obtain pressures in the integer multiples of 10. Hence, pneumatic 386 

pressures of 110 kPa, 120 kPa, and 130 kPa were investigated for the reagent stream. 387 

No significant difference in the signal intensity was observed between these three 388 

reagent stream pneumatic pressures, however, a slightly better reproducibility was 389 

observed at 130 kPa. The total volumetric flow rate (carrier + reagent) was observed 390 

to be ca. 800 μL min-1. The initial optimisation studies were performed with the 3D 391 

printed spiral flow-cell and the final results were verified for all three types of flow-392 

cells. 393 

 394 
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Figure 4. Chemiluminescence FIA system: (a) schematic of the experimental FIA  395 

CLD setup (PP – peristaltic pump, FC – flow-cell), (b) observed chemiluminescence 396 

peaks at different luminol concentrations as indicated in mM for three successive 397 

injections, (c) observed chemiluminescence peaks at different carrier/reagent 398 

pneumatic pressure ratios as indicated for three successive injections, (d) observed 399 

chemiluminescence peaks at different carrier and reagent pneumatic pressures in kPa 400 

as indicated by the numeral preceding C and R for the carrier and the reagent streams, 401 

respectively for three successive injections. 402 

 403 

4.5 Chemiluminescence performance 404 

The 3D printed radial flow-cell was compared with both the conventional coiled-405 

tubing spiral flow-cell and the 3D printed spiral flow-cell with regard to analytical 406 

performance. All three flow-cells were compared using six different H2O2 standard 407 

concentrations, namely 100 nM, 200 nM, 400 nM, 800 nM, 1.6 μM, and 3.2 μM, the 408 

results from which are included in Figure 5 and Tables 1 and 2, and discussed below. 409 

 410 

CLD using the 3D printed radial flow-cell provided an increase in the peak height (as 411 

shown in Figure 5 (a)) and peak area (as shown in the Supporting information (Figure 412 

S-2)) for all six H2O2 concentrations, as compared to both the coiled-tubing spiral 413 

flow-cell and the 3D printed spiral flow-cell. Compared to the coiled-tubing spiral 414 

flow-cell, the 3D printed radial flow-cell resulted in an average increase in the peak 415 

height of 63.5% and an average increase in the peak area of 89.4% as shown in Table 416 

1. Compared to the 3D printed spiral flow-cell, the 3D printed radial flow-cell 417 

resulted in an average increase in the peak height of 58.5% and an average increase in 418 

the peak area of 89.5% as shown in Table 1. No significant differences in the peak 419 
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height or the peak area were observed between the coiled-tubing spiral flow-cell and 420 

the 3D printed spiral flow-cell. Excellent reproducibility was observed for all three 421 

flow-cells based upon three successive injections as shown in Table 1. A maximum 422 

RSD of 3.4%, 5.6%, and 3.0% was observed for the 3D printed radial flow-cell, the 423 

coiled-tubing spiral flow-cell, and the 3D printed spiral flow-cell, respectively, for the 424 

peak representing 100 nM  H2O2, again as shown in Table 1.  425 

 426 

Along with the peak height and peak area, the 3D printed radial flow-cell also resulted 427 

in an increase in the peak width for all six H2O2 concentrations as compared to both 428 

the other flow-cells, as shown in Figure 5 (b). The 3D printed radial flow-cell resulted 429 

in an average increase in the peak width of 41.3% and 42.0% as compared to the 430 

coiled-tubing spiral flow-cell, and the 3D printed spiral flow-cell, respectively as 431 

shown in Table 1. Again, no significant differences in the peak width were observed 432 

between the coiled-tubing spiral flow-cell and the 3D printed spiral flow-cell. An 433 

increase in the peak width was the result of an increase in the peak return and not the 434 

onset time, hence indicating an increase in the signal duration with the use of the 3D 435 

printed radial flow-cell as shown in Figure 5 (c). An onset time of 0.07 min (0.03 min 436 

from the injection to the start of the peak and 0.04 min from the start of the peak to 437 

the peak maxima) was observed for all three flow-cells at all six H2O2 concentrations. 438 

Representative chemiluminescence peaks for all three flow-cells at three different 439 

