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Abstract 

With the goal of optimising a protein-enriched restructured beef steak targeted at the nutritional 

and chemosensory requirements of older adults, technological performance of thirty formulations, 

containing plant-based ingredients, pea protein isolate (PPI), rice protein (RP) and lentil flour (LF) 

with transglutaminase (TG) to enhance binding of meat pieces, were analysed. Maximal protein 

content of 28% in cooked product was achieved with PPI, RP and LF. Binding strength was 

primarily affected by TG, while textural parameters were improved with LF inclusion. Optimal 

formulation (F) to obtain a protein-enriched steak with lowest hardness values was achieved with 

TG (2%), PPI (8%), RP (9.35%) and LF (4%). F, F1S (optimal formulation 1 with added 

seasoning) and control restructured products (not containing plant proteins or seasonings) were 

scored by 120 consumers’ aged over-65 years. Controls were most preferred (P<0.05), while F1S 

were least liked by the older consumers. Consumer testing suggests further refinement and 

optimisation of restructured products with plant proteins should be undertaken. 

 

Keywords: Older adults, restructured beef steak, plant proteins, transglutaminase, microstructure, 

microscopy 
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1. Introduction 

The promotion of healthy ageing is an important challenge globally (Schoufour, Voortman, 

Franco, & Kiefte-De Jong, 2017) and nutrition is increasingly recognised to play a key role in 

supporting the older population to live longer and healthier lives. Older adults present specific 

nutritional needs and elevated intakes of high quality protein which are highly digestible and 

containing all essential amino acids, as well as specific macro- and micro-nutrients are required. 

For example, recent studies have shown that the consumption of protein-enriched foods by older 

adults may increase longevity (Beelen, De Roos, & De Groot, 2016; Stelten et al., 2015). As we 

advance in age however, sensorial acuity and appetite are both reduced, as well as the ability to 

chew tougher-textured foodstuffs (Baugreet et al., 2017). Therefore, maintaining a healthy diet 

and adequate nutritional intake in this age group can be challenging. Consequently, there is a 

requirement to assess potential solutions; both to provide adequate nutrition in smaller portion 

sizes, typically consumed by older people, and to optimise the characteristics and appeal of 

foodstuffs to stimulate interest and promote intakes. With changing demographics reflected in a 

growing cohort of older (>65, >80 years) adults across Europe and worldwide, the requirement 

to nutritionally- and sensorially-tailor food products for this group of citizens is increasingly 

recognised. 

Fresh beef is a notable source of high-quality protein, essential amino acids, including the 

branched chain amino acids, which support muscle protein synthesis, as well as essential 

micronutrients such as iron, zinc, selenium and B vitamins, namely; niacin, riboflavin, thiamine, 

B6 and B12. Several studies have reported the negative health impact around the consumption of 

red and processed meats and the increased risk of age-oriented conditions (i.e., CVD, cancer) 

(Bouvard et al., 2015, IARC., 2015). Others have reported a positive relationship between meat 

consumption and healthy ageing (Kappeler, Eichholzer, & Rohrmann, 2013; Rohrmann et al., 

2013). Among older Europeans, a dietary protein intake of 0.83 g/kg/day has been highlighted as 

being insufficient, and the reduced bioavailability of protein in this cohort (Deer & Volpi, 2015), 

puts them at risk of developing bone health issues. Furthermore, adults aged 65+ are frequently 

affected by an age-related condition known as sarcopenia, which leads to muscle wastage due to 

the decrease in lean body mass (Gariballa & Alessa, 2013). A combined increase in protein 
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intake and physical activity could help maximise muscle protein synthesis (MPS) and functional 

status, hence optimising longevity. 

Restructuring of meat using lower-value cuts e.g. beef chuck (shoulder) has been an important 

approach in developing palatable and nutritious value-added meat products (Lepper-Blilie, Berg, 

Germolus, Buchanan, & Berg, 2014). Plant proteins have been widely utilised in many foods, 

principally for their nutritional composition and their physiological and technological 

functionality. Plant proteins such as pea, rice and lentil, among others, are becoming more 

popular as they are classified as more sustainable protein sources, are typically non-allergenic 

and non-genetically modified in comparison to soy and can be processed to clean label status. 

They also have potential to boost protein intakes in products targeted at older people. A process 

technology known as the PiVac system allows whole muscles or pieces of meat to be tightly 

wrapped into a chamber of elasticated packaging, which effectively improves tenderness and 

delivers a uniformly shaped product (Baugreet et al., 2017, Taylor & Hopkins, 2011). PiVac 

technology, complemented with added plant proteins, offers the opportunity to develop soft 

textured and enriched meat products for older consumers (Baugreet et al. 2017). 

Response surface methodology (RSM) is a statistical tool that generates mathematical models 

allowing optimised products to be developed based on influencing response factors (Cetiner, 

Acar, Kahraman, Sanal, & Koksel, 2017). The aims of this study were; 1) to optimise the levels 

of pea protein isolate (PPI), rice protein (RP), lentil flour (LF) and transglutaminase enzyme 

(TG) so as to produce an optimised and technologically-acceptable formulation and 2) using an 

in vitro digestion model, in association with microscopy, to better understand the structural 

changes induced by gastric and intestinal digestion. Finally, 3) the acceptability of restructured 

beef steaks was assessed in a consumer study of 120 consumers aged greater than 65 years old. 

