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Zusammenfassung

SeiG eine kompakte, zusammenhängende Lie Gruppe und K ⊆ G eine abgeschlossene Untergruppe. Wir zeigen,

dass die Isotropiewirkung von K auf G/K äquivariant formal ist und der Raum G/K formal im Sinne rationaler

Homotopietheorie, falls es sich bei K um die Identitätskomponente des Schni�s der Fixpunktmengen zweier

verschiedener Involutionen auf G handelt, G/K also ein ℤ2 × ℤ2–symmetrischer Raum ist. Ist K die Identitäts-

komponente der Fixpunktmenge einer einzelnen Involution undH ⊆ G eine abgeschlossene, zusammenhängen-

de Untergruppe, die K enthält, so zeigen wir, dass auch die Wirkung von K auf G/H durch Linksmultiplikation

äquivariant formal ist. Letztere Aussage ist äquivalent zum Hauptresultat in [6], wird hier aber mit anderen Mit-

teln bewiesen, nämlich durch Angabe eines algebraischen Modells für die äquivariante Kohomologie gewisser

Wirkungen.
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Abstract

Let G be a compact connected Lie group and K ⊆ G a closed subgroup. We show that the isotropy action ofK on G/K is equivariantly formal and that the space G/K is formal in the sense of rational homotopy theory

whenever K is the identity component of the intersection of the �xed point sets of two distinct involutions onG, so that G/K is a ℤ2 × ℤ2–symmetric space. If K is the identity component of the �xed point set of a single

involution and H ⊆ G is a closed connected subgroup containing K , then we show that the action of K on G/H
by le�–multiplication is equivariantly formal. �e la�er statement is equivalent to the main result of [6], but is

proved by di�erent means, namely by providing an algebraic model for the equivariant cohomology of certain

actions.
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Chapter I.

Introduction

1. Introduction and background

�is thesis is concerned with G–spaces, that is, topological spaces together with a continuous (le�) action of a

�xed (smooth) Lie groupG, and a certain invariant associated with such spaces, their equivariant cohomology. To

motivate its de�nition, consider the problem of assigning to aG–spaceX an invariant that gives the same answer

on any G–space isomorphic to X but yet discerns as many distinct isomorphism classes of G–spaces as possible.

Perhaps among the easiest such invariants that one might come up with (apart from the isomorphism class of X )

is the cohomologyH(X /G) of the orbit space X /G; of course, one might consider arbitrary coe�cient groups, but

here and therea�er we con�ne ourselves to singular real cohomology or to de Rham cohomology if the space

under consideration happens to be a smooth manifold. In any case, it appears to be common understanding

that H(X /G) is a reasonable invariant if the G–action is free, but less well–behaved for actions with non–trivial

isotropy. A frequently given example of an action justifying this last statement is the action of the circle S1 on

the unit sphere S2 by rotation about a �xed axis. �is action has exactly two �xed points, namely the poles of

the rotation axis, and its orbit space is homeomorphic to the closed unit interval, hence has trivial cohomology.

To overcome this di�culty one replacesX by what is now called the Borel construction and usually denotedXG .

Originally introduced in [2], this is the space XG ∶= (EG ×X )/G obtained from a contractible space EG on whichG acts freely (from the right), such as the total space in the universal G–bundle EG → BG over the classifying

space BG. �e action of G on EG × X is the diagonal action, induced by the assignment g.(e, x) = (eg−1, gx) forg ∈ G and (e, x) ∈ EG×X , and the equivariant cohomology then is de�ned asHG (X ) ∶= H(XG ). Note that theG–

action on EG ×X is free. Another indication that HG (X ) is a useful invariant is that it can actually be computed

in many situations: quite generally, if G acts locally freely on a space X , then the map XG → X /G induced by

the quotient map X → X /G yields an isomorphism H(X /G) → HG (X ), cf. [12, Section C.2.1]. On the other

hand,HG (⋅) satis�es the axioms of a generalized cohomology theory with morphisms replaced byG–equivariant

morphisms, so that, for example, an equivariant Mayer–Vietoris sequence is available. In very much the same

way as the Mayer–Vietoris sequence can be used to compute the ordinary cohomology of spheres, its equivariant

counterpart can be utilized to compute the S1–equivariant cohomology of the action on S2 considered above,

e. g. by means of the open cover consisting of the two open sets that one obtains by removing one of the poles

of the rotation axis at a time. �e conclusion now is that HS1(S2) = H(BS1) ⊕ H(BS1) in non–zero degrees,

because for any Lie group G the equivariant cohomology of a single point is given by HG (∗) = H(BG) and S1
acts freely on S2 outside its �xed point set.

�e previous eaxmple can be wri�en more concisely asHS1(S2) = H(BS1)⊗H(S2) (recall that the classifying

space of S1 is ℂP∞, whose cohomology ring is a polynomial algebra in one variable of degree 2), and if one

considers HS1(S2) as a H(BS1)–module via the morphism of rings HS1 (∗)→ HS1(S2) induced by the constant

map S2 → {∗}, then this equality is even valid as H(BS1)–modules, showing that the S1 action on S2 is in fact

equivariantly formal. �is name was coined in [10] for actions of compact connected Lie groupsG on topological

spaces X , although its de�ning property, the collapse of the Serre spectral sequence associated with the �brationX ↪ XG → BG on the second page, was already investigated in [2], mostly for actions of tori and �nite cyclic

groups of prime order. It is also worth pointing out that for a general �bration F ↪ E → B with connected

�ber F and path–connected base B of �nite type the degeneration of the associated Serre spectral sequence at

the E2–term is equivalent to surjectivity of the inclusion induced map H(E) → H(F ). In this situation, F is

traditionally said to be (totally) non–cohomologous to zero in E, see [21, p. 148]. �is shows the equivalence of

the �rst two items in the following list of well–known characterizations of equivariant formality.
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Proposition 1.1. Let G be a compact connected Lie group with maximal torus T and X a connected G–space.

�e following statements are equivalent.

(1) �e G–action on X is equivariantly formal.

(2) Fiber inclusion of the �bration X ↪ XG → BG induces a surjection HG (X )→ H(X ).
(3) �e T–action on X obtained by restriction of the G–action is equivariantly formal.

(4) �e H(BG)–module HG (X ) is free.

(5) We have an equality of total Be�i numbers dimH(X ) = dimH(XT ), where XT
is the �xed point set of

the induced T–action.

Actions on spaces with vanishing odd degree cohomology are equivariantly formal, as are symplectic mani-

folds with a Hamiltonian action [10, �eorem 14.1]. Further examples of equivariantly formal actions are isotropy
actions on symmetric spaces [6] and, more generally, on homogeneous spaces G/K in which the subgroup K is

the connected component of the �xed point set of an arbitrary Lie group automorphism on G, see [8]. Here, the

isotropy action associated with a homogeneous space G/K is the action of K on G/K induced by le� multiplica-

tion, that is, by the assignment (k, gK )↦ kgK for all k ∈ K , gK ∈ G/K . Our main contribution with this thesis

now is that we extend the list of actions which are known to be equivariantly formal by one more item.

In theorem II.1.2 below we will show that the isotropy action associated with G/K is equivariantly formal ifK is the connected component of the common �xed point set of two distinct commuting involutions on G, in

which case G/K is said to be a ℤ2 ×ℤ2–symmetric space, provided that none of the automorphisms is the identity

map. �e proof borrows some ideas from the proof of the main result of [8], which we therefore summarize in

section 2. �e key step is to construct a subgroup H of G which shares a maximal torus with K and for which

the cohomology of G/H is more accessible than that of G/K , as then the isotropy action associated with G/H is

equivariantly formal if and only if so is the isotropy action associated with G/K . Since eventually we want to

be able to give a description of a maximal torus of K in terms of a maximal torus of G, we thus study in section

II.2 the problem of reconstructing a maximal torus of G from a �xed maximal torus S of K . �ere is a general

solution to this problem. Namely, upon �xing a reference torus T which is maximal in G and contains S, one

�nds that the complexi�cation of the Lie algebra of the centralizer of S in G, which abstractly is the union of

all maximal tori of G containing S, is the direct sum of the complexi�cation tℂ of t and the weight spaces of all

gℂ–roots that vanish on s. While it is known that no such root exists if G/K is a symmetric space, certain gℂ–

roots might (and in general will) restrict to zero on s if G/K is ℤ2 × ℤ2–symmetric, even if the automorphisms

de�ning K are both inner. Fortunately, however, the set of all such roots is strongly orthogonal, meaning that the

sum of two elements of that set is not a root (see [16, p. 396]), and already sets of orthogonal roots in irreducible

root systems can be classi�ed up to application of a Weyl group element. �is we have done in section II.4.

What makes this classi�cation particularly useful is that in the present situation the maximal torus S of K is

the intersection of the kernels of all roots vanishing on s and the �xed point set on T of one of the automorphisms

de�ning K . All of this data can be formulated in terms of the root system of gℂ and the list of possible sets of

roots vanishing on s is further constrained by the requirement that the automorphisms de�ning K be involutive.

At this point, one could thus go through the list of all possible candidates for S and verify that the subalgebraS acts in an equivariantly formal fashion on G/S. We proceed di�erently and show that we may sequentially

modify the automorphisms de�ning K so as to almost always assume that one of them is an inner automorphism

and that the semisimple part of the �xed point set of this inner automorphism realizes a subdiagram of the

Dynkin diagram of gℂ. Homogeneous spaces arising from such subgroups have tractable cohomology, which

we determine in section II.5. Building on these results, in section II.6 we �nally traverse the list of simple Lie

groups, determine in each case the desired subgroup H , and show that the isotropy action of H on G/H is

equivariantly formal.

Our second contribution, which actually is equivalent to the main theorem of [6], is theorem III.5.10. �e

statement here is that for every compact connected Lie group G and the connected component K of the �xed
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point set of any involution on G the action of K on G/H by le�–multiplication is equivariantly formal wheneverH is a closed connected subgroup of G that contains K . Of course, the novelty is not the statement itself, but

rather its proof, as it relies on an algebraic model for the equivariant cohomology of the K–action onG/H which

is solely built out of the Lie algebras of G, H , and K , and the inclusions of the la�er two into the former. We note

that such a model has been realized only very recently in [4, Sect. 3.1] using methods from rational homotopy

theory, while our model is established by quite elementary means using the Cartan model for equivariant coho-

mology. �e drawback of our method is that it only captures the Ak–module structure of HK (G/H ), Ak ⊆ S(k∗)
the space of k–invariant polynomials on k∗, whereas the model given in [4] is isomorphic to HK (G/H ) via an

isomorphism of Ak–algebras. To explain this de�ciency, consider an action of a compact connected Lie group G
on a smooth manifold M . �e basic observation we exploit to construct our model is that there is a sequence of

vector subspaces Ω(M)G , ig Ω(M)G , (ig)2 Ω(M)G , … whose sum is stable under the di�erential on Ω(M); here,Ω(M)G is the space of G–invariant forms on M and ig denotes the image of the operator i ∶ g → End(Ω(M)),X ↦ iX , contracting a form with the vector �eld induced by X ∈ g. �is leads to an additive, quasi–isomorphic

model of Ω(M) and hence to a model of HG (M) which is isomorphic as an Ag–module.

Despite the lack of a ring structure our proof of theorem III.5.10, in contrast to the original proof in [6], does

not rely on any classi�cation result. Again, it has to be noted that a classi�cation–free proof of the main theorem

of [6] and even of [8, �eorem 1.1] was already achieved in [4, �eorem 7.8]. However, the proof presented in

[4] uses K–theory and relies on a reduction to the case when G is simple, while our proof works equally well for

simple and non– simple Lie groups and only uses the decomposition of g into the eigenspaces of the involution

de�ning K .

2. Previous results

Starting with this section we will almost exclusively consider isotropy actions on homogeneous spaces and be

concerned with the question when such an action is equivariantly formal. It thus seems appropriate to make the

following de�nition: given a compact connected Lie group G and a closed connected subgroup K , we say that

the pair (G, K ) is equivariantly formal if the action ofK onG/K by le�–multiplication is equivariantly formal; we

also say that (G, K ) is formal or a Cartan pair if the homogeneous space G/K is formal in the sense of rational

homotopy theory, which means that there exist commutative di�erential graded ℝ–algebras A1,… , An and a

chain of morphisms Ω(G/K ) → A1 ← A2 → … → An ← H(G/K ), each of which induces an isomorphism

on the level of cohomology. While this de�nition is valid for arbitrary (connected) manifolds, not just G/K , we

prefer to use the following equivalent characterization of formality which is available in this particular situation:

we recall from [11] that the space Ω(g)g of g–invariant forms on g is an exterior algebra over an oddly graded

subspace Pg ⊆ Ω(g)g of dimension rank g, called primitive space of g, and that the Samelson subspace P of the

pair (g, k) is the graded subspace of Pg whose elements, considered as elements of H(g), are contained in the

image of the inclusion induced map Ω(g, k) → Ω(g). �en we have dim P ≤ rank g − rank k, cf. [11, �eorem

V, sect. 10.4], and the pair (G, K ) is formal if and only if the previous inequality is actually an equality; see [11,

�eorem VIII, sect. 10.4] for this and various other reformulations of formality.

�ese preliminary notions being introduced, we brie�y summarize the proof of the main result in [8] and

show how [8] is related to [7].

�eorem 2.1 ([8, �eorem 1.1]). Let G be a compact connected Lie group and K ⊆ G the identity component

of the �xed point set of an automorphism on G. �en the pair (G, K ) is (equivariantly) formal.

Note that according to [4, �eorem A] an equivariantly formal pair (G, K ) with both G and K connected is

necessarily formal as well. �at formality of a pair (G, K ) does not necessarily enforce equivariant formality of(G, K ) is shown in [8, Example 3.7].

�e proof of theorem 2.1 given in [8] can be divided into two major steps: the �rst step is to show that it

su�ces to consider pairs (G, K ) satisfying the assumptions of theorem 2.1 and for which G is simple. In the
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second step one actually proves theorem 2.1 for simple groups G. Both steps crucially rely on the following

general principle.

