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ABSTRACT

Rapid, cost-effective monitoring of milk technologi-
cal traits is a significant challenge for dairy industries 
specialized in cheese manufacturing. The objective of 
the present study was to investigate the ability of mid-
infrared spectroscopy to predict rennet coagulation 
time, curd-firming time, curd firmness at 30 and 60 
min after rennet addition, heat coagulation time, casein 
micelle size, and pH in cow milk samples, and to quan-
tify associations between these milk technological traits 
and conventional milk quality traits. Samples (n = 713) 
were collected from 605 cows from multiple herds; the 
samples represented multiple breeds, stages of lactation, 
parities, and milking times. Reference analyses were 
undertaken in accordance with standardized methods, 
and mid-infrared spectra in the range of 900 to 5,000 
cm−1 were available for all samples. Prediction models 
were developed using partial least squares regression, 
and prediction accuracy was based on both cross and 
external validation. The proportion of variance ex-
plained by the prediction models in external validation 
was greatest for pH (71%), followed by rennet coagula-
tion time (55%) and milk heat coagulation time (46%). 
Models to predict curd firmness 60 min from rennet 
addition and casein micelle size, however, were poor, 
explaining only 25 and 13%, respectively, of the total 
variance in each trait within external validation. On 
average, all prediction models tended to be unbiased. 
The linear regression coefficient of the reference value 
on the predicted value varied from 0.17 (casein micelle 
size regression model) to 0.83 (pH regression model) 
but all differed from 1. The ratio performance deviation 
of 1.07 (casein micelle size prediction model) to 1.79 
(pH prediction model) for all prediction models in the 
external validation was <2, suggesting that none of the 

prediction models could be used for analytical purpos-
es. With the exception of casein micelle size and curd 
firmness at 60 min after rennet addition, the developed 
prediction models may be useful as a screening method, 
because the concordance correlation coefficient ranged 
from 0.63 (heat coagulation time prediction model) to 
0.84 (pH prediction model) in the external validation.
Key words:  milk coagulation properties, milk heat 
stability, casein micelle size, milk acidity, grass

INTRODUCTION

World dairy food production from cow milk has in-
creased consistently by 2% annually (FAOSTAT, 2014). 
Rapid and low-cost tools to quantify milk quality pro-
cessability can provide the dairy industry with a more 
effective monitoring strategy, to aid in segregating milk 
before manufacturing. Rennet coagulation time (RCT), 
curd-firming time (k20), and curd firmness after 30 or 
60 min from rennet addition (a30 and a60, respectively) 
reflect milk coagulation properties, which are milk 
characteristics that describe the reactivity of milk after 
rennet addition. Shorter coagulation time and greater 
curd-firming capacity are correlated with greater cheese 
yield and improved sensory properties (Aleandri et 
al., 1989; Martin et al., 1997; Pretto et al., 2013) and 
quality (Ng-Kwai-Hang et al., 1989; Malacarne et al., 
2014). Other milk technological traits of interest for 
cheese production include casein micelle size (CMS), 
expressed as the diameter of the colloidal particles (Fox 
and Brodkorb, 2008), heat coagulation time (HCT), 
defined as the time required to induce milk coagulation 
at a given temperature (Davies and White, 1966), and 
both pH and titratable acidity.

Mid-infrared spectroscopy (MIRS) is a rapid, low-
cost technique that measures the interaction between 
physical matter and electromagnetic radiation in the 
region between 900 and 5,000 cm−1. Mid-infrared spec-
troscopy is currently used routinely to quantify milk 
components such as protein, fat, casein, and lactose 
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in individual cow milk aliquots sampled at herd milk 
testing. Recent research has documented the ability of 
MIRS to predict novel milk quality traits (Soyeurt et 
al., 2011; De Marchi et al. 2014) and animal character-
istics (McParland et al., 2011; De Marchi et al., 2014). 
The ability to predict milk technological traits with 
MIRS could be advantageous, because all individual 
cow milk samples are subjected to MIRS analysis and 
thus the marginal cost in predicting these new traits is 
negligible. Few studies, however, have reported the abil-
ity of MIRS to predict milk coagulation properties in 
dairy cows and these studies have been largely confined 
to Italian Holstein Friesian (Dal Zotto et al., 2008; De 
Marchi et al., 2013) and Brown Swiss (De Marchi et al., 
2009) cows. To our knowledge, no study has attempted 
to predict either CMS or HCT from milk MIRS; only 
De Marchi et al. (2009) has investigated the potential 
of MIRS to predict milk pH.

The objectives of the present study were (1) to evalu-
ate the accuracy of MIRS in predicting milk coagulation 
properties, CMS, HCT, and pH using a data set of milk 
samples from multiple cow breeds fed predominantly a 
grazed grass diet, and (2) to quantify the associations 
between these milk technological traits and traditional 
milk quality traits.