 

2. Materials & Methods 

2.1 Preparation of restructured beef steaks 

Coarsely ground beef chucks (95% visual lean) were mixed without water and ingredients for 

2min at a speed of 250rpm/min (Stephan Mixer, SohneGmbH & Co, 3250 Hamln, Germany). 
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Half of the chilled distilled water was incorporated and mixed for 2min. Activa®
EB (TG) 

(Ajinomoto Europe, Hamburg, Germany) was dissolved in the remaining water, added to the 

mixture and mixed for 3min. Finally, vitamin/mineral premix [selenium, vitamin A, zinc, 

vitamin B6, vitamin B12, vitamin C, vitamin E, vitamin K1, folic acid] (Vitablend, Wolvega, The 

Netherlands) (20mg/100g of meat) was added and mixed for 1min. Using a hand crank filler, 

each formulation was stuffed into a plastic casing of 100mm in diameter (Food Processing 

Technology, Tallaght, Ireland). Once stuffed, it was clipped at both ends and PiVac was applied. 

The mechanism of PiVac was discussed in detailed in a previous study by Baugreet et al. (2017). 

Meat logs were initially placed in a chill environment (4°C for 16-18h) to provide adequate bind 

and subsequently stored in a freezer (-20°C for 24h) before slicing into steaks (1.5cm thick, 

~107g). Restructured beef steaks were individually vacuum packed and stored frozen (-20°C) 

until use. 

 

2.2 Compositional Analysis 

Each restructured beef steak was thawed at 4°C overnight, then finely grounded in a Robot 

Coupe Blender before analysis. Fat, moisture, protein (N x 6.25) and ash as defined by AOAC 

official method 992.15, 1990 and ISO 936:1998 were evaluated as modified by Baugreet et al., 

(2016). 

 

2.3 Cooking loss, thaw loss and thiobarbituric acid analysis 

Restructured beef steaks were cooked overnight (12h) in a circulating water bath (Lauda M40, 

Delran, New Jersey) set at 75°C. Cooking loss was calculated by the difference in the weight of 

restructured beef steaks before and immediately after cooking as described by Tobin, O'Sullivan, 

Hamill, and Kerry (2012). Thawing loss was calculated as weight loss (%) taking into account 

the initial weight of frozen steaks. Thiobarbituric acid-reactive substances (TBARs) was carried 

out as described by Siu & Draper, (1978), as modified by Baugreet et al., (2016). 

 

2.4 Texture profile analysis (TPA) and bind strength 
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Texture profile analysis (TPA) was carried out on cooked restructured beef steaks based on a 

method described by Bourne (1978) and Baugreet et al. (2016). Samples were cooked as 

described in section 2.3. Six cores of 18 mm cylindrical samples were taken at random in three 

cooked restructured beef steaks. 

The binding strength of six cooked restructured beef steaks was determined using a Texture 

Analyser mounted with a spherical probe (Stable Micro Systems, Surrey, UK) as described by 

(Baugreet et al., 2017). One core of 3.5 cm cylindrical samples was taken from each cooked 

restructured beef steaks. 

 

2.5 Colour measurements 

Colour parameters of raw and cooked restructured beef steaks were measured using the CIE 

L*a*b* system with a dual beam xenon flash spectrophotometer (UltraScan XE, Hunterlab., Inc., 

Reston, VA) in reflectance mode as described previously by Baugreet and colleagues (2016). 

Each package was opened and left to bloom for 30 min before measurements were taken. All 

values were the mean of six independent measurements obtained at random from triplicate 

restructured beef steaks.  

 

2.6 Experimental design and statistical analysis 

Response surface methodology (RSM) analysis was performed to examine the inclusion of four 

compositional variables: TG (X1), PPI (X2), RP(X3) and LF (X4) on product performance, using 

Design Expert 10 (Stat-Ease., USA). The experimental design, based on a central composite 

design (CCD), consisted of 16 factorial runs, 8 axial runs and 6 repetitions at the centre point, 

resulting in 30 runs, and corresponding levels are shown in Table 1. The experimental sequence 

was randomised to minimise the effects of uncontrolled factors. The dependent variables 

(responses) were compositional analysis (moisture, fat, protein, ash), bind strength, cooking loss, 

lipid oxidation at day 0 and 30, instrumental colour (L*, a*, b*) analysed on both raw and 

cooked restructured steaks. Textural parameters (hardness, cohesiveness, chewiness, gumminess, 

springiness) were analysed on cooked steaks and thaw loss on raw restructured beef steaks. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

The mathematical models were evaluated for each response using multiple linear regression 

analysis. Modelling started with the development of a quadratic model including linear, squared 

and interaction terms. The significant terms of each response of the model were reported by 

analysis of variance (ANOVA). A polynomial quadratic regression equation (Eq. 1) was used to 

determine the effects of the four factors. Where Y is the dependent variable (moisture, protein, 

cooking loss, etc.), β0 is the constant, βi; βii and βiii are regression coefficients and Xi, Xj are 

levels of the independent variables. The model adequacies were checked by R2 and adjusted R2 

(Meyers & Montgomery, 2002). 

𝑌 =  𝛽0  +  ∑ 𝛽𝑖

3

𝑖=1

𝑋𝑖 + ∑ 𝛽𝑖𝑖

3

𝑖=1

𝑋𝑖
2 +  ∑ ∑ 𝛽𝑖𝑗

3

𝑗=𝑖+1

2

𝑖=1

𝑋𝑖𝑋𝑗 

Eq. 1: Polynomial quadratic regression equation 

All the determinations of the response variables were carried out in triplicate. Significance was 

judged by determining the probability level of the F-Statistic calculated from the data was less 

than 5%. Response surface plots were drawn out to show the simultaneous effects of TG, PPI, 

RP and LF on the experimental dependent parameters. The adequate precision, which measures 

the signal-to-noise, was more than four for all responses, which is highly desirable. 

