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ABSTRACT

Three Contributions to Latent Variable Modeling

Xiang Liu

The dissertation includes three papers that address some theoretical and technical issues

of latent variable models. The first paper extends the uniformly most powerful test approach

for testing person parameter in IRT to the two-parameter logistic models. In addition, an

efficient branch-and-bound algorithm for computing the exact p-value is proposed. The

second paper proposes a reparameterization of the log-linear CDM model. A Gibbs sampler

is developed for posterior computation. The third paper proposes an ordered latent class

model with infinite classes using a stochastic process prior. Furthermore, a nonparametric

IRT application is also discussed.
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Chapter 1

Introduction

My research interests span the areas of latent variable models, categorical data analysis, and

Bayesian methods. A common theme of my research is to understand and improve the theory

and applications of psychometric models. To achieve this, I utilize techniques from both

frequentist and Bayesian traditions. Specifically, a significant portion of my research deals

with the development of computational methods for various psychometric models. Given the

rapid improvement of computing power and the emergence of big data, it is certainly an area

that will grow more relevant and more important. A wide range of popular psychometric

models - item response theory (IRT), cognitive diagnosis models (CDM), latent class models

have been covered in my research. Many of them have a Bayesian and computational focus.
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1.1 The First Study: Small Sample Size Confidence

Intervals for IRT

IRT is widely used in educational and psychological testing. One of the core purposes of

IRT is to map students’ ability onto a latent continuum. Since only a finite number of items

can be administered, abilities are estimated with uncertainty. Traditionally, the standard

error of the ability estimator is based on the large sample approximation (i.e., square root of

the inverted fisher information). While it might be reasonable for longer tests, in reality, we

often have to use short to medium length instruments (e.g., personality tests). The standard

errors and the confidence intervals based on the large sample approximation could be highly

inaccurate under these circumstances.

To address this important issue, the first study (X. Liu, Han, & Johnson, 2018) pro-

posed a framework to construct hypothesis testing based on exact distribution. Confidence

intervals of ability estimates are obtained by inverting the hypothesis tests . As a result,

the type-I error rate is well controlled under even small to medium test lengths. A major

hurdle to this approach is the heavy computational requirements. Instead of permuting all

possible response patterns by brute force, I developed a branch and bound algorithm that

can calculate p-values efficiently. With the help of the algorithm, the exact distribution

approach is now computationally feasible for even medium test lengths. This work is not

only technically interesting, but also enables practitioners and researchers to recognize the

measurement uncertainty more accurately so that, ultimately, decision making can benefit

from the improved measurement practice.
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1.2 The Second Study: MCMC for Log-linear CDM

Models

Bayesian statistics is another major piece of my research. Markov chain Monte Carlo

(MCMC) has been widely used to estimate many kinds of psychometric models. Cogni-

tive diagnosis models (CDM) is no exception. The second study (X. Liu & Johnson, n.d.)

introduced a Gibbs sampler for estimating the saturated log-linear CDM model. By repa-

rameterizing the log-linear CDM model, I was able to analytically derive the closed form

update steps for the Gibbs sampler. The automatic update steps do not require tunning

which makes it easy to use. I also gave the linear transformation that would transform the

posterior samples back to the original log-linear CDM parameterization.

The introduced method potentially provides an automatic solution for researchers who

may be interested in performing Bayesian analysis in CDM. Even though I introduced the

method in the context of the saturated log-linear models, it can be easily extended to other

specific CDM models.

1.3 The Third Study: Bayesian Nonparametric

Ordered Latent Class Model

The third study develops Bayesian nonparametric methods for ordered latent class models.

In latent class or mixture models, the number of classes usually has to be specified a priori.

Essentially, it becomes a modeling choice that is either based on a researcher’s substantive

knowledge of the data or comparing the fit of models with different number of classes.

3



Selecting models based on some model fit indices is not always straightforward. Different fit

indices might penalize the complexity of the model differently which may result in different

conclusions. In addition, in some cases, a researcher might have to fit a large number

of models with different number of classes before the optimal model can be determined.

Therefore, it may create heavy computational burdens. More importantly, all inferences

are conditioned on the selected model. It ignores the uncertainty of the model choice. By

assigning stochastic process priors to latent class assignments, Bayesian nonparametrics can

fit a model with an infinite number of classes. The posterior distribution of the number

of classes provides a better picture of model uncertainty. Unlike the traditional methods,

some inferences do not have to be conditioned on one selected model. Instead, marginal

quantities can be obtained by averaging over the posterior distribution of the models with

different dimensions which can account for the model uncertainty.

4



Chapter 2

The UMP Exact Test and the

Confidence Interval for Person

Parameters in IRT Models

2.1 Introduction

In Item Response Theory (IRT), the person parameter is often estimated with the maximum

likelihood estimator (MLE) (Hambleton & Swaminathan, 1985). Under large sample sizes,

the MLE is approximately normally distributed with asymptotic variance given by the inverse

of the Fisher information (Baker & Kim, 2004). Based on the asymptotic normality, one

can construct hypothesis tests and confidence intervals for the person parameter (Casella

& Berger, 2001). However, the propriety of the asymptotic assumption is questionable

under practical situations where the test is often of moderate lengths. As a result, the

statistical inference of the person parameter based on the asymptotic normality of the MLE

5



could be very misleading. This problem has been recognized in earlier research (Lord, 1983;

Klauer, 1991; Doebler, Doebler, & Holling, 2012; Biehler, Holling, & Doebler, 2014). Thus,

developing statistical inference procedures that do not depend on the asymptotic normality

is of practical importance. Two approaches are generally discussed.

One approach is to base the inference on the exact distribution of the response patterns.

The idea of using the exact distribution of response patterns in IRT was initially introduced

for the purpose of assessing response pattern fit (Molenaar & Hoijtink, 1990). Klauer (1991)

further derived the uniformly most powerful unbiased (UMPU) test and the uniformly most

accurate confidence interval based on the exact distribution of the response patterns in the

Rasch model. Klauer noticed that the raw sum score is a sufficient statistic for the person

parameter in the Rasch model. Therefore, response patterns in the Rasch model can be

reduced to raw sum scores. Furthermore, the test statistic based on the raw sum score was

randomized to achieve the level α unbiased test. The computation is tractable as only the

exact distribution of the raw sum scores are needed. As the number of items increases, the

number of possible raw sum scores increases linearly.

The exact distribution approach has also been extended to the two-parameter logistic

(2PL) model. Unfortunately, the raw sum score is no longer a sufficient statistic for the

person parameter in the 2PL model. Instead of calculating the exact distribution of the

sufficient statistic, the exact distribution for a Wald statistic was calculated (Doebler et al.,

2012). And confidence intervals were derived by inverting the exact test. In the same paper,

the authors also proposed a hybrid Bayesian approach by incorporating a prior distribution

on the person parameter.

A second class of approaches is based on approximating the exact distribution of the

6



person parameter using a higher-order approximation (Biehler et al., 2014). The saddle-

point approximation works well for IRT models within the exponential family and is relatively

easy to implement. However, it does not yield the optimal confidence interval such as the

uniformly most accurate confidence interval (Klauer, 1991).

Given the much improved computing power, calculating the exact distribution under

small to moderate item lengths becomes feasible. In the present work, we extend Klauer’s

(1991) approach to the 2PL model. In fact, we generalize the procedure for IRT models in

the exponential family. In addition, an efficient branch and bound algorithm is introduced.

2.2 Existing Methods

The small sample inference methods mentioned in the introduction have been rarely dis-

cussed in the IRT literature. As a result, readers may not be familiar with them. We will

briefly review these ideas in this section.

2.2.1 Saddle-point Approximation

A probability distribution can be completely characterized by its characteristic function

(Casella & Berger, 2001). The density function of a distribution can be obtained by inverse-

Fourier transformation of the characteristic function. Often, the transformation has to be

approximated. The goal of the saddle-point approach here is to provide a robust approxima-

tion to the distribution of the sufficient statistic given an ability parameter, i.e. P (T (X) |θ0),

under small sample size. Biehler et al. (2014) described the approximation in the appendix

of their paper. The derivation involves exponential tilting and Edgeworth expansion. Com-

7



pared to an error term of O(n−1/2) from the first-order normal approximation, the saddle-

point approximation has an error term of O(n−1). Consequently, it converges faster to the

true distribution as the number of items increases (Biehler et al., 2014). This desired feature

provides a relatively accurate approximation under small sample sizes. The tail probabilities

can be obtained through integrating the approximated probability density function. The ap-

proximation of this integral is provided by the Lugannani-Rice formula (Lugannani & Rice,

1980). Then inverting two equal tail tests gives the confidence interval.

The approximation depends on the availability of the mean and the variance of the

distribution of the sufficient statistic. This is possible for the exponential family as the

distribution of the sufficient statistic is also within the same family. The cumulant generating

function of the sufficient statistic is known, and its mean and variance are given by the first

two cumulants.

This method only works for IRT models within exponential family. Although the ap-

proximation is highly accurate, simulations show that the coverage rate of the resulting

confidence interval may still fall below the nominal rate for some conditions (Biehler et al.,

2014).

2.2.2 Exact Distribution Approaches

The methods proposed in Doebler et al. (2012) are more closely related to our approach

in the sense that they are all based on the exact finite sample distribution of the response

patterns.

8



2.2.2.1 The Hybrid Bayesian Approach

To test the two-sided hypothesis H0 : θ = θ0 versus Ha : θ 6= θ0, Doebler et al. (2012)

proposed a likelihood ratio type statistic in the form of

lθ0(x) =
Pf (x)

Pθ0(x)
, (2.1)

where Pf (x) =
∫
θ 6=θ0

Pθ(x)f(θ)dθ, Pθ(x) is the probability of the response vector x under

some ability level θ, and f(θ) is the prior distribution of the person parameter. Intuitively, l

in equation 2.1 is a ratio of the weighted average of likelihood over a prior distribution to the

likelihood under the hypothesized value θ = θ0. A larger l would provide stronger evidence

to reject θ0. Then the acceptance region can be defined as

A1,θ0 = {x : lθ0 (x) ≤ C} .

The constant C is chosen such that it is the smallest that can satisfy Pθ0 (Aθ0) ≥ 1− α for

some nominal level α. Due to discreteness, the nominal level generally cannot be achieved

exactly.

The associated confidence set can be obtained by inverting the above test. The idea is to

find all θ that will not be rejected given some observed response pattern. So the confidence

set is

I1 (x) = {θ : x ∈ A1,θ} . (2.2)

Doebler et al. (2012) showed that the interval in (2.2) minimizes the average expected length,

∫
θ

Eθµ (I)) f (θ) dθ,

among confidence sets with the same level of significance.

9



2.2.2.2 The Exact Normal Approach

The idea of this approach is to construct confidence intervals based on the asymptotic vari-

ance of the estimator. Instead of getting probabilities from the asymptotic distribution, the

authors calculated probabilities exactly from the finite sample distribution (Doebler et al.,

2012). For the same two-sided hypothesis, a Wald-type statistic was proposed,

zθ0(x) =
θ̂ (x)− θ0√
var

(
θ̂ (x)

) , (2.3)

where θ̂ is an estimator for θ. Note that θ̂ does not have to be the MLE. Other estimators

such as weighted likelihood estimator (Warm, 1989) would also work here. Similar to the

Hybrid Bayesian approach, the acceptance region is then

A2,θ0 = {|zθ0 | ≤ C} .

The constant C is the smallest that can satisfy Pθ0 (Aθ0) ≥ 1− α for some nominal level α.

The confidence set can be obtained by inverting the test in a similar fashion.

I2 (x) = {θ : x ∈ A2,θ} .

This approach is similar to the standard approach based on asymptotic normality. How-

ever, the authors did not state any optimality for this method (Doebler et al., 2012).

2.2.2.3 Limitations

This class of approaches does not rely on approximation of the distribution of a test statistic.

Instead, probabilities are calculated based on the exact distribution of response patterns.

As a result, the coverage rate of the confidence set will never fall below the nominal level.

10



But there are limitations. Due to discreteness, the coverage rate of the confidence set

might be higher than the nominal level. In other words, confidence sets from methods based

on exact distribution are often conservative. In addition, the Bayesian approach is sensitive

to the choice of prior. The exact normal approach does not generally meet any optimality

criterion. More importantly, the resulting confidence sets from the above two methods are

not necessarily intervals (Doebler et al., 2012). It is due to the fact that the endpoints of the

acceptance region need not be monotone in θ0 (Agresti, 2003). Casella and Berger (2001)

also discussed this problem.

The exact distribution approach using sufficient statistic (Klauer, 1991) avoids this par-

ticular problem. Furthermore, it leads to the uniformly most powerful test which is a more

common optimality criterion.

2.3 Theory

In this section, we derive the Uniformly Most Powerful (UMP) test for IRT models in the

exponential family.

2.3.1 IRT models in the exponential family

Lord (1980) showed that 1PL and 2PL models with known item parameters are in the

exponential family. Here, without loss of generality, we demonstrate the result for the 2PL

model when the item parameters are known. The item response function for the 2PL model

is given by

Pj(Xj = 1|θi) =
exp(aj(θi − bj))

1− exp(aj(θi − bj))
,

11



where θi is the latent ability of ith subject, aj is the discrimination parameter for jth item,

and bj is the difficulty parameter for jth item. Then for a given response pattern x, the

likelihood function for θ can be written as

L(θ|x) =
n∏

j=1

P
xj

j (1− Pj)
1−xj =

n∏
j=1

{
exp[aj(θ − bj)]

1− exp[aj(θ − bj)]

}xj
{

1

1− exp[aj(θ − bj)]

}1−xj

.

The likelihood in equation 2.3.1 can be further factorized into the following form (for details,

see appendix)

L(θ|x) = exp[η(θ)T (x)]h(x)g(θ),

where

exp[η(θ)T (x)] = exp(θ
n∑

j=1

ajxj),

h(x) = exp(−
n∑

j=1

ajxjbj),

and

g(θ) =
n∏

j=1

{1− exp[aj(θ − bj)]}−1 .

This shows that 2PL model is in the exponential family and θ is a natural parameter.

Furthermore, T (x) =
∑n

j=1 ajxj is a sufficient statistic for θ. Under the 1PL model, the

sufficient statistic reduces to the raw sum score, since the discrimination parameters are

constant across items. Furthermore, because η(θ) = θ is an increasing function, 1PL and

2PL models have the monotone likelihood ratio (MLR) property (Casella & Berger, 2001).