�eorem 2.2 ([4, �eorem 2.2]). LetK andH be equal rank closed connected subgroups of a compact connected

Lie group G and such that H ⊆ K . �en (G, K ) is equivariantly formal if and only if so is (G,H ).
A proof of theorem 2.2 is also contained in [8, Proposition 3.5] under the additional hypothesis that the

pairs (G, K ) and (G,H ) are formal. Since by [22, p. 212] the pair (G, K ) is formal if and only if so is (G,H ), it

follows from [4, �eorem A] that this seemingly more restrictive se�ing is actually equivalent to the general

situation considered in theorem 2.2; the proof of the �rst item of [8, Proposition 3.5], which essentially states

that formality of (G, K ) is equivalent to that of (G,H ), is erroneous though
1
.

�e most important consequence of theorem 2.2 is that whenever H and K are closed connected subgroups of

a compact connected Lie group G and T is a maximal torus of bothH and K , then the pair (G, K ) is equivariantly

formal if and only if (G,H ) is equivariantly formal, because this property is satis�ed by either one of the pairs

if and only if it is satis�ed by the pair (G, T ). In this way one can reduce the question of equivariant formality

of pairs (G, K ) as in theorem 2.1 and with G simple to pairs for which K is the identity component of the �xed

point set of a �nite–order automorphism. �e homogeneous space G/K arising from such a pair (G, K ) is called

a k–symmetric space (k ≥ 0 the order of the automorphism de�ning K ) or generalized symmetric space, and the

question whether or not (G, K ) is equivariantly formal was already answered a�rmatively in [7]. In fact, by

[7, Proposition 3.7] K shares a maximal torus with a subgroup H dubbed “folded subgroup” in [7], because its

Dynkin diagram is obtained from the Dynkin diagram of G by a process commonly called folding, and it was

observed in [7, �eorem 5.5] that H is (totally) non–cohomologous to zero in G, that is, the �ber inclusion in the

�bration H ↪ G → G/H induces a surjection in cohomology. �at (G,H ) is formal then is a classical result

(cf. [11, Corollary I, sect. 10.19]) and equivariant formality follows from

Proposition 2.3 ([7, Proposition 2.6]). LetG be a compact connected Lie group, K a closed connected subgroup.

If K is totally non–cohomologous to zero in G, then (G, K ) is equivariantly formal.

�e question of (equivariant) formality being se�led for pairs in which the ambient group is simple, we

return to the general situation considered in theorem 2.1. One now observes that whenever (G, K ) and (G′, K ′)
are two pairs of compact and connected Lie groups such that there is an isomorphism of Lie algebra pairs(g, k)→ (g′, k′), then (G, K ) is (equivariantly) formal if and only if so is (G′, K ′), cf. [7, Corollary 2.4]. �us, we

call a Lie algebra pair (u0, h0) equivariantly formal if there exists a compact connected Lie group U and a closed

connected subgroup H such that (U , H ) is equivariantly formal and (u, h) is isomorphic to (u0, h0), for then any

other compact connected Lie group pair with matching Lie algebras is equivariantly formal as well. Passing to

the level of Lie algebras, we denote by � the automorphism on g whose �xed point set is k. �en g decomposes

as a direct sum of �–invariant subalgebras g1,… , gn which are minimal in the sense that none of them contains

a non–trivial proper �–invariant subalgebra, k decomposes accordingly as the direct sum of the subalgebras

g1 ∩ k,… , gn ∩ k, and it only remains to check that each of the pairs (gi , gi ∩ k) is (equivariantly) formal. �is is

indeed the case: the pair (gi , gi ∩ k) is isomorphic to a Lie algebra pair (u ⊕ … ⊕ u,Δ(f)), where u is a compact

simple Lie algebra and Δ(f) is the diagonal embedding of the �xed point set f of an automorphism on u, andΔ(u) is totally non–cohomologous to zero in g; these two facts together imply that (gi , gi ∩ k) is (equivariantly)

formal, see [8, Section 5] for more details.

1
Namely, instead of the displayed equation in the proof of the �rst part of [8, Proposition 3.5] one has to consider an equation of the form� (!)|t = ∑i fi |t ⋅ gi with fi polynomials in the image of the transgression and gi non–constant polynomials invariant under the Weyl

group of H . Averaging both sides over the Weyl group of K gives the desired conclusion.
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Chapter II.ℤ2 × ℤ2–symmetric spaces

1. ℤ2 × ℤ2–symmetric spaces

�ere is yet another generalization of symmetric spaces that also incorporates the notion of k–symmetric spaces,

the so–called Γ–symmetric spaces introduced in [19].

De�nition 1.1. Let Γ be a �nite Abelian group, G a connected Lie group, and K ⊆ G a closed subgroup. �e

homogeneous space G/K is called Γ–symmetric if there exists an injective group homomorphism Γ ↪ Aut(G)
such that (GΓ)0 ⊆ K ⊆ GΓ, where GΓ is the common �xed point set of the automorphisms Γ ⊆ Aut(G).

Since every �nite Abelian group is a product of cyclic groups, the above de�nition can be rephrased by saying

that a homogeneous space G/K with G connected and K ⊆ G closed is Γ = ℤk1 × … × ℤk� –symmetric if there

exist � distinct commuting automorphisms �1,… , �� of G, with �i of order ki , such that(G�1 ∩ … ∩ G�� )0 ⊆ K ⊆ (G�1 ∩ … ∩ G�� ).
�eorem 1.2. Let G be a compact connected Lie group, �1 and �2 two involutions on G, and suppose that G/K
is a ℤ2 × ℤ2–symmetric space, where K = (G�1 ∩ G�2 )0. �en the pair (G, K ) is (equivariantly) formal.

We note that the classi�cation ofℤ2×ℤ2–symmetric spacesG/K withG a simple Lie group was achieved in [1]

and [17], but while we do make use of the classi�cation of simple Lie algebras and �nite–order automorphisms

thereon, our proof of theorem 1.2 does not rely on the classi�cation of ℤ2 × ℤ2–symmetric spaces.

Recall (cf. [14, p. 130]) that a Lie algebra g is compact, if so is the connected subgroup of Aut(g) with Lie

algebra {adX |X ∈ g}. According to [14, Corollary 6.7, chap. II] this is the case if and only if there is a compact

Lie group with Lie algebra (isomorphic to) g. If g is compact and semisimple, then every connected Lie group

with Lie algebra g is compact (see [14, �eorem 6.9, chap. II]), and we call a subalgebra h ⊆ g compact, if the

connected subgroup H ⊆ G with Lie algebra h is compact, where G is the simply–connected Lie group with Lie

algebra g. For the sequel and for the proof of theorem 1.2 it will be convienent to introduce the following relation

on the set of all compact subalgebras of a compact semisimple Lie algebra g: two such subalgebras h, k ⊆ g are

related, if there exists a sequence of compact subalgebras m0,… ,mk+1 of g such that m0 = h, mk+1 = k and if

for all i = 0,… , k the subalgebras mi and mi+1 share a common maximal torus, that is, if there exists a maximal

torus s ⊆ mi which also is maximal torus of mi+1. �is de�nes an equivalence relation and we denote the

equivalence class of a subalgebra k by [k]f . Note that if k ⊆ g is a compact subalgebra, then the pair (g, k) is

(equivariantly) formal if and only if there exists a subalgebra h ∈ [k]f such that (g, h) is so. Now theorem 1.2 will

be a consequence of

�eorem 1.3. In addition to the hypotheses of theorem 1.2 assume thatG is simple. �en there exists a compact

subalgebra h ∈ [k]f which is totally non–cohomologous to zero in g.

Proof of theorem 1.2 using theorem 1.3. Let [g, g] = g1 ⊕ … ⊕ gm be the decomposition of the semisimple

part of g into its simple ideals and consider the subgroup Γ = {idg, �1, �2, �1�2} inside the group of Lie algebra

automorphisms of g. It is isomorphic toℤ2×ℤ2 and acts naturally on  ∶= {g1,… , gm}. Moreover, as was already

observed in [8, Section 5], it will su�ce to check that for each i the pair (m,m ∩ k), where m = ∑∈Γ  (gi), is

(equivariantly) formal.
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Set h ∶= gi and choose representatives 1Γh,… , pΓh for each class in Γ/Γh, where Γh is the isotropy subgroup

at h of the action of Γ on , p = |Γ/Γh|, and 1 = idg. �en an isomorphism of Lie algebras is given by the mapΦ∶ h ⊕… ⊕ h → m, (X1,… , Xp)↦ 1(X1) + … + p(Xp),
because s(h) and t (h) are distinct ideals of [g, g] for s ≠ t and m = ⨁ps=1 s(h). Moreover, if f ⊆ h is the common

�xed point set of all elements in Γh, then Φ maps Δ(f), the diagonal embedding of f, isomorphically onto m ∩ k:
in fact, any element  ∈ Γ permutes Γ/Γh, so there exist a permutation � on {1,… , p} and elements  ′s ∈ Γh for

each s such that t = � (t) ′t for all t . �en we have, for all X ∈ f:

 (Φ(X,… , X )) = p∑s=1 s(X ) = p∑s=1 � (s)(X ) = Φ(X,… , X ).
To prove the converse inclusion, note that if Φ(X1,… , Xp) is �xed by some i , then Xi = X1, because we chose1 = id and because ij (Xj ) ∈ h only holds if i = j. Hence, if Φ(X1,… , Xp) is �xed by all elements of Γ, thenX1 = X2 = … = Xp and also X1 ∈ f, because every  ∈ Γh leaves h invariant.

�us, it will su�ce to check that (⨁ps=1 h,Δ(f)) is (equivariantly) formal. But an orbit of Γ is either of length1, 2, or 4, and if p = 1, then f is just the common �xed point set of �1 and �2, whence the pair in question is

(equivariantly) formal by theorem 1.3. If p = 2, then Γh contains one non–trivial element � , so f = h� is the �xed

point set of an involution, and it was observed in [8, Section 5] that (h ⊕ h,Δ(f)) is (equivariantly) formal in this

case as well: indeed, if we choose n ∈ [f]f to be totally non–cohomologous to zero in h, which is possible by [8,

Section 4] or [7, �eorem 5.5], then Δ(n) is totally non–cohomologous to zero in h⊕h as well and Δ(n) ∈ [Δ(f)]f .
Finally, if p = 4, then Γh is trivial, whence f = h. As is well–known, Δ(h) is totally non–cohomologous to zero

in h ⊕ h ⊕ h ⊕ h.

2. Preliminaries

Let G be a compact connected Lie group and � a �nite–order automorphism on G. It follows from [14, Lemma

5.3, chap. X], that the centralizer Zg (s) in g of any maximal torus s of g� is a maximal torus of g, and hence the

unique maximal torus of g containing s. �us, if �1,… , �� are commuting automorphisms of G, then there is a

maximal torus of g which is invariant for all �i , i = 1,… , � . In fact, put ��+1 = idG and suppose that for some i,1 ≤ i ≤ � , ti is a maximal torus of ki , where

ki ∶= g�i ∩ … ∩ g��+1 ,
and that ti is invariant under �1,… , ��+1; such a torus exists for i = 1, because k1 is the common �xed point

set of �1,… , �� , whence any maximal torus of k1 is �xed by each �j . Since all �j commute, �i then restricts to

a �nite–order automorphism �i ∶ ki+1 → ki+1 with �xed point set ki . As ki+1 is the common �xed point set of�i+1,… , �� and thus the Lie algebra of a compact Lie group, we conclude that ti+1 = Zki+1 (ti) is a maximal torus

of ki+1. By de�nition, ti+1 is �xed by �i+1,… , �� , and if j ≤ i, then �j (ti+1) is a maximal torus of ki+1 containing

ti , hence must be equal to ti+1. Continuing in this way, we eventually obtain a maximal torus t�+1 of k�+1 = g

with �j (t�+1) = t�+1 for all j = 1,… , � .

Proposition 2.1. Let G be a compact connected Lie group, a ⊆ g an Abelian subalgebra, and t a maximal torus

of g containing a. Denote by Δ ⊆ (tℂ)∗ the set of roots with respect to the Cartan subalgebra tℂ of gℂ and byΓ ⊆ Δ the set of roots vanishing on a. �en, as a vector space,Ngℂ (a) = Zgℂ (a) = tℂ ⊕ ⨁�∈Γ gℂ� .
Proof. �at tℂ is contained in Zgℂ (a) is true because t is Abelian. Now choose � ∈ Γ as well as X ∈ gℂ±� . By
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de�nition, for every Y ∈ a: [Y , X ] = ±�(Y )X = 0,
hence gℂ±� is contained in Zgℂ (a). Conversely, let N ∈ Ngℂ (a), and write

N = X0 + ∑�∈ΔX� ,
where X0 ∈ tℂ and X� ∈ gℂ� . For Y ∈ a we have

tℂ ⊇ a ∋ [Y , N ] = ∑�∈Δ �(Y )X� ∈ ⨁�∈Δ gℂ� ,
which is only possible if �(Y )X� = 0 for all � ∈ Δ. Hence, if X� ≠ 0, then a ⊆ ker � and � ∈ Γ. We have shown:

tℂ ⊕ ⨁�∈Γ gℂ� ⊆ Zg(a) ⊆ Ng(a) ⊆ tℂ ⊕ ⨁�∈Γ0 gℂ� .
For the remainder of this section we �x a compact connected Lie group G, two commuting involutions �1 and�2 on G (not necessarily di�erent), and an Ad–invariant negative de�nite inner product ⟨⋅, ⋅⟩ on g for which �1

and �2 are isometries. Note that any negative de�nite Ad–invariant inner product (⋅, ⋅) on g gives rise to such

an inner product: just take (⋅, ⋅) + � ∗1(⋅, ⋅) + � ∗2(⋅, ⋅) + (�1�2)∗(⋅, ⋅).
Moreover, we put K1 ∶= (G�1 )0, K2 ∶= (G�2 )0, and choose a maximal torus S ⊆ (G�1 ∩ G�2 )0. According to our

previous observations, T1 = ZK1 (S) then is a maximal torus in K1 and T ∶= ZG (T1) is a maximal torus in G. LetΔ be the gℂ–roots with respect to tℂ, Δ+ a choice of positive roots, Γ ⊆ Δ the set of roots vanishing on s, andΓ+ ∶= Γ ∩ Δ+. We also set �� ∶= �◦� whenever � is a root and � is an automorphism on g leaving t invariant.