H2O2 concentrations, namely 100 nM, 800 nM, and 3.2 μM are shown in Figure 5 (d) 440 

for visual comparison. 441 

 442 

All three flow-cells resulted in linear calibration plots for the peak height v/s 443 

concentration in two distinct regions, namely 100 nM to 400 nM and 800 nM to 3.2 444 
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μM, each with an R2 > 0.99. As shown in Table 2, the 3D printed radial flow-cell 445 

resulted in a higher sensitivity as compared to both the other flow-cells in both the 446 

above-mentioned regions. 447 

 448 

 449 

Figure 5. Chemiluminescence peak characteristics for the 3D printed radial flow-cell 450 

(□), the coiled-tubing spiral flow-cell (∆), and the 3D printed spiral flow-cell (○): (a) 451 

peak heights at different H2O2 concentrations, the inset shows the magnified view of 452 

the peak height v/s concentration plot for the 100, 200, and 400 nM H2O2 453 

concentrations. (b) peak base widths at different H2O2 concentrations, (c) peak return 454 

times at different H2O2 concentrations, and (d) representative chemiluminescence 455 

peaks at 100 nM, 800 nM, and 3.2 µM as indicated for the 3D printed radial flow-cell 456 

(1), the coiled-tubing spiral flow-cell (2), and the 3D printed spiral flow-cell (3). 457 
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Note: the chemiluminescence peaks in the sub figure (d) are not perfectly aligned on 458 

the time axis due to their slightly different injection times.  459 

 460 

Table 1. Comparison of the peak characteristics obtained with the 3D printed radial 461 

flow-cell (3DP RFC), the coiled-tubing spiral flow-cell (SFC), and the 3D printed 462 

spiral flow-cell (3DP SFC) at six different H2O2 concentrations. 463 

 464 

H2O2 

(nM) 

Rel. % increase  

(peak height) 

using Radial Cell 

Rel. % increase  

(peak area) using 

Radial Cell 

Rel. % increase  

(peak width) using 

Radial Cell 

% RSD  

(peak height) 

Spiral 

(tube) 

Spiral 

(3D)  

Spiral 

(tube) 

Spiral 

(3D) 

Spiral 

(tube) 

Spiral 

(3D) 

3DP 

Radial 

Spiral 

(tube) 

Spiral 

(3D) 

100 58.1 84.7 20.7 56.6 31.4 46.0 3.4 5.6 3.0 

200 61.2 55.9 89.1 66.1 62.0 62.2 1.1 1.9 2.4 

400 51.0 54.8 77.2 106.1 28.1 44.6 0.79 2.5 0.7 

800 60.5 45.3 62.3 140.3 58.7 38.7 <0.01 2.1 2.0 

1600 50.0 50.0 80.7 27.1 34.0 29.3 <0.01 <0.01 <0.01 

3200 100.0 60.0 206.3 140.7 33.4 31.3 <0.01 <0.01 <0.01 

 465 

 466 

Table 2. Calibration results for the 3D printed radial flow-cell (3DP RFC), coiled-467 

tubing spiral flow-cell (SFC), and the 3D printed spiral flow-cell (3DP SFC). 468 

Parameter 

100-400 nM H2O2 800-3200 nM H2O2 

3DP RFC SFC 3DP SFC 3DP RFC SFC 3DP SFC 

Linear Slope 1.2 × 10-6 7.8 × 10-7 8.0 × 10-7 3.0 × 10-6 1.3 × 10-6 1.9 × 10-6 

Y-Intercept -6.9 × 10-6 -1.0 × 10-5 -1.7 × 10-5 -1.5 × 10-3 -7.9 × 10-14 -1.0 × 10-3 

R2 0.9996 0.9925 0.9999 0.9972 0.9999 0.9999 

 469 
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4.6 Computational fluid dynamic simulated flow behaviour 470 

Flow behaviour within the radial and spiral flow-cell designs were simulated and 471 

studied using computational fluid dynamic (CFD) calculations. Figures 6 (a) and 6 (b) 472 

demonstrates 100 simulated velocity streamlines in the radial flow-cell design and the 473 

spiral flow-cell design, respectively. As shown in Figure 6 (a), unidirectional velocity 474 

streamlines were observed in the radial flow-cell, originating from the inlet and 475 

terminating in the outlet. This indicates that the designed galley diameter of 1800 µm 476 

was found sufficient to prevent any recirculation from the galley into the channels. 477 