12



2.3.2 The UMP one-sided hypothesis test

Consider testing H0 : θ ≥ θ0 versus H1 : θ < θ0 with a test of the form

φ1 =


1 T (x) < C

0 T (x) ≥ C,

where T (x) =
∑n

j=1 ajxj is a sufficient statistic for θ. If φ = 1, the test rejects H0. If φ = 0,

the test fails to reject H0. The constant C is minimal that can satisfy Pθ0(T (X) < C) ≤ α,

for some nominal level α. Because T (x) is a sufficient statistic for θ and the MLR property

holds, by the Karlin-Rubin theorem, the test φ is a UMP level α? = Pθ0(T (X) < C) test

(Casella & Berger, 2001).

In the context of 1PL and 2PL models, the distribution of the sufficient statistic is

discrete. Thus, in general, α? cannot achieve the nominal level α. If a size α test is desired,

the sufficient statistic can be randomized by adding a random component (Klauer, 1991).

However, the randomized statistic leads to randomized decision. In practice, randomized

decisions are problematic. For example, two examinees who have the exact same response

pattern might receive different decisions. This raises a serious fairness question. In this

paper, we do not provide details for randomizing the test.

Instead of calculating the constant C, the exact p-value can also be obtained. For a given

observed response pattern x0, the p-value is given by

Pθ0(T (X) ≤ T (x0)) =
∑

x: T (x)≤T (x0)

Pθ0(X = x). (2.4)

For testing H0 : θ ≥ θ0 versus H1 : θ < θ0, we can compare the exact p-value against the

nominal level. If the p-value is less than the nominal level, we reject H0; otherwise, we fail

to reject H0.

13



In this section, we derived the one-sided UMP test for IRT models in the exponential

family. Notice that for testing H0 : θ ≤ θ0 versus θ > θ0, the derivation of the UMP test

follow the same approach.

2.3.3 The two-sided test

For testing H0 : θ = θ0 versus H1 : θ 6= θ0, the UMP test does not exist (Casella & Berger,

2001; Klauer, 1991). Klauer (1991) was able to derive the two-sided UMP unbiased test.

However, this approach requires a continuous test statistic from randomization. Here, we

construct an equal-tail two-sided test with some nominal level α. The test has the following

form

φ2 =


1 T (x) < C1 or T (x) > C2

0 C2 ≤ T (x) ≤ C1,

where T (x) =
∑n

j=1 ajxj. C1 is maximal such that

Pθ0 (T (x) < C1) ≤ α/2. (2.5)

Similarly, C2 is minimal that satisfies

Pθ0 (T (x) > C2) ≤ α/2. (2.6)

From this definition, one can see that the test is essentially two one-tailed tests with equal

significance level α/2. Again, due to discreteness, in general the equal signs in (2.5) and

(2.6) cannot be achieved.
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2.3.4 The confidence interval

Inverting the equal tail test φ2 leads to the confidence set. Given an observed response

pattern x0, we find all θ that will not be rejected,

I3 (x0) = {θ : φ2,x0 (θ) = 0} .

Unlike I1 or I2, the endpoints of the acceptance region in this method is monotone in θ0.

This guarantees that the set I3 is an interval. This is also referred to as the tail method

(Agresti, 2003). Consequently, the lower bound of the confidence interval can be obtained

by solving

Pθ0 (T (X) ≤ T (x0)) = α/2,

for θ0. Similarly, the solution for

Pθ0 (T (X) ≥ T (x0)) = α/2, (2.7)

gives the upper bound. Now I3 can be expressed as

I3 (x0) = {θ : θl ≤ θ ≤ θu}, (2.8)

where θl and θu are solutions of (2.7) and (2.8) as functions of θ, which can be obtained by

standard root finding algorithms.

2.3.5 Computational algorithm

One difficulty associated with the exact distribution approach is the computational complex-

ity. For the 1PL model, the computation is manageable. As the number of items increases,

the number of possible raw sum scores increases linearly. However, under the 2PL model,
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the number of weighted sum scores, in general, increases exponentially. Therefore, compu-

tation by brute force would quickly become too time consuming to be feasible as the test

length increases. In this section, we introduce an efficient branch and bound algorithm for

calculating exact p-values.

2.3.5.1 Formulation of the problem

By brute force, finding the exact p-value of a given response pattern x0 as defined in (2.4)

requires the complete enumeration of all response patterns. However, it should be noticed

that only response patterns that produce sufficient statistics not larger than the sufficient

statistic of the observed response pattern need to be considered. Thus, the problem translates

to finding all possible response pattern x such that

a1x1 + a2x2 + · · ·+ ajxj ≤ T (x0). (2.9)

Enumerating subject to a constraint in the form of (2.9) is a discrete mathematical pro-

gramming problem that can be solved by the branch and bound algorithm. The algorithm

was first conceptualized in 1960 (Land & Doig, 1960), and was later formalized and given its

current name for the purpose of solving the well-known traveling salesman problem (Little,

Murty, Sweeney, & Karel, 1963).

2.3.5.2 The binary tree representation

The response patterns can be represented using a binary tree structure. Figure 21 shows an

example of three items. Each branch of the tree represents a response pattern. For example,

the branch 0 → 0 → 0 represents the response pattern (0, 0, 0). For J items, there are 2J
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Figure 21: The binary tree representation of response patterns
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Figure 22: The binary tree representation of weighted sum scores

possible response patterns. Thus, the number of the nodes at the bottom of the tree is 2J .

The tree has J + 1 levels, with (j + 1)th level representing the response for jth item.

Each response pattern is associated with a weighted sum score. Therefore, the weighted

sum scores can also be represented using the same binary tree structure by multiplying to-

gether the dichotomous responses in Figure 21 and the associated discrimination parameters

(see Figure 22). Adding the nodes within a branch leads to the weighted sum score for the

response pattern presented by the branch. For example, the weighted sum score for the

response pattern (1, 0, 1) is a1 + 0 + a3.
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2.3.5.3 Branch and bound

Because the item discrimination parameters in the 2PL are usually constrained to be positive,

the weighted sum score is non-decreasing as we go deeper along any branch in the tree. For

a given observed response pattern x0, the constraint T (x0) in (2.9) can be computed. Then

we only need to consider those branches that satisfy the constraint.

The construction of the binary tree can be viewed as a series of splitting operations.

While the constraint is satisfied, the branch keeps splitting. The weighted sum score is

checked against the constraint after each splitting. If the constraint is not satisfied, any

further splitting could not possibly produce response patterns that could satisfy (2.9) due

to the non-decreasingness mentioned above. Thus, the branch can be terminated.

For example, suppose x0 = (1, 0, 0) and a1 < a2 < a3. The sufficient statistic of the

observed response pattern is then T (x0) = a1. The splitting process is demonstrated in

Figure 23.

Notice that, after the 3rd split, the branch 0 → 1 did not split any further as the weighted

sum is 0 + a2 > a1. After the final split, all the response patterns that could potentially

satisfy the constraint (2.9) should have reached the bottom of the tree. Out of the four

branches reached the bottom, only 0 → 0 → 0 and 1 → 0 → 0 satisfy (2.9). Thus the exact

p-value is

Pθ0(T (X) ≤ T (x0)) = Pθ0{X = (000)}+ Pθ0{X = (100)}. (2.10)

Instead of calculating probabilities for all eight possible patterns, only two probabilities need

to be evaluated using the branch and bound algorithm.

The efficiency of the algorithm can be further improved by ranking the items in descend-
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Figure 23: Demonstration of the splitting process
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Figure 24: The splitting process for ranked items

ing order according to their discrimination parameters before constructing the tree. For

the same example above, the splitting process after ranking is demonstrated in Figure 24.

Compared to the five splits in Figure 23, it only needs three splits after ranking the items.
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However, we should take the computational cost of ranking into our consideration. But in

our experience, the cost of ranking is negligible compared to the improved efficiency in the

branch and bound algorithm.

In the example we provided, the tree is always traversed as deep as possible along a branch

before exploring parallel branches. This is called the Depth First Search(DFS) (Leiserson,

Rivest, Stein, & Cormen, 2009). We implemented this version of the branch and bound

algorithm for calculating exact p-values. We also used Brent’s algorithm (Brent, 1973) to

find bounds for the confidence interval. The C++ code is available from the first author.

2.4 Simulation Study

2.4.1 Type-I error and power of the one-tail test

A simulation study was conducted to examine the type-I error rate and the power of the

proposed exact test for the 2PL model under different conditions. The difficulty with such a

simulation study is that the power of the test is associated with many different factors. The

number of items is expected to affect the power. Also, for a given set of items, the power

is likely to vary for different ability levels. Moreover, the power depends on the difference

between the tested ability level and the true ability level, i.e.

∆θ = θ0 − θ. (2.11)

However, the most difficult part is perhaps that different sets of item parameters would

likely to have different power curves. Considering this, we decided to investigate the average

power for item parameters from their usual distributions under different conditions.
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2.4.1.1 Design

Four test lengths were considered: J = 5, 10, 15, and 20 items. For each test length, seven

effect sizes as defined in Equation 2.11 were examined, ∆θ = 0, 0.5, 1.0, . . . , 3.0. Moreover,

twenty-five hypothesized ability level θ0s were selected from −3 to 3 by intervals of 0.25.

Then the true ability level θs were computed by θ = θ0 −∆θ.

Given a pair of J and ∆θ, item difficulty parameters bj and item discrimination param-

eters aj, were randomly generated from uniform distributions, U(−2.0, 2.0) and U(0.5, 2.0)

respectively. At each θ, a response pattern x0 was randomly generated using item param-

eters a and b under the 2PL model. Then we test the one-sided hypothesis H0 : θ ≥ θ0

against H1 : θ < θ0. The exact p-value was calculated as in (2.4) using the branch and

bound algorithm. H0 is rejected if the p-value is less than α = 0.05.

For each combination of the length J and the effect size ∆θ, the above process was

replicated 50, 000 times.

2.4.1.2 Results

Figure 25 shows the average type-I error rate (∆θ = 0) under different item lengths. When

there are only J = 5 items, the type-I error rate is significantly lower than the nominal level

α = 0.05. This is due to the discreteness of the response patterns. For 5 items, there are

25 = 32 possible response patterns. However, as the number of items increases, the number

of possible response patterns increases exponentially. As a result, the type-I error rate is

getting very close to the nominal level for moderate and high θ0 when item length increases

even without randomization. The power drops eventually to zero as the θ0 moves to the
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Figure 25: The type-I error rate from the simulation

extreme negative value. For a given set of items, the response pattern x = (0, 0, . . . , 0) has

the weighted sum score
∑J

j=1 ajxj = 0 which is the smallest among all possible response

patterns. If θ0 is so small that Pθ0 (X = (0, 0, . . . , 0)) > α, the test will not reject θ0 given

any observed response pattern at the nominal level α. As we pointed out earlier, if the

nominal level is desired, the decision has to be randomized.

The power curves for ∆θ = 0.5, 1.0, . . . , 3.0, are shown in Figure 26. Power is highest

for null values of ability, θ0, in the middle part of the scale. Power drops as the null value,

θ0, moves towards the two extremes. The shape of the power curve is likely due to the way

we generated the item parameters, which produced a test information curve that is highest

near zero on the ability scale.

As expected, the power increases as the number of items increases. The power also

increases with ∆θ. For a five item instrument, the power is quite low across all ability levels

except for very large ∆θ. Meanwhile, for the item length J = 20, the power is reasonably

good around medium level θ0. When ∆θ = 0.5, the power is low, even for a twenty item
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Figure 26: Statistical power under different conditions

(a) ∆θ = 0.5 (b) ∆θ = 1.0

(c) ∆θ = 1.5 (d) ∆θ = 2.0

(e) ∆θ = 2.5 (f) ∆θ = 3.0
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instrument.

2.4.2 Coverage rate of the confidence interval

2.4.2.1 Design

To examine the coverage rate of the proposed confidence interval, we conducted the second

simulation study. Item discrimination parameters and difficulty parameters were generated

from the same uniform distributions in the first simulation. We considered 13 ability pa-

rameters from −3 to +3 by intervals of 0.5. Response patterns were generated from the

2PL model. For each generated response pattern, the bounds of the 95% confidence interval

were obtained by solving (2.7) and (2.8). In the case of extreme patterns, the bounds were

limited to −5 and +5. Two item lengths were considered: 10 and 15. The process replicated

50, 000 times for each condition.

We also calculated confidence intervals based on the standard asymptotic approach and

examined the coverage rates for comparison. For the 2PL model, the Fisher information is

given by

ω(θ̂) =
J∑

j=1

a2j exp(−aj(θ̂ − bj))

[1 + exp(−aj(θ̂ − bj))]2
, (2.12)

where θ̂ is the MLE of the person parameter. The asymptotic standard error then can be

obtained by taking square root of the inverted Fisher information, i.e. S.E. = 1√
ω(θ̂)

(Baker

& Kim, 2004).
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Figure 27: Coverage rate of the 95% confidence interval

2.4.2.2 Results

Figure 27 shows the coverage rate of the 95% confidence interval for different test lengths.

As expected from the exact approach, the coverage rate does not fall below the nominal

level for the entire range of ability parameter θ. When θ is close to 0, the coverage rate is

very close to the nominal level. As the it goes towards extreme, the coverage rate is getting

higher. Agresti (2003) noted this problem in the context of binomial proportions. When θ

is sufficiently low, the interval can never exclude θ by falling below it. In this case, the lower

bound on the coverage rate is actually 1−α/2 rather than 1−α. The other direction follows

the same rationale. that being said, the coverage rate never exceeds 98% in our simulations

even for extreme person parameters. More items would lead to a “less discrete” test statistic

under the 2PL model. Consequently, the coverage rate is closer to the nominal level. For a

test with 15 items, the coverage rate is very close to 95% for a good range of θ, and almost

exact for medium level θ. On the other hand, the confidence intervals based on the standard

asymptotic approach are overly conservative. Even with 15 items, the coverage rate is still
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not close to the nominal level for medium level θ.

