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  ABSTRACT 

  Interest is increasing in the feed intake complex 
of individual dairy cows, both for management and 
animal breeding. However, energy intake data on an 
individual-cow basis are not routinely available. The 
objective of the present study was to quantify the 
ability of routinely undertaken mid-infrared (MIR) 
spectroscopy analysis of individual cow milk samples 
to predict individual cow energy intake and efficiency. 
Feed efficiency in the present study was described by 
residual feed intake (RFI), which is the difference be-
tween actual energy intake and energy used (e.g., milk 
production, maintenance, and body tissue anabolism) 
or supplied from body tissue mobilization. A total of 
1,535 records for energy intake, RFI, and milk MIR 
spectral data were available from an Irish research herd 
across 36 different test days from 535 lactations on 378 
cows. Partial least squares regression analyses were 
used to relate the milk MIR spectral data to either en-
ergy intake or efficiency. The coefficient of correlation 
(REX) of models to predict RFI across lactation ranged 
from 0.48 to 0.60 in an external validation data set; the 
predictive ability was, however, strongest (REX = 0.65) 
in early lactation (<60 d in milk). The inclusion of milk 
yield as a predictor variable improved the accuracy of 
predicting energy intake across lactation (REX = 0.70). 
The correlation between measured RFI and measured 
energy balance across lactation was 0.85, whereas the 
correlation between RFI and energy balance, both pre-
dicted from the MIR spectrum, was 0.65. Milk MIR 
spectral data are routinely generated for individual 
cows throughout lactation and, therefore, the predic-
tion equations developed in the present study can be 
immediately (and retrospectively where MIR spectral 
data have been stored) applied to predict energy intake 
and efficiency to aid in management and breeding deci-
sions. 

  Key words:    feed efficiency ,  biomarker ,  mid-infrared 
spectrum ,  predictor 

  INTRODUCTION 

  Animal feed efficiency is one component of the ef-
ficiency of the entire dairy sector. International 
initiatives using traditional- (Berry et al., 2014) and 
genomic-based (de Haas et al., 2012) approaches are 
underway to generate individual animal estimates of 
genetic merit for feed intake in lactating dairy cows. 
Incorporating estimates of genetic merit for feed intake 
in a breeding goal that also contains estimates of ge-
netic merit for energy sinks is expected to improve feed 
efficiency (Berry and Crowley, 2013). 

  Residual feed intake (RFI) is commonly used in grow-
ing beef animals as a measure of feed efficiency (Berry 
and Crowley, 2013) and is increasing in popularity in 
lactating dairy cow populations (Coleman et al., 2010; 
Pryce et al., 2014). Residual feed intake in growing ani-
mals may be defined as the difference between actual 
energy intake and the energy intake predicted from the 
performance of the animal (Berry and Crowley, 2013). 
Because of lipid and protein body mass changes in lac-
tating dairy cows, especially in early lactation (Berry 
et al., 2006), RFI in dairy cows may be defined as the 
difference between actual energy intake and both the 
energy demanded and supplied by the various energy 
sinks (e.g., milk production) and reservoirs (e.g., body 
lipids). 

  Irrespective of whether feed intake or RFI is incorpo-
rated in a national breeding objective, the lack of accu-
rate estimates of genetic merit for either trait currently 
precludes inclusion in the breeding objective. Consider-
able interest exists in low-cost, easy-to-measure (bio-
logical) predictors of either feed/energy intake or RFI. 
Mid-infrared (MIR) spectroscopy is the study of the 
interaction between matter and electromagnetic waves 
in the 900 to 5,000 cm−1 region and is the method used 
globally to routinely determine the fat, protein, and 
lactose concentration in milk. McParland et al. (2011, 
2012) reported that the MIR spectrum of milk samples 
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can predict both energy intake and energy balance. Be-
cause energy balance can be mathematically equivalent 
to RFI (Berry and Crowley, 2013; Savietto et al., 2014), 
we hypothesized that milk MIR spectral data could 
also predict individual cow RFI. The objective of the 
present study, therefore, was to quantify the ability of 
MIR spectra of individual cow milk samples to predict 
RFI. As milk MIR spectral data should be routinely 
available on all milk-tested animals at no marginal 
cost, if prediction of RFI from milk MIR were possible, 
the results from this study could be used in (1) day-
to-day herd management, and (2) breeding programs 
to achieve genetic gain in feed efficiency in lactating 
dairy cows.

