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Abstract 24 

Genetics is responsible for approximately half the observed changes in animal performance in well-25 

structured breeding programs. Key characteristics of the dairy cow of the future include 1) produce a 26 

large quantity of high value output (i.e., milk and meat), 2) good reproductive performance, 3) good 27 

health status, 4) good longevity, 5) does not eat a large quantity of food, 6) easy to manage (i.e., easy 28 

calving, docile), 7) good conformation (over and above reflective of health, reproductive performance 29 

and longevity), 8) low environmental footprint, and 9) resilient to external perturbations. Pertinent and 30 

balanced breeding goals must be developed and implemented to achieve this type of animal; 31 

excluding any characteristic from the breeding goal could be detrimental for genetic gain in this 32 

characteristic. Attributes currently not explicitly considered in most dairy cow breeding objectives 33 

include product quality, feed intake and efficiency, and environmental footprint; animal health is 34 

poorly represented in most breeding objectives. Lessons from the past deterioration in reproductive 35 

performance in the global Holstein population remind us of the consequences of ignoring or failing to 36 

monitor certain animal characteristics. More importantly, however, current knowledge clearly 37 

demonstrates that once unfavourable trends have been identified and the appropriate breeding strategy 38 

implemented, the reversal of genetic trends is achievable, even for low heritability traits like 39 

reproductive performance. Genetic variation exists in all the characteristics described. In the genomics 40 

era, the relevance of heritability statistics for most traits is subdued; the exception is traits not 41 

amenable to routine measurement in large populations. Phenotyping strategies (e.g., more detailed 42 

phenotypes, larger population) will remain a key component of an animal breeding strategy to achieve 43 

the cow of the future as well as providing the necessary tools and information to monitor 44 

performance. The inclusion of genomic information in genetic evaluations is, and will continue, to 45 

improve the accuracy of genetic evaluations which in turn will augment genetic gain; genomics, 46 

however, can also contribute to gains in performance over and above support of increased genetic 47 

gain. Nonetheless, the faster genetic gain and thus reduced ability to purge out unfavourable alleles 48 

necessitates the appropriate breeding goal and breeding scheme and very close monitoring of 49 

performance, in particular for traits not included in the breeding goals. Developments in other 50 

disciplines (e.g., reproductive technologies) coupled with commercial struggle for increased market 51 

share of the breeding industry, imply a possible change in the landscape of dairy cow breeding in the 52 

future.  53 

 54 

Keywords: Genetics, heritability, genomic, breeding objective 55 

 56 

 57 



3 
 

Introduction 58 

Genetics is responsible for approximately half the observed changes in animal performance in 59 

well-structured breeding programs; change here implies improvements (e.g., milk production) and 60 

deterioration (e.g., reproductive performance). Almost all, if not all, individual characteristics, have a 61 

genetic basis. Once genetic variation exists, then breeding for improvement is possible. Moreover, 62 

despite antagonistic genetic correlations existing among some traits (e.g., milk production and 63 

reproductive performance; Berry et al., 2014b), once the genetic correlations are less than unity, then 64 

genetic improvement in all traits is achievable; whether or not this is an appropriate strategy will be 65 

determined by the relative (economic) importance of the respective traits. 66 

Lessons from the past suggest that the definition of a holistic and pertinent breeding goal is of 67 

fundamental importance. Genomic selection (Meuwissen et al., 2001) is receiving considerable 68 

attention of late as a tool to increase genetic gain. If however the most pertinent breeding objective 69 

and associated breeding program is not in place, then genomic selection could actually have serious 70 

repercussions for gains in dairy herd profit. Not all traits included in a breeding objective are 71 

amenable to routine measurement on very large populations from which to estimate breeding values. 72 

Controlled experiments on animals divergent for the breeding goal can be efficiently used to elucidate 73 

the expected correlated responses to selection for difficult/expensive to measure traits. Thus, the first 74 

and most important step in deciding “what do we need” for a successful breeding program is to define 75 

the characteristics of the cow of the future. Once defined, the extent of genetic variation governing 76 

these characteristics and the genetic inter-relationships among these characteristics can be quantified. 77 

The final step is to define the best strategy (i.e., phenotyping, genetic evaluations, exploitation of 78 

genomic information) to achieve the desired gains. Continuous evaluation of the performance of the 79 

breeding strategies, including genetic change in the different traits and the cost:benefit of alternative 80 

breeding strategies, should be routinely undertaken.  81 

 82 

Characteristics of the ideal cow 83 

 When initially defining the ideal cow, it is crucial not to 1) overlook traits despite the 84 

sometimes perceived lack of genetic variation in the trait, and 2) ignore a trait if it cannot be (easily) 85 

measured given the current state-of-the-art. Also, when the objective is to define the ideal cow to 86 

guide a breeding program, the ideal cow should be that of the future. Therefore, traits of likely future 87 

importance and their associated (societal) values (e.g., environmental footprint) as well as the future 88 

production system the cows are likely to be producing in, must be considered.  89 

Characteristics of the dairy cow of the future include 90 
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1) Produce a large quantity of high value output (i.e., milk and meat) 91 

2) Good reproductive performance 92 

3) Good health status 93 

4) Good longevity 94 

5) Does not eat a large quantity of food 95 

6) Easy to manage (i.e., easy calving, docile) 96 

7) Good conformation (over and above reflective of health, reproductive performance and 97 

longevity) 98 

8) Low environmental footprint 99 

9) Resilient to external perturbations 100 

 101 

All the aforementioned characteristics cannot be taken in isolation. A cow, for example, that 102 

produces a large quantity of high value output but does not eat a large quantity of food will likely 103 

enter negative energy balance which in turn has unfavourable ramifications for animal health and 104 

reproductive performance (Beam and Butler, 1999; Collard et al., 2000). 105 

 Production of a large quantity of high value output. Almost all international dairy cow 106 

breeding goals include milk, fat and protein yield. Milk fat is composed of both saturated and 107 

unsaturated fats, as well as the respective individual fatty acid components. The correlation, for 108 

example, between total milk fat composition and saturated milk fat composition is 0.90 (Soyeurt et al., 109 

2007) suggesting some (limited) variability in the saturated content of fat exists. Similarly, milk 110 

protein is composed of a casein and whey fraction as well as the individual protein fractions. Milk 111 

processing characteristics (e.g., milk coagulation properties) are also important determinants of milk 112 

quality, especially in production systems supplying markets of high value added (speciality) cheeses 113 

(Sturaro et al., 2013). Although these individual components currently do not have an explicit 114 

economic value in most production systems, they can influence consumer perception of milk products 115 

and thus market demand. For example, the average milk fat of a dairy cow contains 70% saturated 116 

fatty acids, 25% monounsaturated fatty acids and 5% polyunsaturated fatty acids (Grummer, 1991). 117 

Currently dairy products provide 15% to 25% of the fat consumption in the average human diet but 118 

represents 25 to 35% of the saturated fat intake (Chillard et al., 2001). Interest has also intensified 119 

recently in selection schemes for increased milk lactose yield. The genetic correlation between milk 120 

yield and lactose yield is 0.979 (Miglior et al., 2007) indicating limited (but exploitable) genetic gain 121 

is achievable.  122 

Although the main source of revenue from dairy herds is milk, beef, through the sale of cull 123 

cows and surplus calves, represents 10-20% of the gross income in most production systems (van der 124 