2.4.3 Lengths of the confidence interval

2.4.3.1 Design

The purpose of this simulation study is to examine the lengths of the proposed confidence

interval for different levels of generating person parameter. We also compared the results

with the standard confidence interval based on the asymptotic normality of the MLE. We

considered 5 ability parameters, i.e. θ = −3.0,−2.0, . . . , 3.0. For each θ, we generated

10000 responses from the 2PL model. Item parameters were treated as random effects and

generated in the same fashion as in the previous simulations. Average length of the confidence

intervals are computed for both the exact approach and the standard asymptotic approach.

2.4.3.2 Results

Table 21: Average confidence interval lengths

(a) 10 items

θ exact asymptotic
-3.0 3.83 9.62
-1.50 3.16 4.17
0.0 2.60 2.58
1.50 3.30 4.17
3.0 4.58 9.55

(b) 15 items

θ exact asymptotic
-3.0 3.37 6.62
-1.50 2.55 2.77
0.0 2.05 2.03
1.50 2.58 2.78
3.0 3.98 6.66

Table 21 shows average confidence interval lengths for both the exact distribution ap-

proach and the standard asymptotic approach under 10 items and 15 items. While main-

taining adequate coverage rates as demonstrated in the previous simulation, the exact dis-
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tribution approach results in shorter confidence intervals across different ability levels. The

difference is smaller in the middle of the ability level. The average lengths of the proposed

confidence interval are comparable to those reported in Doebler et al. (2012) in the medium

θ level, but shorter for more extreme θ values.

2.4.4 Computational time

2.4.4.1 Design

In order to investigate the feasibility of our proposed method, we benchmarked computa-

tional time required. Six test lengths were considered - 5, 10, 15, 20, 25, and 30. Item

parameters were generated from the same uniform distributions used in the other two simu-

lations. Person parameters were generated from a standard normal distribution. Response

patterns were generated under 2PL model. For the problem of testing the one-sided hypoth-

esis H0 : θ ≥ 1.2 versus H1 : θ < 1.2, the time required to compute an exact p-value was

recorded. We ran 100 replications, and the average time was taken. We also benchmarked

efficiency of finding confidence intervals for various test lengths.

2.4.4.2 Results

The average number of seconds required for computing exact p-values are in Figure 28. The

p-values are calculated up to the specified thresholds - 1.0, 0.2, and 0.05. When the test

length is not greater than 25, it takes well less than 1 second to compute an exact p-value.

The time difference between different threshold is minimal. When the test length is 30, the

computational cost becomes significantly higher. Now, computing an exact p-value takes
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Figure 28: Average computing time for an exact p-value

about 14 seconds. If we are content with a threshold of 0.2 or 0.05, the average time needed

would be roughly 9 seconds.

The average time required for computing a confidence interval under different test lengths

are in Figure 29. Computing the confidence interval for a response pattern with no more

than 20 items is very fast and takes less than 1 second. But for a 25-item pattern, it would

take 18 seconds on average. When the test length is 30, the average computing time quickly

increases to about 540 seconds.

2.5 Real data example

2.5.1 Hypothesis testing for LSAT data

In this section, we demonstrate a practical application of the proposed method. Dichoto-

mous responses to 5 questions from 1000 individuals were extracted from the R package ltm

(Rizopoulos, 2006). The data set is from the Law School Admission Test(LSAT) (Bock &
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Figure 29: Average computing time for a confidence interval

Lieberman, 1970).

In this example, we fit the Rasch model to the data. The difficulty parameters, βj, j =

1, 2, . . . , 5, are estimated through conditional maximum likelihood estimation using the R

package eRm (Mair & Hatzinger, 2007). For identification purposes, we constrained the

parameters so that
∑5

i=1 βj = 0. The estimated parameters are then treated as known.

We are interested in testing the one-sided hypothesis H0 : θ ≥ 1.28 against H1 : θ < 1.28.

Under the Rasch model, the sufficient statistic for the ability parameter is the raw sum

score. Therefore, 25 = 32 possible response patterns can be reduced to 6 raw sum scores.

The exact p-value for each raw sum score is calculated and presented in Figure 210. If the

nominal level is set at α = 0.05, H0 will be rejected when the raw sum score is 0 or 1. For

raw sum scores 2, 3, . . . , 5, we don’t have enough evidence to reject H0.
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Figure 210: The exact p-values for the LSAT data

2.5.2 Confidence interval for the SF-12 data

The 12-item Short-Form Health Survey (SF-12) is perhaps one of the most widely used

patient-reported heath outcome rating scales (J. E. J. Ware & Sherbourne, 1992; J. E. Ware,

Kosinski, & Keller, 1996). Hagell and Westergren (2011) analyzed a data set of 150 Parkin-

son’s disease patients responding to the SF-12 survey. The original SF-12 survey has 4

dichotomous items and 8 polytomous items. The authors (Hagell & Westergren, 2011)

examined thresholds between adjacent response categories for the ploytomous items and

decided there were too many categories. They proceeded to dichotomize item responses

by collapsing adjacent categories and fitted the Rasch model. A reasonably good fit was

reported.

One of the concerns of using short test forms is whether there is enough information

to reliably distinguish subjects. Based on the parameter estimates obtained for the Rasch

model (see Table 4 in Hagell & Westergren, 2011), we computed confidence intervals for

each raw sum score (see Figure 211). In order to be significantly different from the lowest
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Figure 211: 95% confidence intervals for the SF-12 data

score, a person has to obtain a raw score that is at least 7. Similarly, only raw scores less

than 6 can be distinguished from the highest score at the nominal level. If a person scored

6 in the survey, there would not be enough evidence to distinguish this individual from any

other person.

2.5.3 Hypothesis testing for the food security data

The 10 item food security data were extracted from the 2002 Current Population Survey

and analyzed using IRT models (Johnson, 2004). The responses of 9804 individuals were

used approximate the posterior distribution of the model parameters for both the Rasch and

the 2PL models. The discrimination parameters varied significant. As a result, the Rasch

model did not provide an adequate fit and 2PL model was favored. A cutoff score (1.93)

was determined so that 95% of food insecure population with latent score greater than 1.93

will respond affirmatively to at least six of the food security items under the IRT model.

For details of finding the cutoff score, please refer to Johnson (2004).
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Based on the 2PL item parameters reported (see Table 1 in Johnson, 2004), we calculated

exact p-values for the one-sided hypothesis H0 : θ ≤ 1.93 against H1 : θ ≥ 1.93. Of the

possible 210 = 1024 patterns, 18 are rejected at the α = 0.05 level (see Table 22 in Appendix

B). Among them, 1 pattern has a raw score of 10, 10 patterns have raw scores of a 9, and

the other 7 patterns have raw scores of 8.

We also calculated p-values based on the asymptotic distribution of standard errors. It

results in only 10 patterns being rejected (see Table 23 in Appendix B). For the pattern with

a raw score of 10, the MLE of the person parameter is not an interior point. So that pattern

is excluded. Out of the 10 patterns with raw scores of 9, only 9 of them were rejected. It

also rejects one pattern with a raw score of 8.

In this example, the exact test rejects more patterns compared to the asymptotic ap-

proach (Table 23 is a subset of Table 22). Some response patterns that are rejected under

the exact test are failed to be rejected using the asymptotic approach. In practice, it would

make a difference in decision making for those individuals with these response patterns.

2.6 Discussion

Being able to accurately recognize low reliabilities associated with short test forms is very

important. Under the IRT framework, reliability is reflected as information or precision of

the estimated latent abilities. Typically, the asymptotic distribution of the MLE is used to

recognize the uncertainty of the person parameter estimates. However, the actual distribu-

tion is not normal even with 30 items for the 2PL model (Biehler et al., 2014). Developing

a method that can obtain an accurate measure of the precision is of practical importance.
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In this paper, we generalized the exact distribution approach for constructing the UMP

test, equal-tail two sided test, and the associated confidence interval to IRT models within

the exponential family. In addition, we proposed a branch and bound algorithm for the

purpose of calculating the exact p-value.

Thissen (2016) argued that instead of reporting score in a yes-or-no fashion regarding a

student’s proficiency, we should report proficiency probabilistically. The method we proposed

in this paper does not provide the probability of a student being proficient given a test score,

which should be answered by using Bayesian posterior probabilities (Gelman et al., 2013).

However, the exact p-value does provide evidence against the hypothesis that the student

is proficient. The discussion of the interpretation of p-values dates back to Fisher (1935).

Wasserman (2004) also gave the guidelines: > .05 being no evidence, .01− .05 being positive

evidence, .001-.01 being substantive evidence, and < .001 being decisive evidence against

H0.

The branch and bound algorithm introduced in this paper can be used to compute the

exact p-value efficiently. If only the decision of whether to reject H0 at the nominal level α

is desired and the exact p-value is not of interest, the algorithm can be modified such that

it terminates once the α level is reached. As a result, the algorithm could be even more

efficient.

There has been some effort in exploring fast algorithms for the response pattern enu-

meration. One example is a network algorithm for computing person fit statistic under the

Rasch model (Liou & Chang, 1992). The network algorithm uses a directed acyclic graph to

represent response patterns. It deals with the enumeration of response patterns conditioned

on a raw sum score. But the algorithm cannot handle the complete enumeration of all possi-
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ble response patterns given a sufficient statistic constraint. The branch and bound algorithm

developed in this paper tackles this problem by using a binary tree structure. Computing

exact distributions of the person parameter shares a lot of similarities with computing ex-

act distributions of the log-likelihood based person fit statistics (e.g. lz statistic). In the

latter case, there are two main differences. Instead of the hypothesized person parameter

value, the computation of the person fit statistics should be conditioned on the estimated

person parameter for the observed response pattern. Another major difference is the way

how ”extremity” of a pattern is defined. Compared to finding all patterns with greater (or

smaller) weighted sum scores, calculating the exact distribution of the person fit statistics

requires finding all patterns with worse fit (e.g. smaller log-likelihood). The branch and

bound algorithm developed in this paper may be adapted for this task.

As mentioned, the introduced procedure for constructing the UMP test only works for

IRT models within the exponential family where a sufficient statistic for the ability parameter

exists and the monotone likelihood ratio property holds. It should be noted that the 3PL

model is not in the exponential family. Thus, the method does not generalize to the 3PL

model or any other model outside the exponential family. The same problem exists for the

higher order approximation approach. The saddle-point approximation works only for the

exponential family as well (Biehler et al., 2014). Developing appropriate inference procedures

and efficient computational algorithms for the 3PL under small sample size still remains a

challenge.
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Appendix A

Under the 2PL model, the probability of a correct response for jth item from a subject is

Pj(Xj = 1|aj, bj, θ) =
exp[aj(θ − bj)]

1 + exp[aj(θ − bj)]
, (2.13)

where aj is the item discrimination parameter, bj is the item difficulty parameter, and θ is

the ability parameter for the subject. It follows that the likelihood of θ given a response

pattern X = x is

L(θ|x,a, b) =
J∏

j=1

Pj(Xj = 1|aj, bj, θ)xjPj(Xj = 0|aj, bj, θ)1−xj (2.14)

=
J∏

j=1

{ exp[aj(θ − bj)]

1 + exp[aj(θ − bj)]
}xj{ 1

1 + exp[aj(θ − bj)]
}1−xj (2.15)

=
J∏

j=1

{exp[aj(θ − bj)]}xj

1 + exp[aj(θ − bj)]
{ 1

1 + exp[aj(θ − bj)]
}xj−xj (2.16)

=
J∏

j=1

{exp[aj(θ − bj)]}xj

1 + exp[aj(θ − bj)]
(2.17)

=
exp[

∑J
j=1 xjaj(θ − bj)]∏J

j=1{1 + exp[aj(θ − bj)]}
(2.18)

=
exp[θ

∑J
j=1 ajxj]

exp[
∑J

j=1 ajxjbj]
∏J

j=1{1 + exp[aj(θ − bj)]}
(2.19)

= exp[θ
J∑

j=1

ajxj]{exp[
J∑

j=1

ajxjbj]}−1{
J∏

j=1

{1 + exp[aj(θ − bj)]}}−1. (2.20)

The equation 2.20 is in the exponential form L(θ|x) = exp[η(θ)T (x)]h(x)g(θ), where

exp[η(θ)T (x)] = exp(θ
n∑

j=1

ajxj), (2.21)

h(x) = exp(
n∑

j=1

ajxjbj)
−1, (2.22)

and

g(θ) =
n∏

j=1

{1− exp[aj(θ − bj)]}−1. (2.23)

35



Appendix B

In the food security data example, we are interested in testing the one-sided hypothesis:
H0 : θ ≤ 1.93 against H1 : θ ≥ 1.93. Using the exact test approach, the following response
patterns are rejected at α = 0.05 level:

Table 22: 18 patterns that are rejected under the exact test

0 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

Table 23: 10 patterns that are rejected under the asymptotic approach

0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0
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Chapter 3

Estimating CDMs Using MCMC

3.1 Introduction

In the past two decades, Markov chain Monte Carlo (MCMC) techniques have been widely

used for the Bayesian estimation of psychometric models. Not only an alternative to other

estimation methods, MCMC algorithms and general purpose MCMC software has been

facilitating the development of modern psychometric models that are otherwise difficult to

fit (Levy, 2009). In this chapter, we provide a brief survey of MCMC methods used in

estimating Cognitive Diagnostic Models (CDM). In addition, a Gibbs sampler for fitting the

saturated Log-linear CDM model (LCDM, Henson, Templin, & Willse, 2009) is introduced.

The utility of Bayesian inference is demonstrated by analyzing the Examination for the

Certificate of Proficiency in English (ECPE) dataset.

To help understand the motivation of developing MCMC methods, consider the following

general statistical inference problem. Given a set of observed data X = x, we would like to

model the data with a probabilistic model p(x|θ) where θ is the model parameter vector.
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Under the Bayesian framework, a prior is assigned to the parameters, i.e. p(θ). Then we are

interested in the posterior distribution of the model parameters given the observed data, i.e.

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (3.1)

In some cases the closed form of the posterior distribution p(θ|x) can be analytically de-

rived. However, under other circumstances, the posterior distribution must be approxi-

mated numerically. Difficulty arises from the numerical evaluation of the integral in the

denominator of (3.1). If θ is unidimensional, the integral can be approximated by us-

ing k quadrature points fairly efficiently. But in general, evaluating the multiple integral∫ ∫
· · ·
∫
p(x|θ)p(θ)dθ1dθ2· · · dθd requires a high-dimensional grid of kd points in Rd. As the

number of dimensions d grows, integration by quadrature quickly becomes infeasible. This

problem is also referred to as the ”curse of dimensionality”. Instead of deterministically

evaluating the high-dimensional integral, MCMC algorithms stochastically sample from the

posterior distribution by constructing a Markov chain whose stationary distribution is the

target posterior distribution. For a detailed review of MCMC, refer to Gelman et al. (2013),

Neal (1998), and Brooks, Gelman, Jones, and Meng (2011).

