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Abstract 

The objective of this work was to investigate the effect of covalent labelling on the physico-chemical 

properties of β-casein (β-CN) in solution and in emulsions stabilised by β-CN and whey protein isolate 

(WPI). β-CN was covalently labelled by 5-(and 6)-carboxytetramethylrhodamine, succinimidyl ester 

(NHS-Rhodamine). The effect of conjugating β-CN with NHS-Rhodamine on the spectroscopic 

properties of labelled β-CN (β-CNlabelled) was examined. No significant difference in interfacial tension 

(p>0.05) was found between mixture of WPI and β-CNlabelled (0.5% w/w WPI/β-CNlabelled) and of WPI and 

β-CN (0.5% w/w WPI/β-CN) in 10 mM phosphate buffer (pH 7.0) at 20 ˚C. Oil-in-water emulsions 

stabilized with either WPI/β-CN or WPI/β-CNlabelled (0.5% w/w) were also investigated using laser-light 

scattering, analytical centrifugation, rheometry and CLSM. It was shown that labelling had no significant 

effect on the physico-chemical properties of emulsions (p>0.05) in terms of droplet size, creaming 

stability, viscosity or zeta-potential. Confocal micrographs of emulsions made with WPI/β-CNlabelled 

showed that both β-CN and whey proteins could be observed simultaneously, and were co-localized at the 

surface of fat globules. Furthermore, it was found through image analysis that β-CN produced a thicker 

interfacial layer than WPI.  

Keywords: β-casein, whey proteins, emulsion stability, confocal laser scanning microscopy, covalent 

labelling techniques   
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1. Introduction 

Dairy proteins are often used as emulsifiers in a variety of dairy products. They absorb at the surface of 

newly formed oil droplets during homogenization, thereby producing a layer to protect the oil droplets 

against coalescence and flocculation during storage. The nature of the absorbed layer at the oil-water 

interface is one of the most important factors determining the physico-chemical behaviours of emulsions, 

and a large number of studies have explained the absorption behaviours of proteins on the oil droplets 

surface (Dickinson, 2001; Dickinson & Parkinson, 2004; McClements, 2004; McSweeney, Mulvihill, & 

O'Callaghan, 2004; Raikos, 2010).  

Dairy proteins are classified into two main categories: caseins and whey proteins. Caseins consisting of 

αs1-, αs2-, β- and κ-casein are self-assembled in milk into particles called casein micelles with κ-casein 

located predominately at the surface of the micelle (Fox & McSweeney, 2003). Caseins are relatively 

heat-stable but tend to aggregate upon lowering the pH and become insoluble at their isoelectric point of 

pH 4.6 (Hammarsten, 1883; L., Slyke, & Barker, 1918). All caseins have a large proportion (35-45%) of 

hydrophobic amino acid residues (e.g. Val, Leu, Phe, Tyr, Pro), especially β-CN. One of the most 

abundant caseins, β-CN has a flexible linear disordered secondary structure and no intramolecular 

crosslinks. It has a hydrophilic region at the N-terminal and a hydrophobic region of zero net charge at the 

C-terminal of the molecule (Parkinson & Dickinson, 2004; Rollema, 1992). β-CN includes 5 phospho-

serines in the hydrophilic part, which gives a high net negative charge (Dickinson, 1997). The presence of 

phospho-serine residues in β-CN provides the thickness and steric-stabilizing properties of the absorbed 

layer surrounding the oil droplets. Its highly amphiphilic nature contributes to the emulsifying properties.  

β-CN is assumed to be one of the most surface-active dairy proteins (Mitchell, Irons, & Palmer, 1970). It 

has been reported that β-CN absorbed more rapidly at the oil-water interfaces and was more effective in 

reducing the interfacial tension compared with other caseins (Dickinson, 1989). Therefore, β-CN is 

widely used as an effective emulsifier in formulated emulsion systems. In addition, β-casein exists in 

solution in a molecular or aggregated state depending on the concentration, temperature and ionic strength. 

It was concluded (Dauphas, et al., 2005) that at low temperature (< 15 ˚C), β-casein generally is found as 

monomers with a mean diameter of 7-8 nm. It aggregates into a micellar state with a diameter of 20-25 

nm when temperature increases to 35 ˚C in the absence of salt. Adding calcium (Ca
2+

) leads to formation 
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of β-CN sub-micelles or aggregates because the electrostatic repulsion between molecules decreases 

when calcium associates with phosphoserine residues. McCarthy, Kelly, O’Mahony, and Fenelon (2013) 

illustrated that calcium-induced aggregation was decreased when dephosphorylated bovine β-CN was 

used to stabilize emulsions. 

