Concrete Operators
Open Access
Research Article
Sever Silvestru Dragomir*

Trace inequalities of Shisha-Mond type for operators in Hilbert spaces

DOI 10.1515/conop-2017-0004
Received March 25, 2016; accepted March 7, 2017.
Abstract: Some trace inequalities of Shisha-Mond type for operators in Hilbert spaces are provided. Applications in connection to Grüss inequality and for convex functions of selfadjoint operators are also given.

Keywords: Trace class operators, Hilbert-Schmidt operators, Schwarz inequality, Grüss inequality
MSC: 47A63, 47A99

1 Introduction

In 1967, Shisha and Mond [55, p. 301] proved the following reverse of Cauchy-Bunyakovsky-Schwarz inequality:
Theorem 1.1. Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{b}}=\left(b_{1}, \ldots, b_{n}\right)$ be two positive n-tuples with

$$
\begin{equation*}
0<m \leq \frac{a_{k}}{b_{k}} \leq M<\infty \text { for each } k \in\{1, \ldots, n\} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
0 \leq\left(\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}\right)^{1 / 2}-\sum_{k=1}^{n} a_{k} b_{k} \leq \frac{(M-m)^{2}}{4(M+m)} \sum_{k=1}^{n} b_{k}^{2} \tag{2}
\end{equation*}
$$

The equality holds in (2) if and only if there exists a subsequence $\left(k_{1}, \ldots, k_{p}\right)$ of $\{1, \ldots, n\}$ such that

$$
\sum_{m=1}^{p} b_{k_{m}}^{2}=\frac{M+3 m}{4(M+m)} \sum_{k=1}^{n} b_{k}^{2}
$$

$\frac{a_{k_{m}}}{b_{k_{m}}}=M$ for every $m=1, \ldots, p$ and $\frac{a_{k}}{b_{k}}=m$ for every k distinct from all k_{m}.
Recall some other classical reverses of Cauchy-Bunyakovsky-Schwarz inequality when bounds for each n-tuple are available.

Let $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{b}}=\left(b_{1}, \ldots, b_{n}\right)$ be two positive n-tuples with

$$
\begin{equation*}
0<m_{1} \leq a_{i} \leq M_{1}<\infty \text { and } 0<m_{2} \leq b_{i} \leq M_{2}<\infty ; \tag{3}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$, and some constants $m_{1}, m_{2}, M_{1}, M_{2}$.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for positive sequences of real numbers are well known:

[^0]a) Pólya-Szegö's inequality [51]:
$$
\frac{\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}}{\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}
$$
b) Shisha-Mond's inequality [55]:
$$
\frac{\sum_{k=1}^{n} a_{k}^{2}}{\sum_{k=1}^{n} a_{k} b_{k}}-\frac{\sum_{k=1}^{n} a_{k} b_{k}}{\sum_{k=1}^{n} b_{k}^{2}} \leq\left[\left(\frac{M_{1}}{m_{2}}\right)^{\frac{1}{2}}-\left(\frac{m_{1}}{M_{2}}\right)^{\frac{1}{2}}\right]^{2}
$$
c) Ozeki's inequality [48]:
$$
\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq \frac{n^{2}}{3}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$
d) Diaz-Metcalf's inequality [17]:
$$
\sum_{k=1}^{n} b_{k}^{2}+\frac{m_{2} M_{2}}{m_{1} M_{1}} \sum_{k=1}^{n} a_{k}^{2} \leq\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \sum_{k=1}^{n} a_{k} b_{k}
$$

If $\overline{\mathbf{w}}=\left(w_{1}, \ldots, w_{n}\right)$ is a positive sequence, then the following weighted inequalities also hold:
e) Cassels' inequality [58]. If the positive real sequences $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{b}}=\left(b_{1}, \ldots, b_{n}\right)$ satisfy the condition (1), then

$$
\frac{\left(\sum_{k=1}^{n} w_{k} a_{k}^{2}\right)\left(\sum_{k=1}^{n} w_{k} b_{k}^{2}\right)}{\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}} \leq \frac{(M+m)^{2}}{4 m M}
$$

f) Greub-Reinboldt's inequality [38]. We have

$$
\left(\sum_{k=1}^{n} w_{k} a_{k}^{2}\right)\left(\sum_{k=1}^{n} w_{k} b_{k}^{2}\right) \leq \frac{\left(M_{1} M_{2}+m_{1} m_{2}\right)^{2}}{4 m_{1} m_{2} M_{1} M_{2}}\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}
$$

provided $\overline{\mathbf{a}}=\left(a_{1}, \ldots, a_{n}\right)$ and $\overline{\mathbf{b}}=\left(b_{1}, \ldots, b_{n}\right)$ satisfy the condition (3).
g) Generalized Diaz-Metcalf's inequality [17], see also [46, p. 123]. If $u, v \in[0,1]$ and $v \leq u, u+v=1$ and (1) holds, then one has the inequality

$$
u \sum_{k=1}^{n} w_{k} b_{k}^{2}+v M m \sum_{k=1}^{n} w_{k} a_{k}^{2} \leq(v m+u M) \sum_{k=1}^{n} w_{k} a_{k} b_{k}
$$

h) Klamkin-McLenaghan's inequality [40]. If $\overline{\mathbf{a}}, \overline{\mathbf{b}}$ satisfy (1), then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} w_{i} a_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} w_{i} a_{i} b_{i}\right)^{2} \leq\left(M^{\frac{1}{2}}-m^{\frac{1}{2}}\right)^{2} \sum_{i=1}^{n} w_{i} a_{i} b_{i} \sum_{i=1}^{n} w_{i} a_{i}^{2} \tag{4}
\end{equation*}
$$

For other recent results providing discrete reverse inequalities, see the monograph online [19].
The following reverse of Schwarz's inequality in inner product spaces holds [20].
Theorem 1.2 (Dragomir, 2003, [20]). Let $A, a \in \mathbb{C}$ and $x, y \in H$, where H is a complex inner product space with the inner product $\langle\cdot, \cdot\rangle$. If

$$
\begin{equation*}
\operatorname{Re}\langle A y-x, x-a y\rangle \geq 0 \tag{5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left\|x-\frac{a+A}{2} \cdot y\right\| \leq \frac{1}{2}|A-a|\|y\|, \tag{6}
\end{equation*}
$$

holds, then we have the inequality

$$
\begin{equation*}
0 \leq\|x\|^{2}\|y\|^{2}-|\langle x, y\rangle|^{2} \leq \frac{1}{4}|A-a|^{2}\|y\|^{4} \tag{7}
\end{equation*}
$$

The constant $\frac{1}{4}$ is sharp in (7).
In 1935, G. Grüss [39] proved the following integral inequality which gives an approximation of the integral mean of the product in terms of the product of the integrals means as follows:

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x\right| \leq \frac{1}{4}(\Phi-\phi)(\Gamma-\gamma) \tag{8}
\end{equation*}
$$

where $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$ and satisfy the condition

$$
\begin{equation*}
\phi \leq f(x) \leq \Phi, \gamma \leq g(x) \leq \Gamma \tag{9}
\end{equation*}
$$

for each $x \in[a, b]$, where $\phi, \Phi, \gamma, \Gamma$ are given real constants.
Moreover, the constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.
In [22], in order to generalize the Grüss integral inequality in abstract structures the author has proved the following inequality in inner product spaces.