 

2.7 Optimisation and validation 

The numerical optimisation technique within the Design-Expert software was used for 

simultaneous optimisation of the responses. The desired goals for each variable (TG, PPI, RP, 

LF) and response (protein, moisture, L*, a*, cook loss, hardness, cohesiveness, chewiness, 

springiness, bind strength) were chosen. To validate the RSM model, restructured steaks based 

on the optimised levels of ingredients were prepared, and the experimental values for each 

response were compared to the predicted data from the RSM models. Results obtained were 

statistically compared to the values predicted by the mathematical model using the accuracy and 

bias factors. 
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2.8 In vitro digestion 

Cooked optimised formulation restructured beef steaks (as per section 2.3 and 2.7) were 

subjected to the in vitro digestion performed according to a standardised method, specifically 

designed for studying simulated gastrointestinal digestion (Minekus et al., 2014). Digestions 

consisted of an enzymatic digestion simulating the mouth, stomach and small intestine. Briefly, 

meat samples of approximately 2.5g were subjected for using human the oral digestion ‘chew 

and spit’ method, and re-weighed again. Each sample was then placed in a centrifuge tube and 

placed on ice until use. About 2.4ml simulated gastric fluid (pH 3) at 37°C was added to the 

tubes, followed by porcine pepsin activity (to achieve 2,000U/ml) and 1.5µl of calcium chloride 

(150μM final concentration). Each sample was followed by an acidification step to pH 3 using 

2M HCI, thus initiating the gastric digestion process. At the end of gastric digestion, to inactivate 

pepsin and to simulate digestion in the small intestine pH was adjusted to 7. The digestion 

samples were preserved after 0, 30, 60, 90, 120 min of incubation at 37°C in a rotator. To end the 

gastric phase, 1M sodium hydroxide was used to increase pH to 7 and snap-frozen in liquid 

nitrogen. For the intestinal phase, 3.8ml of simulated intestinal fluid was added; 0.6ml of bile salt 

(10μM final concentration) was added, as well as 1ml of pancreatin to achieve a trpsin activity of 

100U/ml. The pH was further increased to pH 7 for each sample using 1M sodium hydroxide and 

placed in a 37°C incubator on a rotator. The final volume of each digested sample (digesta) was 

approximately 12ml. Upon completion of the intestinal phase, an inhibitor (Pefabloc®) was 

added at 20µl. 

 

 2.9 Microstructural changes observed during in vitro digestion 

Optimised formulations were subjected to in vitro digestion as reported above, except that, 

during the gastric and intestinal phase, 1ml aliquots of digesta were removed after 120min for 

microstructural analysis. For gastric and intestinal meat samples, 20µl of sample was placed on a 

microscope slide and 5µl of Nile Blue (aqueous, 0.1% w/w) added to the sample. A coverslip 

was placed on top of all samples and they were imaged in a Leica SP5 confocal scanning laser 

microscope (Leica Microsystems GmBH, Mannheim, Germany). Dual channel images were 
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acquired with a x10, x20 and x63 objectives, using a 488nm argon ion laser to image fat (green) 

and a 633nm helium neon laser to image protein, myofibrils and connective tissue (red). 

 

2.10 Consumer sensory evaluation 

Cooked optimised formulations (as per section 2.3 and 2.7) were evaluated by a panel comprised 

of 116 older adults (>65 to 80+ years old, 62 females, 54 males) recruited by the Agri-Food and 

Biosciences Institute, Belfast, Northern Ireland, taking into account demographic information 

(age group, former occupation) and product related questions (labels, openability of packaging). 

Additional treatments (Control (C) and F1S) were prepared for comparison as described above. 

For F1S a seasoning blend was added at 2g/100g. The seasoning blend contained tomato powder 

(30%), basil (20%), ground coriander (15%), ground sage (15%) and rosemary (20%) purchased 

from Redbrook, Dublin, Ireland. Evaluations were performed in individual booths prepared as 

described by ISO 8589 (2008). Unsalted crackers and water at room temperature were provided 

to clean palate between samples. The sensory analysis was carried out using a 10cm hedonic 

scale on which the assessors evaluated various liking attributes: aroma, tenderness, juiciness, 

flavour and overall liking (Table 2). 

For the consumer study, an ordered logistic regression (proportional odds model) with random 

effects was carried out to analyse the data. It was fitted using maximum likelihood estimation 

using the Meologit command in Stata (v14.2). 

 

3. Results and Discussion 

3.1 Composition and processing characteristics 

Compositional data for ash (raw and cooked) and protein (cooked) could not be fitted, and data 

are not presented here. 

The consumption of protein-enriched foods is beneficial in preventing age-related muscle loss 

(sarcopenia), improving bone health and enhancing the quality of life among older adults 

(Baugreet, Hamill, Kerry, & McCarthy, 2017; Baugreet et al., 2016). Protein content in raw 
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restructured beef steaks was driven (P<0.01) by the addition of RP (Table 3), achieving a 

maximum of 28% protein in each 100g beef steak (Fig. 1a). An intake of at least 25-30g of high-

quality protein per meal has been suggested in the recent literature, to maximise muscle protein 

synthesis and maintain muscle mass in older adults (Beelen et al., 2016). Therefore, the maximal 

protein content in a portion controlled product (28g/100g restructured beef steaks) observed here 

would be beneficial in assisting older adults to reach targeted protein requirements. The enriched 

protein content in the raw samples (25%) was maintained throughout the cooking process, and 

indeed cooked samples from all formulations had numerically higher protein content compared 

to raw (30%) however, this difference was not significant. It is clear in any case that the 

enriching plant proteins were retained in the meat matrix after cooking. 

