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ABSTRACT

Model updating in structural dynamics: advanced parametrization, optimal regularization,

and symmetry considerations

Daniel Thomas Bartilson

Numerical models are pervasive tools in science and engineering for simulation, design, and

assessment of physical systems. In structural engineering, finite element (FE) models are

extensively used to predict responses and estimate risk for built structures. While FE mod-

els attempt to exactly replicate the physics of their corresponding structures, discrepancies

always exist between measured and model output responses. Discrepancies are related to

aleatoric uncertainties, such as measurement noise, and epistemic uncertainties, such as mod-

eling errors. Epistemic uncertainties indicate that the FE model may not fully represent the

built structure, greatly limiting its utility for simulation and structural assessment. Model

updating is used to reduce error between measurement and model-output responses through

adjustment of uncertain FE model parameters, typically using data from structural vibra-

tion studies. However, the model updating problem is often ill-posed with more unknown

parameters than available data, such that parameters cannot be uniquely inferred from the

data.

This dissertation focuses on two approaches to remedy ill-posedness in FE model updat-

ing: parametrization and regularization. Parametrization produces a reduced set of updat-

ing parameters to estimate, thereby improving posedness. An ideal parametrization should

incorporate model uncertainties, effectively reduce errors, and use as few parameters as pos-

sible. This is a challenging task since a large number of candidate parametrizations are

available in any model updating problem. To ameliorate this, three new parametrization

techniques are proposed: improved parameter clustering with residual-based weighting, sin-

gular vector decomposition-based parametrization, and incremental reparametrization. All



of these methods utilize local system sensitivity information, providing effective reduced-

order parametrizations which incorporate FE model uncertainties.

The other focus of this dissertation is regularization, which improves posedness by pro-

viding additional constraints on the updating problem, such as a minimum-norm parameter

solution constraint. Optimal regularization is proposed for use in model updating to pro-

vide an optimal balance between residual reduction and parameter change minimization.

This approach links computationally-efficient deterministic model updating with asymptotic

Bayesian inference to provide regularization based on maximal model evidence. Estimates

are also provided for uncertainties and model evidence, along with an interesting measure of

parameter efficiency.
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1 Introduction

Scientists and engineers rely on numerical models to simulate the behavior of real systems

in nearly all applications. Broadly stated, simulation is valuable when it is uneconomical,

impractical, or impossible to directly test the real system. Numerical models may be based on

physical understanding, as a simplification of reality, or may be a black box, only attempting

to reproduce an input-output relation.

In the context of structural engineering, numerical modeling is typically accomplished

through finite element (FE) models which physically represent designed or constructed works.

Simulation via FE models is instrumental for the tasks of analysis, design, and assessment.

Analysis hinges on simulation to estimate the response of a given structure (e.g. bridge

vibrations) without needing to risk damage or interfere with ongoing operations (e.g. traffic).

Design is closely related to analysis, comparing candidate configurations based on simulation

to select an optimal system which satisfies given requirements. Assessment attempts to glean

insight regarding the current configuration of the structure, perhaps for locating damage,

measuring degradation, or estimating reliability.

For all of these tasks, it is essential that the FE model accurately represents the structure

of interest. Unfortunately, discrepancies always exist between measured behavior and model-

predicted behavior, indicating that the model does not fully represent the structure and

has lower utility for simulation. This is the motivation for FE model updating, which is

the process of adjusting uncertain FE model parameters to reduce discrepancies between

measured data and model-output data (Friswell & Mottershead, 1995). Model updating is

essentially a parameter estimation problem, with a wealth of deterministic and uncertainty

quantification (UQ) methods available in the literature, described further in Section 2.1.

Regardless of the parameter estimation scheme, FE model updating problems are often
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ill-posed, meaning that a unique solution does not exist. Even when the problem is well-

posed, it may be ill-conditioned such that a small change in measured data or initial model

state drastically changes the updating result. Ameliorating ill-posedness and ill-conditioning

is non-trivial. One approach is to provide additional assumptions to constrain the data,

such as by regularization in deterministic methods (Titurus & Friswell, 2008) or an informa-

tive prior probability distribution for the parameters in probabilistic UQ methods (Berger,

Bernardo, & Sun, 2009). Construction of a reasonable regularizer or prior probability distri-

bution function (PDF) is challenging since little is often known about the true variability of

uncertain updating parameters, particularly when they do not represent physical quantities.

Another approach to improve posedness and condition is to develop a new, generally

reduced parametrization. This is a challenging task since there are a multitude of possible

parametrizations even for a simple FE model and the choice of parametrization will impact

the efficacy and posedness of the model updating problem. A variety of parametrization

methods exist in the literature, but there is still significant room for improvement, particu-

larly among the wealth of machine learning approaches coming to the forefront.

The research in this dissertation focuses on these last two challenges, regularization and

parametrization. Part I continues with a firm background for FE model updating in Chap-

ter 2. Relevant difficulties in model updating relating to regularization and parametrization

are detailed in Chapter 3, while Chapter 4 describes the contribution and importance of the

author’s research. This is reinforced in Chapter 5 through summaries of the four papers

appended in Part II. Conclusions are drawn in Chapter 6.
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2 Background

This chapter provides an overview of FE model updating, covering deterministic and UQ

approaches in Section 2.1, parametrization methods in Section 2.2, and model comparison

methods in Section 2.3.

FE model updating is best understood as one stage of a process, comprising model

generation, model updating, and model comparison, depicted in Fig. 2.1.

Structure
Measured data

z̃

FE model(s)
z

Parametrization(s)
Mj , θj

Model generation

Objective function
F (z̃, z(θj))

Parameter estimation
θ̂j , p(θj |z̃)

Model updating

Model ranking
BIC, P (Mj |z̃)

Model averaging
z̄

Model selection
M̂

Model comparison

Figure 2.1: Flowchart of FE modeling, updating, and selection

– Measured data is one of the most critical items for model updating. It is often assem-

bled into a vector of m components, denoted as z̃, which can be homogeneous (comprising

one data type) or heterogeneous (comprising several data types). When inputs (loadings)

are measured, it may be practical to utilize time series of directly-measured quantities,

such as strains, accelerations, and displacements, or inferred quantities such as response

functions. However, inputs are typically unknown in practice, so inferred output quan-

tities such as power spectral densities, or more commonly, natural frequencies and mode

shapes, are used. Common methods in practice for estimating modal parameters from vi-

5



bration data are eigensystem realization algorithm (ERA) by Juang and Pappa (1985), ob-

server/Kalman filter identification (OKID) by Juang, Phan, Horta, and Longman (1993),

and frequency domain decomposition (FDD) by Brincker, Zhang, and Andersen (2000).

A review of modern modal identification algorithms is available by Reynders (2012).

– Model generation comprises the two steps of FE modeling and parametrization. In

general, there may be several candidate FE models with several tested parametrizations,

but for now consider only one parametrized FE model denoted as the model class M.

This represents an input-output function between the vector of p updating parameters θ

and the model-outputs z(θ). The term ‘model class’ is used since a given parametrization

can be evaluated at varying parameter values. When the values of the parameters are

fixed, say at the optimal value θ̂, then the outputs z(θ̂) represent a model M(θ̂) for

the measured data1 (Beck & Yuen, 2004). Parametrization is covered in more depth in

Section 2.2.

– Model updating refers to the process of parameter estimation for a specified model

class, generally to produce point or distribution estimates of plausible parameter values.

The choice of objective function is typically decided by the parameter estimation scheme,

but almost always represents a goodness-of-fit measure between the measured data and

model-outputs. The basic assumption of model updating is that the measured data can

be reproduced by the FE model M, but modeling errors and measurement errors create

discrepancies:

z̃ = z(θ) + ε+ η (2.1)

where ε represents a vector of modeling errors and η represents a vector of measurement

errors, such as noise. Measurement error is related to aleatoric uncertainty, meaning

that it is inherent in the problem and cannot be reduced through improved modeling

1While the terms ‘model’ and ‘model class’ are more proper, it is typical to find model classes simply
referred to as models within the literature and clarified by context.
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(R. C. Smith, 2014). Modeling error relates to epistemic uncertainty2, which comprises

systematic errors arising from a lack of knowledge. For FE model updating, model errors

can be categorized as (Mottershead, Link, & Friswell, 2011):

• idealization errors, related to assumptions and simplifications about system physics;

• discretization errors, introduced by poor construction of the FE model; and

• uncertainty in model parameters, such as material properties, section properties,

geometry, and boundary conditions.

Unlike aleatoric uncertainties, epistemic uncertainties can be reduced through improved

modeling. Therefore, the general goal of model updating is to estimate the parameters

θ which minimize the model error ε without fitting the measurement noise η. FE model

updating is typically formulated to correct FE model parameter errors, while idealization

and discretization errors must be controlled by FE model construction. If FE model

parameter uncertainties alone are minimized, the model is said to be inconsistent, but may

still be valuable for response prediction. When all three error categories are minimized, the

model is said to be validated and has greater utility for design and assessment (Mottershead

et al., 2011). Model updating techniques are discussed in more detail in Section 2.1.

– The last stage, model comparison, is typically only performed when several candidate

model classes are available. This relies on some measure of support for each model which

can be used as a criterion for ranking the relative plausibility of each model Mj of a

set j = 1, . . . , nM . A simple measure might be the model-output accuracy (maximum

likelihood) criterion, but this tends to favor overfitted solutions and overly complex models

(MacKay, 1992), so statistical inference is typically used. With an established ranking, it

is possible to either perform model selection to choose a single best model M̂, or model

averaging to produce a robust response estimate z̄. This is discussed more in Section 2.3.

2Aleatoric uncertainties represent intrinsic variability where the plausibility of a value may be described
by a PDF, while epistemic uncertainties are assumed to have a single correct value which can be discovered
through investigation.
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2.1 Model updating

Modern model updating can be divided into deterministic and UQ approaches. Both of these

methods are essentially parameter estimation schemes which attempt to solve an inverse

problem by repeatedly running the forward problem. In this case, the forward problem

provides FE model-output responses for a given set of parameter values, while the inverse

problem asks for the point, range, or distribution of parameter values to reproduce the

measured response. An excellent review is available by Simoen, De Roeck, and Lombaert

(2015).

2.1.1 Deterministic approach

Deterministic model updating attempts to minimize the difference between the measured and

model-output responses in Eq. (2.1) at a single optimal parameter estimate. This is achieved

by minimizing an objective function F which utilizes the measurement and model-output

data, written as

θ̂ = arg min
θ

F (z̃, z(θ)) (2.2)

Typically the objective function is given as the weighted sum-of-square residual, where r(θ)

is the vector of m residuals:

F (θ) = rTWrr r(θ) = z̃ − z(θ) (2.3)

Wr is the m × m residual weighting matrix representing the uncertainty in the measure-

ments. The optimal choice of Wr, in a Bayesian sense, is the inverse of the measurement

covariance matrix Cz̃ (Collins, Hart, Haselman, & Kennedy, 1974). When covariance esti-

mates are unavailable, Wr may instead reflect the relative importance of each residual term

for reduction. Eq. (2.2) can also be written as the squared `2-norm of the weighted residual

vector q(θ):

F (θ) = ‖q(θ)‖22 q(θ) = W 1/2
r r(θ) (2.4)
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Alternative objective functions in deterministic model updating include sums of individual

`2-norms, e.g. Jang and Smyth (2017b), and the `1-norm, e.g. C. B. Smith and Hernandez

(2018). In particular, use of the `1-norm may provide better detection of localized damage,

but is typically more difficult to optimize.

With a given objective function, deterministic model updating then uses an optimization

algorithm to produce the point estimate in Eq. (2.2). There are a wide variety of approaches

available in the literature, naturally divided into global and local approaches. Global opti-

mization methods attempt to find the best parameter estimate within the assumed range of

parameter values and are typically used for non-convex problems or problems with multiple

local minima. Common global approaches in model updating include genetic algorithms and

simulated annealing (Levin & Lieven, 1998), coupled local minimizers (Teughels, De Roeck,

& Suykens, 2003), and artificial bee colony algorithms (Kang, Li, & Xu, 2009). In most

situations, global approaches are significantly more computationally-intensive than local ap-

proaches, which typically use numerical or analytical gradients to reach a local optimum.

These approaches are relative fast, intuitive, and provide satisfactory convergence for FE

model updating problems with ‘small’ initial errors.

– The sensitivity method (Mottershead et al., 2011) is one of the most common local

approaches to deterministic model updating and is largely similar to Gauss–Newton min-

imization. This is an iterative approach where the parameter estimate is evolved from

iteration i to i+ 1 until convergence by the update equation:

θi+1 = θi + ∆θi (2.5)

where θi is the updating parameter vector at iteration i and ∆θi is the corresponding

update term. While the residual vector r is usually non-linear with respect to the updating

parameters θ, this is linearized at each iteration by truncating the Taylor series:

r(θi + ∆θi) ≈ r(θi) + Ji∆θi (2.6)
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Ji is the m× p Jacobian matrix of r with respect to θ evaluated at θi:

Ji =
∂r

∂θ

∣∣∣∣
θ=θi

= − ∂z

∂θ

∣∣∣∣
θ=θi

(2.7)

which is also called the sensitivity matrix since it represents the local sensitivity of the

residual (or equivalently, model-output) with respect to parameter changes. The parame-

ter update is given as the Gauss–Newton solution

∆θi = −[JTi WrJi]
−1JTi Wrri (2.8)

where ri is shorthand for r(θi). Obviously, the solution will not be unique when the

number of measurements m is less than the number of updating parameters p (under-

determined), and JTi WrJi will not be invertible. Even when m ≥ p, it is common for

JTi WrJi to be ill-conditioned when the effective number of parameters exceeds the effec-

tive number of measurements, e.g. linear dependence in the columns of Ji.

– Regularization is one common way to improve posedness and condition in deterministic

FE model updating. This supplies additional constraints to the data, effectively increasing

the number of measurements. An excellent review of regularization is provided by Titurus

and Friswell (2008). A common choice is to penalize the sum-of-square parameter change,

leading to a minimum-norm solution. For updating parameters that are originally zero

(i.e. θ0 = 0), this is accomplished by augmenting the original objective function with a

penalty term:

F (θ) = βrTWrr + αθTWθθ (2.9)

where Wθ is the parameter weighting term for parameters θ and {α, β} are regulariza-

tion terms. Similar to Wr, the statistically-optimal choice of Wθ is the inverse of the

parameter covariance matrix Cθ (Collins et al., 1974), but this is difficult to estimate in

practice. Therefore, Wθ often represents the relative importance (to the user) of reduc-

ing certain parameter changes. When Wθ must be constructed without any information

about the parameters, it is typical to use Wθ = Ip, closely related to Tikhonov regular-
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ization (Tikhonov & Arsenin, 1977). The solution to the regularized objective function in

Eq. (2.9) is then given by

∆θi = −[βJTi WrJi + αWθ]
−1[βJTi Wrri + αWθθi] (2.10)

which essentially augments the solution to Eq. (2.8). The regularization parameters α

and β control the relative importance of reducing residual against delivering a minimum

parameter change solution. Popular approaches include L-curves and cross validation

(Ahmadian, Mottershead, & Friswell, 1998; Titurus & Friswell, 2008) or simple heuristics

(Mottershead et al., 2011). Ongoing challenges related to regularization are discussed in

Chapter 3.

2.1.2 Uncertainty quantification approach

Where deterministic model updating seeks to produce a single solution to minimize the error

between measurements and model-outputs in Eq. (2.1), UQ methods utilize uncertainty

estimates to characterize a range or distribution of plausible parameter values. This is a key

advantage over deterministic model updating since it enables users to evaluate the confidence

in parameter estimates and response predictions, with further applications to model selection

and reliability assessments. UQ model updating is comprised of two sub-classes: probabilistic

and non-probabilistic methods (Simoen et al., 2015).

– Probabilistic UQ methods propagate uncertainties from input quantities (e.g. param-

eters and measurements) to output quantities (e.g. responses) by assigning PDFs to all

quantities. Probabilistic methods include the popular Bayesian inference approach, first

used in structural dynamics by Beck and Katafygiotis (1998), which uses Bayes’ theo-

rem to generate updated parameter estimates from initial parameter estimates and the

measured data. In this approach, the measurement errors η, modeling errors ε and uncer-

tain parameters θ are treated as random variables. The updated, or posterior, parameter
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estimate is given by Bayes’ expression:

p(θ|z̃,M) =
p(z̃|θ,M)p(θ|M)

p(z̃|M)
(2.11)

The prior PDF for the parameters p(θ|M) reflects the initial degree-of-belief in param-

eter values without knowledge of measured data. This is updated to the posterior PDF

p(θ|z̃,M) by incorporating measured data z̃ into parameter estimates. The transforma-

tion between prior and posterior estimates comes from the likelihood function p(z̃|θ,M)

which expresses the plausibility of observing the data z̃ at a certain parameter value θ

within the parametrization M. The denominator p(z̃|M) is termed the evidence for the

model class M, which is the integral of the numerator over all values:

p(z̃|M) =

∫
p(z̃|θ,M)p(θ|M)dθ (2.12)

Model evidence (technically model class evidence) represents the plausibility of the parametriza-

tion for describing the measured data, and is particularly important for Bayesian model

comparison, discussed in Section 2.3.

The multidimensional integral for the model evidence can be challenging to compute. In

situations where Gaussian assumptions can be made for measurement errors and the like-

lihood function, or in situations with a large amount of data relative to the number of pa-

rameters, it may be appropriate to assume the posterior will follow a Gaussian PDF. Thus,

the evidence integral can be approximated using Laplace’s method, considerably speeding

up computation (Beck & Katafygiotis, 1998; MacKay, 1992). For more general posteriors

(e.g. non-Gaussian, multimodal), it is typical to approximate the integral by a Monte

Carlo (MC) method, typically Markov Chain Monte Carlo (MCMC), which attempts to

draw samples from the posterior. Examples of MC methods used in model updating

include Metropolis–Hastings MCMC (Beck & Au, 2002), transitional MCMC (Ching &

Chen, 2007), hybrid MC (Cheung & Beck, 2009), nested sampling (Mthembu, Marwala,

Friswell, & Adhikari, 2011), and approximate Bayesian computation (Vakilzadeh, 2016).

– Non-probabilistic UQ methods are a recent development for FE model updating and
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generally express parameter, response, and measurement uncertainties as intervals corre-

sponding to a certain confidence level. This is particularly appropriate when insufficient

information is available to describe parameter uncertainties by a PDF and/or when few

measurements are available to characterize measurement uncertainties (Khodaparast et al.,

2017). Interval model updating was first applied by Khodaparast, Mottershead, and Bad-

cock (2011) to establish bounds on the updating parameters corresponding to irreducible

(aleatoric) uncertainty in measured data. Interval approaches have been extended to fuzzy

modeling, which express the plausibility of a quantity (e.g. parameter value, response,

measurement) through a membership function, performing uncertainty propagation from

fuzzy measured data to fuzzy parameter estimates and responses. This has been applied

to model updating by Haag, Herrmann, and Hanss (2010) and Erdogan, Gul, Catbas, and

Bakir (2014), among others. These methods generally use large-scale optimization to find

parameter bounds corresponding to plausible measurement uncertainty bounds, making

them generally less computationally intensive than probabilistic UQ methods, but still

orders-of-magnitude more intensive than deterministic model updating schemes.

2.2 Parametrization

While a parametrized FE model is a required quantity for model updating (Fig. 2.1), it is

most natural to describe parametrization with an understanding of the limitations of param-

eter estimation schemes, namely posedness. Posedness is a property of the model updating

problem, i.e. it occurs regardless of the parameter estimation scheme used. An ill-posed

problem does not have a unique solution. This may be understood as a condition with

insufficient measured information to constrain the parameter estimates, manifesting as an

underdetermined system of equations in deterministic methods (Section 2.1.1) or unidenti-

fiable parameters in UQ methods (Beck & Katafygiotis, 1998). Regularization is often used
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for deterministic model updating, but generating an alternative parametrization is preferred

(Simoen et al., 2015).

Even a relatively simple FE model may comprise a large number of parameters, such as

element material and cross-sectional properties, connection and boundary condition models

and properties, model geometry, etc., which may all be used as updating parameters. This

may even be expanded if one considers the number of unique combinations of parameters

which may be selected for updating. This must be contrasted against the effective number of

measurements available in practice, which is limited by such factors as sampling frequency,

sampling duration, measurement signal-to-noise ratio, excitation quality, and a finite number

of sensors or practical arrangements. It is almost always possible to choose a parametrization

with the number of parameters p much greater than the number of measurements m.

Parametrizing the FE model is non-trivial, with significant impact on the efficacy in

reducing errors and posedness of the updating problem. A successful parametrization should

satisfy three key conditions (Friswell & Mottershead, 1995):

– a limited number of parameters should be used to avoid ill-posedness,

– the parametrization should be chosen to correct model uncertainties, and

– model-outputs should be sensitive to the chosen parameters.

Fulfillment of these requirements generally requires expert knowledge of FE model sensi-

tivities and uncertainties. Many approaches have been suggested in the literature. For

example, Mottershead, Mares, Friswell, and James (2000) compared several parametriza-

tions of an aluminum space frame, such as generic elements by Gladwell and Ahmadian

(1995) and geometric joint offsets by Mottershead, Friswell, Ng, and Brandon (1996). A

common parametrization is the set of FE model parameters δ which linearly modify the

element mass matrix Me and element stiffness matrix Ke for each element e out of nel el-

ements. The global mass M and stiffness K matrices are thus functions of δ, which is a

14



column vector of d = 2nel components:

M(δ) =

nel∑

e=1

Me(1− δMe ) = M0 −
nel∑

e=1

Meδ
M
e (2.13)

K(δ) =

nel∑

e=1

Ke(1− δKe ) = K0 −
nel∑

e=1

Keδ
K
e (2.14)

where M0 and K0 are the unmodified mass and stiffness matrices, respectively. Obviously,

this parametrization will still result in an ill-conditioned problem when d > m, so it is typical

to select a reduced set of updating parameters based on this parametrization.

While many parametrizations may avail the user to lower residual, there is no guarantee

that the model-outputs will be sensitive to the chosen parameters or that the problem will

be well-posed. Parametrizations which incorporate model sensitivities therefore have a large

advantage in that they are designed to provide sensitive parameters and counter ill-posedness.

The two main sensitivity-based parametrization methods are subset selection and parameter

clustering:

– Subset selection chooses a reduced number of FE model parameters to use as updat-

ing parameters, which is equivalent to fixing the unselected FE model parameters. This

approach was originally used in regression analysis (Miller, 2002). For most problems, it

is inappropriate or impossible to test all possible subsets of parameters, so heuristics are

applied. The most common heuristic subset selection method is forward subset selection,

first applied to FE model updating by Lallement and Piranda (1990) and used in further

work by Friswell, Mottershead, and Ahmadian (1998, 2001). This method successively

selects parameters based on the similarity of their sensitivity vectors to the residual vec-

tor r during an orthogonalization process. The sensitivity vector for each parameter δi

corresponds to the columns of the sensitivity matrix, J = [j1 · · · jd] from Eq. (2.7). The

orthogonalization process ensures that each parameter has a different effect on reducing

residual, which should improve posedness and condition by excluding parameters with

linearly-dependent sensitivities. Silva, Maia, Link, and Mottershead (2016) provided an

alternative method for selecting model updating parameters based on decomposition of
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the sensitivity matrix, while Yuan, Liang, Silva, Yu, and Mottershead (2019) used a robust

global sensitivity analysis for subset selection in model updating.

– Parameter clustering updates all of the FE model parameters δ, but creates a reduced

parametrization by grouping FE model parameters with similar sensitivities into clusters

which are each modified by a single updating parameter. This approach was proposed by

Friswell et al. (1998) as an extension of subset selection, and was further developed by

Shahverdi, Mares, Wang, and Mottershead (2009). Jang and Smyth (2017a, 2017b) used

this approach to develop reduced parametrization for deterministic and UQ updating of

a full-scale FE model. This approach typically uses hierarchical clustering to develop a

dendrogram. At each step, the most similar two elements (clusters or single parameters),

measured by cosine distance between sensitivity vectors, are combined to form a new clus-

ter. This builds a dendrogram where ‘branches’ merge with increasing distance criterion.

The user selects the number of clusters, perhaps based on a maximum distance criterion

(e.g. ensure that parameters within the clusters have sensitivities within 0.01 cosine dis-

tance of each other). This defines groups of parameters which are then assigned a cluster

updating parameter, reducing the number of updating parameters from d to the number of

clusters. Since sensitivity-based parameter clustering combines FE model parameters with

similar sensitivity vectors, linear dependence is reduced in the resulting Jacobian matrix,

thereby improving posedness and condition. Alternative approaches for sensitivity-based

clustering include information about the physical proximity of parameters, thereby creat-

ing physically contiguous clusters (Kim & Park, 2004, 2008).

2.2.1 Structural symmetry

For sensitivity-based model updating and sensitivity-based parametrization, it is impor-

tant to understand structural properties to identify possible challenges in parametrization.

In particular, symmetric structures have interesting vibration properties which may affect

sensitivity-based parametrization methods. Many civil and mechanical structures have at

16



least one plane of symmetry for design and construction simplicity. A symmetric structure

can be transformed to configurations which are identical to the original structure through a

symmetry group, comprising a defined set of reflections and rotations (Zingoni, 2009). Glock-

ner (1973) was the first to rigorously study of symmetry in structural dynamics, using group

theory to form reduced representations of full structural systems. Notably, the mass and

stiffness matrices of a symmetric structure can be decomposed into similar block-diagonal

forms (Healey & Treacy, 1991). This greatly reduces the computational and memory re-

quirements in vibration analysis, as the single, large eigendecomposition is transformed into

several smaller, separable eigendecompositions. Group theory is the natural vehicle for es-

tablishing these transformations, and has seen extensive study in structural dynamics by

Kaveh et al. (2003, 2007) and Zingoni (2009, 2014).

Structural symmetry discussed further in the context of challenges for parametrization

in Chapter 3.

2.3 Model comparison

Model comparison (technically model class comparison) and model updating are best under-

stood as two levels of statistical inference (MacKay, 1992). The first level of inference, model

updating, implicitly assumes that the given model classM can correctly reproduce the mea-

sured data, i.e. Eq. (2.1), by inferring the correct parameter values in light of the measured

data. The second level of inference, model comparison, seeks to assign a relative level of

support for each model class Mj of a set of nM candidate model classes {M1, . . . ,MnM}.

Within FE model updating, the candidate model classes correspond to one or more alterna-

tive FE models, each possibly having several parametrizations. Each parametrization of an

FE model corresponds to a model class where the jth parametrization uses a column vector

of updating parameters θj of size pj.

In general, more complex models will provide better data fit than simpler models, but
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they are more prone to overfitting. An overfitted model is less useful for future simulation

because it is fitted to the specific measurement errors realized from aleatoric uncertainty,

rather than capturing the general model errors associated with epistemic uncertainty (Beck

& Yuen, 2004). To this end, model comparison should reflect Occam’s razor, which states

that a simpler description is preferable to an unnecessarily complicated one. For model

selection, Occam’s razor implies that the best model should exhibit strong agreement with

the measured data with minimal complexity (Jeffreys, 1939).

Model comparison is typically performed using a Bayesian perspective, largely because

this approach natively implements Occam’s razor (Gull, 1988; MacKay, 1992), but also due

to the prevalence of Bayesian UQ methods. The probability of the model class Mj given

the data z̃ is given by the Bayes expression:

P (Mj|z̃) =
p(z̃|Mj)P (Mj)∑nM

k=1 p(z̃|Mk)P (Mk)
(2.15)

where P (Mj) represents the prior probability of Mj out of the set of candidate models

before observation of the data. The model evidence p(z̃|Mj) was described in Eq. (2.12)

and indicates the plausibility that the measured data was generated from the proposed

model. Importantly, when all models are assumed to have equal prior probability (i.e.

P (Mj) = 1/nM), then the probability of the model class is directly proportional to the

model evidence:

P (Mj|z̃) ∝ p(z̃|Mj) (2.16)

Occam’s razor can be discerned in the evidence expression by rewriting the log of Eq. (2.12)

as the difference of two terms (Muto & Beck, 2008):

log p(z̃|Mj) =

∫
log
[
p(z̃|θj,Mj)

]
p(θj|z̃,Mj)dθj

−
∫

log

[
p(θj|z̃,Mj)

p(θj|Mj)

]
p(θj|z̃,Mj)dθj

(2.17)

The first term is the posterior mean of the log likelihood function, representing the average

data fit provided by the model class Mj. The second term is the relative entropy between

the prior and posterior distributions for the parameters, measuring the information extracted
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from the data during updating. This effectively functions as a penalty term which enforces

Occam’s razor since more complex parametrizations will extract additional information from

the data to infer their larger number of parameters (Muto & Beck, 2008).

Bayesian model comparison naturally leads to model selection and model averaging (Beck

& Yuen, 2004). In Bayesian model selection, the model class with the highest probability

given the data M̂ is selected for further use. This is appropriate when one model class greatly

outperforms the other candidates. In cases where several candidate models are assessed at

similar posterior probability, it is recommended to use Bayesian model averaging to provide

a robust aggregate response estimate. This is given by the theorem of total probability:

z̄ = E(z|z̃) =

nM∑

j=1

E(z|z̃,Mj)P (Mj|z̃) (2.18)

where E( ) represents the expectation operator.

While Bayesian model comparison has many natural advantages and is commonly uti-

lized, there are alternatives for use with deterministic model updating and non-probabilistic

UQ methods, which generally cannot estimate model evidence. Deterministic model up-

dating often makes use of Akiake’s information criterion or AIC (Akaike, 1974), and the

Bayesian information criterion or BIC (Schwarz, 1978). These measures assess the data fit

of the each model class at the maximum likelihood result, but add penalty terms related to

the number of model parameters, thereby attempting to enforce Occam’s razor. Such meth-

ods avoid the costly computation of model evidence, but are generally only appropriate with

large amounts of data compared to the number of model parameters (Kass & Raftery, 1995).

While model selection in non-probabilistic UQ is underdeveloped, an example is available

in Haag, González, and Hanss (2012), which compared models on the basis of combined

uncertainty in model-outputs and identified model parameters.

19



This page intentionally left blank.

20



3 Research challenges

The work presented in this dissertation focuses on parametrization and regularization in FE

model updating, both of which have significant ramifications on the efficiency, posedness, and

condition of the resulting model updating problem. Ameliorating these difficulties enhances

FE model fidelity, providing more reliable FE models for simulating structural responses,

optimizing designs, and assessing structural changes. Contemporary challenges associated

with parametrization and regularization are outlined below:

Parametrization

Model updating seeks to infer the best parameter values for a given model such that epis-

temic uncertainties (related to model errors) are reduced without fitting to the aleatoric

uncertainties (such as measurement noise). In this process of statistical inference, it is often

the case that there are more parameters to estimate than can be constrained by available

measurements, leading to an ill-posed problem without a unique solution. At this stage,

alternative parametrizations are desired which (1) give well-posed updating problems, (2)

have some relevance to the uncertainties in the FE model, and (3) are capable of reducing

model-output errors (Friswell & Mottershead, 1995). As discussed in Section 2.2, this is a

challenging task with a large number of alternatives to assess.

It is generally possible to satisfy criterion (1) by setting the number of updating pa-

rameters p well below the number of measurements m. This may not be practical when a

limited number of measurements are used (e.g. only natural frequencies), but schemes such

as subset selection and parameter clustering can feasibly be used to generate extremely small

parametrizations. Criterion (2) is generally enforced by user knowledge of existing uncer-

tainties. In FE model updating, most kinds of epistemic uncertainty (e.g. structural damage

21



and deterioration, uncertain boundary conditions, uncertain joint behavior) are assumed to

behave like errors in the global stiffness matrix K. Therefore, the selected parametrization

can sufficiently represent FE model uncertainties in most settings if the parametrization

is based on δ, as in Eq. (2.14). Even derived parametrizations like subset selection and

parameter clustering can be argued to reflect FE model uncertainties since their updating

parameters are still based on δ.

Criterion (3) is related to the performance of a parametrization. In some settings, it

may be appropriate to compare a large number of candidate parametrizations. However,

in many practical cases, model updating is a very computationally-intensive process with

long compute times for forward runs of full-scale FE models. Thus, it is desired to gen-

erate parametrizations which provide some a priori guarantee of effectiveness. The most

natural vehicle for assessing the effectiveness of a parametrization prior to use is sensitivity

analysis. This could be sensitivity analysis of candidate parametrizations, e.g. Mottershead

et al. (2000). However, a better approach is to design parametrizations with respect to

sensitivity, such as subset selection and parameter clustering. Such methods guarantee lo-

cal, if not global, effectiveness of the selected parameters for reducing residual, and often

have mechanisms for improving posedness and condition by eliminating linear dependence

in the sensitivity matrix. Development of efficient parametrization schemes for improved

performance and posedness is an ongoing challenge in model updating.