Werf et al. 1998). Thus, beef merit, however defined, is an important characteristic of dairy 125 

production and the future dairy cow. The importance of beef characteristics of dairy cows may be 126 
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greater with the availability of low-cost and effective sexed semen as well as production systems 127 

where herd size is limited (e.g., finite land in grazing dairy production systems). 128 

Good reproductive performance. The importance of excellent reproductive performance in 129 

dairy production systems has been extensively discussed for both seasonal-calving (Shalloo et al., 130 

2014) and confinement (Cabrera, 2014) production systems. Parturition is required for lactation and 131 

good reproductive performance is necessary to maximise revenue (e.g., longer lactations in seasonal 132 

calving herds) and reduce costs (e.g., hormonal interventions). The importance of superior 133 

reproductive performance is greatest in seasonal calving herds where the calving season is 134 

synchronised with the availability of low-cost feed (e.g., grazed grass). In seasonal calving herds, 135 

compromised reproduction is synonymous with the necessity for involuntary culling. The observed 136 

decline in reproductive performance in Holstein dairy cows in most populations until the early 2000’s 137 

(Berry et al., 2014b) eroded the revenue generated from the concurrent increase in milk production 138 

over the same time period (Evans et al., 2006). 139 

Good health status. Not only does sub-optimal animal health erode herd profit through 140 

increased medicinal requirements and reduced performance (i.e., yield and reproductive performance) 141 

but compromised animal health status also influences consumer perception of modern-day dairy 142 

production systems. Some health issues also incur explicit financial penalties; milk price, for example, 143 

in most countries is tiered based on the somatic cell count of the herd bulk milk pool. Producers are 144 

predominantly concerned with clinical signs of infection but non-observed, often sub-clinical disease, 145 

also impairs performance (Dohoo and Martin, 1984; de Graaf and Dwinger, 1996). Past experience 146 

from the observed decline in reproductive performance in the global Holstein population (Royal et al., 147 

2000; Evans et al., 2006, Berry et al., 2014b) clearly indicates that monitoring of temporal trends in a 148 

trait or suite of traits is vital to identify unfavourable trends early.   149 

Good longevity. A second lactation cow yields approximately 16 to 19% more than a first 150 

lactation cow while a third lactation cow (e.g., mature cow) yields approximately 28 to 31% more 151 

than a first lactation cow (Horan et al., 2005; Walsh et al., 2007). Therefore, achieving good longevity 152 

will not only reduce herd replacement cost but will increase herd revenue through the achievement of 153 

mature herd yield but also greater calf price of surplus calves from older cows (McHugh et al., 2010). 154 

Moreover, younger parity cows are more prone to calving difficulty (Berry et al., 2007; Mee et al., 155 

2011), stillborn calves (Berry et al., 2007; Mee et al., 2008), and disease (Berry and Meaney, 2005) 156 

thereby impacting both labour requirements and overall herd profit; of course very old cows are also 157 

more prone to some diseases (Roche and Berry, 2006). The impact of reduced replacement rate on 158 

herd genetic gain must also be acknowledged; assuming a rate of genetic gain in calves born of 1% 159 

per annum, a halving of replacement rate from 20% to 10% (assuming culling is independent of 160 
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genetic merit) equates to a loss in gain of just 0.1% per annum. In addition to the considerable impact 161 

on farm profit, poor cow longevity is also a growing consumer concern.  162 

Does not eat a large quantity of feed. Feed costs represent 50% to 80% of the overall costs of 163 

production in contrasting dairy production systems (USDA-NASS, 2011; Shalloo et al., 2004). 164 

Reducing feed intake, therefore, without any repercussion on the other animal characteristics 165 

described is likely to reduce costs and thus improve herd profitability. There is increasing 166 

commentary on the use of residual feed intake (RFI) as a measure of efficiency in dairy production 167 

systems (Berry and Crowley, 2013) to reduce feed intake without necessarily impacting other 168 

performance traits. Selection for (lower) RFI or reduced feed intake is sensible within an overall 169 

breeding goal that includes all the aforementioned characteristics. If all the components of statistical 170 

model used to derive RFI are included in the breeding objective, then inclusion of either RFI or feed 171 

intake in the breeding objective is mathematically equivalent. Although a large proportion (0.86; 172 

Coleman et al., 2010) of the feed intake phenotypic variation in lactating dairy cows can be explained 173 

by the energy sinks and other confounding effects (e.g., year), phenotypic variation in RFI 174 

nonetheless exists. Lower feed intake implies lower herd feed costs, but also potentially greater cow 175 

numbers in dairy cow grazing production systems. 176 

Easy to manage. Expanding herd size, and in some regions, access to only labour with less 177 

expertise in animal husbandry requires an easy-care cow. Characteristics of an easy-case cow not 178 

already accounted for (i.e., good health and fertility) include good animal temperament and no 179 

requirement for assistance at calving. Polledness is also a management trait, as is the ability of the 180 

animal as a new-born calf to be vigorous and ingest and absorb sufficient colostrum. Milking speed 181 

could also be considered as an ease of management trait as it affects milking parlour throughput. 182 

Berry et al. (2013) reported considerable phenotypic variation in milking duration among animals 183 

even after accounting for differences in the associated milk yield (and somatic cell count); the 184 

phenotypic correlation between milk yield and milking duration was 0.48. Berry et al. (2013) reported 185 

a phenotypic standard deviation of 102.2 seconds per milking for milking duration independent of 186 

milk yield; across a 305-day lactation, milked twice daily, this equates to a standard deviation of over 187 

17 hours. Therefore, considerable gains in milking parlour throughput may be achievable with 188 

selection for faster milking speed independent of milk yield and udder health. 189 

Good conformation. Certain animal morphological characteristics are phenotypically 190 

associated with improved reproductive performance, health (e.g., mastitis, lameness) and longevity 191 

(Berry et al., 2005; Larroque and Ducrocq, 2001). Good udder conformation, however, is required for 192 

efficient automatic milking and the appropriate animal size is necessary for the design of the milking 193 

parlour as well as the housing facilities. Good cow conformation may become more influential on 194 

cow longevity as the actual longevity of dairy cows improve through genetic selection. Therefore, 195 
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correlations between cow conformation and longevity may become stronger as factors other than 196 

reproductive performance influence the likelihood of culling.  197 

Low environmental footprint. Animal agriculture generates greenhouse gas emissions (GHG) 198 

as methane (CH4) from enteric fermentation and manure, nitrous oxide (N2O) from the widespread 199 

use of nitrogenous fertilizers and animal manure, nitrates from animal excretion, and carbon dioxide 200 

(CO2) from the fossil fuels for energy usage plus land use change. Methane, however, is not only an 201 

environmental hazard but is also associated with a loss of carbon from the rumen and therefore an 202 

unproductive use of energy (Johnson and Johnson, 1995). O’Mara (2011) stated that animal 203 

agriculture is responsible for 8.0 to 10.8% of global greenhouse gas emissions based on calculations 204 

from the Intergovernmental Panel on Climate Change (IPCC). If however complete lifecycle analysis 205 

