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Abstract 

The spatial and temporal regulation of peptidoglycan biosynthesis and its role in cell 

morphology has been studied intensively in well-characterized model organisms such as 

Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, which divide either by 

symmetric or asymmetric binary fission. To broaden our knowledge of the mechanisms 

governing bacterial morphogenesis, we started to investigate the dimorphic marine α-

proteobacterium Hyphomonas neptunium as a new model organism. This Gram-negative 

species is characterized by a unique mode of proliferation, whereby the new offspring is 

generated by the formation of a bud at the tip of a stalk that emanates from the mother cell 

body. 

The main focus of our previous studies was the identification of cell wall biosynthetic 

enzymes and regulatory factors that are critically involved in stalk and bud biogenesis. 

These studies revealed that peptidoglycan biosynthesis in H. neptunium is a complex 

process mediated by an intricate interplay of various factors. Among the open questions, it 

is still unknown how the generation of the daughter cell is regulated and how the mother 

cell orchestrates the localization of peptidoglycan remodeling enzymes at specific site of 

action during the cell cycle. Consequently, that includes the initial localization of enzymes 

at the stalked pole. At a certain point, they have to diffuse through the stalk into the growing 

bud. There, they center at the junction between the bud and the stalk to separate the mother 

cell from the bud.  

The main goal of the present study our current research is a deeper and more thorough 

characterization of previously investigated peptidoglycan remodeling enzymes, and 

especially the lytic enzymes, that cleave the peptidoglycan mesh. We particularly focused 

on two classes, the M23 metallopeptidases and the amidases. In doing so, we compre-

hensively analyzed the six M23 endopeptidases of H. neptunium with localization studies 

and genetic approaches. Our results revealed a high degree of redundancy among these 

enzymes, which combined with the absence of a distinct localization pattern, indicated a 

generalized role in cell wall maintenance. We also investigated the role of the only amidase 

in H. neptunium in cell separation and bud formation. A deletion of the amidase gene led to 

an aberrant morphology and a mild chaining phenotype. Importantly, we showed that one 

of the M23 endopeptidases (LmdE) acts as a regulator of AmiC. Using biochemical 

approaches, we proved an interaction between AmiC and LmdE, where LmdE stimulates 

the catalytic activity of AmiC and thus regulates peptidoglycan hydrolysis. A further crucial 

player in this system is the inner membrane-embedded FtsEX complex. A deletion of the 

whole complex resulted in cells with very elongated and misshapen stalks. Probably, FtsEX 

plays a role in the regulation of amidase activity by interacting with LmdE. These results are 

similar between α- and γ-proteobacteria indicating that the mechanism of amidase 

regulation is conserved.  

A further goal of our work was the identification of novel factors that are specifically involved 

in the regulation of budding in H. neptunium. To this end, we started to establish a 

transposon mutagenesis system to identify all essential genes in this species. In the future, 

we will be able to investigate these novel factors and their contribution to cell morphology.  

Taken together, these results provide insight into the mechanisms of morphogenesis in 

stalked budding bacteria, thus setting the stage for an in-depth analysis of the regulatory 
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mechanisms that control the spatiotemporal dynamics of the peptidoglycan biosynthetic 

machinery in these organisms. 
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Zusammenfassung 

Die räumliche und zeitliche Regulation der Peptidoglycan-Biosynthese und ihre Rolle für 

die Zellmorphologie wurde bisher nur in wenigen gut charakterisierten Modellorganismen, 

wie Escherichia coli, Bacillus subtilis und Caulobacter crescentus untersucht. Diese 

Bakterien teilen sich entweder durch symmetrische oder asymmetrische Zweiteilung. Um 

unsere Kenntnisse über die Mechanismen der bakteriellen Morphogenese zu erweitern, 

haben wir begonnen das dimorphe marine α-Proteobakterium Hyphomonas neptunium zu 

analysieren und als neuen Modellorganismus zu etablieren. Diese Gram-negative Spezies 

zeigt ein einzigartiges Vermehrungsverfahren, bei dem eine neue Tochterzelle an der 

Spitze eines Stiels gebildet wird, der aus dem Zellkörper der Mutterzelle wächst. 

In vorausgangenen Studien lag unser Hauptfokus auf der Identifikation von Zellwand-

synthetisierenden Enzymen und regulatorischen Faktoren, die in die Stiel- und Tochter-

zellbiogenese involviert sind. Diese Untersuchungen zeigten, dass die Peptidoglycan-

Biosynthese von H. neptunium einen komplexen Prozess darstellt ist, der das Zusammen-

spiel vieler verschiedener Faktoren erfordert. Wie die Entstehung der Tochterzelle im Detail 

funktioniert oder Peptidoglycan remodellierende Enzyme während des Zellzyklus lokalisiert 

werden, ist bisher noch nicht bekannt. Zu Beginn der Proliferation werden sie am gestielten 

Pol, später aber in der Tochterzelle benötigt. 

Das Hauptziel der vorliegenden Arbeit ist die detaillierte Charakterisierung schon bekannter 

Peptidoglycan-Biosyntheseenzyme. Dies involviert vor allem eine genauere Analyse der 

hydrolytischen Enzyme, die Peptidoglycan spalten. Wir betrachten hier zwei Klassen von 

Hydrolasen im Detail, die M23-Endopeptidasen und die Amidasen. Sechs M23-Endopep-

tidasen werden im Genom von H. neptunium codiert. In Lokalisations- und Deletionsstudien 

haben wir sie umfassend analysiert und konnten eine hohe Redundanz der Enzyme zeigen. 

Sie weisen eine diffuse Verteilung im ganzen Zellkörper auf, was auf eine Funktion bei der 

Erhaltung der Zellform nahelegt. Weiterhin untersuchten wir die Rolle der einzigen Amidase 

(AmiC) auf die Zellseparierung und Tochterzellbildung. Eine Deletion des Amidase-Genes 

amiC veränderte die Morphologie und führte zu einem leicht kettenartigen Phänotyp. Wir 

konnten zeigen, dass eine der M23-Endopeptidasen (LmdE) als Regulator der Amidase 

AmiC fungiert. In biochemischen Untersuchungen bewiesen wir eine Bindung und 

Interaktion von LmdE mit AmiC. LmdE stimuliert die katalytische Aktivität von AmiC und 

reguliert daher die Peptidoglycan-Hydrolyse. Eine weitere wichtige Komponente in diesem 

System ist der membranintegrale FtsEX-Komplex. Die Deletion des gesamten Komplexes 

resultierte in Zellen mit sehr langen und deformierten Stielen. FtsEX spielt wahrscheinlich 

eine Rolle in der Amidaseregulation, indem es mit LmdE interagiert. Diese Resultate sind 

ähnlich zwischen γ- und knospenden α-Proteobakterien und deuten auf einen konservierten 

Mechanismus der Amidaseaktivierung hin. 

Ein weiteres wichtiges Ziel unserer Arbeit war die Identifikation von neuen Faktoren, die in 

die Regulierung der Teilung von H. neptunium involviert sind. Daher haben wir angefangen, 

ein Transposon-Mutagenesesystem zu etablieren, mit dem alle essentiellen Gene 

identifiziert werden können. Zukünftig werden wir in der Lage sein, unbekannte Faktoren 

zu untersuchen und ihren Beitrag zur Morphogenese zu beleuchten.  

Zusammen genommen zeigen diese Resultate tiefen Einblicke in die Mechanismen der 

Morphogenese in gestielten knospenden Bakterien. Sie stellen eine Plattform bereit für eine 
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eingehende Analyse der regulatorischen Mechanismen, die der räumlichen und zeitlichen 

Dynamiken der Peptidoglycan-Biosynthese zu Grunde liegen. 

 

 



  Abbreviations 

  IX 

Abbreviations 

 

APS   ammonium persulfate 

ASM   Artificial Salt Medium 

BLI   bio-layer interferometry 

bp   base pair(s) 

BSA   bovine serum albumin 

Co-IP   Co-immunoprecipitation 

CV   column volume 

DAP   diaminopimelic acid 

DAPI   4’,6-diamidino-2-phenylindole 

DIC   differential interference contrast 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

dNTPs   deoxyribonucleoside triphosphate 

EDTA   ethylenediaminetetraacetic acid 

ddH2O   double de-ionized water 

GlcNAc  N-acetylglucosamine 

GTase   glycosyltransferase 

h   hour 

HADA   7-hydroxycoumarin-3-carboxylic acid-amino-D-alanine 

His6   hexahistidine 

IPTG   isopropyl-β-D-thiogalactopyranoside 

kDa   kilo Dalton 

Kan   Kanamycin 

Lmds    LytM domain-containing proteins 

LPP   lipoprotein 

LPS   lipopolysaccharide 

MB   marine broth 

min   minute 

MurNAc  N-acetylmuramic acid 

OD600   optical density at 600 nm 

PBP   penicillin-binding protein 

PG   peptidoglycan 

PMSF   phenylmethanesulfonyl fluoride 

Rif   Rifampicin 

rpm   revolutions per minute 

RT   room temperature 

SAP   shrimp alkaline phosphatase  

SDS   sodium dodecyl sulfate 

sec   second  

SUMO   small ubiquitin-related modifier 

TBST   phosphate-buffered saline with Tween 20 

TEMED  N, N, N’, N’-tetramethylethylenediamine 

TFA   trifluoroacetic 

TGase   transglycosylase  
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TPase   transpeptidase 

Tris-HCl  Tris(hydroxymethyl)aminomethane hydrochloride 

v/v   volume per volume 

w/v   weight per volume 

WT   wild type 

x g   multiple of acceleration of gravity 

 

 

 



  Table of Contents 

  XI 

Table of Contents 

Abstract             V 

Zusammenfassung          VII 

Abbreviations            IX 

Table of Contents           XI 

1. Introduction ................................................................................................................ 1 

1.1 The bacterial envelope ....................................................................................... 1 

1.2 Structure and biosynthesis of peptidoglycan ....................................................... 1 

1.2.1 PG synthases .............................................................................................. 5 

1.3 PG lytic enzymes and their regulators ................................................................. 6 

1.3.1 Endopeptidases ........................................................................................... 6 

1.3.2 Amidases ..................................................................................................... 7 

1.3.3 Carboxypepdidases ..................................................................................... 9 

1.4 Cell growth and division ...................................................................................... 9 

1.5 Alternative growth modes in bacteria .................................................................11 

1.6 Hyphomonas neptunium as a model organism for stalked budding bacteria ......13 

1.7 PG biosynthesis and growth of H. neptunium ....................................................15 

1.8 Aim of study .......................................................................................................16 

2. Results .....................................................................................................................18 

2.1 PG remodeling enzymes....................................................................................18 

2.1.1 M23 endopeptidases of H. neptunium ........................................................18 

2.1.2 Analysis of their localization ........................................................................21 

2.1.3 The single amidase of H. neptunium ...........................................................23 

2.1.4 AmiC is a periplasmic amidase ...................................................................25 

2.1.5 The connection between AmiC and the M23 endopeptidases .....................26 

2.1.6 AmiC-mCherry localization in the ΔlmdE mutant .........................................28 

2.2 The FtsEX complex of H. neptunium .................................................................29 

2.2.1 AmiC-mCherry localization in the ΔftsEX mutant ........................................31 

2.3 Protein purification and in vitro assays ...............................................................32 

2.3.1 The role of LmdE in AmiC activation ...........................................................33 

2.3.2 LmdA is an active endopeptidase ...............................................................36 

2.3.3 AmiC and LmdE physically interact .............................................................36 

2.4 Carboxypeptidases of H. neptunium ..................................................................40 



Table of Contents   

XII 

2.4.1 Deletion studies of the three carboxypeptidases ........................................ 40 

2.4.2 The localization of DacL ............................................................................. 41 

2.5 Transposon mutagenesis in H. neptunium ........................................................ 42 

3. Discussion ................................................................................................................ 46 

3.1 Role of PG remodeling enzymes ....................................................................... 46 

3.2 Mode of amidase activation ............................................................................... 48 

3.3 Function of the FtsEX complex .......................................................................... 51 

3.4 Identification of essential genes and novel factors ............................................. 51 

3.5 Concluding remarks and future perspectives ..................................................... 52 

4. Material and Methods ............................................................................................... 54 

4.1 Materials ........................................................................................................... 54 

4.1.1 Chemicals and enzymes ............................................................................ 54 

4.1.2 Media ......................................................................................................... 54 

4.1.3 Buffer and solutions ................................................................................... 56 

4.1.4 Kits ............................................................................................................. 56 

4.1.5 Oligonucleotides and plasmids ................................................................... 56 

4.2 Microbiological and cell biological methods ....................................................... 56 

4.2.1 Cultivation of E. coli .................................................................................... 56 

4.2.2 Cultivation of H. neptunium ........................................................................ 56 

4.2.3 Storage of bacteria ..................................................................................... 57 

4.2.4 Determination of cell density ...................................................................... 57 

4.2.5 Growth curves ............................................................................................ 57 

4.2.6 Biofilm assay .............................................................................................. 57 

4.2.7 Preparation of competent E. coli cells ........................................................ 57 

4.2.8 Transformation of competent cells.............................................................. 58 

4.2.9 Conjugation of H. neptunium ...................................................................... 58 

4.3 Microscopic methods ......................................................................................... 59 

4.3.1 Nucleoid staining ........................................................................................ 59 

4.3.2 Visualization of nascent peptidoglycan ....................................................... 59 

4.4 Molecular biology methods ................................................................................ 60 

4.4.1 Isolation of bacterial DNA ........................................................................... 60 

4.4.2 Polymerase chain reaction (PCR) .............................................................. 60 

4.4.3 Colony PCR ............................................................................................... 60 

4.4.4 Determination of the quality and purity of DNA ........................................... 61 



  Table of Contents 

  XIII 

4.4.5 Agarose gel electrophoresis .......................................................................61 

4.4.6 Restriction and ligation of DNA fragments and Gibson assembly ................62 

4.4.7 Isolation of plasmid DNA and sequencing ...................................................63 

4.4.8 Generation of markerless deletions and insertion in H. neptunium ..............63 

4.4.9 Construction of plasmids ............................................................................63 

4.5 Biochemical methods .........................................................................................66 

4.5.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) ...............................66 

4.5.2 Immonublot analysis ...................................................................................67 

4.5.3 Protein fractionation ....................................................................................67 

4.5.4 Co-immunoprecipitation and mass-spectroscopy ........................................68 

4.5.5 Protein purification ......................................................................................69 

4.5.6 Dye-release assay for PG hydrolysis ..........................................................70 

4.5.7 Bio-layer interferometry (BLI) ......................................................................70 

4.6 Transposon mutagenesis in H. neptunium .........................................................71 

4.7 Bioinformatic methods .......................................................................................72 

5. Appendix...................................................................................................................73 

5.1 Supplement figures ............................................................................................73 

5.2 Supplemental tables ..........................................................................................78 

6. References ...............................................................................................................86 

Acknowledgements          98 

Curriculum Vitae          99 

Einverständniserklärung                  100 

 

 

 





  Introduction 

  1 

1. INTRODUCTION 

1.1 The bacterial envelope 

The bacterial envelope is crucial for cell shape maintenance, withstanding the turgor 

pressure, and cell division. The cell wall has to expand but also be cleaved to separate the 

daughter cell. The structure of the cell envelope of a typical Gram-negative bacterium is the 

following: outer membrane, periplasm with peptidoglycan (PG), and inner membrane 

(cytoplasmic membrane) (Silhavy et al., 2010). The latter is built of a lipid bilayer with 

phospholipids. The outer membrane is a special feature of Gram-negative bacteria and 

represents an asymmetric lipid bilayer. Its outer layer consists of lipopolysaccharides (LPS) 

and the inner layer of phospholipids (Kamio & Nikaido, 1976). The LPS is composed of Lipid 

A, core oligosaccharide and the O-antigen (Kamio & Nikaido, 1976). It is responsible for the 

immune response in host cells and the causative agent of septic shock (Miller et al., 2005). 

Its location at the cell surface and its physicochemical properties make LPS primarily 

responsible for the barrier function of the outer membrane, which is crucial for the survival 

of many Gram-negative bacteria in different environments (Ruiz et al., 2009). This barrier 

is the reason why it has been so difficult to develop antibiotics against these organisms 

(Delcour, 2009). 

1.2 Structure and biosynthesis of peptidoglycan 

PG (also called murein) plays a fundamental role for the structure of the cell envelope and 

is located in the periplasm. The PG sacculus can be isolated as a whole net-like hetero-

polymer and observed by light microscopy (Silhavy et al., 2010). The rigidity and stiffness 

of PG is responsible for the cell shape of bacteria. Without it, they would lose their 

characteristic form and become spheroplasts (Silhavy et al., 2010). Gram-negative bacteria 

have a relatively thin PG layer, whereas Gram-positive bacteria have a thick layer off up to 

100 nm (Silhavy et al., 2010). Gram-positive bacteria do not possess an outer membrane, 

and their PG is anchored to the cytoplasmic membrane via lipoteichoic acids (Neuhaus & 

Baddiley, 2003).The PG of Gram-negative bacteria is anchored to the outer membrane by 

lipoproteins, also called Braun’s lipoproteins (Lpp), which are important for the stability of 

the cell envelope. In detail, they are attached to the outer membrane by their N-terminal 

lipid residue and are among the most abundant proteins in the γ-proteobacterium 

Escherichia coli (Braun & Wolff, 1970).  

Pores (porines) exist in the outer membrane, which let pass globular proteins with a 

molecular size of up to 24 kDa, but once the PG net is expanded in living cells, proteins up 

to 100 kDa may also pass through the structure (Demchick & Koch, 1996; Vazquez-Laslop 

et al., 2001).  

PG is composed of long glycan strands with alternating N-acetylglucosamine (GlnNAc) and 

N-acetylmuramic acid (MurNAc) moieties (Figure 1), connected via β-1,4-glycosidic bonds 
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and further cross-linked by their peptide side chains (Schleifer & Kandler, 1972). These 

peptides side are connected to MurNAc by an amide bond and they contain D-amino acids 

beside the normal L-amino acids. Their biosynthesis occurs as a pentapeptide with the 

typical structure of L-alanine–D-glutamic acid–meso-diaminopimelic acid (m-DAP)–D-

alanine–D-alanine (Figure 1A) (Vollmer & Bertsche, 2008). Isolated PG of some species 

only shows a small amount of pentapeptides because they are degraded to tetra-, tri- or 

dipeptides. The chemical structure of the murein subunits is similar in the majority of Gram-

negative and some Gram-positive bacteria, while most Gram-positive bacteria have L-lysine 

instead of m-DAP in their peptide stem (Figure 1B) (Schleifer & Kandler, 1972). Moreover, 

the chains of Gram-positive bacteria are connected by an interpeptide bridge made of 

glycine residues that varies in length (Royet & Dziarski, 2007). 

  

Figure 1: Structure of PG subunits. (A) Structure of DAP-type PG of Gram-negative bacteria with 
the characteristic m-DAP at the third amino acid. (B) Structure of Lys-type PG of Gram-positive 
bacteria with the characteristic L-Lys at the third amino acid and the interpeptide bridge. Areas 
marked with [ ] show the glycan strands, which are connected via β-1,4-glycosidic bonds. They are 
cross-linked by peptide side chains. Abbreviations: GlcNAc: N-acetylglucosamine; MurNAc: N-
acetylmuramic acid; Ala: alanine; Glu: glutamic acid, m-DAP: meso-diaminopimelic acid; iGln: 
isoglutamine; Lys: lysine. Adapted from Royet and Dziarski (2007). 

 

The cross-linked peptides are mainly responsible for the net-like structure of PG. In E. coli 

and other Gram-negative bacteria they can amount up to 40 – 60% of all peptides 

depending on the growth conditions (Glauner et al., 1988; Quintela et al., 1995). The 

majority of the cross-links belong to the DD-type, which is the connection between the 

carboxyl group of D-alanine (position 4) of one peptide and the amino group of m-DAP 

(position 3) of another peptide (Figure 1A) (Glauner et al., 1988). In fewer cases, cross-links 

of the LD-type exist where m-DAP residues of two peptides are connected by L,D-

transpeptidases (LDTs) (Vollmer & Bertsche, 2008). Analyses of the composition of PG 

clearly revealed a heterogeneous structure, since it consists of more than 50 different types 

of subunits, which differ in length (di-, tri-, tetra- and pentapeptides), in the type of cross-

linkage (DD or LD) and the presence of D-alanine or glycine at position 4 or 5 (Glauner et 

al., 1988). 
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PG biosynthesis takes place in two different cellular compartments. The precursor 

molecules (lipid I and lipid II) are synthesized in the cytoplasm and flipped across to the 

cytoplasmic membrane to the periplasm, where the extension of the PG polymer takes 

place (Figure 2) (Vollmer & Bertsche, 2008). Amino sugars are the key intermediates of the 

precursor molecules, since they are converted to GlcNAc and attached to uridine 

diphosphate (UDP) to produce UDP-GlcNAc. In a further step, UDP-GlcNAc is transformed 

into UDP-MurNAc. This reaction is catalyzed by MurA and MurB using phosphoenol-

pyruvate and NADPH. The peptide side chains are successively elongated by the addition 

of L-alanine, D-glutamic acid, m-DAP and the dipeptide D-alanine–D-alanine. This process 

is catalyzed by ATP-dependent ligases (MurCDEF and DdlA; Figure 2). The extraordinary 

D-amino acids are synthesized by racemases from L-amino acid precursors (Alr, DadX and 

MurI; Figure 2) (Vollmer & Bertsche, 2008). The resulting UDP-MurNAc subunit is attached 

to bactoprenyl-P (undecaprenyl-P) by the enzyme MraY, generating lipid I. The addition of 

UDP-GlnNAc to lipid I by a transferase (MurG) then leads to the generation of lipid II (van 

Heijenoort, 2001). Afterwards, lipid II is flipped across the cytoplasmic membrane. 

Previously, studies have shown and suspected that integral membrane proteins of the 

SEDS (shape, elongation, division, and sporulation) family, namely FtsW and RodA, are the 

flippases of the PG precursor in E. coli (Ikeda et al., 1989; Mohammadi et al., 2011). 

However, additional work revealed that the polytopic membrane protein MurJ is actually 

required for lipid II transport (Ruiz, 2008; Sham et al., 2014). This was again called into 

question by a recent study, in which the interaction of MurJ with lipid II could not be 

observed, whereas a connection between FtsW, PBP1B and lipid II was clearly shown 

(Leclercq et al., 2017). In the Gram-positive Bacillus subtilis, MurJ and the novel flippase 

Amj were shown to flip lipid II (Meeske et al., 2015). 

The extension of the PG sacculus net takes place at the periplasmic site of the cytoplasmic 

membrane, where lipid II is polymerized and the new glycan strands are integrated into the 

PG meshwork. This process involves glycosyltransferases (GTases) that polymerize the 

glycan strands and transpeptidases (TPases) that cross-link the peptides (Figure 2) (Typas 

et al., 2012). Lipid II functions as a substrate for GTases to elongate the glycan strands. 

The new glycosidic bond is made between the C1 of the incorporated MurNAc and the C4 

of the GlcNAc of Lipid II (van Heijenoort, 2001; Ward & Perkins, 1973). Additionally, the D-

alanine (position 4) of the donor peptide is connected to m-DAP of the acceptor peptide 

(position 3) in the TPase reaction. The energy for this reaction is gained by the cleavage of 

the D-ala–D-ala bond of the pentapeptide, that functions as a donor (Terrak et al., 1999).  
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Figure 2: Structure and biosynthesis of the peptidoglycan with its remodeling enzymes in 
E. coli. Shown is the synthesis and attachment of new PG subunits into the existing PG meshwork. 
All known synthetic and hydrolytic enzymes are indicated. The PG precursor lipid I and lipid II is 
synthesized in the cytoplasm and linked to undecaprenol before being flipped into the periplasm. 
FtsW, RodA or MurJ might function as a flippase. The polymerization of the glycan chain is catalyzed 
by glycosyltransferasess (GTase), whilst transpeptidases (TPase) cross-link the stem peptide by a 
4,3-crosslink to the established PG layer. LD-transpeptidases catalyze the formation of 3,3-crosslinks 
between stem peptides and attach the PG strands to Lpp, which anchors the PG meshwork to the 
outer membrane. The stem peptides are clipped by DD-, LD-, and DL-carboxypeptidases (CPases), 
and cross-links are cleaved by DD- and LD-endopeptidases (EPases). Amidases remove the 
complete stem peptide from the MurNAc. The glycan backbone is cleaved by exo- or endo-specific 
lytic transglycosylases (LTs), generating 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) residues 
at the terminal end of PG strands. Abbreviations: Alr, Ala racemase, biosynthetic; DadX, Ala 
racemase, catabolic; DdlA, D-ala–D-ala ligase A; GlcNAc: N-acetylglucosamine; MurNAc: N-
acetlymuramic acid; meso-DAP: meso-diaminopimelic acid; MraY: UDP-MurNAc-pentapeptide 
phosphotransferase; MurA: UDP-GlcNAc enolpyruvyl transferase; MurB: UDP-MurNAc dehydro-
genase; MurC: UDP-MurNAc–L-Ala ligase; MurD: UDP-MurNAc-L-Ala–D-Glu ligase; MurE: UDP-
MurNAc-L-Ala-D-Glu–meso-DAP ligase; MurF: UDP-MurNAc-tripeptide–D-alanyl-D-ala ligase; 
MurG: UDP-GlcNAc-undecaprenoyl-pyrophosphoryl-MurNAc-pentapeptide transferase; MurI: Glu 
racemase; NADPH: nicotinamide adenine di-nucleotide phosphate; PEP: phosphoenolpyruvate. 
Adapted from Typas et al. (2012) and Cserti (2016). 
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1.2.1 PG synthases 

The enlargement of the PG sacculus through incorporation of lipid II is catalyzed by PG 

synthases. Proteins with transpeptidase activity that can covalently bind penicillin are called 

penicillin-binding proteins (PBP) (Suginaka et al., 1972). However, not all PBPs are 

synthases, e.g. PBP5 (see 1.3.3.). PBPs are classified into three types: bifunctional 

GTases-TPases (class A PBPs), monofunctional TPases (class B PBPs) and monofunc-

tional GTases (Vollmer & Bertsche, 2008). Many known periplasmic PG synthases of E. coli 

are anchored to the cytoplasmic membrane by a short hydrophobic N-terminal transmem-

brane region, with their catalytic domains placed in the periplasm (Vollmer & Bertsche, 

2008). 

Two bifunctional PBPs (PBP1A and PBP1B) are mainly responsible for PG biosynthesis in 

E. coli, with the first one responsible for cell elongation and the second one for cell division. 

Lipoproteins (Lpo) that are anchored to the outer membrane and reach though the PG 

sacculus regulate the bifunctional PBPs. Established examples in E. coli are the activation 

of PBP1B by LpoA, and the activation of PBP1B by LpoB (Paradis-Bleau et al., 2010; Typas 

et al., 2010). Recently, the structure of LpoB was solved and revealed an N-terminal long 

flexible stretch that can reach throughout the periplasm and bind with its globular domain to 

PBP1B (Egan et al., 2014). Lately, it was shown that this mode of cell wall synthase 

regulation is conserved in Pseudomonas aeruginosa, where LpoP controls PBP1B (Greene 

et al., 2018). The third class A PBP of E. coli is PBP1C, whose cellular role is still unclear 

(Typas et al., 2012). For the monofunctional TPases, two proteins are well-known and 

widely conserved: PBP2, which is essential for cell elongation and exhibits MreB-dependent 

localization, and PBP3 (FtsI), which is needed for cell division and therefore is part of the 

divisome (de Pedro et al., 1997; Spratt, 1975; Typas et al., 2012; Weiss et al., 1999). MtgA 

functions as an additional PG synthase in E. coli, which localizes to the division plane and 

interacts with other cell division proteins, exhibiting GTase activity (Derouaux et al., 2008). 

In addition to the already mentioned function of the SEDS proteins FtsW and RodA in lipid II 

flipping, they might also possess transglycosylase activity (Cho et al., 2016; Meeske et al., 

2016). The integral membrane protein RodA showed circumferential motion together with 

PBP2 in E. coli, showing that class A PBPs were not essential for glycan polymerization by 

the cell elongation machinery (Cho et al., 2016). In B. subtilis, RodA and FtsW were 

identified as transglycosylases that could polymerize lipid II in vitro (Meeske et al., 2016). 

Both studies revealed that SEDS family proteins are more important than previously thought 

and crucial for cell wall synthesis.  

C. crescentus possesses five bifunctional PBPs, which are important for the complex cell 

shape of this bacterium (Strobel et al., 2014; Yakhnina & Gitai, 2013). Only one of these 

enzymes (PbpX) is crucial for growth and normal cell morphology, while the inactivation of 

all five was lethal (Strobel et al., 2014). Homologs of PBP2 and PBP3 were also identified 

and localized in C. crescentus. Both proteins showed an accumulation at the new cell pole 

at the start of the cell cycle and a signal at the division plane after the onset of constriction 

(Costa et al., 2008; Figge et al., 2004; Hocking et al., 2012).  