Moisture content for raw and cooked restructured beef steaks ranged between 61.6%-70.8% and 

59.9%-68.8% respectively, and both negatively correlated with RP inclusion (Table 3). RP 

remained a significant model term after cooking. The surface plots showed that inclusion of RP 

at >7.5% decreased moisture levels (Fig. 1b/1c). A 3.01% reduction (67.9% to 64.9%) in 

moisture levels was observed (RP at 7.5%) after cooking. The effect of cooking and temperature 

on rice protein has been shown to cause heat induced coagulation resulting in reduced moisture 

(Nehete, Bhambar, Narkhede, & Gawali, 2013). 

The fat content of cooked restructured steaks was mainly affected by the interaction between PPI 

and RP (Table 3). Fat reduction is caused by PPI (<7% PPI) being more pronounced as RP 

increased (Fig. 1d). Usually, proteins as isolates (>80% protein) or concentrates (30-80%) are 

employed in low-fat meat processing (Petracci, Bianchi, Mudalal, & Cavani, 2013). Hence, these 

ingredients are useful in the development of healthier low-fat processed meat products. 

 

3.2 Textural profile analysis (TPA) and bind strength 

The inclusion of all four ingredients; PPI, RP, LF and TG in restructured beef steaks 

significantly affected their textural characteristics (P<0.05) (Table 4). When LF inclusions were 

increased (1.5-4%), this caused a decrease in hardness (900.96) and gumminess (183.65) (Fig. 

2a-b). The likely reason for this is the lower protein content in LF, which probably resulted in 

weaker gel formation, and decreased the product’s resistance to compression. There was an 
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interaction between PPI and *LF which resulted in a reduction in hardness values (816.10) 

caused by LF (at 4%) this being more pronounced with the addition of PPI (at 7%) (Fig. 2a). 

Adebiyi and Aluko (2011), found that pea protein isolate formed a paste instead of a rigid gel 

structure in products. Hence, the interaction of PPI and LF produced an enhanced softening 

effect in the restructured beef steaks. Springiness and chewiness increased in a linear fashion 

with increasing TG (>1-<2.5%) (Fig. 2c/2d). A similar effect was observed by Colmenero, Ayo, 

and Carballo (2005), where TG in combination with caesinate led to springier and chewier 

frankfurter sausages. Cohesiveness signifies the degree of difficulty in breaking down the 

internal structure of meat. RP in conjunction with LF at minimal and maximal inclusion levels 

(RP: 10%; LF: 1.5%) and (LF: 4%; RP: 7.5%) decreased cohesiveness values in restructured 

steaks (P<0.001) (Fig. 2e). 

Binding strength appeared to increase gradually with the addition of 1-2.5% TG from (6056-

7607g), however this change was not significant. Previously, TG has been used mostly with the 

addition of salt (1-3%) to achieve efficient binding (Sun, 2009). Here, perhaps the effect 

produced by the added protein ingredients is masking the binding associated with TG. It is 

noteworthy that our results suggest that the use of TG may not be essential to achieve acceptable 

techno-functional properties of a restructured product containing protein-rich ingredients. This 

could have positive implications for achieving clean label status for restructured meat products. 

 

3.3 Cooking loss, thawing loss and lipid oxidation 

Cooking loss is an important parameter in meat products as it measures water and fat binding 

after protein denaturation and aggregation during the cooking process (Hayes, Stepanyan, Allen, 

O’Grady, & Kerry, 2011). A reduced cooking loss in restructured beef steaks can be achieved at 

a PPI and LF content of at least 10% and 4%, respectively, indicating that these ingredients are 

useful in retaining moisture in the product during cooking (Fig. 3a/3b). These results are 

consistent with the moisture data, wherein no significant decline in moisture was observed, with 

increasing PPI and LF. These plant proteins may form a well-structured protein matrix or a gel 

which then traps water and prevents its release (Ustunol, 2014). 
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Fig. 3c and 3d illustrate TBARs values of raw restructured steaks at day 0 and 30. The model 

term RP and quadratic term LF2 were significant (P<0.05) for lipid oxidation at day 30 (Table 

4). Maximum and minimum values for lipid oxidation were found at approximately 7.5% (0.64) 

LF and 10% (0.51) LF, respectively. The interaction of PPI and RP was the factor that most 

affected lipid oxidation at day 0. Maximum TBARs values were observed from PPI*RP (PPI 

5.5%; RP 7.5% or PPI 8%; RP 10%), 0.66 and 0.67, respectively. However, PPI at 6.75% and 

RP 8.75% produced minimum TBARs values (0.41). This is an indication that meat alone was 

affected by lipid oxidation during processing which is in line with a previous study by Baugreet 

et al. (In Press). A significant quadratic term for LF is seen as a curved line (Fig. 3c). These 

results are in line with Akcan, Estévez, and Serdaroğlu (2017), where the use of whey protein 

films in meatballs resulted in lower TBARs values during 30 days frozen storage. Our result 

indicates that lipid oxidation was effectively retarded by combining PPI, RP and LF during 

frozen storage time and did not exceed the suggested sensorial threshold of 1 mg MDA/kg meat 

(Alakali, Irtwange, & Mzer, 2010). 

There was no significant effect on thaw loss for restructured beef steaks and data are not 

presented here. 