Despite its importance to Bayesian inference, it should be noted that MCMC methods

are not limited to Bayesian applications. High-dimensional integrals also arise from com-

puting marginal maximum likelihood estimates in some models. As a result, MCMC as

a class of efficient stochastic numerical integration algorithms is also used in frequentist

applications. In fact, such applications have been developed in psychometrics. For exam-

ple, Cai (2010) adapted the Metropolis-Hastings Robbins-Monro algorithm to estimate the

high-dimensional item factor analysis model by marginal maximum likelihood. Given much
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improved computing power and the availability of general purpose Bayesian inference soft-

ware, the CDM literature, flourishing in relatively recent years, also saw a wide range of

applications of MCMC methods.

3.2 MCMC Background

In this section, we provide a brief background and intuition of MCMC for readers who

might not be familiar with the concept. A Markov chain is a series of random variables,

Θ(0),Θ(1), . . . ,Θ(t),Θ(t+1), . . . , where the state at time t+1 depends only on the immediate

previous state at t. In other words, the distribution of θ(t+1) is independent of everything

else given Θ(t) = θ(t), i.e.

P (θ(t+1)|θ(0),θ(1), . . . ,θ(t)) = P (θ(t+1)|θ(t)). (3.2)

This is often referred to as the Markov property. Additionally, the state space, that is the

range of θ, is common across all time points. In practice, it implies the parameter space

of the model cannot be changed. However, there exist MCMC methods that can handle

models with variable parameter space - for example, the reversible jump MCMC. This topic

is significantly more advanced and out of the scope of this chapter. Interested readers may

refer to P. J. Green (1995). Observing the aforementioned Markov property, it is clear

that, in order to define a Markov chain, we need to specify the probability of an initial

state θ - p0(θ) = P (θ(0) = θ) and the transition probabilities between consecutive states -

Tt(θ,θ
′) = P (θ(t+1) = θ′|θ(t) = θ) for t = 0, 1, 2, . . . . Then the distribution of θ at time
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t+ 1 can be determined by

pt+1(θ) =
∑
θ̃

pt(θ̃)Tt(θ̃,θ). (3.3)

For homogeneous Markov chains, the transition probabilities stay the same across all time

points, i.e. Tt(θ,θ
′) = T (θ,θ′),∀t. A Markov chain is said to have reached its stationary

or invariant distribution - π(θ) if the distribution of θ does not change according to time

points t any more. Specifically, there exists some t̃ such that pt̃(θ) = π(θ) and

π(θ) =
∑
θ̃

π(θ)Tt(θ̃,θ),∀t ≥ t̃. (3.4)

The purpose of using MCMC in Bayesian inference is to help us sample from an otherwise

difficult posterior distribution. To achieve this goal, we are interested in constructing a

Markov chain where the target posterior distribution is invariant. Often, we choose reversible

homogeneous Markov chains in which the probability of a transition from the state θ to the

state θ′ is the same as the probability of a transition from θ′ to θ under the distribution of

states π. Equivalently,

π(θ)T (θ,θ′) = π(θ′)T (θ′,θ). (3.5)

The above condition is usually called detailed balance. It is straightforward to show that

detailed balance implies invariance, i.e.

∑
θ′

π(θ′)T (θ′,θ) =
∑
θ′

π(θ)T (θ,θ′) = π(θ)
∑
θ′

T (θ,θ′) = π(θ). (3.6)

It should be noted that detailed balance is a sufficent but not necessary condition for a

distribution to be invariant (Neal, 1998).

Detailed balance ensures that once a Markov chain reaches its invariant distribution,

subsequent states are samples from this invariant distribution. However, we generally do
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not know this invariant distribution which is the target posterior distribution. Instead, we

hope the distribution of states at time t converges in distribution to its invariant distribution

π as t → ∞ regardless of its initial probability distribution of states p0(θ). The Markov

chain is ergodic if it holds this property. For a homogeneous Markov chain with an invariant

distribution π, it is ergodic if the chain can traverse the entire support of π, i.e.

v = min
θ

min
θ′:π(θ′)>0

T (θ,θ′)/π(θ′) > 0. (3.7)

For a proof of this theorem, readers can refer to Neal (1998).

The simplest MCMC algorithm is perhaps the Gibbs sampler (Geman & Geman, 1984;

Gelfand & Smith, 1990). Suppose we are interested in sampling from a joint distribution

given by p(θ1, θ2, . . . , θK) which is our target posterior distribution. Gibbs sampler works by

repeatedly sampling each θk from their full conditional distributions. At the tth iteration,

we

• sample θ
(t)
1 according to the distribution given by p(θ

(t)
1 |θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
K );

• sample θ
(t)
2 according to the distribution given by p(θ

(t)
2 |θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
K );

...

• sample θ
(t)
K according to the distribution given by p(θ

(t)
K |θ(t)1 , θ

(t)
2 , . . . , θ

(t)
K−1).

The above steps together form a transition of state from θt−1 to θt with probabilities T (θ,θ′)

that leaves the target distribution invariant. Starting from an initial state θ(0), after simu-

lating the Markov chain long enough, subsequent draws of θ(t) are treated as samples from

the target posterior distribution.
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3.3 Applications of MCMC in CDM

Similar to other types of psychometric modeling, instances of applications of MCMC in CDM

are numerous. By no means the brief survey in this section is exhaustive, but rather to give

readers flavors of the existing literature. The applications of MCMC in CDM can be traced

back to earlier papers on the topic. In Junker and Sijtsma (2001), one of the earlier papers

on CDM, the authors fit the deterministic inputs, noisy ”and” gate (DINA) model and the

noisy inputs, deterministic ”and” gate (NIDA) model using the BUGS (Bayesian inference

Using Gibbs Sampling) software (Thomas, Spiegelhalter, & Gilks, 1992).

While de la Torre (2008) provides a reference work for estimating the DINA model by

marginal maximum likelihood using the expectation-maximization (EM; Dempster, Laird,

& Rubin, 1977) algorithm; the development of the EM algorithm for the higher-order DINA

(HO-DINA) model is not trivial. As a result, in de la Torre and Douglas (2004), the HO-

DINA model is estimated by a blocked Gibbs sampler (Geman & Geman, 1984; Gelfand

& Smith, 1990; Gelman et al., 2013). The full-conditional distributions for HO-DINA do

not have closed forms and are not easy to sample from directly. Therefore, the authors

adopted the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,

1953; Hastings, 1970). Instead of directly sampling from the full-conditional distributions,

at each iteration, the Metropolis algorithm draws a proposed sample value or vector from a

proposal distribution (usually a Gaussian distribution), and accepts or rejects it with an ap-

propriately defined acceptance probability. To calculate the acceptance probability, only the

unnormalized full conditional density function is required. This circumvents the difficulty of

obtaining the normalizing constant when it cannot be derived analytically. The combination
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of Gibbs sampler and Metropolis algorithm is usually referred to as the Metropolis-within-

Gibbs which is implemented in many general purpose Bayesian inference softwares (e.g.

OpenBUGS;Lunn, Spiegelhalter, Thomas, & Best, 2009, JAGS;Plummer, 2005).

One difficulty of using the Metropolis algorithm is the tuning of the sampler. If the

variance of the proposal distribution is large, the proposed sample is more likely to be further

away from the current sample, which leads to low acceptance probabilities. Consequently,

a large number of proposed samples are rejected before an acceptance, and the sampler

rarely moves. On the other hand, small variance of the proposal distribution leads to high

acceptance probabilities. But the proposed samples tend to be close to the current ones.

As a result, the sampler moves slowly and does not explore the posterior distribution very

efficiently. Therefore tuning is required so that the Markov chain is mixing at an optimal rate

(Roberts, Gelman, & Gilks, 1997). Tuning a sampler could be a tedious task. Culpepper

(2015) derived the closed forms of full-conditional distributions for DINA model so that the

parameters can be directly sampled without using the Metropolis algorithm. In the same

paper, the author also shows that the monotonicity assumption of the DINA model can be

enforced by sampling the item parameters from a truncated bi-variate Beta distribution.

In the applications discussed so far, the Q-matrix (Tatsuoka, 1983) needs to be specified

before the model can be estimated. In reality, the specification of the Q-matrix is not always

straightforward and elements of the Q-matrix can be uncertain. Recognizing this limitation,

DeCarlo (2012) proposed a Bayesian model to handle the uncertainty. Instead of treating all

elements of the Q-matrix as fixed, the author specifies some of them as Bernoulli distributed

random parameters, and assigns a Beta prior to the Bernoulli probabilities. The uncertain

elements of the Q-matrix are recovered from examining the posterior distributions. Open-
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Bugs software (Spiegelhalter, Thomas, Best, & Lunn, 2014) is used to estimate the model

under the reparameterized DINA (RDINA;DeCarlo, 2012) model. DeCarlo and Kinghorn

(2016) extend the approach to the case where none of the Q-matrix elements is fixed.

Furthermore, there has also been some other effort developing exploratory Bayesian meth-

ods for estimating CDM models without any prior knowledge of the Q-matrix except for the

dimensions. Chung (2014) derives a Gibbs sampler for the DINA model and a Metropolis-

within-Gibbs algorithm for the rRUM(reduced reparameterized unified model; Hartz, 2002)

that include all elements of the Q-matrix as model parameters. The distribution of the

attribute patterns for examinees is modeled by a saturated categorical distribution, and the

probabilities of the categories are given a Dirichlet prior. Thanks to the categorical-Dirichlet

conjugacy, the probabilities of attribute patterns can be directly sampled from Dirichlet pos-

terior distributions. By using a saturated categorical distribution, the author did not assume

a particular factorization of the joint distribution of the attributes. Correlated attributes

with different structures can be modeled in addition to independent attributes. However,

the trade-off is the large number of parameters needs to be estimated. For a Q-matrix with

K attributes, there are 2K − 1 probabilities for the attribute patterns. The Q-matrix is es-

timated similarly by using a categorical distribution. Item parameters for the DINA model

can be sampled from truncated Beta distributions respecting the monotonicity assumption.

Unfortunately, the full-conditional distributions of the item parameters for the rRUM model

do not have closed forms. Thus, the Metropolis algorithm is used. Another example of the

exploratory Bayesian approach can be found in Chen, Culpepper, Chen, and Douglas (2018).

The paper deals with the same problem of estimating the DINA model without knowing the

elements of the Q-matrix. Building on the development in understanding the identifiablity
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of the DINA model (Chen, Liu, Xu, & Ying, 2015; J. Liu, Xu, & Ying, 2012, 2013; Xu &

Zhang, 2016), Chen et al. (2018) constrain the Q-matrix to be identified in their estimation

procedure.

MCMC also aids the development and applications of more complex CDM models. For

example, Li, Cohen, Bottge, and Templin (2016) introduce a longitudinal model that incor-

porates learning into CDM models. The attribute patterns for each student can change over

time. It is modeled by a latent transition model. The transition matrix indicates the proba-

bility of transition from one attribute pattern to another. In this paper, several models with

different transition matrices are fitted and compared using deviance information criterion

(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).

Not only useful in estimating CDM models, MCMC also provides some of the most intu-

itive ways in checking model fit. Using the posterior samples, the posterior predictive model

check (PPMC) method (Rubin, 1984; Gelman et al., 2013) calculates posterior distributions

of various fit measures. It has been used in assessing the fit of IRT models (Sinharay, 2005).

In CDM, Park, Johnson, and Lee (2015) examines the performance of PPMC using ob-

served total-scores distribution, association of item pairs, and correlation of attribute pairs

in assessing model fit.

As we mentioned earlier, the review in this section is far from exhaustive. As more

and more elaborate CDM models are developed in literature, we will certainly see more

applications of MCMC.

45



3.4 A Gibbs sampler for the saturated log-linear

CDM model

In this section, we propose a new Gibbs sampler for the LCDM model. We analyze the

ECPE data set as an illustration.

3.4.1 The log-linear CDM model

The LCDM is similar to the Generalized DINA(GDINA;de la Torre, 2011) model in the

sense that they all provide a flexible and general framework that encompasses many specific

CDM models and can be viewed as a special case of the general diagnostic model (GDM;

von Davier, 2008, 2014).

Under the LCDM, the probability of nth person answering the kth item correctly is

logitPk(an) = λk0 +
K∑
d=1

λkdandqkd +
K∑
d=1

∑
d′>d

λkdd′andand′qkdqkd′ + . . . . (3.8)

and ∈ {0, 1} with and = 1 being the nth person has the dth attribute, and and = 0 otherwise.

Similarly, qkd is 1 if the kth item measures the dth attribute, and 0 otherwise. λk0 is the

intercept, so a person does possess any of the skills measured in the test would have the

probability of logit−1(λk0) getting the kth item correct. λkd is the main effect for the dth

attribute. And λkdd′ is the interaction effect for the dth and d′th attributes. Depending

on the Q-matrix, some of the terms in (3.8) may be dropped. If an item only measures

one attribute, there is only the intercept and one main effect. It should be noticed that

some specific CDM models are nested within (3.8). For example, if only the highest order

interaction and the intercept are retained, the LCDM reduces to the DINA. A saturated
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model includes the intercept, all main effects of the measured attributes, and all interaction

terms associated with those attributes.

3.4.2 A Bayesian Formulation of the Reparameterized Saturated

LCDM

For a general CDM with three attributes, there can be 23 = 8 latent classes defined by the

attribute patterns a; therefore, under the unrestricted latent class model, there would be 8

item response probabilities that would need to be estimated for each item. The Q-matrix

restricts the probabilities by enforcing certain equality constraints on the item response

probabilities. For example, under the saturated LCDM, the probability of giving a correct

response to an item by different people who possess different subsets of the required attributes

may be different. Suppose an item requires the first two attributes but not the third, so

the kth row of the Q-matrix is qk = (1, 1, 0). Then three people with attribute patterns

a = (1, 1, 0), (1, 0, 0), and (0, 1, 0) may potentially receive different probabilities of giving

a correct answer to this item. However, a person with the attribute pattern (1, 1, 1) would

have the same probability of giving a correct response as someone whose attribute pattern is

(1, 1, 0) due to the fact that the third attribute is not required by the item. As a result, there

are 22 = 4 probabilities associated with this item. Except for this restriction, the saturated

model LCDM does not make any further constraints.