Three bifunctional PBPs (PBP1A, PBP1X and PBP1C), two monofuctional TPases (PBP2 

and PBP3) and one monofuctional GTase (MtgA) exist and were identified in the budding 

α-proteobacterium Hyphomonas neptunium (Cserti et al., 2017). Furthermore, two L,D-
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transpeptidases (LdtA and LdtB) that make 3,3-crosslinks in PG were identified (Cserti et 

al., 2017; Magnet et al., 2008). All PG synthases were analyzed in more detail, showing 

that PBP1A, PBP2 and PBP3 are essential for viability. In addition, PBP2 and other 

elongation-specific components are responsible for the elongation of H. neptunium (Cserti 

et al., 2017). The role of MtgA might be redundant because a deletion had no phenotypic 

effect. In certain species, LDTs play an important role by cross-linking the peptide chains 

and they are part of the PG biosynthetic machinery. For example, previous studies have 

suggested that they critically contribute to cell elongation in a member of the Rhizobiales 

(Agrobacterium tumefaciens) by mediating the typical polar growth of this species (Brown 

et al., 2012; Cameron et al., 2014; Grangeon et al., 2015). The LDTs of A. tumefaciens 

localize at the tip of the nascent daughter cell and produce the 3,3-crosslinks in PG 

(Cameron et al., 2014; Grangeon et al., 2015). However, the ldt genes of H. neptunium 

were deleted without any morphological effect (Cserti et al., 2017). Thus , these synthetic 

LDTs are apparently dispensable for PG biosynthesis and growth of H. neptunium.  

1.3 PG lytic enzymes and their regulators 

PG hydrolysis is accomplished by PG lytic enzymes that cleave the covalent bonds in the 

PG macromolecule and produce small soluble fragments (Höltje, 1995). Cleavage of PG is 

necessary to gain space for the insertion of new material. In general, all PG lytic enzymes 

have to be strictly controlled as they can destroy the integrity of the PG meshwork. A close 

functional cooperation between PG synthases and hydrolases building multi enzyme 

complexes has been postulated (Höltje, 1998). This would ensure a coordination of the 

different activities, but still needs to be proven. Bacteria possess a huge variety of different 

lytic enzymes (three classes of them are explained in more detail in the following section 

1.3.1. to 1.3.3). One class are the lytic transglycosylases (LTs), which cleave the β-1,4-

glycosidic bonds between MurNAc and GlnNAc, thereby producing 1,6-anhydro-N-

acetylmuramic acid (Figure 2) (Höltje et al., 1975). Until now, seven LTs were discovered 

in E. coli. Six are membrane-bound, whereas the seventh is soluble in the periplasm (Höltje, 

1998). 

1.3.1 Endopeptidases 

A separate class are the endopeptidases (EPases), which cleave the bonds between the 

peptide side chains and therefore separate the glycan strands (Vollmer & Bertsche, 2008). 

They can be subdivided according to the type of cleavage site into DD-endopeptidases 

(cleavage between D-amino acids) and LD-endopeptidases (cleavage between L- and D-

amino acids/m-DAP) (Smith et al., 2000). The endopeptidases that possess characteristic 

lysostaphin-like metalloproteases (LytM factors) are grouped into the family of M23 zinc-

metallopeptidases (Firczuk & Bochtler, 2007). These proteins are homologs of lysostaphin, 

a well-characterized zinc-metallopeptidase that cleaves the unique pentaglycine cross-links 

found in the PG of Staphylococcus aureus (Browder et al., 1965). They are generally found 

in bacteriophages, Gram-positive and Gram-negative bacteria (Ercoli et al., 2015).The 

catalytic domain of LytM factors includes the typical M23 metalloprotease metal binding site 

with two conserved motifs, HxxxD and HxH, to complex the zinc ion (Zn2+) (Bochtler et al., 
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2004). E. coli harbors two DD-endopeptidases (PBP4 or PBP7), which are also termed as 

low-molecular weight PBPs, and several others (Spr, YdhO and YebA) (Kishida et al., 2006; 

Singh et al., 2012; Singh et al., 2015; Vollmer & Bertsche, 2008). In the human pathogen 

Helicobacter pylori, three endopeptidase homologs are required for the helical cell shape 

(Sycuro et al., 2010). Their deletion led to an increase in PG cross-linking (Sycuro et al., 

2010). A second human pathogen, Haemophilus influenzae, also possesses three endo-

peptidase homologs (YebA, EnvC and NlpD), which are crucial for outer membrane 

composition and cell separation (Ercoli et al., 2015). However, only YebA seems to be an 

active enzyme that can cleave PG (Ercoli et al., 2015). 

1.3.2 Amidases 

Another important group of PG hydrolases are the amidases, which cleave the bond 

between the glycan strands and the peptides chains (Figure 2). Five amidases (AmiA, 

AmiB, AmiC, AmiD and AmpD) have been found and analyzed in E. coli (Bernhardt & de 

Boer, 2003; Heidrich et al., 2001; Jacobs et al., 1995; Uehara & Park, 2007). The soluble 

periplasmic proteins AmiA, AmiB and AmiC are crucial for cell separation at the division site 

and are characterized by a C-terminal Ami_3 domain (Heidrich et al., 2001; Korndörfer et 

al., 2006). AmiC localizes to the division plane and participates in the separation of E. coli 

cells, whereas AmiA shows a diffuse distribution (Bernhardt & de Boer, 2003). AmiD is a 

lipoprotein anchored to the outer membrane that does not participate in cell separation 

(Uehara & Park, 2007). Finally, AmpD is a cytoplasmic enzyme that specifically cleaves the 

anhMurNAc-L-alanine bond of PG to recycle the cell wall components (Uehara & Park, 

2007). The amidase homolog CwlM from Mycobacterium tuberculosis is also cytoplasmic 

and controls cell wall metabolism in response to starvation (Boutte et al., 2016). 

Regulatory proteins that influence the activity of the amidases have been discovered. They 

are endopeptidases of the family of M23 zinc-metallopeptidases (Firczuk & Bochtler, 2007). 

However, these M23 endopeptidases that activate the amidases of E. coli have been found 

to possess no catalytic activity because they miss specific catalytic amino acid residues in 

the conserved motif (Uehara et al., 2009). Instead, the endopeptidase homolog NlpD 

regulates AmiC, whereas EnvC regulates AmiA and AmiB by stimulating their activity 

(Figure 3) (Uehara et al., 2010; Yang et al., 2012). EnvC possesses two coiled-coil domains, 

NlpD a LysM domain (Peters et al., 2013; Uehara et al., 2009). NlpD and EnvC localize 

earlier to the divisome than the amidases and require the activity of PBP3 (Peters et al., 

2011). They bind to their cognate amidase by an unknown mechanism and induce a 

conformational change that stimulates amidase acticity. In detail, an inhibitory α-helix that 

blocks the catalytic center under “off” conditions (Figure 3A), is released and PG cleavage 

occurs (Figure 3B) (Yang et al., 2012). 

In addition, an inner membrane-embedded complex was shown to be involved in this 

process through interaction with EnvC (Yang et al., 2012). This complex consists of the 

cytoplasmic inner membrane attached FtsE (ATP-binding protein) and the inner membrane 

protein FtsX (ABC transporter permease) (de Leeuw et al., 1999; Schmidt et al., 2004). The 

complex shows characteristics of an ATP-binding cassette (ABC)-type transporter, but a 

transport of a substrate has never been proven (de Leeuw et al., 1999). FtsE and FtsX are 

widely conserved among Gram-negative and Gram-positive bacteria (Arends et al., 2009). 

The FtsEX complex is not essential, since E. coli cells can survive a deletion of ftsEX if high 
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salt medium is provided (Schmidt et al., 2004; Yang et al., 2011). In contrast, when FtsX or 

FtsEX were overproduced, cells showed filamentation that led to cell death (de Leeuw et 

al., 1999). Both FtsE and FtsX localize to the division site and the localization of FtsX is 

dependent on FtsZ, FtsA, and ZipA, suggesting that the complex is directly involved in cell 

division (Schmidt et al., 2004). Furthermore, FtsE and FtsZ interacted in coimmuno-

precipitation experiments independent of FtsX (Corbin et al., 2007). When FtsE was 

mutated in the ATP-binding site, Z-ring constriction and subsequent cell division was 

affected (Arends et al., 2009). FtsEX interacts also with another cell division component, 

the actin-related FtsA, and regulates the assembly of the cell division machinery (Du et al., 

2016). The importance of the FtsEX complex was also shown in other bacteria such as 

Streptococcus pneumonia, where FtsEX mediate PG hydrolysis by the hydrolase PcsB 

(Bajaj et al., 2016; Bartual et al., 2014; Sham et al., 2011). 

 

Figure 3: Conformational control of amidase activity during the cell cycle in E. coli. (A) 
Periplasmic amidases (light orange pac-men) are inhibited by their regulatory helix (dark red circles) 
at early stages in the cell cycle. (B) FtsEX and EnvC are recruited to the Z-ring early during the cell 
cycle. NlpD, AmiB and AmiC are recruited to the septal ring when constriction is initiated. Both 
amidase activators stimulate the activity of their cognate amidase via the release of the regulatory 
helix from their active site (Peters et al., 2011). Abbreviations: OM: outer membrane; PG: 
peptidoglycan; IM: inner membrane. Adapted from Yang et al. (2012). 

 

The current activation model implies that FtsE hydrolysis of ATP leads to a conformational 

change in FtsX. The membrane topology of FtsX was previously determined, showing four 

transmembrane segments and a relatively large periplasmic loop between segment 1 and 

2 (Arends et al., 2009). Subsequently, ATP hydrolysis could lead to a different fold of this 

loop domain resulting in an interaction with the coiled-coil domains of EnvC (Figure 3B). 

The latter might be activated, binding with its LytM domain to the amidase and consequently 

activates AmiA and AmiB (Peters et al., 2013; Yang et al., 2011). 

A similar mechanism was found in B. subtilis, where the FtsEX complex is required for the 

activity of the endopeptidase CwlO (Meisner et al., 2013). Mutants that cannot hydrolyze 

ATP any more were not able to stimulate CwlO (Meisner et al., 2013). The pathogen Vibrio 

cholerae only possesses one amidase, AmiB, which has both an AMIN and LysM domains 

to bind to PG (Bateman & Bycroft, 2000; Möll et al., 2014). Two catalytically inactive 
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endopeptidases (EnvC and NlpD) were discovered as redundant activators for AmiB and 

additionally showed interaction with FtsX (Möll et al., 2014). Moreover, in the opportunistic 

pathogen P. aeruginosa, which also belongs to the γ-proteobacteria, the amidase AmiB and 

the three LytM proteins were investigated (Scheurwater et al., 2007). They play an important 

role in cell separation, envelope integrity, and antibiotic resistance (Yakhnina et al., 2015). 

The endopeptidase NlpD of the pathogen Neisseria gonorrhoeae can hydrolyze and bind 

PG but also potentiates the activity of AmiC (Stohl et al., 2016). Even in the cyanobacterium 

Anabaena sp. PCC 7120, a LytM protein seems to control the activity of an AmiC-type cell 

wall hydrolase (AmiC1) (Bornikoel et al., 2018). AmiC1 is needed to make nanopores in the 

septal wall to generate cell-cell junctions that facilitate the communication of adjacent cells 

(Berendt et al., 2012). Apparently, the mechanism of amidase activation and regulation is 

more widely conserved than previously thought.  

Recent work in C. crescentus revealed that only the deletion of ftsE, but not ftsX, was 

possible, resulting in cells with thin connections between their cell bodies (Meier et al., 

2017). Hence, the whole FtsEX complex seems to be important for cell constriction and 

separation (Meier et al., 2017). In addition, and similarly to the E. coli model, two LytM 

factors (DipM and LdpF) with degenerate catalytic domains might act as regulatory hubs 

that, during cell constriction and fission regulate the activity of multiple autolytic enzymes 

(Zielińska et al., 2017). Unlike in E. coli, only one amidase is present in C. crescentus and 

its activity is crucial for its localization (Dubey & Priyadarshini, 2018; Möll et al., 2010). 

1.3.3 Carboxypepdidases 

The fourth class of PG lytic enzymes are the carboxypeptidases (CPases), which remove 

the last amino acid (mainly D-alanine) from the peptide side chains (Figure 2). They can be 

subdivided according to the type of cleavage site into DD-carboxypeptidases (cleavage 

between D-amino acids) and LD-carboxypeptidases (cleavage between L- and D-amino 

acids/m-DAP). Since CPases can also bind penicillin, they were named low-melecular 

weigth PBPs (Tipper & Strominger, 1965). E. coli possesses at least four CPases such as 

PBP5 and PBP6 (Vollmer et al., 2008). Recent studies showed that PBP6b of E.coli was 

more active at acidic pH, revealing that CPases might become important under varying 

environmental conditions (Peters et al., 2016). PBP5 localized to the lateral cell wall and 

the division site and a deletion of dacA (PBP5) increased the frequency of branched cells 

(Potluri et al., 2012). Three potential CPases were identified in H. neptunium. They show 

high redundancy since single deletions could be generated and their effect on growth and 

morphology was minimal (Cserti et al., 2017).  

1.4 Cell growth and division 

The growth of a bacterial cell can be divided into two distinct stages: elongation and division. 

In both stages, the PG biosynthetic machinery has to be orchestrated and regulated in a 

precise way to ensure proper cell shape (Kysela et al., 2016; Typas et al., 2012). Multi-

enzyme complexes perform the two synthetic processes: the elongasome and the divisome 

(Figure 4). The elongasome (also called Rod complex) synthesizes new PG along the 

lateral cell wall to drive cell elongation, while the divisome generates PG during cytokinesis 
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making the nascent cell poles (Mattei et al., 2010). Most rod-shaped bacteria possess an 

elongasome that is controlled by the actin homolog MreB (Daniel & Errington, 2003; Jones 

et al., 2001; van den Ent et al., 2001). MreB is tethered to the inner leaflet of the cytoplasmic 

membrane, probably with the aid of the inner membrane protein RodZ (Figure 4A) (Alyahya 

et al., 2009; Bendezu et al., 2009; Morgenstein et al., 2015; Shiomi et al., 2008). MreB forms 

patch- or arc-like structures within a cell and interacts with RodA and the conserved inner-

membrane or soluble periplasmic proteins MreC and MreD (de Pedro et al., 2001; 

Dominguez-Escobar et al., 2011; Ishino et al., 1986; Kruse et al., 2005; van den Ent et al., 

2006; van Teeffelen et al., 2011; von Olshausen et al., 2013). Furthermore, these 

elongasome-specific proteins interact with the PG synthases PBP1A and PBP2 

(Mohammadi et al., 2007; Typas et al., 2012). PBP1A is regulated by its cognate outer 

membrane-tethered lipoprotein LpoA (Figure 4A) (Jean et al., 2014). 

Later in the cell cycle, the divisome of E. coli, which is an envelope-spanning multiprotein 

complex, takes over the action for constriction of the cell at the division site (Lutkenhaus et 

al., 2012). PG synthases and hydrolases cluster in this complex, which is controlled by the 

tubulin homolog FtsZ (filamentation temperature sensitive) (Typas et al., 2012). The 

process of assembly (and the corresponding cell division proteins) can be roughly divided 

into an early and a late stage (Aarsman et al., 2005). ZipA and FtsA, which are essential for 

Z ring stability, localize at an early stage together with ZapA and FtsEX (Arends et al., 2009; 

Corbin et al., 2007; Haney et al., 2001; Pichoff & Lutkenhaus, 2005). Recent work has 

suggested that filaments of FtsZ and FtsA treadmill around the division ring and thereby 

move the PG synthesis complex (Bisson-Filho et al., 2017; Yang et al., 2017). At the late 

stage, the essential proteins FtsK, FtsQBL, FtsW, FtsN and FtsI (PBP3) are recruited to the 

division plane to generate a mature divisome (Figure 4B) (Aarsman et al., 2005; Weiss et 

al., 1999). Unlike reported in previous studies, the elongasome-specific TPase PBP2 might 

stay at the division site and colocalize with FtsI (van der Ploeg et al., 2013). FtsN is 

important for septal PG synthesis and constriction by interacting especially with FtsA 

(Weiss, 2015). It can bind to PG via its bacterial-specific sporulation-related (SPOR) domain 

(Yahashiri et al., 2015). PBP1B and its cognate outer membrane-tethered lipoprotein LpoB 

also localize to the division site in a late stage as well as amidases and their regulators 

(EnvC and NlpD), as existing PG bonds must be cleaved to generate new onse (Bernhardt 

& de Boer, 2003; Egan et al., 2014; Peters et al., 2011). In addition, other hydrolases such 

as lytic transglycosylase or CPases localize at a late stage of division (Romeis & Holtje, 

1994; Vollmer et al., 1999). 

Finally, members of the Tol-Pal complex localize to the division plane (Figure 4B) (Gerding 

et al., 2007). The envelope-spanning Tol-Pal proteins are involved in the invagination and 

integrity of the outer membrane and are well-conserved in Gram-negative bacteria (Typas 

et al., 2010). The complex consists of the inner membrane proteins TolA, TolQ and TolR, 

the periplasmic protein TolB and the outer membrane-anchored Pal (Cascales et al., 2001; 

Lazzaroni et al., 1999; Sturgis, 2001). However, the Tol-Pal complex is not essential in 

E. coli (Cascales & Lloubes, 2004; Typas et al., 2010). By contrast, Tol-Pal proteins are 

essential in the α-proteobacteria C. crescentus (Yeh et al., 2010) and H. neptunium 

(unpublished data). 

In contrast to the linear assembly of the divisome in E. coli, a series of seven functional 

modules are recruited in C. crescentus (Goley et al., 2011). While nearly all investigations 

have focused on the assembly of the divisome, its disassembly is hardly understood. The 
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disassembly of the proteins is crucial, because they have to be degraded or recycled for the 

next cell division. In a recent study, the disassembly process in E. coli was shown to occur 

in at least five steps (Söderström et al., 2016). The process starts with FtsZ leaving the 

former division site and ends with the disassembly of FtsN, hence it follows a first-in, first-

out mechanism (Söderström et al., 2016).  

 

Figure 4: Structure of the elongasome and the divisome in E. coli. Different PG biosynthetic 
complexes are active at different stages of the cell cycle. (A) MreB and associated membrane 
proteins (MreCD and RodAZ) control or position the PG synthases PBP1A and PBP2 as well as still-
unknown hydrolases (Hydro) during lateral elongation. (B) FtsZ guides the PG remodeling complex. 
The first components of the divisome were already assembled (FtsA, ZipA, ZapA, FtsEX, FtsK). The 
mature divisome contains essential, inner membrane-localized cell division proteins, the PG 
synthases PBP1B and PBP3, amidases (Ami) with their activators (EnvC), lytic transglycosylase (LT) 
as well as proteins of the Tol–Pal complex for constriction of the outer membrane. The activity of the 
PBPs is regulated in part by outer membrane-anchored lipoproteins such as LpoA and LpoB. 
Adapted from Typas et al. (2012) and Cserti (2016). 

1.5 Alternative growth modes in bacteria 

The interplay between PG synthesis and hydrolysis must be strictly regulated in space and 

time to ensure correct cell morphology (Höltje, 1998). Most rod-shaped bacteria (e.g. E. coli 

and B. subtilis) show symmetric cell wall synthesis and therefore produce two equally sized 

daughter cells, with an old and a new pole (de Pedro et al., 1997; Stewart et al., 2005). They 

first incorporate PG in a dispersed manner along the cell cylinder, whereas zonal PG 



Introduction   

12 

insertion occurs at the septum during cytokinesis (Figure 5) (Monahan et al., 2014). The so 

far described E. coli and B. subtilis possess MreB to guide their PG biosynthesis machinery 

(Errington, 2015). Bacteria that lack MreB have an alternative way of PG incorporation 

(Kysela et al., 2013). For example, the Actinobacteria (e.g. Corynebacterium and 

Mycobacterium) has the cell polarity factor DivIVA, which orchestrates PG remodeling 

enzymes and results in polar growth (Flardh, 2003; Joyce et al., 2012; Letek et al., 2009). 

The diversity of the α-proteobacteria in terms of growth and cell division is even higher 

(Brown et al., 2011; Cameron et al., 2015). Polar growth was observed in the rhizobial 

species A. tumefaciens, which grows exclusively at one pole (Brown et al., 2012; Cameron 

et al., 2014). Another alternative growth mode is budding, where daughter cells are 

produced from new cell material at one pole of the cell, e.g. in members of the Rhizobiaceae 

and Brucellaceae (Figure 5) (Hirsch, 1974). C. crescentus performs a further type of polar 

growth: it generates a cellular extension at one cell pole (Figure 5 and 6B; for details see 

1.6.) (Wagner & Brun, 2007). Finally, members of the family Hyphomonadacae perform 

budding through the formation of a polar stalk whose tip transforms into a new daughter cell 

(Jung et al., 2015; Moore, 1981; Whittenbury & Dow, 1977). Strikingly, in recent years, 

bacterial symbionts have been identified that position the Z ring and divide in a longitudinal 

way (Leisch et al., 2012). FtsZ and MreB in these species remain parallel to the long axis 

during the whole cell cycle (Pende et al., 2018). 

 

 

Figure 5: Growth modes in rod-shaped bacteria. The various growth regions of different bacterial 
species are schematically depicted in blue. Abbreviations: Ca. T. oneisti: Candidatus Thiosymbion 
oneisti; Ca. T. hypermnestrae: Candidatus Thiosymbion hypermnestrae. Adapted from Randich and 
Brun (2015) and Cserti (2016). 
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1.6 Hyphomonas neptunium as a model organism for 
stalked budding bacteria 

The marine Gram-negative α-proteobacterium H. neptunium has been isolated from the 

harbor of Barcelona (Spain) in 1964. Initially, it was classified as a member of the genus 

Hyphomicrobium due to its morphology (Leifson, 1964). A H. neptunium mother cell (stalked 

cell) has a very different morphology in comparison to a daughter cell (swarmer cell), which 

emanates by budding (Figure 6A). Swarmer cells have a polar flagellum and are motile, 

while mother cells are immotile and have a stalk at one pole (Leifson, 1964). This stalk 

(prosthecum) is an extension of the cell envelope that is composed of an inner membrane, 

the cell wall and an outer membrane. 

H. neptunium is a mesophilic organism that can grow over a wide range of temperatures 

(22 – 37°C) and pH values (Havenner et al., 1979). The organism is not osmophilic nor 

halophilic, which is striking for a marine bacterium (Leifson, 1964). Therefore, growth only 

occurs at salt concentrations between 1 – 5% (Havenner et al., 1979). H. neptunium is a 

primary colonizer of marine surfaces and produces biofilms (Baier et al., 1983). In 1984, a 

DNA-DNA hybridization analysis suggested a close relationship of H. neptunium to 

Hyphomonas polymorpha. In addition, H. neptunium and H. polymorpha cannot use C1 

compounds as carbon and energy source (Baier et al., 1983). Instead, they use amino acids 

and proteins as carbon sources under laboratory conditions (Havenner et al., 1979). This 

caused a reclassification of H. neptunium into the genus Hyphomonas (Moore et al., 1984). 

Ggenomic analysis showed the existence of genes for glycolysis and pentose phosphate 

pathway (genome: 3,705,021 bp) (Badger et al., 2006).  Nevertheless, H. neptunium is a 

non-saccharolytic organism and cannot use sugars as sole carbon and energy source 

(Leifson, 1964). Further analysis of the 16S rRNA classified H. neptunium into the order 

Rhodobacterales (Badger et al., 2005). However, additional studies of the 23S rRNA and 

conserved-protein alignments suggested a close relationship to the order Caulobacterales. 

An important member of this group is C. crescentus, which serves as a model organism for 

asymmetric cell division, differentiation and cell cycle regulation (Brun & Janakiraman, 

2000). A comparison of the genomes of both bacteria discovered many similarities in the 

gene repertoire of this two species (Badger et al., 2006). 

H. neptunium and C. crescentus both belong to the dimorphic, prosthecate bacteria (DPB) 

and reproduce by asymmetric binary fission or budding, respectively. The type of 

reproduction, where a bud grows at a stalked mother cell, was termed budding (even though 

budding does not require a stalk). Budding is not bacteria-specific, because monocellular 

and multicellular eukaryotes, e.g. sponges, also reproduce in this way (Barton, 1950).The 

Gram-negative α-proteobacterium C. crescentus has the shape of a crescent rod and is 

ubiquitously distributed in fresh water. It belongs to the family of Caulobacteraceae, firstly 

described in 1935 (Henrici & Johnson, 1935). The swarmer cells shed their flagellum to 

enter into the S phase (Figure 6C), where a stalk emerges at the formerly flagellated pole 

(Curtis & Brun, 2010). This stalk is used to attach to surfaces in their aquatic environment 

by the production of a holdfast (Ong et al., 1990; Tsang et al., 2006). However, it is not 

needed for reproduction and free of ribosomes, DNA and the majority of cytoplasmic 

proteins (Ireland et al., 2002; Poindexter & Cohenbazire, 1964; Tsang et al., 2006). 

Additionally, it shows discoid structures (cross-bands) that physiologically separate the stalk 

from the cell body (Jones & Schmidt, 1973; Schlimpert et al., 2012; Schmidt, 1973). In 
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parallel to stalk biosynthesis, the cell initiates chromosome replication and elongation of the 

cell body. Before entering the G2 phase, cells invaginate the cell envelope and separate 

the two daughter cells (Figure 6C), which differ considerable in their physiology and 

morphology. The stalked cell can directly start a new division cycle. The freely moving 

swarmer cell has to sped its flagellum and differentiate into a stalked cell before it begins 

the next division cycle. 

 

Figure 6: H. neptunium and its cell cycle. (A) Electron microscopy image of H. neptunium cells in 
three morphological states. Depicted are a swarmer cell (bottom right), a stalked cell (left) and a 
budding cell (mother cell, stalk and daughter cell; top right). Adapted from Wagner and Brun (2007). 
The three phases of the cell cycle of (B) H. neptunium and (C) C. crescentus with their characteristic 
cell shapes are shown (courtesy of M. Thanbichler). 

 

Genome analysis of H. neptunium and C. crescentus revealed a common set of 1835 

genes, which points to a close relationship (Badger et al., 2006). This is evident by a vast 

similarity in the outer membrane proteins, e.g. TonB-dependent receptors and lipoproteins 

(Badger et al., 2006). Despite these similarities, the two species differ significantly in the 

type of reproduction and the progression of their cell cycle. Nevertheless, both produce a 

stalked mother cell and a polarly flagellated daughter cell (swarmer cell). Figure 6B and 6C 

displays the cell cycles of H. neptunium and C. crescentus, where swarmer cells are not 

able to reproduce their genome and are arrested in an eukaryotic-like G1 phase. 

Additionally, only one replication occurs per cell cycle in the stalked cells (Iba et al., 1977; 

Wali et al., 1980). 

The G1 phase of the cell cycle of H. neptunium is very similar to the one of C. crescentus. 

A swarmer cell has to shed its flagellum to enter into the S phase (Figure 6B). The cell 

develops a stalk, which is an extension of the cell envelope, opposite the former flagellated 

pole (Wali et al., 1980; Weiner & Blackman, 1973). This stalk is a reproductive, not compart-

mentalized structure that contains cytoplasmic components (Conti & Hirsch, 1965). Exo-

polysaccharides (biological glue) are segregated at the non-stalked pole to attach the cell 

to the substrate (Hirsch, 1974). At the tip of the stalk the new bud emerges and grows in 

size. Components of the growing bud (such as proteins and DNA) must be transported 

though the stalk, and when the bud reaches a certain size and has developed a flagellum, 

cell division occurs at the junction between the bud and stalk (hereafter referred as the bud 

neck; Figure 6B) (Hirsch, 1974). The mother cell can directly undergo another round of cell 
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division, whereas the motile swarmer cell must first differentiate into a stalked cell (Wali et 

al., 1980; Weiner & Blackman, 1973). 

H. neptunium is not the only budding α-proteobacterium analyzed in more detail. Further 

examples are Rhodomicrobium vannielii and Rhodomicrobium vulgare (Babudieri, 1950; 

Duchow & Douglas, 1949). However, the molecular mechanism that underlies the budding 

process is not understood in any species.  

1.7 PG biosynthesis and growth of H. neptunium 

PG biosynthesis and bud formation in H. neptunium are complex processes, that are still 

poorly understood (Cserti et al., 2017). Therefore, in previous studies, we aimed to analyze 

how H. neptunium grows and synthesizes its stalk (Cserti et al., 2017). Three hypotheses 

were possible: First, the stalk grows through insertion of new PG at the stalk base. Second, 

the whole structure is elongated and third, growth takes place at the distal end of the stalk. 

Other α-proteobacteria, such as C. crescentus and Asticcacaulis excentricus, grow their 

stalk from its base (Aaron et al., 2007; Jiang et al., 2014). 

To visualize nascent PG that is incorporated into the cell wall in a growing bacterium, the 

fluorophore-conjugated D-alanine analog HADA was used (Kuru et al., 2012). HADA is 

incorporated at the 5th (or the 4th) position in peptide side chains, thereby making regions of 

new PG synthesis visible (Kuru et al., 2012). Swarmer cells showed a diffuse distribution of 

the signal indication that PG was synthesized all over the cell body (Figure 7A). An intense 

focus appeared at the stalked pole when cells started to produce their stalk. This signal 

stayed at the stalked pole as long as the stalk grew in length, showing that it was 

synthesized from its base. Generation of the bud at the tip of the stalk led to a short shift of 

the signal into the stalk, resulting from a transition from zonal growth at the base to 

dispersed growth in the bud (Figure 7B). 