MATERIALS AND METHODS

Data

Data originated from an Irish dairy research herd, 
located at the Teagasc Animal and Grassland Research 
and Innovation Center (Moorepark, Fermoy, Co. Cork, 
Ireland) between the years 2008 and 2013, inclusive. 
The basal diet of the majority of cows was grazed grass 
and the data originated from a range of grazing stud-
ies (Ganche et al., 2013a,b; McCarthy et al., 2014). 
Individual cow DMI was periodically recorded at grass 
using the n-alkane technique and fecal grab samples 
(Dillon and Stakelum, 1989) up to 8 times across lac-
tation. Details on the procedures used to collect and 
analyze the fecal grab samples have been provided else-
where (Kennedy et al., 2008). The procedure provides 
a measure of DMI averaged across a week of sampling. 
In addition, a subset of cows (n = 25) was housed in 
a freestall barn in early lactation (up to 39 DIM) and 
fed a TMR diet of maize silage, grass silage, soybean 
meal, and dairy concentrate (Moore et al., 2014). In-
dividual DMI of housed cows was recorded daily using 
the Griffith Elder feeding system (Griffith Elder Ltd., 
Bury St. Edmunds, UK). The ME content of the grass 
was assumed to be 0.0157 × digestible OM of grass 
(AFRC, 1993). Grass ME intake was summed with the 
ME content of the concentrate fed (up to 5.3 kg daily, 
with an assumed energy content of 12.5 MJ; O’Mara, 
1997). This information was used to compute effective 
energy intake (EEI) according to the formulas of Cof-
fey et al. (2001).

Cows were milked twice daily at 0700 and 1500 h and 
individual cow milk yield was recorded at each milking. 
Individual cow milk samples were taken at consecutive 
p.m. and a.m. milkings once weekly. All milk samples 
were analyzed using the same MIR spectrometer (Foss 
MilkoScan FT6000; Foss Electric A/S, Hillerød, Den-
mark) and the resulting spectrum was stored. The Foss 

MIR spectrum contains 1,060 data points that represent 
the absorption of infrared light through the milk sample 
at wavelengths in the 900 to 5,000 cm−1 region. Spec-
tral points in the region between 926 and 3,240 cm−1 
were retained for analysis. Informative wavelengths 
were identified through their associated X-loadings. 
Spectral data were transformed from transmittance to 
linear absorbance through a logarithmic transformation 
of the reciprocal of the wavelength values (Soyeurt et 
al., 2011).

Body weights of all cows were measured weekly fol-
lowing the a.m. milking using weighing scales. Body 
condition score was assessed by trained scorers every 
2 to 3 wk on a scale of 1 to 5 (Edmonson et al., 1989). 
Cubic splines with 6 knot points at 20, 70, 120, 170, 
220, and 270 DIM were fitted through individual test-
day records of BW and BCS, with a covariance struc-
ture fitted among knot points. Body weight and BCS 
at each DIM were interpolated from the fitted splines. 
Forward differencing was used to estimate daily BW 
change (ΔBW) and daily BCS change (ΔBCS) for each 
DIM.

For comparative purposes, energy balance (EB) was 
calculated as the difference between effective energy 
intake and effective energy expended through milk 
production and maintenance according to the effective 
energy methodology of Banos and Coffey (2010).

Computation of RFI

Milk yield, fat, protein, and lactose concentration as 
well as BW, BCS, ΔBW, and ΔBCS on test days that 
had a corresponding MIR spectral record and energy 
intake record were retained for subsequent analysis. 
Following edits, 1,535 a.m. and 1,335 p.m. spectral 
records from 535 lactations on 378 cows were available 
for analysis. Cows had between 1 and 4 spectral records 
per lactation.

Residual feed intake for test-day i (RFIi) was calcu-
lated as follows:
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  [1]

where RFIi is residual feed intake on day i, EEIi is ef-
fective energy intake on day i, Milki is milk yield on day 
i, Fati is milk fat yield on day i, Proteini is milk protein 
yield on day i, Lactosei is milk lactose yield on day i, 
BWi

0.75 is metabolic liveweight (i.e., BW0.75) on day i, 
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BCSi is BCS on day i, ΔBWi−1,i is change in BW from 
day i − 1 to day i, and ΔBCSi−1,i is change in BCS from 
day i − 1 to day i. No multicollinearity existed in the 
model as quantified by the variance inflation factor.