In the following Bayesian specification of the item-saturated LCDM, we use the natural

probabilities as the model parameters rather than using the linear coefficients. To aid in the

description of the model, we define the condensed attribute pattern ωnk for each individual
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n and item k, as the subvector of an corresponding to only the dimensions or attributes

required by item k, i.e., ωnk = (ed1 , . . . , edm)
>an, where ed is the standard unit vector for

dimension d with a 1 for element d and a zero everywhere else, and the d is an ordered index

set d = {m : qkm = 1}. In our three attribute example, with only the first two attributes

required for an item, we have

ωnk =

 1 0 0

0 1 0

an.

Then the item response probability can be denoted by pk(ωnk) = P (Xnk = 1|A = a).

Formally, suppose we observe an N by K response matrix from N subjects answering

K items and a K by D Q-matrix, then our Bayesian hierarchical formulation of the LCDM

assumes

xnk|ωnk,pk ∼ Bernoulli(pk(ωnk)), (3.9)

pk(ωnk) ∼ Beta(αk, βk), (3.10)

αn|π ∼ Categorical(π), (3.11)

π ∼ Dirichlet(v). (3.12)

Conditional on the latent attributes required by a particular item ωnk, a person gives a

correct response with the probability pk(ωnk). We assume a Beta prior distribution for the

vector of item response probabilities pk. A non-informative prior can be specified by giving

the uniform Beta(1, 1); while, a Beta(0.5,0.5) may be used if a researcher believes the item

might have a higher discrimination among those with and without the required skills.

We do not assume a particular factorization of the joint distribution of the attributes.

Instead, each of the possible 2D attribute patterns is treated as a category. Then each
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person’s attribute pattern follows a categorical distribution with probabilities of each possible

attribute pattern governed by parameters π = (π1, π2, . . . , π2D)
>. A Dirichlet hyper-prior

with concentration parameters v is given to the categorical distribution parameters.

3.4.3 Monotonicity Constraint

The monotonicity assumption specifies a set of constraints that ensures the interpretability

of CDM models in addition to the specification of the Q-matrix. Under the monotonicity

assumption, mastering additional attributes would not lower the probability of giving a

correct response, i.e.

P (Xnk = 1|an1) ≥ P (Xnk = 1|an2), (3.13)

whenever ωn1kd ≥ ωn2kd for all d = 1, . . . , Dk, where Dk is the number of skills required by

item k. Thus the item parameters in our Bayesian hierarchical formulation must satisfy

pk(ωn1k
) ≥ pk(ωn2k

), if ωn1kd = 1 ∀ d s.t. ωn2kd = 1. (3.14)

For the log-linear model, it is equivalent to constraining all main effects to be nonnegative

and the coefficient of any interaction term to be no less than −1 times the largest main effect

involved in the interaction (Henson et al., 2009; Templin & Bradshaw, 2014).

3.4.4 A Gibbs Sampler

Conditional on the observed data for the kth item and class assignment for all people on

this item, the item parameter is independent of everything else. So its full conditional
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distribution is

P (pk(w)|x(k),ω(k), αk, βk) ∝
∏

Skw={n: ωnk=w}

pxnk

k(w)(1− pk(w))
1−xnkP (pk(w)|αk, βk), (3.15)

where x(k) denotes the vector of all item responses to item k and ω(k) denotes the set of

item-specific attribute patterns for item k.

Due to the standard Bernoulli-Beta conjugacy, (3.15) has a closed form, i.e.

pk(w)|x(k),ω(k), αk, βk ∼ Beta

(
αk +

∑
n∈Skw

xn, βk + |Skw| −
∑

n∈Skw

xn

)
. (3.16)

The monotonicity constraint in (3.14) implies that pj(ωij) is bounded above by

Upk(w)
= inf

w′
{pk(w′) : w′

d ≥ wd ∀ d ∈ {1, 2, . . . , Dk}}, (3.17)

and bounded below by

Lpk(w)
= sup

w′
{pk(w′) : w′

d ≤ wd ∀ d ∈ {1, 2, . . . , Dk}}. (3.18)

It follows that the full conditional distribution in (3.16) should be truncated, i.e.

pk(w)|x(k),ω(k), αk, βk ∼ Beta

(
αk +

∑
n∈Skw

xnk, βk + |Skw| −
∑

n∈Skw

xn

)
I(Lpk(w)

,Upk(w)
)(pkw),

(3.19)

where I(u,`)(p) indicates the distribution is truncated to the interval (u, `).

The full conditional distribution for an is

P (an|xn,p,π) ∝
K∏
k=1

P (xnk|pk(ωnk))P (an|π). (3.20)

Since the distribution is discrete, (3.20) can be easily normalized:

P (an|xn,p,π) =

∏K
k=1 P (xnk|pk(ωnk))P (an|π)∑

an

∏K
k=1 P (xnk|pk(ωnk))P (an|π)

. (3.21)
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And the closed form full-conditional distribution is

an|xn,p,π ∼ Categorical(u1, u2, . . . , u2D), (3.22)

where the probabilities u1, u2, . . . , u2D are given in (3.21).

Finally, the full conditional distribution for hyper-parameters π is

P (π|a,v) ∝
N∏

n=1

P (an|π)P (π|v). (3.23)

The standard categorical-Dirichlet conjugacy leads to the closed form:

π|a,v ∼ Dirichlet(v + (c1, c2, . . . , c2d)), (3.24)

where the elements of the vector (c1, c2, . . . , c2D) are the counts of observations in each class.

Update steps for each iteration of the Gibbs sampler are:

1. Draw the item parameters pkw for each item and item-specific attribute pattern w

from the full conditional distributions in (3.19);

2. Draw the the latent class assignment an for each person from the full conditional

distributions in (3.22);

3. Draw the hyper-parameter π from the full conditional distribution in (3.24).

3.4.5 Linear Transformation of Model Parameters

The model parameters from the reparameterized saturated model can be easily transformed

back to the log-linear model parameters by solving a linear system of equations. For sim-

plicity, consider the case where there are d = 2 attributes. Under the saturated log-linear
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model, 22 = 4 linear coefficients are needed. The logit link links the probabilities to the

linear combinations of the attributes, i.e.

Tλk = logitpk, (3.25)

where

T =



1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


,λj =



λk0

λk1

λk2

λk12


, logitpk =



logit pk(00)

logit pk(10)

logit pk(01)

logit pk(11)


.

In the above notations, tm. denotes the mth row of the T matrix. Multiplying the inverse of

the attribute pattern matrix to both sides of (3.25) gives the log-linear model parameters,

i.e.

λk = T−1 logitpk. (3.26)

To get the posterior distribution of the log-linear model parameters, simply apply the linear

transformation in (3.26) to the posterior samples of the reparameterized saturated model

parameters.

3.5 A Bayesian Analysis of the ECPE Dataset

In this section, we analyze the ECPE dataset as a demonstration. The ECPE dataset

is available in the R CDM package (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016). It

has been analyzed in previous research (e.g. Templin & Bradshaw, 2014; Templin & Hoff-

man, 2013). The dataset consists of the binary responses from 2922 examinees to 28 items.

Three attributes are specified in the Q-matrix: morphosyntactic rules, cohesive rules, and
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lexical rules. However, none of the items measures all three attributes. Among the 28

items, 9 measure two attributes, and the rest measure one. We fit the reparameterized

saturated model and finally transformed parameters back to the log-linear model parame-

terization. Non-informative priors are used: uniform Beta(1, 1) for item parameters, and

Dirichlet(1, 1, . . . , 1) for the hyper-prior of class allocations. Futhermore, the monotonicity

is enforced by imposing constraints to item parameters as in (3.17) and (3.18).

Diagnosing the convergence of the Markov chains is important in applications of MCMC.

The MCMC theory guarantees that the Gibbs sampler will eventually converge to the target

posterior distribution as the number of draws goes to infinity. But, in reality, the number of

draws we can afford is always finite and often limited. Therefore, we need to assess whether

we can treat MCMC draws approximately as samples from the posterior distribution after a

certain number of initial draws. Over the years, many MCMC convergence diagnostics have

been proposed. Some of the popular examples include the potential scale reduction factor

(PSRF;Gelman & Rubin, 1992), the multivariate PSRF(MPSRF;Brooks & Gelman, 1998),

and the Geweke convergence diagnostic (Geweke, 1992). Here we use two common graphical

methods to assess the convergence of our Gibbs sampler. Four parallel chains with different

starting values are simulated. We run each chain for 5000 iterations. To demonstrate the

evidence of convergence, Figure 31 shows the trace of the first 500 iterations of each chain

for two parameters. The plots suggest that the chains quickly converged to their target

stationary distributions regardless of different starting values. We can also monitor the

convergence by examining the k-lag autocorrelation functions. The k-lag autocorrelation is

the correlation between every draw and its kth lag. Intuitively, a Markov chain that generates

highly correlated samples would take a long time to explore the entire target distribution.
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(a) λ0 - Item 1 (b) λ13 - Item 11

Figure 31: k-lag autocorrelation of two parameters

(a) λ0 - Item 1 (b) λ13 - Item 11

Figure 32: Traceplot of two parameters

We would hope that the autocorrelation between samples quickly shrink to around zero as

the lag k increases. From Figure 32, we can see that the autocorrelation decreases very

quickly as the lag increases in both cases. It is consistent with the quick convergence and

good mixing shown in the trace plots. Based on the convergence diagnostics, our Gibbs

sampler seems to perform very well. We decide to treat the first 1000 from each chain as
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burn-ins and use the rest for the purpose of posterior inference.

Table 31 shows the Expected a Priori (EAP) estimates and posterior standard deviations

of item parameters under the LCDM. Comparing the EAP estimates to the maximum likeli-

hood estimates (MLE) reported in previous literature (see Table 1 in Templin & Bradshaw,

2014), it seems that the EAP estimates are almost identical to the MLE for the items mea-

suring single attributes. However, differences exist between the EAP estimates and the MLE

for items measuring two attributes except for the second item where the Bayesian approach

yields similar estimates to maximum likelihood.

As pointed out by Templin and Bradshaw (2014), a closer examination of the MLE for

two attribute items reveals that many of the ML estimates appeared on the boundary. For

example, the main effect of the morphosyntactic rules for the first item is estimated to be zero

in Templin and Bradshaw (2014). The standard asymptotic theory does not give any useful

approximation to the limiting distribution of the MLE when the ML estimate lies on the

boundary. This is reflected by the zero standard error reported in Templin and Bradshaw

(2014). The MLE for some of the interaction effects also suffer this problem. They are

estimated to be very close to the boundary imposed by the monotonicity constraint. Large

standard errors are also observed for many of the estimated effects. These are symptoms of

under-identification. von Davier (2014) also discussed this problem. While an infinitely large

sample size would allow the parameters to be estimated precisely and away from boundaries

(when the true parameters are away from the boundary), we work with a limited sample

size in reality.

One solution is to impose an attribute hierarchy which effectively reduces the number of

parameters to be estimated (Templin & Bradshaw, 2014). The introduced Bayesian method
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Table 31: ECPE Bayesian estimates of LCDM item parameters

item λ0 λ1 λ2 λ3 λ12 λ13 λ23

1 0.81(0.08) 0.51(0.4) 0.65(0.23) 0.61(0.53)
2 1.03(0.08) 1.25(0.15)
3 -0.34(0.08) 0.76(0.42) 0.35(0.13) 0.52(0.44)
4 -0.14(0.08) 1.69(0.1)
5 1.07(0.08) 2.02(0.16)
6 0.87(0.08) 1.68(0.14)
7 -0.09(0.08) 1.59(0.67) 0.93(0.13) 0.32(0.7)
8 1.47(0.09) 1.92(0.24)
9 0.12(0.07) 1.19(0.1)
10 0.05(0.06) 2.05(0.15)
11 -0.05(0.08) 1.19(0.6) 0.96(0.14) 0.39(0.64)
12 -1.79(0.12) 0.62(0.46) 1.31(0.17) 0.88(0.49)
13 0.66(0.06) 1.61(0.15)
14 0.17(0.05) 1.36(0.12)
15 0.99(0.08) 2.12(0.16)
16 -0.09(0.08) 1.34(0.57) 0.87(0.13) 0.13(0.59)
17 1.34(0.09) 0.65(0.41) 0.61(0.27) 0.2(0.52)
18 0.92(0.08) 1.4(0.13)
19 -0.2(0.08) 1.85(0.11)
20 -1.43(0.1) 0.97(0.58) 0.94(0.15) 0.67(0.61)
21 0.16(0.08) 0.98(0.54) 1.13(0.14) 0.12(0.58)
22 -0.87(0.09) 2.24(0.11)
23 0.66(0.08) 2.06(0.19)
24 -0.69(0.09) 1.54(0.12)
25 0.09(0.05) 1.14(0.11)
26 0.16(0.08) 1.12(0.1)
27 -0.89(0.06) 1.7(0.1)
28 0.56(0.08) 1.75(0.12)

Note: Attribute 1 - Morphosyntactic rules; Attribute 2 - Cohesive rules; Attribute 3 - Lexical
rules.
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explores another approach. The use of priors provides regularization and enables more

parameters to be reasonably estimated (Gelman et al., 2013). The EAP estimates for single

attribute items are well-regularized with small posterior standard deviations. While the

posterior standard deviations for the two attribute items are larger, they are still reasonable.

The largest posterior standard deviation is 0.67 compared to the largest standard error of

1.62 reported in previous research.

The posterior samples can also provide useful information in assessing various aspects

of model fit. For example, one source of the misfit is the misspecification of the Q-matrix.

Considering the EAP estimates and the associated posterior standard deviations of λ1 and

λ13 for item 20 in Table 31, one might suspect that morphosyntactic rules are not measured

by the item. Both marginal posterior distributions of λ1 and λ13 might have considerable

densities around zero. However, if the item doesn’t measure this attribute, it would imply

that λ1 = λ13 = 0. In other words, we need to inspect the joint posterior distribution of

these two effects. Samples from the posterior simulation can achieve this with little effort.