 

3.4 Colour parameters 

The parameters L* and a* (raw), and L* (cooked) (Table 5) were significantly affected by the 

formulations (P<0.01). A maximal increase of 51.85 in L* values were observed in raw 

restructured steaks with an inclusion level of LF of 4% (Fig. 4a). Interactions for a* observed 

between TG*LF, PPI*RP, PPI*LF and RP*LF were significant. The interaction between PPI and 

*RP (when PPI 8%; RP 7.5% or PPI 5.5%; RP 10%) and RP*LF (when RP 10%; LF 1.5% or RP 

7.5%; LF 4%) will produce redness value of 9.6 (Fig. 4b and 4c). However, TG*LF (TG 1%; LF 

1.5% or TG 2.5%; LF 4%) and PPI*LF (PPI 5.5%; LF 1.5%) produced maximal redness values 

(9.7) (Fig. 4d/4e). Our results indicate that non-meat ingredients influenced colour parameters. 

For cooked restructured steaks, RP and LF showed a significant effect on L*. When RP and LF 

increased from 7.5-10% (52.49-54.37) and 1.5-4% (52.78-54.23) respectively L* values 

increased (Fig. 4f/4g). The other colour parameters a* and b* were not significantly affected and 
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data are not presented. Consumer choice for acceptable beef quality is often based on a bright red 

colour (Holman, van de Ven, Mao, Coombs, & Hopkins, 2017). Hence, it can be concluded that 

TG*LF and PPI*LF may enhance the visual appearance of raw restructured beef products at 

point of sale. 

 

3.5 Optimisation and validation of restructured beef steaks formulation 

Optimisation was applied within the experimental variables (TG, PPI, RP and LF) to identify 

optimum formulations for the restructured steaks for desired experimental goals. Using the 

numerical optimisation technique in the software (Design Expert 10, Stat-Ease Inc., Minnepolis, 

MN, USA), all chosen responses were either maximised, minimised or set within limits (Table 

6). This tool predicted two similar optimised formulations (F1 & F2) which maximised protein 

and generated predicted values for each dependent variable (Table 6) which had acceptable 

overall desirability levels (0.50) for pea protein isolate, rice protein and lentil flour addition. 

These consisted of F1) PPI 8%, RP 9.35% and LF 4% and F2) PPI 8%, RP 9.39% and LF 4%. 

Validation is a major step in RSM to assess that the model and limits are accurate and precise. 

Table 6 shows the performance of the model indices when optimal formulations were composed 

and analysed in relation to their technological performance. The models showed a good fit for 

both optimised formulations as demonstrated by the accuracy and bias factors which are close to 

1.00 for the key responses. Our results showed that a central composite design approach can be 

applied to develop a complex optimised enhanced protein, softer restructured beef steak 

formulation with acceptable technological properties that could have great potential for 

application to enhance the availability and intake of high quality protein in the diets of older 

adults. 

 

 3.6 Product microstructure and digestive behaviour visualised using microscopy 

Representative confocal images of beef steaks before and after in vitro digestion are presented in 

Fig. 5. Restructuring meat with plant proteins and TG can dramatically alter the structure of a 
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meat system and as expected in the images of the control, F1 and F2 at each step (cooked, gastric 

and intestinal phase) were quite different. 

The image of the cooked control illustrated an intact muscle fibre structure, with perimysium 

evident between the fibre bundles, demonstrating that the cooking process did not disrupt the 

fibre structure (Fig. 5A). In F1 and F2 the cooked restructured beef samples showed large protein 

aggregates in addition to the muscle pieces as well as dispersed fat globules, which probably 

represent the heat-treated pea protein isolate, rice protein and lentil flour ingredients added to the 

formulation (Fig. 5D, G). 

 

3.6.1 Gastric and intestinal phase 

Following the addition of pepsin in the gastric phase, all products demonstrated a disruption to 

the fibre structure, possibly due to extensive breakdown of the collagenous perimysium and 

endomysium. The addition of plant-based ingredients in F1 and F2 resulted in distinct non-meat 

protein islands shown to be dispersed within the meat protein matrix (Fig. 5E, H). Irregular shape 

fat globules were dispersed in all treatments (Fig. 5B, E, H). However, in Fig. 5H, fat appeared 

more abundant. Changes after the intestinal phase showed the fibre bundle structure in the 

control sample had almost completely broken down, with myofibrillar striations almost absent 

(Fig. 5C). In F4 and F6 (Fig. 5F, I), a complete disintegration of the myofibrils can be seen. 

However, the presence of some granular and chain-like aggregate was evident on the 

micrographs which could be associated either with the integral meat proteins or with the 

ingredients added (Fig. 5F, I). The characteristics of plant-based ingredients (cell wall 

components, arrangement of starch granules) may impair the access of gastrointestinal enzymes 

during digestion (Singh, Kaur, & Singh, 2013). The combination of meat protein and ingredients 

used in this study certainly appears to have altered the overall digestive behaviour of the 

experimental formulations. 

 

 3.7 Consumer evaluation 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

Although instrumental analysis provides important information on the physico-chemical 

properties of the product, the intricacy of the changes due to the inclusion of plant-based 

ingredients to restructured beef steaks in relation to acceptance could only be perceived by 

discrimination and consumer tasting (Aleson-Carbonell, Fernández-López, Pérez-Alvarez, & 

Kuri, 2005; Orla, Barbara, Peter, & David, 2004). Sensory evaluation of the optimised 

restructured beef steaks by the taste panel of over-65s revealed significantly different (P<0.05) 

scores for aroma liking, juiciness, flavour liking and overall liking (Fig. 6a) among treatments. 