This was further validated through visual inspection by pumping food dye and by the 478 

absence of any split or odd chemiluminescence peaks resulting from the use of the 3D 479 

printed radial flow-cell. 480 

 481 

The simulated fluid flow at the experimental flow rate of 800 µLmin-1 in both the 482 

radial flow-cell and spiral flow-cell designs was studied to understand the underlying 483 

mechanism for the increased response and improved sensitivity of the 3D printed 484 

radial flow-cell as compared to the coiled-tubing spiral flow-cell and the 3D printed 485 

spiral flow-cell. The respective positions of 100 representative flow streams at 0.25 486 

simulated seconds in the radial flow-cell and spiral flow-cell designs are marked by 487 

the velocity colour coded balls in Figure 6 (a) and 6 (b), respectively. This indicates 488 

dispersion of flow streams over a higher area in the radial flow-cell design as 489 

compared to the spiral flow-cell design. Higher dispersion of the flow streams in the 490 

radial flow-cell design will enable higher spatial coverage by the generated 491 

chemiluminescence products in front of the PMT window. Higher spatial coverage in 492 

the radial flow-cell design especially near the inlet should contribute towards a more 493 

efficient transfer of the photons from the chemiluminescence reaction to the 494 
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photodetector, as the chemiluminescence intensity decays with time as per a first 495 

order rate equation [35]. Accordingly, this should contribute towards the observed 496 

relative increase in the peak area, peak height, and chemiluminescence sensitivity 497 

with the 3D printed radial flow-cell. Figures 6 (c) and 6 (d) demonstrate the velocity 498 

distributions in the radial flow-cell design and the spiral flow-cell design, 499 

respectively. This indicates that the radial flow-cell design results in ca. 10 times 500 

smaller linear velocities in the radial flow channels as compared to the spiral flow 501 

channel. Smaller linear velocities in the radial flow channels contribute towards the 502 

observed increase in the signal duration and a corresponding increase in the peak 503 

width [36]. 504 

 505 

A non-uniform flow velocity distribution was observed within the radial flow 506 

channels. Higher linear velocities were observed in the channels exiting near the 507 

outlet as compared to the channels exiting away from the outlet as shown in Figure 6 508 

(c). This is due to a differential pressure drop experienced across the galley as shown 509 

in the Supporting Information (Figure S-3). This non-uniform flow velocity 510 

distribution among the radial flow channels did not result in any observed problems 511 

such as irreproducibility or peak distortion. However, the differential pressure drop 512 

across the galley and consequentially the non-uniform flow velocity distributions 513 

among the radial flow channels can be minimised in future by further optimisation of 514 

the galley dimensions and the outlet position. The individual velocity profiles in each 515 

radial flow channel and in each spiral turn are shown in the Supporting Information 516 

(Figures S-4 and S-5, respectively). 517 
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 518 

Figure 6. Computational fluid dynamic (CFD) simulated velocity streams and velocity 519 

contour plots at an inlet flow rate of 800 µL min-1: (a) velocity streamlines in the 520 

radial flow-cell design and the representative flow at simulated 0.25 s is marked by 521 

velocity colour coded balls, (b) velocity streamlines in the spiral flow-cell design and 522 

the representative flow at simulated 0.25 s is marked by velocity colour coded balls, 523 

(c) velocity contour plot at mid plane of the radial flow-cell design, and (d) velocity 524 

contour plot at mid plane of the spiral flow-cell design.  525 

 526 
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4.7 Hydrogen peroxide in urine and coffee extracts 527 

An IC-CLD system was developed to provide a fast and automated determination of 528 

urinary and coffee extract H2O2. It was assembled by substituting the sample carrier 529 

line from the T-piece (as shown in Figure 4 (a)) with the outlet from the cation 530 

exchange column. The IC method was developed using a cation exchange column 531 

packed with a sulphonated cation-exchanger and a water only mobile phase for the 532 

separation of H2O2 from otherwise interfering sample matrix ions [37]. Three 533 

IonPac® cation exchange columns were studied, namely CG10, CG11, and CS11, 534 

each with different particle and column sizes as mentioned above, assessing their 535 

chromatographic selectivity towards H2O2. In terms of overall chromatographic 536 

retention and efficiency, the CG10 proved most acceptable and was accordingly used 537 