MATERIALS AND METHODS

Data

A total of 713 individual milk samples from 605 cows 
were collected weekly between August 2013 and August 
2014. Samples originated from 7 different Irish research 
herds and consisted of Holstein-Friesian, Jersey, and 
Norwegian Red cows, as well as their respective crosses. 
Milk samples were from different stages of lactation, 
different parities, and both morning and evening milk-
ings. Cows were on different experimental treatments 
based on a grazed-grass basal diet but were also, at 
times, supplemented with concentrate and grass silage. 
Milk aliquots (50 mL) were stored at 4°C after sam-
pling. Within 48 h of collection, samples were analyzed 
in the laboratory of Teagasc Animal and Grassland Re-
search and Innovation Center (Moorepark, Fermoy, Co. 
Cork, Ireland) for milk chemical composition (protein, 
fat, casein, urea, TS), determined using a MilkoScan 
FT6000 (Foss Electronic A/S, Hillerød, Denmark). The 
resulting spectrum, containing 1,060 transmittance 
data points in the mid-infrared region between 900 
and 5,000 cm−1, was stored. All samples were then pre-
served with Broad Spectrum Microtab II, containing 8 
mg of broponol and 0.3 mg of natamycin (D&F Control 
System Inc., Norwood, MA), and kept at refrigerator 

temperature for further analysis. For logistical reasons, 
not all technological milk quality parameters were 
quantified on every sample.

Gold-Standard Analysis for Milk  
Coagulation Properties

Milk coagulation properties were quantified using a 
Formagraph (Foss Electronic A/S, Hillerød, Denmark) 
on the preserved individual samples within 5 d of col-
lection. The Formagraph is a mechanical instrument 
in which an aliquot of milk, following inclusion of raw 
rennet diluted in distilled water, is brought into con-
tact with an oscillating loop pendulum. Initially, no 
force is transmitted from the uncoagulated milk to the 
pendulum. When coagulation begins, the viscosity of 
the milk increases, resulting in a force applied to the 
pendulum. The output of the Formagraph is a graph 
of the value of curd firmness against time. A 10-mL 
aliquot of milk was warmed to 35°C. Subsequently, 1 
mL of raw rennet (Chy-Max Plus, 190 international 
milk clotting units/mL, Chr. Hansen A/S, Hørsholm, 
Denmark) was diluted in 20 mL of distilled water (1:20 
vol/vol). The level of coagulant added to milk samples 
was adjusted based on protein concentration of the 
milk sample (O’Callaghan et al., 1999, 2001) and test-
ing began immediately after rennet addition.

The measured traits were (1) RCT, defined as the 
time (min) taken from rennet addition to the beginning 
of coagulation, (2) k20, the time from the gel develop-
ment to a width of 20 mm in the graph, and (3) a30, 
measured as the width of the graph 30 min after rennet 
addition. To facilitate the determination of RCT for 
noncoagulating milk samples (i.e., samples whose ren-
net coagulation time was longer than 30 min; Ikonen 
et al., 2004), the duration of the analysis was extended 
from 30 to 60 min, as suggested by De Marchi et al. 
(2013). Thus, curd firmness after 60 min from rennet 
addition (a60, mm) was determined as the width of the 
graph at the end of analysis for all samples.

Gold-Standard Analysis for CMS,  
Heat Stability, and pH

The hydrodynamic diameter of the casein micelles 
was determined using a Zetasizer Nano system (Mal-
vern Instruments Inc., Worcester, UK). The measure-
ments were carried out at 25°C using the noninvasive 
backscatter optics at 173°. Samples were analyzed 
within 24 h of collection and diluted with MilliQ water 
(Millipore, Billerica, MA) before measurement (ap-
proximately 1:30), which is sufficient for dynamic light 
scattering measurements (attenuator of 4 to 5). The 
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cumulative method was used to determine the mean 
particle size (diameter) that corresponded to the mean 
of the volume distribution of the main peak. The vis-
cosity of the solvent was assumed to be the same as 
that of water, given the low concentration of protein.

Heat coagulation time was tested using the method 
outlined by Davies and White (1966) within 48 h of 
sample collection, and all analyses were undertaken 
by the same operator. Briefly, an aliquot of 3.4 g of 
each milk sample was transferred into an individual 
glass tube suitable for the Elbanton BV (Kerkdriel, 
the Netherlands) hot oil bath. The oil temperature was 
set at 140°C with an oscillator speed of 8 rpm. Heat 
coagulation time was recorded as the time when each 
sample started to flocculate based on visual assessment. 
The test time was set to 30 min (Davies and White, 
1966); therefore, samples that did not coagulate within 
this period (n = 15) did not provide any information 
about their heat susceptibility. Their inclusion in the 
calibration data set was not feasible, because regression 
models of reference values on predicted values cannot 
be performed on observations with missing true values 
of HCT. Therefore, these samples were classified as 
heat noncoagulating and discarded from further statis-
tical analysis. Repeatability information of the present 
methods is reported by Davies and White (1966).

Milk pH was assessed, within 24 h of sample collec-
tion, with a SevenCompact pH meter S220 (Mettler 
Toledo AG, Greifensee, Switzerland).