Although panellist rated tenderness slightly higher for F1, this score was not significantly 

different (P>0.05) from C and F1S. Overall liking for all restructured products tested was quite 

low as all samples scored below 30%, but overall liking for control samples scored higher 

(P<0.05) than products with plant proteins. A breakdown by age subgroups (65-69, 70-74, 75-79 

and 80+ years) to examine the influence of different descriptors were also analysed. When the 

overall means scores for sensory attributes was examined within each age subgroups, among the 

80+ age category aroma, flavour and overall liking were not significantly different for any 

product (Fig 6b). Only the oldest cohort (75 to 80+) in this study rated flavour liking favourably 

for all samples (Fig 6c). When compared to the 65-69 age cohort, this result shows that age-

associated changes in chemosensory perception is more pronounced as one advances in age 

leading to difficulty in discriminating between samples with respect to flavour manipulation. 

There are likely to be complex effects on flavour and aroma when diverse plant-based 

ingredients are added to the restructured product and this may have influenced aroma and flavour 

scores, which were lower for the experimental formulations. The seasoning blend used in this 

study comprised of 70% bitter-floral characteristics, with distinctive citrus notes, while only 30% 

was derived from umami flavour profile. This could explain why the specific seasoning flavour 

combination was not particularly liked. Elsewhere, when gari was added to beef burgers, 

products were less liked (Akwetey & Knipe, 2012). Therefore, the next step might be to enhance 

the flavour with an enriched savoury blend. 

 

The hypothesis for adding seasoning to the product, was that chemosensory perception and 

acuity would be reduced in the cohort under study hence they may perceive standard products as 

bland. Interestingly, the formulation with added plant proteins and seasonings were more 

appreciated among the 75 to 80+ age cohort. This finding agrees with the results reported by 
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Griep, Mets, & Massart (2000) and Mathey, Siebelink, de Graaf, & Van Staveren (2001). Older 

adults with impaired odour perception might benefit from flavour enhancement in food since the 

increased flavour either by plant proteins and seasonings may compensate for their sensory loss 

(Griep, Mets & Massart, 1996). In line with this study, a tendency was observed that participants 

above 75 years old without preference for either three samples may have a poorer odour 

perception in comparison to the other age groups studied showing a clear preference among 

samples. 

 

This work offers direction and guidance to future optimisation which could focus on enhancing 

juiciness of the product, and modifying the seasoning where possible to increase the acceptability 

among the varying age cohorts who would likely benefit from the nutritional profile of this 

product. 

 

4. Conclusion 

Response surface methodology represents a useful tool to investigate the effects of four factors 

on the physicochemical characteristics of the restructured beef steaks. A restructured meat 

product with RP could be developed using the PiVac technology with a nutritional profile 

oriented to mitigate sarcopenia in older adults. The interactions observed between PPI, RP and 

LF appear to favour the gel-network formation, as much as transglutaminase indicating that it 

could be feasible to obtain a novel restructured beef steak with acceptable textural characteristics 

for older consumers using only clean label ingredients. This work underscores the utility of both 

in vitro digestion and microscopy as a way to visualise fibre separation, fibre breakdown and 

protein re-aggregation in a protein-enriched meat product after gastro-intestinal digestion. 

Finally, a consumer study on 120 older adults on the optimised restructured beef formulation 

showed that steaks containing plant-based ingredients or in combination with seasoning 

inclusions did undergo some modification in sensorial attributes and notably, these differences 

were not perceptible in the oldest cohort (80+ years). These results provide an understanding of 

the factors of importance in the development of protein-enriched restructured beef steaks for this 

cohort. 
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Table 1 Experimental range and values of the independent process variables in the central composite 

design 

Independent 

variables 

Symbol Levels     

  -α -1 0 +1 +α 

Transglutaminase 

(U/g) 

X1 0.25 1 1.75 2.5 3.25 

Pea protein Isolate 

(g) 

X2 4.25 5.5 6.75 8 9.25 

Rice protein (g) X3 6.25 7.5 8.75 10 11.25 

Lentil flour (g) X4 0.25 1.5 2.75 4 5.25 

Design factors are transglutaminase (X1: TG), pea protein isolate (X2: PPI), rice protein (X3: RP) and 

lentil flour (X4: LF). Values are expressed as g/100g of meat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Sensory descriptors for the untrained panellist evaluation of cooked restructured steaks 

Attribute Description 

Colour 0 = pale, 10 = dark 

Aroma 0 = extremely weak, 10 = extremely strong 
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Toughness 0 = extremely tough, 10 = extremely tender 
Chewiness 0 = not chewy, 10 = extremely chewy 

Juiciness 0 = extremely dry, 10=extremely juicy  

Greasiness 0 = not greasy, 10 =extremely greasy  

Flavour acceptability 0 = extremely like, 10 = extremely dislike 

Overall acceptability 0 = extremely unacceptable, 10 = extremely acceptable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 ANOVA results for the experimental variables of each response variable and corresponding 

coefficients for the predictive models 

Source DF Compositional parameters 

  Raw Cooked 

  Y1  Y2  Y3  Y4  Y5  

  Coef. p-value Coef. p-value Coef. p-value Coef. p-value Coef. p-value 

Intercept 14 66.6 0.012 27.0 0.014 63.8 0.034 28.2 0.096 4.31 0.045 

X1 1 -0.872 0.058 - - - - - - - - 

X2 1 0.295 0.507 - - - - - - -0.254 0.361 
X3 1 -1.32 0.006 0.843 0.014 -1.06 0.034 0.646 0.096 0.118 0.668 

X4 1 -0.703 0.122 - - - - - - - - 

X2X3 1 - - - - - - - - -0.946 0.008 

Residual 15           

Lack of 10  0.569  0.486  0.301  0.116  0.305 
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fit 
Pure 

error 

5           

total 29           

R2   0.390  0.196  0.151  0.096  0.262 

Adj-R2   0.293  0.167  0.120  0.064  0.177 

Y1: moisture (raw), Y2: protein (raw), Y3: moisture (cooked), Y4: protein (cooked), Y5: fat (cooked), X1: 