Symmetric structures (discussed in Section 2.2.1) are a special case deserving of further

analysis for sensitivity-based parametrization. In one example, parameter clustering based on

natural frequency sensitivity for a symmetric structure produced symmetric clusters (Jang &

Smyth, 2017b). Recent work on the same structure using natural frequency and mode shape

sensitivities led to asymmetric clusters (Bartilson, Jang, & Smyth, 2019), indicating that

symmetric structures exhibit interesting sensitivity properties. Subset selection also stands

to benefit from improved understanding of symmetry, since parameters are chosen based on

their sensitivity vectors and an orthogonalization process will prevent two parameters from
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being chosen which have the same sensitivities (Friswell et al., 1998).

Regularization

While probabilistic UQ methods are popular in the literature for their ability to assess con-

fidence in estimates and perform model selection, they are often intractable for full-scale

FE model updating due to previously-mentioned computational cost. Instead, it may be

more attractive to use deterministic model updating, particularly approaches like the sen-

sitivity method (Mottershead et al., 2011) with much lower computational demand. For

deterministic methods, it is common to utilize some form of regularization for guarantee-

ing a well-posed and well-conditioned inverse problem. Even when condition is guaranteed

through parametrization, it may still be advantageous to implement regularization since it

can equalize the assumptions behind competing parametrizations.

As discussed in Section 2.1.1, a key difficulty is the determination of regularization pa-

rameters α and β in Eq. (2.9). These control the relative importance of reducing residual

against the side constraint of providing a minimum norm solution. Ideally, regularization

should have a minimal impact on the solution (β � α) while still maintaining condition

requirements. This has typically been done with L-curves by plotting the two objectives at

various ratios of α/β to determine an optimal value, or by cross validation (Ahmadian et

al., 1998; Titurus & Friswell, 2008). However, these processes can be very computationally-

intensive since they require running a full model optimization at several test values for α/β.

Other suggested methods are simple heuristics, e.g. α/β = 0.05 (Mottershead et al., 2011),

but such approaches will be sub-optimal for most problems since they fail to account for any

differences in model uncertainty or measurement uncertainty.

As shown by MacKay (1992) and discussed in the context of model updating by Simoen

et al. (2015), regularization in deterministic model updating can be related to the prior

probability distribution for the parameters in Bayesian inference. Therefore, optimal regu-

larization should reflect the underlying uncertainty in the parameters. This is not a simple
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task, however, since there is typically little a priori information about the variability of FE

model parameters. In fact, expressing the uncertainty in FE model parameters as a ‘vari-

ability’ is misleading, since parameters are taken to be epistemic with one ‘true’ value. This

is one of the key critiques of Bayesian model updating (Simoen et al., 2015) and prompts the

difficulty of assigning a PDF to FE model parameters which are non-probabilistic. Updating

parameters are typically derived from FE model parameters, and assigning uncertainties to

these quantities is challenging. When updating parameters are non-physical, e.g. generic ele-

ments by Gladwell and Ahmadian (1995), variability estimates must be made with essentially

no prior knowledge.
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4 Dissertation contributions

The presented work in this dissertation addresses the research challenges described in Chap-

ter 3. By advancing the state-of-the-art within FE model updating, the proposed methods

seek to provide updated FE models which accurately reproduce structural responses through

well-posed model updating problems. The main contributions are outlined below:

Parametrization

An improved sensitivity-based parameter clustering scheme is described in Paper A which

coherently combines heterogeneous data sources during cluster analysis. The proposed

scheme builds upon previous sensitivity-based clustering methods which used natural fre-

quency sensitivities, e.g. Shahverdi et al. (2009) and Jang and Smyth (2017a, 2017b), to

also include mode shape sensitivities during cluster analysis. Furthermore, this method pro-

duces clusters which are consistent with the objective of reducing weighted residual, directly

addressing a key requirement for a successful parametrization.

A novel parametrization approach is proposed in Paper B based on singular value de-

composition (SVD) of the sensitivity matrix. This extends subset selection and parameter

clustering methods to update linear combinations of FE model parameters by a condensed

set of modifier terms. Two different paradigms are proposed for selecting the singular vec-

tors, one which provides maximal improvement in condition, while another uses the logic of

subset selection to best approximate the residual. This produces reduced parametrizations

with enhanced local efficiency and improved posedness.

An extensible framework for extracting further utility from sensitivity-based parametriza-

tions is presented in Paper C. This approach uses successive increments of sensitivity-based

parametrization and model updating, enabling further reductions in error without increas-
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ing the number of updating parameters. This non-intrusively improves efficiency without

restricting posedness.

Paper D provides an in-depth study of the modal sensitivities for symmetric structures,

addressing the nature of sensitivity-based clusters noted in Jang and Smyth (2017b), Paper

A, and Paper B. This paper provides conclusive proof that natural frequency sensitivities

are equal between symmetric parameter pairs, but mode shape sensitivities are unequal.

This has significant ramifications for effective parametrization and improving posedness in

updating symmetric structures.

Regularization

An optimal regularization scheme is proposed in Paper A which uses asymptotic Bayesian

inference to relate regularization in deterministic model updating to the prior PDF in proba-

bilistic methods (MacKay, 1992). The optimal regularizing constants are determined to max-

imize the model evidence, satisfying Occam’s razor, while producing asymptotic estimates

for measurement noise and parameter uncertainty. While FE model parameter uncertainties

are still treated as aleatoric quantities, more informed estimates for the underlying uncer-

tainties are developed through optimization. This approach estimates the model evidence,

combining the computational efficiency of deterministic methods and the model comparison

utility of UQ methods. Additionally, this approach naturally defines an ‘effective number of

parameters’, which is an interesting quantity for assessing the efficiency of a parametriza-

tion. Regularization constants are determined during parameter identification, avoiding the

computational cost of cross validation and L-curve methods. This approach is modified to

provide more robust model evidence estimates in Paper B and Paper C.
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5 Summary of appended papers

Paper A: Finite element model updating using objective-consistent sensitivity-based pa-

rameter clustering and Bayesian regularization

Sensitivity-based parameter clustering presents an attractive reduced-order FE model parametriza-

tion which improves posedness and condition while retaining the physical relevance of the

uncertain FE model parameters. This paper proposes an augmented parameter clustering

method which weights the parameter sensitivities according to the objective function. This

produces clusters which are consistent with the goal of reducing the weighted residual be-

tween measured and model-output data and can incorporate disparate data sources, such as

natural frequency and mode shape sensitivity. This paper also implements optimal regular-

ization in deterministic model updating which relates the regularizing constants to Bayesian

prior PDFs and likelihood functions. The optimal regularizing constants are determined

by maximizing the model evidence, simultaneously providing an estimate for the effective

number of updating parameters. These two improvements are tested in model updating of

a small-scale example with several sets of simulated data and a full-scale suspension bridge

with real data. In both cases, the proposed parameter clustering scheme displayed moderate-

to-strong efficiency improvements over existing parameter clustering methods.

Paper B: Sensitivity-based SVD parametrization and optimal regularization in finite ele-

ment model updating

Analysis of the sensitivity matrix enables the development of FE model parametrizations

which are (at least locally) effective in reducing residual with a minimal number of parame-

ters. In this paper, SVD of the sensitivity matrix is used to develop a novel parametrization

method for modifying linear combinations of FE model parameters. Two different SVD-
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based parametrizations are described, one which gives a minimum-order representation of

the original sensitivity matrix, focusing on condition, and another which best represents the

measurement residual, focusing on efficiency. This paper also implements a modified form of

Bayesian regularization to constrain parameter changes while estimating model evidence in a

deterministic scheme. The proposed approach is tested against subset selection parametriza-

tion for model updating in an extensive study of a small-scale truss with analytical data and

a full-scale study of a suspension bridge with real data. In both cases, the two SVD-based

parametrizations display results on-par or better than subset selection when updating natu-

ral frequencies and mode shapes. The support for competing parametrizations is gauged by

Bayes factor, providing robust inference.

Paper C: Incremental reparametrization in sensitivity-based subset selection and parameter

clustering for finite element model updating

Sensitivity-based parametrization methods, such as subset selection and parameter clus-

tering, are generally based on the local sensitivity matrix evaluated at the initial point.

However, after updating this parametrization, a new parametrization may be more efficient

due to changes in parameter sensitivities. In this paper, incremental reparametrization is

proposed as a non-intrusive, extensible framework for updating an FE model using a new

sensitivity-based parametrization at each increment. Importantly, this approach allows users

to extract further improvement from an FE model without sacrificing posedness because

each increment uses a reduced set of updating parameters. Deterministic model updat-

ing is implemented with a modified Bayesian regularization term to consistently penalize

new parametrizations. The performance of the proposed reparametrization scheme is tested

against subset selection and parameter clustering based only on the initial sensitivity ma-

trix. Support for reparametrization is assessed via Bayes factor in model updating exercises

of a small-scale truss with analytical data and a benchmark study with experimental data.

Subset selection exhibits decisive support for reparametrization in both exercises, while the
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benefits for parameter clustering are less pronounced.

Paper D: Symmetry properties of natural frequency and mode shape sensitivities in sym-

metric structures

The sensitivities of FE model-outputs to parameter changes are fundamental to sensitivity-

based model updating and sensitivity-based parametrization methods. In particular, sym-

metric structures have been shown in previous work to produce symmetric sensitivity-based

parameter clusters (Bartilson et al., 2019; Jang & Smyth, 2017b), indicating unique sen-

sitivity behavior. This paper provides analytical proof that natural frequency sensitivities

are equal between symmetric parameter pairs (e.g. the stiffnesses of symmetrically-placed

elements), while mode shape sensitivities are necessarily unequal. The degree of inequality

for mode shape sensitivities is explored in a small numerical study. The results are discussed

with respect to parameter clustering, subset selection, and sensitivity-based model updating

for symmetric structures.
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6 Conclusions

The work in this dissertation explored FE model updating by detailing challenges and propos-

ing solutions in the topics of parametrization and regularization. FE model updating was

approached from the perspective of statistical inference, attempting to estimate the ‘correct’

model parameters which improve correspondence between measured and model-output re-

sults. An updated FE model has enhanced simulation value, enabling users to accurately

simulate responses, design changes, and damage scenarios.

A core challenge is that model updating problems are commonly ill-posed, such that a

unique solution does not exist to the parameter inference problem, typically because there

are more parameters to identify than data available to constrain the result. Parametrization

and regularization are two approaches for improving posedness in model updating. A major

challenge is producing alternative parametrizations and regularization which reflect under-

lying uncertainties and can efficiently improve simulation quality with a minimum number

of updating parameters, thereby satisfying Occam’s razor.

An effective method to evaluate the condition and effectiveness of a parametrization is

through sensitivity analysis. In this vein, three new sensitivity-based parametrizations were

proposed:

– The first method extends existing parameter clustering methods to reflect the weighted

residual within the objective function. This approach also naturally incorporates hetero-

geneous data in cluster analysis, providing significantly better results than contemporary

clustering methods when updating both natural frequencies and mode shapes.

– The second method utilizes SVD of the sensitivity matrix to parametrize using linear

combinations of FE model parameters. This provides desirable properties, such as min-

imal representation of the original sensitivity matrix (to improve posedness) or maximal

31



effectiveness in reducing the residual (to improve effectiveness).

– The third method serves as a non-intrusive framework for delivering further error reduc-

tions with existing sensitivity-based parametrization methods. This approach utilizes the

change in the sensitivity matrix after each increment of model updating to develop new,

more efficient parametrizations without expanding the number of updating parameters.

These parametrizations were compared against contemporary methods on the basis of param-

eter efficiency, effectiveness in reducing residual, and relative support via model comparison.

In all cases, the proposed methods were shown to increase effectiveness and efficiency without

sacrificing posedness or physical meaning. In addition, analytical sensitivities were explored

for symmetric structures, providing key insight into modal sensitivities for symmetric pa-

rameter pairs. The ramifications of the derived results were discussed for sensitivity-based

parametrization and model updating of symmetric structures.

Optimal Bayesian regularization was also proposed in this dissertation. This approach re-

lates regularization to Bayesian inference via an asymptotic assumption, delivering the com-

putational efficiency of deterministic methods with the UQ benefits of probabilistic methods,

such as model evidence estimates. Robust regularization is achieved by estimating model

and measurement uncertainties. The proposed technique also assesses the local efficiency

of the parametrization with applications to model comparison. The low computational cost

ameliorates many of the difficulties associated with other regularization schemes, making

this approach an attractive alternative for fast, approximate studies in practical FE model

updating with applications to UQ and model comparison.
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a b s t r a c t

Finite element model updating seeks to modify a structural model to reduce discrepancies
between predicted and measured data, often from vibration studies. An updated model
provides more accurate prediction of structural behavior in future analyses. Sensitivity-
based parameter clustering and regularization are two techniques used to improve model
updating solutions, particularly for high-dimensional parameter spaces and ill-posed
updating problems. In this paper, a novel parameter clustering scheme is proposed which
considers the structure of the objective function to facilitate simultaneous updating of
disparate data, such as natural frequencies and mode shapes. Levenberg–Marquardt
minimization with Bayesian regularization is also implemented, providing an optimal reg-
ularized solution and insight into parametrization efficiency. In a small-scale updating
example with simulated data, the proposed clustering scheme is shown to provide moder-
ate to excellent improvement over existing parameter clustering methods, depending on
the accuracy of initial model. A full-scale updating example on a large suspension bridge
shows similar improvement using the proposed parametrization scheme.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Modern structural analysis generally depends on finite element (FE) models to predict dynamic behavior and understand
the current state of a system. Though these models are often developed from detailed design drawings, discrepancies always
exist betweenmeasured (observed) and model-output behavior [1]. Typical sources of discrepancy are model idealization, FE
discretization errors, and uncertain model parameters such as material properties, section properties, geometry, and bound-
ary conditions [1,2]. Discrepancies indicate that a model cannot reliably predict the behavior of its corresponding physical
structure, limiting the utility of the model for future analysis.

Model updating is the process which seeks to reduce discrepancies between measured data and model-output data by
adjusting parameters of an FE model [1–3]. Model updating has been successfully applied to a wide variety of aerospace,
mechanical, and civil structures. Examples include a helicopter airframe [2,4], an aluminum space-frame [5], a prestressed
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single-span highway bridge [6], a prestressed multi-span highway bridge [7], a concrete-filled steel tubular arch bridge [8],
an actively-damped high-rise structure [9], and a residential reinforced concrete frame [10].

Model updating techniques may be divided into two categories: uncertainty quantification (UQ) methods and determin-
istic methods [11]. UQ methods incorporate measurement and model uncertainties in their solutions and can be grouped
into probabilistic and non-probabilistic approaches. Probabilistic UQ methods estimate probability distributions functions
for parameters and model outputs through repeated sampling in the parameter space. The most common non-
probabilistic UQ method is fuzzy model updating, which uses optimization to estimate intervals for parameters and outputs
corresponding to upper and lower bounds of measured data. However, both probabilistic and non-probabilistic UQ methods
are orders-of-magnitude more computationally expensive than deterministic methods. An excellent review of UQ model
updating can be found in [11].

Deterministic model updating produces a unique optimal solution and typically involves iterative adjustment of FE model
parameters [3]. Of course, as these schemes generally involve minimizing a non-linear function, they are possibly subject to
convergence problems. Among iterative methods, the sensitivity method [2] is one of the most intuitive and popular tech-
niques for model updating. The sensitivity method approaches model updating as a non-linear least-squares minimization
problem which is solved by iterations of linear approximations. The objective function is a sum of squared differences
between measured and model-output data, making it easy to incorporate various data. The use of linear approximations also
makes this method physically-intuitive and efficient, as the Jacobian matrix is directly relatable to model parameter sensi-
tivities. However, the sensitivity method is often applied to ill-posed model updating problems, necessitating a reduction in
the number of updating parameters and/or the inclusion of side-constraints in order to reach a unique, stable solution.

Shahverdi et al. [4] presented sensitivity-based parameter clustering as a viable method for reducing the number of
updating parameters. By observing the sensitivities of model outputs to changes in model parameters, sensitivity-based
parameter clustering generates clusters of model parameters which have similar effects on targeted model outputs. Then,
each cluster of model parameters is updated by a single parameter. This gives a reduced-order model, generally with a
better-conditioned Jacobian, while retaining the physical relevance of clustered model parameters. This technique was suc-
cessfully applied to the updating of a helicopter airframe [4]. Jang and Smyth [12,13] applied this method for the updating of
a large-scale suspension bridge.

Regularization is another technique used to solve ill-posed and noisy problems which often occur in FE model updating
[2,14–16]. Generally, regularization adds equations which help constrain the updating solution. This can help produce a
unique solution to an underdetermined problem (fewer measurements than parameters), though this situation should be
avoided. Regularization is often used to give a minimum-norm solution, but it may also be used to enforce user-specified
constraints between parameters [2].

While sensitivity-based parameter clustering is very promising, it is difficult to utilize disparate sources of data, such as
natural frequencies and mode shapes, due to differences in scale. Previous work with parameter clustering only used one
type of data [2,4], or used only natural frequency sensitivities for clustering despite the inclusion of mode shapes in the
objective function [12,13]. To alleviate scaling issues during parameter clustering, it is necessary to develop a weighting
technique which is efficient and reflective of the problem structure. The presented research details an objective-
consistent weighting technique based on the residual. This paper also implements Bayesian regularization [17,18] in model
updating, which gives a statistically optimal regularized solution. Bayesian regularization also provides insight into the effec-
tive number of updating parameters, which is used to explore the efficiency of competing parametrizations.

The paper begins with the definition of residual between measurements and corresponding model outputs, along with
analytical sensitivities of model outputs to model parameters (Section 2). Model parametrization, clustering, and the
objective-consistent weighting scheme are discussed in Section 3. The Levenberg–Marquardt minimization method, with
the accompanying Bayesian regularization technique, are detailed in Section 4. Two model updating exercises are then per-
formed to exhibit the efficiency of the objective-consistent clustering scheme for simultaneous updating of natural fre-
quency and mode shape data. The first exercise uses a small-scale 2-dimensional truss with simulated measurements
(Section 5), while the second uses a full-scale large suspension bridge with real data (Section 6). The findings are then dis-
cussed and concluding remarks are made in Section 7.

2. Residual definition and analytical sensitivity of model parameters

The sensitivity method for FE model updating [2] begins with the definition of a discrepancy, or residual, to be minimized
by modifying a set of updating parameters. Traditionally, the residual r is defined as the difference between the column vec-
tor of m measured outputs ~z and the column vector of m analytical model outputs zðhÞ which is a function of the p updating
parameters h. The relationship between r and h is generally non-linear, but can be linearized by truncating the Taylor series
after the linear term:

rðhÞ ¼ ~z � zðhÞ � rðhiÞ þ J iðh� hiÞ ð1Þ
At iteration i; hi is the updating parameter vector and J i 2 Rm�p is the Jacobian matrix of r with respect to h, evaluated at hi:

J i ¼
@r
@h

����
h¼hi

ð2Þ
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The evaluation of J, also known as the sensitivity matrix, forms the basis of Gauss–Newton updating methods [19]. Note
that J is the sensitivity matrix for the residual, while other authors analyzed the sensitivity matrix for the model outputs,
@z=@h [1,4,12]. These sensitivity matrices are often equal but opposite in sign, which has no effect in sensitivity-based clus-
tering methods. J is more general since the residuals, not the model-outputs, are being linearized.

In any model updating problem, one must choose data to set as a target for updating. Common choices are natural fre-
quencies or eigenvalues, mode shapes, and frequency-response functions. For the purposes of this paper, the chosen residual
is a concatenation of the natural frequency residual vector rf (Section 2.1) and the mode shape residual vector rs (Section 2.2),

leading to r ¼ ½rTf rTs �
T . The weighted sum-of-squared residual Er can be written

Er ¼ rTW rr ¼ rTf rTs
h i W f

r

W s
r

" #
rf
rs

� �
ð3Þ

¼ rTf W
f
r rf|fflfflfflffl{zfflfflfflffl}

E f
r

þ rTsW
s
rrs|fflfflfflffl{zfflfflfflffl}

Esr

ð4Þ

which includes a term for the weighted sum-of-squared frequency residual (Ef
r ) and a term for the weighted sum-of-squared

mode shape residual (Es
r).W r is the residual weighting matrix, which is discussed in more detail in Section 4, and reflects the

importance of each residual term.
The natural frequencies and mode shapes are assumed to be obtained from a model of an undamped structure, giving

only real frequencies and mode shapes. A generic FE model of an undamped structure with N degrees-of-freedom (DoFs) con-
sists of a stiffness matrix K and a mass matrixM, where K;M 2 RN�N . These matrices are used to solve the generalized eigen-

value problem K/j ¼ x2
j M/j 8j ¼ 1; . . . ;N, where xj represents the jth angular natural frequency (in units of rad/s) with an

equivalent natural frequency f j (in units of Hz). Each corresponding mode shape /j is mass-normalized such that /T
j M/j ¼ 1.

For computing J, note that each column is a concatenation of frequency residual gradients and mode shape residual gra-

dients, i.e. @r=@hk ¼ ½ð@rf =@hkÞT ð@rs=@hkÞT �
T
. Analytical methods for calculating the sensitivities are given in Sections 2.1 and

2.2. Alternatively (or for the purposes of verification), sensitivities can be estimated numerically using finite differences.

2.1. Undamped frequency residual

The frequency residual vector rf is defined as the difference between the column vector of lmeasured natural frequencies
~f and the corresponding column vector of l model-output natural frequencies f ðhÞ:

rf ¼ ~zf � zf ðhÞ ¼ ~f � f ðhÞ ð5Þ
It is essential to perform mode pairing [3] to ensure that measured and model-output data refer to the same modes when

calculating residual. In this work, the mode pairing process proceeded in order through the measured modes, selecting the
model-output mode which maximized the Modal Assurance Criterion (MAC) [20], or equivalently, minimized the angle
between measured and model-output mode shapes. Model-output modes which were already paired were excluded from
future pairing calculations.

When W f
r is diagonal, the weighted sum-of-squared frequency residual Ef

r can be simplified using Eq. (5)

Ef
r ¼ rTf W

f
r rf ¼

Xl

j¼1

wf
rjð~f j � f jðhÞÞ

2 ð6Þ

The frequency residual sensitivity vector (for use in J) is

@rf
@hk

¼ � @f ðhÞ
@hk

ð7Þ

The sensitivity of model natural frequency f j to a change in updating parameter hk can be calculated analytically using the
results of [21,22]

2p
@f j
@hk

¼ @xj

@hk
¼ 1

2xj
/T

j
@K
@hk

�x2
j
@M
@hk

� �
/j ð8Þ

where /j is the jth mass-normalized mode shape, i.e. /T
j M/j ¼ 1.

2.2. Undamped mode shape residual

The mode shape residual rs is defined as the difference between the concatenated set of l measured mode shapes ~zs and
the corresponding concatenated model-output mode shapes zsðhÞ:
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rs ¼ ~zs � zsðhÞ ð9Þ

The concatenated mode shape measurement vector is written as ~zs ¼ ½~vT
1 � � � ~vT

l �
T where ~v j is the jth unit-normalized mea-

sured mode shape, i.e. ~v j ¼ ~/j=ð~/T
j
~/jÞ1=2. Similarly, the concatenated model-output mode shapes are

zsðhÞ ¼ ½l1vT
1ðhÞ � � � llvT

l ðhÞ�
T , where v jðhÞ is the jth unit-normalized model-output mode shape. The model-output modes

should be sorted according to the mode pairing results. lj is the modal scale factor between corresponding measured and
model-output mode shapes, and minimizes the difference between ~v j and v jðhÞ in the least-squares sense [20]:

lj ¼ ~vT
j v jðhÞ ð10Þ

Note that ~v j and v jðhÞ must be measured at the same n points on the physical and model structures. This means that

v jðhÞ; ~v j 2 Rn 8j ¼ 1; . . . ; l and thus rs 2 Rnl.
Assuming that W s

r is diagonal and can be decomposed into a scalar multiple of In for each mode (½W s
r �j ¼ ws

rjIn), then the

sum-of-squared mode shape residual Es
r can be written

Es
r ¼ rTsW

s
rrs ¼

Xl

j¼1

ws
rjr

T
sjrsj ¼

Xl

j¼1

ws
rjk~v j � ljv jðhÞk22 ð11Þ

where rsj ¼ ~v j � ljv jðhÞ is the residual for mode shape j and k k2 is the L2 norm. The MAC [20] between ~v j and v jðhÞ is defined
as

MACð~v j;v jÞ ¼
ð~vT

j v jÞ2
~vT
j
~v j � vT

j v j
ð12Þ

In the context of this paper, ‘MAC’ refers to ‘crossMAC’ between measured and model-output mode shapes, while ‘auto-
MAC’ refers exclusively to MAC between the same set of modes (e.g. measured mode shapes). Use of Eq. (12) allows Eq. (11)
to be rewritten as

Es
r ¼

Xl

j¼1

ws
rj 1�MACð~v j;v jðhÞÞ
� � ð13Þ

The derivative of the residual for mode shape j, rsj (for use in J), is

@rsj
@hk

¼ � @ðljv jÞ
@v j

@v j

@hk
¼ � v j ~vT

j þ ljI
h i @v j

@hk
ð14Þ

The residual sensitivities for each mode are concatenated, such that @rs=@hk ¼ ½ð@rs1=@hkÞT � � � ð@rsl=@hkÞT �
T
, where the

sensitivity of the jth mode shape can be analytically calculated by the results of [21,22]:

@v j

@hk
¼

XH
h¼1

ajkh
vT

hMvh
vh ð15Þ

The upper limit of summation H is the number of dynamic modes used to estimate the sensitivities, where H 6 N. When
H ¼ N, the results are exact. The factors ajkh are given by

ajkh ¼ 1
x2

j �x2
h

vT
h

@K
@hk

�x2
j
@M
@hk

� �
v j; j– h ð16Þ

ajkj ¼ �1
2
vT

j
@M
@hk

� �
v j ð17Þ

Combining the results of Eqs. (6) and (13), the weighted sum-of-squared residual from Eq. (3) is

Er ¼ E f
r þ Es

r ¼
Xl

j¼1

wf
rjð~f j � f jðhÞÞ

2 þ
Xl

j¼1

ws
rj 1�MACð~v j;v jðhÞÞ
� � ð18Þ

Note that whenW r is equal to the reciprocal of the covariance of ~z (for uncorrelated measurements), then Eq. (18) implies
that each frequency has its own measurement variance, while the components of each mode shape vector have equal vari-
ance to other components of the same mode shape.
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3. Selection of updating parameters

3.1. Model parametrization

When updating an FE model, the overarching approach is to modify a set of d model parameters x to reduce error. Fol-

lowing the parametrization in [12,13], the jth element of the modified physical parameter vector x is defined by:

xj ¼ x0j ð1� djÞ ð19Þ

where x0j is the initial value of xj and dj is the physical parameter modification term. Since x may contain parameters which
differ by several orders of magnitude, such as stiffnesses and mass densities, updating x directly may result in a poorly-scaled
Jacobian matrix. The use of d results in comparably-sized updating parameters and improved condition of J. Perhaps the
most natural implementation of this parametrization in an FE model is to modify each element or substructure e (out of
a total number nel) stiffness (Ke) and mass (Me) matrices prior to summation into the global stiffness (K) and mass (M)
matrices:

K ¼
Xnel
e¼1

Keð1� dkeÞ ¼ K0 �
Xnel
e¼1

Ked
k
e ð20Þ

M ¼
Xnel
e¼1

Með1� dme Þ ¼ M0 �
Xnel
e¼1

Med
m
e ð21Þ

K0 and M0 are the initial global stiffness and mass matrices prior to modification or updating. dke and dme are the stiffness and
mass physical parameter modifications, respectively, for element or substructure e. Note that d for this problem may be
viewed as a concatenation of dk and dm, therefore d has d ¼ 2nel components. In this form, calculating partial derivatives
for use in analytical sensitivity calculations is simple, as @K=@dke ¼ �Ke and @M=@dme ¼ �Me.

While FE model updating based on d is natural and straightforward, it can quickly become intractable or ill-posed in an FE
model with thousands of elements, possibly with several parameters per element. Thus, a smaller set of updating parameters
are sought through cluster analysis. The set of FE model parameters d are not directly updated, but instead h are updated and
d ¼ gðhÞ. In general, it is desired that the clustering is ‘‘hard” (i.e. each physical parameter belongs to one and only one clus-
ter). Thus, g may be written as a linear transformation:

d ¼ gðhÞ ¼ Ch ð22Þ
where C 2 Rd�p such that

Cjk ¼ IkðjÞ ¼
1 dj is included in cluster k; updated by hk
0 else

�
ð23Þ

in which IkðjÞ is the indicator function.
The FE model elements can be summed into stiffness and mass substructures, KH

j and MH
h , respectively, using the indi-

cator function

KH
j ¼

Xnel
e¼1

IjðeÞKe; MH
h ¼

Xnel
e¼1

IhðeÞMe ð24Þ

which are updated by a corresponding hkj and hmh :

K ¼
Xpk
j¼1

KH
j ð1� hkj Þ ¼ K0 �

Xpk
j¼1

KH
j h

k
j ð25Þ

M ¼
Xpm
h¼1

MH
h ð1� hmh Þ ¼ M0 �

Xpm
h¼1

MH
h h

m
h ð26Þ

Similar to d, h is a concatenation of stiffness updating parameters hk 2 Rpk and mass updating parameters hm 2 Rpm , with the
total number of updating parameters p ¼ pk þ pm.

3.2. Sensitivity-based cluster analysis of updating parameters

Selection of updating parameters is an integral step in the model updating process, where three general conditions should
be satisfied: (1) parameters should be chosen to avoid an ill-posed problem, (2) the choice of parameters should reflect the
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objective of reducing modeling error, and (3) the model-outputs should be sensitive to the selected parameters [3]. Satisfying
these three conditions is non-trivial. Ill-conditioning tends to occur in large problems when columns of the Jacobian are
increasingly likely to exhibit linear dependence [4]. One solution is to use a subset of model parameters, a so-called ‘subset
selection’ [23]. In this method, an orthogonal basis is created for the residual among a subset of parameter sensitivities. This
reduces linear dependence in the Jacobian and ensures the parameters are effective in minimizing the residual.

An alternative approach retains all of the model parameters, but updates groups or clusters of model parameters, thereby
reducing model order. This idea was presented in [24] as the ‘best subspace approach’, where clusters were chosen based on
the angle between subspaces. This idea was improved upon and validated in Shahverdi et al.’s work [4], where clusters were
selected based on hierarchical cluster analysis of parameter sensitivities. A major advantage of sensitivity-based clustering,
as opposed to subset selection methods, is that clusters have a physical relevance: model parameters in the same cluster
exhibit similar effect on model outputs. In the examples presented in [2,4,12,13], this meant that clustered parameters
exhibited similar effects on the model natural frequencies.

Following the work of Shahverdi et al. [4] and Jang and Smyth [12,13], hierarchical clustering was selected for use as the
grouping method in this paper. For a brief overview of hierarchical clustering, see [4], while a more thorough coverage is
provided in [25]. When using hierarchical clustering, it is necessary to select a distance measure and a linkage method.
The selected distance measure for this study is cosine distance. The cosine distance between the sensitivity vectors can
be written

dcosðjj; jkÞ ¼ 1� jTj jkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTj jj � jTk jk

q ð27Þ

where jj and jk are the sensitivities of dj and dk, respectively. The sensitivity vectors can be written as jj ¼ @r=@dj, which are
the columns of the Jacobian matrix J ¼ ½j1 � � � jd�.

Cosine distance is a measure of dissimilarity in shape between two vectors and does not consider the relative magnitudes.
Furthermore, one can note that similar vectors are near-parallel. When near-parallel columns of the Jacobian are reduced
through clustering, the condition of the problem tends to improve [4].

With a chosen clustering method and distance measure, the only remaining choice is the linkage method, which deter-
mines how vectors are combined to form clusters. The chosen method in this paper is the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) [26]. This is an agglomerative method which combines the two nearest clusters at each step,
evaluating the distance between the unweighted means of each cluster. This agglomerative process begins at the ‘branches’
of the dendrogram with single elements, then combines clusters at each step until it reaches the ‘root’ with only a single
cluster encompassing all elements. When the dendrogram is built, the user is able to retrieve clusters by choosing to ‘cut’
the tree at a certain distance level, guaranteeing that each cluster is more than some chosen distance from any other.
Alternatively, the user can input a desired number of clusters and the tree will be ‘cut’ to yield the desired number.