The major whey proteins in bovine milk are β-lactoglobulin (β-lg), α-lactalbumin (α-la) and bovine serum 

albumin (BSA). They are compact globular proteins characterised by well-defined three-dimensional 

structures held together by di-sulphide bonds. Whey proteins are sensitive to temperature and are readily 

denatured at temperature ˃ 75 ˚C (Millqvist-Fureby, Elofsson, & Bergenståhl, 2001). Many studies have 

shown that caseins (e.g. αs1-, αs2-, β- and κ-casein) can act in a similar manner as molecular chaperones to 

inhibit the thermal denaturation of whey proteins (Guyomarc'h, Nono, Nicolai, & Durand, 2009; Kehoe & 

Foegeding, 2011, 2014; Morgan, Treweek, Lindner, Price, & Carver, 2005; O’Kennedy, Mounsey, 

Murphy, Duggan, & Kelly, 2006). Whey proteins are used as dairy ingredients due to their nutritional and 

functional properties. They are also excellent emulsifiers, and are slightly less surface active than caseins 

(Hunt & Dalgleish, 1994). Previous studies have shown that the inhibition of droplet flocculation can be 

achieved in whey protein-stabilized emulsions by incorporation of very small amounts (e.g.  0.015% w/w 

β-CN in the total emulsion) of casein (Dickinson & Parkinson, 2004; Parkinson & Dickinson, 2004). 

Whey protein isolate (WPI) is a commercially available whey protein product, which is produced by 

either selective ion exchange technology (e.g. BiPRO
®
) or a membrane-based separation process. It 

contains a higher protein content (90-95% on a dry weight basis) compared to cheaper whey protein 

concentrate (WPC, generally 30-70% protein) and (sweet/acid) whey powder (9-13% protein). 

Microscopy techniques are widely applied for visualising and interpreting physical and chemical 

analyses. Confocal laser scanning microscopy (CLSM) has been used to visualise different food 

structures, such as cheese, mayonnaise, milk powder and meat (Auty, Twomey, Guinee, & Mulvihill, 

2001; Maher, Auty, Roos, Zychowski, & Fenelon, 2015). Emulsion fat droplet size can be observed 

directly using CLSM for comparison with the results from light scattering (Lopez, Madec, & Jimenez-

Flores, 2010). van de Velde, Weinbreck, Edelman, van der Linden, and Tromp (2003) described how 

improved contrast may be obtained by differences in fluorescence, either by auto-fluorescence of the 

material or by the addition of fluorescent dyes. It is possible to stain proteins, fats and polysaccharides 
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simultaneously using various fluorescent probes/dyes via covalent or non-covalent labelling (Auty, 2013; 

Dickinson & Yamamoto, 1996). Single or multiple probes have been frequently used to observe the 

phase distribution of protein/fat system and protein/polysaccharide system (Abhyankar, Mulvihill, 

Chaurin, & Auty, 2011; Ciron, Gee, Kelly, & Auty, 2010). For example, the visualization of fats and 

proteins in food could be achieved using either Nile blue only (Brooker, 1995) or a mixture of Nile Red 

and Fast Green FCF (Auty, et al., 2001). Covalent labelling of polymers allows for an exact 

measurement of multiple components in a system without over-staining. Covalently-labelled proteins can 

be used to visualize one specific protein in a complex system. There are a variety of reactive commercial 

protein probes with different fluorescence properties, such as carboxylic acid succinimidyl ester, 

isothiocyanate or sulphonyl halides. They bind to the reactive amine groups of the proteins via covalent 

bonds under slightly alkaline conditions (van de Velde, et al., 2003).  

However, it is difficult to determine if the physico-chemical properties of the labelled protein have 

changed compared to those of the native form due to the labelling process. For most situations, it is 

assumed that labelling does not change the properties of the labelled component, without verifying the 

effect of the labelling on the physical characteristics of modified component.  

The main objectives of this study were: (1) to investigate the effect of conjugating β-CN with NHS-

Rhodamine, using the covalent labelling technique, on the physico-chemical properties of labelled β-CN 

(β-CNlabelled); (2) to examine whether covalent labelling with NHS-Rhodamine can be used to distinguish 

whey proteins from β-CN in emulsions, using CLSM; and (3) to determine the effect of covalent 

labelling of β-CN on the physico-chemical properties of emulsions stabilized with WPI/β-CN at neutral 

pH and room temperature. 
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2. Materials and methods 

2.1 Materials 

Whey protein isolate (WPI, BiPRO
®
) was obtained from Davisco Foods International Inc. (Le Sueur, 

Minnesota, USA). The protein content (93.3%) was determined in-house by the Kjeldahl method (IDF 

Standard, 26, 2001) using a nitrogen-to-protein conversion factor of 6.38. β-casein, from bovine milk (≥ 

98 % purity) and phosphate buffered saline, pH 7.4 (containing 0.47% phosphate buffer, 0.1% KCl and 

4% NaCl, w/v) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Commercial sunflower oil 

was obtained from Tesco Supermarkets Ltd (Co. Cork, Ireland) and used without purification. NHS-

Rhodamine was supplied by Thermo Fisher Scientific (Rockford, Il, USA). Unless otherwise specified, 

all other reagents were purchased from Sigma Chemicals Inc. (St. Louis, Missouri, USA).  