Transglutaminase, X2: Pea protein isolate, X3: Rice protein, X4: Lentil flour 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 ANOVA results for the experimental variables of each response variable and corresponding 

coefficients for the predictive models 

Source DF Cooking loss Lipid oxidation Textural parameters 

  Y6  Y7  Y8  Y9  Y10  Y11  Y12  Y13  Y14  

  Coef. p-value Coef. P-value Coef. P-value Coef. p-value Coef. p-value Coef. p-value Coef. p-value Coef. p-value Coef. p-value 

Intercept 14 15.5 0.002 0.424 0.006 0.578 0.016 966 0.048 0.794 0.002 2164 0.017 214 0.013 9.68 0.009 6835 0.055 

X1 1 0.198 0.790 - - - - - - -0.003 0.427 395 0.027 - - 0.982 0.009 779 0.055 

X2 1 -0.385 0.606 -0.009 0.764 0.051 0.084 -10.1 0.738 - - - - - - - - - - 

X3 1 -2.84 0.001 0.014 0.659 -0.059 0.050 - - -0.004 0.296 - - - - - - - - 

X4 1 -2.06 0.010 - - -0.012 0.674 -65.3 0.038 -0.008 0.074 -338 0.055 -30.7 0.013 - - - - 

X1X2 1 - - - - - - - - - - - - - - - - - - 

X1X3 1 - - - - - - - - 0.009 0.072 - - - - - - - - 

X1X4 1 - - - - - - - - - - - - - - - - - - 

X2X3 1 - - 0.105 0.009 - - - - - - - - - - - - - - 

X2X4 1 - - - - - - -74.9 0.051 - - - - - - - - - - 

X3X4 1 - - - - - - - - 0.019 0.001 - - - - - - - - 
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X2^2 1 - - 0.054 0.063 - - - - - - - - - - - - - - 

X3^2 1 - - 0.091 0.003 - - - - -0.010 0.011 - - - - - - - - 

X4^2 1 - - - - 0.071 0.012 - - -0.007 0.056 - - - - - - - - 

Residual 15                   

Lack of fit 10  0.570  0.671  0.666  0.135  0.003  0.414  0.115  0.694  0.460 

Pure error 5                   

total 29                   

R2   0.481  0.473  0.376  0.259  0.614  0.261  0.202  0.219  0.126 

Adj-R2   0.398  0.363  0.277  0.173  0.492  0.206  0.173  0.191  0.094 

Y6: Cooking loss, Y7: lipid oxidation day 0, Y8: lipid oxidation day 30, Y9: hardness, Y10: cohesiveness, 

Y11: chewiness, Y12: gumminess, Y13: springiness, Y14: bind strength, X1: Transglutaminase, X2: Pea 

protein isolate, X3: Rice protein, X4: Lentil flour 

 

 

 

 

 

 

 

 

 

 

Table 5 ANOVA results for the experimental variables of each response variable and corresponding 

coefficients for the predictive model 

Source DF Restructured steaks colour parameters 

  Raw Cooked 

  Y15  Y16  Y17  

  Coef. p-value Coef. p-value Coef. p-value 

Intercept 14 50.9 0.001 9.51 0.009 53.4 0.006 

X1 1 0.405 0.159 0.027 0.688 0.022 0.937 

X2 1 -0.433 0.134 -0.030 0.661 0.134 0.636 
X3 1 0.425 0.140 -0.012 0.865 0.943 0.002 

X4 1 0.922 0.003 -0.003 0.965 0.730 0.015 

X1X2 1 - - -0.012 0.149 - - 

X1X3 1 - - -0.054 0.516 - - 

X1X4 1 - - 0.254 0.006 - - 
X2X3 1 - - -0.280 0.003 - - 

X2X4 1 - - 0.200 0.024 - - 

X3X4 1 - - -0.175 0.044 - - 

X2^2 1 - - - - - - 

X3^2 1 - - - - - - 
X4^2 1 - - - - - - 

Residual 15       

Lack of fit 10  0.269  0.975  0.667 

Pure error 5       

total 29       
R2   0.415  0.650  0.000 

Adj-R2   0.322  0.467  0.000 

Y15: lightness (L*), Y16: redness (a*), Y17: lightness (L*) 
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Table 6 Predicted, experimental values, accuracy factor (AF), bias factor (BF) and average mean 

deviation (∑%)  values for optimised formulation 1 and 2 

Variables Optimisa
tion 

criteria 

Formula
tion 1 

Experime
ntal 

Formulat

ion 2 

Accur
acy 

Factor 

Bias 
Fact

or 

∑ 
(%

) 

Formula
tion 2 

Experime
ntal 

Formulat

ion 2 

Accur
acy 

Factor 

Bias 
Fact

or 

∑ 
(%

) 

Independen
t  

           

X1: TG Target: 2 2 2    2 2    

X2: PPI Range: 6-

8 

8 8    8 8    

X3:: RP Maximise 9.35 9.35    9.39 9.39    
X4: LF Range: 

1.5-4 

4.00 4.00    4.00 4.00    

            

Dependent            

Raw 
attribute 

           

Protein Maximise 27.4 26.2 

1.03 0.97 

2.6

4 

27.5 25.9 

1.06 0.95 

5.5

0 

L* Minimise 51.7 51.7 

1.00 1.00 

0.1

5 

51.8 52.4 

1.01 0.99 

1.1

0 
a* Maximise 9.55 11.8 

1.24 0.81 

19.

11 

9.49 13.0 

1.37 0.73 

27.

