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Abstract  21 

An emerging body of evidence is starting to suggest that the hypertrophy of skeletal 22 

muscle fibers might be load specific. In other words, it may be that resistance training with 23 

high loads (i.e., ≥60% of 1 repetition maximum [RM]) emphasizes a greater growth of type II 24 

muscle fibers, while resistance training with low loads (i.e., <60% of 1RM) might primarily 25 

augment hypertrophy of type I muscle fibers. Type I and type II muscle fibers possess certain 26 

distinct characteristics, with type II muscle fibers having faster calcium kinetics, faster 27 

shortening velocities, and ability to generate more power than type I muscle fibers. 28 

Alternatively, compared to type II fibers, type I muscle fibers have a higher oxidative capacity 29 

and a higher fatigue threshold. Due to the lower fatigability of type I muscle fibers, it may be 30 

hypothesized that a greater time under load is necessary to stimulate an accentuated growth of 31 

these fibers. An increase in time under load can be achieved when training with lower loads 32 

(e.g., 30% of 1RM) and to momentary muscular failure. The present paper discusses the 33 

hypothesis that a greater hypertrophy of type I muscle fibers may be induced with low load 34 

resistance training.  35 

 36 

 37 

  38 
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Introduction 39 

Resistance training is a popular form of physical exercise in people across all age 40 

groups. It is commonly performed with a goal of achieving skeletal muscle hypertrophy. 41 

Current guidelines state that, within a structured resistance training session, loads that 42 

correspond to 70-85% of 1 repetition maximum (RM) are necessary for achieving skeletal 43 

muscle hypertrophy [1]. However, recent evidence suggests that, provided a set is performed 44 

to momentary muscular failure, skeletal muscle hypertrophy can be achieved across a broad 45 

range of loading zones [2].  46 

The findings mentioned above have been observed in studies that used different 47 

methods for assessing muscular hypertrophy, including ultrasound, magnetic resonance 48 

imaging, and computed tomography [2]. In contrast to these methods, muscular hypertrophy 49 

can also be assessed using muscle biopsy sampling. This approach allows for differentiation 50 

of various types of muscle fibers, most commonly identified as type I and type II muscle 51 

fibers (in human skeletal muscle further divided to type IIa and IIx muscle fibers); adding 52 

more information about the specificity of hypertrophy across the muscle fibers. It is often 53 

purported that type II muscle fibers have a greater hypertrophic potential with resistance 54 

training [3]. However, an emerging body of evidence suggests that the hypertrophy of muscle 55 

fibers may be load specific. In other words, it might be that training with higher loads (i.e., 56 

≥60% of 1RM) results in greater growth of type II muscle fibers, while training with lower 57 

loads (i.e., <60% of 1RM) might primarily augment hypertrophy in type I muscle fibers [4, 5]. 58 

The present paper discusses the hypothesis that greater hypertrophy of type I muscle fibers 59 

may be induced with low load resistance training.  60 

 61 

Physiological differences between type I and type II muscle fibers 62 



4 
 

It is important to note that type I and type II muscle fibers possess certain distinct 63 

features, with type II muscle fibers having faster calcium kinetics, faster shortening velocities, 64 

and ability to generate more power than type I muscle fibers [6]. Alternatively, compared to 65 

type II fibers, type I muscle fibers have a higher oxidative capacity and a higher fatigue 66 

threshold. Because methods for studying muscular hypertrophy primarily focused on heavier 67 

loading schemes, the data important for understanding the physiology of hypertrophy in type I 68 

muscle fibers are scarce and difficult to interpret.  69 

Changes in skeletal muscle growth are the result of changes in the balance between 70 

protein synthesis and protein degradation. Muscle fibers with high oxidative metabolism (i.e., 71 

type I muscle fibers) also have a substantial capacity for protein synthesis; one of the factors 72 

important for muscular hypertrophy [7]. In human skeletal muscle, protein synthesis rates and 73 

total ribonucleic acid (RNA) content correlate with the abundance of type I myosin heavy 74 

chain (MHC) mRNA and are inversely correlated with the expression of MHC II [7, 8]. 75 

Muscle fibers with higher oxidative capacity also show a high rate of amino acid uptake [9]. 76 