 

2.2 Conjugation of β-CN with NHS-Rhodamine via covalent labelling techniques 

The covalent labelling technique is designed to visualize one specific protein in a complex mixture and to 

overcome the uncertainties that arise from the use of free fluorescent dyes. In this study, β-CN was 

covalently labelled using NHS-Rhodamine which reacts specifically with primary amine groups including 

the amino terminus of proteins and the ε-amino group of lysine to produce a highly fluorescent conjugate. 

β-CN was dissolved in 10 mM phosphate buffered saline (10 mg/ml, pH 7.4) before labelling with NHS-

Rhodamine (10 mg/ml in DMF, molar ratio of dye:protein = 5:1). The mixture was incubated at room 

temperature in the dark for 1 h. To remove the unbound dye, the mixture was crudely purified by passing 

through PD-10 desalting columns (GE Healthcare Life Sciences, Buckinghamshire, UK) under gravity, 

and then dialysed four times against phosphate buffered saline (10 mM) and twice against distilled water 

in order to remove the free dye and salt completely (no colour observed). The covalently labelled β-CN 

solution was then freeze-dried and stored in a desiccator under anhydrous conditions in the dark. The 

protein concentration % (w/w) and degree of labelling (DOL) of β-CNlabelled were estimated using 

Equation (1) and (2), respectively. 

weight of labelled protein - dye concentration volume of labelled protein
Protein concentration % (w/w) =

weight of labelled protein
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                                                                                                                                                      (1) 

dye concentration (mg/ml)

Mw of dye
Degree of labelling (moles dye per mole protein) =

protein concentration (mg/ml)

Mw of protein            (2) 

Where, 

353

353

concentration of free dye A  of labelled protein
Dye concentration (mg/ml) = dilution factor

A  of free dye




 

Mw of dye = 528 Da 

Mw of protein = 24,000 Da 

 

2.3 Determination of native protein concentration by reversed-phase high performance liquid 

chromatography (RP-HPLC)  

The concentration of individual native proteins in WPI was analysed by RP-HPLC (Waters, Milford, MA, 

USA). Separation was performed on a Source 5RPC column at 28 ˚C (Amersham Biosciences, UK, Ltd.). 

The HPLC system consisted of a Waters 2690 Separation Module, a Waters 2487 Dual Lambda 

Absorbance Detector and Empower Millennium software. Buffer A contained 0.1% (v/v) TFA in Milli-

Q
®
 water and buffer B contained 90% acetonitrile and 0.1% TFA in Milli-Q

®
 water. The results indicated 

that WPI (BiPRO
®
) contains 19.4 % α-la, 78.9 % β-lg and 1.7% BSA (native protein). 

 

2.4 Spectrophotometric measurements 

Solutions of NHS-Rhodamine (5 μg/ml), β-CN (0.02%) or β-CNlabelled conjugate (120 μg/ml) were 

prepared in 10 mM phosphate buffered saline, pH 7.4. The UV/visible absorbance spectra of the solutions 

were recorded individually in the wavelength range of 250-650 nm, using a Cary 1 Spectrophotometer 

(Varian Inc., Palo Alto, California, USA). 

A Cary Eclipse fluorescence spectrofluorimeter and a 1 cm × 1 cm quartz cuvette were used to carry out 

the excitation/emission measurements for NHS-Rhodamine (5 μg/ml) and the β-CNlabelled conjugate 

solution (120 μg/ml) at 25 ˚C. The instrument settings were as follows: for excitation spectra (450-590 nm) 
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at a fixed emission wavelength of 600 nm; for emission spectra (530-700 nm) at a fixed excitation 

wavelength of 525 nm; both excitation and emission slit were 5 nm; scan rate, 600 nm/min.  

 

2.5 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

β-CNlabelled and native β-CN were characterised by SDS-PAGE in order to study the effect of labelling on 

β-CN. The procedure was based on that of Laemmli (1970). Briefly, protein samples were dissolved in 

sample buffer (62.5 mM Tris-HCl buffer, pH 6.8, containing 20% glycerol, 2% (w/v) SDS and 0.025% 

(w/v) bromophenol blue) to achieve a final concentration of 1 g/l. For SDS-PAGE under reducing 

conditions, 5% β-mercaptoethanol was added to samples followed by heating at 95 ˚C for 5 min. After 

cooling to room temperature, 5 l of samples were loaded onto a 12% polyacrylamide Amersham ECL 

gel and run using a Amersham ECL Gel box (GE Healthcare, Uppsala, Sweden). After electrophoresis, 

the gels were stained for 1 h using 0.05% (w/v) Coomassie brilliant blue R-250 in 25% (v/v) isopropanol 

and 10% (v/v) acetic acid. After staining, the gels were destained in a 10% (v/v) isopropanol and 10% 

(v/v) acetic acid solution until a clear background was achieved. Molecular weights (Mw) were 

determined by comparison to pre-stained protein molecular weight markers (Thermo Scientific, MA, 

USA).  