As soon as the bud was produced, PG synthesis was mainly restricted to this compartment, 

accompanied by a strong HADA signal (Figure 7A and C). Shortly after the formation of the 

bud, a weak signal appeared in the rest of the cell body of the mother cell (Figure 7A). As 

the daughter cell grew in size, HADA incorporation was also visible at the bud neck in 

addition to the signal in the cell body, indicating that the separation of the bud is initiated. 

Taken together, this showed intensive PG biosynthesis in newly forming cellular 

compartments in H. neptunium. Furthermore, cells switch from dispersed to zonal growth in 

a cell-cycle dependent manner (Figure 7C) (Cserti et al., 2017). 

The budding mechanism is an interesting way to proliferate. In the past, it was unclear how 

many reproductive cycles a H. neptunium mother cell can undergo. For example, 

C. crescentus cells divide up to 100 times and continuously produce daughter cells 

(Ackermann et al., 2003). Previous studies suggested that stalked budding members of the 

family Hyphomicrobiaceae can divide less than ten times (Moore, 1981; Whittenbury & Dow, 

1977). However, our experiments revealed that H. neptunium can generate at least 30 

offspring without the loss of viability (Cserti, 2016). A great advantage of budding is that 

every motile daughter cell will get the newly generated chromosome and new cell call 

components. In addition, the competition for recourses is diminished for the daughter cell. 
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Like E. coli, H. neptunium possesses a large set of PG remodeling enzymes to ensure PG 

remodeling, especially during budding. Previous bioinformatic analysis revealed that 

H. neptunium harbors six metallopeptidases (LmdA-F), three carboxypeptidases (DacBHL), 

five glycosyl hydrolases (MltA, MtlB, GplA, RlpA and SltA) but only one amidase (AmiC) 

(Cserti et al., 2017). This diversity of different lytic enzymes makes a high redundancy likely. 

A previous study has started to investigate these enzymes but did not characterized them 

in detail (Cserti et al., 2017). 

  

Figure 7: The growth of H. neptunium is characterized by distinct growth phases. (A) Cell 
growth occurs at four distinct locations in H. neptunium. Wild type cells were grown to exponential 
phase in MB medium, pulse-labelled with HADA, and imaged by DIC and fluorescence microscopy. 
Scale bar: 2 μm. (B) PG incorporation in H. neptunium. Demograph of new PG insertion based on 
images from (A); n = 207. (C) Model of distinct PG incorporation in H. neptunium. In the first phase, 
the swarmer cells enlarge their cell body (PG incorporation is represented in red) before stalk 
biogenesis is initiated. In the second phase, the stalk is elongated from the base of the mother cell 
body. Once the stalk has reached a critical length, the new daughter cell is generated at the tip of 
the stalk (third phase). In the last growth phase, the initiation of cell division between the new 
daughter cell and the stalk occurs. After cell division, the motile swarmer cell has to increase in size 
before it can further differentiate, whilst the stalked mother cell immediately reinitiates stalk 
biosynthesis at the stalked pole. Adapted from E. Cserti (2016) and Cserti et al. (2017). 

1.8 Aim of study 

The spatial and temporal regulation of PG biosynthesis and its role in cell morphogenesis 

has been studied intensively in well-characterized model organisms such as E. coli, 

B. subtilis, and C. crescentus, i.g., organisms that divide either by symmetric or asymmetric 

binary fission. However, our knowledge of budding and polarly growing bacteria is very 

limited due to the lack of genetic tool to analyze these organisms. To broaden our 

understanding of the mechanisms governing bacterial morphogenesis, we have started to 

investigate the dimorphic marine α-proteobacterium H. neptunium as a new model 

organism (Jung et al., 2015). 
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How the generation of the daughter cell is spatiotemporally regulated, is not known. The 

aim of this study is to analyze how the H. neptunium cell orchestrates PG remodeling 

enzymes at the site of action during the cell cycle. Our focus lies on the identification of 

regulators of the enzymes involved in PG remodeling and, a more detailed functional 

characterization of these proteins. This especially involves a closer analysis of hydrolytic 

enzymes, which cleave PG at the division site to separate the mother cell from the daughter 

cell. In detail, we focus on endopeptidases and amidases to analyze their potential 

redundancy by performing deletion and epistatic studies. Moreover, we test if the 

mechanism of amidase regulation by inactive endopeptidases is conserved in budding α-

proteobacteria by testing their binding and interaction behavior. We also start to investigate 

the role of the membrane-embedded FtsEX complex and its contribution to the regulatory 

mechanism. 

A further aim of this study is to identify novel factors that are involved in the regulation of 

budding in H. neptunium. To accomplish this, we perform a transposon mutagenesis 

experiment that aims to identify all essential genes of H. neptunium. This will give us the 

possibility to find novel uncharacterized factors regulating or guiding the budding process.  
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2. RESULTS 

2.1 PG remodeling enzymes 

Similar to other Gram-negative bacteria, H. neptunium possesses a large number of 

different PG synthases and lytic factors to remodel its PG. These enzymes are needed for 

growth, division and the maintenance of cell shape. They cleave the existing glycan strands 

and peptide side chains to make space for the insertion of new material (Höltje et al., 1975; 

Vollmer & Bertsche, 2008). New lipid II units are subsequently inserted to expand the PG 

sacculus (Vollmer & Bertsche, 2008). The variety and diversity of lytic factors is even higher 

than that of PG synthases. Previous studies in H. neptunium have already shown the 

importance and the function of PG synthases, such as PBPs and transglycosylases (Cserti 

et al., 2017). Therefore, the main focus of the current study lies on PG lytic enzymes. Similar 

to E. coli, H. neptunium harbors many genes encoding lytic enzymes. Among them are well-

known classes such as lytic transglycosylases, endopeptidases, amidases and carboxy-

peptidases, which are all predicted to function in PG remodeling (Cserti et al., 2017). Thus, 

two classes of enzymes (endopeptidases and amidases) were chosen for further in-depth 

studies. The analysis of these enzymes and their effect on PG biosynthesis is crucial to 

understand the molecular mechanisms that underlies the extraordinary reproduction 

mechanism of H. neptunium. 

2.1.1 M23 endopeptidases of H. neptunium 

Six proteins harboring an M23 peptidase domain were predicted to be present in 

H. neptunium, named LmdA-F (LytM domain-containing protein A-F; Figure 8A) (Cserti et 

al., 2017). They are characterized by a M23 peptidase (LytM) domain. Three of them 

(LmdABC) have a predicted transmembrane segment at the N-terminus and are thus likely 

to be inserted into the cytoplasmic membrane, with the catalytic domain presumably 

localized in the periplasm. By contrast, LmdDEF have a predicted N-terminal signal peptide, 

which makes it likely that these proteins are soluble and periplasmic. Additionally, LmdC 

and LmdE possess coiled-coil rich regions, which are known to be involved in protein-

protein interactions (Figure 8A) (Lupas, 1996). LmdA-F possess the characteristic C-

terminal M23 peptidase domain that should enable them to cleave the peptide side chains 

in PG and affect cell morphology.  

Notably, an alignment of all six endopeptidase homologes revealed that one of them (LmdE) 

only shows a partial M23 peptidase domain motif. LmdE lacks the crucial amino acid 

residues (HxxxD, YxH and HxH) that bind the catalytic zinc ion in the active center (Figure 

8B). A similar situation was already observed for the E. coli endopeptidases EnvC and 

NlpD, which regulate the activity of the amidases AmiA, AmiB and AmiC (Figure 3) (Uehara 

et al., 2010; Yang et al., 2012). LmdE and EnvC were aligned and revealed similarities in 

the amino acid composition of the M23 peptidase domain (data not shown). In addition, 
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EnvC possesses two coiled-coil regions, making a related function of LmdE possible. 

Therefore, we tested the catalytic activity of LmdE and its potential role in PG remodeling. 

 

Figure 8: Graphical representation of proteins with a putative role in PG hydrolysis of 
H. neptunium. (A) Domains have been identified using the Pfam database (Bateman et al., 2004; 
Finn et al., 2010). The SMART database was used to depict the proteins (Letunic et al., 2009; Schultz 
et al., 1998). Abbreviations: LmdA-F (LytM domain containing protein A-F); TM: transmembrane 
segment; SP: signal peptide; CC: coiled-coil domain; M23: M23 peptidase domain; M23*: inactive 
peptidase domain; Ami_3: amidase_3 domain; aa: amino acids. (B) Alignment of all M23 peptidases 
in H. neptunium reveal that the peptidase domain is not conserved in all Lmd peptidases. LytM (M23) 
domains are highlighted by a yellow frame and the LytM signature motive is depicted in red below. 
Residues in dark blue color are highly conserved, blue indicates average conservation, and light blue 
indicates low conservation of residues across the aligned homologs. The alignment was generated 
with Clustal Omega (06.2016) (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

First, deletion studies were performed to better understand the contribution of the M23 

endopeptidases to cell morphologenesis. Five of them could be deleted in previous 

experiments (Cserti et al., 2017). We were able to generate all single deletions except that 

for lmdC, which turned out to be essential. Multiple attempts to delete or deplete LmdC have 

been unsuccessful so far. The deletion of lmdA, lmdB, lmdD and lmdF had no visible effect 

on the cell morphology as the mutants looked like wild type (Figure 9A). The only exception 

was the lmdE mutant, which showed a significant elongation of the cell body and 

specifically, the stalk (Figure 9A). The cell length of all generated strains was measured to 

quantify the phenotype, and the results were represented as a box plot (Figure 9B). We 

managed to complement the ΔlmdE phenotype by introducing an inducible copy of lmdE 

(Figure S1A). Cells restored wild-type morphology already after 2 h of induction and cell 

length returned back to normal (Figure S1B). We also tested if the single deletions have a 

positive or negative effect on cell growth. All strains showed normal growth in comparison 

to the wild type (Figure S4A and Table S1). In summary, only the ΔlmdE mutant showed a 

significant difference in cell length in comparison to wild-type cells. 
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Figure 9: Multiple deletions of M23 endopeptidases have a strong effect on the cell length of 
H. neptunium. (A) Phenotype of the wild type (HNE WT), the single deletion mutants, the double 
deletion mutants SR34 (ΔlmdAF), and SR35 (ΔlmdEF), the triple deletion mutants SR41 (ΔlmdABF), 
SR40 (ΔlmdDEF), and SR78 (ΔlmdAEF), the quadruple deletion mutant SR45 (ΔlmdABDF), and the 
quintuple deletion strain SR51 (ΔlmdABDEF). EC36 (ΔlmdA), EC38 (ΔlmdD), EC39 (ΔlmdE), EC53 
(ΔlmdB) and EC90 (ΔlmdF) were generated by E. Cserti (Cserti et al., 2017). Cells were either grown 
in MB medium or ASM at 28°C (shaking at 210 rpm) to the exponential phase and analyzed 
microscopically. Scale bar: 3 μm. (B) Cell lengths of the indicated strains. Cells were grown as 
described in (A). The distribution of cell length is shown as a box plot. The box shows the 2nd and 3rd 
quartile of the values. The small square marks the mean value. The median is depicted by the line 
in the box (50% of values). The whiskers mark the 5th and 95th percentile. Asterisks indicate a p-
value of < 0.0001 (t-test). Quantifications are based on 300 cells for the wild-type strain and 200 cells 
for each mutant strain. 

 

The absence of single endopeptidases did not lead to changes in cell morphology (with one 

exception), showing the high redundancy of these enzymes. Therefore, we generated 

double, triple, quadruple and quintuple deletion mutants to test for synthetic phenotypes. 

The double deletion ΔlmdAF strain showed a wild-type phenotype (Figure 9A). Additional 
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deletion of lmdB or lmdBD did not lead to a different phenotype. This again suggests a high 

redundancy of the M23 endopeptidases in H. neptunium, since four of them can be 

inactivated without any effect. However, the situation was different when LmdE was 

missing. A double deletion of lmdEF and lmdAE led to cells with clearly elongated and 

misshapen stalks (Figure 9A). This observation was also reflected in a larger cell length (up 

to 10 µm) in comparison to wild-type cells (up to 3 µm) or the single lmdE deletion (Figure 

9B). The defects in cell morphology were even more severe when lmdAEF or lmdDEF were 

deleted. Mutant cells were not able to divide in a correct way and often formed misshapen 

cell bodies within the stalk (Figure 9A). The ΔlmdDEF mutant generated the longest cells 

of all M23 endopeptidase mutants (Figure 9B). The additional deletion of lmdAB to create 

the quintuple deletion mutant (ΔlmdABDEF) did not further aggravate the morphological 

defects, as increase the cell length. To validate that the phenotype of the ΔlmdABDEF 

mutant was only dependent on the deletion of lmdE, we performed a complementation 

experiment. The lmdE gene was induced in the ΔlmdABDEF mutant that led to a fast 

recovery of the morphology to wild-type levels (Figure S1C). Cells were no longer elongated 

and showed normal cell length (Figure S1D). The uninduced strain nearly restored the wild-

type cell length due to the leakiness of the promoter. Furthermore, we analyzed if the 

multiple deletions generated have a negative effect on the growth behavior. Cells grew 

normally under the tested conditions and did not show any major differences compared to 

the wild-type strain (Figure S4B and Table S1). Collectively, our deletion studies confirmed 

the high redundancy of M23 endopeptidases in H. neptunium and point to a major role of 

LmdE, beside LmdC, in stalk biosynthesis and division. Once we combined the lmdE 

deletion with deletions of lmdA, lmdF, lmdAF, lmdDF or lmdABDF we observed an additive 

phenotype, suggesting that they act in different pathways.  

2.1.2 Analysis of their localization  

The localization pattern of all Lmd proteins was analyzed to determine if any of them 

accumulates at the major sites of PG biosynthesis. For this purpose, natively expressed C-

terminal mCherry fusions were generated, but several of them showed stability problems or 

could not be generated at all. This phenomenon was already known from studies of the M23 

endopeptidases LdpA-F in C. crescentus (Zielińska et al., 2017). However, in H. neptunium, 

we managed to generate strains expressing lmdA-mCherry, lmdB-mCherry, lmdD-mCherry 

and lmdF-mCherry fusions from the respective native promoters. They were analyzed 

microscopically and the subcellular distribution of the fluorescently labeled proteins were 

depicted in demographs (Figure 10). 

LmdA-mCherry localized in the whole cell body (Figure 10A). The fusion protein was largely 

stable in a Western Blot analysis and only a minor signal of cleaved mCherry was detected 

(Figure S2A). The only fully stable fusion was the one of LmdB. The fusion protein was 

observed in the whole cell body and in the stalk. The localization pattern can be clearly seen 

in the demograph (Figure 10B). The localization of LmdC was not possible because a native 

C-terminal fusion did not integrate into the genome and the inducible C-terminal fusion was 

diffused in the cells and completely unstable (Kanngießer, 2016). In a third attempt, we tried 

to generate an inducible LmdCN fusion, where we used the N-terminal region of LmdC (1 – 

270 bp) lacking the M23 domain fused to the mCherry tag. However, only a weak 

fluorescence signal was observed due to the instability of the fusion protein (data not 



Results   

22 

shown). In contrast, LmdD-m-Cherry could be localized in the cell body and occasionally at 

the stalked pole (Figure 10C). However, Western Blot analysis showed low protein 

production and protein instability as well (Figure S2A). 

  

Figure 10: M23 endopeptidases show distinct localization patterns in H. neptunium. (A) LmdA-
mCherry localizes in the whole cell body. SR61 (lmdA-mCherry) was grown to exponential phase in 
ASM and imaged by DIC and fluorescence microscopy. Scale bar: 3 μm. LmdA-mCherry 
fluorescence intensity in SR61 cells depicted in a demograph below (based on images from A). (B) 
LmdB-mCherry localizes in the whole cell body and the stalk. SR24 (lmdB-mCherry) was grown to 
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Figure 10 (continued): exponential phase in ASM and imaged by DIC and fluorescence microscopy. 
Scale bar: 3 μm. LmdB-mCherry fluorescence intensity in SR24 cells depicted in a demograph below 
(based on images from B). (C) LmdD-mCherry shows a diffuse pattern in the cell body. SR58 (lmdD-
mCherry) was grown to exponential phase in ASM and imaged by DIC and fluorescence microscopy. 
Scale bar: 3 μm. LmdD-mCherry fluorescence intensity in SR58 cells depicted in a demograph below 
(based on images from C). (D) LmdF-mCherry localizes in the cell body and the stalk. SR26 (lmdF-
mCherry) was grown to exponential phase in ASM and imaged by DIC and fluorescence microscopy. 
Scale bar: 3 μm. LmdF-mCherry fluorescence intensity in SR26 cells depicted in a demograph below 
(based on images from D). 

 

The localization of LmdE was not possible at all. In different attempts, alleles encoding an 

N-terminal, a C-terminal or a sandwich (after P128) fusion were generated and integrated 

downstream of the native promoter. None of the fusions was stable in a Western Blot 

analysis, and all of them yielded a diffuse fluorescence distribution (data not shown). In 

addition, the strain harboring the sandwich fusion displayed the phenotype of the ΔlmdE 

mutant, suggesting that the mCherry tag interfered with the fold of the protein (data not 

shown). In contrast, LmdF-mCherry was largely stable in a Western Blot analysis, and only 

a faint signal was detected for cleaved mCherry (Figure S2A). However, the signal for the 

full-length protein was higher (>100 kDa) than expected (72 kDa). Even though the signal 

was not strong, localization was observed in the cell body, the stalk and occasionally at the 

stalked pole (Figure 10D). The gene expression levels of all six endopeptidases were 

analyzed in a comparative RNA sequencing analysis to see if this could be a reason for the 

low protein production (Jung, 2016). For this, the RPKM values (Reads Per Kilobase per 

Million reads) were compared. Indeed, lmdA and lmdD showed the lowest gene expression 

of all endopeptidases, explaining the faint protein signals in the Western Blot analysis. In 

contrast to this, lmdB, lmdE and lmdF showed medium expression levels. Finally, lmdC had 

the highest RPKM value (17x more than lmdA and lmdD) of the endopeptidase genes. 

Taken together, M23 endopeptidases localized mainly in the cell body of H. neptunium and 

infrequently at the stalk pole or in the stalk. Our results further confirmed the instability of 

the fluorescently tagged forms that was already known from previous studies in 

C. crescentus with the same class of proteins (Zielińska et al., 2017).  

2.1.3 The single amidase of H. neptunium 

Amidases have a crucial function during cell division and growth as they remove the peptide 

side chains from the glycan strands by splitting the amide bond and thus allow the 

separation of the daughter cell PG layers during cell constriction (Heidrich et al., 2001). The 

genome of H. neptunium only codes for one putative amidase (HNE_0674) with a predicted 

characteristic amidase_3 domain (Figure 8A). The presence of a single amidase gene is a 

common feature of α-proteobacteria, whereas γ-proteobacteria often possess three or more 

members of this family (Möll et al., 2014). Based on its domain structure, HNE_0674 

(hereafter named AmiC or AimCHNE) is a homolog of the E. coli amidase AmiC. AmiCEC is a 

soluble periplasmic protein that localizes at the division side (Bernhardt & de Boer, 2003). 

The prediction for AmiCHNE is also soluble and periplasmic.  

First, we generated a strain lacking the amiC gene and analyzed the resulting phenotype 

(Cserti et al., 2017). It turned out that AmiC is not essential, but the amiC deletion strain 

showed severe cell division defects, which manifested in elongated and misshapen stalks 
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(Figure 11A) and occasional cell chaining. Overall, the mutant cells were significantly longer 

than wild-type cells (Figure 11B). This indicates that AmiC may play a crucial role during 

cell division and bud formation in H. neptunium. A complementation study was performed 

to validate that the phenotype of the ΔamiC mutant is only due to the inactivation of AmiC 

and, the induction of the native AmiC for several hours restored the wild-type phenotype 

(Figure S3A). Measurements of the cell lengths confirmed that the complementation was 

fully successful (Figure S3C). 

 

Figure 11: The amidase AmiC plays an important role in the division of H. neptunium. (A) The 
ΔamiC mutant shows cells with elongated stalks that have a severe defect in cell separation. SR18 
(ΔamiC) was grown in ASM at 28°C (shaking at 210 rpm) to the exponential phase and analyzed 
microscopically. Scale bar: 3 μm (B) Distribution of cell lengths in population of SR18 cells. Cells 
were grown as described before. The distribution of cell length is shown as a box plot (explanation 
see Figure 9). Asterisk indicates a p-value of < 0.0001 (t-test). (C) AmiC-mCherry localizes to the 
stalked pole and the division plane. EC70 (PCu::PCu-amiC-mCherry) was grown to exponential phase 
in MB medium, induced for 24 h with 300 mM CuSO4, and imaged by DIC and fluorescence 
microscopy. Scale bar: 2 μm. (D) AmiC-mCherry fluorescence intensity in EC70 cells depicted in a 
demograph (based on images from C). C and D are adapted from Cserti et al. (2017).  

 

Secondly, we generated an inducible AmiC-mCherry fusion that localized to the stalked pole 

in swarmer cells (Figure 11C) (Cserti et al., 2017). The signal remained at the stalked pole 

until the bud was formed following a transition into the nascent bud. At the end of the cell 

cycle AmiC localized to the future division site, where it is presumably needed to separate 

the bud from the mother cell. This localization pattern is less obvious in the demograph due 
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to the short time AmiC stays at the division plane as a late cell division protein (Figure 11D). 

The weak background signal in the cell body might be due to partial instability of the fusion 

protein, as observed in a Western Blot analysis (Figure S2B). In conclusion, the single 

amidase of H. neptunium is crucial for proper cell shape and, based on the deletion 

phenotype and the localization it exhibits, it is probably involved in cell division.  

2.1.4 AmiC is a periplasmic amidase 

According to bioinformatic data, AmiC is predicted to be a soluble periplasmic protein. To 

verify the periplasmic localization of AmiC, we performed protein fractionation experiments. 

Since antibodies against AmiC were not available, we used the strain SR23 (amiC-

mCherry) and detected the fusion protein with an antibody against mCherry. This was 

possible due to the high stability of the fusion protein (Figure S2B). The fractionation showed 

that AmiC was exclusively detected in the soluble fraction of H. neptunium cells (Figure 

12A). In a control sample the soluble cytoplasmic master regulator CtrA was detected, 

showing that the fractionation was successfully (Figure S3D). To further investigate the 

localization of AmiC, the protein was localized in a heterologous system. An inducible AmiC-

mCherry fusion was visualized in E. coli cells (Figure 12B). The protein could be detected 

best after 3 and 4 h of induction and showed a periplasmic localization, as indicated by 

strong fluorescence signal along the cell periphery. This further suggests that AmiC 

localizes in the periplasm. An interesting side effect is the steady fitness of the E. coli cells. 

They did not lyse due to cleavage of PG, which shows that AmiCHNE is not active in this 

heterologous system. 

  

Figure 12: AmiC is a periplasmic amidase. (A) AmiC-mCherry is exclusively found in the soluble 
fraction. Whole cell lysate of strain SR23 (amiC-mCherry) of H. neptunium was fractionated by 
ultracentrifugation into membrane fraction and soluble fraction followed by immunoblot analysis with 
an anti-mCherry antibody. (B) AmiC-mCherry shows a periplasmic pattern in E. coli. Cells of SR59 
E. coli BL21(DE3) bearing the plasmid pSR61 (Para-amiC-mCherry) were grown in LB to exponential 
phase, induced with 0.02% arabinose and analyzed with DIC and fluorescence microscopy. Scale 
bar: 3 µm. 
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2.1.5 The connection between AmiC and the M23 endopeptidases 

To further investigate if the M23 endopeptidases and the amidase interact and even act in 

the same pathway, we performed epistasis experiments. This would mainly address the 

question of how redundant certain gene combinations are and reveal potential synthetic 

sickness or lethality. Specifically, a deletion of the amiC gene was combined with deletions 

of various M23 endopeptidase genes to see if a combination of mutations results in a more 

severe phenotype than the single amiC deletion.  

First, we generated a strain lacking the amiC gene as well as either the lmdE or lmdF gene 

and analyzed the resulting phenotype. The cell length of both strains did not differ from that 

of the ΔamiC mutant (Figure 13B). However, the cell shapes of the ΔamiC ΔlmdE and the 

ΔamiC ΔlmdF mutants were slightly different (Figure 13A). Both mutants showed swellings 

within their stalks, which was not observed that frequently in ΔamiC cells. Secondly, a strain 

lacking the amiC gene and both lmdE and lmdF gene displayed elongated stalks (Figure 

13A). Surprisingly, the phenotype was less severe, resulting in a shorter cell length than the 

ΔamiC ΔlmdE mutant. Next, we decided to delete lmdA in the ΔamiC mutant because the 

ΔlmdAE mutant had the strongest phenotype of all double deletions (Figure 9). As 

supposed, a ΔamiC ΔlmdA double deletion leads to a drastic phenotypic defects. The cells 

were not able to correctly divide and therefore reached cell length up to nearly 20 μm (Figure 

13B). In addition, we further checked for an additive effect by deletion lmdF in the ΔamiC 

ΔlmdA double mutant. The resulting ΔamiC ΔlmdAF triple mutant displayed the most severe 

morphological defect and the longest cells of all strains generated. Single cells up to 24 μm 

were observed, which mostly consist of one extremely long stalk, sometimes interrupted by 

deformed cell bodies (Figure 13A). Finally, we created a strain were amiC and all M23 

endopeptidase genes (except lmdC) were deleted. The cells were viable but elongated 

showing again the redundancy of those classes of enzymes (Figure 13A). The cell length 

was in the same range as the ΔamiC ΔlmdA mutant. 

In addition, we performed growth experiments to check for growth defects of the generated 

mutants. Even though, the deletion of amiC strongly affects the cell morphology, it did not 

change its growth behavior (Figure S4C and Table S1). Under normal growth conditions 

wild-type cells of H. neptunium form a biofilm. However, biofilms formation was abolished 

in all tested strains and none displayed an obvious growth defect (Figure S4C and Table 

S1). 

Taken together, the combination of the ΔamiC mutation with the deletion of specific M23 

endopeptidase genes seems to severely affect cell division and bud synthesis. 

H. neptunium cells are not able to separate their cell bodies anymore and therefore continue 

with stalk elongation. However, this elongation is not endless. As suggested, the ΔamiC 

ΔlmdE/F mutant did not show any additive effect, proposing an interaction in the same 

pathway. 
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Figure 13: Influence of the amidase AmiC and the M23 endopeptidases on the cell length and 
division of H. neptunium. (A) Phenotype of the wild type (HNE WT), the single mutants EC39 
(ΔlmdE) and SR18 (ΔamiC), the double mutants SR36 (ΔamiC ΔlmdE), SR37 (ΔamiC ΔlmdF) and 
SR47 (ΔamiC ΔlmdA) and the triple mutants SR42 (ΔamiC ΔlmdAF), SR55 (ΔamiC ΔlmdEF) and 
SR60 (ΔamiC ΔlmdABDEF). Cells were either grown in MB medium or ASM at 28°C (shaking at 
210 rpm) to the exponential phase and analyzed microscopically. Scale bar: 3 μm. (B) Cell lengths 
of the indicated strains. Cells were grown as described in (A). The distribution of cell lengths is shown 
as a box plot (explanation see Figure 9). Asterisks indicate a p-value of < 0.0001 (t-test). 

 

An elegant method to identify interaction partners of any protein of interest is co-

immunoprecipitation (Co-IP) followed by mass spectrometric analysis, because this allows 

the identification of novel and unknown binding partners. To identify potential interaction 

partners of AmiC, Co-IP analysis was performed (in collaboration with Dr. Timo Glatter, 
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Max-Planck-Institut, Marburg). Since antibodies against AmiC are currently not available, 

we used the stable AmiC-mCherry fusion (SR23) and antibodies against the mCherry 

protein. Transient protein-protein interactions were stabilized by cross-linking with 

paraformaldehyde prior to Co-IP followed by mass spectrometric analysis and the 

experiment was done in triplicates. Several proteins were detected that were specifically 

enriched on the anti-RFP beads. Among them were AmiC and the mCherry protein, showing 

that both were binding to the anti-RFP beads. In Table S2, we summarized the most 

significantly enriched genes, which are interesting candidate interactors of AmiC. They were 

sorted according to their index values, which gives the relative protein abundance in 

comparison to the wild type cells (control sample). All identified proteins have a predicted 

localization in the periplasm and are either membrane-integral or soluble. Beside well-

known proteins such as FtsQ and MreC, we also found the previously investigated PBP1X 

and RlpA (Cserti et al., 2017). RlpA of P. aeruginosa has a function in daughter cell 

separation and rod shape (Jorgenson et al., 2014). However, it is dispensable for growth 

and morphology in H. neptunium (Cserti, 2016). Another interesting candidate is CpoB 

(HNE_0156), which is a component of the Tol-Pal complex (Gerding et al., 2007). In E. coli, 

CpoB (coordinator of PG synthesis and outer membrane constriction, associated with 

PBP1B) interacts with PBP1B-LpoB and TolA at the onset of constriction (Gray et al., 2015). 