2 

            

Cooked 

attribute 

   

   

  

   

Moisture Maximise 63.9 64.3 
1.01 0.99 

1.3
9 

63.3 65.9 
1.01 0.99 

1.4
7 

Protein Maximise 28.5 29.7 

1.04 0.96 

4.0

9 

28.6 28.6 

1.00 1.00 

0.0

9 

Hardness Minimise 815 811 

0.99 1.01 

0.5

0 

815 812 

1.00 1.00 

0.4

3 
Cohesivene

ss 

Range: 

0.73-0.84 

0.78 0.75 

0.96 1.04 

3.9

5 

0.79 0.78 

1.00 1.00 

0.0

1 

Chewiness Minimise 1957 1986 

1.02 0.99 

1.4

9 

1957 1949 

1.00 1.00 

0.3

9 

Gummines
s 

Minimise 183 166 
0.91 1.10 

10.
0 

184 163 
0.89 1.13 

12.
8 
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Springiness Range: 

5.59-

12.17 

10.0 10.2 

1.02 0.98 

1.7

4 

10.01 10.4 

1.04 0.97 

3.4

9 
Bind 

Strength 

Target: 

6369 

7095 7093 

1.00 1.00 

0.0

3 

7095 7067 

1.00 1.00 

0.3

9 

Cook loss Minimise 12.1 11.6 

0.96 1.04 

3.9

0 

11.7 11.9 

1.02 0.98 

1.8

3 

L* Minimise 54.7 57.9 
1.06 0.94 

5.6
4 

54.8 58.6 
1.07 0.94 

6.4
3 

a* Range: 

2.34-3.93 

3.35 5.12 

1.53 0.65 

34.

6 

3.35 4.54 

1.35 0.74 

26.

14 

Desirability  0.57     0.57     

 

 

 

 

 

 

 

 

Table 7 Sensory attributes of optimised formulations (with and without seasonings) compared to controls  

Parameters Formulations Seasonings Formulations Seasonings Source of variation P value 

  Without  With   

Colour C 6.18abX CS 7.29bY Formulation 0.015 

 F1 5.09aX F1S 5.73abY Seasoning 0.041 

 F2 5.59abX F2S 6.16abY Form x Seas 0.816 

       

Aroma C 3.03a CS 3.86ab Formulation 0.001 
 F1 6.11b F1S 6.14b Seasoning 0.485 

 F2 6.14b F2S 6.36b Form x Seas 0.800 

       

Toughness C 5.84X CS 7.09Y Formulation 0.478 

 F1 5.40X F1S 6.51Y Seasoning 0.002 
 F2 4.97X F2S 6.78Y Form x Seas 0.785 

       

Chewiness C 4.47X CS 4.53Y Formulation 0.070 

 F1 4.54X F1S 3.27Y Seasoning 0.048 

 F2 3.95X F2S 2.64Y Form x Seas 0.321 
       

Juiciness C 4.46b CS 4.35b Formulation 0.001 

 F1 2.36a F1S 2.38a Seasoning 0.827 

 F2 2.02a F2S 1.85a Form x Seas 0.981 

       
Greasiness C 1.81ab CS 3.02ab Formulation 0.054 

 F1 1.22a F1S 2.17ab Seasoning 0.058 

 F2 1.52ab F2S 1.33ab Form x Seas 0.212 

       

Flavour Acceptability C 2.42a CS 3.98ab Formulation 0.001 
 F1 6.61c F1S 5.41bc Seasoning 0.353 

 F2 6.33bc F2S 4.57abc Form x Seas 0.018 
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Overall acceptability C 6.84b CS 5.54ab Formulation 0.001 

 F1 3.57a F1S 3.90a Seasoning 0.528 

 F2 3.26a F2S 3.32a Form x Seas 0.336 
abc 

Means in the same column for each parameter (different formulations) that do not share a common 

superscript are significantly different according to Fisher’s Protected Least Significant Difference 

(FPLSD) (P<0.05)  
XY

 Means in the same row (Seasoning) that do not share a common superscript are significantly different 

(P<0.05) 

Form: Formulation 

Seas: Seasoning 
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Fig. 1 Representation of the surface 

models for raw protein (a), raw moisture (b), cooked moisture (c) and cooked fat (d) on restructured 

steaks                                  
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Fig. 2 Representation of the surface models for hardness (a), gumminess (b), springiness (c), chewiness 

(d), cohesiveness (e) and bind strength (f) 
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Fig. 3 Representation of the surface models for cooking loss (a, b) and lipid oxidation day 0 (c) – as a 

function of rice protein and pea protein isolate and day 30 (d)  
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Fig. 4 Representation of the surface models for L* (a) and a* (b-e) for raw restructured steaks and L* 

(f,g) for cooked restructured steaks
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Fig. 5 Confocal scanning laser microscopy images of protein enriched restructured beef steaks  
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Fig. 6 Sensory attributes of restructured beef steaks; optimised formulation 1 ( F1), optimised 

formulation with added seasonings (F1S) (6a); Sensory attributes scores over the varying age cohorts 

b) a) 

c) 
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(65-69, 70-74, 75-79 and 80+) (6b); Mean sensory scores of sensorial attributes in control, F1 and F1S by 

the varying age cohorts (6c).a-c Mean values with different letters are significantly different (P < 0.05) 
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 A novel restructured beef steak was developed using pea protein isolate, rice protein and 

lentil flour. 

 A protein content of 28g/100g was achieved, which could be beneficial for the older 

consumers. 

 Inclusion of lentil flour had a positive effect on the textural parameters of restructured 

beef steaks 

 A sensory consumer study of 120 older adults was carried to determine acceptability of 

the developed products. 
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