 

2.6 Emulsion preparation 

Oil-in-water (O/W) emulsions (10% w/w sunflower oil, 10 mM sodium phosphate buffer, pH 7.0), 

stabilized with either β-CN or WPI at different concentrations (0.3, 0.4 and 0.5% w/w protein) , were pre-

mixed using an ultra-turrax
®
 model T25 digital (IKA, Staufen, Germany) equipped with a S18N-19G 

dispersion unit at 6,600 rpm for 15 s. The coarse emulsions were then passed once through a laboratory 

homogenizer (high pressure laboratory homogenizer, Delta Instruments B.V., Kelvinlaan, Drachten, The 

Netherlands) at an input pressure of ~ 40 bar. A 0.5% total protein concentration was selected to produce 

mixed layer emulsions stabilized with WPI and β-CNlabelled in a protein ratio of 50/50 (w/w). An emulsion 

made with WPI and β-CN was used as a control. Sodium azide (0.02% w/v) was added as an 

antimicrobial agent. After homogenization, the pH of all samples was adjusted to 7.0 using HCl or NaOH 
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and samples were stored at 4 ˚C cold room. Analyses were carried out at 0 (fresh emulsion) and 3 d post 

emulsion preparation. 

 

2.7 Determination of oil droplet size 

The average oil droplet size distribution of each emulsion was determined using a laser-light diffraction 

unit (Mastersizer 3000, Malvern Instruments Ltd, Worcestershire, UK). The optical parameters chosen 

were a particle and dispersant refractive index of 1.456 and 1.33, respectively. The absorbance value of 

the emulsion droplets was 0.01. Laser obscuration was controlled between 5 and 12%. The size 

distribution was obtained using polydisperse analysis, while droplet size measurements of emulsions were 

recorded as the sauter mean diameter (D3,2= ∑nidi3/ ∑nidi2, where ni is the number of droplets with 

diameter di) and the volume weighed mean (D4,3). Measurements were carried out in triplicate. 

 

2.8 Emulsion stability 

The stability of emulsions was determined using a multiple analytical centrifuge (LUMiFuge 116 stability 

analyser, L.U.M GmbH, Berlin, Germany). Aliquots (0.4 ml) were placed in polycarbonate sample cells 

(2 mm × 8 mm) and centrifuged at 1,500 rpm for 1 h at 25 ˚C, with transmission profiles measured at 1 

min intervals. The result was expressed as the integrated transmission percentage against time. The slope 

determines the creaming stability of emulsions, with lower values indicating better creaming stability. 

 

2.9 ξ-potential measurement  

Zeta potential of the emulsions was measured using a Zetasizer Nano-ZS90 (Malvern Instruments, 

Worcestershire, UK). Emulsions were diluted a 1,000 times using 10 mM sodium phosphate buffer (pH 7) 

to minimize multiple scattering effects. 

 

2.10 Apparent viscosity  

Measurement of apparent viscosity was performed using a controlled-stress rheometer (AR2000ex 

Rheometer, TA Instrument, Crawley, UK), equipped with a concentric cylinder geometry (stator inner 

radius = 15 mm, rotor outer radius = 14 mm). Each sample (~15 g) was placed into the cylinder, 
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equilibrated for 2 min before measurement. In order to minimize the effect of water evaporation, a thin 

layer of n-tetradecane was added to the surface of the sample. The measurement was accomplished over a 

shear rate range of 10-300 s
-1

 at 25 ˚C. 

 

2.11 Measurement of interfacial tension (IFT) 

Measurements of dynamic interfacial tension were carried out as described by Drapala, Auty, Mulvihill, 

and O'Mahony (2015) with a Krüss K12 Tensiometer at 20 ± 0.5˚C over 60 min. Heavy phase (25 ml of 

10 mM phosphate buffer or 0.5% protein solutions) and light phase (25 ml of sunflower oil) were used. 

Interfacial tension was recorded continuously from 0 to 5 min and at 10, 15, 30 and 60 min after forming 

the interface. The program was set to record a maximum of 80 readings per given time point at 1 sec 

intervals, unless the standard deviation was ≤ 0.01 in ten consecutive readings, in which case the 

measurement would stop for the given time point.  