CpoB of H. neptunium is an essential protein (unpublished data). However, the majority of 

identified genes are uncharacterized proteins with conserved domains of unknown function 

(Table S2). Future investigations have to show if these putative candidates interact or 

influence AmiC. 

2.1.6 AmiC-mCherry localization in the ΔlmdE mutant 

As we previously showed in our epistasis experiments, the simultaneous deletion of ΔamiC 

and ΔlmdE did not lead to an additive phenotype, suggesting that both proteins act in the 

same pathway. However, the likelihood that AmiC and LmdE operate in the same pathway 

does not reveal how they interact. One possibility is that LmdE activates AmiC. Another 

option is that LmdE helps AmiC to localize to the site where PG hydrolysis occurs. The latter 

hypothesis was tested by localization experiments. An inducible AmiC-mCherry fusion 

protein was introduced into the lmdE mutant and analyzed by fluorescence microscopy. As 

expected, no fluorescence was observed at the onset of induction (Figure 14A). After the 

fusion protein had been produced for several hours, a diffuse distribution was visible in the 

cell body and the stalk. A clear focus of AmiC-mCherry at the future stalked pole was 

occasionally visible but a signal at the division plane could not be detected during the course 

of the experiment. In confirmation, a diffuse pattern can be seen in the demograph as well 

(Figure 14B). Western blot analysis showed a high stability of the fusion protein (Figure 

S2B). In essence, this suggest that AmiC does not localize in the normal way once LmdE 

is missing. However, a definitive interpretation of these results is difficult due to a weak 

fluorescence signal and the elongated and misshapen cells. 
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Figure 14: Deletion of lmdE affects the localization pattern of AmiC-mCherry. (A) AmiC-
mCherry localizes throughout the cell body of the H. neptunium ΔlmdE mutant. SR71 (ΔlmdE 
PCu::PCu-amiC-mCherry) was grown to exponential phase in ASM, induced with 300 µM CuSO4 and 
imaged by DIC and fluorescence microscopy. Scale bar: 3 μm. (B) Distribution of AmiC-mCherry 
fluorescence in cells of SR71 strain, shown in a demograph (based on images from A). 

2.2 The FtsEX complex of H. neptunium 

In γ-proteobacteria, such as E. coli, the inactive endopeptidases EnvC and NlpD activate 

the amidases AmiA, AmiB, and AmiC in the periplasm (Uehara et al., 2010). In addition, the  

inner membrane-embedded FtsEX complex was showed to be involved in this process by 

interacting with EnvC (Yang et al., 2012). The current model implies that FtsE hydrolyzes 

ATP, leading to a conformational change in FtsX. Subsequently, the interaction of a 

periplasmic loop of FtsX with EnvC activates the latter, which then in turn activates AmiA 

and AmiB (Yang et al., 2011). E. coli cells can survive a deletion of ftsEX if high-salt medium 

is provided (Schmidt et al., 2004; Yang et al., 2011). In contrast, in C. crescentus only the 

deletion of ftsE was possible, resulting in cells with thin tubular connections between their 

cell bodies (Meier et al., 2017). Therefore, we were particularly interested in the FtsEX 

complex of H. neptunium and its potential role in cell separation. 

Bioinformatic analysis resulted in the identification of an operon where HNE_3390 was 

predicted as a cell division ATP-binding protein and HNE_3391 as a permease protein. The 

smaller gene, HNE_3390, was named ftsE and its product contained of a single predicted 

ABC-transporter domain (Figure 15A). A cytoplasmic localization is likely due to the lack of 

a signal sequence. HNE_3391, which only consists of transmembrane segments, was 

named FtsX. Like for FtsXEC, a larger periplasmic loop domain is predicted for FtsXHNE. 

In a first attempt, we tried to delete the ftsEX operon of H. neptunium. Even though we did 

not obtain many positive clones, we manage to delete both genes. The knockout of ftsEX 

severely affected the morphology of the resulting cells. Stalks were highly elongated and 

showed misshapen cell bodies within the stalk structure (Figure 15B). Some stalks 

appeared thinner than normal ones. Measurements of the cell length indicated significant 

differences in comparison to the wild type (Figure 15C). A complementation experiment 
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revealed that the observed phenotype is exclusively due to the deletion of ftsEX. When 

native FtsEX was induced for 21 h in the ΔftsEX mutant, cells showed normal cell shape 

and length (Figure 15C and D). 
 

 

Figure 15: The FtsEX complex is involved in cell separation. (A) Graphical representation of the 
FtsE and FtsX proteins of H. neptunium. Domains were identified using the Pfam database (Bateman 
et al., 2004; Finn et al., 2010). The SMART database was used to depict the proteins (Letunic et al., 
2009; Schultz et al., 1998). Abbreviations: TM: transmembrane segment; ABC_trans: ABC trans-
porter; aa: amino acids. (B) Deletion of ftsEX and combined deletion of ftsEX and lmdE causes 
severe morphological defects with highly elongated stalks. Phenotype of the double deletion strain 
SR64 (ΔftsEX) and the triple deletion strain SR80 (ΔftsEX ΔlmdE). Cells were grown in ASM at 28°C 
(shaking at 210 rpm) to the exponential phase and analyzed microscopically. Scale bar: 3 μm. (C) 
Cell lengths of the indicated strains. Cells were grown as described in (B). The distribution of cell 
lengths is shown as a box plot (explanation see Figure 9). Asterisks indicate a p-value of < 0.001 (t-
test).  
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Figure 15 (continued): (D) Complementation of the ΔftsEX mutant with native FtsEX restores the 
wild-type morphology. SR76 (ΔftsEX PCu::PCu-ftsEX) was grown to exponential phase in ASM, 
induced for 21 h with 300 µM CuSO4 and imaged by DIC microscopy. Scale bar: 3 μm. (E) Venus-
FtsE shows a diffuse localization pattern. JZ12 (PZn::PZn-venus-ftsE) was grown to exponential phase 
in ASM, induced for 6 h with 300 µM ZnSO4 and imaged by DIC and fluorescence microscopy. Scale 
bar: 3 μm. (F) Venus-FtsE fluorescence intensity in JZ12 cells depicted in a demograph (based on 
images from D). 

 

In a further attempt, FtsE was localized to test if its localization pattern was similar to that 

of AmiC. To this end, an inducible venus-ftsE version was introduced into the wild type of 

H. neptunium. The fusion protein was fully stable (Figure S2C) (Zimmer, 2013). Fluores-

cence was observed throughout the cell body and the bud (Figure 15E), and foci at the 

stalked pole or at the division plane were not observed. Possibly, the expression level of 

venus-ftsE and the right time point during the cell cycle is crucial to see the localization to 

the sites of PG remodeling. The Venus-FtsE fluorescence intensity, depicted in a demo-

graph, confirmed a strong signal in the cell body (Figure 15F). In short, the FtsEX complex 

is not essential in H. neptunium, though important for normal cell shape and division. 

However, the question if LmdE and FtsEX interact or reside in the same pathway was not 

answered. To this end, we again performed an epistasis experiment, deleted lmdE in the 

ΔftsEX mutant, and tested for synthetic lethality. Interestingly, the resulting strain SR80 

(ΔftsEX ΔlmdE) was viable but showed a highly aberrant morphology similar to the ftsEX 

double mutant (Figure 15B). Cells exhibited severely elongated stalks and some cell bodies 

were rounder or more misshapen than normal ones. The cell length was slightly increased 

in comparison to the ΔftsEX mutant (Figure 15C). However, the median was nearly 

identical. The growth behavior and rate of the ΔftsEX and ΔftsEX ΔlmdE strains was 

determined (Figure S4D and Table S1). Both strains form the highest amount of biofilm ever 

detected for a H. neptunium strain. Hence, the number of planktonic cells was low (and the 

measured OD580 values were low), since cells formed a biofilm. Conclusively, the results 

suggested that LmdE and FtsEX act in the same pathway, since additive effects were not 

observed. 

2.2.1 AmiC-mCherry localization in the ΔftsEX mutant 

It is still unclear if FtsEX regulates LmdE. One possibility is that the periplasmic loop of FtsX 

stimulates/activates LmdE, which in turn relays the activation to AmiC. Another option is 

that the FtsEX complex helps LmdE to localize and thus subsequently localizes AmiC. The 

second hypothesis was investigated by a localization experiment. An inducible AmiC-

mCherry fusion protein was introduced into the ΔftsEX mutant and analyzed by 

fluorescence microscopy. As expected, cells were not fluorescent before induction (Figure 

16A). After the production of AmiC-mCherry for several hours, a diffuse distribution was 

observed in the cell body and discontinuous in the stalk. A clear focus of the fusion protein 

at the stalked pole or at the division plane was not visible during the course of the 

experiment. In addition, the diffuse distribution can be seen in the demograph (Figure 16B). 

This pattern is not due to protein degradation since Western blot analysis confirmed the 

stability of the fusion protein (Figure S2B). In summary, those results indicate that AmiC 

does not localize in the normal way once FtsEX is missing. However, it is difficult to draw 

definitive conclusions from these results due to the elongated and misshapen stalks. 
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Figure 16: Deletion of ftsEX affects the localization pattern of AmiC-mCherry. (A) AmiC-
mCherry localizes in the whole cell body of H. neptunium ΔftsEX. SR72 (ΔftsEX PCu::PCu-amiC-
mCherry) was grown to exponential phase in ASM, induced with 300 µM CuSO4 and imaged by DIC 
and fluorescence microscopy. Scale bar: 3 μm. (B) AmiC-mCherry fluorescence intensity in SR72 
cells is depicted in a demograph (based on images from A). 

 

2.3 Protein purification and in vitro assays 

So far, we concentrated on the in vivo characterization of AmiC, FtsEX and the M23 

endopeptidases. To further analyze the potential interaction of the key proteins AmiC and 

LmdE, we started to perform in vitro biochemical experiments. To this end, we purified 

certain proteins. All proteins were His-SUMO-tagged and purified by Ni-affinity 

chromatography (see Material and Methods 4.5.5.). In a second step, the His-SUMO (small 

ubiquitin-related modifier) tag was successfully cleaved using the specific His-Ulp1 (SUMO 

protease 1) (Malakhov et al., 2004). First, AmiC and LmdE were purified, followed by a 

second M23 endopeptidase LmdA (Figure 17) and LmdA, a putatively active endopep-

tidase, served as a control enzyme. Next, a catalytically inactive version of AmiC was 

generated and purified. The glutamate residue in the active center at position 370 (E370) 

was replaced by alanine (AmiCE370A). This mutation should repress the proton transfer from 

the substrate and prevent AmiC to hydrolyze PG (Christianson et al., 1989; Rocaboy et al., 

2013). To analyze which domain of LmdE might interact with AmiC, the protein was divided 

into two parts. The larger coiled-coil domain (LmdECC) and the smaller M23 peptidase 

domain (LmdEM23) of LmdE were separately purified (Figure 17). Finally, the predicted 

periplasmic loop of FtsX was purified (FtsXLoop1) to test if this loop domain could stimulate 

or repress the activity of LmdE. 
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Figure 17: Purified proteins or protein domains used for in vitro assays. 5 µg of each sample 
was loaded. Proteins (AmiC, AmiCE370A, LmdA and LmdE) and protein domains (LmdECC, LmdEM23 
and FtsXLoop1) were purified and analyzed by SDS-PAGE as described in Material and Methods 
(4.5.5.). 

2.3.1 The role of LmdE in AmiC activation 

Amidases are important enzymes for cell division in E. coli and many other bacteria. 

However, they are redundant and in E. coli only a triple deletion caused a severe phenotype 

(Heidrich et al., 2001). The activation of these amidases is dependent on the action of the 

catalytically inactive M23 endopeptidases EnvC and NlpD, which lack critical residues in 

their peptide active sites (Uehara et al., 2009). The binding of these inactive enzymes to 

their cognate amidase stimulates and activates the amidases, leading to PG hydrolysis. So 

far, this mechanism was mainly observed in γ-proteobacteria.  

It was unknown whether the AmiC of H. neptunium is stimulated or activated by other 

regulatory proteins or enzymes. A structural model of AmiC clearly showed the presence of 

an inhibitory helix covering the predicted active site of the protein (data not shown; modelled 

with E. coli AmiC as template), suggesting a similar mode of activation. These results also 

indicate that the M23 endopeptidase LmdE with its predicted partial M23 peptidase motif 

might be a promising candidate to regulate AmiC. We already showed that the two proteins 

likely act in the same pathway (2.1.5). For the first time, this could reveal a conserved 

mechanism of activation between α- and γ-proteobacteria. 

Enzymes of interest can be tested for their ability to hydrolyze PG with a dye-release assay 

(Uehara et al., 2010; Zhou et al., 1988). We labeled PG sacculi with Remazol Brilliant Blue 

(RBB), which binds to the hydroxyl groups of sugars and therefore to the glycan backbone 

(Stamm, 1963). A mixture of the enzymes of interest and sacculi were incubated for a 

specific time, heat-inactivated and pelleted afterwards. Bound RBB would pellet with the 

sacculi, whereas released dye would remain in the supernatant and color it blue. Thus, a 

release of the dye is equivalent to the release of PG fragments from the intact sacculi, 

indicating hydrolysis and therefore catalytic activity of the tested enzyme. Finally, dye-

release was analyzed by measuring the absorption of the supernatant and visually by color 

change. 
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Several attempts to purify the PG of H. neptunium were unsuccessful (data not shown). 

Therefore, we decided to use PG sacculi of wild-type C. crescentus, since the PG 

composition of both species is very similar (Cserti et al., 2017). Subsequently, these RBB-

labeled PG sacculi were incubated with the protein(s) of interest (4 µM). Buffer with PG 

sacculi served as a negative control in which no PG hydrolysis occurred. Mixtures 

containing lysozyme were used as a positive control because this enzyme cleaves the 

glycan backbone between the MurNAc and GlcNAc. When lysozyme was incubated with 

RBB-labeled PG sacculi a high absorption was observed (>0.16 units) and the supernatant 

turned blue (Figure 18A). Both observations showed the reliability of the assay for the 

detection of PG hydrolysis.  

Next, either AmiC or LmdE were incubated together with PG sacculi. No dye-release was 

observed (Figure 18A). Nevertheless, the absorption value obtained with AmiC was slightly 

increased in comparison to the negative control, pointing to a weak basal activity. LmdE 

alone was not active. However, a significant increase in dye-release was measured when 

AmiC and LmdE were incubated together. This was confirmed by a clear color change 

(Figure 18A). To rule out the possibility that the two proteins act not in accordance but 

successively, e.g. by LmdE processing PG to make it accessible to AmiC, we performed a 

control experiment. For this purpose, we incubated RBB-labeled PG sacculi with AmiC and 

LmdE in a sequential manner. First, AmiC was added, incubated and heat-inactivated, then 

LmdE was added, incubated and heat-inactivated. The experiment was then also performed 

in the inverse order. The values obtained, were similar to the ones of the single AmiC 

sample (data not shown). Thus, the presence and interaction of both enzymes is crucial for 

their reaction. 

Afterwards, we tested FtsXLoop1 for an enhancing or repressing effect on the AmiC-LmdE 

interaction. No difference was observed and the reaction occurred as effectively as before 

(Figure 18A). This could suggest that either the full-length FtsX is needed for an interaction 

that the protein domain did not adopt the active conformation required for stimulation or that 

FtsX does not stimulate LmdE. Finally, we analyzed the inactive variant of AmiC. Incubation 

of AmiCE370A with RBB-labeled PG sacculi did not lead to cleavage of PG. Even the basal 

weak activity seen before was completely abolished. As expected, the addition of LmdE did 

not stimulate the reaction and lead to PG lysis (Figure 18A). Moreover, we tried to 

complement the ΔamiC mutant by introducing an inducible amiCE370A allele to test if the 

present of a catalytically inactive AmiC variant was sufficient for a normal wild-type 

morphology. AmiCE370A was not able in vivo to restore the wild-type phenotype and cells still 

showed the characteristic ΔamiC morphology (Figure S3B). This observation was 

additionally verified by cell length measurements (Figure S3B).   

Taken together, these results suggest that both AmiC and LmdE are needed to successfully 

hydrolyze PG. LmdE is indeed an inactive M23 endopeptidase and only the active version 

of AmiC (not the inactive AmiCE370A) could hydrolyze PG. The precise function of the 

periplasmic loop of FtsX is not solved, yet. Thus, in H. neptunium the catalytically inactive 

LmdE is needed for the activity of AmiC. 
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Figure 18: The catalytically inactive endopeptidase LmdE stimulates the activity of the 
amidase AmiC in vitro. (A) Dye-release assay for PG hydrolysis. RBB-labelled PG sacculi were 
incubated with the indicated proteins (4 μM each) for 2 h at 37°C. Undigested PG was pelleted and 
the absorbance of the supernatant was measured at 595 nm. Reactions were performed in triplicate 
and the error bars indicate the standard deviation. Supernatants of samples are shown below. Blue 
color indicates the release of dye and therefore PG hydrolysis. (B) The coiled-coil and/or the M23 
domain of LmdE cannot activate AmiC. The dye-release assay for PG hydrolysis was performed as 
in (A). 

 

After we showed that full-length LmdE activated AmiC, we wondered which part of LmdE 

was responsible for the activation. Therefore, the assay was performed using the purified 

LmdE domains (LmdECC and LmdEM23) instead of the full-length LmdE. Incubation of AmiC 

with either LmdECC or LmdEM23 did not lead to PG hydrolysis (Figure 18B). Even though the 

measured values were higher than the ones obtained with the negative control, they were 

in the range of the AmiC sample. Subsequently, LmdECC and LmdEM23 were added together 

to AmiC and incubated. No dye-release was visible and no PG hydrolysis occurred. 

Although it is possible that the LmdE domains did not fold properly and therefore could not 

interact with the amidase, there reasons suggested that full-length LmdE is essential for the 

activation of AmiC. 
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2.3.2 LmdA is an active endopeptidase 

The results of the dye-release assay clearly indicated that LmdE is not active as an enzyme 

and unable to hydrolyze PG. This was already expected based on the alignment of the M23 

peptidase domains (Figure 8B). The other endopeptidases, LmdABCDF, showed a 

complete M23 motif and should thus cleave the stem peptides of PG. However, the question 

arose whether they are active on their own or if they need additional regulatory proteins for 

their function. Notably, the lmdA gene showed one of the strongest phenotypes in the 

performed deletion and epistatic studies. Therefore, LmdA was chosen as a representative 

endopeptidase and purified. LmdA was applied to RBB-labeled PG sacculi and the reaction 

was monitored as before (Figure 19). Dye-release was visible in the supernatant (light blue). 

Although, the absorbance values were not as high as for the lysozyme or AmiC with LmdE, 

the difference to the negative control was higly significant. This result showed that LmdA is 

active on its own. 

Nevertheless, we incubated LmdA in the presence of LmdE to check for any stimulating or 

repressing effects (Figure 19). None were observed, meaning that LmdE did not affect the 

ability of LmdA to cleave PG at all. Next, we tried a combination of LmdA and AmiC, to test 

if LmdA would act in a similar way to LmdE. A minor increase in the absorbance was 

detected, pointing to an additive effect and AmiC was clearly not stimulated by LmdA. The 

increase can be explained by the weak basal activity of AmiC. Lastly, LmdA, AmiC and 

LmdE were incubated together to analyze the additive effect. The result was the same as 

without LmdA (Figure 19). Collectively, we were able to prove our hypothesis that LmdA is 

an active M23 endopeptidase and does not require other regulatory proteins. These results 

underline the specificity of the AmiC-LmdE interaction. 

  

Figure 19: The M23 endopeptidase LmdA is an active enzyme. LmdA can hydrolyze PG and the 
addition of LmdE or AmiC did not influence the activity. Dye-release assay for PG hydrolysis was 
performed as in Figure 18. 

2.3.3 AmiC and LmdE physically interact 

AmiC and LmdE of H. neptunium interact to hydrolyze PG in the dye-release assay. 

Nevertheless, this result is not a full proof that both enzymes interact physically. Studies in 

E. coli failed to show a direct interaction using a biochemical method, since it was not easy 
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to prove binding of EnvC to AmiA/B based on the fact, that it should be a transient 

interaction. Most likely, the reaction is also transient in H. neptunium because cleavage of 

the amidase is only needed at the late stage of cell division in a short time frame.  

To test AmiC for a physical interaction with LmdE in vitro, we used the Bio-Layer 

Interferometry (BLI) technology. In this assay, proteins of interest were biotinylated by 

incubation with NHS-PEG4-biotin. Next, the biotinylated protein was immobilized on a 

streptavidin biosensor, and the non-labeled analyt was flushed over the surface. Protein 

interactions could be detected in real time and the association and dissociation traces are 

recorded. Biotinylated AmiC showed a strong binding to the biosensor, whereas non-

specific binding of non-labeled LmdE was barely observed (Figure S5A). We started with 

different concentrations of LmdE (0 – 150 µM) and probed them against immobilized AmiC-

Biotin (Figure 20). LmdE displayed binding to immobilized AmiC in a clear concentration-

dependent manner (Figure 20). As expected, LmdE could be washed off in the dissociation 

phase (time = 150 sec), suggesting a transient and fast interaction. Taken together, these 

results strongly point to a physical interaction of AmiC to its catalytically inactive regulator 

protein LmdE.  

 

Figure 20: LmdE binds to AmiC in a concentration-dependent way. AmiC-Biotin (red circle) was 
immobilized on a streptavidin biosensor (dark blue square) and probed with LmdE (blue circle) by 
BLI. Binding of LmdE (0 – 150 μM) to biotinylated AmiC (30 μM) was recorded. The graph shows 
LmdE binding to AmiC (association), followed by LmdE dissociation. 

 

Then, we tried the reaction vice versa with different concentrations of AmiC (0 – 150 µM) 

and probed them against immobilized LmdE-Biotin (Figure 21). As before, biotinylated 

LmdE strongly bound to the biosensor, whereas non-specific binding of non-labeled AmiC 

was not observed (Figure S5B). Similar to the previous reaction, AmiC displayed binding to 

immobilized LmdE in a concentration-dependent manner (Figure 21). Surprisingly, AmiC 

could not be washed off completely in the dissociation phase (time = 180 sec). This would 

argue for a stronger and tighter interaction. Maybe the orientation of the protein on the chip 

is important for the binding properties. Most important, these results underline a physical 

interaction of AmiC with LmdE. 

To validate that this interaction is specific and does not occur due to random binding of 

AmiC to the endopeptidases, we performed a control experiment. We biotinylated LmdA as 

a related M23 endopeptidase that did not stimulate AmiC activity in vitro and probed non-

labeled AmiC. As expected, biotinylated LmdA bound to the biosensor (data not shown). 
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When different concentrations of AmiC were probed against immobilized LmdA-Biotin, no 

binding could be detected (data not shown). Thus, AmiC binds specifically to LmdE.  

 

Figure 21: AmiC binds to LmdE in a concentration-dependent way. LmdE-Biotin (blue circle) is 
immobilized on a streptavidin biosensor (dark blue square) and probed with AmiC (red circle) by BLI. 
Binding of AmiC (0 – 150  μM) to biotinylated LmdE (30 μM) was monitored. The graph shows AmiC 
binding to LmdE (association), followed by AmiC dissociation. 

 

After we showed that full-length LmdE binds to AmiC, we wondered which part of LmdE is 

responsible for this interaction. Therefore, another BLI experiment was performed as before 

using the purified LmdE domains (LmdECC and LmdEM23) instead of full-length LmdE. Non-

specific binding of non-labeled LmdE CC and/or LmdEM23 to the sensor surface was not 

observed at all (Figure S5C). Two concentrations of LmdECC (50 µM and 100 µM) were 

probed and displayed no binding to immobilized AmiC (Figure 22A). When LmdEM23 was 

used, no binding occurred in the association phase (Figure 22B). Finally, incubation of 

AmiC-Biotin with both LmdECC and LmdEM23 did not lead to any interaction (Figure 22C). As 

speculated before, it is possible that the LmdE domains were not functional or that only the 

full-length protein can interact with the amidase. We also tested the reaction in an inverse 

way and biotinylated LmdECC to rule out the possibility that the biotinylation of AmiC blocks 

the interaction. However, no binding was detected between the two proteins (data not 

shown). 

In the dye-release assay, we showed that FtsXLoop1 did not influence the reaction of AmiC 

and LmdE (Figure 18A). However, the interaction of the periplasmic loop domain of FtsX 

with EnvC of E. coli was shown in a bacterial two-hybrid assay (Yang et al., 2011). The 

authors suggested that this interaction activates EnvC, which in turn activates AmiA and 

AmiB. We biotinylated purified FtsXLoop1 and tested for binding to LmdE. The reaction was 

also performed vice versa using LmdE-Biotin and non-tagged FtsXLoop1. No binding was 

detected under the tested conditions (data not shown). Thus, either the loop domain had 

the wrong conformation to bind to LmdE or full-length FtsX or even the whole FtsEX 

complex is needed to observe an interaction. 
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Figure 22: Full-length LmdE is needed for binding to AmiC. (A) Binding of LmdECC to biotinylated 
AmiC (30 μM) was tested by BLI. AmiC was immobilized on a streptavidin biosensor. The graph 
shows LmdECC binding to AmiC (association), followed by LmdECC dissociation. (B) Binding of 
LmdEM23 to biotinylated AmiC (30 μM) was tested by BLI as in (A). (C) Binding of LmdECC+M23 to 
biotinylated AmiC (30 μM) was tested by BLI as in (A). 
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2.4 Carboxypeptidases of H. neptunium 

2.4.1 Deletion studies of the three carboxypeptidases 

The main focus of this study was to analyze the role of endopeptidases and the amidase in 

the cell morphology of H. neptunium. However, other classes of PG remodeling enzymes 

(lytic transglycosylases, carboxypeptidases, and glycosyl hydrolases) are also involved in 

the regulation of cell shape. Hence, carboxypeptidases were chosen as an example and 

investigated in more detail. They cleave the last amino acid (e. g. D-alanine) of the peptide 

side chains, which are needed to cross-link PG (Glauner & Holtje, 1990). Therefore, 

carboxypeptidases control the degree of cross-linking. Six carboxypeptidases that belong 

to the class C of PBPs are known in E. coli (Typas et al., 2012). 

By contrast, H. neptunium only possesses three genes, which were found in a bioinformatic 

analysis (Cserti et al., 2017; Rosskopf, 2014). They were named DacB, DacH and DacL (D-

alanine-D-alanine carboxypeptidase). DacH and DacL are specific for H. neptunium and its 

relatives, whereas DacB is a close homolog of DacB from E. coli (Cserti et al., 2017; Korat 

et al., 1991). All three proteins have a predicted signal peptide and presumably localize in 

the periplasm (Figure 23A). They have a characteristic peptidase S13 or a β-lactamase_2 

domain. In addition, DacL possesses a PBP5_C domain, which is distinctive for PBP5 of 

E. coli, but its precise function is unknown (Davies et al., 2001). 

First, deletion studies were performed to better analyze the significance of the 

carboxypeptidases and their contribution to cell morphology. All of them could be deleted in 

previous experiments and thus turned out to be dispensable (Rosskopf, 2014). The ΔdacH 

and ΔdacL mutants did not show any aberrant phenotype (Figure 23B). By contrast, ΔdacB 

cells displayed elongated stalks and an increased cell length (Figure 23B and C). In a 

complementation experiment wild-type morphology was restored by the production of DacB 

in the mutant background (Figure S6). Second, we aimed to investigate the redundancy of 

these proteins in more detail by introducing multiple deletions. As expected, the combination 

of deletions in dacH and dacL had no negative effect on the cells (Figure 23B and C). 

Surprisingly, when we additionally deleted dacB in the ΔdacHL mutant, cells looked like wild 

type (Figure 23C). At first glance, it is striking that a triple gene deletion causes a less severe 

phenotype that a single. Maybe the deletion of one gene causes a disequilibrium in the 

levels of other carboxypeptidases, whereas the deletion of the whole pathway is less severe 

because the carboxypeptidase system is redundant in H. neptunium. 

Third, we tested if the single and multiple deletions have a positive or negative effect on cell 

growth. Growth experiments were performed and biofilm production was analyzed by a 

biofilm assay. All strains showed normal growth in comparison to wild-type cells (Figure 

S4D and Table S1). The ΔdacB and ΔdacH mutants formed more biofilm than the wild type 

and therefore, showed a slower growth rate. In the ΔdacHL and ΔdacBHL mutant no biofilm 

formation was detected (Table S1). Taken together, deletions of carboxypeptidase-

encoding genes only mildly affected the growth of H. neptunium. 
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Figure 23: Deletions of carboxypeptidases have a mild phenotypic effect. (A) Graphical 
representation of proteins with a putative role in PG hydrolysis of H. neptunium. Domains have been 
identified using the Pfam database (Bateman et al., 2004; Finn et al., 2010). The SMART database 
was used to depict the proteins (Letunic et al., 2009; Schultz et al., 1998)). Abbreviations: SP: signal 
peptide; S13: D-Ala-D-Ala carboxypeptidase family 3 domain; PBP5_C: penicillin-binding protein 5 
C-terminal domain; aa: amino acids. (B) Deletions reveal a high redundancy of carboxypeptidases. 
Phenotype of the wild type (HNE WT), the single deletion mutants SR11 (ΔdacB), SR08 (ΔdacH), 
EC46 (ΔdacL), the double deletion mutant SR50 (ΔdacHL) and the triple deletion mutant SR54 
(ΔdacBHL). Cells were grown in ASM at 28°C (shaking at 210 rpm) to the exponential phase and 
analyzed microscopically. Scale bar: 3 μm. (C) Cell lengths of the indicated strains. Cells were grown 
as described in (B). The distribution of cell lengths is shown as a box plot (explanation see Figure 9). 
Asterisk indicates a p-value of < 0.001 (t-test). 