Development of MIRS Prediction Models

Development of the prediction models was undertaken 
using SAS software (ver. 9.3; SAS Institute Inc., Cary, 
NC). Spectral data, expressed in transmittance, were 
transformed to absorbance by taking the log10 of the 
reciprocal of the transmittance. The prediction models 
were developed using only spectra that did not include 
high-noise-level regions (Hewavitharana and Brakel, 
1997), which are part of the spectra related to water 
absorption (Heuer et al., 2001). Consequently, spectral 
regions between 1,580 and 1,710 cm−1 and between 
2,990 and 3,690 cm−1 were discarded before chemo-
metric analysis. Principal component analysis (PROC 
PRIN COMP; SAS Institute Inc.) was performed on 
the raw spectra, providing principal components that 
were used to detect similarities and differences among 
individual spectra and to identify spectral outliers. 
The first 2 principal components explained 66.38 and 
18.78% of the total spectral variation, respectively. 
Both individual sample Mahalanobis distances and a 
visual inspection of the plot of the first principal com-
ponent against the second principal component did 

not indicate the presence of outliers and therefore no 
samples were discarded.

The distribution of each trait, as well as the iden-
tification of outlier reference values, was determined 
using PROC UNIVARIATE (SAS Institute Inc.). If 
the distribution of a trait was non-normal, based on 
visual inspection and the Shapiro-Wilk test statistic, 
the reference values were transformed using a natural 
logarithm transformation. Consequently, HCT and k20 
were log-transformed. Outliers were defined as refer-
ence values >3 standard deviations from the mean. 
Based on this definition, 1 observation for RCT, 2 
observations for log-transformed HCT, 6 observations 
for log-transformed k20 and pH, and 34 observations for 
CMS were identified as outliers and subsequently dis-
carded. The relatively high number of outlier values for 
CMS existed mainly for 2 reasons: (1) error in labora-
tory processing (n = 17), and (2) CMS values deviating 
more than 3 standard deviations from the mean (n = 
17). Further examination of these data points did not 
indicate any trend in date of measurement and charac-
teristics (e.g., parity, breed, stage of lactation) of the 
cows that contributed the samples.

Partial least squares (PLS) regression (PROC PLS; 
SAS Institute Inc.) was undertaken to generate the 
prediction models. Before performing the analysis, the 
initial data set was divided randomly into 2 different 
subsets for each trait separately, representing a model 
calibration data set (80% of the entire data set) and 
a validation data set (the remaining 20% of the entire 
data set). The calibration data set was used to generate 
the prediction models. The validation data set was con-
sidered as an independent data set, because the samples 
were not used to calibrate the prediction models. Devel-
oped prediction models were applied to the validation 
data set to quantify their predictive ability. The mean, 
standard deviation, and range of the milk technological 
traits in the validation and calibration data set were 
similar. Mathematical pretreatments (Savitzky-Golay 
first and second derivatives) were applied to the raw 
spectra but no improvement on the prediction models 
accuracy was detected; therefore, the untreated spectra 
were used to generate the models.

The optimal number of PLS factors was defined as the 
minimum number of factors to achieve the lowest root 
mean predicted residual sum of squares. The goodness-
of-fit statistics considered in the present study were the 
coefficient of determination in the cross-validation (i.e., 
one-at-a-time cross-validation) and external validation 
(R2

C and R2
V, respectively) data sets and the standard 

error of prediction in the cross-validation and exter-
nal validation (SEPC and SEPV, respectively) data 
sets. To evaluate the practical utility of the prediction 
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models, the ratio performance deviation (RPD) and 
concordance correlation coefficient (CCC) were calcu-
lated. The RPD was calculated as the ratio of the stan-
dard deviation of the trait and the standard error of 
prediction from the prediction model (Williams, 2007). 
The CCC was calculated as (Lin, 1989):

 CCC =
× ( )
+ + −( )

2

2 2 2

COV Y; Y

Y Y Y Y

ˆ
,

ˆ ˆσ σ μ μ
 

where COV( ; Y) is the covariance between the refer-
ence (Y) and predicted values ( ), σY

2  is the variance of 
the reference values, σŶ

2  is the variance of the predicted 
values, and μY and μ  represent the mean of the refer-
ence and predicted values, respectively. Bias for each 
prediction model was calculated as the average of the 
difference between the reference value and the respec-
tive predicted value for each sample; a t-test was used 
to determine if this was significantly different from 
zero. Reference values for each prediction model were 
also linearly regressed on the predicted values to obtain 
the linear regression coefficient; a t-test was used to 
determine if the linear regression coefficient differed 
from 1.

Pearson correlations were calculated between both 
reference and predicted values for the technological 
traits and other measures of milk quality traits (i.e., 
protein, casein, fat, total solids, and urea concentra-
tion).