Proposition 2.2. Let g = k1 ⊕ p1 be the decomposition of g into the 1– and (−1)–eigenspaces of �1. �en

(1) the root space gℂ� is contained in pℂ1 for all � ∈ Γ;

(2) if � ∈ Γ, then �1� = � and

(3) �2� = −� ;

(4) any two roots �, � ∈ Γ are strongly orthogonal, that is, neither � + � nor � − � is a root;

(5) denoting for a root � by H� ∈ it the element with ⟨H� , ⋅ ⟩ = � , we have

tℂ = ⋂�∈Γ+ ker � ⊕ ⨁�∈Γ+ ℂH� ,
and any two summands in this decomposition are mutually orthogonal with respect to ⟨⋅, ⋅⟩.

Proof.

(1) Pick � ∈ Γ and note that �1� still vanishes on s. �us, the space U ∶= gℂ� + gℂ�1� is �1–invariant, and so

decomposes as the direct sum U = (U ∩ kℂ1 ) ⊕ (U ∩ pℂ1 ). Now proposition 2.1 implies thatU ∩ kℂ1 ⊆ Zgℂ (s) ∩ kℂ1 = Zkℂ1 (s) = tℂ1 ⊆ tℂ,
and since U ∩ tℂ = {0}, it follows that U ∩ kℂ1 = {0} as well. �us, U ⊆ pℂ1 .
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(2) We have just seen that given � ∈ Γ the root space gℂ� is contained in pℂ1 . So, if we pick E� ∈ gℂ� andE−� ∈ gℂ−� , then [E� , E−� ] ∈ kℂ1 . We may assume that ⟨E� , E−�⟩ = 1, and then H� = [E� , E−� ] for the

element H� ∈ it with ⟨H� , ⋅ ⟩ = � . �erefore,� = ⟨H� , ⋅ ⟩ = ⟨�1(H� ), ⋅ ⟩◦�1 = ⟨H� , ⋅ ⟩◦�1 = �1�.
(3) According to the previous item, H� ∈ kℂ1 , and since �1 and �2 commute, �2(H� ) must be contained in kℂ1

as well. �erefore, H� + �2(H� ) ∈ tℂ ∩ kℂ1 ∩ kℂ2 = sℂ.
Now for Y ∈ sℂ we compute ⟨Y , H� + �2(H� )⟩ = 2⟨Y , H�⟩ = 2�(Y ) = 0.
But ⟨ ⋅, ⋅ ⟩ is non–degenerate on sℂ, hence we must have H� + �2(H� ) = 0, which is equivalent to saying

that �2� = −� , because �2 is an isometry of ⟨ ⋅, ⋅ ⟩.

(4) Let �, � ∈ Γ and suppose that � + � was a root for a contradiction. We could choose non–zero root vectorsX� ∈ gℂ� and X� ∈ gℂ� , and then [X� , X� ] ∈ gℂ�+� would be a non–zero root vector as well. But Zgℂ (s) is a

Lie algebra and X� , X� are elements of Zgℂ (s), so according to the �rst item

[X� , X� ] ∈ kℂ1 ∩ Zgℂ (s) = tℂ1 ⊆ tℂ,
which is impossible. �erefore, � + � is not a root.

(5) Let �, � ∈ Γ+ be two distinct roots. It is well known (cf. [16, Proposition 2.48, sect. II.5]) that the �–string

containing � , that is, the subset of Δ ∪ {0} consisting of elements � + n� with n ∈ ℤ, has no gaps and that

the integers p, q ≥ 0 such that (� + n� ∈ Δ ∪ {0}) ⟺ (−p ≤ n ≤ q) satisfy p − q = 2⟨�, �⟩/⟨�, �⟩. Since

neither � + � nor � − � is a root, we hence must have0 = ⟨�, �⟩ = ⟨H� , H�⟩.
In particular, the elements H� , � ∈ Γ+, are linearly independent. Now letU = ⨁�∈Γ+ ℂH� and U ′ = ⋂�∈Γ+ ker �.
�en the equation �(Y ) = ⟨H� , Y⟩ for Y ∈ tℂ shows that U ′ = tℂ ∩ U⟂

, and so tℂ = U ⊕ U ′
.

3. Automorphisms

We continue to use the notation of the previous section. Given � ∈ Δ, denote by sH� ∶ it → it the re�ection

along the hyperplane orthogonal to H� , i.e. the map

sH� (X ) = X − 2⟨H� , X⟩⟨H� , H�⟩ .
Since the elements of Γ are mutually orthogonal, we immediately have

Proposition 3.1. �e members of {sH� | � ∈ Γ+} commute pairwise.

Note that proposition 2.2 suggests that �2 acts as a product of hyperplane re�ections on a certain subspace

of t. �is subspace will be a proper subspace in general, but if �2 is an inner autormophism, then it actually is
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all of t. We shall show that under some mild assumptions on �1 the maximal torus s of k1 ∩ k2 can in fact be

recovered from Γ.

Proposition 3.2. Suppose that �2 = cn◦� holds for some element n ∈ G and some automorphism � on G that

�xes t1 pointwise. �en

(1) the element n is contained in ZG (S) ∩ NG (T1),
(2) the maximal torus t is �–invariant,

(3) �2|it = ∏�∈Γ+ (sH� )◦(� |it).
Proof.

(1) By assumption, T1 is contained in the 1–eigenspace of � and �2 = cn◦� . Since S is contained in the1–eigenspace of �2 and T1 is �2–invariant, the same statement is true with cn in place of �2.
(2) Just note that �(T ) is a maximal torus of G containing T1, so �(T ) = T .

(3) We already observed that n centralizes S and it is a well–known fact (see [16, Corollary 4.51, sect. IV.5])

that centralizers of tori are connected, so, according to proposition 2.1, we may express n as n = exp(X ),
where X = X0+XΓ for certain elements X0 ∈ t and XΓ ∈ ⨁�∈Γ gℂ� . In particular, if Y ∈ L, L ∶= ⋂ �∈Γ+ ker � ,

then [Y , X ] = 0. �us, Adn �xes L ∩ it pointwise, as do the elements sH� with � ∈ Γ+. On the other hand,

if � ∈ Γ+ is arbitrary, then H� ⊆ it1 by proposition 2.2, so

Adn(H� ) = �2(H� ) = −H� = ( ∏�∈Γ+ sH�) (H� ).
�erefore, Adn restricts to ∏�∈Γ+ sH� on it, whence the �–invariance of t implies the claim.

Corollary 3.3. Suppose that �2 = cn◦� and t1 ⊆ g� , and put L ∶= ⋂ �∈Γ+ ker � . �enit ∩ L = (is) ⊕ i(t ∩ p1), it1 = (is) ⊕ ⨁�∈Γ+ ℝH� , and rank(k1 ∩ k2) = rank(k1) − |Γ+|.
Proof. We know from proposition 2.2 that it = (it ∩ L) ⊕⨁�∈Γ+ ℝH� is a decomposition into two �1–invariant

subspaces and that ⨁�∈Γ+ ℝH� is entirely contained in it1. �us, we must have it ∩ L = (it1 ∩ L) ⊕ i(t ∩ p1) andit1 = (it1 ∩ L) ⊕⨁�∈Γ+ ℝH� . Now recall that (it1)�2 = is, while (it1)�2 = it1 ∩ L holds by proposition 3.2.

If g is simple the condition that �2 is a composition of an inner automorphism and an automorphism �xing t1
is not too restrictive: in fact, we will see later that if �1 is an outer automorphisms, then, except for Lie algebras

of type D4, we may assume that �1 = ct ◦� and �2 = cn◦� or that �1 = ct ◦� and �2 = cn for some involution� ∶ G → G and elements t ∈ T1, n ∈ NH (T1) ⋅ T , where H = (G� )0.
�e following propositions state that in this case we may trade t ∈ T1 for some element t′ ∈ T to �rst assume

that n ∈ H and that �2 = cn◦� ; a�erwards we may replace �1 by an inner automorphism.

Proposition 3.4. Suppose that �1 = ct ◦� and �2 = cn◦� , where � is an involution, � = � or � = idG , t ∈ T1, andn ∈ NH (T1) ⋅ T , with H = (G� )0. �en there exist elements t′ ∈ T and ℎ ∈ NH (T1) such that ct′◦� and cℎ◦� are

commuting involutions whose common �xed point set has s as a maximal torus.

Proof. First suppose that � = � . �en we choose q ∈ exp(t ∩ p1), ℎ ∈ NH (T1) with n = ℎq and set L ∶=⋂�∈Γ+ ker � . Note that t ∩ L decomposes, by corollary 3.3, as t ∩ L = s ⊕ (t ∩ p1) and that the elements of t ∩ L are

�xed by Adℎ, because �1|t = � |t and hence proposition 3.2 applies. So if we pick Y ∈ t ∩ p1 with q = exp(Y ) and

put r = exp(Y /2), then cr−1◦�2◦cr is an involution, q = r2, and � (r) = r−1. �erefore, we havecr−1◦�2◦cr = cℎqr−1◦� ◦cr = cℎqr−1◦cr−1◦� = cℎ◦� ;
9



similarly, cr−1◦�1◦cr = cq−1t ◦� . �us, cq−1t ◦� and cℎ◦� are two commuting involutions. Since their common �xed

point subalgebra is conjugate to k1 ∩ k2 via Adr−1 and Adr−1 �xes s, the claim follows.

Now assume that � = idG . Choose a decomposition n = ℎq as before and use corollary 3.3 to additionally

�nd s ∈ exp(s), a ∈ exp(⨁�∈Γ+ ℝ(iH� )) with t = sa. We will show that � ∶= cns◦� is an involution, that �
commutes with �1, and that s is a maximal torus of g�1 ∩ g� . �e previous case then implies the claim, becausens ∈ NH (T1) ⋅ T . To begin with, we assert that (cs)2 = (cq)2; indeed, cℎ and cn coincide on t, whence we havecℎ(a) = a−1 and cℎ(s) = s (cf. proposition 3.2), so this follows fromcn = �1◦cn◦�1 = ct ◦c� (n)◦ct = cs◦ca◦cℎ◦cq−1◦ct = cℎ◦cs◦ca−1◦cq−1◦ct
together with the commutativity of q, s, and a. Also note that ℎ, q, and s commute with each other and that H
contains s. �ese observations imply that � is an involution commuting with �1, since�2 = cns◦� ◦cns◦� = cns◦cℎq−1s = (cℎ)2◦(cs)2 = (cn)2 = id
and since cs , � , and cn commute with �1. Finally, note that any maximal torus of g�1 ∩g� containing s is a subset

of Zg(s) and that by propositions 2.1 and 2.2 �1 only �xes t1 on Zg(s). �en s must be a maximal torus of g�1 ∩g� ,

as tℂ and ⨁�∈Γ gℂ� are �–invariant subspaces and �|t1 = �2|t1 only �xes s.

Proposition 3.5. Suppose that �1 = ct ◦� and that �2 = cℎ◦� , where � is an involution, t is contained in T , andℎ is an element of NH (T1), with H = (G� )0. Let Πodd ⊆ Π be the set of all roots � ∈ Π for which the integer∑�∈Γ+ 2⟨�, �⟩/⟨�, �⟩ is odd. �en � (�) ≠ � for all � ∈ Πodd.

Lemma 3.6. Under the assumptions of proposition 3.5 we have gℂ� ⊆ hℂ for each root � ∈ Γ.

Proof. Observe that the requirements of proposition 3.2 are met, so ℎ is an element of ZG (S) ∩ H = ZH (S).
Since ZH (S) is connected, we may express ℎ as ℎ = exp(Z ) for some element Z ∈ Zh(s) = Zg(s) ∩ h, sayZ = Z0 +∑�∈Γ+ Z� , with Z0 ∈ t and Z� ∈ gℂ� ⊕ gℂ−� for each root � ∈ Γ+. Recall that �1 coincides with � on t,

because ct is the identity on t, so as �1 �xes each root � ∈ Γ+, � �xes each element of Γ+ too. �erefore, gℂ� and

gℂ−� are eigenspaces of � , whence Z� necessarily vanishes if gℂ� ⊈ hℂ. However, if � ∈ Γ+ was a root with Z� = 0,
then, as the elements of Γ are strongly orthogonal, we also would have [Z, H� ] = 0, and hence Adℎ(H� ) = H� .

But this is impossible, because we know from proposition 3.2 that Adℎ(H� ) = −H� . Consequently, Z� ≠ 0 and

gℂ� ⊆ hℂ.

Proof of proposition 3.5. �e decomposition t = s⊕s′, with s′ = ⨁�∈Γ+ ℝ(iH� )⊕(t∩p1) yields a decompositionk = k+k− for every element k ∈ T , where k+ ∈ exp(s) and k− ∈ exp(s′). Moreover, �2 restricts to id on s and to(−id) on s′, so the condition that ck◦� commutes with �2 can be rephrased asck◦� = �2◦ck◦� ◦(�2)−1 ⟺ ck◦� = c�2(k)◦(cℎ)2◦� ⟺ (ck− )2 = (cℎ)2;
but cℎ is an involution, because cℎ commutes with � and �2 is an involution, so ck◦� commutes with �2 if and

only if ck− is an involution. In particular, if we let t = t+t−, then ct− is an involution.

With this characterization at hand we can show that no root in Π
odd

is �xed by � : let us further decomposet− as t− = qr , where q ∈ exp(t ∩ p1), r = exp(Z ), and Z = ∑�∈Γ+ t� i�/⟨�, �⟩H� for certain real numbers t� .

Recalling that each element � ∈ Γ is contained in the (−1)–eigenspace of �1, but in the �xed point set of � , and

that s ⊕ (t ∩ p1) is the common kernel of the elements of Γ on t, we �nd that−idgℂ� = �1|gℂ� = Adr |gℂ� = ei�t� id;
so, (t� − 1) ∈ 2ℤ. On the other hand, if � ∈ Π with � (�) = � is arbitrary, then Adq restricts to ± id on gℂ� , because
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t ∩ p1 is the (−1)–eigenspace of � on t. Combined with the fact that ct− is an involution this gives

idgℂ� = (Adqr ||gℂ� )2 = (Adr |gℂ� )2 = (−1)∑�∈Γ+ 2⟨�,�⟩⟨�,�⟩ ⋅ id,
because 2⟨�, �⟩/⟨�, �⟩ is an integer and (t� − 1) is an even number. �erefore, � ∈ Π

odd
.