Residual feed intake (calculated above) was also cat-
egorized into 3 different stages of lactation: 5 to 60 
(RFIearly; n = 301), 60 to 180 (RFImid; n = 666), and 
180 to 300 (RFIlate; n = 368) DIM. Records from cows 
housed during lactation contributed 12% to the early 
lactation records used in this study.

Development of Prediction Equations

Partial least squares regression (PROC PLS; SAS 
Institute Inc., Cary, NC) was used to predict RFI, EB, 
ΔBCS, and EEI from the MIR linear absorbance data. 
The data were sorted by the variable to be predicted 
and every eighth observation was removed from the 
calibration data set and retained for use in an external 
validation. This was done to optimize the robustness of 
the prediction equation, as samples in the calibration 
data set should represent the variation observed in the 
phenotype to be predicted (McParland et al., 2012). 
To facilitate an independent validation, all records 
from lactations originally selected for external valida-
tion were removed from the calibration data set and 
included in the external validation data set. Hence, the 
external validation data set was an independent group 
of lactations to the calibration data set.

The prediction model was developed using split-sam-
ple cross-validation in the calibration data set. In this 
approach, every 20th observation was removed from 
the calibration data set and predicted using a model 
developed from the data remaining in the calibration 
data set. This was iterated until every sample had been 
predicted once.

Prediction equations were calibrated and externally 
validated using 1 of 5 models: (1) using a.m. spectra 
only (n = 1,535), (2) using p.m. spectra only (n = 
1,335), (3) using both a.m. and p.m. spectra jointly (n 
= 1,335), (4) using the average of a.m. and p.m. spectra 
weighted by their corresponding milk yield (n = 1,335), 
and (5) using both a.m. and p.m. spectra together with 
total test-day milk yield (n = 1,335). An additional 
model was tested to predict RFIearly, RFImid, and RFIlate 
using a.m. and p.m. spectra jointly as predictor vari-
ables (i.e., model 3 above).

In 2 separate analyses, RFI was recalculated using 
EEI predicted using a.m. and p.m. spectra and milk 
yield (i.e., predicted using model 5). First, RFI was 
defined according to Equation 1; however, measured 
EEI in the equation was substituted with predicted 
EEI. Second, RFI was defined as the difference between 
MIR-predicted EEI and predicted energy intake from 

the regression coefficients derived in model 1 (i.e., using 
real EEI as the dependent variable).

Correlations between the measured variables (re-
ferred to as true RFI, true EB, true EEI, and true 
ΔBCS) were estimated, as were the correlations be-
tween the predicted respective variables. For the latter, 
daily predictions of each trait were the daily average of 
the predictions from the a.m. samples and p.m. samples 
(i.e., model 1 and 2, respectively). The significance of 
the difference between a correlation between 2 variables 
estimated using the true data and the corresponding 
correlation estimated using the predicted variables was 
determined following a Fisher r-to-z transformation of 
the correlations (Fisher, 1915).

RESULTS

The test days used in the present study were evenly 
distributed across lactation from 6 to 277 DIM. Mean 
values (SD in parentheses) of RFI, EB, EEI, and 
ΔBCS, were 0 (30) MJ/d, 52 (35) MJ/d, 185 (38) 
MJ/d, and −0.0009 (0.0026) units, respectively. As 
lactation progressed, although no decline in DMI was 
observed, EEI decreased, whereas simultaneously, milk 
yield decreased, resulting in improved (measured) EB 
in late lactation (Table 1). The modal number of model 
explanatory factors across all model scenarios was 14; 
however, they ranged between 8 (RFI predicted using 
p.m. spectra) and 19 (ΔBCS predicted using either 
a.m. or p.m. samples).