 

2.12 Confocal laser scanning microscopy 

Microstructural analysis was performed using a Leica TCS SP5
®
 microscope (Leica Microsystems GmbH, 

Wetzlar, Germany). In order to reducing Brownian motion of particles, low melting point agarose was 

prepared at 1% (w/v) in distilled water and stored at 45 ˚C until utilization. Nile blue (100 l of 0.05% in 

distilled water) was added to 1 ml of emulsion and mixed thoroughly. Before microstructural observation, 

sample solutions containing Nile blue were mixed with the agarose in a ratio of 1:3 to immobilise the 

sample and then 5 l of each mixture was deposited on a microscope slide. The slide was covered with a 

coverslip and observed under the microscope at room temperature. The analysis was operated using a 63 

× oil immersion objective (numerical aperture 1.4) at excitation wavelengths of 488 (emission detected 

between 520 and 567 nm) to detect fat, 561 (emission detected between 573 and 613 nm) to detect 

covalently labelled β-CN and 633 nm (emission detected between 650 and 718 nm) to observe WPI 

provided by Argon, DPSS and He/Ne lasers, respectively. Images (8 bit) were acquired in 1024 × 1024 

pixels using triple channel imaging. The microscope settings were maintained at a similar value for 

different time point measurements for comparison. 
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2.13 Statistical analysis 

The preparation of solutions, emulsions and subsequent analysis were carried out in independent triplicate. 

Analysis of variance (ANOVA) was carried out using the Minitab 16 (Minitab Ltd, Coventry, UK, 2007) 

statistical analysis package. The effect of treatment and replicates were estimated. One-way multiple-

comparison test was used as a guide for pair comparisons of the treatment means. The level of 

significance was determined at p<0.05. 

 

3. Results and discussions  

3.1 Effect of covalent conjugation of β-CN with NHS-Rhodamine on spectroscopic properties 

The UV/vis spectra (Fig. 1) showed that 0.05% β-CN solution did not absorb light at any wavelength in 

the range 350-650 nm. However, it had the expected aromatic absorbance peak at 280 nm. The 

absorbance spectrum of the NHS-Rhodamine solution (Fig. 1) displayed an absorbance peak at 554 nm. 

Covalent conjugation of β-CN with NHS-Rhodamine led to a splitting of the main peak into two 

absorption peaks at about 520 nm and 556 nm (Fig. 1), which may be explained by a non-fluorescent dye 

aggregation (Haugland, 2005). As most of the free dye was removed by dialysis, aggregation may only 

occur between dye molecules covalently bound to the protein. The protein concentration and degree of 

labelling of the β-CNlabelled were calculated as 96.9 ± 0.4% and 1.42 ± 0.18 (moles of dye per mole 

protein), respectively. In addition, Fig. 1 showed the excitation (maximum at 557 nm) and the emission 

(maximum at 582 nm) spectra of the β-CNlabelled conjugate, while NHS-Rhodamine has an excitation 

maximum at 552 nm and emission maximum at 576 nm, which means that conjugation with β-CN caused 

a slight red-shift in both excitation and emission. Furthermore, SDS-PAGE analysis of β-CN and β-

CNlabelled showed that β-CNlabelled migrated somewhat more slowly, which may be due to the slightly 

higher molecular weight of β-CNlabelled compared to that of β-CN (Fig. 1 inset; Mw of NHS-Rhodamine is 

528 Da). 
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Fig. 1. Emission (solid line, excitation at 525 nm) and excitation (dashed line, emission at 600 nm) 

spectra of β-CN-Rhodamine conjugate (β-CNlabelled) in 10 mM phosphate buffered saline, pH 7.4. 

Absorbance spectra of 5 μg/ml NHS-Rhodamine ( ▲ ), 200 μg/ml β-CN ( ■ ) and 120 μg/ml β-CNlabelled 

( ● ) were measured for comparison. The insets show the chemical structure of NHS-Rhodamine (right) 

and SDS-PAGE (left) of β-CNlabelled (lane 1) and β-CN (lane 2); lane M represents molecular weight 

marker.  

 

3.2 Effect of covalent labelling on the emulsification property of protein 

The determination of interfacial tension between aqueous solutions and oil is useful for understanding the 

formation and stability of O/W emulsions. The type of aqueous solution affects the oil/aqueous interfacial 

tension. It should be noticed that the presence of small amounts of impurities (e.g. lecithin) in commercial 

sunflower oil can affect the interfacial tension of proteins. A decrease in the interfacial tension between 

the two phases increases the inherent thermodynamic stability of the emulsion (Gernon, Alford, Dowling, 

& Franco, 2009). Dynamic interfacial tension between solutions (e.g. sodium phosphate buffer pH 7.0, 