Corollary 3.7. In addition to the hypotheses of proposition 3.5 assume that g is semisimple. LetΠeven = Π⧵Πodd

and choose, for each � ∈ Π
odd

, �� ∈ {±1} with �� = −�� (�). �ere exists p ∈ exp(t ∩ p1) such that

(1) Adp is equal to (�� i) ⋅ id on gℂ� and to the identity on gℂ� for all � ∈ Π
odd

, � ∈ Πeven,

(2) the automorphism � = cp exp(X ), where X = ∑�∈Γ+ i�/⟨�, �⟩H� , is an involution, and

(3) �2 commutes with � and s is a maximal torus of g� ∩ g�2 .
Proof. Choose Y ∈ t such that �(Y ) = 0 for all � ∈ Πeven and such that �(Y ) = �� i�/2 for all roots � ∈ Π

odd
; this

is possible, because the restrictions of the elements ofΠ constitute a basis of (it)∗. �en Y is necessarily contained

in t ∩ p1, because �(Y + � (Y )) vanishes for all � by choice of the integers �� , � ∈ Π
odd

. We set p ∶= exp(Y ) and

observe that Adp indeed is equal to (�� i) ⋅ id on gℂ� , if � ∈ Π
odd

, and to id else. �us, for each simple root � ∈ Π
the maps (Adp)2 and (Adexp(X ))2 coincide on gℂ� and are equal to id or (−id), so � = Adp exp(X ) is an involution.

Moreover, � commutes with �2, because �◦�2 = �−1◦�2.
Hence, it remains to show that s is a maximal torus of g� ∩ g�2 , and to this end it su�ces to verify the

maximality of s. However, we already know that the complexi�cation of Zg(s) is the sum of the �1– and �2–
invariant subspaces tℂ and ⨁�∈Γ gℂ� . By construction, Adp equals id on the la�er space, because � (�) = � for� ∈ Γ, while Adexp(X ) is just (−id) by proposition 2.2; hence � only �xes t in Zg(s), and the �xed point set of �2
on t is precisely s, because t1 = t� . �us, only s is �xed by both � and �2 in Zg(s).

4. Normal forms for strongly orthogonal roots

4.1. Abstract normal forms

In the previous sections we learned that for a suitable choice of Cartan subalgebra the set of roots vanishing on

a maximal torus of the joint �xed point subalgebra of two commuting inner involutions is strongly orthogonal

and satis�es a certain involutivity condition. �e purpose of this section is to establish a normal form for all

sets of roots satisfying these properties.

Recall (cf. [16, p. 149]) that an (abstract) root system (V , ⟨⋅, ⋅⟩,Δ) consists of a �nite–dimensional Euclidean

vector space (V , ⟨⋅, ⋅⟩) together with a non–empty set Δ ⊆ V of non–zero vectors such that

(1) V = spanℝ Δ,

(2) for each � ∈ Δ the re�ection

s� ∶ V → V , v ↦ v − 2⟨�, v⟩⟨�, �⟩ �,
maps Δ into itself, and

(3) the number 2⟨�, �⟩/⟨�, �⟩ is an integer whenever � and � are elements of Δ.

A root system Δ is reduced if � ∈ Δ implies that 2� ∉ Δ. It is called reducible if there exists a non–trivial disjoint

decomposition Δ = Δ′ ⊔Δ′′ such that ⟨�′, �′′⟩ = 0 for all �′ ∈ Δ′ and �′′ ∈ Δ′′. If no such decomposition exists,

then Δ is irreducible.

De�nition 4.1. Let Δ be a root system in the Euclidean vector space (V , ⟨⋅, ⋅⟩).
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(1) A pair (U ,Ω) is a root subsystem of Δ if

a) Ω ⊆ Δ is non–empty,

b) U = spanℝ Ω, and

c) s� (Ω) ⊆ Ω for all � ∈ Ω.

(2) �e root subsystem of Δ spanned by S, S ⊆ Δ a non–empty set, is the pair (spanℝS,Δ ∩ spanℤS).

Remark 4.2. Let Δ be a root system.

(1) If (U ,Ω) is a root subsystem of Δ, then (U , ⟨⋅, ⋅⟩|U ×U ,Ω) is a root system. If S ⊆ Δ is a non–empty subset,

then the root subsystem spanned by S is a root subsytem in the sense of de�nition 4.1.

(2) Let (U ,Ω) be a root subsystem of Δ. We can identify the Weyl group W (Ω) of Ω, which by de�nition is a

subgroup of O(U , ⟨⋅, ⋅⟩|U ×U ), with a subgroup W (Ω,Δ) of the Weyl group W (Δ) of Δ, whereW (Ω,Δ) ∶= {w ∈ W (Δ) |w = s�1◦… ◦s�k , �i ∈ Ω} ⊆ O(V , ⟨⋅, ⋅⟩).
In fact, the map p∶ W (Ω,Δ) → W (Ω) restricting an element w ∈ W (Ω,Δ) to U is a homomorphism

of groups. Moreover, if w ∈ W (Ω), say with w = t�1◦… ◦t�k , where �i ∈ Ω and t�i ∶ U → U denotes

re�ection along the hyperplane in U perpendicular to �i , thenp(s�1◦… ◦s�k ) = w;
and if w ∈ ker p, then w = idV , because p(w) = idU and w(v′) = v′ for all v′ ∈ U⟂

by de�nition.

Recall that any choice of positive roots Δ+ in a root system Δ determines a set of simple roots Π ⊆ Δ+, and that

any root � can be uniquely wri�en as � = ∑�∈Πm�� for integers m� of the same sign. �e number ∑�∈Πm� is

commonly referred to as the level of the root � .

Proposition 4.3. Let Δ be a reduced irreducible root system, Δ+ ⊆ Δ a choice of positive roots, and �0 ∈ Δ.

�ere exists a unique root � of maximal level in the orbit W ⋅ �0 of the Weyl group W = W (Δ), and this root

satis�es ⟨�, �⟩ ≥ 0 for all � ∈ Δ+.

Proof. Choose any root � of maximal level in W ⋅ �0 = {w(�0) |w ∈ W }. If � ∈ Δ+ is a root with ⟨�, �⟩ < 0,
then s� (�) is a root having higher level than � and still is contained in W ⋅ �0, which is impossible. �erefore,

we have ⟨�, �⟩ ≥ 0 for any positive root � . In order to prove the uniqueness statement, let Π ⊆ Δ+ be the simple

roots associated with the given choice of positivity and note that � is positive, so we may write� = ∑�∈Πm��,
withm� ∈ ℤ≥0. We claim that each of the integersm� is non–zero. For if this was not the case, then Π = Π′ ∪Π′′
with Π′ = {� |m� = 0} and Π′′ = {� |m� > 0} would be a non–trivial disjoint union. Moreover, for any � ∈ Π′
we would have ⟨�, �⟩ = ∑�∈Π′′m�⟨�, �⟩,
and the right hand side is non–positive, because the inner product of two distinct simple roots already is non–

positive. By what we have just shown, ⟨�, �⟩ ≥ 0, and so ⟨�, �⟩ = 0 and hence ⟨�, �⟩ = 0 would have to

hold for all � ∈ Π′′ and � ∈ Π′. But this is impossible, because we are assuming Δ to be irreducible. Now let ∈ W ⋅ �0 be another root of maximal level. �e same line of reasoning as before also applies to  and shows
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that  = ∑�∈Π n�� for integers n� > 0. In particular, since there is some simple root � ∈ Π with ⟨�, �⟩ > 0, we

also must have ⟨�, ⟩ > 0. �erefore, � −  is either a positive or a negative root (or 0), and since� −  = ∑�∈Π(m� − n� )�,
it follows that (m� − n� )�∈Π is either a sequence of non–negative or non–positive integers. But � and  have

the same level, that is, ∑�∈Πm� = ∑�∈Π n� , and therefore m� = n� for all � ∈ Π.

Let Δ be a reduced irreducible root system and Δ+ a choice of positive roots. A well–known consequence of

the classi�cation of such root systems is that any two simple roots of the same length are contained in the same

Weyl group orbit. On the other hand, every root is contained in the Weyl group orbit of a simple root (see [16,

Proposition 2.62, sect. II.6]), so if L is the length of a root in Δ+, then by proposition 4.3 we may unambiguously

speak of the highest root (with respect to the level) of length L.

Now let Π ⊆ Δ+ be the simple roots and Γ ⊆ Δ a non–empty set of (not necessarily strongly) orthogonal roots

such that Γ = (−Γ). We further suppose that all elements of Γ are of the same length L > 0 and put Γ+ = Γ ∩ Δ+.

We claim that there is a way to describe the possible elements that Γ may contain, up to application of a Weyl

group element. To this end, let us introduce some notation for non–empty subsets A ⊆ Π that we will make

use of in the sequel. Given such a set A we write ΔA to denote the root subsystem of Δ spanned by A and we

put Δ+A = ΔA ∩ Δ+, which is a notion of positivity with simple roots A. Moreover, we call A irreducible if ΔA
is irreducible, and refer to a non–empty subset A′ ⊆ A as an irreducible component of A if A′ is maximal (with

respect to inclusion) among all irreducible subsets of A. Note that A decomposes as A = A1 ∪ … ∪ Ap , where

each Ai is an irreducible component of A and the members of Ai are orthogonal to Aj for all i ≠ j. Finally, if A is

irreducible and admits roots of length L, then we write �(A) to denote the highest root of length L in ΔA (with

respect to Δ+A).

Next, we recursively de�ne a family (i)i=0,…,n of non–empty subsets of (Π) (the power set of Π) as follows.

We put 0 ∶= {Π} and suppose that for some k ≥ 0 the sets 0,… ,k are already de�ned. �en a non–empty

subset A ⊆ Π is contained in k+1 if and only if

(1) ΔA is irreducible and admits roots of length L,

(2) there exists a (possibly empty) set B ⊆ Π whose members are orthogonal to each member of A and a setv(A) ∈ k such that �(v(A))⟂ ∩ v(A) = B ∪ A;
in other words, A is an irreducible component of �(v(A))⟂ ∩ v(A) that admits roots of length L. We put n ∶= k
if no such A exists and call 0,… ,n the normal form tree for (Δ,Δ+) and L.

Remark 4.4. Closely related to the normal form tree construced above is the so–called cascade of strongly

orthogonal roots de�ned in [18, Section 1]: indeed, if A ∈ i for some i > 1, then in the notation of [18] �(A)
is an o�spring of �(v(A)). If A0,… , Ai are such that Ai ∈ i , then {�(A0),… , �(Ai)} is called a chain cascade in

[18].

Proposition 4.5. Any two distinct sets i , j are disjoint and ΔA, ΔA′ are perpendicular for all A, A′ ∈ k
with A ≠ A′. Moreover, for A ∈ k+1 the element v(A) is the only set in k with A ∩ v(A) ≠ ∅.

Remark 4.6. �us, we may de�ne a graph with vertices the elements of 0∪…∪n , where A, A′ are connected

by an edge if and only if A = v(A′). �e resulting graph is a tree, hence the name.

Proof. We �rst show by induction on k = 0,… , n that v(A) is the only set in k intersecting A ∈ k+1 non–

trivially and that A, A′ ∈ k have non–trivial intersection only if A′ = A. �is is immediate if k = 0, because

0 = {Π}, so suppose that the induction hypothesis has been established for some natural number k ≥ 0.
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Choose A, A′ ∈ k+1 arbitrarily and note that by the induction assumption v(A) and v(A′) are the unique sets

in k with A ∩v(A) ≠ ∅ and A′ ∩v(A′) ≠ ∅. Hence, if A ∩A′ is non–empty, then, since A ⊆ v(A) and A′ ⊆ v(A′)
holds by de�nition, also v(A) ∩v(A′) is non–empty, so by the induction assumption we must have v(A) = v(A′).
�e de�ning property of v(A) is that �(v(A))⟂ ∩ v(A) = B ∪ A holds for some subset B ⊆ Π whose members are

orthogonal to each member of A. �erefore,ΔA′ = (ΔA′ ∩ spanℤ(A′ ∩ B)) ∪ (ΔA′ ∩ spanℤ(A′ ∩ A))
is a decomposition into two sets whose members are mutually orthogonal, whence by irreducibility of ΔA′ we

must have ΔA′ ⊆ spanℤ(A∩A′). �us, A′ ∩B is empty and A′ ⊆ A. Exchanging the roles of A and A′ we conclude

that A = A′, so two sets in k+1 intersect non–trivially only if they are equal. To �nish the induction step, just

note that if A ∈ k+2 is arbitrary and B ∈ k+1 intersects A non–trivially, then also v(A) ∩ B ≠ ∅, becauseA ⊆ v(A), so by what we have just shown B = v(A).
Now suppose that A, A′ ∈ k are two distinct sets and let j ≥ 0 be the smallest integer such that vj+1(A) =vj+1(A′). By de�nition we have �(vj+1(A))⟂ ∩ vj+1(A) = B ∪ vj (A) for some set B which is perpendicular tovj (A) and hence intersects vj (A) trivially. Since we just showed that vj (A) intersects vj (A′) trivially as well,

we conclude that vj (A′) must be contained in B. �us, vj (A′) is perpendicular to vj (A), whence A and A′ are

perpendicular too, because A ⊆ vj (A) and A′ ⊆ vj (A′). Finally, suppose that A is contained in k ∩ k+j for

integers k ≥ 0 and j ≥ 1. �en vk (A) ∈ 0 ∩j , whence vk (A) = Π. �is is impossible, however, because each

element of j is a proper subset of Π.

Corollary 4.7. For B ∈ k , and all A ∈ 0 ∪ … ∪k such that A ≠ B we have B ⊆ �(A)⟂.

Proof. If A ∈ k , the statement follows readily from proposition 4.5, so we suppose that A ∈ k−j for somej ≥ 1. If A is di�erent from vj (B), then even vj (B) and A are perpendicular. If A is equal to vj (B), then vj−1(B) ⊆�(A)⟂ holds by de�nition, so B ⊆ vj−1(B) is perpendicular to �(A).
Corollary 4.8. Let B ∈ k . Any w ∈ W (B) permutes the members of {ΔA |A ∈ m}, if m ≤ k.