3.3. Objective-consistent scaling of cosine distance

While the use of cosine distance for sensitivity-based clustering was an excellent development, it is susceptible to becom-
ing a skewed metric. When evaluating dcos for two sensitivity vectors, skewing occurs when the sensitivity vectors comprise
disparate sources, such as natural frequency and mode shape sensitivities. If the natural frequency sensitivities are consid-
erably larger in magnitude than the mode shape sensitivities, the natural frequency sensitivities tend to dominate the result-
ing distance calculation. Indeed, there is no natural scale for mode shape sensitivities, as the mode shapes themselves can
have arbitrary normalization. To mitigate the difference in magnitude for different sources of sensitivity, it is necessary to
scale the residual sensitivity vectors.

To the authors’ knowledge, no systematic method has been proposed for incorporating more than one type of data in clus-
ter selection for FE model updating. Previous uses of parameter clustering in model updating only updated natural frequen-
cies [2,4], or didn’t incorporate mode shapes into cluster selection despite their inclusion in the objective function [12]. The
proposed scaling for the residual sensitivity vectors is found by observing the gradient of the sum-of-squared residual from
Eq. (3):

@Er

@dj
¼ 2rTW r

@r
@dj

ð28Þ

where the sensitivity vector @r=@dj is scaled by the weighted residual, rTW r . Given a diagonalW r , then each term of the sen-
sitivity vector is multiplied by the corresponding residual and weighting term. Decomposing the inner product of rTW r and
@r=@dj results in a sensitivity vector which is scaled by a matrix WOC:

sj ¼ WOC
@r
@dj

; WOC ¼ diagðrTW rÞ ð29Þ

WOC is termed the ‘objective-consistent’ (OC) sensitivity scaling matrix, as it rescales the sensitivity vectors according to the
residual objective function, Er . The cosine distance between scaled sensitivities can be written as
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dcosðsj; skÞ ¼ 1� jTj W
2
OCjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jTj W
2
OCjj � jTkW2

OCjk
q ð30Þ

using the same notation as in Eq. (27), with jj ¼ @r=@dj. This form clearly indicates the role of WOC.
This choice of scaling based on weighted residual confers several benefits. First, the cosine distance and corresponding

clustering give more weight to sensitivity vector components which have a large corresponding residual, and less weight
to sensitivity components with a small corresponding residual. This ameliorates scenarios where, say, a natural frequency
sensitivity is large, but that particular natural frequency is already well-matched and has a residual component near zero.
Second, the clustering reflects the scaling of the weighting matrix W r and its effect on the objective value. Finally, this does
not compromise the physical relevance of the clustering. Clusters are still selected based on the similarity of residual sen-
sitivity vectors (which is related to model behavior), while the weighting only dictates the importance of each term in
the cosine distance calculation.

4. Levenberg–Marquardt minimization with Bayesian regularization

With a well-defined residual and parametrized model, model updating proceeds with selection of an error minimization
algorithm. The objective function is first modified to include regularization, then the minimization procedure is described
following the approach in [17,18]. The regularized objective function, F, includes both a residual term Er (see Eq. (3)) as well
as an updating parameter size (penalty) term Eh:

FðhÞ ¼ bEr þ aEh ¼ brTW rr þ ahTWhh ð31Þ

a and b are scalar regularization parameters which influence the relative importance of Er and Eh during minimization. The
process for calculating fa; bg is covered in Section 4.1.

The residual weighting matrix W r and the parameter weighting matrix Wh must generally be symmetric positive semi-
definite and should reflect the uncertainty in r and h, respectively. The optimum choices (in a Bayesian sense) forW r andWh

are the inverse of the measurement covariance matrix and the parameter covariance matrix, respectively [27–29]. The mea-
surement covariance matrix is diagonal for the case of uncorrelated uncertainties, and is usually simple to estimate from
data. The parameter covariance matrix is difficult to estimate, though [30] provides a method for relating Wh to the sensi-
tivity matrix. The work presented in this paper uses a simple choice of Wh ¼ I, similar to Tikhonov regularization [31].

The residual vector is a column of m elements given by

rðhÞ ¼ ~z � zðhÞ ð32Þ

where ~z represents a vector of m measurements and zðhÞ represents a vector of m model outputs, given the column vector of
p updating parameters h. The parameter values and residual at iteration i are written hi and ri ¼ rðhiÞ, respectively. At each
iteration, the model parameters are updated such that

hiþ1 ¼ hi þ Dhi ð33Þ
To begin the solution algorithm, the residual at hiþ1 is approximated using the truncated Taylor series of Eq. (1), giving

rðhi þ DhiÞ � ri þ J iDhi ð34Þ

where J i is the Jacobian of r evaluated at hi, as in Eq. (2). Using this estimate for riþ1 in Eq. (31) and minimizing Fðhi þ DhiÞ
with respect to Dhi yields

Dhi ¼ �2½Hi��1½bJTi W rri þ aWhhi� ð35Þ

which is the Gauss–Newton algorithm [19]. The Hessian at iteration i;Hi, is estimated by the Gauss–Newton approximation

Hi ¼ rrF � 2½bJTi W rJ i þ aWh� ð36Þ
Eq. (35) can be improved into the more robust Levenberg–Marquardt algorithm [32,33], which modifies the Hessian with

a scalar damping term k (unrelated to damping in mechanical vibrations), giving a trust-region solution:

Dhi ¼ �2½Hi þ 2kI��1½bJTi W rri þ aWhhi� ð37Þ
As k ! 0, the Levenberg–Marquardt algorithm becomes the Gauss–Newton algorithm, while k ! 1 leads to the gradient-

descent algorithm with infinitesimal step size. k is adjusted using the multiplication scheme originally described by Mar-
quardt [33], such that if the current value of k results in Dhi with Fiþ1 < Fi, k is divided by a factor v for the next iteration.
Otherwise k is multiplied by a factor v, then Dhi, Fiþ1 are recomputed until Fiþ1 < Fi or convergence. A reasonable set of initial
values are k0 ¼ 0:01 and v ¼ 10, which fulfills the requirement that k P 0.
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4.1. Bayesian selection of regularization parameters

The regularization parameters a and b are used to produce a model updating solution that balances parameter values (Eh)
and residual (Er). Within the Bayesian framework, a and b are treated as random variables [17]. If a and b are known, the
posterior probability of the model parameters h is given by Bayes’ rule:

Pðhj~z;a; b;MÞ ¼ Pð~zjh;b;MÞPðhja;MÞ
Pð~zja;b;MÞ ð38Þ

where ~z are the measurements and M represents the chosen parametrization or model. Pð~zjh; b;MÞ is the likelihood of the
measurements given h; Pðhja;MÞ is the prior density of h, and Pð~zja; b;MÞ is a normalization factor corresponding to the evi-
dence for a and b. If it is assumed that noise in ~z is Gaussian, and that the prior distribution of h is also Gaussian, then the
likelihood and the prior are

Pð~zjh;b;MÞ ¼ e�bEr

Z~z
; Pðhja;MÞ ¼ e�aEh

Zh
ð39Þ

where the normalization factors are Z~zðbÞ ¼ ðp=bÞm=2
=det ðW rÞ1=2 and ZhðaÞ ¼ ðp=aÞp=2=det ðWhÞ1=2. Thus, the posterior is

Pðhj~z;a; b;MÞ ¼ e�FðhÞ

ZFða; bÞ ð40Þ

where ZFða; bÞ is a normalization factor which can be estimated by using a truncated Taylor series expansion of F from Eq.
(31) about the local minimum point hMP, which corresponds to the maximum probability point of the posterior distribution
[17]. This approximation gives

ZFða; bÞ � e�FðhMPÞð2pÞp=2=det ðHMPÞ1=2 ð41Þ
where HMP ¼ HðhMPÞ is the Hessian estimated from Eq. (36), as in [18]. Rewriting the posterior in Eq. (38) to find the evidence
and substituting the results of Eqs. (39) and (40) gives

Pð~zja; b;MÞ ¼ Pð~zjh;b;MÞPðhja;MÞ
Pðhj~z;a;b;MÞ ¼ ZFða;bÞ

Z~zðbÞZhðaÞ ð42Þ

Substituting the expressions for the normalization terms and taking the logarithm of the evidence yields

log Pð~zja;b;MÞ ¼ �bEMP
r � aEMP

h � 1
2
log detðHMPÞ þm

2
log bþ p

2
logaþ c ð43Þ

where c is not a function of a or b. Maximizing the log-evidence with respect to a and b yields

a ¼ c
2EMP

h

b ¼ m� c
2EMP

r

ð44Þ

where c is the number of effective updating parameters [17], ranging from 0 to the number of parameters p:

c ¼ p� 2a trðH�1
MPWhÞ ð45Þ

c provides an interesting insight into model efficiency and model selection [18]. If c is close to p, then the problem might be
‘saturated’ and need more parameters to improve the solution. If increasing p results in the same c as before, then the orig-
inal p was sufficient (without changing the parameter selection scheme). c� p implies the solution is not sensitive to most
of the chosen parameters, suggesting that p is too large or the selected parameters are inefficient. MacKay [17] suggests that
c � p=2 is a reasonable result, such that one ‘unit’ of noise is fitted for each well-estimated parameter.

Using knowledge of the relationships for a, b, and c, the Levenberg–Marquardt minimization algorithm can then be mod-
ified to include iterative recalculation of the Bayesian regularization parameters, as done in [18]. The resulting pseudocode is
provided in Table 1. Note that c is recalculated in each iteration, but is only meaningful at a local minimum point (i.e. at a
converged solution).

5. Model updating of a small-scale FE model: 29-element truss

5.1. Model description and cluster analysis

The first exercise of the proposed model updating scheme is the 29-element, 28-DoF, 2-dimensional truss depicted in
Fig. 1. This truss was modified from the 29-DoF truss presented in Papadimitriou et al. [34]. The boundary conditions were
changed to pin-pin (from pin-roller), thus making the structure symmetric and statically indeterminate. All truss elements
utilized identical material properties, with Young’s modulus (E) of 200 GPa, mass density (q) of 7800 kg/m3, and area (A)
0.25 m2. These values were essentially arbitrary, being chosen only to have a rough physical relevance.
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The purpose of this small-scale model is not to demonstrate the power of parameter clustering for FE model updating, as a
29-element updating problem is easily tractable without any reduction in parameters. Instead, the small scale of the truss
model allows a computationally-feasible comparison between different clustering methods across numerous structural
states and realized measurements. A full-scale study only offers one structural state and realized measurement, limiting
the ability to deduce if one updating method is generally superior to another method, or simply superior for that structural
state. Furthermore, full-scale structural models are often impractical updating numerous randomized states due to pro-
hibitive computation time.

The FE model of the truss was developed in MATLAB [35] using consistent (non-lumped) element mass matrices. For con-
sistency with [34], the first five vibrational modes were analyzed, having natural frequencies of {9.31, 19.8, 26.9, 37.3, 51.2}
Hz with no structural modification. It was assumed that the full field of 28 DoFs were measured.

Random realized states were generated by modifying the Young’s modulus (E) and density (q) for each element, e, by an
uncorrelated, uniform random number dke or d

m
e , as in Eqs. (20) and (21). Since the truss element stiffness (Ke) and element

Table 1
Pseudocode for Levenberg–Marquardt minimization with Bayesian regularization.

Fig. 1. 28-DoF truss structure, modified from Papadimitriou et al. [34].
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mass (Me) are linearly dependent on the element E and q, respectively, this could also be seen as a direct modification of the
element matrices. Two different modification levels were analyzed, d 2 ½�0:5; 0:5� and d 2 ½�0:05;0:05�, representing a poor
and a good initial model state, respectively. 1000 random realized states were generated for each modification level.

Noise was then added to the natural frequency and mode shape measurements from each of the 2000 structural realiza-
tions. Each natural frequency measurement was corrupted with a Gaussian white noise sample with standard deviation
equal to 0.5% of the measured natural frequency. Each mode shape was corrupted with a Gaussian white noise vector with
standard deviation equal to 5% of the mode shape’s standard deviation. This noise model was considered to be consistent
with typical measurement conditions, in which natural frequencies are often reliable to within 1%, but mode shape measure-
ments may exhibit an order-of-magnitude lower precision [1,36].

The objective function took the form of Eq. (18), with W r equal to the inverse of measurement covariance matrix. Using

the terminology in Eq. (18), this can be written as wf
rj ¼ ð0:005~f jÞ

�2
and ws

rj ¼ ð0:05 stdð~v jÞÞ�2. Three different methods, or
sets of sensitivity vectors, were used to generate clusters using the techniques described in Section 3.2. Six stiffness clusters
were selected for each method, which avoided an overly complex depiction of stiffness clusters while still providing ade-
quate similarity between element stiffness sensitivities in the same cluster. One mass cluster was selected (for a total
p ¼ 7), which was equivalent to updating the total structural mass. This was done to allow a limited ability to update mass
discrepancy without requiring an additional description of mass clusters.

The first method (f cluster) used only natural frequency sensitivities @f =@dk, as in [2,4,12,13]. Of course, the authors in
[2,4] only sought to update frequencies in their full-scale tests, so utilizing mode shape sensitivities would have been super-
fluous. The second method (f þ / cluster) used concatenated natural frequency and mode shape sensitivities @f =@dk and
@v j=@dk, similar to �@r=@dk. The third method (OC cluster), which is the proposed method in this paper, utilized the
objective-consistent weighting in Eq. (29) for each residual sensitivity vector.

Representative stiffness clusters for the three clustering methods, with the corresponding sensitivities, are shown in
Fig. 2. Clustered elements are indicated by color and the number of dots on the element in Fig. 2e. Note that f clustering
and f þ / clustering were based only on initial model sensitivities and were therefore constant for all realizations. OC clus-
tering had weighting which depended on the realized residual and was not constant for all realizations. f clustering neces-
sarily results in symmetric clusters for a symmetric structure, i.e. perturbing one element’s stiffness or mass will have the
same effect on natural frequencies as perturbing the symmetric element’s stiffness or mass. Mode shape sensitivities were
not observed to be symmetric or anti-symmetric across structural elements, even though the structure is symmetric. It is
unknown if this is a general result and warrants further study. However, results do not seem trivial and are beyond the scope
of the presented study.

Incorporating mode shape sensitivities into clustering resulted in asymmetric clusters, as in the f þ / and OC clustering in
Fig. 2c and e. This asymmetry may not be a general result for OC clustering, e.g. a weighting matrix which strongly empha-
sizes natural frequency sensitivities may result in symmetric clustering. The absolute value of sensitivities are presented as
3-d bar plots in Fig. 2f. The cosine distance calculation utilized the full set of mode shape sensitivities (5 modes with 28 DoFs
per mode), but are represented by MAC sensitivity in the bar plots for clarity.

5.2. Model updating results

Model updating was performed on each of the 2000 measurement realizations (i.e. for each randomized structural state,
after the addition of noise). For each measurement realization, the three sets of clusters were generated, resulting in three
different parametrizations of the same FE model in MATLAB. The parametrized models were then used to generate corre-
sponding residual functions, rðhÞ, relative to the realized measurements. The residual functions were regularized using
Eq. (31) with the defined weighting matrices. The Levenberg–Marquardt method with Bayesian regularization was used
to minimize the regularized objective function, as described in Section 4 and Table 1.

The average results of model updating with a poor initial model, i.e. d 2 ½�0:5;0:5�, are shown in Table 2. The L2 norm of

the relative frequency error is used to provide a simple measure of natural frequency error, and is equal to a multiple of Ef
r

since wf
rj ¼ ð0:005~f jÞ

�2
in Eq. (18) under the implemented noise model. The L2 norm of the relative frequency error showed

significant improvement with each clustering method, with slightly better results for f clustering over OC clustering. This
situation was reversed for average MAC (across all 5 mode shapes and 1000 realizations), where OC clustering slightly out-
performed the other methods. However, OC clustering clearly outperformed the other methods in objective value (Er), with
approximately 17% lower objective function value relative to the initial value. OC clustering also resulted in slightly better c,
indicating that the objective function was more sensitive to those updating parameters. Each method had c reasonably close
to MacKay’s suggestion of c ¼ p=2 ¼ 3:5, suggesting that most of the parameters were effective in updating.

This set of observations is even more clear with a good initial model, d 2 ½�0:05;0:05� (Table 3). OC clustering was again
outperformed by f and f þ / clustering for reducing frequency error, but it produced an average MAC value of 0.997 while f
clustering essentially failed to improve the average MAC from 0.977. Ultimately, this means that f clustering was ineffective
in reducing the objective function value Er , while f þ / and OC clustering were extremely effective, with 80% and 86% reduc-
tion in Er . The updating parameters selected by f clustering were largely ineffective, suggesting that fewer clusters could have
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been used to achieve a similar result. OC clustering was considerably more effective, with approximately c ¼ 5 effective
parameters.

6. Model updating of a full-scale FE model: large suspension bridge

6.1. System identification and model description

The second model updating exercise involves a full-scale FE model of a suspension bridge, as used in [12,13]. The bridge is
a double-deck steel structure with two towers and four suspension cables, each 982 m long. The three spans (two side-spans,
one main-span) total 2089 m of length, with the main-span comprising 451 m. In 2009, an ambient vibration study was per-
formed to identify natural frequencies, damping ratios, and mode shapes of this bridge under normal operating conditions
[13]. Dynamic responses were recorded at 9 locations using tri-axial force-balance accelerometers, totaling 27 measured
DoFs at a sampling frequency of 200 Hz. The first seven dynamic modes were selected for model updating, totaling
m ¼ 196 modal measurements between 1 natural frequency and 27 DoFs for each mode.

Fig. 2. Selected truss clustering results and corresponding sensitivities.
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Responses were recorded during four 1-h sessions in a single day, at 3 a.m., 8 a.m., 1 p.m., and 8 p.m. The responses during
these time periods were assumed to be approximately stationary, as the environmental and operating conditions were unli-
kely to vary significantly. Output-only modal identification was performed on each of the 1-h data sets using the enhanced
frequency domain decomposition (EFDD) method [37]. Power spectral density matrices were constructed using Welch’s
method with a Hamming window. The identified modal properties for all four 1-h periods were then averaged to give a
set of modal properties representative of an average daily behavior. As shown in previous work, the measured modes had
negligible imaginary components [12,13], so only the real components of the mode shapes were used. The average measured
natural frequencies are given in Table 4.

Natural frequency measurements ranged in coefficient of variation from 0.25% (mode T1) to 5.0% (mode H1), estimated
from the four measurements per mode. Mode shape measurement variation was gauged by the ratio of mode shape mea-
surement standard deviation (averaged for all DoFs in the mode) to standard deviation of the average mode shape, which
ranged from 3.9% (mode T1) to 12.0% (mode SV1). This data could have been used to estimate a measurement covariance
matrix, but four sets of measurements was considered to be an inadequate sample. Instead, the measurement covariance
matrix was formed based on an assumed noise model, equivalent to that in Section 5. It was assumed that the noise in each
natural frequency measurement had a standard deviation equal to 0.5% of the measured frequency value. For each mode, it
was assumed that every the noise in each component had a standard deviation equal to 5% of the measured mode shape’s
standard deviation. The residual weighting matrix, W r , was then the inverse of this assumed measurement covariance

matrix. Using the terminology in Eq. (18), this noise model can be written as wf
rj ¼ ð0:005~f jÞ

�2
and ws

rj ¼ ð0:05 stdð~v jÞÞ�2.
Fig. 3 depicts the measured mode shapes, with sensor locations indicated by dots. The mode shape magnitudes at the

sensor locations are representative of the average measured modal data, while the unmeasured parts of the mode shape
were interpolated to fit projected data and given boundary conditions. Note that the second lateral mode (H2) in Fig. 3f
appears to be a torsional mode, but this is a visual illusion caused by the viewing angle which accentuates the deck torsion
over lateral displacement. For more information on the interpolated mode shapes, please refer to [12,13]. Note that interpo-
lation was only used for purposes of depiction, while any discussion of measured modes or MAC only utilizes data at the 27
measured DoFs. Fig. 4a shows the measured mode shape autoMAC matrix, indicating strong orthogonality.

Table 2
Truss model updating results, d 2 ½�0:5;0:5�.

Initial Updated

Average result f cluster f þ / cluster OC cluster

kð~f � f Þ=~f k2 15.5% 4.36% 9.20% 7.95%

MAC 0.920 0.933 0.944 0.956

Obj. value, Er ð�103Þ 6.47 4.43 5.05 3.33

Eff. no. params., c 4.67 4.42 4.86

Table 3
Truss model updating results, d 2 ½�0:05;0:05�.

Initial Updated

Average result f cluster f þ / cluster OC cluster

kð~f � f Þ=~f k2 1.55% 1.01% 1.51% 1.25%

MAC 0.977 0.977 0.996 0.997

Obj. value, Er ð�103Þ 1.48 1.46 0.29 0.21

Eff. no. params., c 1.62 4.52 4.81

Table 4
Suspension bridge measured and initial modal properties.

Measured Initial

Mode Description ~f (Hz) f (Hz) ð~f � f Þ=~f MAC

H1 First lateral 0.194 0.236 �21.7% 0.984
V1 First vertical 0.227 0.294 �29.8% 0.969
V2 Second vertical 0.303 0.356 �17.5% 0.986
T1 First torsional 0.373 0.384 �3.0% 0.741
SV1 First side-span vertical 0.337 0.453 �34.2% 0.879
H2 Second lateral 0.450 0.540 �19.8% 0.845
V3 Third vertical 0.500 0.596 �19.4% 0.743
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The FE model of the suspension bridge was implemented in ABAQUS [38] with 19,632 beam elements, 1464 truss ele-
ments, and 18,614 nodes. The node locations and connectivity were carefully defined based on partial technical drawings
and photographs. Element properties were calculated from indicated cross-section data when available, while reasonable
assumptions based on photographs were made for uninformed cases. Soil springs were included at the bottom of the pylons,
the end of the deck, and the end of the suspension cables. To account for temperature expansion joints, hinge springs were
implemented between the deck and towers. For a more thorough discussion of element types, boundary conditions, connec-
tions, and initial model material properties, please refer to Jang and Smyth’s description of the same FE model [12].

The natural frequencies, relative frequency error, and MAC values of the initial FE model are given in Table 4. The initial
MAC values are visually represented Fig. 4b. The initial MAC values are slightly different from those in Jang and Smyth’s pre-

Fig. 3. Suspension bridge measured mode shapes (measurement locations indicated by red dots). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Suspension bridge autoMAC for measured modes (a) and initial model MAC (b) matrices.
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vious work [12,13] due to FE model modifications to account for more realistic structural behavior, particularly in the bound-
ary conditions and interactions between cable and deck components. For each mode, the natural frequencies of the initial FE
model were higher than their measured counterparts. The first torsional (T1) mode exhibited the lowest initial error at
�3.0%, while the first side-span vertical (SV1) mode exhibited the highest initial error at �34.2%. Initial MAC values were
excellent (greater than 0.95) for the first two vertical modes (V1 and V2) as well as the first lateral mode (H1). Conversely,
the first torsional (T1) and the third vertical mode (V3) exhibited the most unsatisfactory MAC values at 0.741 and 0.743,
respectively. Every mode exhibited a low MAC and/or a high frequency error, suggesting that every mode would be impor-
tant in the updating process.

6.2. Parameter clustering

The selection of clusters and updating parameters for the full-scale suspension bridge model proceeded using similar
methodology to the small-scale truss model in Section 5. The large scale of the suspension bridge eliminated the possibility
of directly updating every element mass and stiffness. The FE model had well over 42,000 physical parameters to update,
among more than 21,000 elements with separate Young’s moduli and mass densities, plus several soil and hinge spring con-
stants. Note that the geometry of the suspension bridge was not included within the updating parameters.

Prior to clustering, the structural components of the FE model were arranged into 132 substructures based on location
and element type, which could be viewed as an expert-informed pre-clustering. The span was longitudinally divided into
8 main-span and 8 side-span segments, which were further partitioned based on element type. Each tower was divided into
three vertical sections, which was further divided into bracing and pylon groups. The 132 resulting substructures were
assigned mass density (dme ) and Young’s modulus (dke) modifications as model parameters. The soil and hinge springs, com-

prising 15 spring coefficients, were also assigned spring constant modification parameters (dke). This totaled 147 stiffness
model parameters and 132 mass model parameters, for 279 total model parameters to be updated.

Two sets of clusters were selected using the methodology of Section 3.2, one based on frequency sensitivity (f cluster) and
the other based on the objective-consistent weighted residual sensitivity (OC cluster). Previous work on this bridge selected
clusters using a maximum cosine distance clustering criterion [12,13]. However, this criterion generally results in different
numbers of clusters for different sensitivity vector sets. Models with more parameters are more likely to fit the data [17],
making this clustering criterion inappropriate for comparing parametrizations. Therefore, the number of clusters was fixed
at 5 mass clusters and 17 stiffness clusters for both the f clustering and OC clustering results, equivalent to prior work on this
structure [12,13].

The sensitivities of the model outputs to the 22 OC cluster updating parameters are represented in Fig. 5. A more detailed
representation of one mass cluster (3) and one stiffness cluster (19) are presented in Fig. 6. Similar to Section 5, OC clustering
resulted in several asymmetric clusters, while frequency clustering, as done in previous work [12], resulted in symmetric

Fig. 5. Suspension bridge sensitivities to the 22 objective-consistent cluster updating parameters.
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clusters. Cluster 3 is appreciably asymmetric with all clustered model parameters exhibiting a significant effect on the sec-
ond horizontal mode (H2), and comprises mostly tower (TW) and tower brace (TWB) sections. Cluster 19 includes many top-
deck braces (TB), top-deck floor beams (TFB), and columns (CL) in the mid-span area, TFBs at the ends of the side-spans, and
cable-soil springs (SP TW). Physical intuition would indicate that these elements would be most impactful on the vertical
modes (V1-V3), which is confirmed by the sensitivities in Fig. 6d.

It is important to consider the impact of sensor layout on clustering. Clustering schemes which only utilize model-outputs
(e.g. frequency-based clustering) are not affected by the sensor layout. However, the proposed OC clustering scheme gives
greater consideration to sensitivities associated with large weighted residuals, as in Eq. (29). Since there was only one sensor
on the side-span (Fig. 3), it was expected that modes with significant side-span motion (e.g. SV1 and V3) would be under-
represented in the clustering process. However, the low initial MAC values for modes SV1 and V3 indicates that most of the
initial model mode shape outputs, not just the side-span output, had significant discrepancy. Therefore, modes SV1 and V3
were still highly weighted during clustering, as reflected in clusters 2 and 18 (Fig. 5).

6.3. Model updating results

The two clustering results were obtained using finite difference to estimate the sensitivity matrix for FE model parame-
ters. With the models parametrized using the two clustering schemes, model updating proceeded by defining parametrized
residual functions for each clustering result. These residual functions were used in the regularized objective in Eq. (31),
which was minimized using Levenberg–Marquardt minimization with Bayesian regularization, detailed in Section 4 and
Table 1. Note that clustering and updating were handled in MATLAB, while ABAQUS was used for modal analysis of the
bridge. An application programming interface was built for communicating between MATLAB and ABAQUS.

Fig. 6. Suspension bridge objective-consistent clustering results: selected clusters and sensitivities.
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Due to the limited number of measurement locations, it was necessary to introduce an intermediate step during mode
pairing. Initial FE model modes were paired with measured modes based onMAC using the 27 measured DoFs, which created
an ‘index’ between initial FE model modes and measured modes. During the updating process, updated FE model modes
were first paired with initial FE model modes using all model DoFs, producing high-fidelity pairing results. Then the
previously-established mode index was used to correspond each updated mode to the correct measured mode. This
approach was necessary to ensure consistent pairing between FE model modes and measured modes, since FE model mode
shapes could exhibit large changes during the updating process and had relatively few DoFs for direct pairing.

The updating parameters of both clustering schemes converged in 3 iterations, with results shown in Table 5. As in
Section 5.2, the L2 norm of relative frequency error is utilized to give a summary of natural frequency error and is closely

related to Ef
r .

Natural frequency updating results are similar between f and OC clustering for modes V2, T1, SV1, and V3. Both clustering
schemes struggled to update the first torsional mode (T1), with neither achieving less than 12% relative frequency error. The
difficulty with mode T1 was noted in previous work by Jang and Smyth [12], and may be due to non-linear geometry which
was not included in the FE model. Three T1 modes were identified in the measured data sets, each with different in-phase or
out-of-phase motions between the main cable and the deck, and different interactions between the main-span and the side-
span. However, the FE model produced only one T1 mode because the geometrically non-linear deck-cable interaction was
not included in the model. For the model updating study here, the measured T1 mode which had the highest MAC value with
the mode shapes of the model was considered. Particular to the OC clustering algorithm, the low initial error of mode T1
tended to decrease the importance of this frequency measurement during clustering, perhaps explaining the difficulty for
the proposed algorithm. Generally, f clustering achieved better natural frequency results, giving a 72% reduction in L2 norm
natural frequency error while OC clustering achieved 68% reduction.

Table 5
Suspension bridge model updating results.

Initial Updated

f cluster OC cluster

Mode ð~f � f Þ=~f MAC ð~f � f Þ=~f MAC ð~f � f Þ=~f MAC

H1 �21.7% 0.984 1.0% 0.989 4.4% 0.993
V1 �29.8% 0.969 �6.9% 0.966 �11.0% 0.973
V2 �17.5% 0.986 2.2% 0.977 2.2% 0.984
T1 �3.0% 0.741 12.9% 0.766 12.4% 0.832
SV1 �34.2% 0.879 �4.7% 0.861 �5.4% 0.869
H2 �19.8% 0.845 �3.6% 0.876 2.1% 0.970
V3 �19.4% 0.743 �5.3% 0.812 �5.6% 0.983

kð~f � f Þ=~f k2 60.0% 16.8% 19.0%

Av. MAC 0.878 0.893 0.928

Obj. value, Er ð�104Þ 2.39 0.95 0.70

Eff. no. params., c 6.4 10.1

Fig. 7. Suspension bridge frequency cluster (a) and OC cluster (b) updated MAC matrices.
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However, the converse occurred for mode shape updating, as indicated by OC clustering increasing the average MAC to
0.928 from an initial value of 0.878 while f clustering only achieved a mild improvement to 0.893. OC clustering produced
better MAC values than f clustering for every mode, with small increases noted for both methods on modes H1, V1, and V2,
which had high initial MAC values. OC clustering had the most notable impact on the MAC of modes H2 and V3, which were
increased from less than 0.850 to over 0.970, while f clustering showed only a minor improvement. Similarly, OC clustering
was able to raise the MAC of mode T1 to 0.832 from 0.741 which is an appreciable increase and clearly outperformed f clus-
ter’s improvement to 0.766. Both clustering methods struggled to update the mode shape of the side-span vertical mode
(SV1), actually reporting slight decreases in MAC value. During the bridge monitoring, various sensor configurations were
tested. However, only one configuration was used for this study. The difficulty associated with the mode SV1 was likely
related to the sensor configuration used for this study, which had only one sensor on the side-span (Fig. 3e), thereby limiting
the importance of side span motion in MAC calculations. The updated MAC values are also presented diagrammatically in
Fig. 7.

Despite mildly poorer results with natural frequencies, the enhanced improvement in mode shapes provided OC cluster-
ing with a significant edge over f clustering with respect to the objective function value Er (Table 5). OC clustering reduced Er

by 70% from its initial value, while f clustering only reduced Er by 60%. This result is partly explained by OC clustering having
a higher effective number of parameters, c, during the updating process. Out of p ¼ 22 updating parameters, c ¼ 10:1 were
effective for OC clustering which is quite close to MacKay’s suggestion c ¼ p=2 [17]. Only c ¼ 6:4 parameters were effective
for f clustering indicating that the updating solution was less sensitive to this parametrization.

7. Conclusions

Sensitivity-based parameter clustering presents a viable method for improving the condition and efficiency of FE
model updating problems. The presented OC parametrization scheme allows for compatible use of disparate data (e.g.
natural frequencies and mode shapes) in the selection of parameter clusters, thereby improving the efficiency and qual-
ity of results. The proposed clustering scheme retains the physical relevance of previous clustering schemes, which only
used natural frequency sensitivities. Laid atop this foundation, OC clustering also considers the measurement residual
and residual weighting inherent in the objective function. Indeed, the presented weighting scheme is extremely generic,
as it helps produce clusters which have the most similar effect on the weighted residual. Bayesian regularization was
also proposed for use in model updating. Built atop the Levenberg–Marquardt minimization algorithm, Bayesian regular-
ization delivers an optimal set of regularization parameters with minimal computational overhead. Additionally, it pro-
vides key insight into the effective number of updating parameters, which can be used for model selection and model
comparison.