for H2O2 separation. The CLD was performed with the above-mentioned luminol-538 

Co(II) reagent using the new 3D printed radial flow-cell.  539 

 540 

Urinary H2O2 was first observed by Varma and Devamanoharan [38] in 1990, since 541 

then it has been studied by several researchers [39-41]. H2O2 has been believed to 542 

produce damaging reactive oxygen species in the human body, although it also acts as 543 

a signalling molecule to regulate cellular processes [39]. The amount of H2O2 544 

excreted in urine is linked to several activities [39], such as coffee drinking [42, 43], 545 

alcohol consumption [44], and exercise [45], and also several diseases [39], such as 546 

cancer [46], diabetes mellitus [47], respiratory distress syndrome [48], intestinal 547 

parasitic infection [49], Down’s syndrome [50], and total body oxidative stress [28]. 548 

An increase in urinary H2O2 post-coffee drinking is partially linked to direct diffusion 549 

of H2O2 from coffee into the oral cavity and the upper gastrointestinal tract [51].  550 

 551 
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Traditionally, urinary H2O2 is measured using either an oxygen selective electrode 552 

[52, 53] or the ferrous oxidation-xylenol orange (FOX) assay (and derivatives thereof) 553 

[28, 47, 50]. However, oxygen selective electrodes have been found less sensitive for 554 

urinary H2O2 [54] and suffer from frequent fouling. Additionally, the FOX assay 555 

requires a long reaction time of ca. 60 min [28] and manual operation. Accordingly, 556 

herein to demonstrate the practical application of the new flow cell and 557 

simultaneously provide a potentially beneficial new IC-CLD method for urinary H2O2 558 

determinations, an IC-CLD system was developed including the new 3D printed 559 

radial flow-cell, and applied to H2O2 in urine and coffee extracts. 560 

 561 

The developed IC-CLD system resulted in linear calibration plots from 1.25 µM to 5 562 

µM H2O2 (slope = 3.86 × 10-4, R2 = 0.9953) and from 20 µM to 100 µM H2O2 (slope 563 

= 1.78× 10-3, R2 = 0.9938). Representative chemiluminescence chromatograms 564 

obtained with eight H2O2 standards, namely 1.25 µM, 2.5 µM, 5 µM, 20 µM, 40 µM, 565 

60 µM, 80 µM, and 100 µM are shown in Figure 7. Peak height %RSDs for the above 566 

standards, based upon triplicate injections of each, were 9.19, 3.91, 5.80, 4.68, 2.63, 567 

4.38, 1.90, and 1.14, respectively.  568 

 569 

H2O2 peaks in the real samples were identified using the retention time of the H2O2 570 

standards, and by spiking the real samples with known concentrations of H2O2. To 571 

determine accuracy of the developed IC-CLD system, an unknown sample solution of 572 

H2O2 was analysed first using a conventional FOX assay, and secondly with the 573 

developed IC-CLD system. The FOX assay indicated the concentration of the 574 

unknown H2O2 sample as 57.8 ± 1.2 µM, using a linear calibration (R2 = 0.9846) plot 575 

from 20 µM to 80 µM H2O2 (n= 3). Using the IC-CLD system, the concentration of 576 
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the unknown H2O2 sample was found as 57.6 ± 2.1 µM, here using a linear calibration 577 

(R2 = 0.9974 ) plot from 20 µM to 80 µM H2O2 (n= 3).  Calibration curves for the 578 

comparison assays can be found in the supporting information (Figure S-6). 579 

 580 

 581 

Figure 7. Representative chemiluminescence chromatograms for H2O2 standards with 582 

the developed IC-CLD system: 1.25 µM (1), 2.5 µM (2), 5 µM (3), 20 µM (4), 40 µM 583 

(5), 60 µM (6), 80 µM (7), and 100 µM (8). 584 

 585 

Analysis of untreated urine samples using FIA resulted in a signal to noise ratio of 586 

less than 3, as shown in Figure 8 (a). This low signal to noise ratio was observed 587 

presumably due to significant matrix effects. Uric acid was identified as a significant 588 

interferent through interference studies. When urine samples were then directly 589 

passed through the CG10 column, to separate the H2O2 from the bulk of the 590 

unretained matrix, a split peak of H2O2 was observed, which was closely followed by 591 

unidentified negative and positive peaks, rendering the quantitative determination of 592 

urinary H2O2 impossible, as shown in Figure 8 (b).  Following this, urine samples 593 

were first centrifuged at 2500 rcf for 8 min, in an attempt to remove any cellular 594 

debris and heavy proteins prior to the chromatographic separation. The IC-CLD 595 

chromatogram of the supernatant from the centrifuged urine samples provided a 596 
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smaller number of chemiluminescence peaks, as shown in Figure 8 (c), although a 597 

pronounced shoulder in the H2O2 peak and a baseline shift were still observed (Figure 598 