 

2.4.2 The localization of DacL 

The localization pattern of all carboxypeptidases was analyzed to test if any of them 

localizes to the major sites of PG remodeling. To this end, natively expressed C-terminal 

mCherry fusions were generated. It was not possible to generate either a DacH-mCherry 

fusion or to produce a stable DacB-mCherry fusion protein (data not shown). However, we 

managed to construct a stable DacL-mCherry fusion that frequently localized to the stalk 

pole in swarmer cells and in a diffuse pattern in the whole cell body of swarmer and stalked 



Results   

42 

cells (Figure 24A) (Cserti et al., 2017). Quantification analysis of the DacL-mCherry fluores-

cence intensity displayed in a demograph confirmed the localization in the whole cell body. 

In summary, DacL is the only carboxypeptidase that localizes to a site of PG remodeling 

and might have a function in the cell shape maintenance.  

  

Figure 24: DacL is the only carboxypeptidase with a distinct localization in H. neptunium. (A) 
DacL-mCherry localizes at the stalked pole and partly in the whole cell body of H. neptunium. SR28 
(dacL-mCherry) was grown to exponential phase in MB medium and imaged by DIC and 
fluorescence microscopy. Scale bar: 3 μm. Adapted from Rosskopf (2014). (B) DacL-mCherry 
fluorescence intensity in SR28 cells is depicted in a demograph (based on images from A).  

 

 

2.5 Transposon mutagenesis in H. neptunium 

Even though the genome H. neptunium has already been sequenced, we do not know all 

essential genes (Badger et al., 2005). The main reason to perform a transposon (Tn) 

mutagenesis experiment is the identification of novel factors, involved in the mechanisms 

of budding and bud separation in H. neptunium. Proteins or factors must exist that guide 

the PG remodeling enzymes (and other proteins) to the site of biosynthesis (stalked pole 

versus bud neck). We hypothesize that these unidentified proteins act as regulators or 

scaffolds. If we manage to identify these new proteins involved in the regulation of PG 

biosynthesis, we will be able to understand the complex budding mechanism of 

H. neptunium in depth. 

A transposon (Tn or transposable element) is a DNA sequence that can change its position 

within a genome. The basic principle of a Tn as a mobile genetic element is its ability to 

randomly integrate into a genome. The Tn only requires the enzyme transposase for this 

step. When Tn mutagenesis is performed in a bacterium, Tns will insert in all types of genes. 

However, once an essential gene is affected, the bacterium cannot survive. Insertions into 

non-essential genes can happen multiple times, since the organism will survive the loss. 
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To analyze the insertions of Tns a method called transposon sequencing (TnSeq), that will 

reveal the insertion sites, is performed. In the corresponding experiment, the Tn, which is 

usually a resistance cassette (e.g. against kanamycin), only inserts once into the genome 

because the Tn and the transposase gene are located on a non-replicating delivery plasmid. 

Therefore, the integration of the Tn into the genome is stable, allowing Tn-specific 

sequencing. The outcome is a map of genes that either show insertions or not (Figure 25A). 

Certain genes that are not hit by the Tn can be listed as essential genes (Figure 25A, white 

arrows). Thus, Tn mutagenesis and TnSeq are a promising method to identify all essential 

genes in the genome of any organism. 

By the time we started to establish the Tn mutagenesis approach, only a few Tn studies 

were done in α-proteobacteria and none in a stalked representative (Curtis & Brun, 2014). 

First, we decided to use a mariner transposon that would serve as a mutagenic agent 

(Jacobson et al., 1986). These element was first discovered in Drosophila melanogaster 

and inserts into TA dinucleotide target sites (Jacobson et al., 1986). We performed the first 

test experiments with a set of pSAM-vectors carrying a mariner transposon. These vectors 

were successfully used in previous studies (Goodman et al., 2009; Perry & Yost, 2014; 

Wiles et al., 2013). Our goal was the identification of the most effective vector, which is the 

one with the best Tn insertion frequency (checked by colony-PCR) and the highest number 

of obtained clones.  

The pSAM-vector is a sequence-adapted mariner transposon delivery vector with three 

major features (Goodman et al., 2009). The vector contained an antibiotic resistance 

cassette (KanR) flanked by MmeI-modified mariner inverted repeats (IRs), a multiple cloning 

site immediately upstream of the himar1C9 mariner transposase, and genes for replication 

in the donor strain (RP4 oriT) and transfer by conjugation (oriR6K, Figure 25B) (Goodman 

et al., 2009; Lampe et al., 1999). For the actual mutagenesis experiments we used the 

modified vectors pSAM-Ec and pSAM-Rl, which harbors different promoters optimized for 

specific bacteria (Perry & Yost, 2014; Wiles et al., 2013). Since pSAM-Ec harbored the 

E. coli lac promoter and pSAM-Rl a Rhizobium leguminosarum bv. viciae 3841 rpoD 

promoter region (Figure 25B), we wondered how effective both promoters would be in 

H. neptunium. To address this issue, we slightly modified the pSAM-Rl vector by introducing 

a Hyphomonas-specific promotor (PHNE_0038). PHNE_0038 is the promoter for the small subunit 

of the ribosomal protein S16 and thus a strong constitutive promoter (Leicht, 2016). The 

generated vector was named pSAM-HNE (Figure 25B). 

We used our set of pSAM-vectors (pSAM-Ec, pSAM-Rl and pSAM-HNE) and transformed 

H. neptunium by conjugation (in collaboration with H. Wendt). After several test conju-

gations, we decided that pSAM-HNE was the most effective of the three vectors (data not 

shown). To solve the problem of E. coli contamination in the later conjugation steps, we 

used MB plates supplemented with gentamicin in addition to kanamycin. Gentamicin 

prevented the growth of E. coli but did not affect H. neptunium cells (data not shown). 

The next problem to be solved was the low number of clones obtained in a single 

conjugation event. Based on previous published Tn mutagenesis approaches, we decided 

that we would need at least 500,000 clones to make a representative mutagenesis 

experiment and get a good gene coverage (e.g. 168 transposons per open reading frame) 

(Curtis & Brun, 2014; Langridge et al., 2009). Therefore, upscaling of our standard 

conjugation protocol was necessary. This optimization procedure was successful after 
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several attempts, resulting in the use of large square plates (245 mm x 245 mm dish) with 

a high number of clones (>6000 clones per plate). Finally, I could perform the first round of 

Tn mutagenesis in H. neptunium and obtained approximately 800,000 clones on 50 large 

square plates. A company (Fasteris SA, Switzerland) performed the library preparation and 

TnSeq analysis. The outcome was not satisfying since many reads (>80%) did not map to 

the H. neptunium genome but to the vector (data not shown). 

Alternatively, we tried a new sequencing method called Insertion sequencing (InSeq), which 

is based on the restriction with the MmeI enzyme and the ligation of specific adaptors for 

sequencing (Goodman et al., 2011). After adapting the protocol for H. neptunium, we tried 

several times to get the correct PCR fragments. The right arrangement of the fragments 

was never observed, so that we ultimately discarded the InSeq method. Next, we tested a 

newly developed TnSeq protocol (A. Camilli, unpublished). It is based on a tagmentation 

reaction where a specific enzyme cuts the genomic DNA and randomly adds adaptors. In a 

first PCR amplification, a Tn- and a tagmentation-specific primer are used to generate short 

products. A second PCR reaction is needed to add the defined adaptors (Index1 and 2, P7 

and P5) for the sequencing step (Figure 25C). The protocol was adapted for H. neptunium, 

(Figure 25C and Material and Methods 4.6.). The library preparation and the TnSeq analysis 

was performed using the NexteraTM DNA Library Preparation Kit FC-121-1030 (Illumina, 

USA). We performed the sample preparation and collaborated with Dr. J. Serrania for the 

TnSeq analysis (Dept. of Biology, FB17, Philipps-Universität and LOEWE Center for 

Synthetic Microbiology, Germany). 

The results of the TnSeq analysis were carefully evaluated. All in all, we got 20,000,000 

reads of which approximately 10% mapped to the genome of H. neptunium. The other 90% 

did not map at all or mapped to the vector pSAM-HNE. One explanation is that the vector 

integrated into the genome due to the Hyphomonas-specific promoter it contains. The 

frequency of mapped reads on the genome is depicted in Figure 25D. Transposon insertion 

sites are equally distributed over the whole genome. However, the coverage was not high 

enough to make precise statements about essential genes (Curtis & Brun, 2014; Langridge 

et al., 2009). Additionally, large regions did not show any Tn insertions. Therefore, we 

decided to generate a new and larger pool of Tn mutants. We hypothesize that the created 

pSAM-HNE caused the problems. Hence, we performed a second round of Tn mutagenesis 

in H. neptunium and used the vector pSAM-Rl, which had the second highest effectivity 

(data not shown). We obtained proximately 670,000 clones (in collaboration with Dr. M. van 

Teeseling). We again used the modified protocol from A. Camilli (unpublished) and 

analyzed the Tn library by TnSeq analysis. This time, we obtained 50,000,000 reads, of 

which approximately 0.03% mapped to the genome of H. neptunium. The other 99.97% 

mapped to the vector pSAM-Rl or, for unknown reasons, did not map at all. Apparently, 

pSAM-Rl is not fully suitable for H. neptunium (see Discussion 3.4.). 

Taken together, our Tn mutagenesis experiment in H. neptunium could work in principle, 

since we were able to isolate thousands of Tn clones by upscaling the conjugation process. 

We also managed to perform library preparation and TnSeq analysis and we obtained first 

results. However, we have to rethink our attempt and carefully analyze the errors to finally 

find all essential genes of H. neptunium by improving presumably the efficacy of the Tn.   
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Figure 25: Transposon mutagenesis of H. neptunium. (A) Principle of transposon insertion into 
a genome. Several genes (colored arrows) are shown exemplarily. Blue lines indicate multiple 
insertion sites of the transposon. Essential genes (white arrows) do not show insertions. (B)  Map of 
pSAM_Rl plasmid. Adapted from Perry and Yost, 2014. Restriction enzymes, antibiotic markers 
(ampicillin, β-lactamase; kanamycin, nptI), origin of replication (oriR6K) and origin of transfer (rp4-
oriT), transposase (himar1C9), transposase promoter (rpoD 5'UTR), MmeI-adapted mariner inverse 
repeats and transposon borne Rho-independent terminator are indicated. The modified plasmid 
pSAM-HNE has the same structure except for the transposase promoter that was replaced by a 
Hyphomonas-specific promotor (PHNE_0038). (C) Schematic representation of the method used to 
generate fragments for the TnSeq analysis. Genomic DNA is cut by a tagmentation enzyme, and 
adaptors are added. In a 1st PCR, fragments are amplified using a transposon(Tn)-specific and a 
tagmentation-specific primer. Adaptors for Illumina® sequencing (P7-Index1 and P5-Index2) are 
added in a 2nd PCR reaction. (D) Transposon insertion sites in the genome of H. neptunium depicted 
as the frequency and distribution of mapped reads. 
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3. DISCUSSION 

Growth and division is essential in all living organisms. Until now, studies to understand the 

bacterial cell division have mainly focused on well-established, rod-shaped model bacteria 

such as E. coli and B. subtilis. Previous work focused on the budding α-proteobacterium 

H. neptunium as an alternative model system. We developed genetic tools and analyzed 

how H. neptunium grows and which enzymes are involved in this complex process (Cserti 

et al., 2017; Jung et al., 2015). In this work, we concentrate on a more detailed investigation 

of certain PG remodeling enzymes and their regulation. In addition, we made a first step in 

the identification of novel factors involved in the budding procedure.  

3.1 Role of PG remodeling enzymes 

PG synthases and hydrolases are important enzymes for all bacteria. They are needed to 

produce new glycan strands, cross-link the peptide site chains and cleave existing bonds 

to insert new material (Vollmer & Bertsche, 2008). The diversity of PG lytic enzymes is even 

higher than the abundance of PG synthases in most bacteria (Typas et al., 2012). For 

example, E. coli possesses at least eight soluble lytic transglycosylases, four M23 EPases, 

four amidases and four CPases (Typas et al., 2012). Previous studies show that these 

enzymes are highly redundant and the majority of them is dispensable under standard 

laboratory conditions (Egan et al., 2017). However, good reasons must exist why these 

enzymes were maintained during evolution. We have to consider that standard laboratory 

conditions do not reflect the natural environment and free-living bacteria usually have to 

cope with pH changes, different salt conditions, nutrient limitation, and many more stresses. 

A recent study investigated the CPase PBP6b of E. coli under acidic conditions and showed 

that the enzyme was more active at low pH (Peters et al., 2016). The authors suggested 

that E. coli maintains a redundant set of CPases for robust growth under various growth 

conditions (Peters et al., 2016). Hence, these enzymes would be dispensable under 

standard laboratory conditions and nobody would consider them as crucial. However, once 

we observe the bacterium in its natural environment, these enzymes become significant for 

growth under specific conditions and suddenly fulfill a vital role. 

A similar situation could apply to H. neptunium, which lives in a marine environment. It 

possesses three CPases and six EPases that are all (except of one) dispensable for normal 

growth (Figures 9 and 23). We were able to generate single and even multiple deletions in 

the respective genes. The ΔlmdABDEF deletion strain showed a severe defect in cell 

morphology but was still viable. Single deletions only had a mild (ΔlmdE) or no effect at all. 

It is likely that H. neptunium keeps a set of PG lytic enzymes for the same reasons as E. coli 

does. Especially in marine environments, the salt concentration and the pH can radically 

change. Therefore, H. neptunium might use its lytic enzymes to adapt to the different stress 

conditions. The corresponding genes exhibit only low or medium expression levels, 

suggesting that these proteins only have a minor role under standard laboratory conditions. 
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However, the expression level of a gene does not necessarily correspond to its importance. 

For instance, H. neptunium needs only a few copies of transcription regulators, whereas it 

has hundreds copies of FtsZ and MreB. Nevertheless, we could prove that LmdA is an 

active endopeptidase and does not need other proteins to cleave PG (Figure 19). Since its 

expression is low under standard laboratory conditions, this might argue for a role under 

special stress conditions. In addition, the M23 endopeptidases LmdA, LmdB, LmdD and 

LmdF localize mainly in the cell body (Figure 10), proposing a primary role in the main-

tenance of the cell shape. Future experiments should investigate the effect of changing 

conditions (low and high salt or pH) on multiple deletion strains. 

LmdE is the only EPase, where a single gene deletion had a phenotypic effect (Figure 9). 

Interestingly, the homolog of LmdE in C. crescentus, LdpF, is required for proper cell 

division under salt stress (Zielińska et al., 2017). LdpF (like LmdE and EnvC) also 

possesses two coiled-coil regions and a degenerate M23 peptidase domain, suggesting 

that it does not actively hydrolyze PG (Zielińska et al., 2017). In contrast, the deletions of 

multiple endopeptidase genes (ΔldpABCDE) barley affected the cell morphology of 

C. crescentus (Zielińska et al., 2017). These results are similar to the ones observed in the 

H. neptunium ΔlmdABCDF mutant, suggesting a conservation of the EPase function. It 

remains to be clarified, if LdpF directly or indirectly stimulates the activity of AmiC in 

C. crescentus and which exact role the FtsEX complex plays. Recent work has shown that 

FtsEX of C. crescentus controls the early and late stages of cytokinesis (Meier et al., 2016). 

A deletion of ftsE resulted in cells with thin connections between cell bodies, which could 

not separate (Meier et al., 2016). Lately, several Co-IP experiments suggested an 

interaction of LdpF with FtsE and FtsX (A. Izquierdo Martinez, unpublished data). Further 

investigations have to clarify if LdpF interacts with FtsEX in a similar way as in E. coli. If this 

could be proven, it would confirm a high conservation of pathways and protein activation 

modes among different species of proteobacteria. 

LmdC remains the only mysterious M23 endopeptidase of H. neptunium, as it is difficult to 

analyze. Several attempts to localize this protein failed because the fusions were unstable 

(Cserti, 2016; Kanngießer, 2016). We even tried the generation of an inducible LmdCN 

fusion where the 3’-end of lmdC was fused to the mCherry gene. However, the attempt 

resulted in instability of the protein fusion (data not shown). Additionally, neither deletion 

nor depletion studies have been successful so far (Kanngießer, 2016). We are especially 

interested in LmdC because the gene lies upstream of and overlaps with the bactofilin bacA, 

a bacteria-specific cytoskeletal element. Bactofilins are a class of cytoskeletal elements that 

is widespread among bacteria and characterized by a conserved bactofilin domain (Kühn 

et al., 2010; Punta et al., 2012). The bactofilins BacA and BacB of C. crescentus were the 

first ones described in detail, and both form sheet-like structures that line the cytoplasmic 

membrane at the stalked cell pole (Kühn et al., 2010). Furthermore, they are important for 

the polar localization of PG synthases involved in stalk biosynthesis and thus the regulation 

the cell wall biosynthesis (Kühn et al., 2010). The presence of a LytM factor-encoding gene 

overlapping with a bactofilin gene is conserved in proteobacteria such as C. crescentus and 

H. pylori (Kühn et al., 2010; Sycuro et al., 2010; Sycuro et al., 2012). In H. neptunium, the 

simultaneous deletion of the bacA and the lmdE genes as well as the depletion was not 

possible (Cserti, 2016). All tested clones showed the wild-type phenotype after the second 

homologous recombination event, suggesting an essential role for both proteins (Cserti, 

2016). Previous studies, have shown the importance of bactofilins for the morphology of 
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H. neptunium (Cserti, 2016). It is possible that bactofilins act as scaffolds for PG remodeling 

enzymes and have a crucial role in guiding these complexes. Therefore, bactofilins could 

mediate the localization of LmdC, or other EPases or even help to stabilize the elongasome 

or the divisome by anchoring the corresponding proteins to the membrane. In the future, 

key analyses will be the deletion of essential genes, such as lmdC, to reveal their role in 

PG remodeling. Since deletion and depletion studies are not always possible in 

H. neptunium due to the basal activity of the heavy metal-inducible promoters, we are 

currently establishing a technique called CRISPRi to knockdown any selected genes of 

interest (Harberding, 2018; Qi et al., 2013). 

3.2 Mode of amidase activation 

Amidases are a crucial class of PG lytic enzymes, that cleave the peptide site chains from 

the glycan backbone. These periplasmic soluble enzymes are involved in cell separation at 

the division site (Heidrich et al., 2001). Typical periplasmic amidases have an N-terminal 

AMIN domain structure (a β-sandwich of two symmetrical four-stranded β-sheets exposing 

highly conserved motifs on the two outer faces) that can bind to PG (de Souza et al., 2008; 

Rocaboy et al., 2013). In E. coli, the catalytic C-terminal domain of AmiC shows an auto-

inhibitory α-helix covering the active center with the complexed zinc ion (Rocaboy et al., 

2013). This helix is the reason why AmiC (and amidases in general) is not active on its own 

and relies on special regulatory proteins.  

Our protein fractionation experiment revealed that AmiC of H. neptunium is a soluble protein 

(Figure 12). Even though this is not a direct proof that AmiC is soluble in the periplasm, it is 

likely, since the majority of known amidases are soluble periplasmic proteins (Firczuk & 

Bochtler, 2007). In addition, a signal peptide and a periplasmic localization was predicted 

for AmiC. Moreover, the localization of AmiCHNE in the heterologous E. coli system gave an 

additional hint to a periplasmic localization (Figure 12). Hence, we assume that AmiC is 

located in the periplasm of H. neptunium and functions as a normal, active amidase.  

We wanted to investigate the mode of amidase activation in H. neptunium in more detail. 

To this end, we modeled the structure of AmiC of both H. neptunium and C. crescentus and 

saw that the inhibitory α-helix was conserved in these α-proteobacteria. Thus, a similar 

mode of amidase activation consistent with this notion is very likely since natively AmiCHNE 

alone was not active in a dye-release assay (Figure 18). When LmdE was added, PG 

hydrolysis was observed. This strongly suggested that LmdE interacts with AmiC. We do 

not know which exact part of LmdE binds to the surface of AmiC. However, the coiled-coil 

part of LmdE might bind to the N-terminal region of AmiC and the globular M23 peptidase 

domain could interact with the inhibitory α-helix and lead to a conformational change of 

AmiC that results in the displacement of the α-helix. 

An N-terminal AMIN domain was also visible in our model of AmiCHNE. This domain could 

function as a PG-binding domain, as previously shown for E. coli (Rocaboy et al., 2013). 

AMIN domains are one of three types of PG-binding domains, beside SPOR and LysM 

domains (Bateman & Bycroft, 2000). SPOR domain-containing proteins localize to septal 

regions of PG in E. coli (Yahashiri et al., 2015). We found at least two proteins with SPOR 

domains in H. neptunium, the lipoprotein RlpA and the late cell division protein FtsN (Cserti, 
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2016; Eisheuer, 2016). In contrast, LysM domain-containing proteins (e.g. DipM in 

C. crescentus) do not exist. In summary, H. neptunium only possesses a few proteins, that 

are able to bind to PG. However, to prove that the AMIN domain of AmiCHNE is important 

we can mutate or delete this part and test how this affects cell morphology. Furthermore, 

we will test the ability of AmiCHNE to bind to PG in a PG-binding assay. Another target is the 

inhibitory α-helix itself, since a deletion of the α-helix in AmiCEC resulted in a constantly 

active enzyme (Rocaboy et al., 2013). Consequently, in future studies we will purify a mutant 

version of AmiCHNE lacking the inhibitory α-helix and test for its ability to hydrolyze PG 

without the addition of LmdE.  

In addition, we compared the structure of EnvC to a model of LmdE (Peters et al., 2013). 

We observed a high structural similarity, where both protein folds showed long α-helices in 

the N-terminal region that are the coiled-coil regions and a globular C-terminal M23 

peptidase domain (data not shown). Thus, the structural conservation of inactive EPases 

seems to be high among proteobacteria and supports a functional relationship of both 

proteins, which we proved by dye-release assays and BLI. So far, we used purified PG 

sacculi of wild-type C. crescentus cells for all dye-release assays because several attempt 

to purify PG from H. neptunium were not successful. Even though the PG composition of 

both organisms is very similar, we would like to purify PG sacculi of wild-type H. neptunium 

cells to validate our results (Cserti et al., 2017). To this end, we will adapt the PG isolation 

protocol to the requirements of the H. neptunium cell wall. 

In our BLI experiments, AmiC and LmdE showed binding to each other in both ways (Figure 

20 and 21). However, the binding intensity of the reactions was very different. We observed 

a transient as well as a tight interaction of both proteins depending on the reaction order. 

We cannot definitely say which result is more reliable, but we assume that amidase 

activation should occur at the late stage of cell division to cleave the PG and finally separate 

the daughter cells. In other words, PG remodeling has to occur at specific time points during 

the cell cycle to ensure correct cytokinesis. However, this does not solve the question about 

the tightness or weakness of the interaction. In addition, the orientation of immobilization of 

the biotinylated protein is crucial for the binding capability. Apparently, this orientation of the 

protein on the sensor chip is key for the interaction. Immobilization of AmiC might result in 

weak accessibility of the interaction regions on the protein surface, which does not happen 

in a living cell. Furthermore, biotin could block the interface between AmiC and LmdE and 

weaken the interaction. Maybe a third component or different buffer conditions are needed 

for an in vivo-like interaction.  

To investigate which part of LmdE that binds to AmiC, we divided the protein in its two 

domains (LmdECC and LmdEM23) but could not observe AmiC activation nor binding to AmiC 

(Figures 18 and 22). Moreover, when we incubated both protein parts together, they did not 

show the behavior of the full-length protein. It is possible that LmdECC and LmdEM23 are not 

functional to activate AmiC or misfolded. Most likely, the whole protein is needed for correct 

binding and activation of AmiC. Furthermore, LmdEM23, which comprises the globular M23 

peptidase domain, might not have the required length, or the coiled-coil domain is 

necessary to change the conformation of the second domain. In the future, we can purify a 

larger part of LmdEM23 and test the binding/stimulation of AmiC. 

We observed a similar result for FtsXLoop1. This extracellular loop domain, which possesses 

predicted secondary structures, did not bind to LmdE nor enhance/repress AmiC activity 
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(Figure 18 and data not shown) (Arends et al., 2009). Most likely, FtsXLoop1 is not folded in 

a proper way or has the wrong conformation. Maybe, the right conformation only exists 

when the whole FtsEX complex is assembled. It has been proven that FtsE binds and 

hydrolyze ATP, whereas an ATP hydrolysis-deficient FtsE mutant affects cell division 

(Arends et al., 2009; Schmidt et al., 2004). Hence, the free energy gained from ATP 

cleavage might activate/energize the FtsX part or the loop domain leading to a 

conformational change that enables interaction to the coiled-coil part of LmdE and modifies 

the conformation of the peptidase domain. Next, the M23 domain binds to AmiC and 

stimulates the latter by moving the auto-inhibitory α-helix away from the active center, 

leading to PG hydrolysis by the activated amidase. Obviously, this was not possible to test 

in our experiments, since we missed FtsE and full-length FtsX. Our assumption is 

summarized in the model of amidase activation in H. neptunium (Figure 26). Future studies 

have to address the question of which part of FtsX binds to LmdE, and which role FtsE has 

in the interaction. Furthermore, it remains to be clarified how crucial ATP hydrolysis might 

be for this process. Thus, it will be necessary to purify FtsE, FtsX or the whole complex and 

perform the appropriate analyses. Nevertheless, we could show for the first time that the 

mechanism of amidase activation is conserved in a budding α-proteobacterium.  

 

  

Figure 26: The mode of amidase activation in H. neptunium. The membrane-embedded FtsEX 
complex is energized by the hydrolysis of ATP, resulting in a conformational change in the 
periplasmic loop domain. Subsequently, this domain interacts with the catalytically inactive 
endopeptidase homolog LmdE, which then binds to the amidase AmiC. AmiC is activated and PG is 
cleaved. Abbreviation: IM: inner membrane. 
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3.3 Function of the FtsEX complex 

The FtsEX complex is built of two proteins, that are encoded in one operon, the inner-

membrane attached protein FtsE (ATP-binding protein) and the inner membrane protein 

FtsX (ABC transporter permease) (de Leeuw et al., 1999; Schmidt et al., 2004). Even 

though a homology to ABC transporter exists, substrate transport was never proven and 

the substrate-specific transmembrane channel of FtsX does not contain charged amino 

acids (Arends et al., 2009; de Leeuw et al., 1999). TM segments of most transporters 

normally contain charged amino acids that interact with charges on the substrate surface. 

Therefore, these observations suggest that FtsEX does not transport any substrate but has 

a function in cell division and the stability of the divisome, since it localizes to the division 

site (Arends et al., 2009; Schmidt et al., 2004). 

Later, the involvement of FtsEX in the activation of amidases by EnvC was observed in 

E. coli. In the Gram-positive ovococcus S. pneumonia, FtsEX controlls the activity of the 

lytic enzyme PcsB (Sham et al., 2011; Yang et al., 2012). PcsB has a similar domain 

structure as EnvC with an N-terminal coiled-coil domain and a C-terminal PG hydrolase-like 

domain. In contrast to EnvC, it is catalytically active, can hydrolyze PG and interacts with 

the extracellular loop 1 and 2 of FtsX (Bajaj et al., 2016; Bartual et al., 2014; Sham et al., 

2013). A further example was observed in the Gram-positive B. subtilis, where the activity 

of the EPase CwlO was dependent on FtsEX (Meisner et al., 2013). An interaction between 

CwlO and FtsEX was already shown to be important for cell elongation (Dominguez-Cuevas 

et al., 2013). A similar pathway was investigated in the human pathogen V. cholera. FtsX 

was interacting with homologs of EnvC and NlpD that for their part activate AmiB as the 

single amidase (Möll et al., 2014).  

These examples show how similar and conserved the FtsEX system is among bacteria of 

completely different linages. Thus, we suggest a related and important role for the FtsEX 

complex in H. neptunium as well, although FtsEX is not essential. We think that it acts in 

the same pathway as LmdE because the ΔftsEX ΔlmdE mutant did not show an additive 

phenotype (Figure 15). Therefore, it is very likely that the mechanism is also conserved in 

H. neptunium as shown in our experiments, discussed above and depicted in the model 

(Figure 26). This mode of amidase activation is critical for the characteristic cell shape and 

daughter cell separation.  