The proposed OC clustering scheme was shown to be highly effective in both a small-scale exercise with simulated data
and a full-scale exercise with real data. When compared to a clustering scheme based only on natural frequency sensitivity,
OC clustering resulted in significantly better updating of mode shapes at the cost of slightly more frequency error. Incorpo-
ration of mode shape data produced asymmetric clusters, while clustering based on frequency produced symmetric clusters
for the symmetric structures of study. For the small-scale model with a poor initial model (far frommeasured state), OC clus-
tering achieved 17% better error reduction than frequency clustering. With a good initial model, OC clustering reduced the
objective value by 84% more than frequency clustering. Observing the effective number of parameters further confirmed the
improved efficiency of OC cluster analysis, which consistently showed a greater number of effective parameters compared to
frequency clustering. These results were more tempered on the full-scale model, where OC clustering reduced the objective
value by 10% more than frequency clustering, but it also showed significantly better agreement with measured mode shapes
and greater number of effective parameters. For the model updating examples covered in this work, regularization was
unnecessary for determination of a unique solution since parameter clustering resulted in overdetermined problems. Baye-
sian regularization was primarily useful for imposing equivalent prior probability distributions on competing parametriza-
tions and estimating model efficiency.

The two contributions of this paper, OC clustering and Bayesian regularization, present simple and effective develop-
ments on existing methods. However, these contributions are not without drawbacks. While OC clustering is intuitive
and showed improvement over existing schemes, it is not guaranteed to be the optimal technique for every structure or real-
ization. Further work is required to analyze the effect of clustering on problem condition. OC clustering also suffers by not
considering physical proximity of elements, resulting in clustered elements which are generally not physically adjacent. This
lack of proximity poses problems for damage localization [12]. It may be noted that clusters are only selected once, starting
at the initial model. As the model is updated, however, the model sensitivity matrix will change. Depending on the amount of
change, it may be such that the initial clustering is no longer efficient. This problemwas not considered, and warrants further
research.

Regularization has the drawback of altering the objective, adding a side-constraint which may not be important to the
user. While Bayesian regularization provides a key insight, it is not a refined tool for model selection. While it can be used
to compare the efficiency of different parametrizations, it does not provide strong suggestions for alternative parametriza-
tions other than to increase or decrease the number of parameters. Further work is needed to understand the limitations of
this approach.
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Summary
Model updating is used to reduce error between measured structural responses and
corresponding finite element (FE) model outputs, which allows accurate prediction
of structural behavior in future analyses. In this work, reduced-order parametriza-
tions of an underlying FE model are developed from singular value decomposition
(SVD) of the sensitivitymatrix, thereby improving efficiency and posedness inmodel
updating. A deterministic error minimization scheme is combined with asymptotic
Bayesian inference to provide optimal regularization with estimates for model evi-
dence and parameter efficiency. Natural frequencies and mode shapes are targeted
for updating in a small-scale example with simulated data and a full-scale example
with real data. In both cases, SVD-based parametrization is shown to have as-good
or better results than subset selection with very strong results on the full-scale model,
as assessed by Bayes factor.
KEYWORDS:
finite element model updating, sensitivity-based parametrization, singular vector decomposition, Bayesian
regularization, evidence-based model selection

1 INTRODUCTION

Numerical models are essential tools for scientists and engineers to understand and predict the behavior of physical systems.
In the context of structural engineering, finite element (FE) models are ubiquitously used to predict structural response and
assess risk for existing structures under variable conditions and loadings. While numerical models should, ideally, provide
exact predictions for their corresponding system, discrepancies always exist between measured behavior and model-predicted
behavior. In FE modeling, these errors can be split into three categories [1]:

1. idealization errors, related to model simplification;
2. discretization errors, due to poor arrangement of the FE model; and
3. uncertainty in model parameters, such as mass densities, stiffnesses, and geometry.

The existence of modeling errors (and output discrepancies) indicates that the FE model is unreliable for predicting system
behavior, diminishing its value for analysis.
The process of FE model updating seeks to correct the FE model, generally by modifying physical parameters to reduce

discrepancy between measured and model-output data [1–3]. For structural applications, data often comes from vibration stud-
ies (which may provide natural frequencies, mode shapes, time histories, frequency-response functions, etc.) under forced or
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ambient loadings. FE model updating has been successfully demonstrated on a multitude of civil structures [2,4], in addition to
aerospace [1,5,6] and mechanical [7] structures.
It is important to note that FE model updating corrects model parameter errors (category 3), and generally cannot improve

idealization or discretization errors (categories 1 and 2) [1]. When all three categories of FE modeling error are minimized, the
model is said to be validated [1] and can give greater understanding of the current structural state, possibly for damage detection [8].
When the FE model exhibits idealization and/or discretization errors, the model is said to be inconsistent [1], but the updated
model may still be valuable for response prediction within the measured frequency range.
FEmodel updating approaches can be divided into uncertainty quantification (UQ)methods and deterministic methods [9]. UQ

methods naturally reflect measurement and model uncertainties in their results and can be further divided into probabilistic and
non-probabilistic UQ methods. Probabilistic UQ methods estimate probability distributions functions for parameters and model
outputs by drawing a large number of samples in the parameter space. Non-probabilistic UQmethods generally estimate intervals
for parameters and outputs corresponding to upper and lower bounds of measured data. While non-probabilistic methods are
generally less computationally-expensive than probabilistic methods, they are still orders-of-magnitude more expensive than
deterministic methods and may be prohibitive for large models. Further detail on UQ methods in model updating is available by
Simoen et al. [9].
Deterministic methods provide unique optimal solutions, generally by local or global minimization of a non-linear residual

function. The sensitivity method [1] is a popular and intuitive local approach which iteratively minimizes a scalar objective
function. The objective function is the sum of squared residual between measured and model-output data, making it easily
extensible to many different sources or combinations of data. At each iteration, the non-linear residual function is linearized,
forming the sensitivity matrix which intuitively captures the changes in model-outputs when modifying model parameters.
However, the sensitivity method is often applied to ill-posed model updating problems. Reparametization is one approach to

improve posedness and efficiency by systematic selection of a new set of parameters to update the FE model. In this work, a
novel parametrization technique is proposed based on the singular value decomposition (SVD) of the sensitivity matrix. Instead
of selecting a reduced set of FE model parameters for updating, as in subset selection [10,11], linear combinations of FE model
parameters are updated by single updating parameters. These linear combinations are defined by singular vectors. This is used to
produce parametrizationswhich best represent the original sensitivitymatrixwith a reduced number of parameters. Alternatively,
this can be closely related to subset selection by selecting singular vectors which best represent the residual.
Regularization is another approach to counter ill-posedness in model updating [1,12–14]. In general, regularization introduces

additional equations to constrain the solution, such as equality constraints between nominally identical element material prop-
erties. More commonly, regularization is used to penalize large changes in updating parameters, representing a prior belief that
parameter updates should be small. In this work, Bayesian regularization [15] is proposed for producing optimally regularized
results through maximization of the model evidence. This method confers several benefits beyond parameter constraint, giving
key insight into the support for competing models and parametrization efficiency, with strong ties to probabilistic methods.
In this work, the proposed SVD-based parametrization scheme is compared against subset selection in two FEmodel updating

problems: a small-scale numerical example and a large-scale real example. In both cases, natural frequency and mode shape
data for several dynamic modes are targeted for updating. Levenberg–Marquardt minimization with Bayesian regularization is
implemented to provide deterministic model updating results, as well as estimates for model evidence and parameter efficiency.
The paper is structured as follows. The objective function, comprising natural frequency and mode shape data, is detailed in
Section 2. The objective function is then regularized using Bayesian inference in Section 3 with discussion of model evidence
and parameter efficiency. In Section 4, the Levenberg–Marquardt minimization algorithm is briefly discussed in the context of
regularization. Parametrization methods, including subset selection and the proposed SVD-based scheme, are detailed in Section
5. The proposed parametrization methods are first tested on a small-scale 2-dimensional truss with simulated data in Section 6,
then on a full-scale large suspension bridge with real measurements in Section 7. Section 8 presents discussion of findings and
conclusions.

2 OBJECTIVE FUNCTION AND RESIDUAL DEFINITION

FE model updating begins with measured data from a structure, which can be written as a column vector of m components, z̃.
The corresponding column vector of m model outputs, z(�), is a function of the column vector of p updating parameters �. A
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common choice for the objective function is the weighted sum-of-square residual, Er,
Er = rTWrr (1)
r(�) = z̃ − z(�) (2)

where r(�) is the residual vector and Wr is the residual weighting matrix. The residual weighting matrix should reflect the
uncertainty in the measurements z̃, giving the optimal weighting matrix as Wr = C−1

z̃ , where Cz̃ is the covariance matrix of
z̃ [16,17]. Since Cz̃ is symmetric and positive semi-definite (SPSD), Wr is also SPSD. Wr and Cz̃ are often diagonal or block-
diagonal, representing statistical independence of measurements or sets of measurements, respectively.
When the measurement vector z̃ contains disparate sources of data, it may be worthwhile to partition the problem. The

examples studied in this paper utilize natural frequency and mode shape data, so r andEr are partitioned into a natural frequency
components (rf and Ef

r ) and mode shape components (rs and Es
r ) with corresponding weighting matricesW f

r andW s
r
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rTf r
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(4)

The FE model-output natural frequencies and mode shapes are assumed to come from an undamped structural model, resulting
in real-numbered outputs. The structural stiffness matrix K and mass matrix M are N × N symmetric real-valued matrices.
For j = 1, ..., N , the j th angular natural frequency !j (rad/s) and corresponding mass-normalized mode shape �j satisfy the
generalized eigenvalue problem K�j = !2jM�j , where �TjM�j = 1. The equivalent natural frequency (Hz) is given by
fj = !j∕(2�) and the unit-normalized mode shape is given  j = �j∕(�Tj �j)1∕2.

2.1 Natural frequency residual
The natural frequency residual column vector rf is given by the difference between l measured natural frequencies f̃ and
corresponding model-output natural frequencies f̃ (�)

rf = z̃f − zf (�) = f̃ − f (�) (5)
It is essential to performmode pairing [3] to ensure that measured andmodel-output modes are correctly correlated. Mode pairing
generally pairs a model-output mode with the measured mode which maximizes the Modal Assurance Criterion (MAC) [18], or
equivalently, minimizes the angle between their mode shapes.
When W f

r is diagonal (i.e. natural frequency measurements are statistically independent) then the weighted sum-of-square
natural frequency residual is

Ef
r = r

T
fW

f
r rf =

l∑
j=1

wf
rj(f̃j − fj(�))

2 (6)

2.2 Mode shape residual
The mode shape residual column vector rs is given by the difference between the concatenated set of l measured mode
shapes z̃s = [ ̃T

1 ⋯  ̃T
l ]

T and the corresponding concatenated model-output (unit-normalized) mode shapes zs(�) =
[�1 T

1 (�) ⋯ �l T
l (�)]

T . The modal scaling factor, �j , is used to minimize the difference between corresponding measured
and model-output mode shapes,  ̃ and  j(�) in the least-squares sense [18]

�j =  ̃T
j  j(�) (7)

Each measured mode shape  ̃j and model-output mode shape  j(�) must have measurements corresponding to the same n
degrees of freedom (DoFs), making rs a column vector of nl elements

rs = z̃s − zs(�) (8)
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If W s
r is diagonal and decomposable into a scalar multiple of In for each mode ([W s

r ]j = ws
rjIn), then the sum-of-squared

mode shape residual Es
r can be written

Es
r = r

T
sW

s
r rs =

l∑
j=1

ws
rjr

T
sjrsj =

l∑
j=1

ws
rj‖ ̃j − �j j(�)‖22 (9)

where rsj =  ̃j − �j j(�) is the residual for mode shape j and ‖ ‖2 is the l2 norm. Equation 9 can be rewritten in a more
familiar form as

Es
r =

l∑
j=1

ws
rj

[
1 −MAC( ̃j , j(�))

] (10)
where MAC is defined as [18]

MAC( ̃j , j) =
( ̃T

j  j)
2

 ̃T
j  ̃j ⋅  

T
j  j

(11)

2.3 Partitioned objective function
Equations 6 and 10 can be combined into Equation 3 to give

Er = Ef
r + E

s
r =

l∑
j=1

wf
rj(f̃j − fj(�))

2 +
l∑
j=1

ws
rj

[
1 −MAC( ̃j , j(�))

] (12)

As noted before, the residual weighting matrixWr should be equal to the inverse of the measurement covariance matrix Cz̃.
The measurement covariance model used in the included examples uses a diagonal covariance matrix. The standard deviation
of each natural frequency measurement j is assumed to be a scalar (cf ) multiple of the measured natural frequency f̃j , giving
wf
rj = (cf f̃j)−2. Similarly, the standard deviation for each component of measured mode j is assumed to be equivalent to a

scalar (cs) multiplied by the standard deviation of measured mode shape j, giving ws
rj = (cs std( ̃j))−2. Inserting these results

into Equation 12 gives
Er =

1
c2f

l∑
j=1
(1 − fj(�)∕f̃j)2 +

1
c2s

l∑
j=1

1
var( ̃j)

[
1 −MAC( ̃j , j(�))

] (13)
which provides further insight into relative weighting of the natural frequency and mode shape error components.

3 MODEL EVIDENCE ESTIMATION AND BAYESIAN REGULARIZATION

While the general goal of FE model updating is to optimize the objective function, such as Er in Equation 1, this often results in
an ill-posed problem and/or an overfitted solution [1,12–14]. Ill-posedness may develop when there are more updating parameters
than measurements (underdetermined), leading to non-unique solutions. Overfitting occurs when the model updating solution
fits to the measurement noise at the expense of generality, reducing its utility for prediction.
Both of these problems can be ameliorated through regularization, which adds an additional term to the objective function.

This increases the number of equations, reducing ill-posedness, and penalizes overly large updating parameter values, reducing
overfitting. Equation 1 is modified to include the regularization term E� = �TW��.

F (�) = �Er + �E� = �rTWrr + ��TW�� (14)
The regularization parameters � and � control the relative importance of reducing residual against reducing the amount of
parameter modification. The Bayesian approach to regularization [15] treats � and � as random variables. The optimal values for
the regularizing parameters maximize the model evidence, which is a key component of Bayesian analysis.

3.1 Model evidence estimation
Given a modelj (parametrization of an FE model) and values of � and �, the posterior probability of the updating parameters
can be written using Bayes’ rule:

P (�|z̃, �, �,j) =
P (z̃|�, �,j)P (�|�,j)

P (z̃|�, �,j)
(15)
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in which P (z̃|�, �,j) is the likelihood function of the measured data z̃, P (�|�,j) is the prior probability density function
(PDF) of �, and P (z̃|�, �,j) is a normalization term also known as the evidence for modelj .
The likelihood function is proportional to the probability of the data z̃ given � for a model j . If the noise in z̃ is assumed

to be additive, zero-mean, and Gaussian, with covariance Cz̃ = [2�Wr]−1 then the likelihood is written
P (z̃|�, �,j) =

e−�Er
Zz̃(�)

; Zz̃(�) = �m∕2 det(�Wr)−1∕2 (16)
However, the likelihood is not a PDF and Zz̃(�) should not be viewed as the integral of e−�Er over �. The prior distribution for
� is assumed to be a zero-mean Gaussian with covariance C� = [2�W�]−1, giving

P (�|�,j) =
e−�E�
Z�(�)

; Z�(�) = �p∕2 det(�W�)−1∕2 (17)
Substituting Equations 16 and 17 into Equation 15 simplifies to

P (�|z̃, �, �,j) =
e−F (�)

ZF (�, �)
(18)

where ZF (�, �) is a normalization term. This can be estimated by expanding the regularized objective function F (�) (Equation
14) using a Taylor series truncated after the quadratic term [15]. F (�) is estimated as

F (�) ≈ F (�MP) + (� − �MP)THMP(� − �MP) (19)
The expansion is performed about the minimum point of F , �MP, which is the maximum of the posterior probability. Therefore
the evaluated gradient {∇F }(�MP) is zero, where∇ = )∕)�.HMP is the Hessian ofF (�) evaluated at �MP,HMP = {∇∇F }(�MP).
ZF (�, �) is then evaluated as the Gaussian integral, using Laplace’s method [15]

ZF (�, �) = ∫ e−F (�)d� ≈ e−F (�MP)(2�)p∕2 det(HMP)−1∕2 (20)
Rewriting Equation 15 to find the evidence and substituting in Equations 16-18 gives

P (z̃|�, �,j) =
P (z̃|�, �,j)P (�|�,j)

P (�|z̃, �, �,j)
=

ZF (�, �)
Zz̃(�)Z�(�)

(21)
Evaluating the log-evidence using the normalization terms yields [15]

logP (z̃|�, �,j) = −�EMP
r + 1

2
log det

(
(�∕�)Wr

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

log likelihood

−�EMP
� + 1

2
log det

(
H−1

MP[2�W�]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
logOccam factor

(22)

which can be separated into terms related to the log likelihood and the logOccam factor. The likelihood is maximized by reducing
the sum-of-square residual, Er, which favors complex models that may overfit the data. The Occam factor penalizes overly
complex models, representing Occam’s principle that simpler models are preferable [9,15]. The first Occam term penalizes overly
large parameter values, while the second term is the ratio of the prior curvature or volume relative to the posterior curvature
or volume, which penalizes overly large prior parameter spaces. The second Occam term also reflects the robustness of the
model [19], penalizing highly peaked posteriors which imply poor model generalization.

3.2 Optimal regularization
Estimating the log evidence using Laplace’s method, generally referred to as an “asymptotic approach”, is well-known in model
updating [9,20,21]. However, within these works, the prior PDF was fixed. In general, the prior PDF of updating parameters for
a given model P (�|j) is mostly unknown and uninformed assumptions are made. The work done by MacKay [15] provides a
method for determining the “width” of a Gaussian prior, �, to maximize the log evidence, simultaneously delivering optimal
regularization. To the authors’ knowledge, this approach has not been previously used for evidence estimation in FE model
updating and presents a step forward for deterministic model updating. Previous work by the authors [22] implemented Bayesian
regularization, but also optimized �, which is inappropriate for evidence estimation and model evidence comparison, as will be
discussed below.
The optimal regularizing constant � is determined by maximizing the log evidence in Equation 22 with respect to �, giving

� = 
2EMP

�

(23)
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where  is called the “effective number of parameters” [15]. The Hessian,H(�), can be separated as
H(�) = {∇∇F }(�) = �B(�) + �A (24)

where B(�) = {∇∇Er}(�) andA = ∇∇E� = 2W� . This allows  to be written using the trace operator or a sum of eigenvalues

 = p − 2� tr(H−1
MPW�) =

p∑
j=1

��j
��j + �

(25)

where �j is the j th eigenvalue of [W −1
� BMP].

 = 0 implies the estimated posterior curvature (Hessian) is identical to the prior curvature, representing a null updating result
and ineffective parametrization.  → p implies the posterior curvature is infinitely greater than the prior curvature, such that the
prior has no impact relative to the likelihood during updating and the result is the maximum likelihood estimate. MacKay [15]
suggests that  = p∕2 is a reasonable result for many updating problems, but  → p is desirable because it suggests that the
updating result is controlled by the data rather than by regularization.
At this stage, the optimal value of � could be found by evidence maximization, as in � = (m − )∕(2EMP

r ) [15], as in previous
work [22], but this has several disadvantages. Foremost, the likelihood function will no longer be model-independent since �
will depend on the optimized model error EMP

r . Additionally, this will fix the regularized objective function at F (�MP) = m∕2,
which causes difficulty for model evidence comparison. The approach adopted in this work evaluates Wr as the inverse of the
measurement covariance matrix,Wr = C−1

z̃ with � fixed to the value of 1∕2. If the measurement covariance is unknown,Wr can
reflect the relative importance of each residual term for reduction, but evidence estimates should be analyzed cautiously since �
will be arbitrary.

3.3 Model comparison via Bayes factor
The relative evidence, or Bayes factor [23], can be used to evaluate the strength of support for competing models. Given the
evidence (approximate or exact) for two modelsj andk with equally likely prior probabilities, the Bayes factor is

Bjk =
P (z̃|j)
P (z̃|k)

(26)
which gives the support for using j instead of k. Note that this form drops dependence on the regularizing constants �
and �. These parameters can either be marginalized (integrating over all values), or more reasonably, the model comparison
can be performed using the optimal regularizing constants [15]. Kass and Raftery [23] provided a widely used set of criteria for
interpreting the Bayes factor, given in Table 1. Note that logBjk = − logBkj , so negative results can be interpreted as support
fork.

TABLE 1 Interpretation of Bayes factors, adapted from Kass and Raftery [23]

2 logBjk Bjk Evidence againstk
0-2 1-3 Not worth more than a bare mention
2-6 3-20 Positive
6-10 20-150 Strong
>10 >150 Very strong

4 LEVENBERG–MARQUARDT MINIMIZATION ALGORITHM

With a well-defined objective function (Section 2) and regularization (Section 3), FEmodel updating can proceed by determining
an optimal model through minimization of the regularized objective function. The parameter values at iteration i, �i, are updated
by Δ�i to give the values at the next iteration:

�i+1 = �i + Δ�i (27)
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The goal is then to find the parameter update Δ�i such that the objective function F (�i +Δ�i) is minimized. Using the notation
of ri = r(�i), then the updated residual can be estimated by its linearization

r(�i + Δ�i) ≈ ri + JiΔ�i (28)
where Ji is the Jacobian of r evaluated at �i, Ji = {∇r}(�i). Linearization of the residual forms the basis of the sensitivity
method [1], where Ji is also called the sensitivity matrix and its columns represent the sensitivity of the residual to changes in
each parameter. The Jacobian can be estimated numerically using a finite-difference scheme, or it can be calculated analytically.
For FE model updating of natural frequencies and mode shapes, the analytical Jacobian can be assembled column-wise [24].
When the linearized residual is used and F (�i + Δ�i) is minimized with respect to Δ�i, then the parameter update is

Δ�i = −2[Hi]−1[�J Ti Wrri + �W��i] (29)
which represents the Gauss–Newton algorithm. The terms 2(�J Ti Wrri + �W��i) are the gradient of F at �i, {∇F }(�i). Hi is
the Hessian of F at �i, which is approximated as

Hi = {∇∇F }(�i) ≈ 2[�J Ti WrJi + �W�] (30)
Comparing this to Equation 24 indicates that the approximate Hessian of Er is {∇∇Er}(�i) = B(�i) ≈ J Ti WrJi.
The Gauss–Newton algorithm is transformed into themore robust Levenberg–Marquardt algorithm [25,26] by adding a damping

term � to the diagonal ofH , giving the Levenberg–Marquardt parameter update
Δ�i = −2[Hi + 2�I]−1[�J Ti Wrri + �W��i] (31)

This trust region approach collapses to the Gauss–Newton algorithm when � → 0, and to the gradient-descent algorithm
(with infinitesimal step size) when � → ∞. � is controlled by the multiplicative process given by Marquardt [26]. The utilized
Levenberg–Marquardt algorithm is described inAlgorithm 1, including the scheme for iteratively evaluating the hyperparameters
�, �, and  .

Algorithm 1 Pseudocode for Levenberg–Marquardt minimization with Bayesian regularization
Input: Regularized objective function F (�) = �Er + �E� to be minimized, modelj
Output: Optimal parameters �MP, effective number of parameters  , log evidence estimate logP (z̃|�, �,j)
1: initialization Set �0, � = 0.5, � = 0.5, � = 0.01, v = 10, i = 0
2: while not converged do
3: Compute residual ri, Jacobian Ji, and approximate HessianHi = 2[�J Ti WrJi + �W�]
4: Compute parameter update Δ�i = −2[Hi + 2�I]−1[�J Ti Wrri + �W��i]
5: Evaluate trial parameters �i+1 = �i + Δ�i
6: if Objective value increased F (�i+1) > F (�i) then
7: Increase damping term �← � ⋅ v
8: Go back to parameter update computation step (4)
9: else Decrease damping term �← �∕v

10: end if
11: Compute effective number of parameters*  = p − 2� tr(H−1

i W�)
12: Reestimate regularization parameter � = ∕(2E�(�i+1))
13: i← i + 1
14: end while
15: Estimate evidence for updated modelj by logP (z̃|�, �,j) (Equation 22)
* Note:  is only meaningful at a converged solution, �MP
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5 MODEL PARAMETRIZATION

Parametrization is a crucial part of FE model updating. Even a small model can easily have thousands of possible parametriza-
tions among combinations of material properties, geometry, and external conditions. In general, parametrizations should satisfy
three requirements [3]:

1. ill-posedness should be avoided by limiting the number of parameters,
2. parameters should reflect model uncertainty, and
3. FE model-outputs should be sensitive to chosen parameters.

Fulfilling these requirements generally requires physical understanding of the FE model. Mottershead et al. [7] studied several
parametrizations of a frame joint, including geometric and element-eigenvalue modifications. While these parametrizations
may be more effective for reducing modeling error, they are often difficult to justify physically. Other methods directly use
FE model parameters, but select a reduced number of updating parameters to alleviate ill-posedness. This has been accom-
plished through subset selection [10,11], which is described in Section 5.1. Smith and Hernandez [27] recently proposed LASSO
for combined subset selection and l1 regularization which is appropriate for sparse model errors. Alternative methods include
parameter clustering, in which all FEmodel parameters are retained and grouped into clusters (substructures) based on sensitivity
considerations [1,5,22,28,29]. Each cluster is then updated by a single parameter, giving a reduced parametrization.
The simplest parametrization is the vector of uncertain FE physical properties x, such as mass densities, Young’s moduli,

geometry, cross-sectional properties, etc. Since xmay contain parameters which differ by several orders of magnitude, updating
x directly may result in a poorly-scaled Jacobian matrix. The use of physical parameter modification parameters � results in
comparably-sized updating parameters and improved condition of J . Then the eth updated FE physical properties can be written

xe = x0e(1 − �e) (32)
where x0e is the initial value of xe. The FE model physical properties utilized in this work include the Young’s modulus and mass
density for each element (or substructure), e, out of a total number nel. Thus, each element mass matrix (Me) and stiffness matrix
(Ke) is modified prior to summation into the global mass (M) and stiffness (K) matrices, similar to other work [1,5,22,28,29]:

M(�) =
nel∑
e=1
Me(1 − �me ) =M0 −

nel∑
e=1
Me�

m
e (33)

K(�) =
nel∑
e=1
Ke(1 − �ke ) = K0 −

nel∑
e=1
Ke�

k
e (34)

whereM0 and K0 are the initial global stiffness and mass matrices, respectively. �me and �ke are the stiffness and mass physical
parameter modifications for element e, making � a vector comprising these d = 2nel components.
Parameterizing the model updating problem using � = � is simple, but it is intractable for FE models with thousands of

uncertain physical parameters. Not only does the complexity of computing the Jacobian increase linearly with the number of
updating parameters, but the Jacobian is increasingly likely to exhibit ill-conditioning [5]. These problems can be resolved by
intelligently reparameterizing.
For the methods covered here, it is possible to write a linear transformation between the selected parametrization � and �,

which will be called the natural parametrization:
� = T � (35)

where T is the d×p transformation matrix from � to �. This notation confers several insights. Namely, the Jacobian with respect
to �, J ′, can be related to the Jacobian with respect to �, J :

J ′ = )r
)�

= )r
)�
)�
)�

= JT (36)
Using the condition that E� should be invariant under reparametrization, thenW� can be related toW� by

W� = T TW�T (37)
This relation is useful for generating consistently-defined W� when performing model comparison, such that each W� reflects
the uncertainty in the underlying FE model parameters.
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5.1 Parameter subset selection
The parameter subset selection method [30] chooses a subset of parameters by testing candidate parameter groups of fixed size.
The parameter subset which results in minimum residual is chosen. Since testing all possible parameter subsets is intractable for
practical problems, greedy methods are typically used. One such approach, forward selection, was applied to FE model updating
by Lallement and Piranda [10] and by Friswell et al. [11].
Consider a natural FE model parametrization using the column vector � with d components. Model updating using this

parametrization would find Δ� which minimizes Er. This can be written as the l2 norm of the weighted residual:
Er(� + Δ�) = ‖q +GΔ�‖22 (38)

where G and q are the weighted Jacobian and residual, respectively.
G = W 1∕2

r J ; q = W 1∕2
r r (39)

Forward subset selection chooses p < d elements of � with corresponding columns of G = [g1 ⋯ gd] which minimize
Er [10,11,30]. The iterative process begins by identifying the parameter �a (and corresponding column of G) which minimizes Er
at the initial state �0

ga = arg mingj∈G
‖q + gjΔ̂�j‖22 (40)

where Δ̂�j is the least-squares estimate of the j th parameter, Δ̂�j = −gTj q∕gTj gj . This is equivalent to identifying the parameter
sensitivity which has the minimum angle with the weighted residual at the initial state. Then the columns ofG and the weighted
residual q are replaced by

gj ← gj − ga(gTa gj∕g
T
j gj); q ← q + gaΔ̂�a (41)

Thus q and the remaining columns of G are orthogonal to ga, and the process is iterated until p parameters are selected. The
transformation matrix can be written

Tak =
{
1 �a selected in iteration k; �a updated by �k
0 else (42)

Each of the p columns of T is a unique member of the standard basis of ℝd , thus T is orthogonal (T TT = Ip).
Low-sensitivity parameters may be excluded from subset selection [1,3,5]. If the degree-of-sensitivity of a parameter is given

by the l2 norm of its sensitivity vector, ‖gj‖22 = gTj gj , it is clear that low-sensitivity parameters will tend to require large update
terms Δ̂�j . This poses difficulties, since deterministic model updating generally depends on initial model parameters being close
to global optimal values. Additionally, if model parameters are related to physical quantities, then large parameter updates may
go beyond physically-plausible bounds (e.g. negative mass).
Unfortunately, there is no consensus for what constitutes low sensitivity. This could be taken as a relative term, i.e. ‖gb‖2 ≪

‖gj‖2 ∀j ≠ b, but this doesn’t guarantee a limit on the parameter update. Low sensitivity could instead be tied to the estimate for
the parameter update, Δ̂�j , at the first iteration, but this may be a poor estimate for the parameter update since Δ̂�j comes from
a one-dimensional optimization instead of the true multi-dimensional optimization. Alternatively, any parameters which result
in unacceptably-sized parameter updates could be removed (and possibly replaced) after-the-fact, but there is no guarantee that
the new parametrization will result in a properly bounded set of parameter updates. Since there isn’t a clear method for removing
low sensitivity parameters, no parameters are excluded from analysis in this work.

5.2 SVD-based parametrization
The parametrization method proposed in this paper shares many similarities with subset selection and SVD. The subset selection
method seeks a reduced set of parameters from � with residual gradients (columns ofG) which best represent the residual using
an orthogonalization process. The proposedmethod also uses an orthogonalization process, but instead of selecting a subset from
�, it forms linear combinations of parameters using SVD and updates � along these vectors. While SVD is not new to FE model
updating, it has usually been used for regularization [12]. Recently, Silva et al. [31] selected parameters based on contribution to
the output covariance matrix, closely related to the SVD of the Jacobian matrix. Note that this was used for subset selection,
while the proposed approach forms linear combinations of existing parameters and uses very different logic.
The proposed parametrization method begins by considering the SVD of the weighted Jacobian, G, which is m× d with rank

r ≤ min(m, d). In general, the process of reparametrization is used for underdetermined problems, such that m < d. The SVD
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of G is [32]
G = U�V T =

r∑
j=1

�jujvTj (43)
where U is a m × m orthogonal matrix of the left singular vectors, U = [u1 ⋯ um], and V is a d × d orthogonal matrix of the
right singular vectors, V = [v1 ⋯ vd]. � is an m × d matrix with singular values [�1 ⋯ �r] along its main diagonal, arranged
in descending order. There are at most r = min(m, d) non-zero singular values and associated left and right singular vectors.
Any singular vectors which correspond to zero singular values are outside of the column or row space of G.
Using SVD, the parameter update which minimizes Equation 38 is given by the sum

Δ� =
r∑
j=1

uTj q
�j
vj (44)

An approximate solution (or, equivalently, approximation to G) can be obtained by truncating the sums in Equations 43 and 44
using only p < r singular vectors. Using this logic, a set C of p singular values and right singular vectors is retained, and the
model is updated along the right singular vectors in this set, such that the transformation matrix is T = VC . In other words, each
chosen singular vector defines a linear combination of model parameters in � which is updated by a single updating parameter
in �, such that

� =
∑
j∈C

�jvj (45)

Since each of the p right-singular vectors in VC is a column vector of size d, then T is d × p orthogonal matrix (i.e. T TT = Ip).
The resulting parametrization � has a weighted Jacobian matrix given by G′, as in Equation 36. Since the columns of V are

orthogonal and VC is a subset of these columns, this is equivalent to writing
G′ = GVC = U�V TVC =

∑
j∈C

�jujeTj (46)

where ej is the j th standard basis vector of d-space. Therefore, the singular values ofG′ are a subset of the singular values ofG.