Theorem 1.3 (Dragomir, 1999, [22]). Let $(H,\langle\cdot, \cdot\rangle)$ be an inner product space over $\mathbb{K}(\mathbb{K}=\mathbb{R}, \mathbb{C})$ and $e \in H$, $\|e\|=1$. If $\varphi, \gamma, \Phi, \Gamma$ are real or complex numbers and x, y are vectors in H such that the conditions

$$
\begin{equation*}
\operatorname{Re}\langle\Phi e-x, x-\varphi e\rangle \geq 0 \text { and } \operatorname{Re}\langle\Gamma e-y, y-\gamma e\rangle \geq 0 \tag{10}
\end{equation*}
$$

hold, then we have the inequality

$$
\begin{equation*}
|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle| \leq \frac{1}{4}|\Phi-\varphi||\Gamma-\gamma| . \tag{11}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in the sense that it can not be replaced by a smaller constant.
For other results of this type, see the recent monograph [25] and the references therein.
For other Grüss type results for integral and sums see the papers [1]-[3], [8]-[10], [11]-[13], [21]-[28], [35], [49], [62] and the references therein.

In order to state some reverses of Schwarz and Grüss type inequalities for trace operators on complex Hilbert spaces we need some preparations as follows.

2 Some facts on trace of operators

Let $(H,\langle\cdot, \cdot\rangle)$ be a complex Hilbert space and $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$
\begin{equation*}
\sum_{i \in I}\left\|A e_{i}\right\|^{2}<\infty \tag{12}
\end{equation*}
$$

It is well know that, if $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{j}\right\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then

$$
\begin{equation*}
\sum_{i \in I}\left\|A e_{i}\right\|^{2}=\sum_{j \in I}\left\|A f_{j}\right\|^{2}=\sum_{j \in I}\left\|A^{*} f_{j}\right\|^{2} \tag{13}
\end{equation*}
$$

showing that the definition (12) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^{*} is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}(H)$ the set of Hilbert-Schmidt operators in $\mathcal{B}(H)$. For $A \in \mathcal{B}_{2}(H)$ we define

$$
\begin{equation*}
\|A\|_{2}:=\left(\sum_{i \in I}\left\|A e_{i}\right\|^{2}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

for $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. This definition does not depend on the choice of the orthonormal basis.
Using the triangle inequality in $l^{2}(I)$, one checks that $\mathcal{B}_{2}(H)$ is a vector space and that $\|\cdot\|_{2}$ is a norm on $\mathcal{B}_{2}(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A|:=\left(A^{*} A\right)^{1 / 2}$.
Because $\||A| x\|=\|A x\|$ for all $x \in H, A$ is Hilbert-Schmidt iff $|A|$ is Hilbert-Schmidt and $\|A\|_{2}=\||A|\|_{2}$. From (13) we have that if $A \in \mathcal{B}_{2}(H)$, then $A^{*} \in \mathcal{B}_{2}(H)$ and $\|A\|_{2}=\left\|A^{*}\right\|_{2}$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:
Theorem 2.1. We have
(i) $\left(\mathcal{B}_{2}(H),\|\cdot\|_{2}\right)$ is a Hilbert space with inner product

$$
\begin{equation*}
\langle A, B\rangle_{2}:=\sum_{i \in I}\left\langle A e_{i}, B e_{i}\right\rangle=\sum_{i \in I}\left\langle B^{*} A e_{i}, e_{i}\right\rangle \tag{15}
\end{equation*}
$$

and the definition does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$;
(ii) We have the inequalities

$$
\begin{equation*}
\|A\| \leq\|A\|_{2} \tag{16}
\end{equation*}
$$

for any $A \in \mathcal{B}_{2}(H)$ and

$$
\begin{equation*}
\|A T\|_{2},\|T A\|_{2} \leq\|T\|\|A\|_{2} \tag{17}
\end{equation*}
$$

for any $A \in \mathcal{B}_{2}(H)$ and $T \in \mathcal{B}(H)$;
(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$
\mathcal{B}(H) \mathcal{B}_{2}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{2}(H)
$$

(iv) $\mathcal{B}_{\text {fin }}(H)$, the space of operators of finite rank, is a dense subspace of $\mathcal{B}_{2}(H)$;
(v) $\mathcal{B}_{2}(H) \subseteq \mathcal{K}(H)$, where $\mathcal{K}(H)$ denotes the algebra of compact operators on H.

If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is trace class if

$$
\begin{equation*}
\|A\|_{1}:=\sum_{i \in I}\langle | A\left|e_{i}, e_{i}\right\rangle<\infty \tag{18}
\end{equation*}
$$

The definition of $\|A\|_{1}$ does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$. We denote by $\mathcal{B}_{1}(H)$ the set of trace class operators in $\mathcal{B}(H)$.

The following proposition holds:
Proposition 2.2. If $A \in \mathcal{B}(H)$, then the following are equivalent:
(i) $A \in \mathcal{B}_{1}(H)$;
(ii) $|A|^{1 / 2} \in \mathcal{B}_{2}(H)$;
(ii) $A($ or $|A|)$ is the product of two elements of $\mathcal{B}_{2}(H)$.

The following properties are also well known:

Theorem 2.3. With the above notations:
(i) We have

$$
\begin{equation*}
\|A\|_{1}=\left\|A^{*}\right\|_{1} \text { and }\|A\|_{2} \leq\|A\|_{1} \tag{19}
\end{equation*}
$$

for any $A \in \mathcal{B}_{1}(H)$;
(ii) $\mathcal{B}_{1}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$
\mathcal{B}(H) \mathcal{B}_{1}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{1}(H)
$$

(iii) We have

$$
\mathcal{B}_{2}(H) \mathcal{B}_{2}(H)=\mathcal{B}_{1}(H)
$$

(iv) We have

$$
\|A\|_{1}=\sup \left\{\langle A, B\rangle_{2} \mid B \in \mathcal{B}_{2}(H),\|B\| \leq 1\right\}
$$

(v) $\left(\mathcal{B}_{1}(H),\|\cdot\|_{1}\right)$ is a Banach space.
(iv) We have the following isometric isomorphisms

$$
\mathcal{B}_{1}(H) \cong K(H)^{*} \text { and } \mathcal{B}_{1}(H)^{*} \cong \mathcal{B}(H)
$$

where $K(H)^{*}$ is the dual space of $K(H)$ and $\mathcal{B}_{1}(H)^{*}$ is the dual space of $\mathcal{B}_{1}(H)$.
We define the trace of a trace class operator $A \in \mathcal{B}_{1}(H)$ to be

$$
\begin{equation*}
\operatorname{tr}(A):=\sum_{i \in I}\left\langle A e_{i}, e_{i}\right\rangle \tag{20}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (20) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
Theorem 2.4. We have
(i) If $A \in \mathcal{B}_{1}(H)$ then $A^{*} \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}\left(A^{*}\right)=\overline{\operatorname{tr}(A)} \tag{21}
\end{equation*}
$$

(ii) If $A \in \mathcal{B}_{1}(H)$ and $T \in \mathcal{B}(H)$, then $A T, T A \in \mathcal{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}(A T)=\operatorname{tr}(T A) \text { and }|\operatorname{tr}(A T)| \leq\|A\|_{1}\|T\| \tag{22}
\end{equation*}
$$

(iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_{1}(H)$ with $\|\operatorname{tr}\|=1$;
(iv) If $A, B \in \mathcal{B}_{2}(H)$ then $A B, B A \in \mathcal{B}_{1}(H)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(v) $\mathcal{B}_{f \text { in }}(H)$ is a dense subspace of $\mathcal{B}_{1}(H)$.