(i.e., accounting for the production of inputs to animal agriculture as well as change in land use such 206 

as deforestation) is undertaken this figure can be up to 18%. Cattle are the largest contributors to 207 

global greenhouse gas emissions (O’Mara, 2011).  208 

One element of environmental footprint, practically ignored to date in animal production 209 

systems, is the efficiency of water usage. Water is overtaking oil as the world’s scarcest critical 210 

natural resource (Solomon, 2010). Although the statistic of a 70% increase in food demand between 211 

the years 2010 and 2050 is often quoted (FAO, 2009), less often quoted is the prediction by the 212 

United Nations (UNEP, 2008) of a 50% increase in global water demand between the years 1995 and 213 

2025. Irrigation currently covers 20% of all cultivated land and is responsible for approximately 40% 214 

of agricultural production (Molden, 2007). Rosegrant et al. (2002) projected that by 2025, 64% of the 215 

world’s population will live in water stressed basins, an increase from 38% in 2006. Agriculture is by 216 

far the greatest user of freshwater in the world (Jury and Vaux, 2007; Morison et al., 2008; Passioura 217 

and Angus, 2010) accounting for 70% of total freshwater use (Steinfield et al., 2006). Therefore low 218 

water requirement as well as low methane emissions may be a desirable characteristic of the cow of 219 

the future.  220 

Resilient to perturbations.  There is considerable commentary on the impact of ruminant 221 

production systems on climate change. Less discussed, however, is the impact of climate change on 222 

ruminant production systems. Climate change is expected to result in rising global temperature, 223 

changes in patterns of precipitation, and more extreme weather events. As well as imposing heat stress 224 

on individual animals, such climatic changes may alter the geographical risk areas for certain diseases 225 

(Yatoo et al., 2012) which may have implications for animal populations naïve to such diseases. The 226 

animal of the future, therefore, as well as achieving all the aforementioned characteristics, will have to 227 

be robust to various external perturbations. Because of the definition of heritability, such perturbations 228 

are likely to have less impact on higher heritability traits estimated from field data. 229 

 230 
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Existence of genetic variation 231 

Most discussions on breeding programs and genetic gain focus on heritability estimates for 232 

different traits. Heritability however is only one of the factors that influences genetic gain. Annual 233 

genetic gain for a given trait may be described as (Rendel and Robertson, 1950): 234 

 235 

where ∆G is annual genetic gain; i is the intensity of selection; r is the accuracy with which you know 236 

the genetic merit of each animal, σ is the genetic standard deviation, and L is the generation interval. 237 

The accuracy of selection is affected by both the heritability of the trait and the information available 238 

on the animal itself and its relatives. Heritability summarises the proportion of phenotypic variation, 239 

or differences among a cohort of animals, attributable to genetic variation between individuals. 240 

Animal breeders are generally concerned with the narrow sense heritability (h
2
), which is the 241 

proportion of phenotypic variation attributed to additive genetic variation (i.e., allelic effects 242 

transmitted from one generation to the next). Heritability varies from 0 (not heritable) to 1 (fully 243 

heritable); heritability estimates for a range of performance traits in dairy cattle are given in Figure 1. 244 

In general, traits associated with viability and fitness (i.e., health and reproductive performance) are 245 

lowly heritable while traits associated with animal morphological characteristics are more highly 246 

heritable corroborating similar observations in other species (Visscher et al., 2008; Falconer and 247 

Mackay, 1996). 248 

Figure 2 illustrates the interaction between the number of half-sib progeny records and 249 

heritability on the accuracy of selection (ignoring parental contribution). For a given number of 250 

progeny, the accuracy will be greater for higher heritability traits. Accuracy of selection of near unity 251 

is nonetheless achievable, even for low heritability traits, if sufficient information is available. 252 

Therefore, with the appropriate breeding programme (e.g., large paternal half-sib groups, exploitation 253 

of genomic information) and infrastructure for the collection and storage of data, genetic gain in low 254 

heritability traits is certainly achievable if ample genetic variation is present. Hence, one could argue 255 

that the importance of heritability in the genomics era is less compared to historically when evaluating 256 

the potential of animal breeding to achieve the cow of the future at a population level. What is 257 

important is the extent of genetic variation present. Therefore scientific studies must always report the 258 

genetic variance for the traits being evaluated; this information has not always been provided in 259 

studies heretofore. 260 

Figure 1 summarises the coefficient of genetic variation for a range of performance traits in 261 

dairy cattle. The coefficient of (genetic) variation is used because it is unit-less and therefore 262 

facilitates the direct comparison of the variation present in traits differing in mean values but moreso 263 

the units of measurement. Although heritability estimates varies considerably across traits, the 264 

L

σri
ΔG

g
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coefficient of genetic variation is relatively consistent across traits (~5%). The existence of 265 

considerable genetic variation in all traits clearly signifies that once high accuracy of selection is 266 

achievable, rapid genetic gain in each of these traits is indeed possible. The actual rate of genetic gain 267 

achievable for a trait is a function of the relative (economic) weighting on the trait within the overall 268 

breeding goal but also the genetic correlations between that trait and the other traits in the breeding 269 

goal. 270 

 271 

Derivation of a breeding goal to achieve the ideal cow  272 

Once the desired animal characteristics to be considered in the breeding goal have been 273 

decided, and the existence of genetic variation in these traits demonstrated, the relative importance of 274 

each should be quantified. From a breeding perspective, avoidance of double counting should be 275 

ensured. For example, in a breeding goal that includes milk production and fertility with their 276 

associated relative economic weights, the economic value on health should not include the effect of 277 

compromised health on either production or fertility. This is because an animal genetically 278 

predisposed to compromised health will also, on average, have inferior genetic merit for milk 279 

production and fertility (because of the genetic correlations; Berry et al., 2011a). The economic 280 

repercussions of this association will be captured through the economic values and estimated breeding 281 

values of the animal for milk production and fertility. This is why the economic values on some traits 282 

in breeding goals may appear less than expected.  283 

Some traits currently have no explicit economic value (e.g., greenhouse gas emissions) or the 284 

expected responses to selection may not be socially acceptable. For example, the economic values in 285 

the UK national dairy cow breeding goal are such that genetic merit for calving interval is expected to 286 

deteriorate. This is because it is not economically appropriate to suffer a loss in genetic gain in other 287 

performance traits if a greater emphasis is placed on reproductive performance (Berry et al., 2014b). 288 

Several studies have proposed approaches on how to best include such traits in breeding objectives 289 

(Nielsen et al., 2005; Wall et al., 2010). Desired gains selection indexes or restriction selection 290 

indexes (i.e., a form of desired gains index) can be applied to achieve a theoretical gain in these traits. 291 

It must be acknowledged that using such desired gains approaches will reduce the expected gain in 292 

profit (Gibson and Kennedy, 1990) unless the index weighting on the constrained trait in the 293 

unrestricted selection index is zero. Alternative approaches to deriving the relative weights on traits 294 

within a breeding goal include interpretation of results from a Delphi study (or other form of survey) 295 

or PAPRIKA (Potentially All Pairwise RanKings of all possible Alternatives; Hansen and Ombler, 296 