5.2.1 Parametrization to maximize singular values
The most critical issue, then, is to choose the set of p singular vectors to retain, C . The first proposed parametrization delivers
the best approximation toG by retaining the largest singular values, which correspond to the first p singular vectors [32]. This set
can be defined recursively such that the set of p retained singular values �C is greater than all other singular values �b not in �C :

T = VC ; C = {j | �j > �b; ∀b ∉ C} (47)
This method improves the condition ofG′ (when using the reduced parametrization) since the range of singular values is reduced.
Under a set of conditions, it can be shown that this choice will maximize the effective number of parameters,  . Starting with a
natural FE model parametrization � with d parameters, then  is given by Equation 25:

 =
d∑
j=1

��j
��j + �

(48)

where � and � are regularization parameters which are assumed to be constant. �j is the j th eigenvalue of [W −1
� BMP]. The

Hessian of the residual objective function is B(�) = {∇∇Er}(�), and �MP are the updating parameters at the minimum value of
F .BMP may be estimated byB = J TWrJ = GTG (Equations 30 and 39), where the Jacobian is evaluated at the minimum point.
Since VC is a subset of these columns corresponding to the largest �j , this is equivalent to writing

G′ = U�
[
Ip
0

]
=

p∑
j=1

�jujeTj (49)

where 0 is a (d − p) × p matrix of zeros. Therefore, the singular values of G′ are only the maximal p singular values of G. The
singular values ofG are equal to the square root of the eigenvalues of B = GTG. If the parameter values � are sufficiently close
to �MP, then B ≈ BMP. Using a uniform prior distribution for the FE model parameters W� ∝ Id , then W� = T TW�T ∝ Ip.
Therefore �j = �2j are both the first p eigenvalues of [W −1

� GTG] and all the eigenvalues of [W −1
� G′TG′]. Thus, the new
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parametrization represented by the transformation T = VC results in the maximal number of effective updating parameters since

 ′ =
p∑
j=1

��2j
��2j + �

≥ ∑
D

��2j
��2j + �

∀D ≠ {1, ..., p} (50)

This comes from the fact that x∕(x + 1) is maximized when x is maximized and {�1, .., �p} ≥ {�j|j ∉ {1, ..., p}}.

5.2.2 Parametrization to maximize projection onto residual
While Equation 47 provides the best representation of the sensitivity matrix, there is no guarantee that the selected ‘directions’
(singular vectors) for updating will be effective in reducing the residual, and may even be orthogonal to q. To avoid this, the logic
of subset selection is used, with the set of right singular vectors VC chosen such that the resulting sensitivity matrix G′ = GVC
has maximum projection onto the residual q. The new sensitivity matrix can be decomposed using Equation 46 and therefore
the j th column ofG′ is equal to g′j = �juj . The projection of g′j onto q is then �juTj q, but can be normalized to uTj q∕qT q, whichis the cosine of the angle between uj and q.
Therefore, the following parametrization is proposed: the set of singular values C is chosen which correspond to the p largest

projections of left singular vectors uj onto the weighted residual vector q:
T = VC ; C = {j | uTj q > uTb q; ∀b ∉ C} (51)

This ensures that the updating parameters will be (at least locally) effective in reducing the residual. However, this approach
may result in amplification of noise when uTj q > �j [13] and may require very large updating parameter values when uTj q ≫ �j .
It may be practical to exclude singular values which are too small, but this requires definition of a threshold, evoking many of
the difficulties previously noted for subset selection.

6 UPDATING A SMALL-SCALE TRUSS MODELWITH SIMULATED DATA

6.1 Model description
The efficiency of the proposed model parametrization scheme was first tested on a 29-element, 28-DoF, 2-dimensional truss
shown in Figure 1. This structure was modified from Papadimitriou et al.’s work [33] to have symmetric (pin-pin) boundary
conditions and slightly different scale. This truss was also used in previous work by the authors [22]. Each truss element had
identical section properties, with mass density of 7800 kg/m3, Young’s modulus of 200GPa, and area 0.25m2. Therefore, this
structure was statically indeterminate and symmetric. The truss FE model was implemented in MATLAB [34].
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8 @ 6 m = 48 m   

9 m

FIGURE 1 Truss structure layout with element and node numbers indicated

The first five vibrational modes were selected for analysis, with natural frequencies and mode shapes depicted in Figure 2. All
28 free DoFs were assumed to be measured, giving m = 145 measurements across the 5 natural frequencies and mode shapes.
In order to capture a full comparison between the different FE model parametrization schemes, the presented truss was used

to generate a large number of related FE model updating problems. This was accomplished in two stages: random structural
modification and addition of random measurement noise. Beginning with the unmodified truss, the mass density and Young’s
modulus of each element were modified using uncorrelated Gaussian random variables, �em and �ek, as in Equations 33 and
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Mode 1 (f = 9.31 Hz)

Mode 2 (f = 19.8 Hz)

Mode 3 (f = 26.9 Hz)

Mode 5 (f = 51.2 Hz)

Mode 4 (f = 37.3 Hz)

FIGURE 2 Truss mode shapes and natural frequencies

34. Two different levels of variability were analyzed, with case I corresponding to high uncertainty in physical parameters,
� ∼  (0, (0.1)2Id) and case II corresponding to low uncertainty in physical parameters, � ∼  (0, (0.01)2Id). 100 random
realized states were generated for each case.
The second stage was adding noise to the natural frequency and mode shape measurements for each of the 200 realized

states. Natural frequency measurement noise was sampled from a Gaussian random variable with standard deviation equal to
0.5% of the measured natural frequency, i.e. f̃j ∼  (fj , (0.005fj)2). Mode shape measurement noise was sampled from a
Gaussian random variable with standard deviation equal to 5% of the corresponding mode shape (vector) standard deviation,
i.e.  ̃j ∼  ( j , (0.05 std( j))2Il). This measurement noise model was intended to reflect typical conditions, in which natural
frequency measurements are reliable within 1% of true values, while mode shape measurements exhibit an order-of-magnitude
greater variability [2,35]. Note that all measurement noise was uncorrelated.
The residual weighting matrixWr was evaluated as the inverse of the measurement covariance matrix, using measured quan-

tities. Therefore, Wr was diagonal with wf
rj = (0.005f̃j)−2 and ws

rj = (0.05 std( ̃j))−2 in Equation 12. Obviously, Wr would
vary slightly depending on the realization. The regularization parameter � was fixed at a value of 1/2, as discussed in Section 3,
to ensure that the likelihood function was independent of the parametrization. Thus, �Wr was fixed for all parameterizations.

6.2 Parametrization
For each realization, the FEmodel was parametrized using themethods described in Section 5. For a given number of parameters,
p, each parametrization could also be called a “model class” or model, denoted asj in Equation 15. The first parametrization
method was subset selection, described in Section 5.1, which is denoted as SS or1. The second parametrization method was
SVD-based parametrization with maximal singular values, defined by Equation 47, which is denoted as SVD� or2. The third
parametrization was SVD-based parametrization with maximal singular vector projection, defined by Equation 51, denoted as
SVDproj or 3. Each parametrization was tested with the number of updating parameters ranging from p = 1 to p = nel, only
updating the Young’s modulus of each element. Element mass densities were not used as FE model updating parameters to aid
in depiction of parametrizations.
A sample set of model parametrizations is depicted in Figures 3a, c, and e using p = 6 updating parameters. Corresponding

parameter sensitivities are shown in Figures 3b, d, and f, where larger squares indicate larger (magnitude) of sensitivity. For
clarity of depiction, MAC sensitivity is shown in lieu of mode shape sensitivities. The sample SS parametrization in Figure 3a
didn’t show any preference for symmetry, but tended to avoid grouping all selected elements near one area of the truss. The
sensitivities of the SS parameters showed good coverage of all natural frequencies, but none of the selected parameters were
particularly impactful on the MAC of mode 1.
The first and sixth (right) singular vectors are shown in Figures 3c and e, respectively, with positive components denoted

by filled circles and negative components denoted by hollow circles. Each singular vector encodes the change in FE physical
parameters as a result of a change in the corresponding updating parameter. Each singular vector is generally non-zero for all
FE Young’s moduli, defining a relative amount of stiffness increase or decrease in each element. Thus the first singular vector
depicts the stiffness changes corresponding to �1 in SVD� , which mostly affected the stiffness of the end diagonal elements.
The sixth singular vector in Figure 3e corresponds to �6 in SVD� as well as �1 in SVDproj. The sixth singular vector had a large
effect on diagonal elements and bottom chord elements near the supports.
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It is interesting to note that both SVD-based parametrization methods had parameters which were mostly effective on natural
frequencies (e.g. �3 in SVD� and �1 in SVDproj) and separate parameters which were impactful on mode shapes (e.g. �1 in SVD�
and �2 in SVDproj). This may be explained by phenomena noticed in previous work [22], in which natural frequency sensitivities
were symmetric for symmetric parameters, but mode shape sensitivities were asymmetric for symmetric parameters. Intuitively,
this implies that symmetric singular vectors (e.g. Figure 3e) will be more impactful on natural frequencies while anti-symmetric
singular vectors (e.g. Figure 3c) will contribute more to mode shape sensitivities.
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FIGURE 3 Sample truss parametrizations and parameter sensitivities for p = 6 updating parameters

6.3 Model updating results
FE model updating was performed for each of the 200 realizations, using the three described parametrization methods and
model sizes from 1 to nel. The regularized objective function in Equation 14 was used with the FE model parameter covariance
matrix W� = Id . It is interesting to note that all parametrization methods used in this work used orthogonal transformation
matrices, and therefore W� = Ip from Equation 37. The regularization parameter � was allowed to vary as determined by the
estimation algorithm to provide an optimal parameter weighting matrix. The Levenberg–Marquardt minimization with Bayesian
regularization scheme (Section 4 and Algorithm 1) was used to optimize the objective function. The evidence, likelihood, and
Occam factor were evaluated using Equation 22 at �MP.
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The average posterior results for model evidence, likelihood, and Occam factor are shown for high FE model parameter
uncertainty (case I) in Figures 4a, c, and d, respectively. In this case, the model evidence for each parametrization peaked between
p = 12 and p = 24, favoring larger parametrizations. Each parametrization method resulted in similar evidence, likelihood,
and Occam factor curves, with likelihood increasing for larger parametrizations as expected. The Occam factor was not linear
with respect to p, indicating that adding parameters gave diminishing returns in terms of information extraction. Significant
differences in average evidence are visible at p < 12, with all parametrizations performing similarly for larger models. SVDproj
outperformed SS at small p, indicating that it was more efficient with highly reduced parametrizations. SVD� was outperformed
by both SVDproj and SS at all values of p, suggesting that it was far more important to incorporate the weighted residual q during
parametrization, rather than trying to extract as much information from the Jacobian matrix. SS had the highest (magnitude)
Occam factor, which implies that it extracted mildly more information from the data during updating.
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FIGURE 4 Average truss model updating results, high uncertainty in FE model parameters (case I)

Instead of plotting the effective number of parameters  from Equation 25, the ratio of effective parameters ∕p is plotted
in Figure 4b. All parametrizations began with nearly full saturation of parameters, ∕p = 1, and decayed to ∕p ≈ 0.70 even
when using p = d. SS parametrization resulted in a nearly linear decay in efficiency, while the SVD-based parametrizations
were non-linear. Despite the fact that SVD� theoretically should have had maximal  for a set number of parameters p (Section
5.2.2), this was only true between p = 6 and p = 20. This may be due to the large discrepancy between initial model parameters
and updated model parameters, which renders some assumptions in Section 5.2.2 inappropriate.
Figure 5 presents the average truss model updating results using low FE model parameter uncertainty (case II). Evidence

results favored small models, peaking between p = 1 and p = 7 for each of the three parametrizations. Unlike the results in
Figure 4, the behavior of the evidence and likelihood curves was markedly different for each parametrization. SS showed mildly
greater average evidence at its peak of p = 3 and decreased nearly linearly after its peak. SVDproj showed a flatter evidence curve
that outperformed the other parametrizations at for nearly all p. SVD� didn’t display a peak evidence, decreasing monotonically
from p = 1 and with lower evidence than the other parametrizations. SS actually outperformed the other parametrizations in
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terms of data fit (likelihood) between p = 2 and p = 11, but this was offset by its greater Occam factor. It may be concerning
to note that the likelihood curves (Figure 5c) weren’t monotonically increasing with more parameters for SS and SVDproj, but
this is explained by the fact that the posterior probability (F ) was maximized in Algorithm 1 rather than the likelihood (Er).
The parametrization efficiency (Figure 5b) again started with near-saturation, but decayed non-linearly to the much lower level
of 0.15 for all models. Despite the fact that the initial FE model parameters were much closer (on average) to their true values,
SVD� didn’t provide the maximal value for  at each given p.
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FIGURE 5 Average truss model updating results, low uncertainty in FE model parameters (case II)

Interpretation of the support for each parametrization (j) is performed most naturally using Bayes factors [23], as defined
in Equation 26. The support for SVD� over SS (2 over 1: B21) and for SVDproj over SS (3 over 1: B31) are plotted in
Figure 6 for each level of FE model parameter uncertainty, including dashed lines for interpreting the significance of the support
from Table 1. Note that evidence comparison between SVD� and SVDproj could be inferred by the log difference between B21
and B31 since logB23 = logB21 − logB31. For high parameter uncertainty, logB21 was almost entirely less than 0, indicating
support for SS over SVD� with very strong significance for small p and diminishing to strong or less for p > 24. At p = 1
however, SVD� was actually supported over SS. Conversely, SVDproj was very strongly supported over SS for p < 10 (B31),
then decreasing into weak support for SS with p > 14.
Bayes factors were much lower in significance for low uncertainty in FE model parameters (Figure 6b). Again, SS was sup-

ported over SVD� with logB21 < 0 for most p, varying from positive for 2 < p < 14 and weak results for larger models.
Support for SVDproj over SS (B31) was inconclusive for p < 14, but was generally positive for p > 14, indicating that these
parametrizations are equally supported by the data with a slight edge toward SVDproj for larger parametrizations.
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FIGURE 6 Bayes factors for competing truss parametrizations

7 UPDATING A LARGE-SCALE SUSPENSION BRIDGE MODELWITH REAL DATA

7.1 System identification
The second test of the proposed parametrization schemes was FE model updating of a full-scale suspension bridge with mea-
sured data. The studied structure is a double-deck steel bridge with four suspension cables and two towers, as used in previous
work [22,28,29]. The structure is symmetric with a 2089m total length among two side-spans and a 451m mid-span. A series of
ambient vibration studies were performed in 2009 to identify modal properties such as natural frequencies, mode shapes, and
damping ratios under typical operating conditions [28,29]. Vibrational responses were captured using tri-axial accelerometers at
9 locations on the spans and towers, giving 27 measured DoFs for each mode shape. The data from one day was used in this
study, using measurements during four 1-hour periods. The measured modal data (natural frequencies and mode shapes) was
then averaged across the four measurement periods to provide an estimate for average daily modal properties. Note that more
detailed data about identification techniques and hourly data can be found in Jang and Smyth’s work [28,29].
The first 7 vibrational modes were chosen for use in model updating, giving m = 196measurements for 7 natural frequencies

and mode shapes. The average mode shapes, including mode labels and average natural frequencies, are given in Figure 7. The
depicted mode shapes indicate the mode shape amplitude at the 9 measured locations (indicated by dots), while the unmeasured
modal displacements were interpolated with reasonable boundary conditions. This interpolation was only used for the purposes
of depiction; any use of measured data only utilizes the 27 directly-measured DoFs. The suspension cables and suspenders are
omitted from Figure 7 for clarity.
The measured data could have been used to estimate the measurement covariance matrix Cz̃, but four observations was

considered to be inadequate. Thus, the measurement covariance matrix was formed based on an assumed noise model. The noise
in each natural frequencymeasurement was assumed to have a standard deviation equal to 0.5% of themeasured natural frequency
value. The noise in each mode shape component was assumed to have a standard deviation equal to 5% of the measured mode
shape’s standard deviation. The residual weighting matrix, Wr, was then the inverse of this assumed measurement covariance
matrix. Using Equation 12, this can be written aswf

rj = (0.005f̃j)
−2 andws

rj = (0.05 std( ̃j))−2, or cf = 0.005 and cs = 0.05 inEquation 13. As in Section 6, the regularization parameter related to the residual, �, was fixed at a value of 1/2 to provide more
accurate evidence comparisons between parametrizations.

7.2 FE model description
The suspension bridge FEmodel was developed in ABAQUS [36] using partially-available technical drawings to define the geom-
etry and element properties. In cases where technical drawings were uninformative, reasonable guesses for element properties
were made using photography. The FE model comprised approximately 21,000 elements and 18,000 nodes. Soil interaction and
thermal expansion joints were incorporated through boundary condition springs and hinge springs, respectively. For a thorough
discussion of element types, boundary conditions, connections, and initial model material properties, please refer to Jang and
Smyth’s description of the same FE model [28].
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Mode H1 (f = 0.194 Hz)

First lateral

Mode V1 (f = 0.227 Hz)

First vertical

Mode V2 (f = 0.303 Hz)

Second vertical

Mode T1 (f = 0.373 Hz)

First torsional

Mode SV1 (f = 0.337 Hz)

First side-span vertical

Mode H2 (f = 0.450 Hz)

Second lateral

Mode V3 (f = 0.500 Hz)

Third vertical

FIGURE 7 Suspension bridge measured modes (measurement locations indicated by red dots)

The MAC values of the initial FE model are given in Table 2, along with the relative frequency error, ferr = (f̃ − f )∕f̃ .
Due to FE model modifications to account for more realistic structural behavior, particularly in the boundary conditions and
interactions between cable and deck components, the initial ferr and MAC values are slightly different from those in Jang and
Smyth’s previous work [28,29]. The natural frequencies of the initial FE model were higher than their measured counterparts. The
first torsional mode (T1) had the lowest initial natural frequency error at -3.0%, while the first side-span vertical mode (SV1)
exhibited the highest initial natural frequency error at -34.2%. The first two vertical modes (V1 and V2) and the first lateral mode
(H1) were already very close to their measured counterparts, with MAC values above 0.950. The first torsional mode (T1) and
the third vertical mode (V3) exhibited the lowest initial MAC values at 0.741 and 0.743, respectively. Every mode exhibited a
high frequency error and/or a low MAC, indicating that every mode would be important in model updating. The total initial FE
model error Er was a summation of the natural frequency error Ef

r , comprising 60% of the total, and the mode shape error Es
r ,comprising the other 40% of the total (Equation 12).

Due to the relatively low number of mode shape measurements, an intermediate step was implemented during mode pairing.
Initial FE model modes and measured modes were paired using MAC from the 27 measured DoFs, creating an index between
the modes of the initial FE model and measured modes. During the model updating, FE model modes were first paired with the
initial FE model modes using all FE model DoFs to increase pairing fidelity. Then the index between initial FE model-measured
modes was used to relate each updated mode to the correct measured mode. This approach ensured consistent pairing between
FE model modes and measured modes, since FE model mode shapes could change significantly and had relatively few DoFs for
direct pairing.

7.3 Parametrization
Due to the large number of FE model physical parameters (approximately 42,000 physical parameters, among mass densities,
Young’s moduli, and spring coefficients), it was necessary to first arrange elements into substructures to avoid an intractably
large set of sensitivity calculations. Structural components were decomposed into 132 substructures based on element type and
location. The main span was divided into 8 longitudinal groups and the two side-spans were each divided into four longitudinal
groups. The towers were divided into three vertical groups. These groups were then further divided based on element type.
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The properties of these substructures were used as the FE model physical parameters, giving 132 mass densities, 132 Young’s
moduli, 15 spring coefficients to update. Thus, the natural FE parametrization � had d = 279 components.
To be consistent with Jang and Smyth’s prior work, each parametrization used 5 mass parameters and 17 stiffness (and spring)

parameters, giving p = 22 total updating parameters. This was achieved by separately selecting mass and stiffness parameters
based on )q∕)�m and )q∕)�k sensitivities, respectively. The FE model was parametrized according to subset selection (1 or
SS), SVD-based parametrization with maximal singular values (2 or SVD�), and SVD-based parametrization with maximal
singular vector projection (3 or SVDproj) methods described in Section 5.
Figure 8 depicts the parametrizations of the bridge, as well as the sensitivities for the 22 updating parameters of each

parametrization in subfigures b, d, and f. Note that these plots reflect the absolute value of the sensitivity, so visually simi-
lar parameters (e.g. �20 to �22 in Figure 8d) may have components which differ significantly in sign. The sensitivity plots are
separated into mass parameters (�1 to �5) and stiffness parameters (�6 to �22).
Figure 8a depicts the mass substructures chosen by SS, with �1 and �5 affecting the mass density of the side-span lateral

bracing. As expected, these parameters have the largest impact on the side-span vertical mode, SV1, as confirmed by the sensi-
tivities in Figure 8b. �2 comprises mid-span lateral bracing and mainly affects natural frequencies for main-span modes. �3 and
�4 comprise bracing and chord main-span elements near one tower, mainly affecting modes H2 and V3. It is interesting to note
that SS parameters seem to be specialized in the sense that each parameter mainly affects one or two modal properties with very
little influence on other properties. This is exemplified by �15 which only has significant effect on the T1 and SV1 mode shapes.
The third mass singular vector (i.e. v3 of )q∕)�m) is shown in Figures 8c, which corresponds to �3 in SVD� and �1 in

SVDproj. This can be viewed as the change in element masses when either of those two updating parameters are perturbed,
which essentially adds mass to the midspan area. Unsurprisingly, these parameters mostly affect the natural frequency of main-
span modes (Figures 8d and f). The third stiffness singular vector (i.e. v3 of )q∕)�k) is shown in Figure 8e, which mainly
influences the truss element stiffnesses near the span-ends and the tower elements. This corresponds to �8 in SVD� and �5 in
SVDproj. These updating parameters have large influence on natural frequencies, mainly for mode T1, with little impact on mode
shapes. As noted in Section 6, since the singular vectors depicted in Figures 8c and e are approximately symmetric, they are
mostly impactful on natural frequencies. In general, the SVD-based parametrizations had low mode shape sensitivity compared
to natural frequency sensitivity, except for �19 of SVDproj, which also exhibited separation between the two kinds of sensitivity.
Both of the SVD-based parametrizations showed less specialization than SS, with parameters generally having significant

effect on multiple modal properties. In particular, pretty much every parameter in SVD� affected multiple natural frequencies,
generally with lower impact on mode shapes, while SVDproj had much some parameters which were specialized (e.g. �4 and
�13) and more impact on mode shapes. This suggests that parametrizations which incorporate the measurement residual q show
a tendency towards specialized parameters, perhaps reflecting non-uniform distribution of measurement error.

7.4 Model updating results
Model updating proceeded using the three parametrization methods, each with 5 mass and 17 stiffness updating parameters. The
regularized objective function in Equation 14was usedwith FEmodel parameter covariancematrixW� = Id . As noted in Section
6, all parametrizations used orthogonal transformation matrices givingW� = Ip. The Levenberg–Marquardt minimization with
Bayesian regularization scheme (Section 4 and Algorithm 1) was used to optimize the objective function, with � free to be
determined by the algorithm. Parametrization and optimization were performed in MATLAB [34], while modal analysis was
performed in ABAQUS [36]. Communication between MATLAB and ABAQUS was controlled by an application programming
interface. The evidence, likelihood, and Occam factor were evaluated using Equation 22 at the minimum point �MP.
The converged results are shown in Table 2, including the relative frequency error ferr and MAC for each mode in both the

initial and updated states. The total sum-of-square residual Er, composed of natural frequency residual Ef
r and mode shape

residual Es
r (as in Equation 12) is also included, along with the parameter efficiency ∕p (Equation 25).

SS parametrization producedmediocre reductions in model error, giving 34% less total error than the initial model, splitting its
total error almost equally between Ef

r and Es
r . SS mildly improved natural frequency results across all modes. SS was relatively

unsuccessful in reducing large natural frequencies errors, but did show promising results for H1 and V2. Mode shape results
were underwhelming, with very slight gains for most modes and slight loss in MAC for mode SV1. Parameter efficiency was
also quite low at 0.31, indicating that the prior distribution (regularization) played a larger role than the likelihood (data) in
determining the parameter values.
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(a) Subset selection mass parameters (b) Subset selection parameter sensitvities

(c) Third mass singular vector (d) SVDσ parameter sensitvities

(e) Third stiffness singular vector (f) SVDproj parameter sensitvities
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FIGURE 8 Suspension bridge parametrizations and parameter sensitivities

The SVD-based parametrizations both showed very strong results with 74% and 76% reduction in Er for SVD� and SVDproj,
respectively. SVD� focused more on reducing more shape error, with Es

r comprising 77% of its total error, while it comprised
82% of the total error for SVDproj. Both SVD-based parametrizations showed similar natural frequency results, with SVDproj
slightly outperforming SVD� for all modes except V2. These parametrizations were extremely successful in reducing natural
frequency error, cutting Ef

r by approximately 90% from its initial value. Both methods struggled with mode T1, increasing the
relative error from -3% to approximately 10%. Problems with mode T1 were noted in previous work [22,28], and may be related to
unmodeled non-linear geometry. Three T1 modes were identified in the measured data sets, each with different in-phase or out-
of-phase motions between the main cable and deck, and different interactions between the main-span and side-spans. However,
only one T1 mode was produced in the FE model because the geometrically non-linear deck-cable interaction was not modeled.
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TABLE 2 Suspension bridge model updating results

Initial FE model Updated FE model
1 (SS) 2 (SVD�) 3 (SVDproj)

Mode ferr MAC ferr MAC ferr MAC ferr MAC
H1 -21.7% 0.984 -10.5% 0.990 5.4% 0.992 2.4% 0.991
V1 -29.8% 0.969 -25.9% 0.971 -9.4% 0.970 -8.9% 0.963
V2 -17.5% 0.986 -8.8% 0.984 2.8% 0.980 5.1% 0.979
T1 -3.0% 0.741 1.7% 0.795 11.3% 0.820 9.7% 0.846
SV1 -34.2% 0.879 -26.0% 0.876 0.4% 0.872 0.3% 0.889
H2 -19.8% 0.845 -11.3% 0.903 -1.1% 0.962 -0.3% 0.939
V3 -19.4% 0.743 -16.8% 0.774 -10.3% 0.974 -7.4% 0.968
Total error, Er (104) 2.39 1.57 0.61 0.57
Nat. freq. error, Ef

r (104) 1.44 0.78 0.14 0.10
Mode shape error, Es

r (10
4) 0.95 0.79 0.47 0.47

Parameter efficiency, ∕p – 0.31 0.94 0.92

TABLE 3 Suspension bridge posterior results and Bayes factors (all results ×103)
Posterior results (log) Bayes factor, 2 logBjk

Model k
Modelj Evidence Likelihood Occam factor 1 2 31 (SS) -7.11 -7.08 -0.027 – -9.41 -9.872 (SVD�) -2.41 -2.32 -0.085 9.41 – -0.463 (SVDproj) -2.18 -2.11 -0.069 9.87 0.46 –

Similar mode shape updating results were also noted for the two SVD-based parametrizations, decreasing the mode shape
error Es

r by about 50% from its initial value. Both parametrizations were highly successful in improving the MAC of modes
T1 and V3, beginning near 0.750 and ending around 0.830 and 0.970, respectively. Similarly strong improvement was noted
for mode H2. Parametrization efficiencies were excellent, at 0.94 for SVD� and 0.92 for SVDproj, respectively. This indicates
that the parameters were very efficient in utilizing the data for updating, with minimal influence of regularization. The slightly
higher values for SVD� was expected due to the results of Section 5.2.2.
Table 3 displays the posterior results, including the (log) evidence, likelihood, and Occam factor for each parametrization.

Since � andWr were fixed for all models, the log likelihood was controlled by the total error Er. Therefore, it was expected that
SVDproj would have higher likelihood and also greater evidence since the Occam factors were small in magnitude. The evidence
for SS was very low compared to the SVD-based parametrizations, due the high total error and therefore low likelihood. The
Occam factors for the SVD-based methods were similar, with SS having a much lower Occam factor, reflecting the statements
made for ∕p (i.e. low data utilization). The relative evidence for pairs of models were examined using Bayes factors (see
Equation 26 and Table 1). There was extremely strong evidence for the SVD-based parametrizations over SS (>9000) with
order-of-magnitude lower, but still decisive, evidence for SVDproj over SVD� in this model updating exercise.

8 CONCLUSIONS

The approach proposed in this work utilizes SVD of the sensitivity matrix to develop robust, reduced-order parametrizations
which improve posedness and efficiency in FE model updating. Singular vectors are used to define linear combinations of under-
lying FE model parameters which are each updated by a single updating parameter. SVD-based parametrization can form an
optimal, reduced representation of the sensitivity matrix, or singular vectors can be selected to best represent the measure-
ment residual, similar to subset selection. Model error is minimized using a deterministic scheme which incorporates Bayesian
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inference to perform regularization and estimate both parametrization efficiency and model evidence. This is closely related to
Laplace’s method with minimization via the Levenberg–Marquardt algorithm. The main novelty of this approach is in optimally
selecting the regularization parameter, which corresponds to estimating an improved prior PDF. The proposed approach tomodel
updating combines the low computational cost of regularized deterministic methods with strong ties probabilistic methods.
The proposed SVD-based parametrization schemes were tested against subset selection on two vibration-based model updat-

ing problems: a small-scale 2-dimensional truss with simulated measurements and a large-scale suspension bridge with real
data. In both cases, natural frequencies and mode shapes were targeted for updating. The truss example provided an efficient
testbed for comparing a range of model sizes and parameter uncertainty levels across a significant number of randomized real-
izations. Parametrization using only the largest singular vectors was generally not supported by the data compared to subset
selection, while incorporating the residual into choice of singular vectors resulted in as-good or better support compared to
subset selection. Support was measured by the relative evidence (Bayes factor). Model updating of the large-scale suspension
bridge produced mediocre results when parametrized using subset selection, while the SVD-based methods provided excellent
reductions in error. In this example, incorporating data into choice of singular vectors was again shown to be effective.
While the proposed parametrizations showed excellent results on the presented examples, there was significant variation in

the strength of model support in the two model updating exercises. Further work is required to understand if subset selection is
inherently ineffective on large-scale models or only for the presented suspension bridge. Regularization was generally unneces-
sary for the included examples which were always overdetermined, but it provided a consistent set of prior beliefs and allowed
estimates of model evidence. The posterior estimates may be inaccurate for non-Gaussian prior distributions and likelihoods, or
for small data sets.
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Abstract

Finite element (FE) model updating improves the prediction value of an FE model by adjusting parameters to enhance
correspondence with measured responses. Parametrizing the FE model is non-trivial, with significant impact on the
efficacy in reducing errors and posedness of the updating problem. The concept of incremental reparametrization is
proposed and explored as an extensible framework for extracting further utility from an FE model with a reduced
set of updating parameters. This non-intrusive approach successively creates new parametrizations of an FE model
by examining the sensitivity matrix after each model updating increment. A deterministic parameter estimation
algorithm is proposed which ties asymptotic Bayes inference to regularization such that new parametrizations are
consistently penalized. The proposed reparametrization scheme is tested on natural frequency and mode shape
updating exercises, including a small-scale model with analytical data and a benchmark problem with experimental
data. In both examples, the proposed reparametrization scheme is strongly supported for subset selection, while it
exhibits weaker returns for parameter clustering.

Keywords: Finite element model updating, Parametrization, Sensitivity analysis, Subset selection, Parameter
clustering

1. Introduction

Finite element (FE) model updating is a well-developed and common technique for adjusting the parameters of
an FE model to reduce discrepancy between measured and model-output data [1, 2]. An updated model has greater
utility for response prediction, and may provide further insight into the structural state when model idealization
and discretization errors are controlled [2]. For structural applications, the measurements are often obtained from
vibration studies, giving such data as natural frequencies, mode shapes, time series, and response functions.