Utilising the trace notation we obviously have that

$$
\langle A, B\rangle_{2}=\operatorname{tr}\left(B^{*} A\right)=\operatorname{tr}\left(A B^{*}\right) \text { and }\|A\|_{2}^{2}=\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(|A|^{2}\right)
$$

for any $A, B \in \mathcal{B}_{2}(H)$.
The following Hölder's type inequality has been obtained by Ruskai in [52]

$$
\begin{equation*}
|\operatorname{tr}(A B)| \leq \operatorname{tr}(|A B|) \leq\left[\operatorname{tr}\left(|A|^{1 / \alpha}\right)\right]^{\alpha}\left[\operatorname{tr}\left(|B|^{1 /(1-\alpha)}\right)\right]^{1-\alpha} \tag{23}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $A, B \in \mathcal{B}(H)$ with $|A|^{1 / \alpha},|B|^{1 /(1-\alpha)} \in \mathcal{B}_{1}(H)$.
In particular, for $\alpha=\frac{1}{2}$ we get the Schwarz inequality

$$
\begin{equation*}
|\operatorname{tr}(A B)| \leq \operatorname{tr}(|A B|) \leq\left[\operatorname{tr}\left(|A|^{2}\right)\right]^{1 / 2}\left[\operatorname{tr}\left(|B|^{2}\right)\right]^{1 / 2} \tag{24}
\end{equation*}
$$

with $A, B \in \mathcal{B}_{2}(H)$.
For the theory of trace functionals and their applications the reader is referred to [56].
For some classical trace inequalities see [14], [16], [47] and [61], which are continuations of the work of Bellman [5]. For related works the reader can refer to [4], [6], [14], [36], [41], [42], [44], [53] and [57].

We denote by

$$
\mathcal{B}_{1}^{+}(H):=\left\{P: P \in \mathcal{B}_{1}(H), P \text { and is selfadjoint and } P \geq 0\right\}
$$

We obtained recently the following result [33]:

Theorem 2.5. For any $A, C \in \mathcal{B}(H)$ and $P \in \mathcal{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{25}\\
& \leq \inf _{\lambda \in \mathbb{C}}\left\|A-\lambda \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leq \inf _{\lambda \in \mathbb{C}}\left\|A-\lambda \cdot 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2},
\end{align*}
$$

where $\|\cdot\|$ is the operator norm.
We also have [33]:
Corollary 2.6. Let $\alpha, \beta \in \mathbb{C}$ and $A \in B(H)$ such that

$$
\left\|A-\frac{\alpha+\beta}{2} \cdot 1_{H}\right\| \leq \frac{1}{2}|\beta-\alpha| .
$$

For any $C \in \mathcal{B}(H)$ and $P \in \mathcal{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{26}\\
& \leq \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leq \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2} .
\end{align*}
$$

In particular, if $C \in \mathcal{B}(H)$ is such that

$$
\left\|C-\frac{\alpha+\beta}{2} \cdot 1_{H}\right\| \leq \frac{1}{2}|\beta-\alpha|,
$$

then

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2} \tag{27}\\
& \leq \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leq \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2} \leq \frac{1}{4}|\beta-\alpha|^{2} .
\end{align*}
$$

Also

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right| \tag{28}\\
& \leq \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leq \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2} \leq \frac{1}{4}|\beta-\alpha|^{2} .
\end{align*}
$$

For other related results see [33].

3 Shisha-Mond type trace inequalities

For two given operators $T, U \in B(H)$ and two given scalars $\alpha, \beta \in \mathbb{C}$ consider the transform

$$
\mathcal{C}_{\alpha, \beta}(T, U)=\left(T^{*}-\bar{\alpha} U^{*}\right)(\beta U-T)
$$

This transform generalizes the transform

$$
\mathcal{C}_{\alpha, \beta}(T):=\left(T^{*}-\bar{\alpha} 1_{H}\right)\left(\beta 1_{H}-T\right)=\mathcal{C}_{\alpha, \beta}\left(T, 1_{H}\right),
$$

where 1_{H} is the identity operator, which has been introduced in [31] in order to provide some generalizations of the well known Kantorovich inequality for operators in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$ is called accretive if $\operatorname{Re}\langle T y, y\rangle \geq 0$ for any $y \in H$.

Utilizing the following identity

$$
\begin{align*}
\operatorname{Re}\left\langle\mathcal{C}_{\alpha, \beta}(T, U) x, x\right\rangle & =\operatorname{Re}\left\langle\mathcal{C}_{\beta, \alpha}(T, U) x, x\right\rangle \tag{29}\\
& =\frac{1}{4}|\beta-\alpha|^{2}\|U x\|^{2}-\left\|T x-\frac{\alpha+\beta}{2} \cdot U x\right\|^{2} \\
& \left.\left.=\left.\frac{1}{4}|\beta-\alpha|^{2}\langle | U\right|^{2} x, x\right\rangle-\langle | T-\left.\frac{\alpha+\beta}{2} \cdot U\right|^{2} x, x\right\rangle
\end{align*}
$$

that holds for any scalars α, β and any vector $x \in H$, we can give a simple characterization result that is useful in the following:

Lemma 3.1. For $\alpha, \beta \in \mathbb{C}$ and $T, U \in B(H)$ the following statements are equivalent:
(i) The transform $\mathcal{C}_{\alpha, \beta}(T, U)\left(\right.$ or, equivalently, $\left.\mathcal{C}_{\beta, \alpha}(T, U)\right)$ is accretive;
(ii) We have the norm inequality

$$
\begin{equation*}
\left\|T x-\frac{\alpha+\beta}{2} \cdot U x\right\| \leq \frac{1}{2}|\beta-\alpha|\|U x\| \tag{30}
\end{equation*}
$$

for any $x \in H$;
(iii) We have the following inequality in the operator order

$$
\left|T-\frac{\alpha+\beta}{2} \cdot U\right|^{2} \leq \frac{1}{4}|\beta-\alpha|^{2}|U|^{2} .
$$

As a consequence of the above lemma we can state:
Corollary 3.2. Let $\alpha, \beta \in \mathbb{C}$ and $T, U \in B(H)$. If $\mathcal{C}_{\alpha, \beta}(T, U)$ is accretive, then

$$
\begin{equation*}
\left\|T-\frac{\alpha+\beta}{2} \cdot U\right\| \leq \frac{1}{2}|\beta-\alpha|\|U\| \tag{31}
\end{equation*}
$$

Remark 3.3. In order to give examples of linear operators $T, U \in B(H)$ and numbers $\alpha, \beta \in \mathbb{C}$ such that the transform $\mathcal{C}_{\alpha, \beta}(T, U)$ is accretive, it suffices to select two bounded linear operator S and V and the complex numbers $z, w(w \neq 0)$ with the property that $\|S x-z V x\| \leq|w|\|V x\|$ for any $x \in H$, and, by choosing $T=S$, $U=V, \alpha=\frac{1}{2}(z+w)$ and $\beta=\frac{1}{2}(z-w)$ we observe that T and U satisfy (30), i.e., $\mathcal{C}_{\alpha, \beta}(T, U)$ is accretive.