Prediction Accuracy Across Lactation

Cross-validation accuracy of prediction was stronger 
than the accuracy obtained from external validation 
(REX) for all prediction equations, with the exception 
of RFI predicted using the weighted average of a.m. 
and p.m. spectra (Tables 2 and 3). Prediction equations 
calibrated using only p.m. milk samples were superior 
to those calibrated using only a.m. milk samples (Table 
2). For the majority of the traits, predictions made 
using only p.m. milk samples had a lower root mean 
square error (RMSE), a slope between true and pre-
dicted values closer to unity, and a stronger correlation 
between true and predicted values in the external vali-
dation compared with predictions made using only a.m. 
milk samples. The difference in REX between equations 
using either only a.m. or only p.m. milk samples was 
sometimes large; differences in REX ranged from 0.03 
(EB) to 0.18 (ΔBCS).

Prediction accuracy of EB improved when both a.m. 
and p.m. spectra were jointly included as predictor 
variables (Table 3). When the weighted average of a.m. 
and p.m. spectra was used for prediction, the bias of 
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predicting EB was close to 0 and the slope between true 
and predicted values of EB was not different from 1. 
The addition of milk yield as a predictor variable failed 
to improve the accuracy of predicting EB. In contrast, 
the best model to predict EEI comprised a.m. and p.m. 
spectra and milk yield, all included as predictor vari-
ables (Table 3).

The weighted average of a.m. and p.m. spectra pro-
vided the most accurate prediction equation for ΔBCS; 
the slope between true and predicted values of ΔBCS 
was not different from 1 and the REX of ΔBCS was 
0.73. The accuracy of predicting ΔBCS declined sub-
stantially when milk yield was included in the predic-
tion model (Table 3).

Regardless of the prediction model used, RFI was 
more poorly predicted than EB. Moreover, accuracy 
statistics of the equations to predict RFI did not vary 
much across the alternative prediction model scenarios 
evaluated. Including a.m. and p.m. spectra jointly, or 
including milk yield as a predictor variable did not 
substantially improve the accuracy of prediction of 
RFI over prediction using p.m. milk samples alone. 

However, using the weighted average of a.m. and p.m. 
spectra as predictors resulted in deterioration in predic-
tion accuracy of RFI (Table 3).

Prediction Accuracy of RFI Within Lactation Stage

Accuracy of prediction of RFI changed throughout 
lactation (Table 4). In early lactation, despite a small 
calibration data set, the REX was 0.65, with a slope 
between true and predicted values of close to 1. In late 
lactation, however, the REX was 0.50, with a bias of 2.19 
MJ/d. Although the slope of the regression of true on 
predicted RFI deteriorated from early to late lactation, 
the root mean square error was least in late lactation 
and greatest in early lactation.

Correlations Among Performance Variables

Correlations among RFI, EB, EEI, and ΔBCS are 
in Table 5. Differences between correlations between 
true variables and corresponding correlations between 
predicted variables were statistically different (P < 

Table 1. Mean (SD in parentheses) values of milk production, intake, measured energy balance, and change 
in BCS across stage of lactation 

Trait1

Stage of lactation2

Early (n = 301) Mid (n = 666) Late (n = 368)

Milk (kg) 26 (6) 21 (5) 14 (3)
Fat (%) 4.2 (0.7) 4.0 (0.7) 4.7 (0.8)
Protein (%) 3.2 (0.3) 3.4 (0.3) 3.9 (0.4)
DMI (kg) 15 (4) 16 (3) 15 (3)
EEI (kg) 186 (41) 188 (35) 171 (33)
EB (MJ/d) 30 (39) 54 (30) 57 (25)
RFI (MJ/d) 2 (33) −6 (28) −1 (24)
ΔBCS (U) −0.0048 (0.0019) −0.0001 (0.0019) 0.0007 (0.0012)
1EEI = effective energy intake; EB = energy balance; RFI = residual feed intake; ΔBCS = daily change in 
BCS.
2Early = <60 DIM; mid = 60 to 180 DIM; late = 180 to 305 DIM.