2009). Whatever the approach, the expected responses to selection should be calculated and ideally 297 

these expected responses should be acceptable to stakeholders (e.g., producers, consumers). 298 
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 Concern exists about the impact on overall genetic gain from including (too) many traits in a 299 

breeding goal due to a perceived dilution in emphasis on the “more important traits”. Figure 3 300 

illustrates the expected responses to selection for a given trait based on alternative two-trait breeding 301 

goals relative to a breeding goal with only one trait. An accuracy of selection of 0.99 is assumed for 302 

both traits and the genetic correlation between the traits is altered from -0.5 to +0.5. The genetic 303 

variance times the relative economic value of the second trait was either equal or double that of the 304 

first trait depending on the scenario investigated. It is sometimes (incorrectly) thought that including a 305 

trait in a breeding goal with a zero genetic correlation will not impact genetic gain in the other trait(s). 306 

For example, such a conclusion is often used when discussing RFI since, if derived using genetic 307 

regression, RFI will be independent of the traits included in the regression (i.e., milk production). 308 

Figure 3 illustrates that this is not true since it alters the selection intensity for the other traits in the 309 

breeding goal. This is more clearly demonstrated in Figure 4 where the top 10% of animals on a 310 

combined index includes, some, but not all of the top 10% of animals in each trait thereby reducing 311 

the selection intensity for each trait and thus genetic gain. Therefore, including RFI derived using 312 

genetic regression in a breeding goal will reduce the rate of genetic gain in, for example, milk 313 

production; the extent to which it reduces the genetic gain will be a function of the difference in 314 

genetic variance and relative weighting on both traits.  315 

The impact of genetic gain in a given trait is expected to reduce as the number of additional 316 

traits included in the breeding objective increase. The extent of the reduction in genetic gain for the 317 

original trait is dependent on 1) the genetic covariances among the breeding goal traits (reduction is 318 

expected to be larger if negative associations exist and the economic weights are the same sign), 2) 319 

the weighting on the additional traits relative to the original trait (genetic gain in the original trait is 320 

reduced as the relative weight on the additional traits increase), 3) the genetic variance of the 321 

additional traits (genetic gain in the original trait is reduced if the relative genetic variance of the 322 

additional traits is greater) and, 4) the accuracy of the genetic evaluations of the additional traits based 323 

on information on the additional traits themselves (genetic gain in the original trait will be reduced if 324 

the accuracy of the genetic evaluations of the additional traits based on information on those traits 325 

themselves increase). This phenomenon is illustrated in Figure 5 which depicts the relative genetic 326 

gain expected for a given trait as the number of traits included in the breeding goal increases. In this 327 

example the genetic variance and economic values of all traits were assumed equal, zero covariances 328 

were assumed to exist among all traits, and the accuracy of selection for all traits was 0.99. Relative to 329 

a breeding goal with just a single trait, the genetic gain in the original trait is expected to be 22% of 330 

the original gain when an additional 19 traits are included in the breeding goal. If the relative 331 

weighting of all 19 additional traits was just 10% of the original trait, then the expected genetic gain 332 

in the original trait was 91% of the genetic gain expected with a single-trait breeding goal.  333 
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There is much on-going discussion about if including RFI, with a low associated reliability, in 334 

a breeding goal will adversely affect genetic gain. A two trait breeding goal including protein yield 335 

and RFI is assumed with a genetic standard deviation times the relative economic weight on both 336 

traits being approximately similar (Bell et al., 2013; Gonzalez-Recio et al., 2014); zero genetic 337 

correlation is assumed between both traits. If the reliability of genetic evaluation for RFI is 10%, the 338 

genetic gain for protein yield is 96% that of a breeding goal that included only protein yield (although 339 

RFI is expected to also improve); a reliability of 20% for RFI reduces the genetic gain in protein yield 340 

to 91% of that achievable with single trait selection for protein yield. Based on the scenarios 341 

simulated here, although including additional traits in a breeding goal is likely to reduce genetic gain, 342 

the impact is expected to be less for the more important traits (assuming the genetic variance of all 343 

traits is the same and zero covariances exist). More importantly, inclusion of the additional 344 

(important) traits in the breeding goal will increase the overall response to selection on the entire 345 

breeding goal (Figure 5).  346 

The relative emphasis on an individual trait i in a breeding goal is usually depicted as the 347 

product of the genetic standard deviation times the economic weight of that trait divided by the sum of 348 

the same calculation for all traits in the breeding goal: 349 









n

1j

jj

ii
i

|σa|

|σa|
Emphasis .  350 

where ai and aj is the economic value for trait i and j, respectively and σi and σj is the genetic standard 351 

deviation for trait i and j, respectively. Figure 5 clearly shows how misleading such a calculation can 352 

be using the parameters (i.e., same economic weights, same variances, same accuracy of selection and 353 

same covariances) already described for a breeding goal with up to 20 traits. The relative emphasis for 354 

individual traits in a breeding goal should be expressed based on expected response to selection which 355 

can be derived using selection index theory. Another example can be used to emphasise the point. 356 

Assume a two-trait breeding goal that includes protein yield and reproductive performance with a 357 

genetic correlation of -0.50 (Berry et al., 2014b) between them and each with an accuracy of selection 358 

of 0.99. The same genetic variance is assumed to exist for both traits but the economic weight on 359 

protein yield is twice that for reproductive performance. No genetic gain in reproductive performance 360 

is expected with such a breeding goal but the relative emphasis on reproductive performance 361 

calculated using the approach just described is 33%.  362 

It should also be recognised that because of the linearity of breeding goals, there is a plane 363 

along with the expected response to selection in profit is equivalent, yet the relative weighting (and 364 

thus expected responses to selection) on the different components of the breeding goal may differ 365 

subtly. This is depicted in Figure 6 where the straight line represents an axis of equal expected profit 366 
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response to selection. Point X and Y therefore should be equally profitable yet the expected response 367 

to selection on the input traits at point Y is almost double that of the breeding goal represented at 368 

point X while the expected responses to selection for the output trait is only approximately 20% less. 369 

Such changes may be the difference between a breeding goal being accepted by industry or not. 370 

 A final consideration in the development of breeding goals is the definition of the trait used in 371 

the breeding goal. There is an on-going debate on whether RFI or feed intake should be included in 372 

the breeding goal for dairy and beef cattle. If appropriately undertaken, and the performance traits 373 

included in the regression for the generation of RFI are also included in the breeding goal, then both 374 

approaches are equivalent (Kennedy et al., 1993). Table 1 describes some of the advantages and 375 

disadvantages of including either feed intake or RFI in a breeding goal. The decision on which 376 

strategy to adopt may vary depending on how it will be eventually used and breeders’ understanding 377 

of the different concepts (Wulfhorst et al., 2010). More importantly however is that the policy of 378 

selection for lower feed intake (or RFI) must be undertaken within the context of a holistic breeding 379 

objective. Energy balance and RFI, for example, are strongly positively correlated (McParland et al., 380 

2014) and therefore selection for reduced RFI (or DMI while also selecting for increased production) 381 

will thrust the cow into more severe negative energy balance which will have disastrous repercussions 382 

for animal well-being and reproductive performance (Beam and Butler, 1999; Collard et al., 2000), 383 

and thus profit.  384 

 385 

Strategies to achieve genetic gain – what do we need? 386 

 Dairy cow breeding programs are currently undergoing a paradigm shift with the widespread 387 

incorporation of low-cost genomic information into national genetic evaluations (Hayes et al., 2009; 388 