3.4 Identification of essential genes and novel factors 

 

We would like to identify novel factors that direct/regulate the complex process of budding. 

In the past, several proteins involved in the coordination of PG biosynthesis and cell shape 

have been identified in different organisms. For example, the scaffold-forming protein 

DivIVA localizes cell division proteins and has a preference for curved membranes 

(Lenarcic et al., 2009). The membrane protein EzrA with FtsZ and PBPs could function as 

a key component in B. subtilis cell division (Cleverley & Lewis, 2015; Singh et al., 2007). It 

influences cell wall synthesis and thereby regulates the Z-ring (Egan et al., 2017). A further 

instance is the cell division regulator GpsB in rod-shaped and ovococcoid Gram-positive 
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bacteria (Pinho et al., 2013). GpsB coordinates PG synthesis at the side wall during 

elongation and at the septum during division by forming complexes with PBP2a and PBP2b 

(Rued et al., 2017). Proteins that associate with membranes directly in vivo could function 

as assembly hubs for other factors and guide PG remodeling enzymes. Well-known 

representatives are FtsA and ZipA but also the recently analyzed FzlC from C. crescentus, 

which all interact with FtsZ (Meier et al., 2016; Pichoff & Lutkenhaus, 2002). 

H. neptunium must also possess proteins with the above-mentioned characteristics. We 

previously showed that a coiled-coil-rich protein and the already mentioned bactofilin are 

critical for proper cell morphology (Cserti, 2016). However, if we compare the genome of 

H. neptunium only to well-established model organisms such as E. coli or B. subtilis, we will 

not find factors involved in bud formation and regulation, because they do not possess such 

proteins. To finally identify factors that guide PG remodeling enzymes and to find all 

essential genes we designed and performed Tn mutagenesis (Figure 25). We used a 

mariner Tn, a himar1C9 mariner transposase, whose expression was driven by a 

Hyphomonas-specific promotor. We obtained proximately 800,000 clones in a first Tn 

mutagenesis experiment and subsequently performed TnSeq. Only 10% of all obtained 

reads mapped to the genome, whereas 90% did not map at all or mapped to the vector 

pSAM-HNE. In a second Tn mutagenesis experiment, in which we used a different vector 

(pSAM-Rl), we observed even less mapped reads.  

There are several reasons why the Tn mutagenesis approach used may not be very 

effective. Apparently, both vectors (pSAM-HNE and pSAM-Rl) and their elements are not 

completely suitable for H. neptunium, meaning that pSAM-Rl is less effective than in other 

α-proteobacteria or pSAM-HNE could integrate into the genome due to its Hyphomonas-

specific promoter. However, the integration of the vector in the promoter region is very 

unlikely, since the promoter fragment is short (90 amino acids). Secondly, the mariner Tn, 

which inserts at AT sites, might not be effective, because the genome of H. neptunium is 

GC rich (Jacobson et al., 1986). This could result in Tns that do not randomly insert into the 

genome but integrate by recombination events.We should test if other Tn elements, such 

as Tn5, might be more suitable. Tn5 was already used to identify essential α-proteobacterial 

genes (Curtis & Brun, 2014). Finally but less likely, the rpoD promoter region might not 

produce enough transposase, the enzyme is simply not active enough or degraded too fast. 

The change of either the promoter, the Tn or the transposase will be tested in future 

experiments. Once this method is established, we can mutagenesis H. neptunium under 

different conditions (e.g. salt or pH stress) or test specific mutants and compare the results 

to the standard wild-type conditions to analyze if certain protein become essential.  

3.5 Concluding remarks and future perspectives 

Previous studies have shown that the budding process of H. neptunium is more complex 

than originally thought (Cserti et al., 2017). In this work, we investigated the role of PG 

remodeling enzymes in bud formation and separation. We analyzed in detail how an inactive 

member of the class of endopeptidases regulates an active member. We proved that the 

mechanism of amidase activation is conserved among different proteobacteria. For the first 

time, a direct interaction of an endopeptidase to its cognate amidase was observed by bio-

layer interferometry. Hence, inactive endopeptidases serve as regulators for amidase 
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activity in a broad range of bacterial species. Integral membrane complexes might be 

involved in the regulation by the transfer of signals from the cytoplasm to the periplasm. 

The complex budding mechanism of H. neptunium is still not fully understood. Future 

studies have to intensively search for novel factors involved in this process. A good starting 

point are the results obtained by the Co-IP performed with AmiC, because several 

uncharacterized but conserved proteins have been identified. Among them are interesting 

candidates for deeper analyses. The already known CpoB protein, which is part of the 

envelope-spanning Pol-Tal complex, could be a link between amidase regulation and outer 

membrane constriction. A further approach is the performance of Tn mutagenesis to find 

essential genes. Once we solve the current issues, this method might be a powerful tool to 

identify potential novel factors. Finally, we would like to reveal a connection between 

endopeptidases and bacteria-specific cytoskeletal elements. Those elements such as 

bactofilins, could guide PG remodeling enzyme or function as scaffolds. 

Unravelling the exact mechanism of budding might broaden our knowledge of cell division 

in bacteria. This would not only expand our understanding of bud formation and separation 

but also underscore the diversity of proliferation modes in prokaryotes. The in-depth 

analysis of the budding process and its spatiotemporal regulation in H. neptunium will thus 

expand our knowledge of bacterial cell biology in general. 
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4. MATERIAL AND METHODS 

4.1 Materials 

4.1.1 Chemicals and enzymes 

All chemicals used in this study were obtained from Applichem (Germany), Becton 

Dickinson (USA), Bioline (Germany), Carl Roth (Germany), Difco (Spain), GE Healthcare 

(Germany), Illumina (USA), Invitrogen (Germany), Merck (Germany), PerkinElmer (USA), 

Peqlab (USA), Roche (Switzerland), Sigma-Aldrich (USA), Thermo Scientific (USA) and 

Qiagen (Germany). 

The restriction enzymes were obtained from Fermentas (Germany) or New England Biolabs 

(NEB, USA). The shrimp alkaline phosphatase and the T4 DNA ligase were from Thermo 

Scientific (USA). The DNA and protein ladder were from Fermentas (Germany) or Thermo 

Scientific (USA). The polymerase chain reaction was either performed with KOD Hot Start 

DNA Polymerase (Merck, Germany) or with BiomixTM Red (Bioline, Germany). 

4.1.2 Media 

LB, MB and ASM were used as media. Their components are listed below. All used 

additives are listed in Table 1. 

LB medium (Luria-Bertani; Miller, 1972) for E. coli: 

Tryptone 10 g/l 

Yeast extract 5 g/l 

NaCl  10 g/l 

All components were dissolved in de-ionized water (dH20). The medium was autoclaved at 

121°C for 20 min. Medium additives were added after cooling to 60°C. For LB agar plates, 

1.5% [w/v] agar was added prior to autoclaving. 

 

MB medium (Marine Broth; DifcoTM) for H. neptunium: 

Bacto peptone 5.0 g/l 

Bacto yeast extract 1.0 g/l 

Fe(III) citrate  0.10 g/l 

NaCl   19.45 g/l 

MgCl2   5.90 g/l 

MgSO4   3.24 g/l 
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CaCl2   1.80 g/l 

KCl   0.55 g/l 

Na2CO3  0.16 g/l 

KBr   0.08 g/l 

SrCl2   34 mg/l 

H3BO3   22 mg/l 

Na-silicate  4.0 mg/l 

NaF   2.4 mg/l 

(NH4)NO3  1.6 mg/l 

Na2HPO4  8.0 mg/l 

All components were dissolved in de-ionized water (dH20). The medium was autoclaved at 

121°C for 20 min. Medium additives were added after cooling to 60°C. The medium was 

filter-sterilized using bottle top filters (pore size 0.2 μm, Sarstedt, Germany). For MB agar 

plates, 1.5% [w/v] Marin Agar (DifcoTM, USA) was added prior to autoclaving. 

 

ASM (Artificial Salt Medium) for H. neptunium: 

Bacto peptone 5 g 

Yeast extract  1 g 

1 M MgSO4  1 ml 

1 M CaCl2  0.5 ml 

Sea salt  15 g 

All components were dissolved in de-ionized water (dH20). The medium was autoclaved at 

121°C for 20 min. Medium additives were added after cooling to 60°C. For ASM agar plates, 

1.5% [w/v] agar was added prior to autoclaving. 

Table 1: Used antibiotics and additives for liquid and solid media for E. coli and H. neptunium. 

Additives  Organism  Liquid medium  Solid medium  

Kanamycin (20 mg/ml) 
E. coli  30 μg/ml  50 μg/ml  

H. neptunium  100 μg/ml  200 μg/ml  

Rifampicin (10 mg/ml,  

in methanol)  

E. coli  25 μg/ml  50 μg/ml  

H. neptunium  1 μg/ml  2 μg/ml  

Ampicillin (100 mg/ml) E. coli 200 μg/ml 200 μg/ml 

Streptomycin (10 mg/ml)  E. coli  30 μg/ml  30 μg/ml  

Sucrose  H. neptunium  3% [w/v]  3% [w/v]  

DAP (60 mM)  E. coli  300 μM  300 μM  

CuSO4 (20 mM)  H. neptunium  300 μM  300 μM  

NiCl2 (1 M)  H. neptunium  1 mM  - 

IPTG (1 M) E. coli 0.5 mM - 

Glucose (40%) E. coli 0.5 mM - 
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4.1.3 Buffer and solutions 

Standard buffers and solutions were prepared as described (Ausubel, 1988; Sambrook et 

al., 1989). Special buffers and solutions are listed in the respective method section. All 

buffers were prepared with de-ionized water (Purelab Ultra water purification system, Elga). 

4.1.4 Kits 

The diverse kits for DNA purification and DNA extraction are listed in Table 2.  

Table 2: Kits and their application. 

Kit Application 

GenEluteTM PCR Clean–Up Kit (Sigma, USA) Purification of DNA 

GenEluteTM Gel Extraction Kit (Sigma, USA) Elution of DNA from agarose gels 

GenEluteTM Plasmid Miniprep Kit (Sigma, USA) Extraction of plasmid DNA 

Western LightninTM Chemiluminescence 

Reagent Plus Kit (PerkinElmer, USA) 
Detection of chemiluminescence 

NucleoSpin® Microbial DNA Isolation of chromosomal DNA 

NexteraTM DNA Library Preparation Kit  

FC-121-1030 
Tagmentation of DNA 

Roti®-Nonoquant (Carl Roth, Germany) Determination of protein concentrations 

4.1.5 Oligonucleotides and plasmids 

Oligonucleotides (PCR primers) for molecular cloning were designed using SnapGene® 

3.2.1 (GSL Biotech LL, USA) and synthesized by Eurofins MWG Operon (Germany). A 

complete list of oligonucleotides (Table S6, Table S7 and Table S8) and plasmids (Table 

S5) used in this study can be found in the appendix. 

4.2 Microbiological and cell biological methods 

4.2.1 Cultivation of E. coli 

E. coli was cultivated either in LB medium (shaking at 210 rpm) or on LB agar plates at 

37°C. Cryo cultures or cultures from plates were used as inoculum. Liquid and solid media 

were supplemented with antibiotics or additives if required (Table 1).  

4.2.2 Cultivation of H. neptunium 

The cultivation of H. neptunium was achived either in MB medium or ASM at 28°C under 

aerobic conditions (shaking at 210 rpm) in baffled flasks or on MB or ASM agar plates. Cryo 

cultures or cultures from plates were used as inoculum. Liquid and solid media were 

supplemented with antibiotics or additives if required (Table 1). 
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The pureity of the cultures was regularly verifed by light microscopy (Axiostar plus, Zeiss, 

Germany). 

4.2.3 Storage of bacteria 

Cryo-stocks of bacteria were made for long-term storage. An overnight culture was 

supplemented with 10% (v/v) DMSO (dimethyl sulfoxide) and permanently stored in a 

special cryo tube at -80°C. 

4.2.4 Determination of cell density 

The optical density (OD) of bacterial cultures was determined photometrically by using an 

UltrospecTM 10 Cell Density Meter (GE Healthcare, Germany) at a wavelength of 600 nm. 

The corresponding culture medium was used as a blank. 

4.2.5 Growth curves 

H. neptunium strains were grown in MB or ASM to stationary phase for 2 days, diluted 1:10, 

and cultivated further overnight. The main cultures were inoculated to an OD600 of 0.01 in a 

24-well plate (Becton Dickinson Labware, USA), incubated at 31 – 33°C shaking while cell 

growth was monitored at OD580 for 31 h using a an EPOCH 2 microplate reader (BioTek, 

USA). Growth rates were calculated using a modified solver spreadsheet (Huang, 2011). 

4.2.6 Biofilm assay 

To quantify biofilm formation in H. neptunium, the biofilm was stained with crystal violet after 

a growth assay in a 24-well plate (Becton Dickinson Labware, USA). Each well of the culture 

plate was incubated with 70 μl of 0.5 % (w/v) crystal violet (Roth, Germany) solution for 

5 min at RT. The wells were washed twice with 1 ml ddH2O for 10 min. The supernatant 

was carefully extracted via suction. To determine biofilm formation, the wells were incubated 

with 1 ml 100% ethanol for 5 min to release bound crystal violet, which was subsequently 

measured at a wavelength of 580 nm using an EPOCH 2 microplate reader (BioTek, USA). 

4.2.7 Preparation of competent E. coli cells 

Chemically competent E. coli cells were prepared using the CaCl2 method (Cohen et al., 

1972). A 10 ml LB pre-culture from E. coli TOP10 (StrR) was inoculated using a cryo-stock 

and incubated at 37°C overnight. 250 ml LB medium were inoculated with 2.5 ml of this pre-

culture and incubated at 37°C until the cultures reached an OD600 of 0.6. Following an 

incubated on ice for 10 min, cells were transferred into GSA centrifuge beakers, and 

harvested by centrifugation using a Sorvall GS3 rotor (Thermo Fisher, USA) at 3000 x g for 

10 min at 4°C. The supernatant was discarded. The pellet was resuspended in 15 ml ice-

cold 0.1 M CaCl2 solution and transferred in pre-cooled SS34 tubes. The cells were then 

incubated on ice for 30 min and collected by centrifugation with an SS34 rotor (Thermo 

Fisher, USA) at 3000 x g for 10 min at 4°C. Then, the pellet was carefully resuspended in 
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4 ml pre-cooled 0.1 M CaCl2 containing 15% [v/v] glycerol. Aliquots of 150 μl were 

transferred to “Safe-lock”-Eppendorf tubes, snap-frozen in liquid nitrogen (N2), and stored 

at -80°C. 

For the generation of competent E. coli WM3064 cells (dap-), 300 μM diaminopimelic acid 

(DAP) was added to the LB medium. 

4.2.8 Transformation of competent cells 

E. coli TOP10 

An aliquot of chemically competent E. coli TOP10 cells was thawed on ice and 10 μl ligation 

reaction (or 2 μl plasmid DNA) was added. The cells were incubated on ice for 30 min, 

followed by a heat shock at 42°C for 90 sec without agitation in a heat block (VWR, USA). 

The sample was further incubated on ice for 2 min and 500 µl LB medium was added. The 

cells were incubated for 1 h at 37°C. 200 μl of the suspension was plated on a LB agar plate 

containing the corresponding antibiotic and incubate at 37ºC overnight.  

E. coli WM3064 

An aliquot of chemically competent E. coli WM3064 cells was thawed on ice and 2 μl 

plasmid DNA was added. The cells were incubated on ice for 30 min, followed by a heat 

shock at 42°C for 90 sec without agitation in a heat block (VWR, USA). The sample was 

further incubated on ice for 2 min and 500 µl LB medium supplemented with 300 µM DAP 

were added. The cells were incubated for 1 h at 37ºC. 200 μl of the suspension was plated 

on a LB agar plate containing the corresponding antibiotic and 300 µM DAP. Plates were 

incubated at 37°C until single colonies appeared. 

E. coli RosettaTM (DE3)pLysS 

Chemically competent E. coli RosettaTM (DE3)pLysS purchased from Merck Millipore 

(Germany). An aliquot of 100 µl of cells was thawed on ice and 4 μl plasmid DNA was 

added. The cells were incubated on ice for 30 min, followed by a heat shock at 42°C for 

45 sec without agitation in a heat block (VWR, USA). Afterwards, the cells were further 

incubated on ice for 2 min and 500 µl LB medium was added. The cells were incubated for 

1 h at 37°C. 200 μl of the suspension was plated on a LB agar plate containing 200 µg/ml 

ampicillin and incubate at 37°C overnight.  

4.2.9 Conjugation of H. neptunium 

The transformation of H. neptunium was performed via conjugation using a suitable donor 

strain (E. coli WM3064 harboring the plasmid of interest). H. neptunium cells (recipient 

strain) were inoculated from a cryo-stock into MB medium or ASM and incubated at 28°C 

for two days. E. coli WM3064 harboring the plasmid of interest were inoculated from a cryo-

stock or a fresh LB agar plate into LB medium supplemented with 300 µM DAP and 

antibiotic. Cells were incubated at 37°C overnight. Both cultures were harvested after they 

reached the stationary phase. 1 ml of E. coli and 2 ml of H. neptunium cells were centrifuged 

at 9000 rpm for 2 min at RT (Eppendorf Centrifuge 5424, Germany). The supernatant was 

discarded and the pellets were washed in 1 ml MB medium or ASM supplemented with 

300 µM DAP (9000 rpm for 2 min at RT). Both pellets were resuspended in 1 ml MB medium 
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or ASM supplemented with 300 µM DAP and mixed. The mixed culture was spotted on a 

MB or ASM agar plate containing 300 µM DAP and incubated overnight at 28°C. Cells were 

scraped from the plate, resuspended in 1 ml fresh MB medium or ASM, and pelleted by 

centrifugation (7000 rpm for 2 min at RT). They were washed twice in 1 ml medium without 

DAP (7000 rpm for 2 min at RT). Finally, the pellet was resuspended in 1 ml MB medium or 

ASM and a 1:10 dilution was made. 200 µl of the undiluted cells and the 200 µl of the 1:10 

dilution were plated on MB or ASM agar plates supplemented with the corresponding 

antibiotic. Plates were incubated at 28°C for at least five days until single colonies appeared. 

4.3 Microscopic methods 

For visualizing bacterial cells via differential interference contrast (DIC), phase contrast 

(Ph3) or for fluorescence microscopy, 2 µl cells were immobilized on agarose pads 

(1% [w/v] agarose in ddH2O). Microscopy was performed using a Zeiss Axio Imager.Z1 

microscope (Zeiss, Germany) equipped with a Plan-Apochromat 100x/1.46 Oil DIC 

objective and a Plan-Apochromat 100x/1.40 Oil Ph3 M27 objective. Immersol® 518F was 

used as immersion oil. An X-Cite® 120PC metal halide lamp (EXFO, Canada) was used for 

fluorescence microscopy in combination with ET-DAPI (also for HADA), ET-YFP (Venus) or 

ET-TexasRed (mCherry) filter cubes (Chroma, USA). Pictures were taken with a pco.edge 

sCMOS camera, recorded with VisiView 4.0.0.5 (Visitron, Germany), and processed with 

MetaMorph® 7.7 (Universal Imaging, USA) and Adobe® Illustrator® CS6® (USA). Cell length 

measurements were made by utilizing the MetaMorph® 7.7 region measurement function. 

4.3.1 Nucleoid staining 

In order to check the chromosome distribution in H. neptunium cells, their nucleoid was 

stained with DAPI (4',6-diamidino-2-phenylindole) which binds strongly to A-T-rich regions 

in DNA. A culture of interest was grown to exponential phase and incubated with 1.5 µg/ml 

DAPI for 15 min at RT in the dark. Samples were analyzed by DIC and fluorescence 

microscopy.  

4.3.2 Visualization of nascent peptidoglycan 

An H. neptunium culture of interest was grown to exponential phase (OD600 = 0.3 – 0.5). 

250 µl of culture were pipetted into a tube and 1.25 µl 100 mM HADA (7-hydroxycoumarin-

3-carboxylic acid-amino-D-alanine) were added. The sample was incubated at 28°C for 9 

min with shaking, after which 100% ethanol was added to a final concentration of 70%. The 

cells were incubated at RT for 20 min in the dark. The were then washed three times by 

addition of 500 µl sterile PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) 

and centrifugation at 9000 rpm for 2 min at RT (Eppendorf Centrifuge 5424, Germany). 

Finally, the cells were resuspended in in 50 – 100 µl sterile PBS, and samples were 

analyzed by fluorescence microscopy. 
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4.4 Molecular biology methods 

4.4.1 Isolation of bacterial DNA 

Chromosomal DNA of H. neptunium was isolated using the NucleoSpin® Microbial DNA kit 

(MACHEREY-NAGEL, Germany) following the manufacturer’s instructions.  

4.4.2 Polymerase chain reaction (PCR) 

PCR for amplification of DNA products for cloning purposes was performed using the KOD 

Hot Start DNA-Polymerase Kit (Merck, Deutschland). All components of a standard reaction 

are listed in Table 3. A BioRad C1000TM Thermal Cycler (BioRad, USA) was used for 

amplification with the respective PCR program (Table 4). PCR products were purified using 

the GenEluteTM PCR Clean-Up-Kit (Sigma, USA). 

Table 3: Components of a standard PCR reaction mix. 

Components Volume 

ddH2O 33 µl 

10x KOD-PCR buffer 5.0 µl 

dNTPs (2 mM) 5.0 µl 

DMSO 2.5 µl 

MgSO4 (25 mM) 2.0 µl 

template DNA 1.0 µl 

Primer_for (100 µM) 0.25 µl 

Primer_rev (100 µM) 0.25 µl 

KOD-Polymerase (1 U/µl) 0.5 µl 

 

Table 4: Thermo profile of a standard PCR reaction. 

Step Temperature [°C] Time Cycles 

Initial denaturation 94 2 min 1 

Denaturation 94 35 sec  

Primer annealing 65 35 sec 30 

Elongation 72 30 sec per 1 kb  

Final elongation 72 5 min 1 

Pause 12 ∞ - 

4.4.3 Colony PCR 

To identify positive bacterial clones, colony PCR was performed. Single colonies of E. coli 

were picked and transferred into a PCR tube containing a 10 µl PCR reaction mixture. In 

the case of H. neptunium clones, the picked cells were transferred into 50 µl ddH2O and 

lysed at 95°C for 10 min. 2 µl of the supernatant were used as a template for the PCR 

reaction. BioMixTM Red (Bioline, Germany) was used for all colony PCR reactions (Table 5). 
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A BioRad C1000TM Thermal Cycler (BioRad, USA) was used for amplification with the 

respective PCR program (Table 6). 

Table 5: Components of a standard colony PCR reaction mix. 

Components Volume 

ddH2O 3.4 µl 

2x BiomixTM Red 5.0 µl 

DMSO 0.5 µl 

Template DNA colony or 2.0 µl 

Primer_for (100 µM) 0.05 µl 

Primer_rev (100 µM) 0.05 µl 

 

Table 6: Thermo profile of a standard colony PCR reaction. 

Step Temperature [°C] Time Cycles 

Initial denaturation 94 4 min 1 

Denaturation 94 30 sec  

Primer annealing 63 30 sec 28 

Elongation 72 15 sec per 1 kb  

Final elongation 72 4 min 1 

Pause 12 ∞ - 

4.4.4 Determination of the quality and purity of DNA 

The concentration of DNA and the purity of PCR products and plasmids were determined 

photometrically using a NanoDrop® spektrophotometer ND-1000 (Thermo Scientific, USA). 

1 µl samples were analyzed. If double-stranded DNA shows an absorption at 260 nm of 1, 

a concentration of 50 µg/ml was assumed. The purity was determined by the 260 nm/ 

280 nm extinction ratio. Ideally, the ratio should have a value of 1.8 (Sambrook et al., 1989). 

4.4.5 Agarose gel electrophoresis 

DNA fragments were separated by agarose gel electrophoresis according to their size. 

1% [w/v] agarose was dissolved via boiling in 0.5x TAE buffer (20 mM Tris-HCl, 0.175% 

acetic acid, 0.5 mM EDTA, pH 8) to prepare agarose gels. Ethidium bromide (50 µl/l) was 

added to the solution after cooling. The gels were poured into home-made chambers. After 

solidification, gels were loaded with samples and DNA separation occurred at a constant 

voltage of 160 V for 20 min in 0.5x TAE buffer. Samples were mixed with 6x DNA Loading 

Dye (Thermo Scientific, USA). GeneRulerTM 1 kb DNA Ladder (Fermentas, Germany) and 

NEB 100 bp DNA Ladder (NEB, USA) were used as DNA length standard. The separated 

DNA fragments were visualized at 254 nm on a UV-Transilluminator (UVP-BioDoc-ITTM 

Imaging System, UniEquip, Germany). DNA products of interest were purified using the 

GenEluteTM Gel Extraction Kit (Sigma-Aldrich, Germany). 
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4.4.6 Restriction and ligation of DNA fragments and Gibson assembly 

Restrictions of vectors and DNA fragments (inserts) were performed according to the 

manufacturer’s instructions using the recommended buffers. The standard restriction 

reaction is listed in Table 7. Samples were incubated at 37°C for a maximum of 2 h and 

purified using the PCR Clean-up Kit (Sigma, USA). 

Table 7: Components of a standard restriction mix.  

Components Restriction of vector DNA Restriction of insert 

ddH2O 77 µl 38 µl 

10x buffer 10 µl 10 µl 

Template DNA 10 µl 50 µl 

Restriction enzyme(s) (10 U/µl) 1 µl 1 µl 

SAP (1 U/µl) optional 1 µl - 

 

Afterwards, DNA ligation reaction was performed using the T4 DNA ligase following the 

manufacturer’s instructions. A standard ligation was incubated at RT up to 1 h (Table 8). 

Table 8: Components for a standard ligation mix. 

Components Volume 

ddH2O 9.75 µl 

5x Rapid Ligation Buffer 4 µl 

Insert DNA 4 µl 

Vector DNA 2 µl 

T4 DNA-Ligase (5 U/µl) 0.25 µl 

 

Gibson assembly was performed as an alternative to classical cloning via restriction and 

ligation. Only restriction of the vector DNA was necessary. The corresponding DNA insert 

was generated via PCR using special PCR primers. The PCR reaction produced 

overlapping ends of the insert annealing to the linearized vector. Vector and insert were 

incubated in Gibson master mix (Table 9) in equimolar amounts at 50°C for 1 h. The reaction 

was performed in 5x isothermal reaction buffer (25% [w/v] PEG 8000, 500 mM Tris-HCL, 

pH 7.5, 50 mM MgCl2, 50 mM DTT, 5 mM NAD, 1 mM dNTP). E. coli cells were directly 

transformed with 10 µl of the reaction mix. 

Table 9: Components of the Gibson master mix. 

Components Volume 

5x isothermal reaction buffer 320 µl 

T5 Exonuclease (10 U/μl) 0.64 µl 

Phusion DNA Polymerase (2 U/μl) 20 µl 

Taq DNA ligase (40 U/μl) 160 µl 

ddH2O 699.36 µl 
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4.4.7 Isolation of plasmid DNA and sequencing 

Overnight cultures of E. coli TOP10 cells carrying the plasmid of interest were used for 

plasmid preparation using the GenEluteTM Plasmid Miniprep Kit (Sigma, USA). The 

concentration of plasmid DNA was determined using a NanoDrop® spektrophotometer ND-

1000 (Thermo Scientific, USA). Subsequently, the plasmids were sent to Eurofins MWG 

Operon (Germany) and sequenced. The company’s instructions for preparing DNA 

sequence samples were followed. The results were analyzed using SnapGene® 3.2.1 (GSL 

Biotech LL, USA). 

4.4.8 Generation of markerless deletions and insertion in H. neptunium 

To delete single genes in H. neptunium, the suicide vector pNPTS138 (M. R. K. Alley, 

unpublished) was used. In-frame deletions were generated by double-homologous 

recombination leaving 30 – 36 bp of the 5´ and 3´ end of the target gene in the chromosome. 

To this end, 550 – 750 bp long up- and downstream flanking regions of the target gens were 

cloned into the pNPTS138 vector. The resulting plasmids were used to transform 

H. neptunium by conjugation. Cells were plated on MB or ASM agar plates supplemented 

with kanamycin, which served as the selection marker for the first homologous 

recombination. Colony PCR was performed to test for the successful integration of the 

plasmid at one of the two flanking regions. Positive clones were inoculated in plain MB 

medium or ASM and grown at 28°C overnight. Subsequently, cells were plated in a 1:200 

dilution on MB or ASM plates supplemented with 3% [w/v] sucrose to select for the second 

homologous recombination event. Plates were incubated at 28°C for at least five days until 

colonies appeared. Single colonies that arose from the second homologous recombination 

were re-streaked in parallel on MB/ASM-kanamycin and MB/ASM-sucrose plates to test for 

kanamycin-sensitive and sucrose-resistant clones. Deletion of the target region was verified 

by colony PCR, since the second homologous recombination gives rise to either deletion 

mutants of H. neptunium or wild type.  