RESULTS

Summary Statistics of Reference Traits

The DIM when milk samples were taken varied from 
5 to 375; 19.27% of milk samples (n = 138) were from 
the first 60 DIM and 50% (i.e., n = 356) were from 
between 61 and 200 DIM. Milk samples were available 

from cows in parities 1 to 11. Morning milking samples 
represented almost 70% of the total samples collected 
(n = 497). A total of 146 samples were from 2 herds 
with autumn-calving cows, whose diet was partially 
grass-silage based; the remainder of the data originated 
from 6 herds with spring-calving cows that were fed 
predominantly grazed grass.

The most represented breed was Holstein-Friesian (n 
= 443), followed by Jersey (n = 109) and Norwegian 
Red (n = 17); 144 samples were from crossbreed cows. 
Noncoagulating milk samples represented 15.71% of the 
total data set (n = 88), of which the majority (n = 62) 
were from Holstein-Friesian cows.

Descriptive statistics of milk technological traits are 
in Table 1. The coefficient of variation of all traits, 
with the exception of pH, varied from 18.13 (CMS) 
to 70.76% (HCT); the coefficient of variation for pH 
was only 1.18%. The Shapiro-Wilk value for both k20 
and HCT suggested that neither trait was normally dis-
tributed but, following transformation with the natural 
logarithm, the Shapiro-Wilk value increased from 0.87 
to 0.97 for k20, and from 0.87 to 0.98 for HCT. This 
transformation reduced the coefficient of variation from 
64.26 to 37.50% for k20 and transformed k20, respective-
ly, and from 70.76 to 35.59% for HCT and transformed 
HCT, respectively.

Prediction Model Accuracy

The goodness-of-fit statistics for MIRS prediction 
models are summarized in Table 2. The number of fac-
tors included in the prediction models varied from 14 
(HCT and CMS) to 17 (pH), with the exception of the 
a60 prediction model, in which 7 factors were used. The 
most accurate prediction model was for pH (R2

C and 
SEPC of 0.73 and 0.06, respectively), followed by RCT 
(R2

C and SEPC of 0.61 and 5.64 min, respectively). The 
accuracy of predicting a60 and CMS was poor, with 
respective R2

C of 0.26 and 0.23, and SEPC of 10.33 mm 

Table 1. Number of samples (n), mean, SD, range, CV, and Shapiro-Wilk value (W) for normality distribution 
test of reference values for rennet coagulation time (RCT), curd-firming time (k20), curd firmness at 30 and 60 
min (a30, a60), heat coagulation time (HCT), casein micelle size (CMS), and pH

Trait n Mean SD Range CV W

RCT, min 560 20.70 8.93 47.25 43.15 0.98
k20, min 523 6.12 3.93 18.50 64.26 0.87
k20, loge min 523 1.63 0.61 2.76 37.50 0.97
a30, mm 467 32.17 15.61 72.88 48.54 0.98
a60, mm 559 31.54 12.23 70.68 38.79 0.95
HCT, min 492 8.75 6.19 27.02 70.76 0.87
HCT, loge min 492 1.94 0.69 3.16 35.59 0.98
CMS, nm 654 175.36 31.79 231.08 18.13 0.98
pH 702 6.68 0.11 0.66 1.63 0.99
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and 28.11 nm. The RPD values in external validation 
ranged from 1.07 (CMS) to 1.79 (pH), whereas the 
CCC in the external validation data set was between 
0.28 (CMS) and 0.84 (pH). The mean bias of predic-
tion (i.e., the average of the difference between the 
gold standard and predicted values for each individual 
sample) was not different (P > 0.05) from zero in exter-
nal validation. The slope of the linear regression of the 
reference on the predicted values of each technological 
trait in the external validation varied from 0.17 (CMS) 
to 0.83 (pH); all were different from unity (P < 0.05).

Model predictive ability was also evaluated on back-
transformed values for both HCT and CMS. The model 
fit statistics on the back-transformed predicted HCT 
and CMS were less accurate than the fit statistics 
using natural logarithm-transformed HCT and CMS. 
For example, the coefficient of determination in ex-
ternal validation was 0.29 for HCT and 0.43 for k20, 
whereas the SEPV was 3.01 min for k20 and 5.64 for 
HCT. The slope of the linear regression coefficient of 
the original (i.e., untransformed) reference values on 
the back-transformed predicted values for both models 
was different from unity (P < 0.05), whereas the bias 
was different from zero only for HCT (−1.31 min). Nei-
ther prediction model was useful for analytic purposes 
(RPD of 1.17 and 1.32 for HCT and k20, respectively), 
and the models were characterized as having moderate 
predicting ability (CCC of 0.49 and 0.59 for HCT and 
k20, respectively).