Spelman et al., 2013). The exploitation of this genomic information is resulting in more rapid genetic 389 

gain but also offers exciting new opportunities to increase performance further for a wider range of 390 

traits, especially if undertaken in conjunction with other (developing) technologies. All national dairy 391 

cow breeding goals in Holsteins constituted solely of milk production traits prior to the mid 1990’s. 392 

Almost all dairy cow breeding goals now include other functional traits, in particular reproductive 393 

performance and animal health (Miglior et al., 2005). The relative emphasis on these traits differ by 394 

production system. Missing suites of traits from most, if not all, breeding goals include product 395 

quality, feed intake, and environmental footprint. Animal health is also poorly represented in most 396 

dairy cow breeding goals. The earlier discussions on the ideal cow for the future suggest that national 397 

cow breeding objectives are sub-optimal. Strategies exist, however, to rectify this. This section will 398 

particularly focus on strategies to achieve gains in these suites of traits. 399 

 400 
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Phenotyping strategies  401 

Producers will only record or pay for a phenotype if 1) it helps them improve herd 402 

profitability through the exploitation of greater knowledge, 2) they are financially incentivised to do 403 

so, 3) they are legally required to do so or participation in a scheme (e.g., quality assurance scheme) 404 

requires them to do so, or 4) if they are simply curious or have a desire to help achieve national 405 

objectives.  406 

Access to a biological sample (i.e., milk) approximately twice daily provides huge potential 407 

opportunities for routine phenotyping of dairy cows. Developments and mining of transcriptomic, 408 

metabolomic and proteomic information can be used to identify indicators of the biological state of 409 

the cow which can subsequently be incorporated into targeted phenotyping tools. Heritable genetic 410 

variation is known to exist for the milk metabolome (Wittenburg et al., 2013) and proteome (Schopen 411 

et al., 2009). Milk mid-infrared (MIR) spectroscopy has recently been advocated as a useful tool to 412 

predict milk quality attributes (Soyeurt et al., 2011, 2012), cow energy balance (McParland et al., 413 

2011), feed intake (McParland et al., 2011), feed efficiency (McParland et al., 2014), methane 414 

emissions (Dehareng et al., 2012) and milk urea nitrogen (Godden et al., 2000). Because MIR is 415 

routinely used to quantify milk fat, protein and lactose concentration on all milk recorded cows, the 416 

marginal cost of implementing prediction equations for other milk and animal characteristics is 417 

negligible once accurate prediction equations have been developed. Milk MIR therefore could be a 418 

very useful tool supporting the inclusion of novel traits reflecting milk quality, feed intake and 419 

efficiency, and environmental footprint in futuristic breeding goals. Absorption of light in the MIR 420 

regions corresponds to fundamental bands of molecular vibrations, whereas absorptions in near infra-421 

red (NIR) region correspond to overtones and combinations of these fundamental bands (Williams 422 

and Norris, 1987). Near-infrared spectroscopy however is more amenable to in-line measurement and 423 

thus could possibly also be useful in the low-cost, rapid and routine measurement of these quality and 424 

animal characteristics at each milking for each animal.  425 

The future may require producers to be (financially) incentivised to record novel traits (e.g., 426 

feed intake) as the benefits of the information to the producer may not be immediately recognised. 427 

The cost-benefit of embarking on such a phenotyping strategy must however be appropriately 428 

quantified taking cognisance of alternative, lower-cost predictors including the example of milk MIR 429 

already discussed. The prediction accuracy for the goal trait does not need to be near unity. The 430 

genetic correlation between milk protein yield and calving interval (i.e., reproductive performance) in 431 

dairy cattle was calculated by Berry et al. (2014b) in a meta-analysis of eight studies to be 0.50. 432 

Despite this, considerable (unintentional) dis-improvement in reproductive performance was achieved 433 

as an artefact of breeding strategies for increased production. Therefore, predictor traits correlated 434 

with the goal trait are useful in breeding goals; the reliability of the genetic evaluations of the goal 435 
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trait however will never be greater than the square of the correlation with the predictor trait unless 436 

(phenotypic or genomic) information on the goal trait also exists. As previously discussed, inclusion 437 

of a (predicted) goal trait with low reliability will not impact greatly on the genetic gain in the other 438 

traits. Using feed intake in growing heifers as a predictor of feed intake of cows (Macdonald et al., 439 

2014) could be a useful strategy for including feed intake in lactating cows in the breeding goal since 440 

disruption to normal routine for the measurement of feed intake is likely to have less impact in 441 

growing heifers than lactating cows. 442 

Selection index theory can be used to combine several predictor traits in a multiple regression 443 

approach to predict the goal trait. Berry and Crowley (2013) using information on four commonly 444 

recorded performance traits within a selection index framework, reported that 89% of the genetic 445 

variation in feed intake in lactating dairy cows could be explained. Berry and Crowley (2013) 446 

proceeded to suggest that relatively simply implementable technologies like sensors at the feed bunk 447 

to measure feeding activity, or measurement of heat loss, could aid in predicting some of the 448 

remaining unexplained variation. The marginal benefit in accuracy of selection from measurement of 449 

the gold standard feed intake phenotype may actually be low relative to the cost; this needs to be 450 

quantified.  451 

Considerable research is also underway on more refined measures of reproductive 452 

performance (Carthy et al., 2013; Walsh et al., 2014) as a means of increasing the heritability of 453 

reproductive performance. As previously alluded to however, it is not heritability per se which is 454 

important, it is genetic gain. Therefore if the more heritable reproductive traits are not easily amenable 455 

to large scale phenotyping, or incur a cost of phenotyping, then a benefit to such endeavours may not 456 

exist. The exception is if the heritability of the novel reproductive phenotypes is considerably larger, 457 

eliminating the necessity for phenotyping on a large population of animals. Furthermore, a more 458 

heritable phenotype may be advantageous in the selection of heifers for retention in a herd since the 459 

heritability is a reflection of how closely the genotype reflects the phenotype of an animal; the 460 

correlation between the observed phenotype and unobserved breeding value of an animal is the square 461 

root of the heritability. 462 

 463 

Genomics 464 

 Genetic evaluations and genomic evaluations to date have unashamedly exploited a “black 465 

box” approach (Hill, 2010) where knowledge of the underlying genomic architecture governing 466 

phenotypic differences among animals was unknown. The progress however in all species has been 467 

immense (e.g., https://www.cdcb.us/eval/summary/trend.cfm). Weaknesses of quantitative genetics 468 

approaches based on exploiting knowledge on the expected relationships among animals include 469 

https://www.cdcb.us/eval/summary/trend.cfm
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(Berry et al., 2011b): 1) the phenotype measured contains error (i.e., low heritability trait), 2) the 470 

phenotype may not be measurable in both genders (e.g., milk yield in dairy cattle), 3) adult 471 

performance cannot be measured in juveniles although it can be predicted and some traits like 472 

longevity require a long time horizon to measure, 4) the animal may need to be sacrificed to obtain the 473 

phenotype, 5) antagonistic genetic correlations between traits of interest cannot be easily resolved, 474 

especially in young animals, and 6) genotype by environment interactions may exist, which may 475 

complicate the statistical analysis. Furthermore, the estimation of accurate breeding values requires 476 

the use of large and expensive breeding schemes such as progeny testing. Exploitation of genomic 477 

information in breeding strategies can aid in overcoming some of these shortcomings thus achieving 478 

the cow of the future more rapidly. Because genomic information is available from birth, there is no 479 

longer the requirement to wait several years until the female dairy animal start lactating, a further 480 

several years to obtain a phenotype for longevity, and also several years for the beef merit of the cow 481 

herself or her descendants to be observed. Genomic information is particularly useful in the 482 

generation of estimated breeding values for novel traits such as milk quality, feed intake, 483 

environmental footprint and animal health. Genomic information, however, for the foreseeable future 484 

will not negate the requirement of routine phenotypic information on these traits to achieve high 485 

accuracy of selection. 486 

 One of the main complications hindering rapid genetic progress in dairy cattle is the genetic 487 

antagonisms (Berry et al., 2011a; Berry and Crowley, 2013; Berry et al., 2014b) between output traits 488 