Moreover, oxidative fibers contain more myonuclei per volume cytoplasm, a greater 77 

percentage of myonuclei that belong to satellite cells and a higher rate of addition of new 78 

myonuclei through nuclear accretion. These are all important factors in the process of 79 

muscular hypertrophy [7, 10].  80 

The above discussed anabolic-related factors point to type I muscle fibers as having 81 

significant hypertrophic potential. Despite this modestly increased protein synthesis capacity, 82 

protein degradation mechanisms, such as autophagy, are known to be increased in the 83 

oxidative fibers [7]. This is supported by findings that cathepsins, important factors in 84 

lysosomal proteolysis that are usually abundant in tissues with high protein turnover, are 85 

present in higher concentrations in muscle fibers with a high oxidative capacity [11, 12]. Due 86 

to a greater oxidative capacity of type I muscle fibers, higher accumulation of reactive oxygen 87 
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species and metabolites are expected to occur, lowering the biological potential for 88 

hypertrophy due to activation of the pathways responsible for the protein degradation, acting 89 

as a quality control system [13, 14]. The high rate of protein turnover present in type I muscle 90 

fibers reflects the high adaptive potential of the tissue. In the context of hypertrophy, future 91 

research should focus on stimuli that upregulate the protein synthesis machinery without 92 

largely increasing protein degradation, which in turn would facilitate a net increase in protein 93 

aggregation. 94 

The body of knowledge on molecular pathways mediating skeletal muscle hypertrophy 95 

is considerable, and it is now known that the mechanistic target of rapamycin (mTOR) is the 96 

master kinase controlling the protein synthesis pathway [15]. Furthermore, protein 97 

degradation is known to be promoted by the energy sensor AMP-activated protein kinase 98 

(AMPK) [16]. Multiple proteins have been involved in the interaction between these 99 

pathways; however, the current knowledge is still insufficient to provide a clear answer to the 100 

intriguing question of fiber-type differences in the regulation of hypertrophic adaptability. 101 

Nonetheless, it can be hypothesized that a different stimulus might be needed to elicit a 102 

maximal hypertrophic response in different types of muscle fibers due to the nature of their 103 

machinery. Recent evidence seems to support this hypothesis, pointing towards preferential 104 

hypertrophy of type I muscle fibers when resistance training is carried out with low loads. The 105 

molecular pathways underlying this adaptation are still poorly understood, although they 106 

already captured the attention of some scientists [17]. If this hypothesis is confirmed, further 107 

investigation of molecular pathways regulating hypertrophy in type I muscle fibers following 108 

low load resistance training will provide a valuable piece of the physiological puzzle.  109 

 110 

Time under load 111 
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There is evidence that aerobic exercise, specifically cycling, leads to type I, but not 112 

type II muscle fiber hypertrophy, and that this effect is independent of age [18, 19]. These 113 

findings are specific to aerobic exercise; however, they do suggest that longer-duration 114 

activities with a prolonged loading time on the activated muscle, may predominantly result in 115 

hypertrophy of type I muscle fibers (i.e., muscle fibers with a lower fatigability). Therefore, in 116 

resistance training, it can be hypothesized that a greater time under load (TUL) is necessary to 117 

stimulate an accentuated growth of these fibers [20, 21]. In this regard, training with low 118 

loads will necessarily result in a greater TUL compared to high load training given that 119 

repetition duration is controlled between conditions. For example, a low load set of 20 RM 120 

performed with a 3-second repetition duration would result in a TUL of 60 seconds; a higher 121 

load set of 8 RM performed with the same repetition duration would last just 24 seconds. 122 

Conceivably, the longer TUL in the lower load condition would provide a superior growth 123 

stimulus to type I fibers by taxing their endurance capacity. Research by Lamas and 124 

colleagues [22] provides intriguing findings in this context. They compared two groups, of 125 

which one performed high load training (4-10 RM), while the other group performed a power-126 

type training routine consisting of loads in the 30-60% of 1RM range, performed for 6-8 127 

repetitions. Both groups were instructed to perform each repetition at maximum speed 128 

through both the concentric and eccentric phases. Following the 8-week training period, the 129 

high load group experienced an increase in the cross-sectional area of type I, type IIa and type 130 

IIx muscle fibers by 15%, 18%, and 41%, respectively. In contrast, the low load, power 131 

training group, increased the cross-sectional area of type IIa and type IIx muscle fibers by 132 

15% and 19%, respectively. However, type I muscle fibers in this group experienced atrophy 133 

following the training intervention and decreased in size by 5%. By observing the training 134 

protocol, it is evident that TUL in the power group was around 10-15 seconds per set, which 135 

may be inadequate to induce sufficient muscular fatigue, and thus hypertrophy of type I 136 
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muscle fibers. This would, at least in part, explain the reasons for the lack of growth of type I 137 

muscle fibers in the power-type training group.  138 

Vinogradova and colleagues [4] also compared the effects of high and low load 139 

resistance training; however, in contrast to Lamas et al. [22], they used a protocol in which the 140 

low load group performed sets with loads corresponding to 50% of 1RM without relaxation 141 