For the generation of markerless insertions, allels encoding C-terminal fluorescent protein 

fusions were generated. Additionally, a 500 bp long downstream flanking region of the target 

gene was amplified and cloned together with the allele encoding the C-terminal fluorescent 

protein fusion (mCherry) in the pNPTS138 vector. The resulting plasmids were used to 

transform H. neptunium by conjugation, and markerless insertion mutants were generated 

as described above. 

 

4.4.9 Construction of plasmids 

Plasmids were designed in silico using the program SnapGene® 3.2.1 (GSL Biotech LL, 

USA). Oligonucleotides used for the PCR amplification are listed in Table S6, those were 

for colony PCR can be found in Table S7 in the appendix. All constructed plasmid are given 

in Table S5 in the appendix.  
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Plasmids for the construction of markerless deletions or insertions in H.  neptunium 

pSR50 was constructed by amplification of the upstream flanking region of lmdB from HNE 

EC36 chromosomal DNA using primer oSR120 and oEC89 (upstream). The vector pEC35 

and the upstream fragment were digested with PstI and EcoRI. The fragment was ligated 

with pEC35. 

pSR55 was constructed by amplification of two fragments for overlap extension PCR using 

primer oSR135 and oSR136 (template pWS27) and oSR137 and oSR138 (HNE 

ATCC15444 chromosomal DNA). Both fragments were used as templates for overlap 

extension PCR to generate an lmdA-mcherry-downstream fragment using primer oSR135 

and oSR138. The vector pNPTS138 was digested with HindIII and NheI. The linearized 

vector and PCR product were directly used for Gibson assembly. 

pSR56 was constructed by amplification of two fragments for overlap extension PCR using 

primer oSR139 and oSR140 (template pEC10) and oSR141 and oSR142 (HNE 

ATCC15444 chromosomal DNA). The two fragments were used as templates for overlap 

extension PCR to generate an lmdD-mcherry-downstream fragment using primer oSR139 

and oSR142. The vector pNPTS138 was digested with HindIII and NheI. The linearized 

vector and PCR product were directly used for Gibson assembly. 

pSR57 was constructed by amplification of three fragments for overlap extension PCR 

using primer oSR143 and oSR144 (HNE ATCC15444 chromosomal DNA), oSR145 and 

oSR146 (template pSR47) and oSR147 and oSR148 (HNE ATCC15444 chromosomal 

DNA). All fragments were used as templates for overlap extension PCR to generate an 

lmdE-mcherry-downstream fragment using primer oSR143 and oSR148. The vector 

pNPTS138 was digested with BamHI and NheI. The linearized vector and PCR product 

were directly used for Gibson assembly. 

pSR65 was constructed by amplification of the flanking regions of ftsEX from HNE 

ATCC15444 chromosomal DNA using primer oSR182 and oSR183 (upstream) and oSR184 

and oSR185 (downstream). The vector pNPTS138 was digested with HindIII and NheI. The 

linearized vector and PCR products were directly used for Gibson assembly. 

 

Plasmids for complementation of in-frame deletion mutants of H. neptunium 

pSR54 was constructed by amplification of lmdE from HNE ATCC15444 chromosomal DNA 

using primer oSR135 and oSR136. The vector pCCHYC-2 was digested with NdeI and 

NheI. The linearized vector and PCR product were directly used for Gibson assembly. 

pSR77 was constructed by amplification of ftsEX from HNE ATCC15444 chromosomal DNA 

using primer oSR234 and oSR235. The vector pCCHYC-2 was digested with NdeI and 

NheI. The linearized vector and PCR product were directly used for Gibson assembly. 

pSR78 was constructed by amplification of amiCE370A from mutated pEC77* using primer 

oSR236 and oSR237. The vector pCCHYC-2 was digested with NdeI and KpnI. The 

linearized vector and PCR product were directly used for Gibson assembly. 
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Plasmids for localization analysis in E. coli 

pSR61 was constructed by amplification of amiC-mCherry from pEC115 using primer 

oSR162 and oSR163. The vector pBAD24 was digested with NheI and KpnI. The linearized 

vector and PCR product were directly used for Gibson assembly. 

 

Plasmids for expression in E. coli 

pSR68: For the overexpression and purification of His6-SUMO-AmiC, pSR68 was 

constructed by amplification of amiC from HNE ATCC15444 chromosomal DNA using 

primer oSR200 and oSR201. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly.  

pSR69: For the overexpression and purification of His6-SUMO-LmdE, pSR69 was 

constructed by amplification of lmdE from HNE ATCC15444 chromosomal DNA using 

primer oSR202 and oSR203. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly.  

pSR72: For the overexpression and purification of His6-SUMO-AmiCE370A, pSR68 was 

amplified using primer oSR221 and oSR222 to insert the mutation. PCR product was 

digested with DpnI to digest the template vector. Restriction sample was directly used for 

transformation of E. coli TOP10.  

pSR73: For the overexpression and purification of His6-SUMO-LmdA, pSR73 was 

constructed by amplification of lmdA from HNE ATCC15444 chromosomal DNA using 

primer oSR223 and oSR224. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly.  

pSR74: For the overexpression and purification of His6-SUMO-LmdECC, pSR74 was 

constructed by amplification of lmdECC from HNE ATCC15444 chromosomal DNA using 

primer oSR202 and oSR225. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly.  

pSR75: For the overexpression and purification of His6-SUMO-LmdEM23, pSR75 was 

constructed by amplification of lmdEM23 from HNE ATCC15444 chromosomal DNA using 

primer oSR226 and oSR203. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly. 

pSR76: For the overexpression and purification of His6-SUMO-FtsXLoop1, pSR76 was 

constructed by amplification of ftsXLoop1 from HNE ATCC15444 chromosomal DNA using 

primer oSR232 and oSR233. The vector pTB146 was digested with SapI. The linearized 

vector and PCR product were directly used for Gibson assembly. 

 

Plasmid for transposon mutagenesis in H. neptunium 

pSR51 was constructed by amplification of PHNE_0038 from HNE ATCC15444 chromosomal 

DNA using primer oSR122 and oSR123. The vector pSAM-Rl and the PCR product 

PHNE_0038 was digested with BamHI and NdeI. PCR product was ligated with pSAM-Rl. 
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4.5 Biochemical methods 

4.5.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated by SDS-PAGE according to (Laemmli, 1970). First of all, a 

resolving gel (11%) was prepared followed by a stacking gel on top (Table 10). Glass plates, 

spacer and combs were cleaned with ethanol and assembled into a gel electrophoresis 

chambers (PerfectBlueTM Twin S system, Peqlab, USA). 

Table 10: Components of the resoling and stacking gel. 

Components Resolving gel (11%) Stacking gel 

ddH2O 1.90 ml 1.43 ml 

4x resolving gel buffer 1.25 ml - 

4x stacking gel buffer - 625 µl 

30% [v/v] Acrylamid (37, 5:1) 1.90 ml 417 µl 

10% [w/v] APS  40 µl 25 µl 

TEMED 3 µl 1.9 µl 

 

To prepare samples for gel elecrtophoresis, cultures of interest were harvested by 

centrifugation (Eppendorf Centrifuge 5424, Germany) at 14,680 rpm for 1 min and 

resuspended in 2x SDS sample buffer (100 μl per 1 OD600 unit). Samples were boiled at 

95°C for 10 min in a heat block (VWR, USA). 15 µl of each sample was used for loading. 

PageRulerTM Prestained Protein Ladder (Fermentas, Germany) was used as a molecular 

weight standard. Gels were run at a constant 30 mA per gel in 1x SDS running buffer (Table 

11).  

After electrophoresis, proteins were stained with Coomassie blue solution (1 g/l Coomassie 

Brilliant Blue R250, 50% [v/v] methanol, 40% [v/v] ddH2O, 10% [v/v] acetic acid). Gels were 

incubated for 10 min on a rocker and destained with destaining solution (10% [v/v] acetic 

acid, 30% [v/v] methanol, 60% [v/v] ddH2O) for 40 min, followed by an overnight incubation 

in dH2O on a rocker (Stuart, UK). 

Table 11: Used buffers and solutions for SDS-PAGE. 

Components 
2x SDS-

sample buffer 

10x SDS-

running buffer 

4x resolving gel 

buffer 

4x stacking gel 

buffer 

Tris base 125 mM 250 mM 1.5 M 500 mM 

Glycerol 20% [v/v] - - - 

Glycine - 1.92 M - - 

SDS 2% [w/v] 1% [w/v] 0.4% [w/v] 0.4% [w/v] 

DTT 200 mM - - - 

Bromphenol blue 0.001% [w/v] - - - 

pH value (adjust 

with HCl) 
6.8 - 6.8 8.8 
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4.5.2 Immonublot analysis 

Separated proteins were transferred from SDS polyacrylamide gels onto a polyvinylidene 

fluoride membrane (Millipore ImmobilonTM-P Transfer Membrane, Millipore, USA) with a 

PerfectBlueTM Semi-Dry-Elektro blotter (Peqlab, USA). The membrane was activated in 

100% methanol for 15 sec, washed with ddH2O and equilibrated in 1x Western transfer 

buffer. The gel, the membrane and blotting papers then were soaked in 1x Western transfer 

buffer (25 mM Tris-HCl, 0.192 M glycerol, 10% [v/v] methanol) for 5 min. The stack was 

assembled according to the manufacturer’s instructions and the proteins were transferred 

at 2 mA/cm2 for 1.5 h. Afterwards, the membrane was blocked in 2.5% [w/v] milk powder in 

TBST (10 mM Tris-HCl, 150 mM NaCl, 1% [v/v] Tween 20, pH 7.5) overnight at 4°C on a 

rocker. This blocking solution was discarded and the membrane was incubated with the 

primary antibody solution for protein detection. The primary antibody solution (antibody in 

adequate dilution in blocking solution) was incubated at RT for 2 h (Table 12). Subse-

quently, the membrane was washed three times for 5 – 10 min in 1x TBST. The secondary 

antibody solution (anti-rabbit IgG linked to horseradish peroxidase (HRP) in blocking 

solution) was applied to the membrane and incubated at RT for 1h. Solution was discarded 

and membrane was washed 3 – 5 times for 5 min in 1x TBST. 

Table 12: Antibodies used in this study. 

Antibody Dilution Reference 

anti-GFP (for anti-YFP) 1:10000 Sigma-Aldrich, Germany 

anti-mCherry 1:10000 BioVision, USA 

anti-CtrA 1:10000 Eurogentec, Belgium 

HRP-labelled anti rabbit IgG 1:20000 PerkinElmer, USA 

 

For detection of proteins the Western LightningTM Chemiluminescence Reagent Plus Kit 

(PerkinElmer, USA) was used according to the manufacturer’s instructions. Chemilumi-

nescence was detected with a ChemiDoc MP imaging system (Bio-Rad, USA). The 

membrane was incubated in amido black (0.1% [w/v] amido black 10B, 40% [v/v] methanol, 

1% [v/v] acetic acid) at RT for 10 min to verify correct loading of protein samples. Finally, 

destaining occurred in dH2O until signals were visible. 

4.5.3 Protein fractionation 

Biochemical fractionation was performed using a modification of a previously published 

protocol (Chen et al., 2005). An H. neptunium strain of interest was cultured in 80 ml ASM 

to an OD600 of 0.6 and harvested by centrifugation at 9000 rpm for 10 min at 4°C in a SS34 

rotor (Thermo Fisher, USA). The pelleted cells were washed once with 1 volume buffer A 

(200 mM Tris-HCl, pH 8) and finally resuspended in 1/10 volume buffer B (60 mM Tris-HCl, 

200 mM sucrose, 0.2 mM EDTA, pH 8). This cell suspension was incubated with 100 μg/ml 

phenylmethylsulfonyl fluorid (PMSF), 5 μg/ml DNase I and 10 mg/ml lysozyme for 10 min 

on a rocker at RT. Cells were disrupted by three passages though a French Press at 

16,000 psi. Remaining intact cells and cell debris were removed by centrifugation at 4.000 x 

g for 10 min at 4°C. Proteins were fractionated by three ultracentrifugation steps at 100,000 

x g for 1 h at 4°C using a Beckman-Coulter OptimaTM Max-XP ultracentrifuge. After the first 

centrifugation, the supernatant, containing soluble proteins, was removed and mixed with 
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an appropriate amount of 2x SDS sample buffer. The pellet was washed once with 1 volume 

buffer A. After the third centrifugation step, the pellet was resuspended in 1 volume buffer 

B and mixed with 2x SDS sample buffer. Protein samples were heated for 10 min at 95°C 

and analyzed by immunoblotting using antibodies against CtrA and mCherry as controls to 

confirm successful separation of soluble and membrane proteins. 

4.5.4 Co-immunoprecipitation and mass-spectroscopy 

For Co-IP of AmiC-mCherry, H. neptunium WT (negative control) and SR23 (amiC-

mCherry) were grow in 200 ml ASM to an OD600 0.6. Cells were harvested by centrifugation 

(9000 rpm, 10 min, 4°C), washed in 200 ml 1x PBS and pellet by centrifugation (9000 rpm, 

10 min, 4°C). They were resuspended in 200 ml 1x PBS following the addition of para-

formaldehyde to a final concentration of 0.6% to cross-link proteins for 5 min at 37°C. the 

reaction was quenched by the addition of glycine to a final concentration of 125 mM (in 1 x 

PBS) for 5 min at RT. Cells were pelleted by centrifugation (9000 rpm, 10 min, 4°C) and 

washed two times with 100 ml of wash buffer (50 mM NaPO4, pH 7.4, 5 mM MgCl2). The 

pellets were washed once in 40 ml of wash buffer (9000 rpm, 10 min, 4°C), resuspended in 

100 ml Co-IP-Buffer (20 mM HEPES, pH 7.4, 100 mM NaCl, 20% glycerin, 0.5% Triton X-

100) per 1 g cells and centrifuged (9000 rpm, 10 min, 4°C). the pellets were resuspended 

in 1/10 volume of Co-IP-Buffer supplemented with 10 mM MgCl2, 10 mg/ml lysozyme, 

5 μg/ml DNaseI and 100 μg/ml PMSF, and incubated on ice for 30 min. Cells were disrupted 

by three passages through a French Press (16,000 psi). The cell debris were removed by 

centrifuge at 13.000 rpm for 10 min at 4°C). 

10 µl RFP-Trap® sepharose beads (ChromoTec, Germany) were added to the clear lysate 

and incubated for 1 h at 4°C on a rotator. The sepharose beads were centrifuged at 

2.000 rpm for 30 sec (Eppendorf Centrifuge 5424, Germany). 700 µl 100 mM ammonium-

bicabonate was added to the beads and mixed. Beads were centrifuged at 2000 rpm for 

1 min at 4°C following three washing steps. 200 µl elution buffer 1 (1 M urea, 100 mM 

ammoniumbicabonate, 1 µg trypsin per sample) were added to the beads and incubate for 

45 min on a thermomixer (Eppendorf, Germany) at 27°C at 1200 rpm. Beads were 

centrifuged to collect the supernatant following the addition of 80 µl elution buffer 2 (1 M 

urea, 100 mM ammoniumbicabonate, 5 mM tris-2-carboxyethyl-phosphine), after centri-

fugation the supernatant was collected and combined with the first eluate. The wash was 

repeated using 80 µl elution buffer 2, the supernatant was collected and combined to the 

first eluate. The reaction was continued on a thermomixer at 27°C without shaking 

overnight. 2 µl 10 mM iodoacetamide was added, mixed and incubated for 30 min in the 

dark. Trifluoroacetic acid (TFA) was added to a final concentration of 1% and mixed. 

Products were purified on a C18-microspin column. The column was conditioned with 300 µl 

Buffer 1 (0.1% [v/v] TFA; centrifugation at 1400 rpm, 30 sec) and equilibrated with 300 µl 

Buffer 2 (50% [v/v] acetonitrile, 50% [v/v] ddH2O, 0.1% [v/v] TFA; centrifugation at 1800 rpm, 

30 sec). The sample was loaded and washed once with 300 µl Buffer 3 (5% [v/v] acetonitrile, 

95% [v/v] ddH2O, 0.1% [v/v] TFA; centrifugation at 1800 rpm, 30 sec) and once with 150 µl 

Buffer 3 (centrifugation at 1600 rpm, 30 sec). Bound peptides were eluted into a new tube 

with 300 µl Buffer 4 (100% acetonitrile; centrifugation at 1200 rpm, 30 sec) and twice 150 µl 

Buffer 4 (centrifugation at 1200 rpm, 30 sec). Eluted peptides were concentrated under 

vacuum to dryness. Finally, they were dissolved in 100 µl reconstitution buffer (0.15% [v/v] 
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formic acid, 2% [v/v] acetonitrile), transferred into a LC vial and stored at -20°C until 

submission to mass spectroscopic analysis. 

4.5.5 Protein purification 

Proteins were His6-SUMO-tagged and purified. In a second step, the His6-SUMO (small 

ubiquitin-related modifier) was successfully cleaved using the specific His6-Ulp1 (SUMO 

protease 1) (Malakhov et al., 2004). To this end, E. coli RosettaTM (DE3)pLysS was trans-

formed with the corresponding plasmid. Cells were grown to an OD600 of 0.6 – 0.8, induced 

with 0.5 mM IPTG and further incubated at 37°C for 3 h (for LmdE, LmdECC and FtsXLoop1) 

or at 18°C overnight (for AmiC, AmiCE370A, LmdA, LmdEM23). Afterwards, cells were 

harvested by centrifugation at 6500 rpm for 10 min at 4°C. Pellet was washed in 1/10 

volume of lysis buffer (Table 13) and frozen in liquid N2.  

Cells were resuspended in buffer BZ3 (2 ml buffer per 1 g of wet cell extract) containing 

100 µg/ml PMSF and 10 U/ml DNase I. Cells were disrupted by three passages though a 

French Press at 16,000 psi. Remaining intact cells and cell debris were removed by 

centrifugation at 30,000 x g for 1 h at 4°C. The cleared cell lysate was filtered (0.2 µm pore 

size, Sarstedt, Germany) and applied to a 5 ml HisTrap HP column (nickel sepharose) 

connected to an ÄKTA purifier 10 system (GE Healthcare, Germany). The column was 

washed and equilibrated with 5 column volume (CV) of BZ3. The filtered cell lysate was 

loaded onto the column and proteins were eluted by a linear gradient of imidazol (20 – 

250 mM imidazole). The eluate was collected and all relevant fractions were analyzed by 

SDS-PAGE. Subsequently, fractions containing the protein of interest were pooled and 

dialyzed against 3 l of CB at 4°C overnight (Table 13). The next day, the sample was 

centrifuged at 30,000 x g for 20 min at 4°C to remove precipitates.  

The protein concentration was determined by a modified Bradford assay (Bradford, 1976) 

using the Roti®-Nonoquant reagent (Carl Roth, Germany) following the manufacturer’s 

instruction. To remove the His6-SUMO-tag, the protein was incubated with His6-Ulp1 at a 

molar ratio of 1000:1 (protein:protease) for 2 h at 4°C on a rocker. To separate cleaved 

His6-SUMO tag and His6-Ulp1, the protein solution was applied onto a 5 ml HisTrap HP 

column, which was equilibrated with CB. The flow-through (release of protein of interest) 

and wash fraction were collected, whereas the His6-SUMO tag and the His6-Ulp1 remained 

bound to the column. All relevant fractions were analyzed by SDS-PAGE. The protein of 

interest was aliquoted, snap-frozen in liquid N2, and stored at -80°C until further use. 

For unknown reasons, two proteins (LmdEM23 and FtsXLoop1) bound to the column after 

cleavage of the His6-SUMO-tag. Therefore, ion exchange chromatography was performed 

using the ÄKTApurifier 10 system (GE Healthcare, Germany). The protein solution was 

dialyzed against 2 l of IEX I buffer at 4°C overnight (Table 13). The next day, the sample 

was centrifuged at 30,000 x g for 20 min at 4°C to remove precipitates and filtered (0.2 µm 

pore size, Sarstedt, Germany). The sample was loaded onto a 1 ml Mono Q column (GE 

Healthcare). The column was washed and equilibrated with 5 CV of IEX I buffer. The protein 

was eluted by a linear gradient of NaCl (10 – 1000 mM NaCl). The eluate was collected and 

all relevant fractions were analyzed by SDS-PAGE. Subsequently, fractions containing the 

protein of interest were pooled and dialyzed against 3 l of storage buffer at 4°C overnight. 

Aliquots were made, snap-frozen in liquid N2, and stored at -80°C until further use. 
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Dilute protein solutions were concentrated by centrifugation in an Amicon Ultra centrifugal 

tube (Amicon, USA) at 20,000 x g and 4 °C. Afterwards, the protein concentration was 

determined as before.  

Table 13: Components of used buffers. 

Buffer Components 

Lysis buffer 50 mM NaH2PO4, pH 8.0 (NaOH), 300 mM NaCl, 10 mM imidazol 

BZ3 
50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 20 mM imidazol,  

10% [v/v] glycerol 

BZ4 
50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 250 mM imidazol,  

10% [v/v] glycerol 

CB (cleavage buffer) 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% [v/v] glycerol 

IEX I 25 mM Tris-HCl, pH 7.5, 10 mM NaCl 

IEX II 25 mM Tris-HCl, pH 7.5, 1 M NaCl 

Storage buffer 50 mM Tris-HCl, pH 7.5, 150 – 300 mM NaCl, 10% [v/v] glycerol 

4.5.6 Dye-release assay for PG hydrolysis 

The ability of PG remodeling enzymes to hydrolyze PG was tested by performing the dye-

release assay as previously described (Uehara et al., 2010; Yang et al., 2012; Zhou et al., 

1988). In a first step, purified PG sacculi of wild-type C. crescentus CB15N were labelled 

with Remazol Brilliant Blue (RBB). 1 ml of PG sacculi was incubated with 20 mM RBB in 

0.25 M NaOH overnight at 37°C. The preparation was neutralized with 0.5 M HCl (final 

concentration: 0.25 M). RBB-labelled PG sacculi were pelleted by centrifugation at 21,000 x 

g for 20 min at RT (Eppendorf Centrifuge 5424, Germany). The PG sacculi were resuspen-

ded and washed in ddH2O until the supernatant was clear. Finally, the pellet was resuspend-

ded in 1 ml ddH2O containing 0.02% [v/v] sodium azide and stored at 4°C. 

In a second step, 10 μl of RBB-labelled PG sacculi were incubated with 4 μM of purified 

protein of interest in 100 µl of reaction buffer (25 mM HEPES/NaOH, pH 7.5, 150 mM NaCl, 

10% [v/v] glycerol) at 37°C for 2 h. RBB-labelled PG sacculi incubated with reaction buffer 

alone was used as a negative control and reactions with 4 μM of lysozyme were used as a 

positive control. The reactions were terminated by incubation at 95°C for 5 min, followed by 

a centrifugation step (21,000 x g, 20 min at RT). The supernatants were transferred into a 

fresh tube, and the absorbance was measured at 595 nm using an UltrospecTM 2100 pro 

UV/Visible spectrophotometer (GE Healthcare, Germany). 

4.5.7 Bio-layer interferometry (BLI) 

Interaction analyses of proteins of interest were performed in real time by bio-layer 

interferometry using a BLItzTM System Package (PALL Life Sciences, USA). The protein of 

interest was biotinylated for 2 h on ice using a 2-fold molar excess of NHS-PEG4-Biotin 

(Thermo Scientific, USA), followed by an overnight dialysis against 2 x 1 l reaction buffer 

(25 mM HEPES/NaOH, pH 7.5, 150 mM NaCl, 10% [v/v] glycerol) to remove non-reacted 

biotin. The biotinylated protein was captured on a high precision streptavidin biosensor 

(PALL Life Sciences, USA). For AmiC-LmdE binding, the immobilized LmdE (30 μM) was 

probed with AmiC (0 – 150 μM) in reaction buffer (25 mM HEPES/NaOH, pH 7.5, 150 mM 
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NaCl, 10% [v/v] glycerol, 10 μM BSA, 0.01% [v/v] Triton X-100). The association step was 

followed by a washing step with reaction buffer to dissociate AmiC from the immobilized 

LmdE. The association and dissociation traces were recorded. 

4.6 Transposon mutagenesis in H. neptunium 

A modified conjugation protocol was used to transform H. neptunium in order to create a 

transposon library. The H. neptunium ATCC15444 wild type was grown to stationary phase 

in 10 ml MB medium at 28°C for 2 days. The preculture was used to inoculate 400 ml MB 

medium in a 5 L flask and incubated at 28°C for at least 24 h. E. coli WM3064 + pSAM-Rl 

(SR74) or E. coli WM3064 + pSAM-HNE (pSR51) was inoculated in 10 ml LB medium + 

200 µg/µl ampicillin + 300 μM DAP in the morning and incubated at 37°C. At the end of the 

day the preculture was used to inoculate 200 ml LB medium + 200 µg/µl ampicillin + 300 μM 

DAP and incubated at 37°C over night. Cells were harvested by centrifugation at 7300 rpm 

for 15 min at RT (rotor: JLA-16.250, Thermo Fisher, USA). Each cell pellet was washed in 

200 ml plain MB medium (+ 300 μM of DAP for E. coli WM3064) by centrifugation at 

7300 rpm for 15 min at RT (rotor: JLA-16.250). Cells were resuspended in a total amount 

of 20 ml MB medium + 100 μl of 60 mM DAP and 250 µl were spotted on extra dry MB 

plates + 300 µM DAP. Plates were incubated at 28°C for 12h. 

Cells were scraped from the plates and transferred into a 50 ml-Falcon tube containing plain 

MB medium. Cells were pelleted by centrifugation at 5000 g for 15 min at RT and washed 

three times with 40 ml plain MB medium (5000 g for 15 min at RT). Cells were resuspended 

in a final volume of 80 ml plain MB medium. 0.25 ml of the cell suspension was plated on 

well-dried MB + 200 µg/µl kanamycin + 50 µg/µl gentamycin Petri dishes (92 x 16 mm, 

Sarstedt, Germany). All plates were incubated at 28°C for 7 days until colony formation was 

visible.  

Colonies were scraped from the plates, transferred into a 50 ml-Falcon tube and centrifuged 

at 8000 g for 15 min at RT. Pellet was washed three times with 40 ml plain MB medium 

(centrifugation at 8000 g for 15 min at RT), followed by the resuspension in a final volume 

of 47 μl of plain MB per Petri dish (92 x 16 mm, Sarstedt, Germany). Up to 3 ml of 

suspension were transferred into a fresh 15 ml-Falcon tubes to make aliquots and snap-

froze in liquid N2. Aliquots were stored at -80°C until DNA isolation.  

TnSeq was performed using the NexteraTM DNA Library Preparation Kit FC-121-1030 

(Illumina, USA) and a modified protocol (A. Camilli, unpublished). All oligonucleotides are 

summarized in Table S8. Genomic DNA was prepared using the NucleoSpin® Microbial 

DNA (MACHEREY-NAGEL, Germany). The DNA concentration was measured using a 

NanoDrop® spektrophotometer ND-1000 (Thermo Scientific, USA). From the NexteraTM 

DNA Library Preparation Kit, 5 µl of Tagment DNA buffer, 4 µl of genomic DNA at 20 ng/µl, 

and 1 µl of Tagment DNA enzyme were combined in a PCR tube. The sample was mixed 

and heated for 10 min at 55°C, followed by the addition of 27.5 µl ddH20, 5 µl 10x KOD-

PCR buffer, 5 µl 2 mM dNTPs, 2 µl MgSO4, 1 µl of 30 µM Nextera 2A-R (oSR230), 1 µl of 

30 µM Tn_HNE (oSR227), and 0.5 µl KOD-Polymerase. After mixing, the following PCR 

program was run: preheat at 98°C for 1 min, 30 cycles of 98°C for 10 sec followed by 65°C 

for 20 sec followed by 72°C for 1 min. The run finished with a final 2 min extension at 72°C.  
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0.5 µl from the first PCR were taken and transferred into a new PCR tube. 37 µl ddH2O, 5 µl 

10x KOD-PCR buffer, 5 µl 2 mM dNTPs, 2 µl MgSO4, 1 µl of 30 µM N701 index (oSR231), 

1 µl of 30 µM Tn_HNE_N502 index (oSR228), and 0.5 µl KOD-Polymerase were added. 

After mixing, the following PCR program was run: preheat at 98°C for 1 min, 15 cycles of 

98°C for 10 sec followed by 65°C for 20 sec followed by 72°C for 1 min. run was finished 

with a final 2 min extension at 72°C. Each sample was tested by agarose gel electrophoresis 

to confirm a smear of products ranging from ~150 – 1500 bp. PCR products were purified 

using a GenEluteTM PCR Clean–Up Kit (Sigma, USA). 

Samples were submitted to our collaboration partner Dr. J. Serrania (Dept. of Biology, FB17, 

Philipps-Universität and LOEWE Center for Synthetic Microbiology, Germany) for TnSeq 

analysis, together with the sequencing primer Tn_HNE_Seq (oSR229). Data were analyzd 

with the CLC Genomics Workbench 11.0.1 (Qiagen, Germany).  