(i.e., milk production) and cost of production traits (i.e., health and fertility). Genetic correlations are 489 

a manifestation of either the same genomic mutation affecting both traits (termed pleiotropic effect) or 490 

different genomic mutations affecting both traits but tending to, on average, be inherited together (i.e., 491 

linkage). Selection affects genetic correlations, and if selection has been for improvements in both 492 

traits (e.g., milk production to feed new born and reproduction success to generate the next 493 

generation) the correlation is expected to become unfavourable (Falconer and Mackay, 1996), as 494 

currently observed in dairy cattle (Berry et al., 2014b). This is because the pleiotropic alleles acting 495 

favourably on both characteristics will become quickly fixed under selection; these alleles will thus 496 

contribute little to the variation or the covariance between the two characters. Alleles that affect both 497 

animal characteristics in opposing direction will remain in intermediate frequencies and therefore 498 

contribute more to the covariance between the traits; this also however implies little response to 499 

selection (Falconer and Mackay, 1996). Because rapid selection for increased milk production and 500 

reproductive performance is successful (Berry et al., 2014b), this suggests that considerable 501 

exploitable covariance still exists which could be due to pleiotropy or linkage. Exploitation of 502 

genomic information can aid in elucidating the genomic architecture underlying estimated genetic 503 

correlations; the component of the antagonistic correlation attributable to linkage may be resolved 504 

using the appropriate genomic information. This may result in a weakening of the genetic correlation 505 
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between favourable performance characteristics and unfavourable reproductive performance. Such an 506 

approach is particularly important for example for traits like feed intake and milk production where 507 

the goal is to change the positively correlated traits (Berry and Crowley, 2013) in opposite directions. 508 

 Genomic information is currently included in national dairy cow genetic evaluations using, in 509 

most cases, an unsupervised statistical approach; this approach is commonly termed genomic 510 

selection (Meuwissen et al., 2001) and the practicalities of implementing genomic selection for cattle 511 

has been discussed in detail elsewhere (VanRaden, 2008; Hayes et al., 2009; Calus, 2010). Many 512 

studies are on-going in search of the underlying causal mutations affecting phenotypic performance. 513 

The justification for such endeavours are usually to breed better animals through more informed (i.e., 514 

supervised) breeding schemes or “genotype building” (Dekkers and Hospital, 2002). Access to large 515 

databases of sequence data, once accompanied by large quantities of associated accurate phenotypes, 516 

will expedite the process. Studies have nonetheless been successful in detecting genomic regions 517 

harbouring unfavourable (e.g., lethal) mutations using just genomic information without necessarily 518 

associated phenotypic information (VanRaden et al., 2011). Detection of genomic variants that affect 519 

a large proportion of the genetic variation will remain a considerable and expensive endeavour. 520 

Moreover, even if allelic variation underlying a large proportion of the genetic variation is detected, 521 

this still represents just a small proportion of the phenotypic variation for low heritability traits. Many 522 

other potential outlays for knowledge of the underlying causal mutations and associated genes or gene 523 

networks therefore must be considered (Figure 7) which can be used to generate and manage the cow 524 

of the future. 525 

 526 

Genomics and precision mating 527 

 Dairy cattle breeders have traditionally concerned themselves with the exploitation of additive 528 

genetic merit of individuals, because it is the additive allelic effects which are transmitted directly 529 

across generations. Non-additive genetic variation (i.e., inter- and intra-locus interactions) also 530 

contribute to the phenotypic variance (Wall et al., 2005; Sun et al., 2013) and has been successfully 531 

exploited through crossbreeding by, in particular, the New Zealand dairy industry (Lopez-Villalobos 532 

et al., 2000). Heterosis from the mating of two individuals is due to intra-locus effects (i.e., 533 

dominance) and inter-locus effects (i.e., epistasis). Therefore, the total genetic merit of an animal is a 534 

function of its additive genetic merit (i.e., estimated breeding value), dominance merit, and epistasis 535 

merit. The number of possible epistastic interactions in the genome is unwieldy but can be partly 536 

resolved as more causative mutations are detected. Locus-specific dominance effects can however be 537 

estimated simultaneously with allelic additive genetic effects (Su et al., 2014). The predicted 538 

probability of the genotype of the progeny from a mating can be determined from the respective 539 

genotypes of the parents; for example, the predicted probability of a homozygous, heterozygous, and 540 



17 
 

opposing homozygous genotype in the progeny of heterozygous parents is 0.25, 0.50 and 0.25, 541 

respectively. The merit of each locus genotype (i.e., additive genetic effect plus dominance effect for 542 

heterozygous state) can then be summed across the predicted probability of each genotype to generate 543 

a total genetic merit of an individual. Summed across all traits in the breeding goal, such information 544 

can be used to identify the specific combining ability for an individual mating or the general 545 

combining ability of a particular animal (e.g., bull) when mated to another group of animals (e.g., cow 546 

herd). Such calculations encapsulate both mate complementarity and heterosis effects. 547 

 Inbreeding occurs when related animals are mated and the resulting inbreeding depression is 548 

known to impact animal performance (Smith et al., 1998; McParland et al., 2007). The inbreeding 549 

level of an animal, or coancestry between a pair of individuals, has heretofore been calculated from 550 

pedigree where it is assumed that full-sibs for example, share, on average, half their genome identical 551 

by descent (assuming the parents are not inbred). The actual proportion of the genome shared by full-552 

sibs (same principle for other relatives) can differ; the standard deviation around this expectation is 553 

four percentage units in humans (Visscher et al., 2006). Genomic information can therefore be used to 554 

more accurately quantify the genomic relationships among animals (Pryce et al., 2012). For example 555 

it is theoretically possible (but extremely unlikely) that two full sibs from non-inbred parents can be 556 

completely unrelated; similarly an individual can be completely unrelated to one of its grandparents. 557 

Although the examples given are extreme examples and highly unlikely, it does emphasise that 558 

mating of traditionally thought of “highly related” animals may not result in high levels of inbreeding. 559 

This is particularly true at the individual locus level where the presence of lethal or unfavourable 560 

mutations (VanRaden et al., 2011) within a family can be controlled through designed matings 561 

without the necessity for blanket culling of carrier animals.  562 

 563 

Combined genomics and reproductive technologies strategies 564 

 Reproductive technologies have a huge potential role in increasing the annual rate of genetic 565 

gain in dairy cattle mainly through increased intensity of selection (i.e., numerator) and reducing the 566 

generation interval (i.e., denominator). In reality there are four selection pathways influencing 567 

population genetic gain: 568 

∆G   
(i   r   i   r   i   r   i   r  ) σG

L   L   L   L  

 