Table 2. Fitting statistics1 of cross- and external-validation prediction equations using morning or evening milk samples 

Trait2

Cross-validation External validation

No. RMSE r No. Bias RMSE Slope (SE) RPD r

Morning milk samples
 EB 1,036 24.71 0.71 495 −0.39 26.66 0.69 (0.04) 1.27 0.62
 EEI 1,026 28.57 0.64 505 3.26 29.75 0.84 (0.05) 1.25 0.60
 ΔBCS 1,018 0.0017 0.76 513 0.0000 0.0022 0.58 (0.04) 1.22 0.57
 RFI 1,032 25.27 0.50 499 −0.16 26.48 0.93 (0.08) 1.14 0.48
Evening milk samples
 EB 929 24.55 0.68 406 −2.3 23.73 0.79 (0.05) 1.31 0.65
 EEI 930 27.76 0.65 405 −1.53 28.49 0.91 (0.05) 1.29 0.64
 ΔBCS 927 0.0017 0.78 408 0.0000 0.0018 1.01 (0.04) 1.50 0.75
 RFI 936 22.63 0.60 399 −1.9 23.88 0.88 (0.06) 1.22 0.58
1No. = number of samples; RMSE = root mean square error; RPD = ratio performance deviation; r = correlation between true and predicted 
values.
2EB = energy balance; EEI = effective energy intake; ΔBCS = daily change in BCS; RFI = residual feed intake.
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0.001; with the exception of the difference between 
correlations between EEI and ΔBCS); however, differ-
ences tended to be biologically small. The correlation 
between true RFI and EB across the entire lactation 
was 0.85; the corresponding correlation between the 
MIR spectra-predicted equivalents was 0.65. The cor-
relation, however, between MIR spectra-predicted RFI 
and true EB was 0.45 (results not shown).

The correlation between true RFI and EB changed 
throughout lactation, ranging from a minimum of 0.87 
at DIM <60 to a maximum of 0.95 in mid lactation 
(120–180 DIM). The correlation between MIR spectra-
predicted RFI and MIR spectra-predicted EB was also 
greatest between 120 and 180 DIM (r = 0.89). The corre-
lation between RFI and EEI across lactation varied from 
0.75 to 0.79, irrespective of whether the correlations were 
based on true or MIR spectra-predicted variables; hence, 

56 to 62% of the variation in RFI was due to differ-
ences in EEI. The correlation between EB and ΔBCS 
was weaker (P < 0.001) between the true traits (r = 
0.35) compared with when the equivalent MIR spectra-
predicted traits were correlated (r = 0.53; Table 5).

The correlation between true RFI and RFI calculated 
as the difference between MIR spectra-predicted EEI 
and required intake was 0.60 and 0.61 in the calibra-
tion and validation data sets, respectively and was 
similar (P > 0.05) to the accuracy of predicting RFI 
directly from the MIR spectrum. Correlations between 
measured RFI and RFI calculated from MIR spectra-
predicted EEI were 0.63 and 0.64 in the calibration 
and validation data sets, respectively, and thus were 
stronger (P > 0.05 and P < 0.05, respectively) than 
the accuracy of predicting RFI directly from the MIR 
spectra.

Table 3. Fitting statistics1 of cross- and external-validation prediction equations 

Trait2,3

Cross-validation External validation

No. RMSE r No. Bias RMSE Slope (SE) RPD r

a.m. and p.m. spectra
 EB 929 23.38 0.71 406 −1.83 22.79 0.81 (0.04) 1.37 0.68
 EEI 934 27.06 0.67 401 −0.08 31.01 0.58 (0.04) 1.19 0.55
 ΔBCS 927 0.002 0.75 408 0.0000 0.002 0.62 (0.04) 1.22 0.58
 RFI 936 22.14 0.62 399 −1.23 23.53 0.89 (0.06) 1.24 0.59
Weighted average a.m.  
and p.m. spectra
 EB 929 24.72 0.67 406 −0.03 23.41 0.92 (0.05) 1.33 0.66
 EEI 934 24.03 0.75 401 −0.23 30.43 0.54 (0.04) 1.21 0.57
 ΔBCS 927 0.002 0.77 408 −0.0001 0.002 0.99 (0.05) 1.46 0.73
 RFI 936 23.89 0.53 399 −2.86 24.63 0.94 (0.07) 1.18 0.54
a.m. and p.m. spectra  
and milk
 EB 929 24.84 0.67 406 −1.47 24.02 0.85 (0.05) 1.30 0.64
 EEI 934 23.77 0.76 401 −0.12 26.63 0.79 (0.04) 1.38 0.70
 ΔBCS 927 0.002 0.77 408 0.0000 0.002 0.55 (0.04) 1.20 0.55
 RFI 936 21.95 0.63 399 −1.23 23.39 0.88 (0.06) 1.25 0.60
1No. = number of samples; RMSE = root mean square error; RPD = ratio performance deviation; r = correlation between true and predicted 
values.
2a.m. and p.m. spectra = morning and evening milk spectra used jointly as predictors; weighted average a.m. and p.m. spectra = the average 
of morning and evening milk spectra weighted by their test-day milk yield used as predictors; a.m. and p.m. spectra and milk = morning and 
evening milk spectra plus total test-day milk yield used as predictors.
3EB = energy balance; EEI = effective energy intake; ΔBCS = daily change in BCS; RFI = residual feed intake.