Proof. Fix some j ≥ 0 and put � ∶= k − j. If A ∈ � is di�erent from vj (B), then A and vj (B) are perpendicular,

whence so are A and B. Since w is a product of re�ections s� with � ∈ B, w hence �xes A and ΔA in this case.

On the other hand, if A = vj (B), but j > 0, let C1,… , Cp ⊆ Π be the irreducible components of �(A)⟂ ∩ A. Note

that Ci is contained in �+1 if and only if ΔCi admits roots of length L, so we may further assume that for somes ≥ 1 the sets C1,… , Cs contain roots of length L, while Cs+1,… , Cp do not, and that vj−1(B) = C1. Now observe

that the root subsystem spanned by �(A)⟂ ∩ A is precisely �(A)⟂ ∩ ΔA. Indeed, any root � ∈ ΔA is a ℤ≥0– orℤ≤0–linear combination of elements in A, so if ⟨�(A), �⟩ = 0, then � must be a linear combination of elements

in �(A)⟂ ∩ A, because ⟨�(A), �⟩ ≥ 0 holds for all � ∈ A by proposition 4.3. Hence, we have�(A)⟂ ∩ ΔA = ΔC1 ∪ … ∪ ΔCp .
Also note that B is perpendicular to �(A), but contained in ΔA, so w leaves �(A)⟂ ∩ΔA invariant. Hence, since w
is an isometry and ΔCi is irreducible, we must have w(ΔCi ) ∈ {ΔC1 ,… ,ΔCp} for each i. Moreover, if ΔCi admits

roots of length L, then so does w(ΔCi ), whence w even permutes the set {ΔC1 ,… ,ΔCs}.

�eorem 4.9. �ere exists a Weyl group element w ∈ W (Δ) such that

(1) w(Γ) ∩ Δ+ ⊆ {�(A) |A ∈ 0 ∪ … ∪n} and

(2) if �(A) is contained in w(Γ) ∩ Δ+, then either A = Π or �(v(A)) is contained in w(Γ).
Lemma 4.10. If � ∈ ΔA, A ∈ k , is perpendicular to �(A), then � ∈ ΔA′ for some irreducible component A′ of�(A)⟂ ∩ A. If in addition � is of length L, then k < n and A′ is contained in k+1.
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Proof. Express � as � = ∑�∈Am�� for integers (m� )�∈A of the same sign. Since ⟨�, �(A)⟩ = 0 holds by

assumption, we conclude that only those coe�cients m� with ⟨�(A), �⟩ = 0 can be non–zero, and since � is a

root, some m� must be non–zero. Hence, �(A)⟂ ∩A is non–empty and �(A)⟂ ∩A = C1 ∪… ∪Cp , where C1,… , Cp
are the irreducible components. �us, if � ∈ Ci for some i and some � with m� ≠ 0, then also � ∈ ΔCi . Moreover,

if � is of length L, then ΔCi admits roots of length L, so Ci ∈ k+1 and k < n.

Proof of theorem 4.9. Put n+1 ∶= ∅ and denote for each k = −1,… , n by �(≤k ) the set {�(A) |A ∈ 0 ∪…∪
k}. We inductively prove that for k = −1,… , n there exists an element w ∈ W (Δ) such that

(1) every element in (w(Γ) ∩ Δ+) ⧵ �(≤k ) is contained in ΔA for some A ∈ k+1 and

(2) �(v(A)) ∈ w(Γ) whenever � ∈ w(Γ) ∩ ΔA for some A ∈ 1 ∪ … ∪k+1.
For k = −1 the set �(≤k ) is empty and 0 = {Π}, so we may take w = id in this case. Now suppose that

the induction hypothesis holds for some number k ≤ n, so there exists w ∈ W (Δ) verifying the two properties

above. In particular, there exist elements A1,… , Ap ∈ k+1 such that each element of Γ′ ∶= (w(Γ) ∩ Δ+) ⧵ �(≤k )
is contained in some ΔA1 ,… ,ΔAp , and we may assume p to be the minimal number of elements required to

satisfy this property. �us, we may choose an element i ∈ Γ′ ∩ ΔAi for each i = 1,… , p. Since ΔAi is reduced

and irreducible, all roots of the same length are contained in one Weyl group orbit, so there exists an elementwi ∈ W (ΔAi ) such that wi(i) is the highest root of ΔAi having length L, that is, wi(i) = �(Ai). Now consider the

element w′ ∶= w1◦… ◦wp . We know from proposition 4.5 that w′ leaves each of the root systems ΔAj invariant,

because each wi is a product of root re�ections s� with � ∈ Ai . �e same reasoning combined with corollary 4.7

shows thatwi �xes �(Aj ) for all i ≠ j and also all roots in �(≤k ). Hence,w′ �xes the elements in �(≤k ), so if we

put w̃ ∶= w′◦w , then the set w̃(Γ)∩Δ+ fully containsw(Γ)∩�(≤k ) and all of the roots �(A1),… , �(Ap). Moreover,

each root � in (w̃(Γ) ∩Δ+) ⧵ �(≤k+1) is contained in some ΔAi , because the same is true for (w′)−1(�) ∈ Γ′. Since

the roots in Γ are pairwise orthogonal, such an � hence is orthogonal to �(Ai), because w′(i) = �(Ai), and

therefore already contained in ΔA for some A ∈ k+2 by lemma 4.10; in particular, no such � exists if k = n − 1.
It remains to verify the second property, so suppose that we are given a positive root � ∈ w̃(Γ) ∩ ΔB for someB ∈ 1 ∪ … ∪k+2. We already know from the induction assumption that either � ∈ �(≤k ) or � ∈ ΔAi must

hold, and if � ∈ �(≤k ), then B must be contained in 1 ∪ … ∪ k by corollary 4.7. Since w′ �xes �(≤k )
pointwise, the induction statement for k shows that �(v(B)) must be contained in w̃(Γ) if � ∈ �(≤k ). If � ∈ ΔAi
for some i and B ∈ k+1−j for some j ≥ 0, then ΔB and Δvj (Ai ) intersect non–trivially, hence B and vj (Ai)must be

equal by proposition 4.5. Moreover, (w′)−1(�) and � both are contained in Δvj (Ai ), because w′ leaves invariantΔAi , so by corollary 4.8 (w′)−1 must leave Δvj (Ai ) and ΔB invariant as well. �erefore, (w′)−1(�) is contained inw(Γ) ∩ ΔB , whence by induction assumption �(v(B)) ∈ �(≤k ) is contained in w(Γ) and also w̃(Γ). �e �nal case

to consider is that � is an element of some ΔAi , but that B ∈ k+2. �en Ai = v(B), and �(Ai) is contained inw̃(Γ) by construction.

4.2. Normal forms for simply laced root systems

Withis this section, we �x a reduced irreducible root system Δ whose roots are all of the same length, a set of

positive roots Δ+ with corresponding simple roots Π, and a non–empty set of strongly orthogonal roots Γ ⊆ Δ.

As before, we also set Γ+ = Γ ∩ Δ+ and we additionally suppose that the integer

p(�) ∶= p(Δ, Γ, �) ∶= ∑�∈Γ+ 2⟨�, �⟩⟨�, �⟩
is even for all roots � . Note that if w ∈ W (Δ) is arbitrary, then p(Δ, w(Γ), �) still is even, because this number is

equal to p(w−1(�)). Hence, we may use theorem 4.9 to assume that Γ+ is contained in {�A |A ∈ 0 ∪ … ∪n}
and that each �(v(A)) is contained in Γ whenever �(A) is an element of Γ and A ≠ Π.
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Example 4.11 (Normal form forAr ). It will be convenient to associate with any reduced irreducible root systemΩ with positive roots Ω+ and simple roots Φ a modi�ed Dynkin diagram. By this we shall mean the graph with

vertices Φ ∪ {�c}c , where �c denotes the highest root of length c and c ranges over all root lengths in Ω, and

whose edge set is built according to the rules of an ordinary Dynkin diagram. �e resulting diagram for root

systems of type Ar , r ≥ 1, is given in �gure 1. If Δ is of type Ar and we label the simple roots Π = {�1,… , �r}
�1 �2

�
�r−1 �r

Figure 1. Modi�ed Dynkin diagram for root systems of type Ar , r ≥ 1. �e highest root is � = �1 + … + �r .
as in �gure 1, we can immediately read o� the sets 0,… ,n . In fact,

0 = {Π}, 1 = {{�2,… , �r−1}}, … , i = {{�i+1,… , �r−i}}, …
so Γ+ = {�(A0),… , �(Aq)} for some q < ⌈r/2⌉, where Ai = {�i+1,… , �r−i}. However, the constraint p(�) ∈ 2ℤ
can only be satis�ed if r is odd and q = (r − 1)/2, for otherwise �q+1 − �(Aq) is a root and p(�q+1) = 1. �erefore,r = 2k + 1 and Γ+ is equal to {�1,… , �k+1}, where �i = �i + … + �r−i+1.
Example 4.12 (Normal form for Dr ). Suppose that Δ is of type Dr , r ≥ 4, and enumerate the simple rootsΠ = {�1,… , �r} as in �gure 2. We �rst assume that r = 2k + 1 is odd. �en we have, for i ≥ 1:

�1 �2
�

�r−2
�r−1

�r
Figure 2. Modi�ed Dynkin diagram for root systems of type Dr , r ≥ 4. �e highest root is � = �1 + 2�2 + … +2�r−2 + �r−1 + �r .

… , i = {{�2i−1}, {�2i+1,… , �r}}, … , k−1 = {{�2k−3}, {�2k−1, �2k , �2k+1}}, k = {{�2k−1}}.
�us, if we let Ai = {�i ,… , �r}, then there exists a maximal integer 1 ≤ m ≤ k such that Γ+ contains the element�(A2m−1), and then Γ+ will also contain �(A1), �(A3),… , �(A2m−3), because v(A2i+1) = A2i−1. No element �2i−1
withm < i ≤ k can be contained in Γ+, for otherwise we could choose i maximal with �2i−1 ∈ Γ+, and then �2i−1 is

the only element of Γ+ not perpendicular to �2i , whence p(�2i) = −1. Similarly, if �2i−1 is contained in Γ+ for some1 < i, then �2i−3 is contained in Γ+ as well, for otherwise p(�2i−2) = −1 would hold. On the other hand, �2m−1
must be contained in Γ+ to ensure p(�2m) ∈ 2ℤ, hence Γ+ is equal to {�1, �(A1), �3, �(A3),… , �2m−1, �(A2m−1)},

for some 1 ≤ m ≤ k. Now suppose that r = 2k. �is time we have

i = {{�2i−1}, {�2i+1,… , �r}} for i < k − 1 and k−1 = {{�2k−3}, {�2k−1}, {�2k}}.
We again let Ai = {�i ,… , �r} and de�ne 1 ≤ m ≤ k −2 to be the maximal integer such that Γ+ contains �(A2m−1).
If m < k −2, then the same argument as in the case of odd rank shows that Γ+ is equal to {�2i−1, �(A2i−1) | i ≤ m}.

Ifm = k−2, then an odd (in particular non–zero) number of elements of {�2k−3, �2k−1, �2k}must be contained inΓ+, for otherwise p(�2k−2) is not even, and if �2k−3 is contained in Γ+, then the same reasoning as in the previous

case shows that �1,… , �2k−3 actually are contained in Γ+. For later reference, let us summarize all the cases we
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discussed: Γ+ is equal to one of the sets{�1, �1, �3, �3,… , �2m−1, �2m−1}, {�1, �3,… , �r−3, } or {�1, �1, �3, �3,… , �r−3, �r−1, �r},
where 2m − 1 < r − 2,  is either �r−1 or �r , and �i = �i + 2(�i+1 + … + �r−2) + �r−1 + �r ; moreover, the last two

cases can only occur if r is even.

Example 4.13 (Normal form for E6). We assume that Δ is of type E6 and enumerate the simple roots as in

�gure 3. Note that the root subsystem spanned by Π ⧵ {�6} is of type A5. Hence we can immediately deduce

�1 �2 �3
�6 �

�4 �5
Figure 3. Modi�ed Dynkin diagram for root systems of type E6. �e highest root is � = �1 + 2�2 + 3�3 + 2�4 +�5 + 2�6.
from example 4.11 that Γ+ is equal to {�, �1, �2, �3}, where � = �1+2�2+3�3+2�4+�5+2�6, �1 = �1+�2+�3+�4+�5,
and �2 = �2 + �3 + �4.
Example 4.14 (Normal form for E7). Suppose that Δ is of type E7 and that the simple roots are enumerated as

in �gure 4. �e root subsystem spanned by Π ⧵ {�7} is of type D6, so Γ+ must be the union of {�(Π)} and one

�1 �2 �3 �4
�5

�6 �7
�

Figure 4. Modi�ed Dynkin diagram for root systems of type E7. �e highest root is � = �1 + 2�2 + 3�3 + 4�4 +2�5 + 3�6 + 2�7.
of the sets that we determined in example 4.12. However, in order for p(�7) to be even, there must be an odd

number of roots in Γ+ ⧵ {�(Π)} which are non–perpendicular to �7, and this only leaves the possibilities{�, �1, �1}, {�, �1, �3, �6}, or {�, �1, �1, �3, �3, �5, �6}
for Γ+, where � = �(Π) and �i = �i + 2(�i+1 + … + �4) + �5 + �6.
Example 4.15 (Normal form for E8). �e case that Δ is of type E8 can be treated similarly as in example 4.14.

In fact, enumerate the simple roots as in �gure 5 and observe that Π ⧵ {�8} spans a root subsystem of type E7.
�8
�

�1 �2 �3 �4
�5

�6 �7
Figure 5. Modi�ed Dynkin diagram for root systems of type E8, r ≥ 1. �e highest root is � = 3�1 + 4�2 + 5�3 +6�4 + 3�5 + 4�6 + 2�7 + 2�8.
So, Γ+ ⧵ {�}, where � is the highest root of Δ+, must contain an odd number of roots that are non–perpendicular

to �8, as otherwise p(�8) would not be even, and this shows that Γ+ is equal to{�, � ′, �1, �1} or {�, � ′, �1, �1, �3, �3, �5, �6},
where � ′ = �1 + 2�2 + 3�3 + 4�4 + 2�5 + 3�6 + 2�7 and �i = �i + 2(�i+1 + … + �4) + �5 + �6.
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4.3. Normal forms for non–simply laced root systems

As in the previous section, we �x a reduced irreducible root system Δ, a set of positive roots Δ+, and the asso-

ciated simple roots Π. As already pointed out earlier, it is a consequence of the classi�cation of irreducible root

systems that Δ admits at most two di�erent root lengths, and we assume that di�erent root lengths do occur inΔ. �e purpose of this section is to provide normal forms for sets Γ consisting of strongly orthogonal roots inΔ in case that the elements of Γ are not necessarily all of the same length. We begin with some slightly more

general considerations.