8 (c)). Finally, to fully precipitate all urinary proteins, 2% w/v 5-sulfosalicylic acid 599 

was added to the supernatants of the centrifuged urine samples, and the solution was 600 

filtered through a 0.45 µm PTFE syringe filter. IC-CLD analysis of the resultant 601 

sample solutions recorded a single H2O2 peak and a stable baseline, as shown in 602 

Figure 8 (d). Urinary H2O2 was then determined in three separately processed urine 603 

samples (although all aliquoted from the same original sample). The urinary H2O2 in 604 

these samples was determined to be 2.5 ± 0.2 µM, using a linear calibration plot from 605 

1.25 µM to 5 µM (R2 = 0.9953). The measured urinary H2O2 concentration was found 606 

to be in agreement with that previously reported as being typical urinary H2O2 607 

concentrations, namely 2.7 ± 1.2 µM (n = 29) in fresh urine samples, as measured by 608 

a modified FOX assay [28]. As seen in the UV chromatogram in Figure 8 (d), 609 

retention and co-elution of the remaining urinary components was evident, although 610 

completely separated from the chemiluminescence peak of H2O2.  611 

 612 

The IC-CLD setup was then applied to the determination of the H2O2 concentration in 613 

coffee extracts. This assay did not require any prior sample preparation steps and the 614 

direct IC separation of freshly brewed coffee extracts resulted in a single H2O2 CLD 615 

peak, as shown in Figure 9. Once again the UV chromatogram shown in Figure 9 616 

indicates the presence of other co-eluting coffee components. The H2O2 concentration 617 

in three coffee extract samples was determined as being 19.6 ± 0.3 µM, using a linear 618 

calibration plot from 20 µM to 80 µM (R2 = 0.9974). 619 

 620 
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 621 

Figure 8. Effects of different sample treatment steps in the analysis of urinary H2O2: 622 

(a) chemiluminescence peaks obtained after direct injection of a fresh urine sample in 623 

the FIA CLD system for three successive injections, (b) chemiluminescence 624 

chromatogram obtained after direct injection of a fresh urine sample in the IC-CLD 625 

system, (c) chemiluminescence chromatogram obtained after injection of the 626 

supernatant from a centrifuged urine sample, and (d) chemiluminescence and UV 627 

recorded chromatograms obtained after injection of a 5-sulfosalicylic acid protein 628 

precipitated supernatant of a centrifuged urine sample. 629 
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 630 

Figure 9. Chemiluminescence and UV recorded chromatograms obtained after 631 

injection of a fresh coffee extract sample in the IC-CLD system. 632 

 633 

5 CONCLUSIONS 634 

A new radial flow-cell design has been developed to (1) offer a less tortuous 635 

alternative to the conventional chemiluminescence flow-cell designs and (2) provide a 636 

higher chemiluminescence signal in terms of both the magnitude and the duration, as 637 

compared to the most commonly used spiral flow-cell design. Use of the radial flow-638 

cell design enabled successful fabrication by 3D printing with closed channels for the 639 

first time. Owing to the less tortuous nature of the radial flow-cell, it only required 10 640 

hours of post-PolyJet print processing time as compared to ca. 360 hours required for 641 

the tortuous spiral flow-cell and also facilitated a successful FDM print process. The 642 

radial flow-cell design also provided higher spatial coverage near the onset of the 643 

chemiluminescence reaction as compared to the spiral flow-cell design. 644 

Consequentially, the radial flow-cell design resulted in ca. 60% increase in the peak 645 

height and ca. 90% increase in the peak area as compared to the most commonly used 646 

spiral flow-cell design and hence enabling higher sensitivity CLD. Smaller linear 647 

velocities were observed in the radial flow channels as compared to the spiral flow 648 
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channel due to the parallel arrangement of the channels in the former. This resulted in 649 

ca. 40% increase in the signal duration with the radial flow-cell design as compared to 650 