The following result is useful in the sequel:
Lemma 3.4. Let, either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B \in \mathcal{B}(H)$ and $\gamma, \Gamma \in \mathbb{C}$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\operatorname{tr}\left[P\left(A^{*}-\bar{\gamma} B^{*}\right)(\Gamma B-A)\right]\right) \geq 0 \tag{32}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{tr}\left(P\left|A-\frac{\gamma+\Gamma}{2} B\right|^{2}\right) \leq \frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) . \tag{33}
\end{equation*}
$$

To simplify the writing, we the say that (A, B) satisfies the $P-(\gamma, \Gamma)$-trace property.
Proof. Doing the calculation, we have the equality

$$
\begin{equation*}
\frac{1}{4}|\Gamma-\gamma|^{2} P|B|^{2}-P\left|A-\frac{\gamma+\Gamma}{2} B\right|^{2}=P\left[-|A|^{2}+\frac{\overline{\gamma+\Gamma}}{2} B^{*} A+\frac{\gamma+\Gamma}{2} A^{*} B-\operatorname{Re}(\Gamma \bar{\gamma})|B|^{2}\right] \tag{34}
\end{equation*}
$$

for any bounded operators A, B, P and the complex numbers $\gamma, \Gamma \in \mathbb{C}$.
Taking the trace in (34) we get after some simple manipulation

$$
\begin{align*}
& \frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right)-\operatorname{tr}\left(P\left|A-\frac{\gamma+\Gamma}{2} B\right|^{2}\right) \tag{35}\\
& =-\operatorname{tr}\left(P|A|^{2}\right)-\operatorname{Re}(\Gamma \bar{\gamma}) \operatorname{tr}\left(P|B|^{2}\right) \\
& +\operatorname{Re}\left[\bar{\gamma} \operatorname{tr}\left(P B^{*} A\right)\right]+\operatorname{Re}\left[\Gamma \overline{\operatorname{tr}\left(P B^{*} A\right)}\right]
\end{align*}
$$

Since

$$
\operatorname{Re}\left(\operatorname{tr}\left[P\left(A^{*}-\bar{\gamma} B^{*}\right)(\Gamma B-A)\right]\right)=\operatorname{Re}\left[\Gamma \overline{\operatorname{tr}\left(P B^{*} A\right)}+\bar{\gamma} \operatorname{tr}\left(P B^{*} A\right)\right]-\operatorname{tr}\left(P|B|^{2}\right) \operatorname{Re}(\bar{\gamma} \Gamma)-\operatorname{tr}\left(P|A|^{2}\right)
$$

then we get

$$
\begin{equation*}
\frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right)-\operatorname{tr}\left(P\left|A-\frac{\gamma+\Gamma}{2} B\right|^{2}\right)=\operatorname{Re}\left(\operatorname{tr}\left[P\left(A^{*}-\bar{\gamma} B^{*}\right)(\Gamma B-A)\right]\right) \tag{36}
\end{equation*}
$$

which proves the desired equivalence.
Corollary 3.5. Let, either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B \in \mathcal{B}(H)$ and $\gamma, \Gamma \in \mathbb{C}$. If the transform $\mathcal{C}_{\gamma, \Gamma}(A, B)$ is accretive, then (A, B) satisfies the $P-(\gamma, \Gamma)$-trace property.

We have the following result:
Theorem 3.6. Let, either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B \in \mathcal{B}(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma+\gamma \neq 0$.
(i) If (A, B) satisfies the $P-(\gamma, \Gamma)$-trace property, then we have

$$
\begin{align*}
\sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)} & \leq \frac{\operatorname{Re}(\gamma+\Gamma) \operatorname{Re} \operatorname{tr}\left(P B^{*} A\right)+\operatorname{Im}(\gamma+\Gamma) \operatorname{Im} \operatorname{tr}\left(P B^{*} A\right)}{|\Gamma+\gamma|} \tag{37}\\
& +\frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|B|^{2}\right) \\
& \leq\left|\operatorname{tr}\left(P B^{*} A\right)\right|+\frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|B|^{2}\right) .
\end{align*}
$$

(ii) If the transform $\mathcal{C}_{\gamma, \Gamma}(A, B)$ is accretive, then the inequality (37) also holds.

Proof. (i) If (A, B) satisfies the $P-(\gamma, \Gamma)$-trace property, then

$$
\operatorname{tr}\left(P\left|A-\frac{\gamma+\Gamma}{2} B\right|^{2}\right) \leq \frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right)
$$

that is equivalent to

$$
\operatorname{tr}\left(P|A|^{2}\right)-\operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \operatorname{tr}\left(P B^{*} A\right)\right]+\frac{1}{4}|\Gamma+\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) \leq \frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right)
$$

which implies that

$$
\begin{equation*}
\operatorname{tr}\left(P|A|^{2}\right)+\frac{1}{4}|\Gamma+\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) \leq \operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \operatorname{tr}\left(P B^{*} A\right)\right]+\frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) . \tag{38}
\end{equation*}
$$

Making use of the elementary inequality

$$
2 \sqrt{p q} \leq p+q, p, q \geq 0
$$

we also have

$$
\begin{equation*}
|\Gamma+\gamma|\left[\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)\right]^{1 / 2} \leq \operatorname{tr}\left(P|A|^{2}\right)+\frac{1}{4}|\Gamma+\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) \tag{39}
\end{equation*}
$$

Utilising (38) and (39) we get

$$
\begin{equation*}
|\Gamma+\gamma|\left[\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)\right]^{1 / 2} \leq \operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \operatorname{tr}\left(P B^{*} A\right)\right]+\frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}\left(P|B|^{2}\right) \tag{40}
\end{equation*}
$$

Dividing by $|\Gamma+\gamma|>0$ and observing that

$$
\operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \operatorname{tr}\left(P B^{*} A\right)\right]=\operatorname{Re}(\gamma+\Gamma) \operatorname{Re} \operatorname{tr}\left(P B^{*} A\right)+\operatorname{Im}(\gamma+\Gamma) \operatorname{Im} \operatorname{tr}\left(P B^{*} A\right)
$$

we get the first inequality in (37).
The second inequality in (37) is obvious by Schwarz inequality

$$
(a b+c d)^{2} \leq\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right), a, b, c, d \in \mathbb{R}
$$

The (ii) is obvious from (i).
Remark 3.7. We observe that the inequality between the first and last term in (37) is equivalent to

$$
\begin{equation*}
0 \leq \sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)}-\left|\operatorname{tr}\left(P B^{*} A\right)\right| \leq \frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|B|^{2}\right) \tag{41}
\end{equation*}
$$

Corollary 3.8. Let, either $P \in \mathcal{B}_{+}(H), A \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A \in \mathcal{B}(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\gamma+\Gamma \neq 0$.
(i) If A satisfies the $P-(\gamma, \Gamma)$-trace property, namely

$$
\begin{equation*}
\operatorname{Re}\left(\operatorname{tr}\left[P\left(A^{*}-\bar{\gamma} 1_{H}\right)\left(\Gamma 1_{H}-A\right)\right]\right) \geq 0 \tag{42}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\operatorname{tr}\left(P\left|A-\frac{\gamma+\Gamma}{2} 1_{H}\right|^{2}\right) \leq \frac{1}{4}|\Gamma-\gamma|^{2} \operatorname{tr}(P) \tag{43}
\end{equation*}
$$

then we have

$$
\begin{align*}
\sqrt{\frac{\operatorname{tr}\left(P|A|^{2}\right)}{\operatorname{tr}(P)}} & \leq \frac{\operatorname{Re}(\gamma+\Gamma) \frac{\operatorname{Retr}(P A)}{\operatorname{tr}(P)}+\operatorname{Im}(\gamma+\Gamma) \frac{\operatorname{Im} \operatorname{tr}(P A)}{\operatorname{tr}(P)}}{|\Gamma+\gamma|}+\frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \tag{44}\\
& \leq\left|\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right|+\frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}
\end{align*}
$$