Where ΔGYR is annual genetic gain, i** is the standardised selection intensity for the ** 569 

pathway, r** is the accuracy of selection for the ** pathway, σG is the genetic standard deviation L** is 570 

the generation interval for the ** pathway; the pathways SS, SD, DS and DD represent sire-to-sire, 571 

sire-to-dam, dam-to-sire and dam-to-dam, respectively. Because genomic information can be used to 572 
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generate an accurate prediction of the genetic merit of an animal at birth, one of the current limiting 573 

factors in the sire to produce progeny pathway is the age at which sufficient high quality semen can be 574 

obtained from young bulls and used in the population without compromising reproductive 575 

performance. This requires research on optimal pre- and post-pubertal management strategies of bulls 576 

as well as optimum cryopreservation and management strategies of the semen.  577 

Cow natural reproductive rate limits the annual number of progeny per cow. Advances in 578 

ovum pick up and in vitro fertilisation techniques circumvent the necessity to wait for sexual maturity 579 

of potential dams thereby reducing the dam to produce progeny generation interval and increasing 580 

overall annual genetic gain. These approaches, coupled with multiple ovulation embryo transfer and 581 

embryo genotyping (Humblot et al., 2010), can also be used to reduce further the generation interval 582 

of the dam to progeny pathway while also increasing the respective selection intensity; such processes 583 

can also increase the selection intensity of the sire to progeny pathways.  584 

To accelerate genetic gain, low cost semen sexing or gender-biasing technologies producing 585 

normal conception rate are required. Not alone will access to sexed semen improve genetic progress, 586 

but it can also improve animal welfare by reducing the incidence of dystocia in dairy cattle where 587 

(lighter) females are generally sought after. In addition, productivity could be increased, and the 588 

environmental impact reduced by having less productive or unwanted male animals.  589 

 590 

Combined genomics and management strategies 591 

 Pharmocogenomics is the study of how the response to medicinal intervention is affected by 592 

the genome of the individual; the outcomes from this discipline facilitate the development of tailor-593 

made health programs for individuals differing in their underlying genome. For example, it may be 594 

decided to use dry cow therapy only on cows with a greater genomic risk of succumbing to udder 595 

infection in the following lactation. Nutrigenomics is the study of the effect of nutrition on gene 596 

expression, or in other words, the effect of the genome of the animal on response to alternative 597 

nutritional supplements. On-going dairy cow breeding programs have, and continue to take advantage 598 

of nutrigenomics at the macro level by selecting, for example, animals in confinement production 599 

systems that respond more to concentrate input. Controlled experiments have clearly showed than 600 

animals of superior genetic merit for milk production (generally of North Amercian ancestry) yield a 601 

greater milk production response to concentrate input compared to animals of lower genetic merit for 602 

milk production (Dillon et al., 2006). Genomics will facilitate more accurate identification of suitable 603 

animals for different production systems. I define reprogenomics here as the study of how the genome 604 

of the animal affects its response to alternative reproductive treatments (e.g., oestrus synchronisation 605 

treatments) or in other words the tailoring of reproductive treatments (if required) to the genome of 606 
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the individual cow. Also included in this could be the receptiveness of individual cows to sexed 607 

semen; no information exists on whether genetic predisposition of individual cows to 608 

conception/pregnancy with sexed semen versus conventional semen exists although heritable genetic 609 

variation in sex ratio is known to exist (Berry et al. 2011b). It is unlikely, however, that any single 610 

mutation or small number of mutations will control a large proportion of the genetic variation in 611 

response to medicinal, nutritional or reproductive intervention in cattle and thus such strategies 1) will 612 

firstly require a huge amount of data to quantify the genetic by environmental effects, 2) segregation 613 

of animals for different management protocols will still have to be taken at the macro (i.e., estimated 614 

genetic value) level, albeit with greater accuracy to achievable heretofore.  615 

 616 

Sentinel herds  617 

 Lessons from the past dictate that performance of genetically elite animals for a breeding goal 618 

should be continuously monitored and compared to lower genetic merit animals. Elucidation of any 619 

deleterious impacts of selection is arguably best achieved under controlled environments in a limited 620 

population where more detailed, or more expensive measurements, can be routinely undertaken. 621 

Moreover, health events are usually measured once the animal is in a clinical state but observations at 622 

the sub-clinical level can be used as an early alert of the long-term consequences of selection. 623 

Detailed –omic technologies (e.g., transcripomics, metabolomics, proteomics) undertaken on different 624 

biological samples from a limited number of animals can be extremely beneficial to predict what the 625 

likely consequences of selection are several generations hence. These sentinel herds are different to 626 

nucleus herds since they must also consist of a control group for comparative purposes but also some 627 

of the interventions required to decipher the impacts of selection (e.g., biopsies, infection with 628 

pathogens) may impact animal performance which will subsequently impact the estimated genetic 629 

merit of the animal. Although including contemporary group in the genetic evaluation model may aid 630 

in eliminating these effects, the possible carryover of effects and interactions between effects may 631 

bias the genetic evaluations. While sentinel herds are expensive to operate, they should be viewed as 632 

an important insurance policy for breeding programs.  633 

 634 

Breeding landscape of the future? 635 

 The rapid advancements in ‘-omic’ technologies and reproductive technologies necessitates a 636 

reassessment of modern-day breeding programs. Individual breeders in some countries can now 637 

receive genomic evaluations for their individual bulls, and therefore can obtain accurate estimates of 638 

genetic merit for routinely measured traits for tens of dollars compared to several thousands of dollars 639 
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prior to the implementation of genomic selection. AI breeding companies must therefore identify 640 

additional added value for their bulls over and above the obvious like selling quality assured semen as 641 

well as access to sexed semen. Another value added resource may be accurate genetic/genomic 642 

evaluations for difficult to measure traits not already included in the national breeding objectives and 643 

thus not available to competing AI companies and breeders.  644 

Although international sharing of phenotypic (Berry et al., 2014a) and genomic (Pryce et al., 645 

2014) information for the derivation of international genomic evaluations of expensive to measure 646 

traits like feed intake is a plausible strategy, high accuracy of selection for the component of feed 647 

intake net of predictor traits is unlikely to be achievable. Furthermore, large scale phenotyping for 648 

gold standard feed intake measures in commercial herds is unlikely. Therefore, it is likely that the 649 

number of performance (or progeny) test centers may increase. Because the heritability of feed intake 650 

in lactating dairy cow is relatively high (0.10 to 0.54; Berry et al., 2007; Berry et al., 2014a; 651 

Veerkamp and Thompson, 1999), not many records are required to achieve high accuracy of selection. 652 

The reliability of a univariate genetic evaluation for feed intake where the animal itself has a feed 653 

intake observation (ignoring parental contribution) is the heritability; this is likely to be greater with 654 

the incorporation of genomic information once the reference population to estimate the allele effects 655 

is large and related to the candidate population (Habier et al., 2007; Pszczola et al., 2012). Only two 656 

studies have attempted to estimate the genetic correlation between feed intake in growing females and 657 

lactating dairy cows (Nieuwhof et al., 1992; Berry et al., 2014a); the genetic correlation is 0.67 to 658 