the spiral flow-cell design and hence facilitating digital imaging analysis. 651 

 652 

The 3D printed radial flow-cell was successfully applied within a novel IC-CLD 653 

assay for the determination of urinary and coffee extract H2O2.  654 

 655 
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[25] N.r. Ibáñez-Garcı́a, M. Puyol, C.M. Azevedo, C.S. Martı́nez-Cisneros, F. 734 
Villuendas, M. Gongora-Rubio, A.C. Seabra, J.n. Alonso, Vortex configuration flow 735 
cell based on low-temperature cofired ceramics as a compact 736 
chemiluminescence microsystem, Anal. Chem., 80 (2008) 5320-5324. 737 
[26] Y. Wen, H. Yuan, J. Mao, D. Xiao, M.M. Choi, Droplet detector for the 738 
continuous flow luminol–hydrogen peroxide chemiluminescence system, 739 
Analyst, 134 (2009) 354-360. 740 
[27] D. Price, P.J. Worsfold, R. Fauzi, C. Mantoura, Determination of hydrogen 741 
peroxide in sea water by flow-injection analysis with chemiluminescence 742 
detection, Anal. Chim. Acta, 298 (1994) 121-128. 743 
[28] J. Yuen, I. Benzie, Hydrogen peroxide in urine as a potential biomarker of 744 
whole body oxidative stress, Free Radical Res., 37 (2003) 1209-1213. 745 
[29] S.-X. Liang, L.-X. Zhao, B.-T. Zhang, J.-M. Lin, Experimental studies on the 746 
chemiluminescence reaction mechanism of carbonate/bicarbonate and 747 
hydrogen peroxide in the presence of cobalt (II), J. Phys. Chem. A, 112 (2008) 748 
618-623. 749 
[30] B.C. Gross, K.B. Anderson, J.E. Meisel, M.I. McNitt, D.M. Spence, Polymer 750 
coatings in 3D-printed fluidic device channels for improved cellular adherence 751 
prior to electrical lysis, Anal. Chem., 87 (2015) 6335-6341. 752 
[31] K.B. Anderson, S.Y. Lockwood, R.S. Martin, D.M. Spence, A 3D printed fluidic 753 
device that enables integrated features, Anal. Chem., 85 (2013) 5622-5626. 754 
[32] P. Mahbub, P. Zakaria, R. Guijt, M. Macka, G. Dicinoski, M. Breadmore, P.N. 755 
Nesterenko, Flow injection analysis of organic peroxide explosives using acid 756 
degradation and chemiluminescent detection of released hydrogen peroxide, 757 
Talanta, 143 (2015) 191-197. 758 
[33] G.M. Greenway, T. Leelasattarathkul, S. Liawruangrath, R.A. Wheatley, N. 759 
Youngvises, Ultrasound-enhanced flow injection chemiluminescence for 760 
determination of hydrogen peroxide, Analyst, 131 (2006) 501-508. 761 
[34] L. Marle, G.M. Greenway, Determination of hydrogen peroxide in rainwater 762 
in a miniaturised analytical system, Anal. Chim. Acta, 548 (2005) 20-25. 763 
[35] G. De Jong, N. Lammers, F. Spruit, U.A.T. Brinkman, R. Frei, Optimization of a 764 
peroxyoxalate chemiluminescence detection system for the liquid 765 