(ii) If the transform $\mathcal{C}_{\gamma, \Gamma}(A)$ is accretive, then the inequality (37) also holds.
(iii) We have

$$
\begin{equation*}
0 \leq \sqrt{\frac{\operatorname{tr}\left(P|A|^{2}\right)}{\operatorname{tr}(P)}}-\left|\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right| \leq \frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \tag{45}
\end{equation*}
$$

Remark 3.9. The case of selfadjoint operators is as follows.
Let A, B be selfadjoint operators and either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B \in \mathcal{B}(H)$ and $m, M \in \mathbb{R}$ with $m+M \neq 0$.
(i) If (A, B) satisfies the $P-(m, M)$-trace property, then we have

$$
\begin{align*}
\sqrt{\operatorname{tr}\left(P A^{2}\right) \operatorname{tr}\left(P B^{2}\right)} & \leq \operatorname{Re} \operatorname{tr}(P B A)+\frac{(M-m)^{2}}{4|M+m|} \operatorname{tr}\left(P B^{2}\right) \tag{46}\\
& \leq|\operatorname{tr}(P B A)|+\frac{(M-m)^{2}}{4|M+m|} \operatorname{tr}\left(P B^{2}\right)
\end{align*}
$$

and

$$
0 \leq \sqrt{\operatorname{tr}\left(P A^{2}\right) \operatorname{tr}\left(P B^{2}\right)}-\operatorname{Re} \operatorname{tr}(P B A) \leq \frac{(M-m)^{2}}{4|M+m|} \operatorname{tr}\left(P B^{2}\right)
$$

(ii) If the transform $\mathcal{C}_{m, M}(A, B)$ is accretive, then the inequality (46) also holds.
(iii) If $(A-m B)(M B-A) \geq 0$, then (46) is valid.

We observe that the inequality (46) in the case when $M>m>0$ is the operator trace inequality version of Shisha-Mond inequality (1) from Introduction.

Corollary 3.10. Let A, B be selfadjoint operators and either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A$, $B \in \mathcal{B}(H)$ and $m, M \in \mathbb{R}$ with $m+M \neq 0$.
(i) If (A, B) satisfies the $P-(m, M)$-trace property, then we have

$$
\begin{equation*}
\left(\sqrt{\operatorname{tr}\left(P A^{2}\right)}+\sqrt{\operatorname{tr}\left(P B^{2}\right)}\right)^{2}-\operatorname{tr}\left(P(A+B)^{2}\right) \leq \frac{(M-m)^{2}}{4|M+m|} \operatorname{tr}\left(P B^{2}\right) \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\operatorname{tr}\left(P A^{2}\right)}+\sqrt{\operatorname{tr}\left(P B^{2}\right)}-\sqrt{\operatorname{tr}\left(P(A+B)^{2}\right)} \leq \frac{\sqrt{2}}{2} \frac{M-m}{\sqrt{|M+m|}} \sqrt{\operatorname{tr}\left(P B^{2}\right)} \tag{48}
\end{equation*}
$$

Proof. Observe that

$$
\begin{aligned}
& \left(\sqrt{\operatorname{tr}\left(P A^{2}\right)}+\sqrt{\operatorname{tr}\left(P B^{2}\right)}\right)^{2}-\operatorname{tr}\left(P(A+B)^{2}\right) \\
& =2\left(\sqrt{\operatorname{tr}\left(P A^{2}\right) \operatorname{tr}\left(P B^{2}\right)}-\operatorname{Re} \operatorname{tr}(P B A)\right)
\end{aligned}
$$

Utilising (46) we deduce (47).
The inequality (48) follows from (47).

4 Trace inequalities of Grüss type

Let P be a selfadjoint operator with $P \geq 0$. The functional $\langle\cdot, \cdot\rangle_{2, P}$ defined by

$$
\langle A, B\rangle_{2, P}:=\operatorname{tr}\left(P B^{*} A\right)=\operatorname{tr}\left(A P B^{*}\right)=\operatorname{tr}\left(B^{*} A P\right)
$$

is a nonnegative Hermitian form on $\mathcal{B}_{2}(H)$, i.e. $\langle\cdot, \cdot\rangle_{2, P}$ satisfies the properties:
(h) $\langle A, A\rangle_{2, P} \geq 0$ for any $A \in \mathcal{B}_{2}(H)$;
(hh) $\langle\cdot, \cdot\rangle_{2, P}$ is linear in the first variable;
$(h h h)\langle B, A\rangle_{2, P}=\overline{\langle A, B\rangle_{2, P}}$ for any $A, B \in \mathcal{B}_{2}(H)$.
Using the properties of the trace we also have the following representations

$$
\|A\|_{2, P}^{2}:=\operatorname{tr}\left(P|A|^{2}\right)=\operatorname{tr}\left(A P A^{*}\right)=\operatorname{tr}\left(|A|^{2} P\right)
$$

and

$$
\langle A, B\rangle_{2, P}=\operatorname{tr}\left(A P B^{*}\right)=\operatorname{tr}\left(B^{*} A P\right)
$$

for any $A, B \in \mathcal{B}_{2}(H)$.
The same definitions can be considered if $P \in \mathcal{B}_{1}^{+}(H)$ and $A, B \in \mathcal{B}(H)$.
We have the following Grüss type inequality:
Theorem 4.1. Let, either $P \in \mathcal{B}_{+}(H), A, B, C \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B, C \in \mathcal{B}(H)$ with $P|A|^{2}$, $P|B|^{2}, P|C|^{2} \neq 0$ and $\lambda, \Gamma, \delta, \Delta \in \mathbb{C}$ with $\gamma+\Gamma \neq 0, \delta+\Delta \neq 0$. If (A, C) has the trace $P-(\lambda, \Gamma)$-property and (B, C) has the trace $P-(\delta, \Delta)$-property, then

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P B^{*} A\right)}{\operatorname{tr}\left(P|C|^{2}\right)}-\frac{\operatorname{tr}\left(P C^{*} A\right)}{\operatorname{tr}\left(P|C|^{2}\right)} \frac{\operatorname{tr}\left(P B^{*} C\right)}{\operatorname{tr}\left(P|C|^{2}\right)}\right|^{2} \tag{49}\\
& \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \sqrt{\frac{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)}{\left[\operatorname{tr}\left(P|C|^{2}\right)\right]^{2}}}
\end{align*}
$$

Proof. We prove in the case that $P \in \mathcal{B}_{+}(H)$ and $A, B, C \in \mathcal{B}_{2}(H)$.
Making use of the Schwarz inequality for the nonnegative hermitian form $\langle\cdot, \cdot\rangle_{2, P}$ we have

$$
\left|\langle A, B\rangle_{2, P}\right|^{2} \leq\langle A, A\rangle_{2, P}\langle B, B\rangle_{2, P}
$$

for any $A, B \in \mathcal{B}_{2}(H)$.
Let $C \in \mathcal{B}_{2}(H), C \neq 0$. Define the mapping $[\cdot, \cdot]_{2, P, C}: \mathcal{B}_{2}(H) \times \mathcal{B}_{2}(H) \rightarrow \mathbb{C}$ by

$$
[A, B]_{2, P, C}:=\langle A, B\rangle_{2, P}\|C\|_{2, P}^{2}-\langle A, C\rangle_{2, P}\langle C, B\rangle_{2, P}
$$