Generally, there are a large number of possible FE model parameters which may be adjusted to update an FE
model, such as element mass and stiffness properties, connection and boundary condition spring coefficients, or even
geometry. It is typically impractical to individually update all parameters, even with a moderately-sized FE model,
because the problem rapidly becomes ill-posed. Ill-posedness is a property of the parameter estimation problem, in
which there is insufficient information to constrain the parameter estimates. For deterministic model updating, such
as Gauss–Newton minimization, this is understood as an underdetermined system of equations, with more parameters
than effective measurements [2, 3]. For uncertainty quantification (UQ) methods of model updating, such as Monte
Carlo-based sampling, this is typically referred to as unidentifiability [4]. For an excellent review of deterministic
and UQ methods of model updating, the reader is referred to Simoen et al. [3].

There are two principal remedies for ill-posedness: regularization and reparametrization. Regularization has
seen significant study in FE model updating [5–7] and creates a side-constraint, usually to minimize the norm of
parameter changes. This introduces additional equations to overcome ill-posedness, which must be appropriately
balanced against the main objective of reducing the residual between measured and model-output data. In any form
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of regularization, however, the additional constraints are unrelated to the original objective and tend to pull the
solution away from its maximum likelihood result [8].

The other common counter for ill-posedness is reparametrization, which is any systematic method for selecting
a new (usually reduced) set of parameters to update the underlying FE model. Many parametrization methods,
such as subset selection and parameter clustering, use sensitivity analysis to choose an effective set of elements or
substructures to modify. Nearly all sensitivity-based parametrization methods are based on the local sensitivity
matrix, or Jacobian, evaluated at the initial model parameter state. This is seemingly appropriate when the initial
parameter estimates are close to their final estimates, and the sensitivity matrix is unlikely to vary significantly
during updating. However, it is difficult to guarantee this condition and a more efficient parametrization might be
found at the end of one updating increment.

In this work, incremental reparametrization is explored in the context of forward subset selection and sensitivity-
based parameter clustering for FE model updating. This is phrased as a model selection problem in which the relative
evidence is evaluated for reparametrization. In Section 2, an objective function is defined which, for the purposes of
this work, uses both natural frequency and mode shape data. A review of subset selection and parameter clustering
methods is given in Section 3. The incremental reparametrization scheme is detailed along with a novel completion
criterion for detecting permutations of the current parametrization. The chosen parameter identification algorithm is
detailed in Section 4, which is based on the asymptotic Bayesian inference scheme implemented in previous work by
the authors [7]. This approach is adapted to accommodate reparametrization and provide model evidence estimates.
The proposed reparametrization scheme is then tested on two model updating exercises: a small-scale truss with
analytical data (Section 5) and a Structural Health Monitoring (SHM) benchmark structure with experimental data
(Section 6). Conclusions are drawn in Section 7.

2. Objective definition

FE model updating generally requires the following items:

1. Measured data from a structure, z̃;
2. A parametrization of an FE model, M, with parameters θ and which outputs data similar to the measured

data z(θ);
3. An objective function which penalizes discrepancies between measured and model-output data;
4. A parameter estimation algorithm which produces a point, range, or distribution of optimal parameter values.

It is common to write the measured data z̃ (item 1) as a column vector with m components. While this approach
naturally extends to many kinds of measured data, in this work z̃ is written as a concatenation of natural frequency
and mode shape data:

z̃ = [f̃1 · · · f̃l ψ̃T1 · · · ψ̃Tl ]T (1)

This comprises l measured modes, each with a natural frequency f̃j and mode shape vector ψ̃j which is unit-

normalized (i.e. ψ̃Tj ψ̃j = 1). Since each mode shape vector has n components corresponding to n measured
degrees-of-freedom (DoFs), the total number of measurements is m = l(n+ 1).

FE model parametrization (item 2) is covered in greater depth in Section 3. For now, it is sufficient to assume
a parametrization M exists which takes in a column vector of p parameters, θ, and outputs a column vector of m
components, z(θ). The FE model output data should estimate similar quantities to the measured data, so for the
purposes of this work, it is given as

z(θ) = [f1(θ) · · · fl(θ) µ1ψ
T
1 (θ) · · · µlψTl (θ)]T (2)

where there are l corresponding natural frequency, fj(θ), and unit-normalized mode shape, ψj(θ), outputs. µj is
the jth modal scale factor [9] which minimizes the square difference between measured and model-output modes

µj = ψ̃Tj ψj(θ) (3)

and is also a function of the parameters θ. Correlation between measured and model-output modes should be
established by mode pairing [1], which generally matches modes on the basis of Modal Assurance Criterion (MAC)
[9]. The MAC between measured mode j and model-output mode k is given as

MAC(ψ̃j ,ψk) =
(ψ̃Tj ψk)2

ψ̃Tj ψ̃j ·ψTk ψk
(4)
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and ranges between 0 (orthogonal mode shapes) and 1 (parallel mode shapes). Pairs are established which maximize
the MAC, and the model-output modes are sorted to reflect their corresponding order in the measured data.

A common choice for objective function (item 3) is the weighted sum-of-square residual, Er, where the residual
vector r(θ) is simply the difference between measured and model-output data vectors:

Er = rTWrr (5)

r(θ) = z̃ − z(θ) (6)

Wr is the m ×m residual weighting matrix, which should represent the uncertainty in the measurement vector z̃.
The statistically-optimal (in a Bayesian sense) choice of Wr is the inverse of the measurement covariance matrix Cz̃
[10], where both Cz̃ and Wr are symmetric and positive semi-definite. It is typical to assume statistical independence
between measurements, making Cz̃ and Wr both diagonal. A diagonal Wr can be written as

diag[Wr] =
{
wfr1 · · · wfrl diag[W ψ

r1] · · · diag[W ψ
rl ]
}

(7)

where wfrj is the jth natural frequency weighting term, and W ψ
rj is the corresponding diagonal mode shape weighting

matrix. When a weighting matrix like that in Eq. (7) is used in Eq. (5), then the following separation can be made
between natural frequency and mode shape errors.

Er =

l∑

j=1

wfrj(f̃j − fj)2 +

l∑

j=1

{ψ̃j − µjψj}TW ψ
rj{ψ̃j − µjψj} (8)

For further discussion of this objective function, including partitioning and analytical sensitivity calculations, please
refer to previous work by the authors [7].

3. Parametrization

With a defined set of measured data z̃, and an objective function Er to minimize, the next requirement for
FE model updating is a parametrized FE model to generate corresponding data. There are many parametrization
schemes available in the literature, and each parametrization scheme may be able to generate a large number of
possible parametrizations for a given model. Model parametrizations should satisfy three conditions [1]:

1. a limited number of parameters should be used to avoid ill-posedness,

2. the parametrization should be chosen to correct model uncertainties, and

3. model-outputs should be sensitive to the chosen parameters.

Fulfillment of these requirements generally requires expert knowledge of FE model sensitivities and uncertainties.
Mottershead et al. [11] studied several parametrizations of an aluminum frame, some based on consideration of
model uncertainties and others that were mostly numerical. While these methods may reduce the residual, there is
no guarantee that the model-outputs will be sensitive to the selected parameters or that posedness will be improved.
Parametrizations which incorporate model sensitivities therefore have a large advantage in that they are designed
to provide sensitive parameters and counter ill-posedness. These methods commonly select a reduced subset of FE
model parameters [5, 12, 13], or retain all FE model parameters but group them into clusters (substructures) of
‘similar’ elements which are updated by single parameters [2, 7, 14–16].

The common starting place for sensitivity-based parametrizations is the base FE model parametrization, denoted
as δ. A typical choice of δ is the set of parameters which linearly modify the element mass Me and/or stiffness Ke

matrices for each element e out of a total nel. Therefore, the global mass M and stiffness K matrices (which are
N ×N for N FE model DoFs) are given as functions of δ:

M(δ) =

nel∑

e=1

Me(1− δMe ) = M0 −
nel∑

e=1

Meδ
M
e (9)

K(δ) =

nel∑

e=1

Ke(1− δKe ) = K0 −
nel∑

e=1

Keδ
K
e (10)
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where M0 and K0 are the unmodified mass and stiffness matrices, respectively. δ is thus a column vector of d = 2nel
components when both mass and stiffness are modified, or d = nel when only one matrix is modified.

Within this work, an incremental reparametrization scheme is defined which uses a different set of updating
parameters in each increment i. Therefore, it is convenient to define the updating parameters for the ith increment
as θi, while the FE model parameters at the beginning of the increment are denoted as δi. δi can simply be thought
of as initial values for the FE model parameters in a typical model updating scheme. For the parametrizations in
this work, the relationship between δ and θi can be defined by a linear transformation matrix T i, such that

δ = δi + T iθi (11)

This parametrization is denoted as Mi, and encompasses the initial values of the FE model parameters δi, the
column vector of p ≤ d updating parameters θi, and the d × p transformation matrix T i. Importantly, since δi is
a fixed quantity for the parametrization Mi, then the Jacobian of δ with respect to θi is simply T i. This can be
exploited to show that the Jacobian of the residual r with respect to θi, J ij , is related to the Jacobian of the residual

with respect to δ, Sij :

J ij =
∂r

∂θi

∣∣∣∣
θi=θij

=
∂r

∂δ

∣∣∣∣
δ=δi+T iθij

∂δ

∂θi
= SijT

i (12)

where the Jacobians are evaluated at a certain value θij .
Two parametrization methods, namely forward subset selection (Section 3.1) and sensitivity-based parameter

clustering (Section 3.2), are described for producing the transformation matrix T i. The incremental reparametriza-
tion scheme is described in Section 3.3.

3.1. Parameter subset selection

Subset selection attempts to find a reduced number of model parameters which produce a successful updating
result according to an objective function such as minimum residual or maximum evidence, and was originally applied
in regression [17]. An exhaustive search of all subsets may be practical for small problems, but heuristic methods
are essential for most practical problems. A variety of selection methods exist in FE model updating, but the
most common heuristic subset selection method is forward subset selection, first applied to FE model updating by
Lallement and Piranda [12] and used in further work [5, 13]. This method, simply called subset selection from
here-on, successively selects parameters based on their similarity of their sensitivity to the residual vector during an
orthogonalization process.

First, consider updating using an FE model parametrization δ with d parameters. This can be stated as “find
the parameter update ∆δi which minimizes the objective function Er(δ

i + ∆δi)”:

Er(δ
i + ∆δi) = ‖qi +Gi∆δi‖22 (13)

where ‖ ‖2 is the L2 norm. qi is the weighted residual and Gi is the weighted Jacobian, or equivalently, the Jacobian
of qi:

qi = W 1/2
r ri; Gi = W 1/2

r Si =
∂qi

∂δ

∣∣∣∣
δ=δi

; Si =
∂r

∂δ

∣∣∣∣
δ=δi

; (14)

Subset selection seeks a reduced set of p < d parameters from δ which minimize Er, using an iterative process to
greedily select one parameter at a time.

The process begins at selection iteration a = 1 by identifying and selecting the parameter δb which (by itself)
provides the greatest reduction in Er:

b = arg min
j∈1,..,d

‖qi + gij∆̂δ
i
j‖22 (15)

where gij is the weighted sensitivity vector of parameter j, or equivalently the jth column of Gi = [gi1 · · · gid]
and ∆̂δij = −giTj qi/giTj gij is the least-squares estimate for the jth parameter. This is equivalent to choosing the
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parameter which has the least angle between its sensitivity vector and the residual [13]. The process then continues
by orthogonalizing the sensitivity vectors and residual with respect to the the sensitivity for δb, g

i
b:

gij ← gij − gib(giTb gj/giTj gij); qi ← qi + gib∆̂δ
i
b (16)

A new iteration is started using these orthogonalized quantities, identifying the parameter which minimizes the cosine
distance between the modified qi and the modified columns of Gi. This process is performed for all iterations a
until p parameters are selected. This orthogonalization process ensures that each parameter has a different effect on
reducing residual (i.e. sensitivity), which should improve posedness by excluding parameters with linearly-dependent
sensitivities.

The updating parameters correspond to individual FE model parameters, so this is equivalent to directly updating
p FE model parameters while keeping the other d− p fixed. The d× p transformation matrix T i can be written as

T iba =

{
1 δb chosen in selection iteration a (i.e. δb updated by θia)
0 else

(17)

This matrix is orthogonal (T iTT i = Ip) since each of the p columns is a unique member of the standard basis of
d-space.

3.2. Sensitivity-based parameter clustering

Where subset selection only updates a reduced set of FE model parameters, parameter clustering updates all of
the FE model parameters but groups model parameters into clusters which are updated together, giving a reduced
parametrization. This approach was first proposed by Friswell et al. [13] as an extension of subset selection, and
was further developed by Shahverdi et al. [14] to use hierarchical clustering based on the cosine distance between
parameter sensitivity vectors. This approach was also used by the authors in previous work [7, 15, 16].

Hierarchical clustering [18] requires a distance measure to evaluate similarity between parameters and a linkage
method for determining the distance between candidate clusters. For sensitivity-based parameter clustering, cosine
distance is usually selected as the distance measure. The cosine distance between the weighted sensitivity vectors
for parameters δj and δk at the beginning of increment i is

dcos(g
i
j , g

i
k) = 1− giTj gik/(giTj gij · giTk gik)1/2 (18)

which ranges between 0 (parallel) and 2 (anti-parallel). The chosen linkage method is the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [18], which combines clusters based on the distance between unweighted
cluster means. At each step, the most similar two elements (clusters or single parameters), measured by distance
between unweighted cluster means, are combined to form a new cluster. This builds a dendrogram where ‘branches’
combine with increasing distance criterion. Thus, for a specified maximum linkage distance, the dendrogram can be
‘cut’, resulting in a number of clusters. For the purposes of this work, the number of clusters p may also be specified,
requiring that the dendrogram is cut at such a level to give the prescribed number of clusters. Since sensitivity-based
parameter clustering combines FE model parameters with similar sensitivity vectors, linear dependence is reduced
in the resulting Jacobian matrix, J i, thereby improving posedness.

The d× p transformation matrix for the ith parametrization, T i, can be written as

T iba =

{
|A|−1/2 δb is part of cluster a (i.e. δb updated by θia)
0 else

(19)

where |A| is the cardinality of cluster a. When defined in this way, T i is orthogonal (T iTT i = Ip) because each
parameter is assigned to exactly one cluster and each column is unit-normalized.

3.3. Incremental reparametrization for sensitivity-based parametrization methods

Subset selection and parameter clustering methods, as part of the broader class of sensitivity-based parametriza-
tion techniques, are generally based on the sensitivity of residual r to FE model parameters δ at the initial FE model
state, S0 (see Eq. (14)). This is used to generate a parametrization Mi for the i = 0 increment, which uses the
parameters θi and transformation matrix T i. This is then optimized using an algorithm to give a point estimate for
the optimal θi, denoted as θ̂i. This may be a deterministic parameter solution, as will be covered in Section 4, or it
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could be the maximum likelihood or maximum a posteriori estimate from a probabilistic scheme. This provides the
FE model parameter update as

∆δi = T iθ̂i (20)

which is then used to increment the FE model parameters:

δi+1 = δi + ∆δi (21)

This is commonly the final result of a FE model updating exercise. However, it is possible that the sensitivity
matrix at the end of one increment, S1, is considerably different to S0, leading to new possible parametrizations
and further error reduction. This is particularly applicable to forward subset selection methods because parameters
are chosen based on similarity to the residual vector. Since both the parameter sensitivities and residual vector will
change during updating, it is very likely that a new parametrization will be more appropriate after one updating
increment.

Therefore, a technique called incremental reparametrization is proposed. First, it is necessary to define a
parametrization methodMk, which can be used at each increment i, giving increment parametrizationsMi

k. Then,
starting at increment i = 0 with a defined initial FE model parameter vector δ0, incremental reparametrization
proceeds as follows:

1. Evaluate the FE model parameter sensitivities at the current increment Si = ∂r
∂δ |δ=δi .

2. Generate a parametrization for current increment Mi
k such that ∆δi = T iθi.

3. Check if the current parametrization is equal to the last parametrization. If so, exit.

4. Estimate optimal parameters θ̂i and update FE model parameters δi+1 = δi + T iθ̂i.

5. Increase the increment index i← i+ 1 and return to step 1.

For a deterministic scheme such as the sensitivity method, the optimal parameters are estimated by an iterative
method within each increment. A depiction of this process is shown in Fig. 1 with an illustration of the decrease in
an objective value, such as the L2 norm of residual. Since each increment is treated as a separate non-linear problem,
the number of iterations in each increment can be variable.

Increment 0 1 2 3 4

Iteration 0 2 4 0 1 2 0 1 2 0 1 01 3 5

O
bj

ec
ti

ve
 v

al
ue

Figure 1: Illustration of proposed incrementation scheme

The proposed algorithm is non-intrusive. Steps 1, 2, and 4 comprise a typical sensitivity-based model updating
scheme, while steps 3 and 5 are simple control logic. In fact, this process may be thought of as performing several
steps of model updating, where each new step is initialized at the results of the previous step. A large benefit of this
approach is that the number of updating parameters p can be kept constant across all increments, which is a critical
part of ensuring posedness in model updating.

The only step which is not obvious or previously covered in this or other work is step 3. While it may seem
possible to simply test if T i = T i−1, this does not work for situations in which parameters are simply relabeled
or reordered. For example, in parameter clustering, cluster indices are essentially arbitrary. Therefore, a test for
parametrization equivalence is proposed which recognizes cases where the columns of T i are a permutation of the
columns of T i−1. Define Qhi between the parametrizations at increments h and i as

Qhi = T hTT i (22)
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where T h and T i are not necessarily orthogonal, but each column is normalized such that diag[T TT ] is a vector of 1s
for both parametrizations. If T h and T i are column-permutations is readily shown that Qhi is a ‘quasi-permutation’
matrix with exactly one entry of 1 in each row and column and values less than 1 elsewhere. If T h and T i are not
column-permutations, then one or more columns and rows of Qhi will not have exactly one entry of 1, making this
simple to check algorithmically. Furthermore, if T h and T i are each orthogonal, as established for subset selection
and parameter clustering, then Qhi will be a true permutation matrix when T h and T i are column-permutations,
with exactly one entry of 1 in each row and column and 0 in all other entries.

Convergence is an important consideration in this incremental scheme. Within each increment, most parameter
estimation algorithms attempt to solve a (locally) convex optimization problem to find the optimal θi to minimize Er
or some related objective, which is a convergent problem. Thus, the question is whether or not the parametrizations
(increments) will necessarily converge. Under the requirement that the reducible error in Er is finite, then there
can only be a finite number of increments which reduce Er (within the limits of computer precision). Therefore, it
is important to select a parameter estimation algorithm which only performs updates which reduce Er, otherwise
it may be possible to select an infinite number of new parametrizations without affecting the objective, creating an
infinite loop. Within this work, it was generally noted by the authors that the amount of parameter change ∆δi

tended to reduce with successive increments. This resulted in decreasing changes in parameter sensitivities, leading
toward parametrization convergence as illustrated in Fig. 1.

4. Levenberg–Marquardt minimization scheme with asymptotic Bayesian inference

With a defined set of measured data, an objective function (Section 2), and a parametrized FE model (Section
3), the final step in model updating is to select a parameter estimation algorithm. UQ methods are growing in
popularity because they naturally incorporate measurement and model uncertainties into their results, giving a range
or distribution of parameter estimates [3]. However, they are typically orders-of-magnitude more computationally
expensive than deterministic methods and may be prohibitive for full-scale model updating. Deterministic model
updating provides a computationally inexpensive method for obtaining a local or global optimum parameter estimate.
The sensitivity method [2] is an intuitive local approach for deterministic model updating, and includes a wide-class
of methods for performing Gauss–Newton-type optimization of a quadratic residual function, like in Eq. (5).

While the sensitivity method isn’t typically formulated to provide UQ, regularization can be used to provide a
natural link to Bayesian inference [3, 8]. This approach was used previously by the authors [7] to provide optimal
regularization based on the algorithm from Foresee and Hagan [19]. This approach hinges on the use of Gaussian
distributions, or alternately on asymptotic assumptions, which has previously seen use in FE model updating [3, 20].

The regularized objective function F is written as a weighted sum of the quadratic residual term Er from Eq.
(5) and a quadratic penalty term Eδ:

F = βEr + αEδ = βrTWrr + αδTWδδ (23)

These two objectives of minimizing residual and limiting FE model parameter changes are balanced by the regulariza-
tion parameters α and β. In this work, the regularization parameter α is determined to maximize model evidence, as
detailed in Section 4.1. Similar to Wr, the FE model parameter weighting matrix Wδ should reflect the uncertainty
in the FE model parameters, optimally given as the inverse of the parameter covariance matrix [10]. One of the main
contributions of this work is regularization with respect to the FE model parameters δ rather than the updating
parameters at each increment, θi. This allows for consistent penalization even after reparametrization. Additionally,
regularizing with respect to δ should theoretically improve the convexity of the incremental updating problem, since
new parametrizations and further updates to δ are penalized as part of the objective function. This helps create a
stable minimum at which point further parametrization is sufficiently penalized, leading toward convergence.

In the deterministic Levenberg–Marquardt minimization scheme proposed in this work, FE model parameters are
evolved from one increment to the next using the previous values δi which are updated by the point estimate for the
optimal increment updating parameters, θ̂i, and the corresponding transformation matrix T i:

δi+1 = δi + T iθ̂i (24)

Within each increment i, the updating parameters are evolved from iteration j to j + 1 until convergence:

θij+1 = θij + ∆θij (25)
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It is notationally convenient to refer to the FE model parameters at increment i and iteration j as

δij = δi + T iθij (26)

and equivalently, any quantity such as the residual r evaluated at δij may be indicated as

r(δij) = rij (27)

The residual at iteration j + 1 is approximated by the truncated Taylor series:

rij+1 ≈ rij + J ij∆θ
i
j ; (28)

which uses the Jacobian with respect to θi evaluated at δij , indicated as J ij . This is used in Eq. (23) to approximate
the updated regularized objective value:

F ij+1 = βriTj+1Wrr
i
j+1 + αδiTj+1Wδδ

i
j+1 (29)

where the expression for the updated parameter values is exact: δij+1 = δi + T iθij+1. The approximated objective
F is minimized with respect to the parameter update, such that

∂F ij+1

∂(∆θij)
= 0 (30)

The resulting parameter update is then given by the Gauss–Newton solution

∆θij = −2[H̄i
j ]
−1[βJ iTj Wrr

i
j + αT iTWδδ

i
j ] (31)

where H̄i
j is the approximate Hessian of F with respect to θi evaluated at δij :

H̄i
j = 2[βJ iTj WrJ

i
j + αW i

θ ] (32)

and W i
θ is the weighting matrix for the ith increment updating parameters:

W i
θ = T iTWδT

i (33)

The Gauss–Newton solution can be improved into the more robust Levenberg–Marquardt [21, 22] solution by aug-
menting the Hessian with a damping term λ along the diagonal (unrelated to damping in structural vibration):

∆θij = −2[H̄i
j + 2λIp]

−1[βJ iTj Wrr
i
j + αT iTWδδ

i
j ] (34)

Notably, Eq. (34) becomes the Gauss–Newton update as λ→ 0 and to the infinitesimal gradient descent update as
λ→∞. λ is controlled by the multiplicative scheme developed by Marquardt [22], with further description given in
Table 1.

4.1. Asymptotic Bayesian inference for optimal regularization and evidence estimation

The determination of regularization parameters in FE model updating has typically been done by simple heuristics
or by expensive L-curve methods, with an excellent review by Titurus and Friswell [6]. The approach used in this
paper relates regularization to Bayesian inference, as done by MacKay [8]. The authors proposed a similar approach
in previous work [7], which adapted the algorithm by Foresee and Hagan [19]. This technique is now expanded to
handle the proposed change in regularization from θ to δ, and β is fixed to improve model evidence estimates.

Given a model or parametrizationMi
k, data z̃, and values for α and β, the posterior probability of the updating

parameters is given by the Bayes expression

P (θi|z̃, α, β,Mi
k) =

P (z̃|θi, β,Mi
k)P (θi|α,Mi

k)

P (z̃|α, β,Mi
k)

(35)
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where P (z̃|θi, β,Mi
k) is the likelihood of the data at a specified parameter value, P (θi|α,Mi

k) is the prior probability
of updating parameters, and P (z̃|α, β,Mi

k) is the evidence for the model Mi
k. If the measurements are assumed to

come from a Gaussian distribution with mean vector z̃ and covariance matrix Cz̃ = [2βWr]
−1, then the likelihood

can be expressed as

P (z̃|θi, β,Mi
k) = e−βEr/Zr; logZr =

m

2
log π − 1

2
log |βWr| (36)

where | | indicates the determinant for a matrix quantity. Similarly, if the uncertain FE model parameters δ are
assumed to come from a Gaussian distribution with zero mean vector and covariance matrix Cδ = [2αWδ]

−1, then
the prior probability can be stated as

P (θi|α,Mi
k) = e−αEδ/Zδ; logZδ = −αEi?δ +

p

2
log π − 1

2
log |αW i

θ | (37)

which has a special term related to the parameter penalty term at increment i:

Ei?δ = δiTWδδ
i − δiTWδT

iT [W i
θ ]−1T iWδδ

i (38)

This term vanishes when T i is invertible, but this is not generally the case since T i is d × p with p < d in general.
Substituting Eqs. (36) and (37) into Eq. (35) yields the following expression for the posterior probability:

P (θi|z̃, α, β,Mi
k) = e−F /ZF ; ZF =

∫
e−F dθi (39)

The normalization factor ZF can be approximated using Laplace’s method [8], which is appropriate for Gaussian
posteriors as well as large data sets that result in highly peaked posteriors [3, 20]. This approximation is

logZF ≈ −F̂ i +
p

2
log 2π − 1

2
log |Ĥi| (40)

where θ̂i is the parameter estimate for increment i, which is equivalently occurs at the minimum point of F (F̂ i)

and the maximum point of the assumed posterior distribution. Ĥi is the Hessian evaluated at θ̂i, which may be
the approximate Hessian as in Eq. (32). These expressions can be combined into Eq. (35) to give the following
expression for the model evidence:

P (z̃|α, β,Mi
k) =

P (z̃|θi, β,Mi
k)P (θi|α,Mi

k)

P (θi|z̃, α, β,Mi
k)

=
ZF
ZrZδ

(41)

Taking the logarithm and substituting the normalization results from Eqs. (36), (37), and (40) yields the following
expression for the log evidence

logP (z̃|α, β,Mi
k) = −βÊir +

1

2
log |(β/π)Wr|

︸ ︷︷ ︸
log likelihood

−α(Êiδ − Ei?δ ) +
1

2
log
∣∣∣[Ĥi]−1[2αW i

θ ]
∣∣∣

︸ ︷︷ ︸
log Occam factor

(42)

where Êir is the quadratic residual and Êiδ is the quadratic parameter penalty term, both evaluated at θ̂i. This
separates in into a log likelihood expression and an Occam factor expression. Without regularization, minimizing
Er would simply maximize the likelihood, generally preferring overly complex models and overfitted solutions. The
Occam factor is closely related to the regularization and penalizes complexity, enforcing Occam’s principle that
simpler models are preferred [3, 4, 8]. The first term in the Occam factor penalizes large FE model parameter
changes and the second term penalizes parametrization complexity, evaluated as the ratio between the prior and
posterior volumes.

It is important to note that the model evidence in Eq. (42) is only an approximation in cases where the true
posterior is non-Gaussian. In these cases, it is more appropriate to sample the posterior distribution using a Monte
Carlo scheme [3, 4, 16]. However, Eq. (42) is still more informative than likelihood alone and may be used in a
similar fashion to the closely-related Schwarz criterion [23, 24]. Therefore, the approximation in Eq. (42) should be
applied carefully, but can provide a meaningful balance between data fit and model complexity in most cases.
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This approach for determining model evidence has seen use in model updating, often referred to as an asymptotic
approach [3, 20]. In most works, however, the prior distribution for the parameters had to be based on uninformed
assumptions since little is typically known a priori. The main improvement suggested by MacKay [8] is to determine
the regularization parameter α to maximize the model evidence. This scales the width of the Gaussian prior, which
simultaneously provides optimal regularization. Previous work by the authors [7] also optimized β, but this is
inappropriate for model evidence estimation since likelihood (controlled by β) becomes model-dependent and the

optimal objective value F (θ̂i) becomes fixed at a value of m/2 [8].
In this work, β is fixed at a value of 1/2, such that 2βWr = C−1z̃ . The parameter α is chosen to maximize the

model evidence in Eq. (42), giving

α =
γ

2(Êiδ − Ei?δ )
(43)

with Ei?δ from Eq. (38) and γ as the effective number of parameters [8]:

γ = p− 2α tr([Ĥi]−1W i
θ) (44)

Even though this is referred to as a ‘number’, it should not be taken as an integer quantity. It is most naturally
understood as a measure of the relative influence of the data (rather than the regularization) for determining pa-
rameter values [8]. γ ranges between 0 and p, or alternatively, the ‘parameter efficiency’ γ/p ranges between 0 and
1. If γ/p is close to 0, then few of the parameters are updated by the data, such that the posterior is close to the
prior. In this case, the solution is dominated by the regularization. When γ/p is close to 1, then the data is much
more influential than the regularization in updating the parameters, and the posterior is much more peaked than
the prior. MacKay [8] suggests that γ/p ≈ 1/2 is a reasonable result, but for the purposes of this work, a higher γ
for the same number of parameters is desirable, implying less influence of regularization.

The proposed solution algorithm, including the elements of incremental reparametrization from Section 3.3,
Levenberg–Marquardt minimiziation within each increment, and Bayesian determination of the regularization pa-
rameter α, is given in Table 1.

Table 1: Pseudocode for incremental reparametrization with Bayesian-regularized Levenberg–Marquardt minimization

Input: Regularized obj. function F (δ) = βEr + αEδ, parametrization method Mk

Output: Opt. param. δMP, eff. no. params. γ, log evidence est. logP (z̃|α, β,Mi
k)

1 initialization: Set δ0, α = 0.5, β = 0.5, λ = 0.01, v = 10, i = 0, j = 0 ;
2 while Parametrization Mi

k not converged do
3 Generate parametrization for current increment i, Mi

k : δi+1 = δi + T iθi ;
4 Set iteration count to j = 0 and initialize increment parameters, θi0 = 0 ;
5 while Parameters θij not converged do
6 Compute residual rij , Jacobian J ij , and approx. Hessian H̄i

j = 2[βJ iTj WrJ
iT + αW i

θ ];

7 Compute parameter update ∆θij = −2[H̄i
j + 2λIp]

−1[βJ iTj Wrr
i
j + αT iTWδδ

i
j ] ;

8 Update parameters θij+1 = θij + ∆θij ;

9 if Objective value increased F ij+1 > F ij then
10 Increase damping term λ← λ · v ;
11 Go back to parameter update computation step (8) ;

12 else
13 Accept parameter update and reduce damping term λ← λ/v ;

14 Compute effective number of parameters γ = p− 2α tr([H̄i
j ]
−1W i

θ) ;

15 Reestimate regularization parameter α = γ/(2(Eiδ,j − Ei?δ )) ;

16 Increase iteration count j ← j + 1 ;

17 Estimate log evidence for current model: logP (z̃|α, β,Mi
k) using Eq. (42);

18 Increase increment count i← i+ 1 ;
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4.2. Model comparison by Bayes factor

Model comparison, for the purposes of comparing different parametrizations, is most naturally accomplished using
a measure of relative evidence. This can be expressed via the Bayes factor [23], which gauges the strength of support
for two competing models with equal prior probability. For the purposes of this work, model comparisons will be
performed within a set generated from a single parametrization method Mk, say at two increments i and h. Then
the support for Mi

k over Mh
k is given by the Bayes factor:

logBihk = logP (z̃|Mi
k)− logP (z̃|Mh

k) (45)

This can be interpreted using the common set of criteria by Kass and Raftery [23], reproduced in Table 2. Since
logBihk = − logBhik , negative results can simply be interpreted as support for Mh

k over Mi
k.

Table 2: Interpretation of Bayes factors, adapted from Kass and Raftery [23]

2 logBihk Evidence against Mh
k

0-2 Not worth more than a bare mention
2-6 Positive
6-10 Strong
>10 Very strong

Note that the model evidence estimate from Eq. (42) retains dependence on α, so α can either be marginalized,
or as used in this work, model evidence can be estimated at the optimal value (Eq. (43)) [8]. This is equivalent to
fixing the prior at the maximum evidence width.