WPI, β-CN, WPI/β-CN or WPI/β-CNlabelled) and sunflower oil over 60 min were recorded (Fig. 2). On 

formation of an interface between sunflower oil and phosphate buffer (used as a clean control interface), 

the initial interfacial tension (γi) was 18.7 ± 1.3 mN/m, then decreased to 10.4 ± 0.3 mN/m once 

equilibrium interfacial tension (γEq) was reached after 60 min (Fig. 2); the decrease in interfacial tension 
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was generally achieved within 15 min of the interface formation. The measured γi and γEq between oil and 

protein solutions were significantly lower than that of the clean interface, indicating the high 

effectiveness of proteins in reducing the interfacial tension. Compared with the oil/WPI system (γi = 11.9 

± 0.2 mN/m , γEq = 3.75 ± 0.03 mN/m), the interfacial tension of oil/β-CN significantly decreased from 

10.5 ± 0.8 to 0.72 ± 0.01 mN/m. This means that β-CN is more surface-active than WPI in developing an 

oil/water interface. The effectiveness of β-CN in reducing the interfacial tension is due to its flexible and 

disordered secondary and tertiary structure (Dickinson, 1997; McClements, 2004). Results for the mixed 

protein systems were consistent with those of Seta, Baldino, Gabriele, Lupi, and Cindio (2014), who 

reported that the interfacial tension values for mixed whey protein/β-CN system fell between those of 

these proteins individually. The change in interfacial tension over time for the WPI/β-CN system was 

similar to that seen for β-CN alone (Fig. 2). When β-CN was replaced by β-CNlabelled in WPI/β-CN system, 

there was no significant difference in γi and γEq for both systems (Table 1), which shows that the labelling 

does not affect the emulsification property of β-CN.  
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Fig. 2. Dynamic interfacial tension measured between sunflower oil and phosphate buffer (control) (♦), 

WPI alone (●), β-CN alone (○), a mixture of WPI/β-CN (1:1 by weight) (■) and a mixture of WPI/β-

CNlabelled (1:1 by weight) (□) at 20 ˚C, pH 7.0, using the Wilhelmy plate technique. Error bars represent 

the standard deviation of three independent replicates. 
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Table 1. Properties of O/W emulsions stabilized with WPI/β-CN or WPI/β-CNlabelled at day 0 and 3 (mean ± SD, n ≥ 3). 1 

Emulsion type Storage 

Day 

Size D3,2 

(μm) 

Size D4,3 

(μm) 

ζ-potential Viscosity 

(mPa.s) * 

Creaming  

 stability (%) ** 

γi  

(mN/m) 

γEq 

(mN/m) 

Emulsion-WPI/β-CN 0 1.65±0.04
a
 3.93±0.18

a
 -40.24±2.17

a
 3.91±0.03

a
 43.2±1.4

a
 11.1±0.2

a
 1.1±0.1

a
 

Emulsion-WPI/β-CN 3 2.11±0.24
b
 5.61±0.69

b
 - 3.87±0.00

a
 - - - 

Emulsion-WPI/β-

CNlabelled 

0 1.63±0.05
a
 3.78±0.27

a
 -40.73±2.11

a
 3.85±0.02

a
 40.5±1.4

a
 11±0.7

a
 1.4±0.1

a
 

Emulsion-WPI/β-

CNlabelled 

3 1.61±0.04
a
 3.91±0.39

a
 - 3.82±0.08

a
 - - - 

 2 

Within a column, values with different superscript letters are significantly different (p< 0.05). 3 

* Absolute viscosity at shear rate 300 s
-1

 at 25 ˚C.  4 

** Integral light transmission value at 60 min at 25 ˚C. 5 
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3.3 Effect of covalent labelling on the physical behaviours of emulsions 6 

Fat droplet size of emulsions made with WPI/β-CN (control system) or WPI/β-CNlabelled at day 0 and 3 7 

were measured (Table 1). The use of a lab homogenizer with low pressure (~ 4 MPa) resulted in 8 

emulsions with a droplet size distribution ranging from 0.28 – 111 μm. No significant difference (p>0.05) 9 

in either D3,2 or the D4,3 was observed between fresh emulsions (day 0). After 3 days of storage at 4 ˚C, 10 

the droplet size of the control system markedly increased whereas the droplet size of the WPI/β-CNlabelled 11 

emulsion did not change. Hence, according to the droplet size measurements, labelling of β-CN had no 12 

negative effect on fresh emulsions. 13 

 14 

Fig. 3 shows the creaming stability of the four fresh emulsions, measured by a multiple analytical 15 

centrifuge (LUMiFuge). The slope of the integral transmission-time curve is an indicator of creaming 16 

stability, i.e. greater increases indicating lower stability. As shown in Fig. 3, the four emulsions had very 17 

similar integral transmission values (~ 6%) at the starting point. After 1 h centrifugation, the WPI-based 18 

emulsion presented the fastest increase in phase separation and the integral transmission (%) reached 51.2 19 

± 2. Meanwhile, emulsions prepared with β-CN alone, a mixture of WPI/β-CN or a mixture of WPI/β-20 