Figure 33 clearly shows that the origin is away from the region where the joint posterior

density is concentrated.

Posterior samples can also be used to check the plausibility of particular CDM models.

For example, if the DINA is plausible, it would suggest that the main effects and lower order

interactions are all zeros. Since each item measures at most two attributes in the ECPE

dataset, we only need to examine the joint posterior distribution of the main effects. Figure

34 suggests that DINA is more plausible for Item 1 than Item 11.
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Figure 33: Joint posterior density of λ1 and λ13 for Item 20

(a) Item 1 (b) Item 11

Figure 34: Joint posterior density of the main effects for Items 1 and 11.

3.6 Discussion

MCMC algorithms and Bayesian methods in general will certainly continue to play an im-

portant role in the development of various CDM models. In this chapter, we briefly reviewed
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some of the applications of the MCMC in CDM literature. We also introduced a Gibbs sam-

pler for estimating the saturated LCDM model. With the reparameterization, the sampler is

able to take advantage of the standard conjugacy results thus the sampler does not require

any tuning. Even though we introduced the sampler for the saturated LCDM, the approach

can be modified to fit a wide spectrum of specific CDM models by imposing additional

constraints to the saturated LCDM model.
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Chapter 4

Bayesian Ordered Latent Class

Models

4.1 Introduction

Many psychometric models have been developed to scale response data which is a common

task in educational and psychological measurement. Item response theory (IRT; Hambleton

& Swaminathan, 1985) models assume the items are measuring a continuous latent trait.

Latent class models (LCM; B. Green, 1951; Goodman, 1974; Skrondal & Rabe-Hesketh,

2007), on the other hand, deal with the categorical latent trait. The standard LCM treats

the latent classes as nominal. In other words, there is no stochastic ordering property among

the latent classes. This is in contrast to the monotonicity assumption in IRT models where

the probability of a correct response increases as the latent trait increases. Even though

LCM is routinely used for the classification multivariate data, there are cases in which the

stochastic ordering assumption is important in interpreting the latent classes. Croon (1990)
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introduced the ordered latent class model (OLCM) by imposing the stochastic ordering

constraints on the item parameters. Some recent examples of OLCM include ranking medical

procedures in terms of the distribution of patient morbidity following the procedures (Yang,

O’Brien, & Dunson, 2011), examining gender and country differences in TIMSS through the

regression extension of OLCM (Cha, 2011), and analyzing polytomous questionnaire items

about coping strategies with industrial malodor (van Onna, 2002).

One difficulty in applying LCM and OLCM is to select the number of classes K. In some

applications, K is specified a priori based on some prior knowledge. However, in other cases,

prior knowledge of K is not available which requires K to be determined in an exploratory

fashion. Generally, there are two classes of exploratory approaches in determining K. The

first class treats K as a modeling choice. Thus, it has to be specified before the model can

be fitted. To select the best number of classes, models with different Ks are fitted. Then

the selection of K is based on finding the minimum number of classes that would yield

acceptable fit using χ2 or the likelihood-ratio test. Alternatively, the choice of K can also be

based on the information criteria such as the Akaiki information criteria (AIC; Akaike, 1987)

and the Bayesian information criteria (BIC; Schwarz, 1978). In this approach, a number of

models with different dimensions have to be estimated. Under some circumstances, it can be

computationally ineffective and time consuming (Pan & Huang, 2014). Moreover, inference

conditioning on a specific K from the 2-stage approach clearly ignores the uncertainty in the

selection process (Yang et al., 2011).

Bayesian methods can potentially alleviates these difficulties. Unlike the above men-

tioned 2-stage approach, recent advances in Bayesian statistics allow joint inferences on the

number of classes and model parameters. The development of the Markov chain Monte
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Carlo (MCMC; refer to Neal, 1998 for a detailed review) methods provides powerful tools

to perform posterior simulation. However, the traditional MCMC method is restricted to

scenarios where the dimension of the parameter space is fixed. P. J. Green (1995) proposed a

reversible jump Markov chain Monte Carlo (RJMCMC) method that offers a general frame-

work for constructing reversible MCMC samplers that jump between between parameter

spaces with different dimensions which enables the joint estimation of model dimensions and

model parameters. Leveraging this technique, Pan and Huang (2014) developed a RJM-

CMC method for regression extension of the LCM. Similarly, Bartolucci, Farcomeni, and

Scaccia (2017) considered a RJMCMC type sampler for the OLCM in the nonparametric

IRT context. Alternative to the RJMCMC method, stochastic process priors can be used to

specify a model with potentially an infinite number of dimensions. Among them, Dirichlet

Process prior (Ferguson, 1973; Antoniak, 1974; Escobar & West, 1995; Neal, 2000; Navarro,

Griffiths, Steyvers, & Lee, 2006) is a popular choice for partitioning data into an unknown

number of clusters. For example, MacEachern (1994) deals with the problem of estimating a

Gaussian mixture with unknown number of components, and Miyazaki and Hoshino (2009)

develops a Bayesian nonparametric mixture IRT model. Different representations such as

the Polya urn scheme and the stick-breaking process can be used to construct the Dirichlet

process. However, the Chinese restaurant process (Blei, Griffiths, Jordan, & Tenenbaum,

2004; Griffiths & Ghahramani, 2011) is perhaps the most popular at this moment.

In this paper, we propose a modified Chinese restaurant process prior to accommodate

the stochastic ordering constraints of the OLCM. In addition, we develop an efficient and easy

to implement Gibbs sampler for posterior computation. Our method allows joint inference

on the number of classes and item parameters for the OLCM.
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4.2 Ordered latent class model with infinite classes

LCM assumes data arise from a mixture distribution. Its probability mass function can be

described as

p(xi) =
K∑
k=1

πkp(xi;φk), (4.1)

where πk is the marginal probability of allocation to the kth latent class, p(xi;φk) gives the

probability of xi under the kth latent class, and K is the number of latent classes. In its

marginal form as in (4.1), each observation is associated with parameters of all classes, i.e.

φk for k = 1, 2, . . . , K. However, conditional on the latent class assignment Zi = k, the

probability of each observation depends only on the parameters specific to the kth latent

class, i.e.

P (Xi = xi|Zi = k,φ) = Pφk
(xi). (4.2)

OLCM imposes ordering constraints on the parameters associated with different classes,

specifically

φk ≤ φk′ ∀ k < k′. (4.3)

When the latent classes are ordered from low to high along the latent continuum, the prob-

ability of a correct response should be monotonically non-decreasing. It is similar to the

monotonicity assumption in nonparametric IRT models (Sijtsma, 1998).

The generative process of the ordered latent class model can be represented using a

Bayesian hierarchical model. Each subject belongs to one of theK latent classes whose distri-

bution is governed by a categorical distribution with a probability vector π = (π1, π2, . . . , πK),

i.e.

Zi|π ∼ Categorical(π). (4.4)
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Given zi = k, the response vector from the ith subject follows a distribution parameterized

by the parameters associated with the kth latent class, i.e.

Xi|zi,φ ∼ F (·|φk). (4.5)

A natural choice for the prior of Π is the Dirichlet distribution, i.e.

Π ∼ Dirichlet(α1, α2, . . . , αK). (4.6)

Respecting the stochastic ordering constraint in (4.3), the prior distribution of the parame-

ters of the kth latent class should be truncated, i.e.

Φk ∼ G0(·)I(l(φk),u(φk))(φk), (4.7)

where I(l(φk),u(φk))(φk) indicates the distribution is truncated to be in the region bounded

by (lj, uj) for j = 1, 2, . . . , J , and

l(φjk) =


φjk−1 k > 1

−∞ k = 1,

u(φjk) =


φjk+1 k < K

+∞ k = K.

Equations (5) - (7) complete the specification of the Bayesian OLCM with K classes.

From (4.4), it is clear that the class assignments are conditionally independent given π.

It follows that integrating out π would induce dependencies between class assignments. Let

z−i denote the class assignments for all but the ith subject. The posterior distribution of

the marginal class assignment probabilities conditional on the N − 1 class assignments is

p(π|z−i,α) ∝
∏
i′ 6=i

p(zi′ |π)p(π|α). (4.8)
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The standard categorical-Dirichlet conjugacy gives the closed form of (4.8),

Π|z−i,α ∼ Dirichlet(α1 + S−i,1, α2 + S−i,2, . . . , αK + S−i,K), (4.9)

where S−i,k is the number of subjects (excluding the ith subject) classified into the kth class,

i.e. S−i,k =
∑

i′ 6=i[zi′ = k] and [zi′ = k] = 1 if zi′ = k, 0 otherwise. Integrating (4.4) over the

above posterior distribution leads to

p(zi|z−i,α) =

∫
p(zi|π)p(π|z−i,α)dπ (4.10)

=

∫
πk

1

B(α+ S−i)

K∏
j=1

π
αj+S−i,j−1
j dπ (4.11)

=
B(α+ S−i + 1(k))

B(α+ S−i)
(4.12)

=
αk + S−i,k∑
αj +N − 1

, (4.13)

where 1(k) is a K−length vector of zeros with a 1 in position k. From (12) to (13), it follows

the definition of the Beta function, B(y) = (
∏

Γ (yi)) / (Γ (
∑

yi)), and the identity of the

Gamma function, Γ(y + 1) = xΓ(y).

Often, there is no prior knowledge of favoring one class to another. In this case, a

symmetric Dirichlet distribution can be used. That is α1 = α2 = · · · = αK = α/K. α is

generally referred to as the concentration parameter since the distribution becomes more

concentrated around the center of the K − 1 simplex with a larger α and the distribution

concentrates in the corners and along the boundaries of the simplex with a smaller α. The

special case α/K = 1 yields a uniform distribution. With the symmetric Dirichlet prior,

(14) can be simplified as

p(zi|z−i, α,K) =
α/K + S−i,k

α +N − 1
. (4.14)
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Equation (4.14) provides a finite dimensional prior that partitions data into K groups.

It can be naturally extended to the infinite dimensional case by taking the limit K → ∞

(Neal, 2000; Navarro et al., 2006). Consider the problem of assigning the ith subject into

one of the infinitely many classes. The subject could fall into one of the classes that already

has at least one member. The probability is given by

p(zi = k|z−i, α) = lim
K→∞

α/K + S−i,k

α +N − 1

=
S−i,k

α +N − 1
, (4.15)

for k such that S−i,k > 0. The subject could also fall into one of the infinitely many classes

that yet has a member. Its probability is given by

p(zi ∈ {k;S−i,k = 0}|z−i, α) = 1−
∑

∀k s.t. S−i,k>0

S−i,k

α +N − 1

= 1− N − 1

α +N − 1

=
α

α +N − 1
. (4.16)

Equations (4.15) and (4.16) defines a stochastic process prior that partitions the data

into potentially infinitely many classes. Aldous (1985) provides an intuitive representation

of the process - the Chinese restaurant process (CRP; see Griffiths & Ghahramani, 2011 for

a detailed review). The CRP draws analogy from seating arrangements for customers of a

Chinese restaurant. A customer can choose to sit at an existing table with S−i,k occupants.

Alternatively, the customer can decide to sit at a new table without any prior occupants.

The probability of sitting at an existing table is given by (4.15); while the probability of

sitting at a new table follows (4.16). It should be noted that the prior probability of sitting

at a new table (thus creating a new class) depends on the concentration parameter α. A
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larger α encourages more classes. Coupled with an appropriate likelihood, the CRP can be

used to define a wide range of Bayesian nonparametric models, i.e.

Xi|zi = k, φk ∼ F (·|φk)

Z|α ∼ CRP (·|α)

Φk ∼ G0(·),

where F is the data model and G0 is the prior for parameters associated with each class.

The CRP is closely related to the Dirichlet process and its other representations. Navarro

et al. (2006) explains the CRP, the Polya urn scheme (Blackwell & MacQueen, 1973), the

stick-breaking process (Sethuraman, 1994), and their connections to the Dirichlet process.

An important feature of the CRP prior is that the choice of the value for labeling different

classes is completely arbitrary. Different sets of labels would lead to the same partition of the

subjects as long as they consistently and faithfully describe whether subjects belong to the

same class (Neal, 2000). From equation (4.16), it is clear that we don’t need to distinguish

which new table the customer chooses to sit. This will suffice in many applications of mixture

models such as the LCM without the stochastic ordering constraint. However, it becomes

a limitation in the specification of an OLCM. In this case, the ordering of the value of

labels does not only signifies a partition of subjects, it also implies the stochastic ordering

of the latent classes as in (4.3). As a result, the CRP as in (4.15) and (4.16) is not enough

for the purpose of defining a prior for Bayesian nonparametric OLCM. Next, we introduce

a modified CRP that can accommodate the stochastic ordering constraints of the latent

classes.

To complete the motivation of our proposed prior, it is helpful to consider the following.
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Let φ′
i denote the parameter value associated with the ith observation. This is not to be

confused with φk which is the parameter assigned to all members of the kth class. Under the

CRP, the prior induced for φ′
i given the class assignments zi = k, z−i and the parameters

associated with other observations φ′
−i is

Φ′
i|zi = k, z−i,φ

′
−i ∼


G0(·) S−i,k = 0,

δ(·|φk) S−i,k 6= 0,

(4.17)

where δ(·|φk) is a discrete distribution with a point mass at φ′
i = φk and 0 everywhere else.

Incorporating the stochastic ordering constraint, we have

Φ′
i|zi = k, z−i,φ

′
−i ∼


G0(·)I(l(φk),u(φk))(φk) S−i,k = 0

δ(·|φk) S−i,k 6= 0.

(4.18)

The truncation points are defined as

l(φk) =


max{φ′

j : zj < k} {φ′
j : zj < k} 6= ∅

−∞ {φ′
j : zj < k} = ∅,

(4.19)

and

u(φk) =


min{φ′

j : zj > k} {φ′
j : zj > k} 6= ∅

+∞ {φ′
j : zj > k} = ∅.