Observe that $[\cdot, \cdot]_{2, P, C}$ is a nonnegative Hermitian form on $\mathcal{B}_{2}(H)$ and by Schwarz inequality we also have

$$
\begin{aligned}
& \left|\langle A, B\rangle_{2, P}\|C\|_{2, P}^{2}-\langle A, C\rangle_{2, P}\langle C, B\rangle_{2, P}\right|^{2} \\
& \leq\left[\|A\|_{2, P}^{2}\|C\|_{2, P}^{2}-\left|\langle A, C\rangle_{2, P}\right|^{2}\right]\left[\|B\|_{2, P}^{2}\|C\|_{2, P}^{2}-\left|\langle B, C\rangle_{2, P}\right|^{2}\right]
\end{aligned}
$$

for any $A, B \in \mathcal{B}_{2}(H)$, namely

$$
\begin{align*}
& \left|\operatorname{tr}\left(P B^{*} A\right) \operatorname{tr}\left(P|C|^{2}\right)-\operatorname{tr}\left(P C^{*} A\right) \operatorname{tr}\left(P B^{*} C\right)\right|^{2} \tag{50}\\
& \leq\left[\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P C^{*} A\right)\right|^{2}\right] \\
& \times\left[\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P B^{*} C\right)\right|^{2}\right]
\end{align*}
$$

where for the last term we used the equality $\left|\langle B, C\rangle_{2, P}\right|^{2}=\left|\langle C, B\rangle_{2, P}\right|^{2}$.
Since (A, C) has the trace $P-(\lambda, \Gamma)$-property and (B, C) has the trace $P-(\delta, \Delta)$-property, then by (41) we have

$$
0 \leq \sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}-\left|\operatorname{tr}\left(P C^{*} A\right)\right| \leq \frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|C|^{2}\right)
$$

and

$$
0 \leq \sqrt{\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}-\left|\operatorname{tr}\left(P C^{*} B\right)\right| \leq \frac{1}{4} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \operatorname{tr}\left(P|C|^{2}\right)
$$

which imply

$$
\begin{align*}
0 & \leq \operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P C^{*} A\right)\right|^{2} \tag{51}\\
& \leq \frac{1}{4} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|C|^{2}\right)\left(\sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}+\left|\operatorname{tr}\left(P C^{*} A\right)\right|\right)
\end{align*}
$$

$$
\leq \frac{1}{2} \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}
$$

and

$$
\begin{align*}
0 & \leq \operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P B^{*} C\right)\right|^{2} \tag{52}\\
& \leq \frac{1}{4} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \operatorname{tr}\left(P|C|^{2}\right)\left(\sqrt{\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}+\left|\operatorname{tr}\left(P C^{*} B\right)\right|\right) \\
& \leq \frac{1}{2} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}
\end{align*}
$$

If we multiply the inequalities (51) and (52) we get

$$
\begin{align*}
& {\left[\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P C^{*} A\right)\right|^{2}\right]} \tag{53}\\
& \times\left[\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)-\left|\operatorname{tr}\left(P B^{*} C\right)\right|^{2}\right] \\
& \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)} \\
& \times \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)} .
\end{align*}
$$

If we use (50) and (53) we get

$$
\begin{align*}
& \left|\operatorname{tr}\left(P B^{*} A\right) \operatorname{tr}\left(P|C|^{2}\right)-\operatorname{tr}\left(P C^{*} A\right) \operatorname{tr}\left(P B^{*} C\right)\right|^{2} \tag{54}\\
& \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)} \\
& \times \operatorname{tr}\left(P|C|^{2}\right) \sqrt{\operatorname{tr}\left(P|B|^{2}\right) \operatorname{tr}\left(P|C|^{2}\right)}
\end{align*}
$$

Since $P|C|^{2} \neq 0$ then by (54) we get the desired result (49).
Corollary 4.2. Let, either $P \in \mathcal{B}_{+}(H), A, B \in \mathcal{B}_{2}$ or $P \in \mathcal{B}_{1}^{+}(H), A, B \in \mathcal{B}(H)$ with $P|A|^{2}, P|B|^{2} \neq 0$ and $\lambda, \Gamma, \delta, \Delta \in \mathbb{C}$ with $\gamma+\Gamma \neq 0, \delta+\Delta \neq 0$. If A has the trace $P-(\lambda, \Gamma)$-property and B has the trace $P-(\delta, \Delta)$-property, then

$$
\begin{equation*}
\left|\frac{\operatorname{tr}\left(P B^{*} A\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}\left(P B^{*}\right)}{\operatorname{tr}(P)}\right|^{2} \leq \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \frac{|\Delta-\delta|^{2}}{|\Delta+\delta|} \sqrt{\frac{\operatorname{tr}\left(P|A|^{2}\right) \operatorname{tr}\left(P|B|^{2}\right)}{[\operatorname{tr}(P)]^{2}}} \tag{55}
\end{equation*}
$$

The case of selfadjoint operators is useful for applications.
Remark 4.3. Assume that A, B, C are selfadjoint operators. If, either $P \in \mathcal{B}_{+}(H), A, B, C \in \mathcal{B}_{2}(H)$ or $P \in \mathcal{B}_{1}^{+}(H), A, B, C \in \mathcal{B}(H)$ with $P A^{2}, P B^{2}, P C^{2} \neq 0$ and $m, M, n, N \in \mathbb{R}$ with $m+M, n+N \neq 0$. If (A, C) has the trace $P-(m, M)$-property and (B, C) has the trace $P-(n, N)$-property, then

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(P B A)}{\operatorname{tr}\left(P C^{2}\right)}-\frac{\operatorname{tr}(P C A)}{\operatorname{tr}\left(P C^{2}\right)} \frac{\operatorname{tr}(P B C)}{\operatorname{tr}\left(P C^{2}\right)}\right|^{2} \leq \frac{1}{4} \cdot \frac{(M-m)^{2}}{|M+m|} \frac{(N-n)^{2}}{|N+n|} \sqrt{\frac{\operatorname{tr}\left(P A^{2}\right) \operatorname{tr}\left(P B^{2}\right)}{\left[\operatorname{tr}\left(P C^{2}\right)\right]^{2}}} \tag{56}
\end{equation*}
$$

If A has the trace $P-(k, K)$-property and B has the trace $P-(l, L)$-property, then

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(P B A)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P B)}{\operatorname{tr}(P)}\right|^{2} \leq \frac{1}{4} \cdot \frac{(K-k)^{2}}{|K+k|} \frac{(L-l)^{2}}{|L+l|} \sqrt{\frac{\operatorname{tr}\left(P A^{2}\right) \operatorname{tr}\left(P B^{2}\right)}{[\operatorname{tr}(P)]^{2}}} \tag{57}
\end{equation*}
$$

where $k+K, l+L \neq 0$.

5 Applications for convex functions

In the paper [34] we obtained amongst other the following reverse of the Jensen trace inequality:
Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If f is a continuously differentiable convex function on $[m, M]$ and $P \in \mathcal{B}_{1}(H) \backslash\{0\}, P \geq 0$, then we have

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}(P f(A))}{\operatorname{tr}(P)}-f\left(\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right) \tag{58}\\
& \leq \frac{\operatorname{tr}\left(P f^{\prime}(A) A\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \cdot \frac{\operatorname{tr}\left(P f^{\prime}(A)\right)}{\operatorname{tr}(P)} \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[f^{\prime}(M)-f^{\prime}(m)\right] \frac{\operatorname{tr}\left(P\left|A-\frac{\operatorname{tr}(P A)}{\mathrm{tr}(P)} 1_{H}\right|\right)}{\operatorname{tr}(P)} \\
\frac{1}{2}(M-m) \frac{\operatorname{tr}\left(P\left|f^{\prime}(A)-\frac{\operatorname{tr}\left(P f^{\prime}(A)\right)}{\operatorname{tr}(P)} 1_{H}\right|\right)}{\operatorname{tr}(P)} \\
\end{array}\right. \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[f^{\prime}(M)-f^{\prime}(m)\right]\left[\frac{\operatorname{tr}\left(P A^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2}
\end{array}\right. \\
& \leq \frac{1}{2}\left[f^{\prime}(M)-m\right)\left[\frac{\left.f^{\prime}(m)\right](M-m) .}{\operatorname{tr}\left(P\left[f^{\prime}(A)\right]^{2}\right)}-\left(\frac{\operatorname{tr}\left(P f^{\prime}(A)\right)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2}
\end{align*}
$$