Correlations with Milk Composition Traits

Pearson correlations between technological traits 
and milk composition traits are in Table 3. Correla-
tions between the reference technological traits and 
milk chemical composition traits were similar to those 
between the predicted traits and milk chemical com-

position traits. In general, the greater the accuracy 
of the MIRS prediction model, the more comparable 
the correlations with the milk composition traits for 
either the reference or predicted technological traits. 
Rennet coagulation time had a strong positive corre-
lation with k20 (correlations of 0.77 and 0.86 for the 
reference and MIRS-predicted values, respectively) and 
was strongly negatively correlated (−0.73 to −0.82 for 
the reference and MIRS-predicted values, respectively) 
with a30. Rennet coagulation time was associated with 
milk composition, particularly with protein and casein 
concentrations. Correlations between RCT and protein 
were −0.46 (reference RCT and protein percentage) 
and −0.50 (MIRS-predicted RCT and protein percent-
age), whereas correlations between RCT and casein 
were −0.44 (reference RCT and casein percentage) and 
−0.49 (MIRS-predicted RCT and casein percentage). 
Milk coagulation properties were weakly correlated 
with other milk technological traits, with the exception 
of RCT and pH (correlations between 0.63 and 0.74 for 
either the reference or MIRS-predicted values). Casein 
micelle size was not associated with milk composition; 
correlations ranged from −0.01 to 0.08 and were not dif-
ferent from zero (P > 0.05). A weak correlation existed 
between reference CMS and reference RCT (0.23). Pre-
dicted CMS was weakly correlated with predicted a60 
(0.31), predicted pH (−0.07), and milk protein (0.20) 
and casein (0.15) levels. Heat coagulation time had the 
strongest correlations with milk urea (0.48) and protein 
(0.22) concentration. Heat coagulation time was also 
weakly associated with milk coagulation properties, 
with correlations ranging from −0.22 (k20) to 0.34 (a30).

DISCUSSION

Fundamental to the successful development of an 
accurate prediction model is the incorporation of ex-

Table 2. Fitting statistics1 of prediction models in cross and external validation for rennet coagulation time (RCT), curd-firming time (k20), 
curd firmness at 30 and 60 min (a30, a60), heat coagulation time (HCT), casein micelle size (CMS), and pH

Trait2

Cross validation External validation

n #L SEPC R2
C RPD CCC n Bias Slope (SE) SEPV R2

V RPD CCC

RCT, min 450 16 5.64 0.61 1.59 0.76  110 −0.10 0.55 (0.05) 5.85 0.55 1.49 0.71
k20, loge min 414 15 0.39 0.59 1.56 0.74  109 −0.08 0.52 (0.05) 0.42 0.51 1.43 0.67
a30, mm 378 15 11.32 0.50 1.41 0.66  89 −0.85 0.53 (0.06) 10.38 0.46 1.35 0.66
a60, mm 458 7 10.33 0.26 1.16 0.41  101 1.23 0.23 (0.04) 11.49 0.25 1.15 0.37
HCT, loge min 389 14 0.46 0.55 1.48 0.71  103 0.04 0.47 (0.05) 0.51 0.46 1.36 0.63
CMS, nm 535 14 28.11 0.23 1.14 0.37  119 0.75 0.17 (0.04) 28.75 0.13 1.07 0.28
pH 553 17 0.06 0.73 1.92 0.84  149 0.00 0.83 (0.04) 0.06 0.71 1.79 0.84
1n = number of samples; #L = number of model factors; SEPC = standard error of prediction in cross validation; R2

C = coefficient of determina-
tion in cross validation; RPD = ratio performance deviation; CCC = concordance correlation coefficient; Bias = average difference between the 
reference value and the respective predicted value; Slope = linear regression coefficient of reference values on predicted reference values; SEPV 
= standard error of prediction in external validation; R2

V = coefficient of determination in external validation.
2Prediction models and results for curd-firming time and heat coagulation time are natural logarithm values. 
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tensive variability in the calibration data set, repre-
sentative of the population in which the model will be 
used (De Marchi et al., 2014). In the present study, this 
was achieved. Comparison of the results of the present 
study with previous international studies is, nonethe-
less, difficult because of differences in production sys-
tem as well as potential differences in methodologies 
of analysis (i.e., different gold-standard methods). Pre-
viously documented coefficients of variation for milk 
coagulation properties in international populations of 
between 37% (RCT) and 45% (a30; Ikonen et al., 2004; 
Cassandro et al. 2008) were lower than observed in 
the multi-breed population of cows used in the present 
study. Moreover, compared with the present study, less 
variation in milk coagulation properties was detected 
by O’Brien et al. (1999) over a 12-mo study period 
of Irish herd bulk milk samples. Few studies (Auldist 
et al., 2004; De Marchi et al., 2013) have considered 
a60 in their analysis because, during cheese manufac-
ture, curd is normally cut after 30 min from rennet 
addition (Cassandro et al., 2008). Auldist et al. (2004), 
studying coagulation ability of New Zealand Holstein 
and Jersey cows, and De Marchi et al. (2013), study-
ing coagulation ability of Italian Holstein-Friesian 
cows, reported a coefficient of variation for a60 of 10 
and 62%, respectively. The variability in casein micelle 
size and pH documented by Chen et al. (2014) using 
milk samples from 550 lactating Holstein cows in the 
UK was low but comparable to that observed in the 
present study. On average, HCT values of the present 
study were consistent with those of Holt et al. (1978) 
based on bulk milk samples over a period of 15 mo 
in southwest Scotland; moreover, as expected, results 
from our study had greater variability for this trait. 
Irish Holstein-Friesian was the breed with the greatest 
prevalence of noncoagulating milk samples (13.99%). 
Similar proportions were documented by Ikonen et 

al. (2004) on Finnish Ayrshire and by Poulsen et al. 
(2013) on Swedish Red, although the latter authors 
defined noncoagulating milk samples as those that did 
not coagulate within 60 min. The high prevalence of 
noncoagulating milk samples is a serious concern as it 
negatively affects dairy industry profitability.