CNlabelled had final values at 42.8 ± 2.9, 43.2 ± 1.4 and 40.5 ± 1.4, respectively. This confirms that 21 

emulsions made with WPI alone were the most unstable system compared to the other three emulsions. 22 

These results confirm previous observations by Parkinson, et al. (2004) that the addition of β-casein can 23 

inhibit the creaming effect of whey protein-based emulsions. From Fig. 3 it appears that emulsions 24 

stabilized with WPI/β-CNlabelled were slightly more stable than those with WPI/β-CN. However, no 25 

significant difference (p>0.05) in the creaming stability could be determined between them (Table 1).  26 

The zeta (ζ)-potential of WPI/β-CN- and WPI/β-CNlabelled-based emulsions at pH 7.0 was also measured 27 

(Table 1). Both emulsions had negative apparent surface charges, around -40 mV, which indicates that 28 

covalent labelling technique did not significantly (p>0.05) change the apparent surface charge of the 29 

emulsion droplets. Furthermore, all emulsions displayed Newtonian behaviour. The absolute viscosity of 30 

emulsions with or without label, at a shear rate of 300 s-1 at day 0 and 3, are also shown in Table 1. After 31 
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three days storage at 4 ˚C, emulsions showed exactly the same behaviours throughout the shear rate range 32 

of 10-300 s
-1

; there was no significant difference (p>0.05) in viscosity at a shear rate of 300 s
-1

 at 25 ˚C.  33 
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Fig. 3. Creaming stability of fresh emulsions (10% sunflower oil, pH 7.0) made with a binary mixture of 35 

WPI/β-CN (1:1 by weight) (■), a mixture of WPI/β-CNlabelled (1:1 by weight) (□), WPI alone (●) and β-36 

CN alone (○), measured using a Lumifuge
®
 stability analyser. Each data point is the average of four 37 

independent replicates.  38 

 39 

3.4 Microstructure of mixed protein-based emulsions 40 

The CLSM images of WPI/β-CN-based emulsion (control system) at 0 and 3d are shown in Fig. 4. Both 41 

proteins and oil phase were non-covalently stained using Nile blue. It showed oil droplets 42 

(pseudocoloured blue) dispersed in a continuous phase generally with size less than 10 μm, which is 43 

consistent with the light scattering data (Table 1). Tromp, van de Velde, van Riel, and Paques (2001) 44 

stated the difficulty of testing functionality changes in covalently-labelled proteins due to the small 45 

quantities of labelled protein available. In this study, 0.5% (w/w) total protein was used as it was the 46 

minimum protein concentration required to prepare a stable emulsion. Proteins (pseudocoloured red) 47 

including WPI and β-CN were observed mostly at the surface of fat globules but not in the aqueous phase, 48 

which means there is no excess protein in this emulsion. In addition, it was found that the thickness of the 49 
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absorbed protein layers was variable and that these proteins may appear either as a monolayer or in dense 50 

aggregates (Fig. 4 image C0 and Fig. 5 image A4, arrows). Comparing the microstructure of emulsions 51 

during storage clearly showed that the oil droplets tend to flocculate after 3 d, presumably due to the low 52 

pressure used during homogenization resulting in an incomplete coverage of emulsifiers on the surface of 53 

oil droplets (McClements, 2004).  54 
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Fig. 4. Confocal micrographs of emulsions stabilized with WPI/β-CN acquired on day 0 (A0-C0) and 3 56 

(A3-C3) during storage at 4 ˚C, showing the fluorescence signal corresponding to the 488 and 633 nm 57 

laser excitation combined (Dual channel) at zoom 1, 3 and 5. Arrows indicate variable thickness of the 58 

protein layer at the oil droplet interface. Scale bar: 10 μm. 59 

 60 

The nature of the absorbed layer is one of the most important factors determining the stability of 61 

emulsions. A combination of covalent and non-covalent staining techniques was used to visualize two 62 

proteins on the interface. The CLSM micrographs of fresh emulsions made with mixed proteins (WPI/β-63 

CN) and with covalently labelled mixed proteins (WPI/β-CNlabelled) are shown in Fig. 5 (A1-A4, B1-B4). 64 

The images show fat globules pseudocoloured blue (image A1 and B1), β-CN pseudocoloured green 65 

(image B2), total proteins including both WPI and β-CN pseudocoloured red (image A3 and B3) and the 66 

overlay images (image A4 and B4), respectively. β-CNlabelled could be observed in emulsions while non-67 

covalently labelled β-CN could not been seen (image B2 and A2), indicating that the covalent labelling 68 

technique allowed visualization of β-CN in a mixed protein-stabilized emulsion and that the fluorescent 69 

probe was not affected by homogenization. Overlay images (Fig. 5 image B4 and Fig. 6 image A3 and 70 