Let $\mathcal{M}_{n}(\mathbb{C})$ be the space of all square matrices of order n with complex elements and $A \in \mathcal{M}_{n}(\mathbb{C})$ be a Hermitian matrix such that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If f is a continuously differentiable convex function on $\left[m, M\right.$], then by taking $P=I_{n}$ in (58) we get

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}(f(A))}{n}-f\left(\frac{\operatorname{tr}(A)}{n}\right) \tag{59}\\
& \leq \frac{\operatorname{tr}\left(f^{\prime}(A) A\right)}{n}-\frac{\operatorname{tr}(A)}{n} \cdot \frac{\operatorname{tr}\left(f^{\prime}(A)\right)}{n} \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[f^{\prime}(M)-f^{\prime}(m)\right] \frac{\operatorname{tr}\left(\left|A-\frac{\operatorname{tr}(A)}{n} 1_{H}\right|\right)}{n} \\
\frac{1}{2}(M-m) \frac{\operatorname{tr}\left(\left|f^{\prime}(A)-\frac{\operatorname{tr}\left(f^{\prime}(A)\right)}{n} 1_{H}\right|\right)}{n} \\
\end{array}\right. \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left[f^{\prime}(M)-f^{\prime}(m)\right]\left[\frac{\operatorname{tr}\left(A^{2}\right)}{n}-\left(\frac{\operatorname{tr}(A)}{n}\right)^{2}\right]^{1 / 2} \\
\frac{1}{2}(M-m)\left[\frac{\operatorname{tr}\left(\left[f^{\prime}(A)\right]^{2}\right)}{n}-\left(\frac{\operatorname{tr}\left(f^{\prime}(A)\right)}{n}\right)^{2}\right]^{1 / 2}
\end{array}\right. \\
& \leq \frac{1}{4}\left[f^{\prime}(M)-f^{\prime}(m)\right](M-m)
\end{align*}
$$

The following reverse inequality also holds:
Proposition 5.1. Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m+M \neq 0$. If f is a continuously differentiable convex function on $[m, M]$ with $f^{\prime}(m)+$ $f^{\prime}(M) \neq 0$ and $P \in \mathcal{B}_{1}(H) \backslash\{0\}, P \geq 0$, then we have

$$
\begin{equation*}
0 \leq \frac{\operatorname{tr}(P f(A))}{\operatorname{tr}(P)}-f\left(\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right) \tag{60}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{\operatorname{tr}\left(P f^{\prime}(A) A\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \cdot \frac{\operatorname{tr}\left(P f^{\prime}(A)\right)}{\operatorname{tr}(P)} \\
& \leq \frac{1}{2} \cdot \frac{|M-m|\left|f^{\prime}(M)-f^{\prime}(m)\right|}{\sqrt{|m+M|} \sqrt{\left|f^{\prime}(m)+f^{\prime}(M)\right|}} \sqrt[4]{\frac{\operatorname{tr}\left(P A^{2}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}\left(P\left[f^{\prime}(A)\right]^{2}\right)}{\operatorname{tr}(P)}} .
\end{aligned}
$$

The proof follows by the inequality (57) and the details are omitted,
Let $A \in \mathcal{M}_{n}(\mathbb{C})$ be a Hermitian matrix such that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m+M \neq 0$. If f is a continuously differentiable convex function on $[m, M]$ with $f^{\prime}(m)+f^{\prime}(M) \neq 0$ then by taking $P=I_{n}$ in (60) we get

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}(f(A))}{n}-f\left(\frac{\operatorname{tr}(A)}{n}\right) \tag{61}\\
& \leq \frac{\operatorname{tr}\left(f^{\prime}(A) A\right)}{n}-\frac{\operatorname{tr}(A)}{n} \cdot \frac{\operatorname{tr}\left(f^{\prime}(A)\right)}{n} \\
& \leq \frac{1}{2} \cdot \frac{|M-m|\left|f^{\prime}(M)-f^{\prime}(m)\right|}{\sqrt{|m+M|} \sqrt{\left|f^{\prime}(m)+f^{\prime}(M)\right|}} \sqrt[4]{\frac{\operatorname{tr}\left(A^{2}\right)}{n} \frac{\operatorname{tr}\left(\left[f^{\prime}(A)\right]^{2}\right)}{n}} .
\end{align*}
$$

We consider the power function $f:(0, \infty) \rightarrow(0, \infty), f(t)=t^{r}$ with $t \in \mathbb{R} \backslash\{0\}$. For $r \in(-\infty, 0) \cup[1, \infty), f$ is convex while for $r \in(0,1), f$ is concave.

Let $r \geq 1$ and A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $0<m<M$. If $P \in \mathcal{B}_{1}^{+}(H) \backslash\{0\}$, then

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}\left(P A^{r}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right)^{r} \tag{62}\\
& \leq r\left[\frac{\operatorname{tr}\left(P A^{r}\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \cdot \frac{\operatorname{tr}\left(P A^{r-1}\right)}{\operatorname{tr}(P)}\right] \\
& \leq \frac{1}{2} r \frac{(M-m)\left(M^{r-1}-m^{r-1}\right)}{(m+M)^{1 / 2}\left(m^{r-1}+M^{r-1}\right)^{1 / 2}} \sqrt[4]{\frac{\operatorname{tr}\left(P A^{2}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}\left(P A^{2(p-1)}\right)}{\operatorname{tr}(P)}}
\end{align*}
$$

Consider the convex function $f: \mathbb{R} \rightarrow(0, \infty), f(t)=\exp t$ and let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $P \in \mathcal{B}_{1}^{+}(H) \backslash\{0\}$, then using (60) we have

$$
\begin{align*}
0 & \leq \frac{\operatorname{tr}(P \exp A)}{\operatorname{tr}(P)}-\exp \left(\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)}\right) \tag{63}\\
& \leq \frac{\operatorname{tr}(P A \exp A)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \cdot \frac{\operatorname{tr}(P \exp A)}{\operatorname{tr}(P)} \\
& \leq \frac{1}{2} \frac{|M-m|(\exp (M)-\exp (m))}{\sqrt{|m+M|} \sqrt[4]{\exp m+\exp M}} \sqrt{\frac{\operatorname{tr}\left(P A^{2}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P \exp (2 A))}{\operatorname{tr}(P)}} .
\end{align*}
$$