4.7 Bioinformatic methods 

DNA and protein sequences were obtained from either the database National Centers for 

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/) (Geer et al., 2010) or the 

KEGG database (http://www.genome.jp/kegg/). Functional domains of proteins were 

identified by SMART (Simple Modular Architecture Research Tool) analysis (http://smart. 

embl-heidelberg.de/) (Letunic et al., 2009; Schultz et al., 1998) or Pfam analysis (http:// 

pfam.sanger.ac.uk/) (Bateman et al., 2004; Sonnhammer et al., 1997). The prediction of 

signal peptides or transmembrane domains in proteins were done using SignalP (http:// 

www.cbs.dtu.dk/ services/SignalP/) and TMHMM (http://www.cbs.dtu.dk/services/TMHMM-

2.0/). Protein structures were modeled with I-TASSER (Iterative Threading ASSEmbly 

Refinement, https://zhanglab.ccmb.med.umich.edu/I-TASSER/) and processed with Pymol 

1.8 (DeLano Scientific LLC.). Sequence alignments were generated with Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and edited with GeneDoc (Nicholas & Nicholas, 

1997). The molecular weight and isoelectric point of proteins were calculated using the 

Expasy protparam server (http://web.expasy.org/protparam/). Box plots were generated 

using QtiPlot 0.9.9 and demographs were made with Fiji and R x64 3.1.1. 
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5. APPENDIX 

5.1 Supplement figures 

  

Figure S1: The lmdE gene is responsible for the aberrant phenotypes. (A) Phenotype of the wild 
type (HNE WT) and the deletion strain EC39 (ΔlmdE). Complementation of the ΔlmdE mutant with 
native LmdE restores the wild-type morphology. SR44 (ΔlmdE PCu::PCu-lmdE) was grown to 
exponential phase in ASM, induced for 6.5 h with 300 µM CuSO4 and imaged by DIC microscopy. 
Scale bar: 3 μm. (B) Cell lengths of the indicated strains. Cells were grown as described in (A). The 
distribution of cell lengths is shown as a box plot (explanation see Figure 7). Asterisk indicates a p-
value of < 0.0001 (t-test). (C) Phenotype of the wild type (HNE WT) and the deletion strain SR51 
(ΔlmdABDEF). Complementation of the ΔlmdABDEF mutant with native LmdE restores the wild-type 
morphology. SR56 (ΔlmdABDEF PCu::PCu-lmdE) was grown to exponential phase in ASM, induced 
for 6.5 h with 300 µM CuSO4 and imaged by DIC microscopy. Scale bar: 3 μm. (D) Cell lengths of 
the indicated strains. Cells were grown as described in (C). The distribution of cell lengths is shown 
as a box plot (explanation see Figure 7). Asterisks indicate a p-value of < 0.0001 (t-test). 
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Figure S2: Stability of fusion proteins. (A) Wild type cells of H. neptunium and strains SR24 (lmdB-
mCherry), SR26 (lmdF-mCherry), SR58 (lmdD-mCherry), SR61 (lmdA-mCherry) were grown in ASM 
at 28°C to the exponential phase and analyzed microsopically. An anti-mCherry antibody was used 
for immunodetection. (B) Strain EC70 (PCu::PCu-amiC-mCherry), SR23 (amiC-mCherry), SR59 (Para-
amiC-mCherry), SR71 (ΔlmdE PCu::PCu-amiC-mCherry), SR72 (ΔftsEX PCu::PCu-amiC-mCherry) 
were grown to exponential phase in ASM or LB, induced with 300 µM CuSO4 or 0.02% arabinose 
and analyzed microscopically. An anti-mCherry antibody was used for immunodetection. (C) Strain 
JZ12 (PZn::PZn-venus-ftsE) was grown to exponential phase in ASM, induced for 6 h with 300 µM 
ZnSO4 and analyzed microscopically. An anti-GFP antibody was used for immunodetection. 
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Figure S3: AmiC is needed for the complementation of the ΔamiC mutant. (A) Phenotype of the 
wild type (HNE WT) and the deletion strain SR18 (ΔamiC). Cells were grown in ASM at 28°C (shaking 
at 210 rpm) to the exponential phase and analyzed microscopically. SR21 (ΔamiC PCu::PCu-amiC) 
was grown to exponential phase in MB medium, induced for 23 h with 300 µM CuSO4 and imaged 
by DIC microscopy. Scale bar: 3 μm. (B) Complementation of the ΔamiC mutant with mutated 
AmiCE370A does not restore the wild type phenotype. SR75 (ΔamiC PCu::PCu-amiCE370A) was grown to 
exponential phase in ASM, induced for 21 h with 300 µM CuSO4 and imaged by DIC microscopy. 
Scale bar: 3 μm. (C) Cell lengths of the indicated strains. Cells were grown as described in (A and 
B). The distribution of cell lengths is shown as box plots (explanation see Figure 7). Asterisks indicate 
a p-value of < 0.0001 (t-test). (D) Control experiment for the protein fractionation of AmiC. A 
whole cell lysate of H. neptunium wild type was fractionated by ultracentrifugation into the membrane 
and soluble fractions, followed by immunoblot analysis with anti-CtrA antibody. 
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Figure S4: Effect of deletions in PG remodeling enzymes for the growth of H. neptunium. (A) 
Deletions of single endopeptidase-encoding genes. Cells were grown in ASM at 28°C (shaking at 
210 rpm) to the exponential phase, diluted, inoculated into a 24-well plate, and incubated at 31 – 
33°C shaking while cell growth was monitored at OD580 for 31 h. For details see Material and Methods 
4.2.5. (B) Deletions of multiple endopeptidase-encoding genes. Cells were grown as in (A). (C) 
Deletion of the amidase-encoding gene in combination with specific endopeptidase-encoding genes. 
Cells were grown as in (A). (D) Deletions of carboxypeptidase-encoding genes and the ftsEX genes. 
Cells were grown as in (A). A list of all strains is given in Table S1 (including doubling times and 
biofilm production). Growth of strains and measurement of the growth curves see. 
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Figure S5: Control experiments for BLI. (A) AmiC-Biotin binds strongly to the streptavidin 
biosensor, whereas non-tagged LmdE shows very weak non-specific binding. (B) LmdE-Biotin binds 
strongly to the streptavidin biosensor, whereas non-tagged AmiC shows very weak non-specific 
binding. (C) LmdECC/M23 or LmdECC + M23 do not bind to the streptavidin biosensor. 
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Figure S6: The dacB gene is responsible for the aberrant phenotypes. (A) Phenotype of the wild 
type (HNE WT) and the deletion strain SR11 (ΔdacB). Cells were grown in MB medium at 28°C 
(shaking at 210 rpm) to the exponential phase and analyzed microscopically. Complementation of 
the ΔdacB mutant with native DacB restores the wild type morphology. SR15 (ΔdacB PCu::PCu-dacB) 
was grown to exponential phase in MB medium, induced for 24 h with 300 µM CuSO4 and imaged 
by DIC microscopy. Scale bar: 3 μm. (B) Cell lengths of the indicated strains. Cells were grown as 
described in (A). The distribution of cell lengths is shown as box plots (explanation see Figure 7). 
Asterisks indicate a p-value of < 0.0001 (t-test). Adapted from Rosskopf (2014). 

5.2 Supplemental tables 

Table S1: Characterization of deletion strains generated in this study. Growth rates were 
calculated from the represent growth experiments shown in Figure S4. Biofilm production was deter-
mined by a biofilm assay using crystal violet. The cell lengths given the mean value and the standard 
deviation generated from cell length measurements. 

Genotype  Strain Growth rate to 

WT (%) 

Biofilm 

(%) 

Cell length 

(µm) 

HNE wild type LE670 100 100 2.01 ± 0.66 

ΔamiC SR18 89 0 3.73 ± 2.31 

ΔlmdA EC36 120 0 2.01 ± 0.75 

ΔlmdB EC53 101 0 2.05 ± 0.82 

ΔlmdD EC38 125 0 2.10 ± 0.89 

ΔlmdE EC39 108 0 3.00 ± 1.33 

ΔlmdF EC90 85 103 2.04 ± 0.70 

ΔlmdAE EC56 93 0 4.32 ± 2.74 

ΔlmdAF SR34 92 0 1.99 ± 0.67 

ΔlmdEF SR35 93 0 3.35 ± 2.09 

ΔamiC ΔlmdA SR47 96 0 3.83 ± 2.79 

ΔamiC ΔlmdE SR36 95 0 3.60 ± 2.36 

ΔamiC ΔlmdF SR37 94 0 3.83 ± 2.79 
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Table S1: Characterization of deletion strains generated in this study. (continued) 

ΔlmdABF SR41 95 0 2.13 ± 0.77 

ΔlmdAEF SR78 92 0 4.66 ± 3,62 

ΔlmdDEF SR40 94 0 5.93 ± 4.41 

ΔamiC ΔlmdAF SR42 100 0 8.48 ± 7.13 

ΔamiC ΔlmdEF SR55 87 0 3.07 ± 2.41 

ΔlmdABDF SR45 96 0 1.98 ± 0.69 

ΔlmdABDEF SR51 96 0 5.66 ± 3.95 

ΔamiC ΔlmdABDEF SR60 87 0 5.82 ± 5.29 

ΔftsEX SR64 86 333 6.67 ± 7.35 

ΔftsEX ΔlmdE SR80 85 385 6.84 ± 6.62 

ΔdacB SR11 98 189 2.87 ± 1.18 

ΔdacH SR08 92 129 2.12 ± 0.77 

ΔdacL EC46 80 0 2.25 ± 0.87 

ΔdacHL SR50 102 0 2.13 ± 0.75 

ΔdacBHL SR54 102 0 1.98 ± 0.69 

 
Table S2: Significantly enriched genes with a putative interaction with AmiC. Co-IP was 
performed using AmiC-mCherry as bait. The experiment was performed in triplicates. Light orange 
indicate the input proteins, green very interesting and light green interesting candidates for future 
investigations. Index values display the relative protein abundance in comparison to the HNE WT 
(control sample). Abbreviation: MW: molecular weigth; SP: signal peptide; TM: transmembrane helix; 
CCRP: coiled-coil rich protein; TPR: tetratricopeptide repeat. 

Locus Predicted proteins MW SP/TM Index 

- mCherry 20 kDa - 3794176 

HNE_0392 Cell division protein FtsQ  32 kDa 1 TM 3391433 

HNE_0156 Conserved hypothetical protein, CpoB 33 kDa SP 3298654 

HNE_1815 Rare lipoprotein A, RlpA 42 kDa SP 3083167 

HNE_0427 Conserved hypothetical protein 89 kDa SP 2312967 

HNE_0177 CHAD domain protein 32 kDa No 2301524 

HNE_2697 Outer membrane protein 27 kDa SP 1868212 

HNE_0737 Uncharacterized protein 16 kDa 2 TM 1788527 

HNE_2936 Rod shape-determining protein MreC 36 kDa 1 TM 1692700 

HNE_0816 Efflux transporter, RND family 39 kDa 1 TM 1542733 

HNE_2916 Uncharacterized protein, T6SS_HCP 19 kDa SP 1234500 

HNE_0885 Putative membrane protein 24 kDa 4 TM 1134220 

HNE_2474 Uncharacterized protein 136 kDa SP 961808 

HNE_1822 Conserved domain protein 63 kDa 1 TM 891774 

HNE_1954 Conserved hypothetical protein 30 kDa SP 863349 

HNE_2317 Uncharacterized protein 27 kDa SP 844415 

HNE_2262 Uncharacterized protein 36 kDa SP 480906 

HNE_3490 Uncharacterized protein, CCRP 69 kDa No 464267 

HNE_0768 Penicillin-binding protein, 1A family, PBP1X 76 kDa 1 TM 464267 

HNE_0766 Glycosyl transferase, group 2 42 kDa No 464267 

HNE_3361 Putative lipoprotein 16 kDa SP 363487 

HNE_0674 N-acetylmuramoyl-L-alanine amidase, AmiC 45 kDa SP 20096 

HNE_1179 Uncharacterized protein, TPR 53 kDa 1 TM 150 
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Table S3: H. neptunium strains used in this study. 

Strain Genotype Reference 

LE670 H. neptunium wild type 

(ATCC15444) 

E. Leifson, 1964 

SR08 ΔdacH Rosskopf, 2014 

SR11 ΔdacB Rosskopf, 2014 

SR15 ΔdacB PCu::PCu-dacB Rosskopf, 2014 

SR18 ΔamiC Rosskopf, 2014 

SR21 ΔamiC PCu::PCu-amiC Rosskopf, 2014 

SR23 amiC-mCherry Rosskopf, 2014 

SR24 lmdB-mCherry Rosskopf, 2014 

SR26 lmdF-mCherry Rosskopf, 2014 

SR28 dacL-mCherry Rosskopf, 2014 

SR34 ΔlmdAF This study 

SR35 ΔlmdEF This study 

SR36 ΔamiC ΔlmdE This study 

SR37 ΔamiC ΔlmdF This study 

SR40 ΔlmdDEF This study 

SR41 ΔlmdABF This study 

SR42 ΔamiC ΔlmdAF This study 

SR44 ΔlmdE PCu::PCu-lmdE This study 

SR45 ΔlmdABDF This study 

SR47 ΔamiC ΔlmdA This study 

SR50 ΔdacHL This study 

SR51 ΔlmdABDEF This study 

SR54 ΔdacBHL This study 

SR55 ΔamiC ΔlmdEF This study 

SR56 ΔlmdABDEF PCu::PCu-lmdE This study 

SR57 lmdE-mCherry This study 

SR58 lmdD-mCherry This study 

SR60 ΔamiC ΔlmdABDEF This study 

SR61 lmdA-mCherry This study 

SR64 ΔftsEX This study 

SR71 ΔlmdE PCu::PCu-amiC-mCherry This study 

SR72 ΔftsEX PCu::PCu-amiC-mCherry This study 

SR73 PCu::PCu-lmdCN-mCherry This study 

SR75 ΔamiC PCu::PCu-amiCE370A This study 

SR76 ΔftsEX PCu::PCu-ftsEX This study 

SR78 ΔlmdAEF This study 

SR80 ΔftsEX ΔlmdE This study 

EC36 ΔlmdA Cserti et al., 2017 

EC38 ΔlmdD Cserti et al., 2017 

EC39 ΔlmdE Cserti et al., 2017 

EC46 ΔdacL Cserti et al., 2017 

EC53 ΔlmdB Cserti et al., 2017 
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EC56 ΔlmdAE Rosskopf, 2014 

EC90 ΔlmdF Cserti et al., 2017 

JZ12 PZn::PZn-venus-ftsE Zimmer, 2013 

 

Table S4: E. coli strains used in this study. 

Strain Genotype Reference 

TOP10 F–  mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 araD139 Δ(araleu) 7697 galU galK 

rpsL (StrR) endA1 nupG 

Invitrogen 

WM3064 Donor strain for conjugation: thrB1004 pro thi rpsL 

hsdS lacZΔM15 RP4–1360 Δ(araBAD)567 

ΔdapA1341::[erm pir(wt)] 

W. Metcalf 

(unpublished) 

BL21 (DE3) Expression strain: F- ompT, hsdSB(rB
-mB

-) gal dcm 

(DE3) 

Novagen 

RosettaTM 

(DE3)pLysS 

Protein overproduction strain: F- ompT hsdSB(rB
-mB

-) 

gal dcm (DE3) pLysSRARE (CamR) 

Merck Milipore 

SR59 pBAD24-PBAD-amiC-mCherry This study 

SR62 pTB146-PT7-amiC This study 

SR63 pTB146-PT7-lmdE This study 

SR66 pTB146-PT7-amiCE370A This study 

SR67 pTB146-PT7-lmdA This study 

SR68 pTB146-PT7-lmdEM23 This study 

SR69 pTB146-PT7-lmdECC This study 

SR70 pTB146-PT7-ftsXLoop1 This study 

 

Table S5: Plasmids used in this study. 

Plasmid Description Reference 

pSR01 pNPTS138-ΔdacB, KanR Rosskopf, 2014 

pSR03 pNPTS138-ΔdacH, KanR Rosskopf, 2014 

pSR17 pNPTS138-lmdF-mCherry, KanR Rosskopf, 2014 

pSR22 pNPTS138-ΔamiC, KanR Rosskopf, 2014 

pSR23 pNPTS138-amiC-mCherry, KanR Rosskopf, 2014 

pSR35 pCCHYC-2-dacB, KanR Rosskopf, 2014 

pSR38 pCCHYC-2-dacL, KanR Rosskopf, 2014 

pSR47 pCHYC-2-HNE_1815, KanR This study 

pSR50 pNPTS138-ΔlmdB, KanR This study 

pSR54 pCCHYC-2-lmdE, KanR This study 

pSR55 pNPTS138-lmdA, KanR This study 

pSR56 pNPTS138-lmdD, KanR This study 

pSR57 pNPTS138-lmdE, KanR This study 

pSR61 pBAD24-amiC-mCherry, AmpR This study 

pSR65 pNPTS138-ΔftsEX, KanR This study 

pSR68 pTB146-amiC, AmpR This study 

pSR69 pTB146-lmdE, AmpR This study 
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pSR71 pCCHYC-2-lmdCN, KanR This study 

pSR72 pTB146-amiCE370A, AmpR This study 

pSR73 pTB146-lmdA, AmpR This study 

pSR74 pTB146-lmdECC, AmpR This study 

pSR75 pTB146-lmdEM23, AmpR This study 

pSR76 pTB146-ftsXLoop1, AmpR This study 

pSR77 pCCHYC-2-ftsEX, KanR This study 

pSR78 pCCHYC-2-amiCE370A, KanR This study 

pNPTS148 sacB-containing suicide vector used for double 

homologous recombination, KanR 

M. R. K. Alley, 

unpublished 

pCHYC-2 Integration plasmid for generation of C-terminal 

mCherry fusions at the site of interest, KanR  

Jung et al., 2014 

pCCHYC-2 Integration plasmid for generation of C-terminal 

mCherry fusions under control of PCu, KanR 

Jung et al., 2014 

pBAD24 Plasmid for the generation of expression constructs 

under control of PBAD, AmpR 

Guzman et al., 

1995 

pTB146 Plasmid for the generation of N-terminal His6-SUMO 

overexpression constructs under control of PT7, 

AmpR 

Bendezú et al., 

2008 

pEC10 pCCHYC-2-lmdD, KanR Rosskopf, 2014 

pEC34 pNPTS138-ΔlmdA, KanR Rosskopf, 2014 

pEC35 pNPTS138-ΔlmdB, KanR Rosskopf, 2014 

pEC38 pNPTS138-ΔlmdD, KanR Rosskopf, 2014 

pEC39 pNPTS138-ΔlmdE, KanR Rosskopf, 2014 

pEC64 pNPTS138-ΔdacL, KanR Rosskopf, 2014 

pEC77 pCVENC-3-amiC, RifR Rosskopf, 2014 

pEC115 pCCHYC-2-amiC, KanR Cserti et al., 2017 

pEC126 pNPTS138-ΔlmdF, KanR Rosskopf, 2014 

pWS27 pCHYC-2-lmdA, KanR Strobel, 2010 

pSAM-Rl RP4-oriT, oriR6K, mariner himar1C9 transposase, 

with B. thetatiotamicron rpoD promoter replaced 

with R. leguminosarum 3841 rpoD promoter region, 

AmpR, KanR 

Perry and Yost, 

2014 

pSAM-HNE 

(pSR51) 

pSAM_Rl with H. neptunium HNE_0038 promoter 

region, AmpR, KanR 

This study 

 

Table S6: Oligonucleotides used in this study. Restriction sites are indicated in boldface. 

Name Designation Sequence (5’–3’) 

oSR120 HNE_0633_del1_new acaCTGCAGgacccgctcgcccggctgct 

oSR121 0633_delcheck_for_new ctgaaggaccggaagatgaag 

oSR131 HNE_3210_for cacaggaactcttcCATATGgcgcattttccgcgcatg 

oSR132 HNE_3210_rev ccgggctgcaGCATATgtcagccgccacgcgacaacca 

oSR135 0632_int_for1 ggctggcgccAAGCTTccaggacgcttcgggcagctg 

oSR136 0632_int_rev2 attaaatcgcctcggcgcccttacttgtacagctcgtcca 

oSR137 0632_int_for3 tggacgagctgtacaagtaagggcgccgaggcgatttaat 
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oSR138 0632_int_rev4 cacggccgaaGCTAGCcgatggccagggccgcacggt 

oSR139 2982_int_for1 ggctggcgccAAGCTTgcctgcgcctcatcgcccgcg 

oSR140 2982_int_rev2 ttccctccgcgtgtgacagattacttgtacagctcgtcca 

oSR141 2982_int_for3 tggacgagctgtacaagtaatctgtcacacgcggagggaa 

oSR142 2982_int_rev4 acggccgaaGCTAGCgcgacacggatgaggatgaggagg 

oSR143 3210_int_for1 caggatatctGGATCCggaaattgagcgcttggccgcgac 

oSR144 3210_int_rev2 gctcgagatcttaaggtaccgccgccacgcgacaaccact 

oSR145 3210_int_for3 agtggttgtcgcgtggcggcggtaccttaagatctcgagc 

oSR146 3210_int_rev4 cttcatcctcacacggcggattacttgtacagctcgtcca 

oSR147 3210_int_for5 tggacgagctgtacaagtaatccgccgtgtgaggatgaag 

oSR148 3210_int_rev6 cacggccgaaGCTAGCcggatataggcaatgtcgtttgcc 

oSR161 0632_delcheck_rev atgtcggctatgatgaaggcgggg 

oSR162 0674-mCherry_for ctccatacccgtttttttgggatgggcactcaacgcccgtct 

oSR163 0674-mCherry_rev ctagaggatccccgggtacttacttgtacagctcgtccatgc 

oSR182 FtsEX_del1 tgaagccggctggcgccatctcgaccggggttggctcga 

oSR183 FtsEX_del2 gcgcccgcatcaccgtgatcgcttcgtcgaaaatgtccggtcg 

oSR184 FtsEX_del3 cggacattttcgacgaagcgatcacggtgatgcgggcgctt 

oSR185 FtsEX_del4 gacgcgtcacggccgaaggaaggatttcgtagatgatctttc 

oSR186 FtsEX_check_for ccgtaggcggcaaaggcggag 

oSR187 FtsEX_check_rev gcttttccttctgcacggcgg 

oSR188 3210_ups_for1 ttgaagccggctggcgccactcgaagccgcccttgaggcg 

oSR189 3210_N-int_rev2 ctcgcccttgctcaccatgtccggccccgcagccgtcag 

oSR191 3210_mChy_for3 acggctgcggggccggacatggtgagcaagggcgaggag 

oSR192 3210_mChy_rev4 atcctggcgcgtataggtacccggtgcaccagacttgta 

oSR193 3210_N-int_for5 acaagtctggtgcaccgggtacctatacgcgccaggatctt 

oSR194 3210_N-int_rev6 gacgcgtcacggccgaagggcctctttgcccagtttctgggc 

oSR200 0674noTM-for cagagaacagattggtggtgtgtcacaaatccgcgttgtcggt 

oSR201 0674exp-rev acggagctctgctcttctctattgggacgcgaggcggag 

oSR202 3210noSP-for cacagagaacagattggtggtgcggggccggacacctatacg 

oSR203 3210exp-rev acggagctctgctcttcttcagccgccacgcgacaacca 

oSR219 2628N_for cattcacaggaactcttccacatggcgaagtggagtgccaac 

oSR220 2628N_rev agctcgagatcttaaggtaccgcgggcgcgcaggtcctgga 

oSR221 mutAmiC_for cgcagtgctgctcgcacttggcttcctga 

oSR222 mutAmiC_rev tcaggaagccaagtgcgagcagcactgcg 

oSR223 0632noTM-for ctcacagagaacagattggtggtgccgagccggaagccct 

oSR224 0632exp-rev gacggagctctgctcttcttcaaggcgccggggcgttt 

oSR225 3210CCexp-rev ggagctctgctcttctttaggcgggcgcgctggattcc 

oSR226 3210M23-for gagaacagattggtggtagcattgcagaatgggtcag 

oSR232 FtsX_Loop1_for ctcacagagaacagattggtggtaagtccacctatggcgc 

oSR233 FtsX_Loop1_rev cgacggagctctgctcttctctacgcggtgcccagcatgc 

oSR234 FtsEX_for cattcacaggaactcttccatatgatgacccagatacgaccggac 

oSR235 FtsEX_rev tggatcccccgggctgcagctagcctacatcacggacttaagcgcc 

oSR236 AmiC_m_for cattcacaggaactcttccatatgggcactcaacgcccgt 

oSR237 AmiC_m_rev ggagctcgagatcttaaggtaccctattgggacgcgaggc 

oEC23 HNE_3409_for aaaCATATgctgaaaagacgcttatccgcc 
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oEC24 HNE_3409_rev tttGGTACCttcgatgatctcgtagccttcggg 

oEC25 HNE_2982_for tttCATATgagggtacgggcgattgctcttg 

oEC26 HNE_2982_rev tatGGTACCgtatccggcctgcaacgccccttc 

oEC84 HNE_0632_del1 tatAAGCTTggtgtccgagcaggcccgcgagcat 

oEC87 HNE_0632_del4 ttttGCTAGCgacaccgcctatgcccacctctcgc 

oEC89 HNE_0633_del2 tatGAATTCccgcgtgaagcaacgccccgtaagcc 

oEC91 HNE_0633_del4 ttttGCTAGCcttcctgggcctctgcgggcacatc 

oEC92 HNE_2982_del1 tatCTGCAGtctatcaggaagacggcaaggtttg 

oEC95 HNE_2982_del4 ttttGCTAGCcattcttcccaagcccggcattgac 

oEC96 HNE_3210_del1 tatGAATTCggccgttgatctcggtgatatagtc 

oEC99 HNE_3210_del4 ttttGCTAGCgggcgttggcgttgggtggcgcttg 

oEC111 0632_delcheck_for cagggccgcacggtggattt 

oEC112 0632_delcheck_rev ctgactttgccgcccccacc 

oEC114 0633_delcheck_rev cgtgccgcgcatttccagac 

oEC115 2982_delcheck_for tgatggcgaggtgcagcgtg 

oEC116 2982_delcheck_rev gccaaagccagaccatgagc 

oEC117 3210_delcheck_for gacctggaatggatcaacgc 

oEC118 3210_delcheck_rev ccgacccggaaacccgtatc 

oEC120 3409_delcheck_rev gcccaaactcgttgaagacc 

oEC165 HNE_0674_for tataCATATgggcactcaacgcccgtctc 

oEC166 HNE_0674_rev tataGGTACCctattgggacgcgaggcggagatc 

oEC289 HNE_3409_del1new tttAAGCTTcccggccagaaggacacaaaatgag 

oEC292 HNE_3409_del4new tataGCTAGCcgcgctgtatatgccgccggc 

oEC293 3409_delcheck_f_new ctgtccggcgccagctattcgggc 

oEC294 3409_delcheck_r_new gcgggcctctggtcgcgcgccacg 

oEC295 HNE_3102_del1new tttAAGCTTgggccgccacacaaacctcgtcagc 

 

Table S7: Common oligonucleotides used for colony PCR and sequencing. 

Name Designation Sequence (5’–3’) 

3 IntSpec-1 (RecUni-1) atgccgtttgtgatggcttccatgtcg 

5 M13for gccagggttttcccagtcacga 

6 M13rev gagcggataacaatttcacacagg 

8 pBAD24-rev accgcttctgcgttctgatttaatc 

9 pBAD24-uni cctacctgacgctttttatcgcaac 

14 T7 rev gctagttattgctcagcgg 

15 pET-for cacgatgcgtccggcgtagaggatc 

20 mCherry-up ctcgccctcgccctcgatctcgaac 

21 mCherry-down ggcgcctacaacgtcaacatcaagttgg 

22 REV-uni ggggatgtgctgcaaggcgattaagttg 

24 pET-rev cctttcagcaaaaaacccctcaagacccg 

38 pCop1486_out_for cgaagtccgccgtggccgag 

39 pCop1486_check_for ccccttatcatccagaccagctacg 

40 pCop1486_check_rev ggcttttgattttttgacgtcgag 
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Table S8: Oligonucleotides for transposon mutagenesis and TnSeq. Restriction sites are 
indicated in boldface. 

Name Designation Sequence (5’–3’) 

oSR122 P_HNE_0038_for aacGGATCCcggaagtcatccgccatcacg 

oSR123 P_HNE_0038_rev acaCATATGggggggttctcctgtaagtct 

oSR124 P_HNE_0038_check_for tggcctttttgcgtttctacc 

oSR125 P_HNE_0038_check_rev tcaagccaagtttttgcttcc 

oSR133 KanRs_for gttccttgcgcagctgtgctcgacgtt 

oSR134 KanRs_rev ccaacgctatgtcctgatagcggtccg 

oSR227 Tn_HNE ttcgcttgctgtccataaaaccgcccagtc 

oSR228 Tn_HNE_N502 index aatgatacggcgaccaccgagatctacacctctctatccggggg

cggggacttatcatccaacctgtta 

oSR229 Tn_HNE_Seq ccgggggcggggacttatcatccaacctgtta 

oSR230 Nextera 2A-R gtctcgtgggctcggagatgtgtataagagacag 

oSR231 N701 index caagcagaagacggcatacgagattcgccttagtctcgtgggct

cggagatgtg 
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