 35 

chromatographic determination of fluorescent compounds, Chromatographia, 18 766 
(1984) 129-133. 767 
[36] J.M. Terry, S. Mohr, P.R. Fielden, N.J. Goddard, N.W. Barnett, D.C. Olson, D.K. 768 
Wolcott, P.S. Francis, Chemiluminescence detection flow cells for flow injection 769 
analysis and high-performance liquid chromatography, Anal. Bioanal. Chem., 403 770 
(2012) 2353-2360. 771 
[37] T. Miyazawa, S. Lertsiri, K. Fujimoto, M. Oka, Luminol chemiluminescent 772 
determination of hydrogen peroxide at picomole levels using high-performance 773 
liquid chromatography with a cation-exchange resin gel column, J. Chromatogr. 774 
A, 667 (1994) 99-104. 775 
[38] S.D. Varma, P. Devamanoharan, Excretion of hydrogen peroxide in human 776 
urine, Free Radic. Res. Commun., 8 (1990) 73-78. 777 
[39] D.-H. Wang, K. Ogino, Y. Sato, N. Sakano, M. Kubo, K. Takemoto, C. Masatomi, 778 
Urinary Hydrogen Peroxide as Biomarker,  General Methods in Biomarker 779 
Research and their Applications2015, pp. 313-331. 780 
[40] N. Kuge, M. Kohzuki, T. Sato, Relation between natriuresis and urinary 781 
excretion of hydrogen peroxide, Free Radical Res., 30 (1999) 119-123. 782 
[41] S. Chatterjee, A. Chen, Functionalization of carbon buckypaper for the 783 
sensitive determination of hydrogen peroxide in human urine, Biosens. 784 
Bioelectron., 35 (2012) 302-307. 785 
[42] L.H. Long, B. Halliwell, Coffee drinking increases levels of urinary hydrogen 786 
peroxide detected in healthy human volunteers, Free Radical Res., 32 (2000) 787 
463-467. 788 
[43] K. Hiramoto, T. Kida, K. Kikugawa, Increased urinary hydrogen peroxide 789 
levels caused by coffee drinking, Biol. Pharm. Bull., 25 (2002) 1467-1471. 790 
[44] Y. Sato, K. Ogino, N. Sakano, D. Wang, J. Yoshida, Y. Akazawa, S. Kanbara, K. 791 
Inoue, M. Kubo, H. Takahashi, Evaluation of urinary hydrogen peroxide as an 792 
oxidative stress biomarker in a healthy Japanese population, Free Radical Res., 793 
47 (2013) 181-191. 794 
[45] E. Deskur, P. Dylewicz, Ł. Szczęśniak, T. Rychlewski, M. Wilk, H. Wysocki, 795 
Exercise-induced increase in hydrogen peroxide plasma levels is diminished by 796 
endurance training after myocardial infarction, Int. J. Cardiol., 67 (1998) 219-797 
224. 798 
[46] D. Banerjee, U. Madhusoodanan, S. Nayak, J. Jacob, Urinary hydrogen 799 
peroxide: a probable marker of oxidative stress in malignancy, Clin. Chim. Acta, 800 
334 (2003) 205-209. 801 
[47] D. Banerjee, J. Jacob, G. Kunjamma, U. Madhusoodanan, S. Ghosh, 802 
Measurement of urinary hydrogen peroxide by FOX-1 method in conjunction 803 
with catalase in diabetes mellitus—a sensitive and specific approach, Clin. Chim. 804 
Acta, 350 (2004) 233-236. 805 
[48] M. Mathru, M.W. Rooney, D.J. Dries, L.J. Hirsch, L. Barnes, M.J. Tobin, Urine 806 
hydrogen peroxide during adult respiratory distress syndrome in patients with 807 
and without sepsis, Chest, 105 (1994) 232-236. 808 
[49] S. Chandramathi, K. Suresh, Z. Anita, U. Kuppusamy, Elevated levels of 809 
urinary hydrogen peroxide, advanced oxidative protein product (AOPP) and 810 
malondialdehyde in humans infected with intestinal parasites, Parasitology, 136 811 
(2009) 359-363. 812 



 36 

[50] C. Campos, R. Guzmán, E. López-Fernández, Á. Casado, Evaluation of urinary 813 
biomarkers of oxidative/nitrosative stress in adolescents and adults with Down 814 
syndrome, Life Sci., 89 (2011) 655-661. 815 
[51] B. Halliwell, K. Zhao, M. Whiteman, The gastrointestinal tract: a major site of 816 
antioxidant action?, Free Radical Res., 33 (2000) 819-830. 817 
[52] L.H. Long, P.J. Evans, B. Halliwell, Hydrogen peroxide in human urine: 818 
implications for antioxidant defense and redox regulation, Biochem. Biophys. 819 
Res. Commun., 262 (1999) 605-609. 820 
[53] B. Halliwell, M.V. Clement, L.H. Long, Hydrogen peroxide in the human body, 821 
FEBS Lett., 486 (2000) 10-13. 822 
[54] B. Halliwell, J. Gutteridge, Oxidative stress,  Free radicals in biology and 823 
medicine, Oxford University Press, New York, 2007, pp. 297-299. 824 
 825 
  826 



 37 

Graphical Abstract 827 
 828 

 829 