Practical Utility of the Prediction Model 

For a prediction model to be considered useful for an-
alytic purposes, an RPD value >2 is desired (Williams, 
2007). No prediction model in the present study had an 
RPD in external validation that surpassed this thresh-
old. Nonetheless, the CCC of the prediction equations 
in external validation demonstrated that some models 
could at least be used for screening purposes. A CCC of 
between 0.21 and 0.40 indicates fair predictive ability, 
between 0.41 and 0.60 indicates moderate predictive 
ability, between 0.61 and 0.80 indicates substantial 
predictive ability, and between 0.81 and 1.00 indicates 
accurate predictive ability (Lin, 1989; De Marchi et al., 
2014). Of the traits investigated in the present study, 
the pH prediction model (CCC = 0.84) had accurate 
predictive ability, whereas the prediction models for 
RCT, transformed k20, a30, and transformed HCT were 
characterized by substantial predictive ability (CCC of 
0.71, 0.67, 0.66, and 0.63 for RCT, k20, a30, and HCT, 
respectively). Poor predictive ability existed for CMS 
and a60. No prediction model in the present study, on 
average, significantly over- or underestimated the refer-
ence values for any of the traits investigated. Although 
not necessarily important for breeding purposes, sig-
nificant bias in estimation could affect milk price if a 
milk pricing system was based on milk technological 
traits. To our knowledge, this is the first study that has 
attempted to quantify this bias in coagulation traits as 
well as acidity traits. The less-than-unity linear regres-

Table 3. Pearson correlations1 between reference (below diagonal) and mid-infrared spectroscopy (MIRS)-predicted (above diagonal) rennet 
coagulation time (RCT), curd-firming time (k20), curd firmness at 30 and 60 min (a30, a60), heat coagulation time (HCT), casein micelle size 
(CMS), pH, and MIRS-predicted milk protein (PRT), fat, TS, urea, and casein concentrations

RCT k20 a30 a60 HCT CMS pH PRT Fat TS Urea Casein

RCT — 0.86 −0.82 −0.40 −0.32 0.09 0.74 −0.50 −0.46 −0.42 −0.49 −0.49
k20 0.77 — −0.90 −0.55 −0.38 −0.05 0.67 −0.64 −0.47 −0.46 −0.51 −0.65
a30 −0.73 −0.79 — 0.62 0.46 0.09 −0.60 0.62 0.38 0.37 0.50 0.62
a60 −0.29 −0.38 0.50 — 0.65 0.31 −0.19 0.60 0.01 0.04 0.55 0.58
HCT −0.21 −0.22 0.34 0.28 — 0.02 −0.12 0.29 0.00 −0.02 0.55 0.23
CMS 0.23 0.21 −0.07 −0.01 −0.11 — −0.07 0.20 0.02 0.04 −0.02 0.15
pH 0.63 0.51 −0.39 −0.09 −0.09 0.04 — −0.41 −0.49 −0.47 −0.33 −0.42
PRT −0.46 −0.54 0.52 0.36 0.22 0.08 −0.34 — 0.42 0.54 0.42 0.90
Fat −0.36 −0.35 0.27 0.01 0.01 0.01 −0.43 0.42 — 0.93 0.12 0.44
TS −0.33 −0.35 0.28 0.05 −0.01 0.02 −0.40 0.54 0.93 — 0.08 0.60
Urea −0.38 −0.37 0.38 0.27 0.48 −0.01 −0.31 0.41 0.11 0.07 — 0.40
Casein −0.44 −0.56 0.53 0.37 0.18 0.05 −0.36 0.90 0.44 0.60 0.39 —
1Correlations <|0.11| were not different from zero (P > 0.05). Correlations within both curd-firming time and HCT are based on back-trans-
formed values.
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sion coefficient of the reference value on the predicted 
value suggested a rescaling in variance between the 
reference and predicted values, and therefore the ex-
tent of the difference between reference samples is not 
fully reflected in differences in their predicted value. 
This could have implications for breeding programs, for 
example, where the true variance in milk coagulation 
properties may actually be underestimated using pre-
dicted rather than reference values; thus, the breeding 
goal trait should be the gold-standard trait with its 
respective variance and the mid-infrared predictor trait 
included in the selection criterion. Nonetheless, if the 
number of records in the calibration data set used to 
develop the prediction models, as well as the variability 
in the reference values, could be increased, then the 
prediction accuracy of the models might also improve.