Proposition 4.16. Let � be the highest long root in Δ and suppose that �⟂ ∩ Π = A ∪ A′ for non–empty setsA, A′ with the property that each element in A is orthogonal to A′. �en ΔA and ΔA′ are irreducible, and there

exist long roots �0, �1 ∈ Π such that �⟂ ∩ Π = Π ⧵ {�0} and such that A = {�1} or A′ = {�1}.

Proof. Express � as � = ∑�∈Πm�� and consider the equation

2 = 2⟨�, �⟩⟨�, �⟩ = ∑�∈Πm� 2⟨�, �⟩⟨�, �⟩ ;
it implies, due to the non–negativity of ⟨�, �⟩ for each � ∈ Π, that at most two summands in the right hand sum

can be non–zero, and we �rst show that there is actually only one non–zero summand. Suppose that there exist�1, �2 ∈ Π with ⟨�, �i⟩ > 0 for a contradiction and observe that m�1 = m�2 = 1. Now for any root � ∈ Π we have

q(�) ∶= 2⟨�, �⟩⟨�, �⟩ = 2m� + ∑�∈Π⧵{�}m� 2⟨�, �⟩⟨�, �⟩
and q(�) is determined by the �–string containing � . Since �−2�i is neither aℤ≥0– nor aℤ≤0–linear combination

of elements in Π and hence not a root, and since m� > 0 for all � ∈ Π, we conclude that q(�i) = 1 and that there

is exactly one element i ∈ Π with ⟨�i , i⟩ ≠ 0. In particular, there can be no decomposition Π ⧵ {�1} = B ∪B′ for

non–empty sets B, B′ such that B′ ⊆ B⟂, for if 1 ∈ B, say, then also Π = (B∪{�1})∪B′ would be a decomposition

into the orthogonal sets B∪{�1} and B′. For the same reason Π⧵{�1, �2} does not admit a non–trivial orthogonal

decomposition either, and this contradicts our assumptions, becauseΠ ⧵ {�1, �2} = �⟂ ∩ Π = A ∪ A′.
�erefore, there exists exactly one root �0 ∈ Π with ⟨�, �0⟩ > 0 and �⟂ ∩ Π = Π ⧵ {�0}, and since � is a long

root, which implies that 2⟨�, �0⟩/⟨�, �⟩ = 1, this root has m�0 = 2. Also note that � − 3�0 is not a root, whence

either q(�0) = 1 or q(�0) = 2. However, if q(�0) = 2 would hold, then � − 2�0 would be a root and could be

expressed as � − 2�0 = � + �′ for elements � ∈ ΔA ∪ {0} and �′ ∈ ΔA′ ∪ {0}. But since m� > 0 for all � ∈ Π,

the elements � and �′ both are non–trivial, which is impossible, because A and A′ are mutually orthogonal.

�us, q(�0) = 1 and �0 also is a long root, so the explicit expression for q(�0) given above shows that there

are at most three simple roots di�erent from �0 which are non–perpendicular to �0. But if there was only one

simple root � with ⟨�0, �⟩ ≠ 0, then a similar argument as already provided earlier would show that Π ⧵ {�0}
admits no non–trivial orthogonal decomposition. To exclude the case that there are three roots, we observe that

if � ∈ Π is a root which is di�erent from �0, has m� = 1, and is non–perpendicular to �0, then �0 is the only root� ∈ Π ⧵ {�} with ⟨�, �⟩ ≠ 0, because any other such root would contribute a summand m�2⟨�, �⟩/⟨�, �⟩ < 0 toq(�), which is impossible becausem�0 = 2 and q(�) = 0. Moreover, in this case 2⟨�, �0⟩/⟨�, �⟩ is equal to 1, which

is equivalent to saying that � is a long root. In particular, if there were three simple roots �1, �2, and �3 di�erent

from �0 satisfying ⟨�i , �0⟩ ≠ 0, then necessarily m�i = 1, because q(�0) = 1, and �0 would be the only root

not perpendicular to �i . Hence, Π ⧵ {�0, �1, �2, �3} would not admit any non–trivial orthogonal decomposition,

which by irreducibility of Δ would only be possible if Π = {�0, �1, �2, �3}. But then Π would only consist of long

roots and hence not admit two di�erent root lengths. �erefore, there are exactly two roots �1, �2 ∈ Π which

are non–perpendicular to �0, and if suitably enumerated they satisfy m�1 = 1 and m�2 = 2. As just observed, �1
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then is a long root and �0 is the only root not perpendicular to �1. �us, Π ⧵ {�1} and hence also Π ⧵ {�0, �1}
admits no non–trivial orthogonal decomposition, so either A = {�1} and A′ = Π ⧵ {�0, �1} or A = Π ⧵ {�0, �1}
and A′ = {�1} has to hold.

For the remainder of this section we �x a reduced irreducible root system Δ admi�ing two root lengths L
long

and L
short

, positive roots Δ+, and denote by Π the simple roots. Let 0,… ,n be the normal form tree for(Δ,Δ+) and L
long

constructed in section 4.1. An inductive proof using proposition 4.16 then shows that either

k consists of a single element or that k contains two elements, one of which consists of a single long root.

In particular, each k contains exactly one set Ak such that ΔAk might admit short roots.

Now if Γ ⊆ Δ with Γ = (−Γ) is a non–empty subset consisting of orthogonal roots, then we may provide

a normal form for Γ as follows. Let Γ
long

and Γ
short

be the subsets of Γ containing all long and short roots,

respectively. If one of Γ
long

or Γ
short

is empty, then we may use theorem 4.9 to obtain a normal form for Γ.

Otherwise, we may still use theorem 4.9 to assume that Γ
long

∩ Δ+ is contained in {�(A) |A ∈ 0 ∪ … ∪ n}.

Note that A0 = Π and let � ≥ 0 be the maximal integer such that Γ
short

is contained in �(A� )⟂. Since Γ
short

is orthogonal to �(A� ), �(v(A� )),… , �(v� (A� )), lemma 4.10 implies that Γ
short

is fully contained in Ω ∶= ΔΦ for

some irreducible component Φ of �(A� )⟂ ∩ A� . Observe that no element �(A) with A ∈ �+k and k ≥ 2 can

be contained in Γ
long

. In fact, if this was the case, then vk (A) = A� would have to hold, because � ⧵ {A�}
contains at most one more set and this set consists of a single root. Similarly, vk−1(A) cannot consist of a single

element, because vk−2(A) is non–empty, so vk−1(A)must be equal to Φ = A�+1. But then �(A) ∈ Γ
long

would also

imply �(A�+1) ∈ Γlong
, and Γ

short
would be contained in �(A�+1)⟂ by lemma 4.10, contradicting the choice of � .

Consequently, as Φ is perpendicular to all elements in �+1 di�erent from Φ, it follows from corollary 4.7 that

each element w ∈ W (Ω) ⊆ W (ΔA� ) �xes Γ
long

pointwise. Moreover, if 0,… ,m is the normal form tree for(Ω,Ω+) and L
short

, where Ω+ = Ω ∩ Δ+ are the positive roots with corresponding simple roots Φ, then according

to theorem 4.9 there exists w ∈ W (Ω) such that w(Γ
short

) ∩ Ω+ is contained in { (B) |B ∈ 0 ∪ … ∪ m}, where (B) denotes the highest short root in ΩB . In summary, we have shown

�eorem 4.17. �ere exist a Weyl group element w ∈ W (Δ), an integer � ≥ 0, a set A0 ∈ � , and an irreducible

component Φ of �(A0)⟂ ∩ A0 with the following properties: if 0,… ,m ⊆ (Φ) is the normal form tree forΩ ∶= ΔΦ and the short root length in Δ, then

(1) w(Γ
long

) ∩ Δ+ is contained in {�(A) |A ∈ 0 ∪ … ∪�+1},

(2) w(Γ
short

) ∩ Δ+ is contained in { (B) |B ∈ 0 ∪ … ∪ m},

(3) if �(A) ∈ w(Γ) for some A ∈ 1 ∪ … ∪�+1, then also �(v(A)) ∈ w(Γ),
(4) �(A0) ∈ w(Γ), and if  (B) ∈ w(Γ) for some B ∈ 1 ∪ … ∪ m , then also  (v(B)) ∈ w(Γ).
Fix a set of strongly orthogonal roots Γ with Γ = (−Γ) and suppose that the integer p(�) introduced earlier,� ∈ Π, is even. In the following, we explicitly determine normal forms for Γ in case that Γ satis�es the conclusions

of theorem 4.9 or theorem 4.17 with w = id.

Example 4.18 (Normal form for Br ). Suppose that Δ is of type Br , r ≥ 2, and enumerate the simple rootsΠ = {�1,… , �r} as in �gure 6. Let us further suppose that Γ only consists of short roots �rst. �en according to

�gure 6 the normal form tree 0,… ,m for the short roots is given by i = {Bi}, where Bi = {�i+1,… , �r} fori ≤ r − 1, so m = r − 1. Note, however, that the di�erence  (Bi) −  (Bj ) of two highest short roots with i > j is

a root again, but that the roots in Γ are assumed to be strongly orthogonal, which is why Γ+ can only consist of

the highest short root  (Π). Now suppose that Γ only consists of long roots and write r = 2k + 1 or r = 2k. �en

the normal form tree 0,… ,n is given by

i = {{�2i−1}, {�2i+1,… , �r}}, if 1 ≤ i ≤ k − 1, and k = {{�2k−1}};
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�1


�2
�

Diagram for r = 2.
�1


�2
�

�r−1 �r
Diagram for r ≥ 3.

Figure 6. Modi�ed Dynkin diagrams for root systems of types Br , r ≥ 2. �e highest root is � = �1+2�2+…+2�r ,
the highest short root is  = �1 + … + �r .

note that the above formula is indeed valid in case r = 2k + 1, because �2k+1 is a short root, so {�2k+1} ∉ k in

this case. Hence, if we put Ai ∶= {�i ,… , �r} for 1 ≤ i ≤ r , then the situation is analogous to that of example 4.12,

whence there exists an integer m ≤ k such that Γ+ is equal to {�2i−1, �(A2i−1) | i ≤ m}. Finally, suppose that Γ
contains both long and short roots. �en each element in Γ

long
is equal to �(A) for some A ∈ k and there exist� ≥ 0, A′ ∈ � such that each element of Γ

short
is equal to  (B) for some B ∈ t , where 0,… ,m now is the

normal form tree for ΔΦ and Φ is an irreducible component of �(A′)⟂ ∩ A′. In particular, ΔA′ must admit short

roots, whence either A′ = A2i−1 for some i or A′ = {�r}. In any case it follows that Γ
short

∩Δ+ only contains one

highest short root  =  (B) for some irreducible set B ⊆ Π. However, the integer 2⟨ , �⟩/⟨ , ⟩ is even for all

simple roots � , no ma�er if � ∈ B or not, whence the parity of p(Δ, Γ
long

, �) and p(�) is the same for all � ∈ Π. In

particular, p(Δ, Γ
long

, ⋅)must be an even function, so Γ
long

∩Δ+ must be equal to {�1, �(A1),… , �2m−1, �(A2m−1)},

where m ≤ k and k = ⌊r/2⌋. �en Γ
short

∩ Δ+ = { (B)}, with B the irreducible component of �(A2m−1)⟂ ∩ A2m−1
admi�ing short roots. All of these cases can be summarized as follows: Γ+ is equal to{1}, {�1, �1, �3, �3,… , �m , �m}, or {�1, �1, �3, �3,… , �m , �m , m+2},
where m < r is an odd number, �i = �i + 2(�i+1 + … + �r ), and i = �i + … + �r .
Example 4.19 (Normal form for Cr ). We assume that Δ is of type Cr , r ≥ 3, and that the simple roots Π are

enumerated as indicated in �gure 7. �e normal form tree for the long roots in Δ is given by i = {Ai+1} with

�1
� �2


�r−1 �r

Figure 7. Modi�ed Dynkin diagram for root systems of typeCr , r ≥ 3. �e highest root is � = 2�1+…+2�r−1+�r ,
the highest short root is  = �1 + 2�2 + … + 2�r−1 + �r .

Ai = {�i ,… , �r}, because Ar−1 = {�r−1, �r} spans a root subsystem of type B2 in Δ, with short root �r−1. Hence,

if Γ only contains long roots, then Γ = {�(A1),… , �(Am)} for some m ≤ r and to satisfy p(�m) ∈ 2ℤ, we must

have m = r . Next, suppose that Γ consists of short roots only and that r = 2k + 1 or r = 2k. In this case the

normal form tree for short roots is given by

i = {{�2i−1}, {�2i+1,… , �2k+1}}, if 1 ≤ i ≤ k − 1, and k = {{�2k−1}};
we carefully note that {�r} is not contained in k , because either r = 2k+1 and �2k+1 is a long root or r = 2k and{�2k−1, �2k} ∈ k−1 spans a root subsystem of type B2, with short root �2k−1. Put Bi = {�i ,… , �r} for i ≥ 1 and

observe that r cannot be odd. In fact, if r = 2k+1, then the same reasoning as in example 4.12 shows the only way

that the function p can be even valued is that there exists some m ≤ k such that Γ+ = {�2i−1,  (B2i−1) | i ≤ m},

and this contradicts our assumption that Γ consists of strongly orthogonal roots, because �1 +  (B1) = �(A1) is

a root. Similarly, if r = 2k, then no root �2i−1 with i ≤ k can be contained in Γ, for then also  (B1) and �1 must
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be contained in Γ. �is implies that Γ+ = { (B1),  (B3),… ,  (B2k−1)}. Finally, suppose that Γ contains both long

and short roots. �en Γ
long

= {�(A1),… , �(Am)} for some m < r and each root in Γ
short

is the highest short

root of some element in the normal form tree for the irreducible component Φ of �(Am)⟂ ∩ Am admi�ing short

roots. Note, however, that �(Am)⟂∩Am always consists of a single irreducible component. In particular, the casem = r−1 is excluded, because this component is equal to {�r} and �r is a long root. �erefore, Φ = {�m+1,… , �r},

whence if m < r −2, then Ω ∶= ΔΦ is a root subsystem of type Cr−m and ⟨�, �(Ai)⟩ vanishes for all � ∈ Φ, i ≤ m.