0.74. Within a nucleus herd environment it may therefore be possible to phenotype the cow for feed 659 

intake during lactation. These data could be used to generate genomic evaluations for feed intake on 660 

candidate bulls which could be supplemented with actual feed intake records on the candidate bull 661 

itself during pre-pubertal growth; the feeding regime imposed should not affect subsequent semen 662 

production or quality. Moreover, consideration should be taken on the timing of the performance test 663 

relative to puberty, as bulls that reach puberty during the test may be expected to eat more and may 664 

subsequently be viewed as being poorly efficient. Methane emissions could also be simultaneously 665 

measured on all animals.  666 

Consideration could also be given to measurement of novel traits on siblings; depending on 667 

the phenotype, it may be possible to measure performance of the entire group rather than individually 668 

thereby saving resources. Full or half-sib groups can be generated using MOET and some of the 669 

siblings sacrificed for phenotyping. An example of such an approach may be the inoculation of full-670 

sib or half-sib males with pathogens and the animal response(s) measured; such approaches are 671 

successfully implemented in genetic evaluations of disease resistance in aquaculture (Ødegård et al., 672 

2011). Although the maximum reliability achievable using traditional quantitative genetics from 673 

measurement on full-sibs (half-sibs) is 0.50 (0.25), genomic predictions derived from the phenotyped 674 

siblings could aid in achieving considerably higher accuracy of selection. This design is particularly 675 
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useful as the reference population would be clearly related to the candidate population thereby 676 

achieving a high accuracy of genomic prediction (Habier et al., 2007; Pszczola et al., 2012). 677 

Intellectual property leakage is of increasing concern among breeding companies who invest 678 

considerable resources in the development of a genetically elite product (e.g., breeding values for 679 

novel traits). Semen from these genetically elite bulls, however, may be used by competitors to 680 

generate bull descendants with the elite characteristics. Figure 8 shows how a base population can be 681 

rapidly upgraded to another (elite) population; within 3 generations the upgraded population contains, 682 

on average, 87.5% of the elite population which increases to 93.75% in generation 4. This process can 683 

be intensified through the exploitation of reproductive technologies (i.e., ovum pickup plus in vitro 684 

fertilisation) and the rate of upgrading can also be increased through exploitation of genomic 685 

information to retain animals with a greater proportion of the elite genetic line. Other than the 686 

necessity of invoking legislation to prevent such efforts, the marketing of female-only sexed semen 687 

will retain ownership of the proprietary lines, ensuring the necessary return on investment (at least in 688 

the short to medium term). Even if a male calve results, it possess only half the genome of the elite 689 

line and its progeny only, on average, a quarter of the genome. 690 

Artificial insemination has revolutionised dairy cattle breeding since its wide-spread adoption. 691 

AI, however, has only resulted in increased selection intensity in the sire to progeny selection 692 

pathway. Considerable gains in selection intensity, and thus genetic gain, could be achieved by 693 

applying similar principles to the dam to progeny selection pathways. This would involve a large 694 

scale generation of embryos or female progeny for sale to elite breeders which in turn could act as 695 

multiplier herds for commercial producers. Parents or siblings of the embryos could be phenotyped 696 

for novel traits and genomic predictions derived; the embryos could be genomically screened and 697 

sexed and the price requested tiered based on genetic merit. Moreover, favourable epigenetic effects 698 

could be sought by implanting the embryos into unstressed surrogate dams. 699 

 700 

Conclusions 701 

 The first step in breeding for the cow of the future is to agree on the characteristics that 702 

describe that ideal cow and the relative importance of each of those characteristics. Because of genetic 703 

antagonisms, it may not be possible to achieve ideal performance for each characteristic. Acquisition 704 

of phenotypic data remains one of the key components for achieving high accuracy of selection and 705 

thus genetic gain, even in the genomics era. Key suites of traits warranting immediate inclusion in 706 

dairy cow breeding goals include product quality, feed intake and efficiency, environmental footprint 707 

and animal health. 708 
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Table 1. Reasons in favor and against including dry matter intake (DMI) or residual feed intake (RFI) in a 967 
breeding goal 968 

DMI in the breeding goal 

For Against 

Easy to explain and understand Cannot easily identify efficient animals 

Economic value is relatively easy to calculate May be mis-understood (positive EBV may be efficient) 

Amenable to customised indexes Correlated with performance 

Economic value on other components reflect reality in the 

market place (e.g., fat:protein price ratio) Independent culling levels may be harmful to overall gain 

Good predictors available 

Misinterpreted that negative EBV might imply poorer 

performing animals 

Higher "reliability" through selection index theory 

 May be less susceptible to genotype by environment 

interactions (GxE) 

 RFI in the breeding goal 

For Against 

Economic value is relatively easy to calculate Difficult to explain technically 

Can "easily" slot in to current breeding goals Low reliability (currently) 

(Theoretically) uncorrelated with performance Possibly more susceptible to GxE 

Relatively simple message (if not caught up in details) Selection index within a selection index 

Could materialize in faster genetic gain for efficiency 

Sensible to select on something we do not understand? 

(Never stopped us before!) 

 

Mixed messages from "pro" and "against" camps 

 

RFI in lactating animals (as currently defined) is not ideal 

 

EBVs may change as the RFI model changes 

  Possibly correlated with fertility (so is DMI!) 
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 983 

Figure 1. Mean heritability (squares) and coefficient of genetic variation (triangle) and variation 984 

(represented by error bars) for a range of performance traits including somatic cell count (SCC), milk 985 

urea nitrogen (MUN), calving interval (CIV), calving to first service interval (CFS), body conditions 986 

core (BCS) and live-weight (LWT) 987 
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 996 

Figure 2. Reliability of univariate genetic evaluations for a single trait of different heritability based 997 

only performance information for varying numbers of progeny 998 
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 1011 

 1012 

Figure 3. Expected genetic gain in a given trait in a two trait breeding goal with a second trait with the 1013 

same genetic variance times economic weight as the first trait (triangle) or twice the genetic variance 1014 

times economic weight of the first trait (squares) relative to selection solely on the trait itself; 1015 

accuracy of selection for both traits was assumed to be 0.99. 1016 
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 1029 

Figure 4. Scatter plot of two uncorrected traits each standardised to a normal distribution. Triangles 1030 

represent the top 10% of animals ranked on a combination of both traits each with the same 1031 

weighting.  1032 
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 1043 

Figure 5. Expected genetic gain for a given trait as the number of traits included in the breeding goal 1044 

increases from one to 20 (triangle) assuming equal genetic variance, weighting and accuracy of 1045 

selection for each trait as well as no covariance between any trait as well as the relative economic gain 1046 

(squares; per index standard deviation unit) for the entire index assuming an equal economic weight 1047 

of one on all traits. Also included is the calculated relative emphasis for a trait within the breeding 1048 

goal differing in number of included traits. 1049 
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 1058 

Figure 6. Comparison of the effect of alternative breeding goals on input and output traits on expected 1059 

responses in profit. Point X and Y will yield the same expected profit but relative expected responses 1060 

for the input and output traits differ considerably. 1061 
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 1064 

Figure 7. Potential uses of genomic information in achieving increased animal performance. 1065 
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 1075 

Figure 8. Average proportion of genetically elite line per generation from upgrading of a population. 1076 
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