(4.20)

From (4.17) and (4.18), we can see the impact of enforcing the stochastic ordering constraint

to the induced prior for the parameters associated with individual observations. If the

observation gets assigned to a previously empty class, under the CRP, the partition of the

subjects is invariant to the choice of the value of k; however, different choices of k could

potentially induce different priors for φ′
i when the stochastic ordering constraint is imposed.
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This subtle but important difference suggests that the placement of the new tables needs to

be distinguished to accommodate the stochastic ordering constraint. Furthermore, consider

two previously empty tables, k 6= k′. If l(φk) = l(φk′) and u(φk) = u(φk′), the induced prior

would be the same if the observation gets assigned to either k or k′. The above equalities will

hold as long as the cardinalities of {j : k < zj < k′} and {j : k > zj > k′} are both zeros. In

other words, when a customer chooses to sit at a new table, tables between two consecutive

previously occupied tables are equivalent. It follows that, we should split the probability of

sitting at a new table in a way so that it differentiates non-equivalent placements of the new

table.

Observing the above properties, now we are ready to define the modified CRP formally.

Let K∗ denote the ordered set of currently occupied tables, i.e. K∗ = {k∗
1, k

∗
2, . . . , k

∗
n∗} such

that k∗
u < k∗

t if u < t and S−i,k∗u 6= 0 for u = 1, 2, . . . , n∗. When the ith customer comes in,

the probability of choosing a previously occupied table is

p(zi = k∗
u|z−i, α) =

S−i,k∗u

α +N − 1
. (4.21)

The probability of choosing a new table between two consecutive occupied tables is given by

p(zi ∈ {k; k∗
u < k < k∗

u+1}|z−i, α) =
α/(n∗ + 1)

α +N − 1
, (4.22)

for u = 1, 2, . . . , n∗ − 1. Notice that there are n∗ − 1 such possibilities. A new table may

also be chosen before the first occupied table with a probability of

p(zi ∈ {k; k < k∗
1}|z−i, α) =

α/(n∗ + 1)

α +N − 1
. (4.23)

Similarly, the probability of choosing a new table after the last occupied table is

p(zi ∈ {k; k > k∗
n∗}|z−i, α) =

α/(n∗ + 1)

α +N − 1
. (4.24)
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Equations (4.21) to (4.24) complete the specification of the modified CRP prior. It is

straightforward to verify that the marginal probability of choosing a new table is the same

as (4.16). However, the modified CRP distinguishes among non-equivalent placements of

the new table under the stochastic ordering constraint.

Using the modified CRP (MCRP), a Bayesian nonparametric OLCM can be specified as

Xi|zi = k, φk ∼ F (·|φk), (4.25)

Z|α ∼ MCRP (·|α), (4.26)

Φk ∼ G0(·)I(l(φk),u(φk))(φk). (4.27)

4.2.1 Posterior computation

In a Bayesian context, we are interested in the posterior distribution p(φ, z|x). Exact

computation of the posterior distribution for a Bayesian nonparametric OLCM is generally

infeasible. Instead, we can sample from the posterior distribution using Markov chain Monte

Carlo (MCMC) methods. Neal (2000) reviewed and developed a series MCMC algorithms

for Dirichlet process mixture models. Building on the earlier work, we introduce a Gibbs

sampler for Bayesian nonparametric OLCMs in this section.

In our Gibbs sampler, we repeatedly sample each zi and φk from their full conditional

distributions. The full conditional distribution of class assignment for the ith individual is

p(zi|z−i,xi,φ, α) ∝ p(zi|z−i, α)p(xi|zi,φ), (4.28)

where P (zi|z−i, α) is given by the MCRP as in (4.21) through (4.24). If the ith individual gets

assigned to a class already associated with other observations, the likelihood P (xi|zi,φ) can

70



be evaluated under the item parameters from that class. However, if a new class is assigned,

the evaluation would require integrating the item parameters over their priors. Specifically,

p(zi = k|z−i,xi,φ, α) ∝


S−i,k

α+N−1
f(xi|φk) k ∈ K∗

α/(n∗+1)
α+N−1

∫
f(xi|φk)dG0(φk)I(l(φk),u(φk))(φk) k ∈ K ′.

(4.29)

Even though it is useful in defining the MCRP, we cannot, of course, explicitly represent

the infinite classes. Instead, we consider those classes currently associated with some obser-

vations, k ∈ K∗, and the n∗ + 1 possible nonequivalent placements of the new class. In the

above notation, K ′ = {k′
1, k

′
2, . . . , k

′
n∗+1} is an ordered set of such possible placements, and

k′
1 < k∗

1, k
∗
1 < k′

2 < k∗
2, . . . , k

∗
n < k′

n+1. The integral in (4.29) can be evaluated as

∫
f(xi|φk)dG0(φk)I(l(φk),u(φk))(φk) =

(
f(xi|φk)g0(φk)

G0(u(φk))−G0(l(φk))

)
/

(
h(φk|xi)

H(u(φk)|xi)−H(l(φk)|xi)

)
,

(4.30)

where h is the posterior probability density function of φk given the observation xi before

truncation, i.e.

h(φk|xi) =
f(xi|φk)g0(φk)∫
f(xi|φk)g0(φk)dφk

, (4.31)

and H is the associated cumulative density function. When the ith individual is assigned to

a previously empty class, i.e. zi = k, k ∈ K ′, the associated item parameters φk should be

drawn from the posterior distribution H.

Updating the item parameters φk is relatively straightforward. The density of the full

conditional distribution of φk is given by

p(φk|z−i,x) = b
∏

i∈{i;zi=k}

f(xi|φk)g0(φk), (4.32)
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where b is an appropriate normalizing constant. The Metropolis algorithm (Metropolis et al.,

1953, see Neal, 1998 for review) can be used if direct sampling from the above distribution

is difficult.

We can summarize our Gibbs sampling method as follows:

Algorithm. Let the current state of the Markov chain consists of z = (z1, z2, . . . , zn)

and φ = {φk; k ∈ K∗}. Repeatedly sample:

• For i = 1, 2, . . . , N : If the class zi has no other observation associated, i.e. S−i,zi =

0, remove φzi from φ and zi from K∗. Sample a new zi from its full conditional

distribution as in Equation (4.29). If the sampled new zi is not associated with any

other observation, sample φzi from H(·|xi) and add it to the state.

• For k ∈ K∗: Sample φk from its full conditional distribution given all observations

associated with class k as in Equation 4.29.

This algorithm is feasible as long as we can compute
∫
f(xi|φk)dG0(φk)I(l(φk),u(φk))(φk) and

sample from H efficiently. This is generally the case when G0 is conjugate to F , in which

the closed form of H is available. For Dirichlet process mixture models with non-conjugate

priors, Neal (2000) showed a Gibbs sampling method by augmenting auxiliary parameters.

A similar strategy may be extended to the Bayesian nonparametric OLCMs.

4.2.2 The concentration parameter α

With a given sample size N , the choice of the concentration parameter α affects the prior

probability of an observation being assigned to a previously empty class. In other words,

the parameter indicates the level of ease of transition between dimensions (Miyazaki &
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Figure 41: Prior probabilities P (m|α,N)

Hoshino, 2009). A larger α encourages more classes. Selecting an appropriate value for the

concentration parameter α is not always straightforward.

The probabilities of number of classes induced by the MCRP can be computed based on

the results of Antoniak (1974). Let M denotes the cardinality of the set K∗, i.e. M = |K∗|.

With N samples and the concentration parameter α, the probability of M = m classes is

given by

P (M = m|α,N) = s(N,m)αm Γ(α)

Γ(α +N)
, (4.33)

where s(N,m) is the absolute value of the Stirling number of the first kind for N and m

(Adamchik, 1997). Figure 41 shows the prior probability distribution of the number of

classes with α = 0.1, 0.5, 1.0 and N = 100, 500, 1000, 2000. The probabilities are computed
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for M = 1, 2, . . . , 10. For a small α = 0.1, the prior distribution concentrates most of its

probability mass on small m and decays quickly as the number of classes increases. In fact,

almost 90% of its mass is on m = 1 and m = 2 for N = 100. A larger α shifts the mode

of the probability distribution towards a larger number of classes. At the same time, the

distribution tends to spread out more. For a fixed α, the MCRP prior allows more classes

as the sample size increases.

In psychometrics, the appropriate number of latent classes is often reasonably moderate.

For this reason, previous development of Dirichlet Process mixture IRT model employs a

finite dimensional approach, and uses 10 as the upper limit of the number of components

(Miyazaki & Hoshino, 2009). In our approach, α = 0.5 seems to be a reasonable choice since

it distributes adequate probability mass across M = 1, 2, . . . , 10 under larger sample sizes.

A more flexible approach is to treat α as a random variable which can be learned from

data. The conditional posterior of the concentration parameter α is

p(α|m,N) ∝ p(m|α,N)p(α), (4.34)

where p(m|α,N) is given by the Antoniak equation as in Equation 4.33. Depending on the

choice of the prior p(α), the exact form of the posterior distribution p(α|m,N) is generally

unknown. However, it often can be approximated. If we are content with a limited range

of α, a discretized version of p(α) can be used. As a result, the unnormalized posterior

probabilities for each point in the range of α can be computed. Furthermore, the probabilities

can be normalized easily. This is often referred to as the ”griddy Gibbs” approach (Ritter

& Tanner, 1992).

Alternatively, Escobar and West (1995) derived the exact posterior distribution for the
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concentration parameter α when the prior p(α) comes from a gamma distribution. For

α > 0, the ratio of the gamma functions in Equation 4.33 can be written as

α

α +N
=

(α +N)B(α + 1, N)

αΓ(N)
, (4.35)

where B is the beta function. Then the posterior distribution of α in Equation 4.34 becomes

p(α|m,N) ∝ p(α)αm−1(α +N)B(α + 1, N), (4.36)

∝ p(α)αm−1(α +N)

∫ 1

0

ηα(1− η)N−1dη. (4.37)

From equation 4.36 to equation 4.37, it follows the definition of the beta function. The

above derivation implies that p(α|m,N) can be viewed as the marginal distribution from a

joint distribution of α and a continuous random variable η whose support is between 0 and

1. Assuming a gamma prior, p(α) ∝ αa−1e−bα, the joint distribution is

p(α, η|m,N) ∝ αa−1e−bααm−1(α +N)ηα(1− η)N−1. (4.38)

However, direct sampling from the above joint distribution is difficult. Instead, we can

sample α and η iteratively from their full conditional distributions. The full conditional for

α is

p(α|η,m,N) ∝ αa+m−2e−bα(α +N)ηα, (4.39)

∝ αa+m−1e−(b−log η)α +Nαa+m−2e−(b−log η)α. (4.40)

Multiplying a constant (w.r.t. α),C (b−log η)a+m

Γ(a+m)
(b−log η)a+m−1

Γ(a+m−1)
, to both summands, the density

can be normalized as a mixture of two gamma densities, i.e.

α|η,m,N ∼ πGa(a+m, b− log η) + (1− π)Ga(a+m− 1, b− log η), (4.41)
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where π/(1 − π) = (a + m − 1)/[N(b − log η)]. On the other hand, the full conditional

distribution for η is

p(η|α,m,N) ∝ ηα(1− η)N−1, (4.42)

which is Beta(α + 1, N). Based on this result, α can be updated at the end of each Gibbs

iteration by first drawing η from the beta distribution (4.42), then drawing α from the

mixture gamma distribution (4.41).

4.2.3 Numerical demonstration

The utility of the proposed method in constructing ordered latent class models with unknown

number of classes is demonstrated with a simple numerical example. We assign 1000 persons

into two classes with class sizes being 0.30 and 0.70. In addition, we use 20 dichotomous

items with item parameters 0.20 and 0.80 for the two classes. A 1000 by 20 dataset of binary

responses are simulated. The Bayesian nonparametric OLCM is fitted for four different

concentration parameters α - 0.001, 0.01, 0.1, and 0.5. The Markov chain is initialized with

3 classes having item parameters 0.5, 0.6, and 0.7. The 1000 persons are initially randomly

assigned to the 3 classes with equal probabilities.

To summarize the results, we plot the posterior class sizes over 3000 posterior draws after

the burn-ins in Figure 42. For readability, one sample is selected for every 60 draws. No

matter the choice of α, the ordering of persons seems consistent. There is a clear separation

of persons at the size 0.3. With a smaller α, the two classes are correctly identified. The

sampler stays at the same dimension and rarely jumps to other dimensions. A lager α

encourages more classes, it can be seen from the figure that more spurious classes exist
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Figure 42: Posterior class sizes under fixed α

during each iteration. However, these classes are not persistent. They are born and die over

the draws which means that these classes are not consistently occupied. In many applications

of OLCM, in addition to scaling persons, interpreting the classes is often of interest. For this

purpose, it is better to choose a smaller concentration parameter. It is less likely to have
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Figure 43: Posterior class sizes with α ∼ Ga(0.001, 100)

spurious classes in the posterior draws and much easier to summarize. In order to allow α

to increase along the sample size N , some authors suggest 1/N as a default choice (Escobar

& West, 1995).

Besides fixing α, we can also put a prior on the concentration parameter. For this

demonstration, I chose Ga(0.001, 100). Figure 43 shows the posterior class sizes. In addition

to the two class condition, I also simulated a condition where the true number of classes is

three with class sizes being 0.20, 0.60, and 0.20. The item parameters are 0.1, 0.5, and 0.9

for all 20 items. Figure 44 shows the trace plot of the posterior samples of α. It is interesting

that, under the same Gamma prior, the posterior samples of α tends to be slightly larger for

the 3 classes data. It suggests that the data does contain information about the concentration

parameter α.
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Figure 44: Trace lines for posterior samples of α - black: 3 classes, red: 4 classes

4.3 Simulations

In this section, we demonstrate the application of the proposed method in the context of

estimating the item response function (IRF). Let Xij denote the response from the ith indi-

vidual to the jth item for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J}. Under the unidimensional

IRT, the item response random variables Xi1, Xi2, . . . , XiJ are assumed to be conditionally

independent given the latent variable θi. Furthermore, the IRF specifying the response prob-

abilities given the latent variable, i.e. Pj(θi) = P (Xij = 1|θi) in the dichotomous case, is

constrained to be non-decreasing. Formally, for any θi > θi′ , P (Xij = 1|θi) ≥ P (Xi′j|θi′). In

addition, the latent variable θ is often assumed to follow some distribution F (θ). A common

choice is the standard normal distribution, F (·) = Φ(·).

Parametric IRT models, such as the Rasch model, the two-parameter logistic (2PL)

model, and the three-parameter logistic (3PL) model, give specific parametric form to the
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IRF. These class of models are relatively easy to fit at the expense of being less flexible than

nonparametric approaches. The Bayesian nonparametric OLCM introduced in this paper

provides a flexible yet computationally straightforward approach to estimate IRFs. We first

simulate the case where the distribution F (·) is discrete.