References

[1] G. A. Anastassiou, Grüss type inequalities for the Stieltjes integral. Nonlinear Funct. Anal. Appl. 12, 583 (2007)
[2] G. A. Anastassiou, Chebyshev-Grüss type and comparison of integral means inequalities for the Stieltjes integral. Panamer. Math. J. 17, 91 (2007)
[3] G. A. Anastassiou, Chebyshev-Grüss type inequalities via Euler type and Fink identities. Math. Comput. Modelling 45, 1189 (2007)
[4] T. Ando, Matrix Young inequalities. Oper. Theory Adv. Appl. 75, 33 (1995)
[5] R. Bellman, in: E.F. Beckenbach (Ed.), Some inequalities for positive definite matrices, General Inequalities 2, Proceedings of the 2nd International Conference on General Inequalities, (Birkhäuser, Basel, 1980), 89
[6] E. V. Belmega, M. Jungers, S. Lasaulce, A generalization of a trace inequality for positive definite matrices. Aust. J. Math. Anal. Appl 7 , Art. 26, 5 pp. (2010)
[7] N. G. de Bruijn, Problem 12. Wisk. Opgaven 21, 12 (1960)
[8] P. Cerone, P. Cerone, On some results involving the Čebyšev functional and its generalisations. J. Inequal. Pure Appl. Math. 4, Article 55, 17 pp. (2003)
[9] P. Cerone, On Chebyshev functional bounds. Differential \& difference equations and applications, Hindawi Publ. Corp., New York, 267 (2006).
[10] P. Cerone, On a Čebyšev-type functional and Grüss-like bounds. Math. Inequal. Appl. 9,87 (2006)
[11] P. Cerone, S. S. Dragomir, A refinement of the Grüss inequality and applications. Tamkang J. Math. 38, 37 (2007)
[12] P. Cerone, S. S. Dragomir, New bounds for the Čebyšev functional. Appl. Math. Lett. 18, 603 (2005)
[13] P. Cerone, S. S. Dragomir, Chebychev functional bounds using Ostrowski seminorms. Southeast Asian Bull. Math. 28, 219 (2004)
[14] D. Chang, A matrix trace inequality for products of Hermitian matrices J. Math. Anal. Appl. 237, 721 (1999)
[15] L. Chen, C. Wong, Inequalities for singular values and traces. Linear Algebra Appl. 171, 109 (1992)
[16] I. D. Coop, On matrix trace inequalities and related topics for products of Hermitian matrix. J. Math. Anal. Appl. 188, 999 (1994)
[17] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G. Szegö and L.V. Kantorovich. Bull. Amer. Math. Soc. 69, 415 (1963)
[18] S. S. Dragomir, Some Grüss type inequalities in inner product spaces. J. Inequal. Pure \& Appl. Math. 4, Article 42 (2003)
[19] S. S. Dragomir, A Survey on Cauchy-Bunyakovsky-Schwarz Type Discrete Inequalities, (RGMIA Monographs, Victoria University, 2002.)
[20] S. S . Dragomir, A counterpart of Schwarz's inequality in inner product spaces. East Asian Math. J. 20, 1 (2004)
[21] S. S. Dragomir, Grüss inequality in inner product spaces. The Australian Math Soc. Gazette 26 , 66 (1999)
[22] S. S. Dragomir, A generalization of Grüss' inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74 (1999)
[23] S. S. Dragomir, Some discrete inequalities of Grüss type and applications in guessing theory. Honam Math. J. 21, 145 (1999)
[24] S. S. Dragomir, Some integral inequalities of Grüss type. Indian J. of Pure and Appl. Math. 31, 397 (2000)
[25] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces (Nova Science Publishers Inc., New York, 2005)
[26] S. S. Dragomir, G.L. Booth, On a Grüss-Lupaş type inequality and its applications for the estimation of p-moments of guessing mappings. Mathematical Communications 5, 117 (2000)
[27] S. S. Dragomir, A Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula. Tamkang J. of Math. 31, (2000)
[28] S. S. Dragomir, I. Fedotov, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means. Tamkang J. of Math. 29, 286 (1998)
[29] S. S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces. Linear Multilinear Algebra 58 , 805 (2010)
[30] S. S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Ital. J. Pure Appl. Math. 28, 207 (2011)
[31] S. S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces. Linear Algebra Appl. 428, 2750 (2008)
[32] S. S. Dragomir, Some Čebyšev's type trace inequalities for functions of selfadjoint operators in Hilbert spaces. RGMIA Res. Rep. Coll. 17, Art. 111 (2014)
[33] S. S. Dragomir, Some Grüss type inequalities for trace of operators in Hilbert spaces. RGMIA Res. Rep. Coll. 17, Art. 114 (2014)
[34] S. S. Dragomir, Reverse Jensen's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces. RGMIA Res. Rep. Coll. 17, Art. 118 (2014)
[35] A. M. Fink, A treatise on Grüss' inequality, Analytic and Geometric Inequalities. Math. Appl. 478, 93 (1999)
[36] S. Furuichi, M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah. Aust. J. Math. Anal. Appl. 7, Art. 23, 4 pp. (2010)
[37] T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space (Element, Zagreb, 2005).
[38] W. Greub, W. Rheinboldt, On a generalisation of an inequality of L.V. Kantorovich. Proc. Amer. Math. Soc. 10, 407 (1959)
[39] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$. Math. Z. 39, 215 (1935).
[40] M. S. Klamkin, R. G. McLenaghan, An ellipse inequality. Math. Mag. 50, 261 (1977)
[41] H. D. Lee, On some matrix inequalities. Korean J. Math. 16, No. 4, 565 (2008)
[42] L. Liu, A trace class operator inequality. J. Math. Anal. Appl. 328, 1484 (2007)
[43] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral. Soochow J. Math. 30, 483 (2004)
[44] S. Manjegani, Hölder and Young inequalities for the trace of operators. Positivity 11, 239 (2007)
[45] A. Matković, J. Pečarić, I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra Appl. 418, 551 (2006)
[46] D. S. Mitrinović, J. E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis (Kluwer Academic Publishers, Dordrecht, 1993).
[47] H. Neudecker, A matrix trace inequality. J. Math. Anal. Appl. 166, 302 (1992)
[48] N. Ozeki, On the estimation of the inequality by the maximum. J. College Arts, Chiba Univ. 5, 199 (1968)
[49] B. G. Pachpatte, A note on Grüss type inequalities via Cauchy's mean value theorem. Math. Inequal. Appl. 11, 75 (2008)
[50] J. Pečarić, J. Mićić, Y. Seo, Inequalities between operator means based on the Mond-Pečarić method. Houston J. Math. 30, 191 (2004)
[51] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, (Vol. 1, Berlin 1925, pp. 57 and 213-214).
[52] M. B. Ruskai, Inequalities for traces on von Neumann algebras. Commun. Math. Phys. 26, 280 (1972)
[53] K. Shebrawi, H. Albadawi, Operator norm inequalities of Minkowski type. J. Inequal. Pure Appl. Math. 9, Art. 26 (2008)
[54] K. Shebrawi, H. Albadawi, Trace inequalities for matrices. Bull. Aust. Math. Soc. 87, 139 (2013)
[55] O. Shisha, B. Mond, Bounds on differences of means, in Inequalities I (New York-London, 1967), 293
[56] B. Simon, Trace Ideals and Their Applications, (Cambridge University Press, Cambridge, 1979).
[57] Z. Ulukök and R. Türkmen, On some matrix trace inequalities. J. Inequal. Appl. 2010, Art. ID 201486, 8 pp.
[58] G. S. Watson, Serial correlation in regression analysis I. Biometrika 42, 327 (1955)
[59] X. Yang, A matrix trace inequality, J. Math. Anal. Appl. 250, 372 (2000)
[60] X. M. Yang, X. Q. Yang, K. L. Teo, A matrix trace inequality. J. Math. Anal. Appl. 263, 327 (2001)
[61] Y. Yang, A matrix trace inequality. J. Math. Anal. Appl. 133, 573 (1988)
[62] C.-J. Zhao, W.-S. Cheung, On multivariate Grüss inequalities. J. Inequal. Appl. 2008, Art. ID 249438, 8 pp. (2008)

[^0]: *Corresponding Author: Sever Silvestru Dragomir: School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa, E-mail: sever.dragomir@vu.edu.au