5. Exercise I: Small-scale truss with analytical data

5.1. Model description and data generation

The proposed reparametrization scheme was first tested in model updating of a truss with simulated data. This
truss was used in previous work in FE model updating by the authors [7] and was adapted from Papadimitriou et
al.’s work [25]. The truss is 2-dimensional, statically indeterminate, and symmetric, with 29 elements, 28 DoFs, and
pinned boundary conditions. Each element has a mass density of 7800 kg/m3, Young’s modulus of 200 GPa, and
cross-sectional area of 0.25 m2. The FE model for the truss was developed in MATLAB [26].

The first five vibrational modes were selected for analysis and updating (l = 5), with natural frequencies and
mode shapes (in the unmodified structural state) indicated in Fig. 2. Measured data was assumed to consist of one
natural frequency measurement and a full field of n = 28 mode shape measurements per mode, for a total of m = 145
measurements.

Mode 1 (f = 9.31 Hz)

Mode 2 (f = 19.8 Hz)

Mode 3 (f = 26.9 Hz)

Mode 5 (f = 51.2 Hz)

Mode 4 (f = 37.3 Hz)

Figure 2: Truss mode shapes and natural frequencies

Several realized data sets were created by first randomizing structural modification and then corrupting the
measurement vectors with random noise to produce a more generalized and reproducible ensemble of model updating
exercises. Beginning with the described model in its unmodified state, randomized structural modifications were
generated by modifying the mass density and Young’s modulus of each element by an independent Gaussian random
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variable, as in Eqs. (9) and (10). Two levels of structural modification were utilized, where case I covers high
uncertainty in FE model parameters, δ ∼ N (0, (0.1)2Id), and case II covers low uncertainty in FE model parameters,
δ ∼ N (0, (0.01)2Id), with 100 random modified structural states realized for each case.

Random noise was then added to each measurement vector produced from the 200 realized structural states. The
measurement noise was generated identically for both cases I and II. Natural frequency measurements were subject
to an additive Gaussian noise with zero mean and standard deviation equal to 0.5% of the true natural frequency
of the modified structure, f̃j ∼ N (0, (0.005fj)

2). Mode shape measurements were subject to an additive Gaussian
noise vector with zero mean. For each mode shape, the measurement noise vector had standard deviation equal to
5% of the standard deviation of true the mode shape of the modified structure, ψ̃j ∼ N (0, (0.05 std(ψj))

2In). This
noise model was intended to simulate realistic measurement conditions and was previously used by the authors with
this structure [7].

The residual weighting matrix Wr was evaluated for each generated FE model updating problem as the inverse
of the assumed measurement covariance matrix. Using the notation in Eq. (7), this can be written with wfrj =

(0.005f̃j)
−2 and W ψ

rj = (0.05 std(ψ̃j))
−2In. Wr would vary slightly depending on the realized data, while β was

fixed at a value of 1/2, as discussed in Section 4.

5.2. Parametrization

Each realized measurement vector was treated as an individual FE model updating problem, and aggregate results
were analyzed for both cases. The FE model parameters were chosen to be the d = nel = 29 element Young’s moduli
from Eq. (10). Element mass densities were not chosen for updating to simplify depiction of parametrizations. Each
realized state was parametrized using the incremental reparametrization scheme described in Section 3, where the
subset selection parametrization method is indicated as SS or M1 and parameter clustering is indicated as Cl. or
M2. A forward finite-difference scheme was used to estimate sensitivities at all stages, though analytical results are
available in previous work [7].

A sample set of truss parametrizations is depicted in Fig. 3 using p = 6 stiffness updating parameters. This
includes initial parametrizations (M0

k) in Figs. 3a and c, and final parametrizations (Mf
k , after the incremental

reparametrization schemes converged) in Figs. 3b and d. These depictions aid in understanding how the parametriza-
tions evolve through the incrementing process. For instance, the subset selection parametrizations began withM0

1 in

Fig. 3a and converged toMf
1 in Fig. 3b. It is notable that two FE model parameters were selected in both the initial

and final parametrizations (parameters 1 and 4 in M0
1 and parameter 6 and 3 in Mf

1 , respectively). This demon-
strates how the same underlying parameter can change labels, as discussed in the motivation for a reparametrization
stopping criterion which can detect parameter label changes (Section 3.3). M0

1 and Mf
1 are noticeably different,

indicating significant changes in parametrization during the incremental process.

(b) Final subset

(d) Final clusters

(a) Initial subset

(c) Initial clusters

Figure 3: Sample truss parametrizations based on initial and final parameter sensitivities (p = 6)
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Conversely, the initial parameter clustering parametrization (M0
2) in Fig. 3c is quite similar to the final clustering

parametrization (Mf
2 ) in Fig. 3d. While the initial clusters 1, 3, 4, and 6 do not have a similar complement in the

final clusters, these are single element clusters and comprise only 4 of the 29 FE model parameters. 6 of the 12
parameters in cluster 2 remain the same between initial and final parametrizations, with both sets comprising many
elements on the right-central structure and a few web elements on the left side of the structure. Cluster 5 inM0

2 shares

10 of its 13 parameters with cluster 4 in Mf
2 , again indicating the importance of detecting cluster label changes in

stopping criteria. With 16 of the 29 FE model parameters contained within similar clusters between initial and final
parametrizations, this sample parametrization indicates a recurring observation within this work: reparametrization
in sensitivity-based clustering produces less significant changes in parametrization, converging more quickly, while
reparametrization in subset selection produces significant variation in parametrization and converges more slowly.

5.3. Model updating results

Model updating was performed on each of the 200 realizations using iterative reparametrization for subset selection
and sensitivity-based clustering, with model sizes ranging from p = 1 to p = d. This used natural frequency and mode
shape data in the objective function from Eq. (8), which was regularized and solved using the Levenberg–Marquardt
algorithm described in Table 1. The weighting matrix for the FE model parameters, Wδ, was taken as the identity
matrix Id and the regularization parameter α was allowed to vary to maximize model evidence. Incidentally, since
both parametrization methods used orthogonal transformation matrices T i, then the updating parameter matrix
W i

θ from Eq. (33) was equal to Id for all increments i. The model evidence was estimated using Eq. (42) at the

converged solution for each increment i, θ̂i. FE modeling, modal analysis, parametrization, and data processing were
all performed in MATLAB [26].

The average (mean) posterior results, along with parameter efficiency, Bayes factor, and number of increments
for convergence in case I (high FE model parameter uncertainty) are shown in Fig. 4. The initial parametriza-
tions (M0

k) represent previous approaches which only parametrized at the initial structural state and are compared

against the results after convergence of the incremental reparametrization schemes (Mf
k). The initial subset selection

parametrization, on average, had an optimal model size of p = 18, with relatively similar evidence for larger models
in Fig. 4a. Reparametrization increased the model evidence across all model sizes for subset selection, moving the
optimal model size to approximately p = 5. Direct comparison of evidence, via Bayes factor, is given in Fig. 4e,
which indicates strong support (see Table 2) for reparametrization in subset selection for all p < 24, with increasingly
strong support for smaller models. The log likelihood curves in Fig. 4c are similar to the model evidence curve since
the penalty term in Fig. 4d only became significant at higher p. Interestingly, the Occam factor was considerably
lower in magnitude after reparametrization in subset selection. Since it is unlikely that the total amount of parameter
change Eδ decreased with more increments, this likely reflects a more robust (less peaked) posterior.

The parameter efficiency γ/p curves in Fig. 4b are also a measure of the relative influence of the Occam factor
and the likelihood. For subset selection, these curves showed a slight preference for the initial subset selection
parametrization over reparametrization, though both initial and final parametrizations show good parametrization
efficiencies (>70%) at all model sizes. Note that α is selected to provide an optimal model evidence, and therefore
tries to avoid the large Occam factor penalties associated with sharply-peaked posteriors, even though this may
result in a lower γ/p. Fig. 4f reveals the computational cost (convergence rates) of reparametrization in subset
selection. Small parametrizations required, on average, over 15 increments to converge, reducing gradually for larger
parametrizations. So while the greatest gains in model evidence were obtained with smaller p, this was offset by
requiring several increments to converge.

Parameter clustering showed markedly less improvement from reparametrization, with moderate increases in
model evidence and no change in the optimal model size. However, assessing via Bayes factor in Fig. 4e shows
conclusive support for reparametrization at most reasonable model sizes (3 < p < 25). Parameter clustering showed
slightly lower Occam factor after reparametrization. The initial and final parameter efficiency curves showed generally
similar behavior, which is explained by the fast convergence and small changes in parametrization, noted in the
discussion of Fig. 3. Clustering required between 2 and 4 increments to converge for most model sizes, which was a
relatively small price to pay for decisive increases in model evidence.

The average results for case II (low FE model parameter uncertainty) are shown in Fig. 5. Using subset selection,
the optimal model size for both initial and final parametrizations occurred between p = 3 and p = 5, favoring small
models. Bayes factor results were more tempered than in case I, exhibiting very strong support for reparametrization
with p, decaying to equivocal support for p ≥ 17. This is related to the much larger effect of the Occam factor than in
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Figure 4: Average truss model updating results, high uncertainty in FE model parameters (case I)

case I, since changes in likelihood were much more limited in case II. Interestingly, the likelihood actually decreased
beyond p = 5. While this may seem counterintuitive, this is a result of maximizing the regularized objective function
(i.e. the posterior) rather than the data fit (i.e. the likelihood). Parametrization efficiency declined much more

quickly with increasing p in case II, with Mf
1 providing significantly lower efficiency at all p. However, this lower

γ/p was expected due to a greater influence of measurement noise in case II than in case I, giving less information
to be extracted from the measurements. This increased the effect of the prior, decreasing γ/p. Subset selection took
far fewer increments to converge in case II compared to case I, averaging between 8 increments for a small p to 3
increments for a large p.

Parameter clustering showed similar optimal model size to subset selection in case II, with an optimal p between
2 and 5 for both initial and final parametrizations. The support for reparametrization never reached a significant
level in Fig. 5e, giving little basis for reparametrization in parameter clustering for small FE model uncertainties.
Reparametrization even failed to provide meaningful increases in data fit (likelihood). The computational cost stayed
low, with only 1-2 increments needed for convergence on average. Parameter efficiency curves were large unaffected
by reparametrization, peaking around 60% for optimal model sizes and decaying to 20% for large models.

This work was not intended to comment on the relative performance of subset selection and clustering methods,
as both approaches have differing merits. However, it may be noted that for this structure, realization method,
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Figure 5: Average truss model updating results, low uncertainty in FE model parameters (case II)

and model updating technique, subset selection outperformed parameter clustering (in terms of evidence) by a
considerable margin at all model sizes in both case I and case II. The model evidence, parameter efficiency, and number
of increment curves for all parametrizations converged at p = d, since there was only one choice of parametrization
at this point (i.e. θ = δ).

6. Exercise II: IASC–ASCE SHM benchmark structure with experimental data

6.1. System identification

The second test of the proposed reparametrization scheme was a more realistic model updating exercise of the
benchmark structure created by a task group of the International Association for Structural Control (IASC) and
American Society of Civil Engineers (ASCE) for SHM. The structure and results of the Phase II experimental studies
[27] are used herein, with data obtained from the Network for Earthquake Engineering Simulation (NEES) database
[28]. The structure is a four-story, two-bay by two-bay steel frame structure which is 2.5 m by 2.5 m in plan and
3.6 m height. The benchmark structure was instrumented using three uniaxial accelerometers on each of the four
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Figure 6: IASC–ASCE SHM benchmark structure measured modes and natural frequencies (measurement locations indicated by red
dots)

floors, with the outer two sensors measuring in the y-direction (strong) and the inner sensor measuring in the x -
direction (weak) for 12 total measured DoFs. The structure was subject to an ambient excitation for 300 s. Greater
detail about the test structure and experimental setup is available online [28] and in [27]. While several structural
configurations were available, only the undamaged configuration (case 1, fully braced) is used in this work.

The measured data was cleaned to remove the mean then split into 6 equal-length, non-overlapping segments.
Output-only modal identification was performed on each segment separately using the Enhanced Frequency Domain
Decomposition (EFDD) algorithm [29]. Similar to Ching and Beck’s work with this structure and data [30], five
dominant modes were identified from the data, with one natural frequency and 12 mode shape measurements per mode
for m = 65 total measurements. The 6 separate identification results were used to estimate the mean measurement
vector z̃ and the diagonal measurement covariance matrix Cz̃. Mode shape results were unit-normalized and set
with common orientation prior to averaging. The average natural frequencies and mode shapes are presented in Fig.
6. The depicted modal deformations were created by assuming that the floors acted as rigid diaphragms while the
columns and diagonals were made to comply with the floor displacements. This was only done for the purposes
of depiction, while any comparison between measured and model-output mode shapes only utilizes the measured
locations.

Natural frequency measurements had coefficients of variation of {0.66, 0.53, 0.18, 2.0(10)−4, 2.5(10)−4}%, signi-
fying low variation across the board but particularly precise estimates for modes 4 and 5. Mode shape measurement
variation was gauged by the ratio of mode shape measurement standard deviation (averaged for all DoFs in the mode)
to the standard deviation of the average mode shape, which gives {11, 9.7, 3.9, 1.2, 2.5}%. This is approximately
an order of magnitude greater variation than for natural frequencies, again with the strongest estimates for modes 4
and 5.

The residual weighting matrix Wr was evaluated as the inverse of the estimated measurement covariance matrix
Cz̃, which were both diagonal since independence of measurement errors was assumed. The regularization factor β
was fixed at a value of 1/2 to ensure consistent estimates of model evidence, as discussed in Section 4.

6.2. Model description

The FE model for the IASC–ASCE SHM benchmark structure was developed in SAP2000 [31] using technical
descriptions available in Phase II literature [27], the NEES database [28], and properties from Phase I literature
[32]. The structure was modeled using 9 vertical columns extending the full height, bolted to a foundation, all
oriented with the section strong axis along the y-direction. This defined the structure with its global weak axis in
the x-direction (about the y-axis) and its global strong axis in the y-direction (about the x-axis). The column bases
were assumed to be perfectly restrained against translation and torsion, but strong- and weak-axis base rotations
were treated by individual torsion springs. The initial values for the torsion stiffnesses were taken as a multiplier
times the nominal column moment stiffnesses (EI/L). The multiplier was set at 10, near the middle of the range
for partially-restrained (PR) connections in AISC code [33]. Using the section and material properties in Phase I
literature [32], this gave initial torsion stiffnesses for strong-axis column springs as 4.38(10)6 N-m/rad and weak-
axis column springs as 1.48(10)6 N-m/rad. These 18 torsion spring stiffnesses were treated as uncertain stiffness
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parameters during updating.
Each of the 4 floors had 12 floor beams which were connected to columns at both ends. These connections

were assumed to provide full restraint against relative translation, torsion, and weak-axis rotation, while strong-axis
rotation was modeled with PR connections. A PR connection parameter was assigned to each floor beam, giving 48
uncertain floor beam PR connection stiffnesses to be updated. As with the column spring stiffnesses, the initial values
of the PR spring stiffnesses were set at 10 times the nominal strong axis moment stiffness, giving 1.95(10)6 N-m/rad.
Similar to the 120-DoF Phase I analytical model [32], horizontal translation and rotation about the vertical axis was
constrained for all nodes on the same floor. Therefore, the floors behaved as rigid diaphragms for in-plane motions,
but allowed global and differential vertical motion within each floor. This reduced the number of FE model DoFs
from 216 (6 per node) to 120. Two diagonal braces were modeled on each external face of each floor, for a total of
32 braces. The stiffness of each brace was treated as an uncertain parameter, with an initial value set at the nominal
stiffness (EA/L), 3.28(10)7 N/m.

Floor masses were modeled with four 1000 kg slabs on floors 1-3 and four 750 kg slabs on floor 4 [27, 28]. Each slab
was modeled as a uniform distributed line mass added to the two floor beams that supported it. Each additive mass
was treated as an uncertain parameter, giving two uncertain parameters per slab, for a total of 32 mass updating
parameters. This choice of updating parameters was equivalent to updating the total mass and a single ordinate
(along the long axis of the slab) of each slab. Ultimately, there were d = 130 uncertain parameters to update between
32 mass parameters and 98 stiffness parameters.

The relative frequency error (ferr = (f̃ − f)/f̃) and MAC values of corresponding measured and initial FE
model modes are given in Table 3. The FE model bending modes exhibited 10%-20% greater natural frequencies,
with greater error for higher modes. However, the torsional mode (3) exhibited approximately 15% lower natural
frequency in the FE model than in the measured structure, suggesting that the model errors were more complex than
simply overestimating total stiffness or underestimating total mass. The MAC values for modes 2-4 were very good
(>0.900), while modes 1 and 5 exhibited poor and mediocre correspondence, respectively. There was no mode with
low natural frequency and mode shape error, suggesting that significant model-structure discrepancies were present.

Due to the relatively low number of mode shape measurements, an intermediate step was implemented during
mode pairing. An index was created by pairing initial FE model modes and measured modes using MAC from the 12
measured DoFs. During model updating, FE model modes were first paired with the initial FE model modes using
all FE model DoFs to increase pairing fidelity. Then the index between initial FE model-measured modes was used
to relate each updated mode to the correct measured mode. This approach ensured consistent pairing between FE
model modes and measured modes, since FE model mode shapes could change significantly and had relatively few
DoFs for direct pairing.

6.3. Parametrization

Parametrization of the benchmark structure used the incremental reparametrization methodology detailed in
Section 3, separately treating the 32 mass and 98 stiffness FE model parameters. As in Section 5, subset selection
parametrization method is indicated as SS or M1 and parameter clustering is indicated as Cl. or M2. The number
of mass and stiffness updating parameters was determined by analyzing dendrograms of weighted initial FE model
parameter sensitivities, depicted in Fig. 7. This was equivalent to the weighted cosine distance from Eq. (18). Based
on this analysis, a cutoff distance of 10−3 (in measure of average cosine distance) was chosen, giving 8 mass clusters
and 10 stiffness clusters. This was applied to subset selection as well, giving pM = 8 mass updating parameters and
pK = 10 stiffness updating parameters, for a total of p = 18 updating parameters.

Fig. 7 also depicts the weighted sensitivity dendrogram of the FE model parameters at the solution for Mf
2 . FE

model parameter sensitivities became more distinct during updating, indicated by a general increase in the height of
corresponding ‘branches’. This was more pronounced with the mass sensitivities, where cutting the final dendrogram
at 10−3 would result in 9 clusters rather than the initial 8. Stiffness sensitivities changed less than mass sensitivities
as a whole. Changes in cluster membership are indicated by line crossings in the final dendrograms, with more
membership changes noted in the mass parameters than in the stiffness parameters.

Partial depictions of the initial and final parametrizations are presented in Fig. 8. The initial and final subset
selection stiffness parametrizations are presented in Figs. 8a and b, respectively. Possible FE model stiffness param-
eters included the brace axial stiffnesses, floor beam PR spring stiffnesses, and column boundary condition torsion
spring stiffnesses. Incidentally, there was no overlap in membership between the initial and final stiffness subsets,
in direct contrast to the behavior of the truss in Fig. 3. This may mean that the parameter sensitivities remained
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Figure 7: Mass and stiffness parameter sensitivity dendrograms for IASC–ASCE SHM benchmark structure (initial cutoff indicated by
dashed line at 10−3)

quite distinct during updating for this structure, such that previous use of a parameter greatly reduced its ability to
further reduce residual in later increments (i.e. parameter sensitivities varied little during updating).

(a) Initial stiffness subset (b) Final stiffness subset (c) Initial mass clusters (d) Final mass clusters
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Figure 8: IASC–ASCE SHM benchmark structure sample parametrizations

Figs. 8c and d depict the initial and final parameter clusters based on mass sensitivities, respectively. These
clusters were developed from the 32 floor beams having uncertain additive mass from the applied slabs. The initial
and final clusters show broad similarity. The initial cluster 6 corresponds with the final cluster 2, both containing
the beams in floor 4 and one other floor. In both initial and final parametrizations, only the third floor is broken
up between different clusters. This may have to do with the relatively small motion of the third floor in modes
4 and 5 (Fig. 6), such that detailed changes in the masses of floor 3 could affect modes 1-3 without significantly
affecting modes 4 and 5. Careful inspection reveals that clusters 2, 6, 7, and 8 in the initial parametrization directly
correspond to 5, 8, 6, and 7 in the final parametrization and clusters 3 and 4 are unchanged. In other words, the
only change (beyond relabeling) was in the membership of beams on the second floor. Again, this emphasizes the
importance of detecting label changes (cluster index permutations) in a successful algorithm stopping criterion.

6.4. Model updating results

Model updating was performed using the defined incremental reparametrization schemes, with parameter esti-
mation and incrementation via the scheme described in Section 4 and Table 1. Natural frequency and mode shape
data were incorporated in the objective function from Eq. (8). The covariance matrix for FE model parameters
Wδ was initialized at the identity matrix Id, and the regularization/prior scaling parameter α was allowed to vary
to maximize model evidence. As in Section 5, the updating parameter matrix W i

θ from Eq. (33) was Ip since
the transformation matrices were orthogonal. FE modeling and modal analysis were performed with SAP2000 [31],
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while parametrization and data processing were handled in MATLAB [26], with a user-defined API to communicate
between the applications.

The model updating results of the initial and final (converged) parametrizations are shown in Table 3, with
results for ferr and MAC for each of the five identified modes as well as the total quadratic residual Er and the
parameter efficiency γ/p. The initial subset selection parametrization, representing previous approaches of only
using one increment, is indicated by M0

1. This single increment showed a very respectable decrease in Er, with
strong improvements in f2, f4, f5, and MAC1, where MACj is short-hand for MAC(ψ̃j ,ψj) from Eq. (4). Mild
improvements can be noted in all quantities except the natural frequency and MAC of mode 3, which showed slight
decreases in correspondence. Between the initial and final subset selection parametrization (Mf

1 ), Er was reduced
by approximately 23% from its previous value while most modal quantities changed measurably. This required three
increments to converge, far fewer than what was needed in the truss example of Section 5. The heavily-weighted
f4 and f5 saw no change, but slight improvements were made in the MAC4 and MAC5, while the MAC1 reduced
significantly and MAC2 reduced slightly. This trade-off reflects the higher weighting of the mode shape measurements
for modes 4 and 5, noted in Section 6.1. Mode 3 saw limited improvements in its correspondence. The parameter
efficiency γ/p improved slightly from about 66% in the initial parametrization to 77% in the final parametrization,
likely to do with a more robust (wider posterior) choice of final parameters.

Table 3: IASC–ASCE SHM benchmark structure model updating results

Init. FE model SS (init.) SS (final) Cl. (init. and final)

M0
1 Mf

1 M0
2 and Mf

2

Mode ferr MAC ferr MAC ferr MAC ferr MAC

1 (Weak bending) -11.7% 0.787 -5.1% 0.992 -7.5% 0.898 -6.0% 0.789
2 (Strong bending) -11.0% 0.914 -2.1% 0.961 -5.8% 0.944 -6.3% 0.913
3 (Torsion) 15.7% 0.935 21.8% 0.898 17.8% 0.890 18.7% 0.940
4 (Weak bending) -18.4% 0.925 0.0% 0.941 0.0% 0.951 -0.0% 0.933
5 (Strong bending) -17.3% 0.832 -0.0% 0.914 -0.0% 0.923 0.0% 0.835

Total error, Er 1.32(10)10 3.84(10)4 2.96(10)4 6.76(10)4

Parameter eff., γ/p – 0.66 0.77 0.74

Where subset selection saw significant change in output quantities between initial and final parametrizations,
parameter clustering showed no reportable change as a result of incrementation in Table 3. Both initial (M0

2) and

final (Mf
2 ) parametrizations showed the same modal output results. Again, the heavily-weighted f4 and f5 were

excellently matched, but very little improvement was made in the MAC of modes 1, 2, and 5 compared to subset
selection. This was a deciding factor in its noticeably lower reduction in Er compared to subset selection, with more
than double Er compared to Mf

1 . Interestingly, while little improvement was made in f3, parameter clustering was
able to measurably increase MAC3 to 0.940, suggesting that it had greater effect on the problematic torsional mode.
As well, parameter clustering exhibited good parameter efficiency at 74%, suggesting that the regularization was
effective, but didn’t overpower the data during parameter estimation.

All of the parametrizations were able to reduce Er by 6 orders of magnitude. This was probably related to the
near-elimination of natural frequency error from modes 4 and 5 by all parametrizations. Since these measurements
had very low variance (Section 6.1), they were very highly weighted by Wr. This is the main similarity in results
for all parametrizations, along with roughly halving the natural frequency error for modes 1 and 2 while failing to
improve the natural frequency error of mode 3. Mode 3 was likely problematic due to the rigid diaphragm assumption
made for each of the 4 floors, since the in-plane rigidity of the floors would be most impactful on torsion. Imagery
of the structure indicates that diagonal braces were used in the four bays of each floor, but this may have been
insufficient to provide the assumed shear stiffness.

The posterior results are given in Table 4, comprising the (log) evidence, likelihood, and Occam factor for
initial and final parametrizations. These quantities were estimated at the end of the corresponding increment using
asymptotic estimates from Eq. (42). It is important to note β and Wr were fixed for all parametrizations, so log
likelihood was only related to the total error Er. Thus, the additional insight provided by the evidence estimate
comes from the Occam factor, which is a measure of model complexity. Interestingly, despite significant changes
in parametrization noted in Fig. 8, the Occam factor for M0

1 and Mf
1 exhibited little change. Thus, the change
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in evidence was mostly controlled by Er, giving the final subset selection parametrization overwhelming support
compared to the initial parametrization, as suggested by Bayes factor from Eq. (45) and Table 2. This suggests that
for this realistic model updating problem, incremental reparametrization was extremely valuable for subset selection,
despite only taking 3 increments to converge with p = 18 total updating parameters.

Conversely, reparametrization with parameter clustering saw a slight decrease in evidence compared to only
performing one parametrization. While the log likelihood was increased by approximately 10 from M0

2 to Mf
2 , the

log Occam factor saw a decrease of nearly 20. This decrease in Occam factor represents greater complexity (more
total parameter change, more peaked posterior) in the final parametrization. This was enough to provide decisive

support for M0
2 over Mf

2 , as assessed by Bayes factor criteria in Table 2. While many good notes can be made
about the results of parameter clustering on this structure, incremental reparametrization was not valuable in this
scenario. The increased complexity of the reparametrization scheme did not offer any further error reductions nor
improvement in parameter efficiency in Table 3, and it did not provide any improvement in model evidence in Table
2.

Table 4: IASC–ASCE SHM benchmark structure posterior results and Bayes factors

Posterior results (log) Bayes factor, 2 logBihk
Model Mh

k

Model Mi
k Evidence Likelihood Occam factor M0

k Mf
k

M0
1 (SS init.) -1.901(10)4 -1.895(10)4 -56.95 – -8.87(10)3

Mf
1 (SS final) -1.457(10)4 -1.452(10)4 -55.87 8.87(10)3 –

M0
2 (Cl. init.) -3.361(10)4 -3.356(10)4 -50.91 – 20.0

Mf
2 (Cl. final) -3.362(10)4 -3.355(10)4 -69.01 -20.0 –

7. Conclusions

Incremental reparametrization presents a novel, natural approach to extract further FE model error reduction from
an existing sensitivity-based parametrization, such as subset selection and parameter clustering. This is accomplished
non-intrusively by initializing successive increments at the final state of the previous increment. The primary cost
of this proposed approach is the computation of the residual sensitivity matrix (with respect to the FE model
parameters) at the start of each increment, but this is offset by limited reprogramming requirements and relatively
quick parametrization convergence noted on the included exercises. Importantly, the proposed approach allows
further error reduction without increasing the number of updating parameters, which is critical for maintaining
posedness of the model updating problem.

While the proposed approach is extensible to any parameter estimation scheme, a deterministic scheme with ties
to asymptotic Bayesian inference is proposed in this work. This approach provided robust, fast parameter estimation
and approximations for model evidence, which was key in assessing the relative support for reparametrization by Bayes
factor. A novel penalty term was implemented which produced consistent regularization despite an incrementally
changing parametrization. While regularization is typically used to improve posedness, this was unnecessary in this
work since all of the examples had posedness controlled by parametrization. Instead, regularization was used to
implement a prior probability for the FE model parameters as part of the model evidence estimation scheme.

Incremental reparametrization was explored in two model updating exercises: a small-scale 2-dimensional truss
with analytical data and the IASC–ASCE SHM benchmark structure with experimental data. In both examples,
natural frequency and mode shape data were targeted for updating. The truss example allowed for effective explo-
ration of a range of model sizes and parameter uncertainty levels using a significant number of randomized trials.
In this example, incremental reparametrization was decisively supported for model updating problems with high
parameter uncertainties, in which parameter sensitivities were likely to exhibit a significant change during updating,
creating opportunities for more effective parametrizations. Subset selection benefited more from reparametrization,
as assessed by Bayes factor, than parameter clustering. This probably relates to the use of both parameter sen-
sitivities and the residual vector in subset selection which greatly influences the choice of parameters. Broadly
similar results were noted on the realistic model updating exercise of the IASC–ASCE SHM benchmark structure,
where reparametrization was extremely effective for subset selection while parameter clustering did not exhibit an
improvement from further parametrization.
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Abstract

When updating a finite element (FE) model to match the measured properties of its corresponding structure, the
sensitivities of FE model outputs to parameter changes are of significant interest. These sensitivities form the core of
sensitivity-based model updating algorithms, but they are also used for developing reduced parametrizations, such
as in subset selection and clustering. In this work, the sensitivities of natural frequencies and mode shapes are
studied for structures having at least one plane of reflectional symmetry. It is first shown that the mode shapes of
these structures are either symmetric and anti-symmetric, which is used to prove that natural frequency sensitivities
are equal for symmetric parameters. Conversely, mode shape sensitivities are shown to be unequal for symmetric
parameters, as measured by cosine distance. These topics are explored with a small numerical example, where it is
noted that mode shape sensitivities for symmetric parameters exhibit similar properties to asymmetric parameters.

Keywords: Modal analysis, Sensitivity-based model updating, Eigenvalue problem, Symmetry, Sensitivity analysis

1. Introduction

Finite element (FE) models are of great importance in science and engineering for modeling of physical systems.
In structural engineering, an FE model generally corresponds to a unique physical structure but there may exist
significant discrepancy between measured and model-predicted behavior. The presence of discrepancy limits the
predictive value of an FE model. FE model updating seeks to reduce discrepancy between measured and model-output
behavior, often modal properties, by adjusting parameters of an FE model, such as element masses and stiffnesses
[1]. An excellent review of model updating, encompassing contemporary methods in uncertainty quantification, is
available by Simoen et al. [2].

One of the most popular and intuitive methods for FE model updating is the sensitivity method [1] which
uses a series of linear approximations to minimize a non-linear sum-of-square error function between measured and
model-output data vectors. In the linear approximation step, the sensitivity method directly utilizes the Jacobian
matrix, also called the sensitivity matrix, which captures the derivatives of model outputs with respect to parameter
changes [1]. The condition of the sensitivity matrix is of paramount importance to the sensitivity method, since
parameters are updated using the pseudo-inverse of the sensitivity matrix. Poor conditioning occurs when there are
more unknowns (parameters to update) than equations (measurements), but can also result from noisy data or poor
selection of updating parameters [1].

Two general approaches have been adopted for improving the condition of the sensitivity matrix in FE model
updating: regularization and reduced parametrization. Regularization has been widely studied and utilized in
FE model updating [1, 3–5], and involves adding equations to constrain the amount of parameter modification or
enforce user-specified equalities. Reduced parametrization, on the other hand, seeks to decrease the number of
updating parameters through an intelligent, often automated process. Subset selection [5, 6] produces a reduced
set of updating parameters which are (locally) most effective in reducing the modeling errors. Parameter clustering
[1, 3, 7–9] has been established as a viable method for grouping model parameters into clusters which are each
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updated with a single parameter. This relies on machine learning [10] to group model parameters which have similar
effects on model-outputs, as measured by sensitivity. In these contexts, it is important to understand the properties
of the sensitivity vectors for various model parameters. Parameter clustering has typically been based on natural
frequency sensitivities. When this approach is used on symmetric structures, it has produced symmetric clusters
[3, 8, 9]. Recently, the authors incorporated both natural frequency and mode shape sensitivities which notably lead
to asymmetric clusters [3]. This also has ramifications for subset selection, since parameters are chosen based on
their sensitivity vectors and an orthogonalization process will prevent two parameters from being chosen which have
the same sensitivities [5].