4.3.1 Study 1: discrete F (·)

Templin and Bradshaw (2014) proposed a hierarchical diagnostic classification model (HDCM)

and analyzed the Examination for the Certificate of Proficiency in English (ECPE) dataset.

There are 28 items measuring 3 attributes - morphosyntactic (α1), cohesive (α2), and lex-

ical (α3). The HDCM hypothesizes a linear hierarchy among the three attributes, i.e.

α3 → α2 → α1. Following this attribute hierarchy, an individual cannot have mastered

α1 without having mastered α2. Similarly, the attribute α2 is a prerequisite for α3. As a

result, the number of admissible latent class reduces from 23 = 8 to 4. More importantly, be-

cause of the hierarchical relationship, the four latent classes are fully ordered. For example,

an individual with an attribute pattern (0, 0, 1) cannot have higher probability of getting a

correct response on any item than another individual with the attribute pattern (0, 1, 1). We

should also note a subtle difference between the OCLM and the HDCM. The Q-matrix in the

HDCM specifies equivalences between some latent classes on each item. For instance, the

first item in the dataset measures α1 and α2. In other words, the state of mastery of α3 has

no impact on the response probability for that item. As a result, the response probabilities

between the class (0, 0, 0) and (0, 0, 1) are constrained to be the same.

Based on the item parameters of the HDCM reported in Templin and Bradshaw (2014),
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we computed item response probabilities for each of the four classes (see Table 41). Templin

Table 41: ECPE item response probabilities under HDCM

Class 1 (0, 0, 0) Class 2 (0, 0, 1) Class 3 (0, 1, 1) Class 4 (1, 1, 1)
item 1 0.705 0.705 0.815 0.926
item 2 0.746 0.746 0.904 0.904
item 3 0.421 0.507 0.507 0.791
item 4 0.460 0.822 0.822 0.822
item 5 0.743 0.955 0.955 0.955
item 6 0.701 0.925 0.925 0.925
item 7 0.490 0.707 0.707 0.944
item 8 0.822 0.822 0.964 0.964
item 9 0.527 0.786 0.786 0.786
item 10 0.527 0.527 0.527 0.898
item 11 0.495 0.719 0.719 0.918
item 12 0.143 0.389 0.389 0.745
item 13 0.668 0.668 0.668 0.913
item 14 0.552 0.552 0.552 0.835
item 15 0.723 0.956 0.956 0.956
item 16 0.488 0.692 0.692 0.911
item 17 0.801 0.863 0.943 0.943
item 18 0.711 0.909 0.909 0.909
item 19 0.445 0.836 0.836 0.836
item 20 0.199 0.392 0.392 0.767
item 21 0.547 0.788 0.788 0.918
item 22 0.289 0.792 0.792 0.792
item 23 0.670 0.670 0.935 0.935
item 24 0.350 0.350 0.694 0.694
item 25 0.527 0.527 0.527 0.784
item 26 0.537 0.781 0.781 0.781
item 27 0.306 0.306 0.306 0.705
item 28 0.632 0.908 0.908 0.908

and Bradshaw (2014) also reported the estimated class sizes to be 0.320, 0.144, 0.184, and

0.351. According to these class sizes, 1000 individuals are randomly allocated to one of the

four classes. Using the computed item response probabilities, we generated 100 datasets of

item responses from the N = 1000 individuals to the J = 28 items.

For each generated dataset, we fitted the Bayesian nonparametric OLCM with the con-
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centration parameter α = 0.5. To ensure convergence, 6000 MCMC iterations are used with

the first 3000 treated as burn-ins. Within the tth iteration of the posterior sampling, the

MCMC algorithm samples the class assignment z(t)i for i = 1, 2, . . . , N and the item response

probabilities for each non-empty class, φ(t)
k ∀k ∈ K∗(t) . By assuming a unidimensional latent

trait following the standard normal distribution, θ ∼ Φ(·), a continuous IRF can be fitted.

The corresponding latent class assignment at the ability level θ can be found by computing

zθ∗ = F−1 (Φ(θ)), where F (z) = P (Z ≤ z) =
∑

k∈K∗:k≤z f(k) is the cumulative distribution

function for the class assignment. It follows that the IRF is Pj(θ) = φjzθ . In this simulation,

we computed IRF for θ on a finite grid from −4.0 to 4.0 by increment of 0.1. Averaging

the fitted IRF over the posterior samples leads to the expected a posteriori (EAP) estimate

of the IRF, P̂j(θ) = (1/T )
∑

t P
(t)
j (θ). For comparison, we also fitted the 2PL on the same

generated datasets.

To evaluate the effectiveness in estimating the IRF, we propose a criterion (CR) that

computes the expected absolute difference between the estimated item response probability

and the true item response probability over the distribution Φ(·), i.e.

CR =

∫
θ

|P̂j(θ)− Pj(θ)|dΦ(θ). (4.43)

In practice, CR is approximated using quadrature points of θ defined earlier, specifically,

CR =
∑
m

(
|P̂j(θm)− Pj(θm)|[Φ(θm + 0.05)− Φ(θm − 0.05)]

)
. (4.44)

Table 42 shows the mean and the variance of the average CR of the 28 items over the 100

datasets. Based on CR, Bayesian nonparametric OLCM estimates the IRFs consistently

better than the 2PL. Figure 45 demonstrates the mean of the estimated IRFs over the

100 datasets for item 10 and item 20. From the illustration, we can see that Bayesian
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Table 42: Summary of the average CR

BNP OLCM 2PL
mean 3.9431× 10−2 6.7771× 10−2

variance 8.1583× 10−6 1.4274× 10−7

Figure 45: Mean estimated IRFs in simulation study 1

nonparametric OLCM is very flexible in estimating the IRFs across a wide range of θ; while

the 2PL, on the other hand, is not as nearly flexible. This is especially obvious as θ moves

towards either extreme where the 2PL grossly overestimates or underestimates the true

response probabilities. Figure 46 shows the mean absolute difference between the estimated

IRF and true IRF averaged over the 28 items. The Bayesian nonparametric OLCM approach

uniformly outperforms the 2PL across the entire range of θ.
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Figure 46: Mean of |p̂j(θ)− pj(θ)| over 28 items in simulation study 1

4.3.2 Study 2: continuous F (·)

The mediocre performance of the 2PL in the the first simulation is anticipated since the para-

metric assumption of the model is violated. In this second simulation study, we investigate

the case where the parametric assumption of the 2PL is met.

We randomly generated J = 20 pairs of item discrimination and difficulty parameters

from their usual ranges, i.e. aj ∼ unif(0.5, 2.0) and bj ∼ unif(−3.0, 3.0) for j = 1, 2, . . . , J

(see table 43). The latent abilities for N = 1000 individuals are generated from the standard

normal distribution, i.e. θi ∼ Φ for i = 1, 2, . . . , N . The item response probabilities are

computed according to the 2PL,

Pj(θi) = P (Xij = 1|θi) =
exp(aj(θi − bj))

1 + exp(aj(θi − bj))
. (4.45)

Using these response probabilities, we generated 100 datasets of binary responses. Similar

to the simulation study 1, for each dataset, we fitted the Bayesian nonparametric OLCM
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Table 43: Generated item parameters in simulation study 2

a b
item 1 1.451 -0.766
item 2 1.665 -2.095
item 3 1.372 0.827
item 4 1.336 0.227
item 5 0.552 1.414
item 6 1.054 1.146
item 7 1.790 0.955
item 8 1.219 0.120
item 9 0.621 -1.864
item 10 1.905 0.100
item 11 1.146 2.432
item 12 1.143 -0.954
item 13 0.825 0.299
item 14 1.972 2.043
item 15 0.926 -0.056
item 16 1.586 -1.150
item 17 1.307 -0.300
item 18 1.566 1.164
item 19 1.813 1.444
item 20 1.502 -1.137

and the 2PL.

Table 44 shows the mean and the variance of CR for both the Bayesian nonparametric

Table 44: Summary of the average CR in simulation study 2

BNP OLCM 2PL
mean 2.3563× 10−2 1.4466× 10−2

variance 2.0639× 10−5 9.3416× 10−6

OLCM and the 2PL. Not surprisingly, in this case, the 2PL performs better estimating the

IRFs. But the Bayesian nonparametric OLCM approach does not fare much worse. In fact,

considering both the first and the second simulation studies, our proposed method estimates

IRFs consistently well regardless of the parametric forms of the true IRFs. Figure 47 plots
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Figure 47: Mean estimated IRFs in simulation study 2

the average of the estimated IRFs for both approaches. Examining the estimated item

characteristic curves (ICC), we found that both the 2PL and our approach estimate the IRFs

very well for the middle range of θ. As θ goes to either extreme, the estimated IRFs produced

by the Bayesian nonparametric OLCM deviate a little from the true IRFs. However, this

is very much expected since there are very low probability density with θ greater than 3.0

or less than −3.0 within the standard normal distribution. For the Bayesian nonparametric

approach, more accurate estimation of IRFs for those θ values requires a much larger sample

size. Figure 48 further reveals that the two approaches are very comparable in estimating

the IRFs for a good range of θ.
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Figure 48: Mean of |p̂j(θ)− pj(θ)| over 20 items in simulation study 2

4.4 Real data analysis

A common application of nonparametric IRT is to assess the attainability of the parametric

model assumption (i.e. Lee, Wollack, & Douglas, 2009). In this section, we demonstrate

an application of the proposed Bayesian nonparametric OLCM in checking model fit by

analyzing the ECPE dataset. The ECPE dataset is publicly available and can be accessed

through the R ”CDM” package (George et al., 2016). The data contains the binary responses

of 2922 persons answering 28 items measuring three attributes as described earlier. We fit

the Bayesian nonparametric OLCM and compare the results with those of Templin and

Bradshaw (2014).

Figure 49 depicts average absolute differences between the estimated IRFs of the Bayesian

OLCM and the HDCM. For the middle range of θ, the difference is generally under 0.10.

However, as θ moves towards the negative extreme, the difference is getting large very quickly.
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Figure 49: Average absolute difference of the estimated IRFs for the ECPE data

Figure 410: Estimated IRFs for the ECPE dataset

For an extreme negative θ, the difference could be an alarming 0.20.

We further examined the estimated IRFs for each item. Figure 410 provides two ex-

amples. While the HDCM estimates IRFs reasonably close to the Bayesian nonparametric
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OLCM for the middle and upper level of θ, it overestimates the item responses consistently

for the lower level of θ. Put this results into perspective, under the HDCM, a person with

none of the required attributes has over 0.7 probability of getting an item correct. At the

same time, the data seems to encourage further distinction of these persons. In other words,

if we believe there is an attribute hierarchy, some lower level attribute(s) may be potentially

missing from the Q-matrix.

4.5 Discussion

While parametric item response models such as the 2PL are generally more popular, the

nonparametric method provides a flexible tool for analyzing a wide range of data. There

are many different approaches in developing nonparametric item response models. For ex-

ample, Johnson (2007) introduced a free-knot splines nonparametric model. The Bayesian

nonparametric OLCM, on the other hand, takes a ordered latent class approach to nonpara-

metric item response modeling. Compared to previous development of nonparametric IRT

models, the current model is conceptually more straightforward and easier to implement. In

addition, the proposed model and estimation algorithm can be readily adapted to response

types beyond the dichotomous case.

The nonparametric models are certainly not without their drawbacks. For example, it

is often difficult to scale items under the nonparametric models. Moreover, the estimation

of the nonparametric IRT models are generally more complex and time-consuming. While

the MCMC algorithm described in this paper can handle moderate sample sizes efficiently,

development of fast posterior approximation algorithms could be very useful dealing with
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more complex and larger data in the future.
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Chapter 5

Thoughts on Future Research

The papers in this dissertation have touched some of the most popular latent variable models.

The first paper deals with the classic inference problem of the interval estimation of the

continuous latent trait under the IRT models. The latent variable could also be discrete.

CDM, discussed in the second paper, is a type of restricted latent class models where the

item parameters associated with different classes are restricted through the Q-matrix (Xu &

Shang, 2018). The third paper further considers the ordered latent class models. Moreover,

the infinite class ordered latent class model can be used to approximate a single continuous

latent variable. Besides the three papers, I have also studied other topics during my graduate

study. Some of them are closely related to this dissertation. One example is the development

of the power divergence family of statistics for person parameters in IRT models.

Testing binomial proportions is a classic statistical inference problem. Many well-known

statistics have been developed for this purpose. Some of them include the log-likelihood

ratio statistic (G2), Person’s Chi-square statistic (χ2), the Freeman-Tukey statistic (T 2), the

Neyman modified Chi-square statistic (NM2) and the modified log-likelihood ratio statistic
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(MG2). But, more importantly, they can be studied under the same family. Cressie and

Read (1984) introduced the power divergence family of statistics in their seminal paper

where the aforementioned statistics are special cases. This development provides a powerful

framework for other researchers to study the statistical properties of binomial inference

problems in depth (e.g. Jin, Thulin, & Larsson, 2017). Extending the power divergence

family to IRT models could be a very significant contribution.

There is a subtle but important difference between a binomial model and an IRT model.

Given the proportion (or probability of a success), each observation is independently and

identically distributed under the binomial model. However, conditional on the person param-

eter, item responses are independently but, in general, not necessarily identically distributed

under the IRT models. Thus, extending the power divergence family framework to IRT is

not direct and trivial. In one of my most recent papers (X. Liu, Yang, Chae, & Natriello,

2018), we proposed an extension of the power divergence (PD) family of statistics to IRT

models. Furthermore, we prove the asymptotic equivalence among all statistics in the PD

family and they have the same χ1 limiting distribution. we also extract higher order error

terms of approximating the exact distribution of the statistics using the limiting distribution

which enables us to compare statistics within the family.

One feature (or rather limitation) of these research is that they only model the primary

outcome data - student responses to test items. Traditionally, large-scale assessments were

administered in a pencil-and-paper format. As a result, very limited information can be

recorded besides the primary item responses. Thanks to the advancement of technology,

assessments become more and more technology-based. Software can be designed to log

students activity within the system at a much finer grain size (for a review, see Bergner &
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von Davier, 2018). The data collected are usually referred to as the process data. How the

process data can be utilized to better understand or improve measurement is a challenge

and opportunity to the field of psychometrics.
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