Table 4. Fitting statistics1 of cross- and external-validation prediction equations to predict residual feed intake 
across stage of lactation using morning and evening spectra 

Stage2

Cross-validation External validation

No. RMSE r No. Bias RMSE Slope (SE) r

Early 253 25.92 0.65 48 1.46 24.13 0.92 (0.16) 0.65
Mid 524 22.12 0.63 142 0.99 21.81 0.91 (0.10) 0.59
Late 314 17.91 0.66 54 2.19 20.45 0.67 (0.16) 0.50
1No. = number of samples; RMSE = root mean square error; r = correlation between true and predicted values.
2Early = <60 DIM; mid = 60 to 180 DIM; late = 180 to 305 DIM.
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DISCUSSION

Interest in the feed intake complex and, in particular, 
energy intake and RFI is increasing because of the re-
quirement to feed a growing and more affluent human 
population while simultaneously minimizing the envi-
ronmental footprint of increased livestock production. 
In addition to the usefulness of energy intake and ef-
ficiency in breeding goals, monitoring individual animal 
or herd energy intake and efficiency has many other 
uses. Such uses include the evaluation of alternative 
management strategies (e.g., diet), monitoring animal 
or herd health, and potential benchmarking of herd 
performance (Berry and Crowley, 2013). Nonetheless, 
the main factor hindering the widespread use of energy 
intake and efficiency in management, but especially 
breeding strategies, is the limited availability of indi-
vidual animal or group feed intake records. Although 
international initiatives are underway to implement 
international genetic (Berry et al., 2014) and genomic 
(De Haas et al., 2012) evaluations for feed intake in lac-
tating dairy cows, the accuracy of the generated EBV is 
still low due to a paucity of individual cow feed intake 
data. Greater accuracy could be achieved with a larger 
population of animals with feed intake phenotypes. Us-
ing selection index theory applied to variance compo-
nents from a meta-analysis of dairy cow genetic studies, 
Berry and Crowley (2013) reported that approximately 
89% of the genetic variation in DMI could be explained 
by genetic differences in milk yield, liveweight, chest 
width, and stature. Variance components are, however, 
population specific, and represent the average of the 
population, but do not account for individual animal 
deviations. The scenario alluded to represents net feed 
efficiency (i.e., the genetic variation unexplained by the 
4 index traits). Therefore, considerable interest still 
remains in low-cost tools to measure or predict feed 
intake or efficiency on a routine basis. Because infor-
mation on most energy sinks in lactating dairy cows 
are routinely available (e.g., milk production) or can 

easily be generated (e.g., liveweight), having accurate 
predictions of energy intake facilitates the derivation of 
all feed efficiency measures (Berry and Crowley, 2013). 
In the present study, we attempted to predict both en-
ergy intake and feed efficiency directly from the MIR 
spectrum of milk. For comparison purposes, we also 
attempted to predict EB measured as the differential 
between energy intake and output, but also approxi-
mated as ΔBCS.