(i.e., with continuous maintenance of muscle tension), whereby the total duration of sets was 142 

50–60 seconds. The high load group used a load corresponding to 80-85% of 1RM. The 143 

researchers reported that a greater growth of type I muscle fibers occurred in the low load 144 

group while a greater growth of type II muscle fibers occurred in the high load group. Using a 145 

similar protocol, Netreba and colleagues [5] observed the same results in 14 untrained men, 146 

which further supports the notion that TUL may be an important variable for inducing a 147 

greater growth of type I muscle fibers.  148 

Despite the suggested benefits of using low loads regarding hypertrophy of type I 149 

muscle fibers, it is possible that, when the load is too low, it may be difficult to maximize 150 

peripheral fatigue with resistance training [23-26]. This effect was shown in a study by 151 

Mackey and colleagues [27]. The researchers employed a protocol in which the low load 152 

group trained with 15% of 1RM for ten sets of 36 repetitions. Albeit TUL was high, the 153 

protocol was insufficient to induce significant hypertrophic effects in type I and type II 154 

muscle fibers. If greater TUL is the primary factor in inducing greater hypertrophic effects in 155 

type I muscle fibers when using lower loads, the group mentioned above should have 156 

experienced robust growth of these fibers following the protocol. One confounding variable to 157 

these results is the fact that sets in the training routine were stopped well short of volitional 158 

failure. It seems that training to momentary muscular failure is needed for the activation of the 159 

entire motor unit pool and thus, for maximizing growth across fiber types [28]. Therefore, it 160 

may be hypothesized that an interplay between external load, training to momentary muscular 161 
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failure, and greater TUL might determine the extent of the hypertrophic effects of type I 162 

muscle fibers. Surprisingly, in the same study [27], a high load protocol that consisted of 10 163 

sets of 8 repetitions at 70% of 1RM was also insufficient to result in any evident hypertrophy 164 

of either fiber type. The possible reasons for the absence of hypertrophic effects in both 165 

groups remain unclear, especially since the study involved resistance training-naïve 166 

individuals. It is well documented that such individuals can experience robust gains in muscle 167 

fiber size following similar loading programs [29], which might call into question the 168 

robustness of the findings reported by Mackey and colleagues [27].  169 

Metabolic stress has been suggested to play an important role in muscular hypertrophy 170 

[30]. Of relevance are also the findings that show that high-intensity training (i.e., 30 seconds 171 

maximal isokinetic contractions) induces higher metabolic stress in type II versus type I 172 

muscle fibers [31]. Therefore, such training schemes may stimulate anabolic signaling to a 173 

greater extent in type II muscle fibers, and thus, result in greater type II muscle fiber 174 

hypertrophy. In contrast, according to the size principle, low load resistance exercise 175 

performed to momentary muscular failure firstly recruits the lower-threshold motor units, and 176 

as these motor units become fatigued, the higher-threshold motor units are sequentially 177 

recruited; therefore, at the end of the training set, the metabolic stress across the muscle fiber 178 

types may be comparable. This also can be the case in low load exercise with partial blood 179 

flow restriction, which has been shown to exert an acute preferential stress of type I fibers 180 

[32]. Studies that investigated the effect of isometric contraction (in essence, an exercise with 181 

partial blood flow restriction) found a greater concentration of lactate in type I muscle fibers 182 

compared to type II muscle fibers [33, 34]. Therefore, it can be hypothesized that when low 183 

load resistance training is performed with a high TUL (and to momentary muscular failure) 184 

elevated anabolic signaling in type I muscle fibers might be stimulated, and thus, result in the 185 

greater growth of these fibers.  186 
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Conclusions 187 

In conclusion, a greater TUL might play a role in inducing greater hypertrophic effects 188 

in type I muscle fibers. Despite emerging research supporting this hypothesis, evidence to 189 

date remains equivocal, and thus future studies should seek to provide clarity on the topic. If 190 

TUL is indeed an important factor in inducing greater hypertrophic effects in type I muscle 191 

fibers, individuals interested in maximizing muscular growth across the muscle fibers should 192 

consider including both high load and low load resistance training schemes in their training 193 

routines.  194 

 195 
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