Prediction of Rennet Coagulation Traits

Although previous studies have highlighted the effec-
tiveness of MIRS in predicting milk coagulation proper-
ties (Dal Zotto et al., 2008; De Marchi et al. 2009), only 
De Marchi et al. (2013) included noncoagulating milk 
samples in the calibration data set and used the same 
instrument (i.e., Formagraph) as used in the present 
study. The identification of noncoagulating samples 
could be an extremely useful tool because extended 
RCT has repercussions on the profitability and efficien-
cy of the dairy industry. Indeed, milk characterized by 
poor reactivity to addition of rennet increases the time 
of the entire cheese-making process. For instance, the 
implementation of MIRS prediction models at the dairy 
processor level could be advantageous to segregate milk 
for use in either cheese production (good reactivity to 
rennet addition, i.e., short RCT) or fluid consumption 
(poor reactivity to rennet addition, i.e., long RCT).

To our knowledge, no study has investigated the 
ability of MIRS to predict milk coagulation properties 
in a grazing production system, such as exists in Ire-
land, New Zealand, Southern Australia, and elsewhere. 
Nevertheless, comparison with other studies is difficult 
because of the different reference procedures adopted. 
In fact, even if the reference instrument for measur-
ing milk coagulation properties was the Formagraph, 
as was the case in both the present study and that 
of De Marchi et al. (2013), the methodology used in 
the present study adjusted the level of added rennet 
based on the protein concentration of each individual 
milk sample. Therefore, the amount of coagulant was 
not the same for samples with different protein levels. 
In contrast, De Marchi et al. (2013) kept the quantity 
of rennet at a constant level (200 μL/10 mL of milk 
sample) when determining milk coagulation properties. 
Moreover, previous research undertaken in Italian herds 

of Holstein and Brown Swiss cows (Dal Zotto et al., 
2008; De Marchi et al., 2009) used the Computerized 
Renneting Meter (Polo Trade, Monselice, Italy) as the 
reference analysis instrument. As described by Pretto 
et al. (2011), differences in gold-standard methodolo-
gies have to be considered when comparing the results 
for milk coagulation properties, because different in-
struments and methodologies can yield different milk 
coagulation properties values on the same samples.

Overall, prediction models in the present study were 
more accurate than reported by Dal Zotto et al. (2008) 
and De Marchi et al. (2009), but less accurate than 
reported by De Marchi et al. (2013). In particular, Dal 
Zotto et al. (2008), who attempted to evaluate the ef-
fectiveness of milk MIRS to predict milk coagulation 
properties using 83 samples collected from Italian Hol-
stein Friesian cows, obtained R2

C ranging between 0.29 
and 0.31 for RCT and a30, respectively. De Marchi et 
al. (2009), using 1,200 Brown Swiss milk samples from 
37 Italian herds, obtained R2

C of 0.62 and 0.37 for RCT 
and a30, respectively. Finally, based on milk samples 
from 335 Italian Holstein Friesian cows, De Marchi et 
al. (2013) developed robust MIRS prediction models 
for RCT (R2

C = 0.76), k20 (R
2
C = 0.72), and a30 (R

2
C 

= 0.70). These prediction models are currently used in 
several milk laboratories in Italy to routinely provide 
milk coagulation phenotypes for genetic evaluations 
(Tiezzi et al., 2013; Penasa et al., 2014).

The prediction of some innovative milk traits is quite 
difficult, especially when these traits are not strictly 
related to the mid-infrared energy absorption of spe-
cific chemical functional bounds (i.e., N–H bonds in 
protein or C–H bonds in lipids). This is the case for 
milk coagulation traits, where several milk constituents 
affect MIRS predictions. As reported by De Marchi 
et al. (2009), loading variation across spectra demon-
strated that several parts of the spectra contributed 
to the MIRS prediction models. Indeed, specific peaks 
across spectra, related to mid-infrared energy absorp-
tion of protein as well as lipid chemical bonds, were 
observed both in the present study and in De Marchi 
et al. (2009). The difficulty of MIRS in predicting the 
technological traits considered in the present study is 
also confirmed by the optimum number of model fac-
tors included in the PLS prediction model, which were 
greater in the prediction models for milk coagulation 
properties compared with other milk quality traits 
(i.e., casein fractions, FA composition; De Marchi et 
al., 2014).

Prediction of HCT, CMS, and pH

The present study is the first, to our knowledge, to 
quantify the effectiveness of MIRS to predict both HCT 
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and CMS. The observed predictive ability of HCT in 
the present study is very promising, despite the subjec-
tive nature of the HCT reference measurement. Heat 
coagulation time is very important for the dairy indus-
try because all milk intended for human consumption 
is subjected to a heat treatment, and milk with high 
heat susceptibility (i.e., low HCT) is not suitable for 
milk processability, especially for the production of 
milk powder (i.e., mechanical obstruction of machinery 
for milk powder). In any case, MIRS has been demon-
strated to be effective in predicting β-LG genotypes 
(Rutten et al., 2011), and β-LG A was demonstrated 
to be more susceptible to heat treatment (Hill et al., 
1997). The predictive ability of CMS was poor and 
unsatisfactory; only 23 and 13% of the total variance 
in CMS was explained by the prediction model in cross 
and external validation, respectively. Although the re-
peatability of dynamic light scattering measurements 
with the reference instrument used in the present study 
was high (error ± 2%; Malvern, 2014), the poor predic-
tive ability of CMS could be due to a limitation of the 
MIRS instrumentation in detecting dimensions of small 
particles. These results need further investigation in an 
independent population.