Milk MIR Spectroscopy as a Phenotyping Tool

The potential of milk MIR spectroscopy as a phe-
notyping tool has already been comprehensively re-
viewed (Berry et al., 2013; De Marchi et al., 2014). 
A particular advantage of milk MIR spectroscopy is 
that all milk samples (i.e., all bulk tank samples and 
individual samples from milk-recorded animals) are 
subjected to MIR spectroscopy analysis to determine 
the fat, protein, and lactose concentrations (as well 
as other components). Therefore, the marginal cost 
of implementing a prediction equation based on the 
milk MIR spectra is negligible once an accurate predic-
tion equation is developed. Due to the fact that milk 
samples are taken routinely, longitudinal data per cow 
or per herd are available, facilitating a greater ability to 
detect perturbations over time. McParland et al. (2011, 
2012) previously documented the ability of milk MIR 
spectra to predict EB. Energy balance and RFI are, in 
principle, mathematically very similar (Savietto et al., 
2014) and this was substantiated by the very strong 
correlation that existed in the present study between 
EB and RFI (r = 0.85 across lactation). The correla-
tion was particularly strong (r = 0.95) in mid lactation 
when liveweight change is minimal, which is the main 
mathematical difference between the 2 traits.

Prediction of Feed Intake Complex  
with Milk MIR Spectroscopy

A subset of the data set used in the present study was 
previously used to predict EB from milk MIR spectra 
(McParland et al., 2012) and the results observed in the 
present study are similar to those documented previ-
ously. The ability of the MIR spectrum to predict com-
ponent traits of EB (i.e., milk fat, protein, and lactose 
concentrations) is well established (Biggs, 1978). The 
MIR spectrum, however, captures additional variation 
in EB, which is not simply an artifact of the mathemati-
cal part-whole relationship between the left-hand side 
and right-hand side of the prediction equations. This 
is because accuracy (i.e., REX) of predicting EB using 
test-day milk, fat, protein, and lactose yields alone as 
predictor variables was 0.38. This is considerably lower 

Table 5. Correlations1 between measured (above diagonal) and mid-
infrared (MIR) spectra-predicted (below diagonal) energy balance 
(EB), energy intake (EEI), daily change in BCS (ΔBCS), and residual 
feed intake (RFI) 

Item EB EEI ΔBCS RFI

EB — 0.69 0.35 0.85
EEI 0.57 — 0.002 0.79
ΔBCS 0.53 −0.062 — 0.01
RFI 0.65 0.75 −0.10 —
1Differences between correlations between measured variables and cor-
responding correlations between MIR spectra-predicted variables were 
statistically different (P < 0.001).
2No difference between correlations between measured and MIR spec-
tra-predicted variables.
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than the accuracy of predicting EB from milk MIR on 
the same data set (0.68).

Body condition score change can also be used as a 
proxy for EB (Friggens et al., 2007). Prediction accu-
racy for ΔBCS in the present study was greater than 
the prediction accuracy for EB calculated from energy 
intake and energy expenditure despite no part-whole 
mathematical relationship existing between ΔBCS 
and the predictor variables. Loss of body condition is 
associated with mobilization of fat reserves. The MIR 
spectrum is an accurate predictor of individual milk 
fats (Soyeurt et al., 2011), including C18:0 and cis-9 
C18:1, which are known to be stored in adipose tissue 
(Chilliard et al., 2000). These FA are released during 
body tissue mobilization or periods of negative EB, thus 
providing a biological rationale for how the milk MIR 
can predict ΔBCS. Furthermore, Bastin et al. (2012) 
documented a genetic association between both C18:0 
and cis-9 C18:1 predicted from the MIR spectrum and 
days open (i.e., fertility), and showed that in early lac-
tation, when cows are typically in negative EB (Berry 
et al., 2006), the associations between milk FA derived 
from mobilization of body reserves and days open were 
positive (Bastin et al., 2012). In the current study, the 
correlation between true EB and ΔBCS was weaker 
than the correlation between predicted EB and ΔBCS 
(Table 5), indicating that predicted EB may be more 
strongly associated with lipolysis than true EB.

As defined in the present study, RFI is phenotypi-
cally independent of milk composition and ΔBCS. 
Therefore, the predictive ability of RFI from milk MIR 
spectra suggests that the MIR spectroscopy also de-
tects biological factors associated with RFI, which are 
the net of differences in milk yield (i.e., dilution), milk 
composition, and ΔBCS.