B3), showed a mix of green and red pseudocolours on the O/W interface, indicating both whey proteins 71 

and β-CN were co-localized at the surface of fat globules. The absorbed protein layer which is 72 

pseudocoloured either yellow (i.e. a mix of green and red channels) or green was β-CN, whilst WPI was 73 

pseudocoloured red. Therefore, WPI could be distinguished from β-CN in emulsions using covalent and 74 

non-covalent labels. 75 

On increasing to higher zoom factors (Fig. 6), WPI (pseudocoloured red in the overlay channel, Fig. 6 76 

image A3) and β-CN (pseudocoloured yellow in the overlay channel, Fig. 6 image A3) were observed 77 

simultaneously and co-localized at the O/W interface. Images also revealed other information (Fig. 6 78 

image B1-B3), for example, pixel intensity of three regions of interest (ROI) labelled ROI 1, ROI 2 and 79 

ROI 3 taken at the interface was analysed using the Leica CLSM quantification tool. The pixel intensity 80 

of the green channel was the same as that of the red channel (~240) at ROI 1 while at ROI 2 the pixel 81 

intensity of red channel (106) was slightly higher than that of green channel (81). The intensity of green 82 

channel at ROI 3 was as low as that of the background (~13) whereas the red channel’s intensity was 55, 83 
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which is much higher than its background (~6). All the free dye was expected to be removed by dialysis 84 

during the preparation of the β-CN-Rhodamine conjugate. Therefore, it was concluded that milk proteins 85 

were not evenly distributed at the surface of oil droplets and that the thickness of the interface depended 86 

on the type of protein. CLSM showed that β-CN produced a thicker layer (ROI 1 in Fig. 6 image B3) than 87 

whey proteins (ROI 3 in Fig. 6 image B3). This result appears to confirm the hypothesis of Parkinson and 88 

Dickinson (2004), who proposed that the absorbed whey protein layer was assumed to be thin, while the 89 

presence of casein molecules increased the effective thickness substantially, due to the “long dangling 90 

polypeptide tails” which are characteristic of β-CN molecules. 91 



Submitted and corrected Word version May 2016, Li et al. FooHyd 2016, 

doi:10.1016/j.foodhyd.2016.05.029 
 

 

O
v

er
la

y
 C

h
an

n
el

 
R

ed
 C

h
an

n
el

 
G

re
en

 C
h

an
n
el

 
B

lu
e 

C
h
an

n
el

 
EmulsionWPI/ -CN EmulsionWPI/ -CNlabelled 

A1 

A2 B2 

A3 B3 

B1 

A4 B4 

 92 



Submitted and corrected Word version May 2016, Li et al. FooHyd 2016, 

doi:10.1016/j.foodhyd.2016.05.029 
 

Fig. 5. Confocal micrographs of fresh emulsions stabilized with WPI/β-CN or WPI/β-CNlabelled , showing 93 

the fluorescence signal corresponding to the 488 nm laser excitation (Blue channel, fat phase labelled by 94 

Nile Blue, image A1 and B1), the 561nm laser excitation (Green channel, β-CN labelled by Rhodamine, 95 

image A2 and B2), the 633 nm laser excitation (Red channel, all proteins labelled with Nile Blue, image 96 

A3 and B3) and the 488, 561 and 633 nm laser excitation combined (Overlay channel, image A4 and B4). 97 

The arrow indicates protein presented in dense aggregates on the surface of the oil droplet. Scale bar: 10 98 

μm. 99 
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Fig. 6. Confocal micrographs of emulsions stabilized with WPI/β-CNlabelled at different magnifications 101 

(zoom 5 and 6.3), showing the fluorescence signal corresponding to the 561 nm laser excitation (Green 102 

channel, image A1 and B1), the 633 nm laser excitation (Red channel, image A2 and B2) and the 561 and 103 

633 nm laser excitation combined (Overlay channel, image A3 and B3). Arrows indicate three regions 104 

(ROI 1, ROI 2 and ROI 3) of protein layer selected for image analysis. Scale bar: 10 μm. 105 

  106 

4. Conclusion 107 

This study has shown that the covalent labelling of β-CN with NHS-Rhodamine led to a minor effect on 108 

the spectral properties of NHS-Rhodamine. The emulsification properties of β-CN were not affected by 109 

conjugating with Rhodamine. The use of covalently labelled β-CN in a mixed casein/whey proteins 110 

emulsion demonstrated that the covalent labelling of β-CN also had no effect on the physicochemical 111 

properties of the emulsions. Combining covalent and non-covalent staining techniques with CLSM 112 

allowed localisation of two protein ingredients surrounding oil droplets in an O/W emulsion. Despite the 113 

resolution limits of the microscope (~ 250 nm), covalent labelling was shown to be a powerful approach 114 

that can be used to gain new insights in the surface properties of emulsions prepared with mixed proteins.  115 

 116 
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