Beyond sensitivity-based parametrization methods, other applications also benefit from an in-depth understanding
of natural frequency and mode shape sensitivities for symmetric structures. Natural frequencies and mode shapes
are widely used damage-sensitive features, not only for damage detection, but also for damage localization. Since
natural frequencies are not enough to indicate structural damage locations, they are typically used alongside mode
shape data to localize structural damage [11–13]. For the same reason, when model updating is used for a structural
damage detection application, it usually includes a combination of natural frequencies and mode shapes in an objective
function. Since many civil and mechanical structures have at least one plane of symmetry (for design and construction
simplicity), it is fundamentally important to understand the effects of parameter changes in symmetric structures.
To this end, developing an understanding of natural frequency and mode shape sensitivities will contribute to robust
damage detection algorithms and parametrization methods for these special, yet ubiquitous structures.

In this work, natural frequency and mode shape sensitivities are thoroughly explored in the context of structures
having at least one plane of symmetry. In Section 2, prior work is reviewed to establish the symmetry and anti-
symmetry of mode shapes in symmetric structures. This is then combined with analytical natural frequency and
mode shape sensitivity results to show that natural frequency sensitivities are equal (Section 3) and mode shape
sensitivities are unequal (Section 4) between symmetric parameters. These techniques are applied to an example
symmetric truss in Section 5 with further analysis of mode shape sensitivities for symmetric parameters. Section 6
presents discussion of findings and conclusions.

2. Eigensolution for symmetric structures

The mathematical study of symmetry in structural dynamics began with Glockner [14] who applied group theory
to form reduced representations of full structural systems. A symmetric structure can be transformed through a
defined set of reflections and rotations, called the symmetry group, to configurations which are identical to the
original structure [15]. When a structure exhibits symmetry, its mass and stiffness matrices can be decomposed into
similar block-diagonal forms [16]. In vibration analyses of linear structures, this greatly reduces the computational
and memory requirements, as the single, large eigendecomposition is transformed into several smaller, separable
eigendecompositions [16]. Group theory is the natural vehicle for establishing these transformations, and has seen
extensive study in structural dynamics by Kaveh et al. [17–20] and Zingoni [15, 21, 22].

In this work, a single type of symmetry is analyzed, namely a single reflection or bilateral symmetry. This
corresponds to the C1v symmetry group which comprises two operations: the identity operation e and a single
reflection about a vertical plane σv. The identity operation is part of any symmetry group, even for asymmetric
structures, so it is often disregarded as a trivial transformation [20]. An example of a structure exhibiting C1v

symmetry is given in Fig. 1.
Consider a structure which is divided by a reflection plane into left and right substructures, with link elements cut

by the plane. At this point, the structure can be general, with different mass, stiffness, and connectivity properties
within the left and right substructures. The only requirement which will be put on the structure is that the left and
right substructures contain an equal number of degrees-of-freedom (DoFs), at n. The global stiffness matrix K and
mass matrix M for the full structure are thus symmetric positive-definite with dimension N × N where N = 2n.
The N -element column vector u represents the displacements of the system. The displacement and force vectors can
be partitioned into uT = {uT1 uT2 } and fT = {fT1 fT2 }, respectively. u1 and f1 correspond to displacements and
forces on the left substructure, while u2 and f2 correspond to displacements and forces on the right substructure.
u1, f1, u2 and f2 are thus equally-sized column vectors with n components.

One way of defining C1v symmetry in a structure is that the displacements and accelerations are symmetric given
a symmetric force vector. Note that “symmetry” in this context refers to being unaffected by reflection, not to the
typical transpose-symmetry of matrices. If the displacements are symmetric with reflection, then uT = {uT1 uT2 } =
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{uT2 uT1 }, or u1 = u2. A more systematic way of representing this operation is through a linear transformation
representing reflection, defined as

T =

[
0 I
I 0

]
(1)

which is symmetric and involutory (i.e. T T = T−1 = T ). Therefore, stiffness-symmetry is defined such that u = Tu
given f = Tf . Substituting these transformations into the stiffness equation gives

Ku = f → KTu = Tf → TKT = K (2)

In other words, the stiffness matrix of a symmetric structure is unaffected by reflection and is indistinguishable when
measuring the stiffness of the left or right substructure DoFs. A similar approach can be applied to the mass matrix,
where a mass-symmetry is defined such that the acceleration vector is unaffected by reflection: ü = T ü. This is used
to satisfy the relation Mü = f , where f is again symmetric. This leads to TMT = M .

The stiffness matrix for this general structure can be written in block-form as

K =

[
K(1) K(2)

K(2)T K(3)

]
(3)

where K(1) and K(3) represent the connectivity within the left and right side DoFs, respectively (intraconnectivity).
K(2) and K(2)T represent the connectivity between the left and right side DoFs, respectively (interconnectivity). As
with the displacement vector, assume that the block matrices are equal in size with dimension n×n. If the structure
is symmetric such that TKT = K, then

TKT =

[
K(3) K(2)T

K(2) K(1)

]
→ K(1) = K(3); K(2) = K(2)T (4)

A similar result holds for the mass matrix M . Intuitively, this means that the stiffness and mass properties are
identical between the left and right substructures which are connected by link elements cut by the plane of symmetry.
In other words, for a structure to exhibit symmetrical displacement (and acceleration) given a symmetric input force,
it must exhibit stiffness (and mass) symmetry. Therefore, the stiffness and mass matrices can be written as

K =

[
K(1) K(2)

K(2) K(1)

]
M =

[
M (1) M (2)

M (2) M (1)

]
(5)

These matrices have a special construction, with two identical blocks along the diagonal and two separate identical
blocks along the off-diagonal. This is defined as a Form II matrix, studied by Kaveh and Sayarinejad [17]. Since
K and M are symmetric, then so are the block matrices. K(1) corresponds to the stiffness of the substructures on
either side of the symmetry plane, while K(2) corresponds to the stiffness of elements linking together the symmetric
substructures. Note that this requires a consistent selection of DoFs. In the case of Fig. 1, this required nodal
numbering and DoF selection which was isomorphic with reflection.
K and M are used in a generalized eigenvalue problem for finding natural frequencies ω =

√
λ and mode shapes

φ which satisfy:

[K − λM ]φ = 0 (6)

As noted before, K and M can be block-diagonalized via a transformation. Defining an orthogonal matrix P
that rotates the space of eigenvectors, then the eigenvalue problem can be rewritten using transformed stiffness (K̄)
and mass (M̄) matrices. Note that the eigenvalues are invariant to this transformation.

φ = Pφ̄ → [P TKP︸ ︷︷ ︸
K̄

−λP TMP︸ ︷︷ ︸
M̄

]φ̄ = 0 (7)

If the matrix P is defined as follows, then this block-diagonalizes K̄ and M̄

P =
1√
2

[
I −I
I I

]
→ K̄ =

[
K̄(1) 0
0 K̄(2)

]
=

[
K(1) +K(2) 0

0 K(1) −K(2)

]
(8)
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where K̄(1) and K̄(2) are called the condensed submatrices of K and similar for M . Substituting these results into
Eq. (7) yields the separable eigenvalue problem:

[
K̄(1) − λM̄ (1) 0

0 K̄(2) − λM̄ (2)

]
φ̄ = 0 (9)

The eigenvalues satisfy the following relation:

det(K̄ − λM̄) = det(K̄(1) − λM̄ (1)) det(K̄(2) − λM̄ (2)) = 0 (10)

This gives two separable eigendecompositions, where the first set of eigenvalues is denoted as {λ(1)} with correspond-
ing eigenvectors {φ̄(1)} which satisfy [K̄(1)−λ(1)M̄ (1)]φ̄(1) = 0. Similarly, the second set of eigenvalues is denoted as
{λ(2)} with corresponding eigenvectors {φ̄(2)} which satisfy [K̄(2) − λ(2)M̄ (2)]φ̄(2) = 0. The generalized eigenvalues
of K,M , denoted as {λ(K,M)}, are then given by the set union of the eigenvalues of the condensed problems:

{λ(K,M)} = {λ(K̄,M̄)} = {λ(1)} ∪ {λ(2)} (11)

The eigenvectors ofK,M , denoted as {φ(K,M)} can be evaluated from the eigenvectors of the condensed problems

after rotation back through P . Inserting the ith eigenvalue of the first condensed problem λ
(1)
i into Eq. (9) yields

φ̄i =

{
φ̄

(1)
i

0

}
→ φi = Pφ̄i =

{
φ̄

(1)
i

φ̄
(1)
i

}
(12)

where the scalar was dropped because mode shape scaling is arbitrary. This set of eigenvectors is assembled by
duplicating the eigenvectors of the first condensed problem. These eigenvectors are thus symmetric, since φi = Tφi
for all i from the first condensed problem. Since the eigenvectors are symmetric (i.e. unaffected by reflection) the
corresponding modes are said to be symmetric modes.

The eigenvector associated with the jth eigenvalue of the second condensed problem, λ
(2)
j is similarly evaluated

as

φ̄j =

{
0

φ̄
(2)
j

}
→ φj = Pφ̄j =

{
φ̄

(2)
j

−φ̄(2)
j

}
(13)

where the scalar was again omitted. The eigenvectors are assembled by duplication from the eigenvectors of the
condensed problem, but now the two blocks are opposite. These eigenvectors are thus anti-symmetric since φj =
−Tφj for all j from the second condensed problem. Similar to the symmetric mode shapes, the modes corresponding
to anti-symmetric eigenvectors are said to be anti-symmetric modes.

The total set of generalized eigenvectors, {φ(K,M)}, is then given by the union of those two sets of eigenvectors

{φ(K,M)} =

{
φ̄(1)

φ̄(1)

}
∪
{

φ̄(2)

−φ̄(2)

}
(14)

which takes significant liberty with notation to indicate that it comprises only symmetric and anti-symmetric forms
of the condensed problem eigenvectors.

These results are applicable to structures which may exhibit further symmetry, as long as they are decomposable
by (at least) one C1v symmetry group which produces Form IIK andM matrices, as defined in Eq. (5). Furthermore,
this approach can be extended to structures which have DoFs along the line of symmetry. Using the notation of
Kaveh and Nikbakht [20], this corresponds to a Form III matrix which is essentially an augmentation of a Form II
matrix. The symmetry and anti-symmetry of mode shapes (excluding the DoFs along the line of symmetry) are
preserved for Form III matrices. The reflection matrix T becomes more complex in these situations, and further
work is warranted to derive the solutions for these structures.

3. Natural frequency sensitivity

Previous applications of group theory to structural dynamics sought to reduce computational expense or mem-
ory requirements for the analysis of symmetric structures. In this work, the special properties of mode shapes in
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symmetric structures are combined with analytical sensitivity results to explore natural frequency and mode shape
sensitivities. To simplify notation in the remaining work, λ refers to λ(K,M) and φ = φ(K,M). The resulting
natural frequency sensitivities can be calculated analytically using the result of Fox and Kapoor [23], which is also
derived in Adhikari [24] for arbitrary mode shape normalization and for systems with damping:

λi,k = φTi Gi,kφi (15)

Note that Gi,k = K,k − λiM,k where �,k represents the partial derivative with respect to parameter k, ∂�/∂θk.
The term Gi,k is evaluated for two parameters, θk and θl which are symmetric, such that

K,k =

[
K

(1)
,k 0

0 0

]
K,l = TK,kT =

[
0 0

0 K
(1)
,k

]
(16)

and similar forM,k andM,l. This uses the reflection matrix T defined in Eq. (1). Symmetric parameters may be, for
example, the mass densities of two symmetrically-located (mirrored) elements. However, the definition is generic and
may include groups of parametrized elements which have a mirror group. The only requirement is that the symmetric
parameters satisfy K,l = TK,kT . Note that the off-diagonal block matrices of K,k and M,k are necessarily zero
since they correspond to the stiffness and mass properties, respectively, of link elements. Since link elements are cut
by the reflection plane, they are not part of either substructure and are never going to give symmetric parameters.
Gi,k and Gi,l are then formed

Gi,k =

[
K

(1)
,k − λiM

(1)
,k 0

0 0

]
Gi,l = TGi,kT =

[
0 0

0 K
(1)
,k − λiM

(1)
,k

]
(17)

3.1. Symmetric mode shape

As established in Section 2, the mode shapes of symmetric structures are either symmetric or anti-symmetric.
Analysis begins with an arbitrary symmetric mode i, such that

φi =

{
vi
vi

}
= Tφi (18)

for some non-zero vector vi. φi is unaffected by the reflection matrix T in Eq. (1). Writing the eigenvalue sensitivity
with respect to parameter θl and using the relation in Eq. (17):

λi,l = φTi Gi,lφi = φTi [TGi,kT ]φi = [φTi T ]Gi,k[Tφi] = φTi Gi,kφi = λi,k (19)

then equivalence is satisfied, and eigenvalue sensitivities are equal between symmetric parameters for symmetric
modes.

3.2. Anti-symmetric mode shape

This examination is repeated for an arbitrary anti-symmetric mode j,

φj =

{
vj
−vj

}
= −Tφj (20)

which is negated when transformed by the reflection matrix T in Eq. (1). The eigenvalue sensitivity with respect to
θl can again be equated to the sensitivity with respect to θk:

λj,l = φTj Gj,lφj = φTj [TGj,kT ]φj = [−φTj T ]Gj,k[−Tφj ] = φTj Gj,kφj = λj,k (21)

and thus eigenvalue sensitivities are equal between symmetric parameters also for anti-symmetric modes.
Therefore eigenvalue (and correspondingly, natural frequency) sensitivities are equal between symmetric param-

eters for all modes, comprising symmetric and anti-symmetric modes, in symmetric structures. This is a significant
result and gives an analytical explanation for the symmetry of clusters based on natural frequency sensitivity, as
noted in [3, 8, 9]. Since natural frequency sensitivity vectors will always be equal between symmetric parameters,
they will be clustered together using any distance metric or clustering technique. Furthermore, this means that
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subset selection based on natural frequency sensitivity will necessarily select against a symmetric parameter after its
complement has been chosen. This occurs because the selection process orthogonalizes after each selection, and the
identical sensitivity of the parameter pair will be removed.

Finally, this has large ramifications for the sensitivity matrix in sensitivity-based model updating. If an updating
problem is set to update only natural frequencies, then two columns corresponding to symmetric parameters will
be linearly dependent and the rank of the sensitivity matrix will be less than the number of columns. Therefore,
special care must be taken when updating the natural frequencies of symmetric structures to correctly determine
the rank of the sensitivity matrix prior to updating and take the correct ameliorating steps of regularization or
reparametrization.

4. Mode shape sensitivity

This approach is now extended to mode shape sensitivities. The sensitivity, or derivative, of mode shape φi with
respect to parameter θk is given by [23]:

φi,k = −[FiFi + 2Mφiφ
T
i M ]︸ ︷︷ ︸

Li

−1
[FiFi,k +Mφiφ

T
i M,k]︸ ︷︷ ︸

Ri,k

φi (22)

This can be split into the inverse of a symmetric matrix Li which does not depend on the parameter θk, a matrixRi,k,
and the mode shape φi. Li is Form II, meaning that TLiT = Li. Thus L−1

i is also Form II (L−1
i = [TLiT ]−1 =

TL−1
i T ), giving properties that will be exploited later. Fi represents the eigenvalue problem with eigenvalue λi,

which has the same form as the K and M matrices:

Fi = K − λiM =

[
F

(1)
i F

(2)
i

F
(2)
i F

(1)
i

]
(23)

The derivative of Fi with respect to parameter θk is given as Fi,k = K,k − λiM,k − λi,kM , which is closely related
to Gi,k from Eq. (17):

Fi,k =

[
F

(1)
i,k F

(2)
i,k

F
(2)
i,k F

(3)
i,k

]
= Gi,k − λi,kM (24)

The derivative with respect to a symmetric parameter θl is

Fi,l =

[
F

(1)
i,l F

(2)
i,l

F
(2)
i,l F

(3)
i,l

]
= Gi,l − λi,kM (25)

where the result λi,l = λi,k was used from Section 3. This means that Fi,l is the reflection of Fi,k, using the reflection
matrix in Eq. (1):

Fi,l = TFi,kT (26)

Using these definitions, the goal is to describe the similarity between mode shape sensitivities for two symmetric
parameters. Generally, subset selection methods and parameter clustering methods phrase similarity in terms of the
cosine distance between vectors [3, 5, 7–9]. Between two mode shape sensitivity vectors, this can be written:

dcos(φi,k,φi,l) = 1−
φTi,kφi,l√

φTi,kφi,k · φTi,lφi,l
(27)

This is equal to 1− cos(ψ) where ψ is the angle between the two vectors. dcos ranges between 0 (vectors are parallel)
and 2 (vectors are anti-parallel). When φi,k and φi,l have the same magnitude (i.e. φTi,kφi,k = φTi,lφi,l), then this
can be written as

dcos(φi,k,φi,l) = {φi,k − φi,l}T {φi,k − φi,l}/(2φTi,kφi,k) (28)

In order for two symmetric parameters, θk and θl, to have dcos = 0 when using Eq. (28) then the following condition
must hold:

φi,k − φi,l = −L−1
i [Ri,kφi −Ri,lφi] = 0 → Ri,kφi −Ri,lφi = 0 (29)

where L−1
i can be reduced because it is invertible.
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4.1. Symmetric mode shape

Eq. (29) is analyzed in the context of a symmetric mode shape, φi, with form given by Eq. (18). However, we
will first show that the symmetric parameter sensitivities are equal in magnitude to allow use of Eq. (28). To do
this, Eq. (22) is examined for mode i and parameter l:

Ri,lφi = [FiFi,l +Mφiφ
T
i M,l]φi = [Fi[TFi,kT ] +Mφiφ

T
i [TM,kT ]]φi

= [FiTFi,k +Mφiφ
T
i TM,k]Tφi = [FiTFi,k +Mφiφ

T
i M,k]φi

(30)

This uses the reflection matrix T in Eq. (1) to describe the transformations of Fi,l in Eq. (26) and M,l, similar to
Eq. (16). This is further simplified using the fact that Tφi = φi for a symmetric mode shape. Given that L−1

i is a
Form II matrix, then TL−1

i = L−1
i T . Thus, we can show that Tφi,k = φi,l using a part of Eq. (22) and Eq. (30):

Tφi,k = −L−1
i TRi,kφi = −L−1

i [FiTFi,k +Mφiφ
T
i M,k]φi = φi,l (31)

This utilizes the facts that Fi and M are Form II to give TFi = FiT and TM = MT . Therefore the two sensitivity
vectors have equal magnitude, φTi,lφi,l = φTi,kTTφi,k = φTi,kφi,k, so Eq. (28) can be used.

Comparing Eq. (30) to Ri,kφi in Eq. (22) gives the following relation to satisfy Eq. (29):

[Fi − FiT ]Fi,kφi = 0 (32)

Note that Fi can not be reduced from this equation since it is not invertible. For a particular mode shape φi and
parameter θk, this equation may be satisfied by several Fi because Fi,k isn’t necessarily full-rank. However, this
equation must hold for any arbitrary parameter θk. Therefore, Fi,k can be treated as an arbitrary matrix because the
K,k and M,k are arbitrary based on parametrization. Since φi is necessarily non-zero by definition of an eigenvector,

the only general solution is Fi = FiT . This requirement can be written as F
(1)
i = F

(2)
i from Eq. (23):

K(1) − λiM (1) = K(2) − λiM (2) (33)

This may have infinitely many solutions for a particular eigenvalue λi, but it is desired to find a condition such that
mode shape sensitivities are equal for symmetric parameters for all symmetric modes. Therefore, λi is treated as
arbitrary, giving the requirements that

K(1) = K(2) M (1) = M (2) (34)

While generally difficult to attain, this condition doesn’t violate any properties of the stiffness and mass matrices
(i.e. symmetry, non-zero).

4.2. Anti-symmetric mode shape

Eq. (29) is now analyzed in the context of an anti-symmetric mode shape, φj , with form given by Eq. (20).
Again, it is first shown that the symmetric parameters have equal magnitude sensitivity vectors by examining part
of Eq. (22) This is simplified using Tφj = −φj for an anti-symmetric mode shape:

Rj,lφj = [FjFj,l +Mφjφ
T
jM,l]φj = [Fj [TFj,kT ] +Mφjφ

T
j [TM,kT ]]φj

= [FjTFj,k +Mφjφ
T
j TM,k]Tφj = −[FjTFj,k −Mφjφ

T
jM,k]φj

(35)

This can be used to show that φj,l = −Tφj,k in a similar process to Eq. (31). Thus, two sensitivity vectors have
equal magnitude, φTj,lφj,l = φTj,kφj,k, so Eq. (28) can be used. Comparing Eq. (35) to Eq. (29) for mode j gives the
following condition such that Eq. (29) is satisfied:

[Fj + FjT ]Fj,kφj = 0 (36)

As discussed previously, this equation has to hold for an arbitrary parameter θk and non-zero φj , making Fj,kφj an

arbitrary vector. The only solution, then, is Fj = −FjT , or equivalently, F
(1)
j = −F (2)

j . This can be written as

K(1) − λjM (1) = −[K(2) − λjM (2)] (37)
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Since this must hold for various values of λj , corresponding to different anti-symmetric modes, the only solution
which satisfies φj,k = φj,l for arbitrary (symmetric) parameters θk and θl and arbitrary anti-symmetric mode j is

K(1) = −K(2) M (1) = −M (2) (38)

Comparing the equivalence criterion for symmetric mode shapes in Eq. (34) and anti-symmetric Eq. (38) yields
the only solution to both sets: K(1) = K(2) = 0 and M (1) = M (2) = 0, which is a null result. Therefore, we have
analytically shown that there is no symmetric structure for which all mode shape sensitivities will be equal between
symmetric parameters, in direct contrast to natural frequency sensitivities, which will be equal. In other words, the
presence of structural symmetry is never going to let symmetric parameters have the same mode shape sensitivities.
Intuitively, one would expect that the more closely mode shape sensitivity equivalence is satisfied for symmetric
modes, the greater discrepancy would exist for anti-symmetric modes, and vice versa. This comes from observation
of Eqs. (32) and (36), but L−1

i , Fi,k, and φi will vary for each mode, so it is not guaranteed that this condition will
exist.

However, the observation that dcos(φi,k,φi,l) > 0 is limited in utility. While the cosine distance between mode
shape sensitivities for symmetric parameters is necessarily greater than zero, the cosine distance may still be close
enough to zero such that symmetric parameters are still clustered together (in cluster analysis) or nearly orthogo-
nalized (in subset selection) or essentially linearly dependent (in the sensitivity matrix). Since the equations do not
readily admit a bound on dcos, this will be explored in a small numerical study.

5. Example structure with C1v symmetry

The structure of study, in Fig. 1, was modified from Kaveh and Nikbakht [20]. This is a symmetric 10 element
truss formed from two equilateral triangles (elements {1, 2, 3} and elements {8, 9, 10}) with link elements {4, 5, 6, 7}.
The element properties are uniform, with dimensionless Young’s modulus of 1, area 1, and mass density 1. The
structure is pinned at the symmetric nodes 1 and 4, giving 8 free DoFs. Note that DoFs 5 and 7 are reversed relative
to the direction of 1 and 3 such that DoFs 5-8 are isomorphic to DoFs 1-4 after reflection, giving the structure C1v

symmetry. The displacements of the structure are thus partitioned as

uT =
{
uT1 | uT2

}
= {u1 u2 u3 u4 | u5 u6 u7 u8} (39)

corresponding to left and right substructures. The stiffness K and mass M matrices are Form II, as described in
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Figure 1: Symmetric 8-DoF truss structure adapted from Kaveh and Nikbakht [20]
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Eq. (5) with block matrices given by

K =

[
K(1) K(2)

K(2) K(1)

]
=




1.43 −0.25 −0.25 0.43 0.50 0 0.43 0.25

−0.25 1.64 0.43 −0.75 0 0 −0.25 −0.14

−0.25 0.43 2.68 −0.18 0.43 −0.25 1 0

0.43 −0.75 −0.18 0.89 0.25 −0.14 0 0

0.50 0 0.43 0.25 1.43 −0.25 −0.25 0.43

0 0 −0.25 −0.14 −0.25 1.64 0.43 −0.75

0.43 −0.25 1 0 −0.25 0.43 2.68 −0.18

0.25 −0.14 0 0 0.43 −0.75 −0.18 0.89




(40)

M =

[
M (1) M (2)

M (2) M (1)

]
=




1.91 0 0.17 0 −0.33 0 −0.29 0

0 1.91 0 0.17 0 0.33 0 0.29

0.17 0 1.58 0 −0.29 0 −0.17 0

0 0.17 0 1.58 0 0.29 0 0.17

−0.33 0 −0.29 0 1.91 0 0.17 0

0 0.33 0 0.29 0 1.91 0 0.17

−0.29 0 −0.17 0 0.17 0 1.58 0

0 0.29 0 0.17 0 0.17 0 1.58




(41)

Transforming these matrices by P in Eq. (8) to be block-diagonal yields the condensed matrices K̄(1), K̄(2), M̄ (1)

and M̄ (2). This leads to the separable eigenvalue problem in Eq. (9), which give the eigenvalues of K and M as
the union of the eigenvalues for the condensed problems:

{λ(1)} = {0.08, 0.88, 1.76, 2.70} {λ(2)} = {0.19, 0.42, 0.83, 1.81} (42)

Therefore, the eigenvalues are {λ} = {0.08, 0.19, 0.42, 0.83, 0.88, 1.76, 1.81, 2.70} with modes 1, 5, 6, and 8
coming from the first condensed problem (symmetric) and modes 2, 3, 4, and 7 from the second condensed problem
(anti-symmetric). The associated eigenvectors for the separable problems are

φ̄(1) =




−0.30 1 1 0.20
0.58 0.77 −0.82 0.05
0.04 −0.21 −0.06 1

1 −0.42 0.96 −0.04


 φ̄(2) =




1 0.31 0.59 −0.57
−0.33 0.63 1 0.80

0.68 0.02 −0.90 1
−0.40 1 −0.84 −0.36


 (43)

These can be transformed into the eigenvectors of the full problem using Eq. (7), which are separated into

φ =

[
φ̄(1) φ̄(2)

φ̄(1) −φ̄(2)

]
(44)

Note that this doesn’t reflect the typical mode ordering (based on ascending eigenvalue), but is used to show that
the mode shapes are symmetric and anti-symmetric. The mode shapes are depicted in Fig. 2.

The model was parametrized to modify the stiffness (or equivalently, Young’s modulus) of each element l out of
a total p = 10

K(θ) =

p∑

l=1

Kl(1− θl) (45)

where θ is the vector of parameters and Kl is the element stiffness matrix of element l. Therefore, the derivatives
are simple, with K,l = −Kl and M,l = 0. The parameter sets {1, 8}, {2, 9}, and {3, 10} were symmetric.

The natural frequency sensitivities and mode shape sensitivities were computed numerically for the purposes
of verification. A selection of these mode shape sensitivities for symmetric parameters are shown in Fig. 3. The
parameter (element) is indicated with a bold line while the sensitivity is indicated by a red arrow for each DoF.

121



1st sym. mode, ϕ1 2nd sym. mode, ϕ5 

1st anti-sym. mode, ϕ2 2nd anti-sym. mode, ϕ3 

3rd sym. mode, ϕ6 4th sym. mode, ϕ8 

3rd anti-sym. mode, ϕ4 4th anti-sym. mode, ϕ7 

Figure 2: Truss mode shapes

This represents how the mode shape changes as a result of perturbing the indicated parameter. The numerically-
computed sensitivities obeyed the reflection properties noted in Section 4, with φ1,1 = Tφ1,8 and φ2,3 = −Tφ2,10.
In words, mode shape sensitivities for symmetric parameters are reflections for a symmetric mode, while they are
negative reflections for anti-symmetric modes. Visually, φ1,1 and φ1,8 appear to be near-opposite, with most of the
sensitivities having opposite direction between the two parameters. Conversely, φ2,3 and φ2,10 appear quite similar,
especially for the large magnitude terms on nodes 3 and 6.

Sensitivity of mode 1 to parameter 1, ϕ1,1 Sensitivity of mode 1 to parameter 8, ϕ1,8

Sensitivity of mode 2 to parameter 10, ϕ2,10Sensitivity of mode 2 to parameter 3, ϕ2,3

Figure 3: Selected mode shape sensitivities for symmetric parameters

To quantify the similarity between sensitivity vectors, the cosine distance between mode shape sensitivities was
computed between all parameter pairs using Eq. (27). This comprised p(p− 1)/2 = 45 unique pairs of parameters,
of which 3 represented the symmetric parameter pairs. This was performed for all 8 modes, with results shown in
Fig. 4. This allowed for a limited comparison of cosine distance between mode shape sensitivities for symmetric
parameter pairs and for all other pairs.

The cosine distance between mode shape sensitivities for the three symmetric parameter pairs was largely similar
to the behavior for any other parameter pair. For all symmetric parameter pairs, dcos was near its maximum for
modes 1 and 4-8, showing little preference between symmetric and anti-symmetric mode shapes. A maximal value
of dcos = 2 indicated that the mode shapes sensitivities were opposites, as discussed in φ1,1 and φ1,8 of Fig. 3.
Conversely, lower values of dcos can be noted for the symmetric parameter pairs on modes 2 and 3. In particular,
dcos(φ2,3,φ2,10) was quite small (≈ 0.14), as suggested in the discussion of Fig. 3.

The other 42 parameter pairs showed largely uniform behavior for modes 1-3 and 8, with few values below 1.
Conversely, modes 4-7 showed a large proportion of extreme values, having many pairs with dcos near zero and also
near 2. This doesn’t seem to indicate a difference between symmetric and anti-symmetric mode shape sensitivity
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sym.

Figure 4: Cosine distances between parameter pairs, separated into symmetric pairs and all other pairs

behavior, as these distinct behaviors encompassed both symmetric and anti-symmetric modes.
The mean of dcos (across all modes) for the symmetric parameter pairs was approximately 1.5, while it was

near 1.1 for the other parameter pairs. While this indicates that symmetric parameter pairs are more likely to
exhibit significantly different mode shape sensitivities, this is not a guarantee. Symmetric parameter pairs still
exhibited significant variability, with dcos values noted near zero as well as near 2. This is an important result, as it
indicates that there are no special properties (e.g. equality, negation) of mode shape sensitivities between symmetric
parameters. For the purposes of clustering and subset selection, symmetric parameters aren’t expected to exhibit
different behavior than any arbitrary pair of parameters. Therefore, they are expected to contribute to asymmetry in
clustering and prevent orthogonalization of symmetric parameters in subset selection. For sensitivity-based updating,
they are expected to behave like any other parameter pair, with no reason to suspect that they won’t contribute to
the column-space (rank) of the sensitivity matrix.

6. Conclusions

The properties of natural frequency and mode shape sensitivities were explored in the context of structures
possessing at least one plane of reflectional symmetry. For these structures, it was shown that the stiffness and mass
matrices can be partitioned into a special form, which reduces the eigenvalue problems into two smaller problems. The
reduced problems provide exclusively symmetric or anti-symmetric mode shapes for the symmetric structure. The
special symmetry properties of the mode shapes were then used to explore the derivatives (or sensitivities) of natural
frequencies and mode shapes to changes in symmetric parameters. It was analytically proved that natural frequency
sensitivities are necessarily equal between symmetric parameters, while mode shape sensitivity vectors are always
unequal. These topics were applied to a small example truss with symmetry to quantify the difference between mode
shape sensitivity vectors, as measured by cosine distance. It was noted that symmetric parameters generally had
greater cosine distance between their mode shape sensitivity vectors, as compared to other (asymmetric) parameter
pairs, but still exhibited significant variability.

For sensitivity-based clustering, this proves that using natural frequency sensitivities will lead to symmetric
clusters, while incorporating mode shape sensitivities will tend to create asymmetric clusters, as observed previously
by the authors [3]. This stems from mode shape sensitivities being necessarily unequal between symmetric parameters,
while natural frequency sensitivities are always equal between symmetric parameters. For parameter subset selection
(which uses the sensitivity matrix), if natural frequency sensitivities are used exclusively, then only one of a pair of
symmetric parameters can possibly be chosen, as its counterpart will be orthogonalized. However, incorporating mode
shape sensitivity will differentiate the sensitivities of the symmetric parameters, possibly allowing both parameters to
be selected. This has similar ramifications for sensitivity-based updating, where use of natural frequency sensitivities
will necessarily lead to linearly dependent columns of the sensitivity vector, since the sensitivity vectors for symmetric
parameters will be equal. Using mode shape data, with or without natural frequency data, is expected to ameliorate
this problem and improve the rank of the sensitivity matrix.
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The derived results were validated on the example problem, but the degree of variability between mode shape
sensitivities corresponding to symmetric parameters deserves further investigation on a variety of structures.
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