Hence, p(Ω, Γ
short

, ⋅) is even valued and Γ
short

is one of the sets that we encountered above. Similarly, ifm = r −2,
then Φ = {�r−1, �r} and Ω is of type B2, whence according to example 4.18 Γ

short
= { (Φ)}. In total, we have

shown that Γ+ equals {�1,… , �r−1, �r} or {�1,… , �i , i+1, i+3,… , r−1},
where 0 ≤ i < r , r − i is even, �i = 2(�i + … + �r−1) + �r , and j = �j + 2(�j+1 + … + �r−1) + �r for j < r − 1, whiler−1 = �r−1 + �r .
Example 4.20 (Normal form for F4). Suppose that Δ is of type F4 and enumerate the simple roots as in �gure 8.

Let us �rst note that Γ cannot consist of short roots only: indeed, if  is the highest short root of Δ and Γ+ = {},

�1 �2 �3 �4
�


Figure 8. Modi�ed Dynkin diagram for root systems of type F4. �e highest root is � = 2�1 + 4�2 + 3�3 + 2�4,

the highest short root is  = 2�1 + 3�2 + 2�3 + �4.
then p(�1) = 1 is not even. Hence, there must be at least two short roots in Γ+, and since ⟂ ∩ Π = {�2, �3, �4}
spans a root subsystem of type B3, we must have Γ+ = { , 2}, where 2 = �2 +�3 +�4. But then  + 2 = � is the

highest long root of Δ, which is impossible, because the elements of Γ are supposed to be strongly orthogonal.

Consequently, Γ contains the highest long root � . Now �⟂ ∩ Π = {�1, �2, �3} spans a root subsystem of type C3,
so Γ+ must be the union of {�} and one of the normal forms given in example 4.19. It follows that Γ+ is equal

to {�, �1, �2, �3} or {�, �1, 2}, where �1 = 2(�1 + �2) + �3, �2 = 2�2 + �3, and 2 = �2 + �3 (note that �4 + 22 is a

root, so p(�4) is indeed even in the second case).

Example 4.21 (Normal form for G2). Suppose that Δ is of type G2 and let the simple roots be enumerated as

in �gure 9. Note that the normal form tree for the long root length in Δ only is 0 = {Π}, because the only

�1 �2
�


Figure 9. Modi�ed Dynkin diagram for root systems of type G2. �e highest root is � = 3�1 + 2�2, the highest

short root is  = 2�1 + �2.
root which is non–perpendicular to the highest long root � of Δ is �1, which is a short root. Similarly, the

normal form tree for the short root length in Δ is just 0 = {Π}, because only �2 is non–perpendicular to the

highest short root  of Δ. �erefore, Γ must contain both a long and a short root, whence by our convention to

enumerate the long roots �rst we must have Γ+ = {�, �1}.
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5. Cohomology of associated subalgebras

Let g be a compact semisimple Lie algebra (equivalently: the Killing form on g is negative–de�nite), t a maximal

torus, Δ the roots with respect to the Cartan subalgebra gℂ, and Δ+ a notion of positivity. In the sequel, we

frequently have to consider the Lie subalgebra of g associated with Ω, where Ω is a non–empty subset of the

roots Δ. By this we shall mean the smallest subalgebra k of g containing the spaces g ∩ (gℂ� ⊕ gℂ−� ) for each root� ∈ Ω. Explicitly, this subalgebra is given as the intersection of g with the subalgebra∑�∈Δ+∩spanℤΩ [gℂ� , gℂ−�] ⊕ ⨁�∈Δ∩spanℤΩ gℂ� .
Note that if A is an automorphism of g which leaves invariant t, then A(k) is the subalgebra associated with(A−1)(Ω) = {�◦A−1 | � ∈ Ω}. We will almost exclusively be interested in the case that Ω is a subset of the

set of all simple roots Π ⊆ Δ+, and we list some properties for such associated subalgebras in the following

propositions. �ese are mostly straightforward to verify, but nonetheless, we decided to provide the proofs.

Proposition 5.1. Let Π0 ⊆ Π be a non–empty subset and k the subalgebra associated with Π0.
(1) k is compact semisimple.

(2) A maximal torus for k is given by

s = g ∩ ⨁�∈Π0 [gℂ� , gℂ−�]
(3) Restriction to sℂ induces a bijection Φ from Δ ∩ spanℤΠ0 onto the set of roots of kℂ with respect to sℂ.

Moreover, Φ (Δ+ ∩ spanℤΠ0) is a notion of positivity with simple roots Φ (Π0).
Proof. �e restrictions of the elements of Π0 to sℂ give a basis of (sℂ)∗, so no non–trivial element of a root

space gℂ� with � ∈ Δ ∩ spanℤ Π0 can simultaneously commute with all elements of s. �is implies that s is a

maximal Abelian subspace of k. Consequently, the center of k must be contained in s, and since the root space of

every root in Π0 is contained in kℂ, no non–trivial element of s can be central. Now observe that the existence

of an ad–invariant inner product on g (hence k) implies that k is semisimple and also compact.

Finally, let Δ′ be the roots of kℂ on sℂ and Φ∶ Δ ∩ spanℤ Π0 → Δ′ be induced by restriction. As already

noted, the elements Φ(�), � ∈ Π0, constitute a basis of the dual of sℂ, so Φ is injective and, by construction of k,

surjective. �us Φ(Π0) is a set of simple roots for the choice of positive roots Φ(Δ+ ∩ spanℤ Π0).
Note that the isomorphism type of (g, k), where k is the subalgebra associated with a non–empty subsetΠ0 ⊆ Π, only depends on g and Π0. In fact, suppose that h is a compact semisimple Lie algebra with maximal

torus s ⊆ h. Let Ω be the roots on sℂ, Ω+ ⊆ Ω a choice of positive roots, and Φ ⊆ Ω+ the associated simple

roots. Further suppose that m is the subalgebra of h associated with a non–empty subset Φ0 ⊆ Φ and that� is an isomorphism between the Dynkin diagrams of gℂ and hℂ which satis�es � (Π0) = Φ0; here, we call a

bijection � ∶ Π → Φ an isomorphism between the Dynkin diagrams of gℂ and hℂ, or more precisely between(spanℝΠ, ⟨⋅, ⋅⟩) and (spanℝΦ, ⟨⟨⋅, ⋅⟩⟩), if it satis�es2⟨�, �⟩⟨�, �⟩ = 2⟨⟨� (�), � (�)⟩⟩⟨⟨� (�), � (�)⟩⟩
for all simple roots �, � ∈ Π and negative–de�nite ad–invariant inner products ⟨⋅, ⋅⟩, ⟨⟨⋅, ⋅⟩⟩ on g, h. Let{X� , X−�}�∈Π be chosen such that X� is a root vector for � ∈ Π, X� = −X−� , and ⟨X� , X−�⟩ = 1 (see e.g.

the proof of [7, Lemma 3.6]). Write H� ∶= [X� , X−� ]. Choose root vectors Y , Y− for each  ∈ Φ with the

analogous properties and set I ∶= [Y , Y− ]. According to the isomorphism theorem ([16, �eorem 2.108, sect.

II.10]), the assignments H� ↦ I�−1� and X� ↦ Y�−1� , where � ∈ Π, uniquely extend to an automorphism of
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complex Lie algebras � ∶ gℂ → hℂ. �is automorphism necessarily maps X−� to Y−�−1� , and hence satis�es� (X� ) = � (−X−� ) = −Y−�−1� = � (X� ).
Since the elements (H� )�∈Π and (I )∈Φ span it and is, � maps t onto s, and together with the relation above this

implies � (g) = h. But by construction, � maps kℂ isomorphically onto mℂ
, and hence also has to map k onto m.

In summary, we have shown:

Proposition 5.2. �e Lie algebra pairs (g, k) and (h,m) are isomorphic if and only if there is an automorphism

of Dynkin diagrams that maps Π0 onto Φ0.
We remind the reader that a subalgebra k of g is totally non–cohomologous to zero in g if the canonical mapH(g)→ H(k) is surjective. If k is compact, then, according to [11, �eorem X, sect. 10.19], the previous de�nition

can be rephrased by saying that restriction of polynomials induces a surjection Ag → Ak (recall that Ag and Ak
are the spaces of invariant polynomials on g and k, respectively).

Corollary 5.3. Suppose that g is simple with gℂ of type Ar and let Π = {�1,… , �r} be enumerated as in

example 4.11. �e subalgebra k of g associated with �i ,… , �j , where 1 ≤ i ≤ j ≤ r , is totally non–cohomologous

to zero in g.

Remark 5.4. �e corresponding statement on the level of Lie groups, namely, that for k ≤ r the subgroupSU(k) ⊆ SU(r + 1), embedded as a subblock, is totally non–cohomologous to zero, is well–known (see [11,

Example 1, sect. 11.11], for example, and note that U(r + 1)/U(k) ≅ SU(r + 1)/ SU(k) if U(k) ⊆ U (r + 1) is

embedded accordingly). �e proof of corollary 5.3, which essentially establishes this correspondence, is merely

included for the convenience of the reader.

Proof. For 1 ≤ m ≤ n ≤ r denote by km,n the subalgebra of g associated with {�m ,… , �n}. We have a chain of

inclusions

k = ki,j ↪ ki,j+1 ↪ …↪ ki,r ↪ ki−1,r ↪ …↪ k1,r = g

resulting in the chain of mapsAg = Ak1,r → Ak2,r → …→ Aki,r → Aki,r−1 → …→ Aki,j = Ak.
�e roots of km,n with respect to the Cartan subalgebra ⨁nk=m[gℂ�k , gℂ−�k ] are exactly the restrictions of the rootsΔm,n ∶= Δ∩spanℤ{�m ,… �n}, and with respect to the notion of positivity induced by Δ+ ∩Δm,n , the simple roots

are precisely the restrictions of �m ,… , �n . �us, km,n is the Lie subalgebra of km,n+1 (and also km−1,n) associated

with the simple roots {�m ,… , �n}, whence in the statement of the corollary it su�ces to consider the case that

the di�erence rank(g) − rank(k) is 1, that is, the cases i = 1, j = r − 1 and i = 2, j = r . We shall treat the �rst case,

the second case can be proven analogously.

�us, we assume that k is the subalgebra associated with the simple roots {�1,… , �r−1}. According to propo-

sition 5.2, it will su�ce to verify the statement of the corollary for a speci�c choice of Lie algebra of type Ar
and a speci�c choice of Cartan subalgebra and (positive) roots. Consider the Lie algebra su(r + 1) and the set of

all diagonal matrices s ⊆ su(r + 1). As is well–known, s is a maximal torus, and we claim that

h ∶= {( A 00 0 ) ||||| A ∈ su(r)} ,
is the Lie subalgebra associated with a suitable choice of simple roots of su(r +1). In fact, consider the Lie algebra

isomorphism Φ∶ su(r + 1)ℂ = su(r + 1) ⊕ su(r + 1)→ sl(r + 1,ℂ), (A, B)↦ A + iB,
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and denote by Ei,j the complex (r + 1)–by–(r + 1) matrix with entries 1 in the (i, j)–th position and 0 everywhere

else. �en Φ maps the Cartan subalgebra sℂ onto the Cartan subalgebra of sl(r + 1,ℂ) consisting of all diagonal

matrices, and with respect to this choice, the roots of sl(r +1,ℂ) are the linear maps "i −"j , i ≠ j, where "1,… , "r+1
is the basis dual to the basis E1,1,… , Er+1,r+1, cf. [16, Example 1, sect. II.1]. If we declare the elements of the form"i − "j with i < j to be positive, then �1,… , �r with �i = "i − "i+1 are the corresponding simple roots. Moreover,

since the root space of a root "i − "j is exactly the subspace spanned by Ei,j , it follows that the subspace of

sl(r + 1,ℂ) associated with the simple roots �1,… , �r−1 is precisely the Lie subalgebra sl(r ,ℂ) ⊆ sl(r + 1,ℂ)
consisting of matrices whose last column and last row is identically zero. But Φ maps h isomorphically onto

sl(r ,ℂ), and hence the subalgebra of su(r + 1) associated with the roots �1◦Φ,… , �r−1◦Φ is h. �e claim now

follows from the alternative characterization of surjectivity of the map Ag → Ah given in [11, �eorem IX, sect.

10.18], because the cohomology algebra of the pair (su(r + 1), h) is of dimension two: in fact, h is the Lie algebra

of the isotropy subgroup SU(r + 1)p of the standard action of SU(r + 1) on the (2r + 1)–sphere S2r+1 ⊆ ℂr+1,
where p = (0,… , 0, 1) is an element of the standard basis of ℂr+1, so the cohomology of (su(r + 1), h) is that ofSU(r + 1)/ SU(r + 1)p .

Let � ∶ g → g be an automorphism of Lie algebras and A∶ Π→ Π an automorphism of the Dynkin diagram

of gℂ. We say that � is induced by A, if � leaves invariant t and Π, and if there exists a collection of non–zero

root vectors E� for every simple root � ∈ Π such that � (E� ) = EA−1(�). Note that in this case the map Π → Π,� ↦ � (�), coincides with A and that � is necessarily of �nite order, since Π is a �nite set and the root vectors(E� )�∈Π together with their complex conjugates generate gℂ as an algebra. In the language of [7], g� is a folded

subalgebra, cf. [7, Proposition 3.7], and it was shown in [7, Proposition 3.5] that g� is compact semisimple with

maximal torus s = t� . Moreover, since � �xes the Weyl chamber of gℂ de�ned by the simple roots Π, a notion

of positivity is obtained by declaring a root on sℂ to be positive if it can be obtained by restricting a root in Δ+.

With respect to this choice of positivity, the restrictions of the roots in Π are the simple roots on sℂ.