Milk acidity is usually measured as pH and titratable 
acidity (expressed in Soxhlet-Henkel degrees) in the 
dairy processing plant and it affects the aggregation 
rate of paracasein micelles, the reactivity of rennet, 
and the rate of syneresis (Toffanin et al., 2015). With 
the exclusion of hyperacidic milk types, milk with high 
acidity is considered more favorable for cheese mak-
ing; indeed, the relationship between milk acidity and 
coagulation traits has been demonstrated in several 
studies (Cassandro et al., 2008; Pretto et al., 2013). 
Even if the measurement of pH during the cheese-
making process is easy, the ability to predict milk pH 
on individual cow milk samples using MIRS, combined 
with the existence of potential genetic variation in this 
characteristic (Ikonen et al., 2004), could facilitate 
genetic improvement at the population level. Results 
from our study demonstrated that MIRS could be used 
to predict milk pH, and the accuracy of prediction in 
the present study was greater than that reported in the 
only other study that has evaluated the potential of 
milk MIRS to predict milk pH (De Marchi et al., 2009; 
R2

C of 0.59 vs. 0.73).

Correlations Between Technological Traits  
and Milk Composition

The similarity in correlations with milk composition 
traits irrespective of whether reference values or pre-
dicted values of the technological traits were considered 

was somewhat expected, given the relatively good MIRS 
prediction accuracy of these traits. Milk technological 
traits were correlated with several traditional milk 
traits, particularly protein, casein, and urea concentra-
tions. Previous research (Ikonen et al., 2004; Cassandro 
et al., 2008), evaluating both phenotypic and genetic 
correlations between coagulation traits and milk chemi-
cal composition, reported weak correlations between 
RCT with protein and casein levels. Strong correlations 
between milk coagulation traits and protein and casein 
contents were, nonetheless, expected in the present 
study, considering that rennet correction on protein 
concentration was used for the determination of milk 
coagulation traits. Therefore, comparison with previous 
literature is not completely valid because of differences 
in the gold-standard methods used; this was supported 
by O’Callaghan et al. (1999), who demonstrated that 
different concentrations of coagulant yielded different 
RCT values.

The present study demonstrated that, of all milk 
constituents, the nitrogen fraction (i.e., protein and ca-
sein concentrations) had the strongest correlation with 
RCT. This conclusion was expected because casein is 
the only milk constituent susceptible to addition of ren-
net. Therefore, curd formation occurs because of the 
aggregation of paracasein micelles, which, depending 
on their rate of aggregation, can subsequently incorpo-
rate other milk constituents, such as milk fat.

Lower milk pH values were associated with more 
favorable milk coagulation properties, which is con-
sistent with several previous studies (Ikonen et al., 
2004; Cassandro et al., 2008) that considered different 
measurements of acidity (e.g., pH, titratable acidity). 
The lack of correlation between CMS and protein is in 
direct contrast with Chen et al. (2014), who analyzed 
550 individual milk samples for Holstein cows in the 
UK. Those authors, however, had different laboratory 
methodologies for the determination of protein concen-
tration and for the determination of CSM.

The positive correlation between RCT and k20 and 
the negative correlation between RCT and a30 were 
expected because if coagulation begins within a short 
period, paracasein micelles have more time available 
to aggregate and to create a stronger curd, when mea-
surement of curd firmness is detected at 30 min from 
rennet addition. In the same way, milk samples with 
short RCT achieved 20 mm of curd firmness (k20) ear-
lier relative to those relative to those characterized by 
poor reactivity to rennet addition (i.e., long RCT). The 
positive correlation between CMS and RCT is because 
major mineral constituents (i.e., Ca and P concentra-
tions) influence both CMS and RCT (Chen et al., 2014; 
Gustavsson et al., 2014).
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CONCLUSIONS

The combination of MIRS with PLS regression on 
untreated spectra could be a useful screening tool to 
acquire innovative milk technological phenotypes rap-
idly and at low cost. Such advancements could be im-
portant for the dairy industry to monitor milk quality 
before processing, and to discriminate more accurately 
milk that is better adapted for cheese manufacturing, 
whether for direct human consumption or stocking 
(milk powder production). Technological quality traits 
predicted by MIRS could be an important source of 
routine information on a very large population of ani-
mals from which to generate estimated breeding values 
for milk technological traits for exploitation in breed-
ing programs. More effort, however, should be made to 
expand the number of samples and their variability in 
the calibration data set to increase the robustness of 
the prediction models.
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