Methane emissions account for approximately 6% of 
ingested energy of ruminants (Johnson and Johnson, 
1995) and are, therefore, likely to contribute to differ-
ences in RFI among animals. Albeit from a relatively 
small data set, Dehareng et al. (2012) documented the 
ability of milk MIR spectra to predict methane emis-
sions, which is one biological rationale to why the milk 
MIR can predict RFI. Based on the proportion of varia-
tion in RFI explained by the MIR spectra, however, it 
is very likely that other biological compounds related 
to RFI (either directly or indirectly) were also being 
detected in the milk. The contributors to differences in 
RFI, especially in dairy cows, have not been fully eluci-
dated. Components detected in the milk MIR spectra, 
however, may include alternative protein structures as 
an artifact of, for example, differences in protein turn-
over, which is speculated to contribute to differences 
in RFI, in growing animals at least (Richardson and 
Herd, 2004).

Furthermore, data on animal-level factors not in-
cluded in the prediction models in the current study, 
but that could be procured relatively cheaply to further 
improve the prediction of feed efficiency include animal 
activity measured using pedometers or accelerometers 
and body temperature measured using infrared tomog-
raphy (Montanholi et al., 2009).

As EB and RFI are mathematically similar, the 
similarity in prediction accuracy for EB and RFI in 
the present study is not surprising. McParland et al. 
(2012) previously discussed why prediction accuracy of 
near unity is not expected for traits such as EB (and 
therefore RFI) because of the inherent errors within 
these gold-standard measures themselves. The ratio 
of the standard error of prediction to the standard 
deviation of the gold standard traits (RPD) is often 
used as an indicator of the usefulness of the predic-
tion equation for practical purposes (Williams, 2007). 
Application of equations with an RPD less than 2.3 is 
not recommended, equations with an RPD between 2.4 
and 3.0 can be considered for rough screening quality, 
and equations with an RPD greater than 3 can be con-
sidered for screening quality (Williams and Sobering, 
1993). In the current study, the RPD of all prediction 
equations was less than 2 but must be interpreted in 
the context of the precision of the gold-standard vari-
ables. Contributing factors to the errors for all traits 
include measurement or recording errors (including gut 
fill), the smoothing of the liveweight and BCS data 
in the present study, and the applied regression coef-
ficients to the energy sinks. McParland et al. (2012) 
showed differences in the ability of the MIR spectrum 
to predict energy intake across 2 research herds: the 
Langhill herd located at the Scottish Agricultural Col-
lege (Edinburgh, UK) and the Teagasc Moorepark herd 
(Cork, Ireland). Although the research herds operated 
different management strategies and comprised differ-
ent genetics, the main reason that intake prediction ac-
curacy was greater in the Langhill herd compared with 
the Moorepark herd was likely due to differences in the 
recording of the energy intake data. Intake data in the 
Langhill herd were recorded automatically using Calan 
gates (American Calan Inc., Northwood, NH), whereas 
intake of the Teagasc Moorepark herd was recorded at 
grass using the n-alkane technique (averaged across a 
week).

Nonetheless, the stronger correlation between 
measured RFI and RFI calculated from MIR spectra-
predicted EEI compared with the correlation between 
measured RFI and RFI predicted directly from the 
MIR spectrum suggests that, in practice, the RFI of 
animals should be calculated using MIR spectra-pre-
dicted EEI and not predicted directly from the MIR 
spectrum.
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Of particular note, not directly related to the objec-
tive of this study, was the strong correlation between 
EB and RFI. Severity and duration of negative EB is 
well known to be associated with compromised repro-
ductive performance (Beam and Butler, 1999) and more 
negative RFI is perceived to confer greater efficiency 
of production (Berry and Crowley, 2013). Breeding 
programs, therefore, that advocate selection for (lower) 
RFI in dairy and beef cows should do so with caution. 
Selection based on MIR spectra-predicted RFI would 
yield improved (true) efficiency at the expense of more 
negative (true) EB.

CONCLUSIONS

The present study highlights the potential ability of 
routinely collected milk MIR spectra to predict energy 
intake and efficiency in lactating dairy cows either di-
rectly from the MIR spectrum, or derived using MIR 
spectra-predicted energy intake. Equations developed 
in this study are, however, specific to grass-fed cows. 
Populations with different production environments 
should develop their own equations or merge data with 
other production environments to develop robust equa-
tions. Moreover, generating more accurate gold-stan-
dard measures for the variables (e.g., large calorimetric 
studies) may aid in improving the prediction equations 
further, although such approaches have the disadvan-
tage of removing some of the likely contributing factors 
to feed efficiency such as activity.
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