Proposition 5.5. Let � ∶ g → g be an automorphism induced by an automorphism of the Dynkin diagram of

gℂ and write h ∶= g� , s ∶= t� . Suppose that Π0 ⊆ Π is a non–empty subset satisfying � (Π0) = Π0 and let k be

the subalgebra of g associated with Π0. �en k is �–invariant and with respect to the restricted rootsΠ|sℂ ∶= { � |sℂ || � ∈ Π}
the subalgebra f of h associated with Π0|sℂ ⊆ Π|sℂ coincides with the �xed point subalgebra m ∶= k� .

Proof. Put Δ0 ∶= Δ ∩ spanℤΠ0. In order to prove the statement, it su�ces to consider the �–invariant spaces

V� ∶= ∑i≤0 [gℂ� i (�), gℂ−� i (�)] and W� ∶= ∑j≤0 gℂ� j (�)
for roots � ∈ Π0 and � ∈ Δ0, since kℂ is a sum of such V� and W� .

We �rst show m ⊆ f. To this end, choose � ∈ Δ0 and suppose that a non–zero vector X ∈ W� is being �xed

by � . For any element T ∈ s we then have [T , X ] = �(T )X , whence �̃ , the restriction of � to sℂ, is a root of hℂ.

Because � is an element of Δ0, �̃ must be contained in spanℤΠ0|sℂ , and thereforeX ∈ hℂ̃� ⊆ fℂ.
To conclude that m is contained in f, recall that there exist root vectors E� ∈ gℂ� for all � ∈ Π with the property

that � (E� ) = E�−1� . If k ≥ 0 is the smallest integer with �k+1(�) = � , � ∈ Π0, then, since each root space is

one–dimensional, the elements [E� , E� ], � [E� , E� ],… , �k[E� , E� ] hence constitute a basis of V� ; in particular, �
is of order k on V� . It follows that the �xed point set of � on V� is one–dimensional, spanned by the non–zero

vector ∑ki=0 � i[E� , E� ]. However, �̃ is a root of hℂ with non–zero root vectorX�̃ ∶= E� + � (E� ) + … + �k (E� ) ,
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Figure 10. Folding a Lie algebra of type A2k−1. Black nodes indicate the roots of associated subalgebras.
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Figure 11. Folding a Lie algebra of type A2k . Black nodes indicate the roots of associated subalgebras.

and the di�erence of the simple roots � i(�) − � j (�) is never a root. �erefore,

[X�̃ , X�̃ ] = k∑i,j=0[� i(E� ), � j (E� )] = k∑i=0 � i[E� , E� ]
is an element of fℂ, and m ⊆ f. For the converse inclusion, note that X�̃ and hence hℂ� is contained in mℂ

.

�erefore, m is a subalgebra of h that contains the spaces h ∩ (hℂ� ⊕ hℂ−� ), so we have f ⊆ m by de�nition.

Example 5.6. Let us assume that g is simple and that gℂ is of type Ar , r ≥ 2. �en there is only one non–trivial

automorphism � on the Dynkin diagram of gℂ. Explicitly, if Π = {�1,… , �r} is enumerated as in example 4.11,

then this automorphism is given by � (�i) = �r−(i−1), and arguing as in the proof of proposition 5.2, we may

extend � to an automorphism � ∶ g → g. If r is odd, say r = 2k − 1, then the complex�cation of the �xed point

set h of � ∶ g → g is of type Ck with simple roots �̃1,… , �̃k and long root �̃k (cf. [7, Lemma 5.2]), where we

write �̃i to denote the restriction of �i to the complexi�cation of the maximal torus s = t� of h. If we let k be the

subalgebra of g associated with the simple roots Π0 = Π ⧵ {�1, �r}, then according to proposition 5.5 the �xed

point set of � on k is the Lie subalgebra f associated with the simple roots �̃2,… , �̃k ; its complexi�cation is a Lie

algebra of type Ck−1. �e situation is visualized in �gure 10.

If r is even, with r = 2k, then the �xed point set is of type Bk . �e simple roots of h = g� are again given by�̃1,… , �̃k , and this time �̃k is the short simple root. �e �xed point set of � on the subalgebra of g associated

with the simple roots Π0 = Π ⧵ {�k , �k+1} is the subalgebra f of h associated with the simple roots �̃1,… , �̃k−1.
Here, fℂ is of type Ak−1, cf. �gure 11.

Corollary 5.7. Suppose that gℂ is of type Br (r ≥ 2) or Cr (r ≥ 3) and let the simple roots Π = {�1,… , �r} be

enumerated as in example 4.18 or example 4.19, respectively. �e subalgebra of g associated with the simple

roots �i , �i+1,… , �r , where 1 ≤ i ≤ r , is totally non–cohomologous to zero in g.

Proof. It will su�ce to consider an arbitrary Lie algebra whose complexi�cation is of type Cr or Br , and it will

also su�ce to consider the case i = 2, cf. proposition 5.2 and the proof of corollary 5.3.

Let n = su(2r) be the compact Lie algebra whose complexi�cation is of type A2r−1 and choose a maximal

torus s ⊆ n, a set of roots Ω, and positive roots Ω+. �en the �xed point subalgebra h of an automorphism� ∶ n → n induced by the non–trivial automorphism of the Dynkin diagram of nℂ is of type Cr ; if instead we

start with the compact Lie algebra n whose complex�cation is of type A2r , then hℂ is of type Br . Moreover,

if we enumerate the simple roots �1,… , �2r−1 (respectively �1,… , �2r ) as in example 5.6 and denote by �̃i the

restriction of �i to the complex�cation of s� , then {�̃1,… , �̃r} is a set of simple roots for hℂ, enumerated as in

example 4.19 (or example 4.18). �e subalgebra m of n associated with the simple roots �2,… , �2r−2 (respectively
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with �2,… , �2r−1 in case that we are considering a Lie algebra of type A2r ) is �–invariant and f = m�
is the

subalgebra of h associated with the simple roots �̃2,… , �̃r . We obtain a commutative diagramAn
//

��

Ah

��Am
// Af,

with all maps induced by canonical inclusions, so it remains to verify surjectivity of the right hand vertical map.

But the le� hand vertical map is surjective by corollary 5.3 and the lower horizontal map is surjective, because

m is compact semisimple and f is the �xed point subalgebra of an automorphism induced by an automorphism

of the Dynkin diagram of mℂ
, cf. [7, Proposition 4.6]. Hence, Ah → Af is surjective too.

Suppose that g = k⊕k is a decomposition of g into two ideals. As was already noted in the proof of theorem 1.2,

the diagonal embedding Δ(k) ⊆ g then is totally non–cohomologous to zero in g: indeed, there is a canonical

isomorphism Ak ⊗Ak → Ak⊕k, induced by the projections k⊕ k → k⊕ 0 and k⊕ k → k⊕ 0, which takes AΔ(k) ontoΔ(Ak), and the restriction map Ak ⊗Ak → Δ(Ak) is surjective. �e next proposition generalizes this observation

to cases where we do not have a global decomposition of g (note that Δ(k) is the �xed point set of the involution

exchanging the two summands of g).

Proposition 5.8. Let � be an involutive Lie algebra automorphism of g and suppose that k ⊆ g is a Lie subalge-

bra, invariant under � . Further suppose that k = k1 ⊕ k2 is a decomposition of k into two ideals with � (k1) = k2
and let h be the �xed point subalgebra of � on k.

(1) Let I ⊆ Ag be the graded subspace consisting of all polynomials with � ∗(f ) = f . If the map I → Ak1 ,f ↦ f |k1 , is a surjection, then so is Ag → Ah, f ↦ f |h.

(2) Let Jk1 ⊆ Ak1 and Jh ⊆ Ah be the ideals generated by all polynomials of odd degree. If I → Ak1 /Jk1 ,f ↦ f |k1 + Jk1 , is a surjection, then so is Ag → Ah/Jh, f ↦ f |h + Jh.

Proof.

(1) For j = 1, 2 consider the linear isomorphismsΦj ∶ kj → h, X ↦ X + � (X ).
Since k = k1 ⊕ k2 as Lie algebras and � maps k1 onto k2 and vice versa, these are actually homomorphisms

of Lie algebras. Consequently, they induce isomorphisms Φ∗j ∶ Ah → Akj . Now let p1 ∶ k → k1 andp2 ∶ k → k2 denote the projections with kernels k2 and k1, respectively. If X ∈ k is �xed by � , then� (p1(X )) = p2(X ) and � (p2(X )) = p1(X ). Hence, if g ∈ Ah is homogeneous, then

p∗j (Φ∗j (g))|||h(X ) = g(pj (X ) + � (pj (X ))) = g(p1(X ) + p2(X )) = g(X )
and p∗j (Φ∗j (g)) restricts to g. By assumption, we �nd a homogeneous polynomial f ∈ I with the property

that f |k1 = Φ∗1(g), and then, for all X ∈ k2:(� ∗(f ))|k2 (X ) = f (� (X )) = f |k1 (� (X )) = Φ∗1(g)(� (X )) = g(X + � (X )) = Φ∗2(g)(X ).
But f is �xed by � ∗, and so f |k2 = Φ∗2(g). Since Ak1 ⊗ Ak2 is isomorphic to Ak via the map sending f1 ⊗ f2
to (p∗1(f1)) ⋅ (p∗2(f2)), we thus �nd thatf |k = p∗1 (Φ∗1(g)) + q + p∗2 (Φ∗2(g)) ,
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where q ∈ Ak is a polynomial in the graded subspace generated by the set p∗1(A+k1 ) ⋅ p∗2(A+k2 ) consisting of

products of polynomials without constant term. �us, it follows thatf |h = g + q|h + g = 2g + q|h .
In particular, if g is of degree 1, then necessarily q = 0 and g is in the image of the restriction mapAg → Ah. Proceeding by induction on the degree of g, we see that Ag → Ah is surjective.

(2) We retain the notation of the previous item. �en, if g ∈ Ah is a homogeneous polynomial, there existsf ∈ I with f |k1 = Φ∗1(g) + p for some homogeneous polynomial p ∈ Jk1 . Arguing analogously as in the

previous case, we �nd that f |k2 = (� ∗(f )) |k2 = Φ∗2(f ) + p̃,
where p̃ = (� |k2 )∗(p) is a homogeneous polynomial in Jk2 , the ideal generated by all polnyomials of odd

degree. �us, we still have f |k + Jk = p∗1(Φ∗1(g)) + q + p∗2(Φ∗2(g) + Jk,
where q ∈ p∗1(A+k1 ) ⋅ p∗2(A+k2 ) and Jk ⊆ Ak again is the ideal generated by all odd degree polynomials. We

conclude that f |h + Jh = 2g + q|h + Jh,
and, as in the proof of the previous item, that Ag → Ah → Ah/Jh is surjective.

Let us recall in passing some facts from [11]. If k ⊆ g is a compact subalgebra, totally non–cohomologous to

zero in g, then according to [11, Proposition VII, sect. 6.11] we have a commutative diagram

Pg �g //
��

Ag

��Pk �k // Ak;
here, Pg ⊆ Ω(g)g and Pk ⊆ Ω(k)k are the primitive subspaces, the vertical maps are induced by the canonical

inclusions, and the maps �g, �k are the (“distinguished”) transgressions, cf. [11, De�nition, sect. 6.10]. By [11,

�eorem X, sect. 10.19], the kernel of the le� hand vertical map is exactly the Samelson subspace of the pair(g, k), so if v1,… , vr is any homogeneous basis of Pg such that vs+1,… , vr is a basis of the kernel of Pg → Pk,
then necessarily s = rank(k) and the images of w1,…ws of the elements v1,… , vs form a homogeneous basis ofPk. Note that we are considering g∗ ⊆ S(g∗) as concentrated in degree 1, so �g maps a homogeneous primitive

element of degree k onto a homogeneous polynomial of degree (k + 1)/2. �us, if we put xi ∶= �g(vi) andyj ∶= �k(wj ), then the canonical inclusions extend to isomorphisms of graded algebras ℝ[x1,… , xr ] ≅ Ag andℝ[y1,… , ys] ≅ Ak [11, �eorem I, sect. 6.13]; they �t into the commutative diagramAg
// Ak

ℝ[x1,… , xr ] //

≅ OO ℝ[y1,… , ys],≅OO

where the lower vertical map sends xi to yi if i ≤ s and xs+1,… , xr to zero.

�ese observations in particular apply if � ∶ g → g is an automorphism induced by an automorphism of
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the Dynkin diagram of gℂ and k = g� is its �xed point set, because k is a folded subalgebra and hence totally

non–cohomologous to zero in g by [7, Proposition 4.6]. Moreover, if � is actually an involution, then we may

choose v1,… , vr to be a basis consisting of eigenvectors of � ∗ ∶ Pg → Pg: in fact, given a form ! on g the

restriction of ! + � ∗(!) to k coincides with 2!, so the kernel of Pg → Pk is � ∗ invariant and its image is spanned

by all elements in the 1–eigenspace of � ∗. According to [11, Proposition VII, sect. 10.26] the elements vs+1,… , vr
constitute a basis of the (−1)–eigenspace of � ∗ and hence v1,… , vs must be a basis of its 1–eigenspace. Because

of � ∗◦�g = �g◦� ∗ (see [11, Proposition VII, sect. 6.11]), the kernel of Ag → Ak hence coincides with the ideal

generated by the (−1)–eigenspace of � ∗ ∶ Ag → Ag.

Specializing even further, suppose that gℂ is of type Ar and that � is induced by the non trivial automorphism

of the Dynkin diagram of gℂ. As is well–known (see e.g.[15, Proposition, sect. 3.7]), the degrees of any set of

basic invariants of a simple Lie group, that is, the degrees of any set of algebraically independent generators of

the invariant polynomials, are uniquely determined, up to permutation. For g and k the sets of degrees of basic

invariants are given by {2, 3,… , r + 1} and {2, 4,… , 2s}, respectively, see [15, Table 1, sect. 3.7]. In particular,

the elements xs+1,… , xr must be of odd degree and the kernel of the map Ag → Ak is the ideal in Ag generated

by all polynomials of odd degree (this is actually how surjectivity of the map Ag → Ak was concluded in [7,

�eorem 5.5]). Combined with proposition 5.8, this leads to the following

Corollary 5.9. Suppose that gℂ is of type Br (r ≥ 2) or Cr (r ≥ 3) and let the simple roots Π = {�1,… , �r}
be enumerated as in example 4.18 or example 4.19, respectively. If k is the subalgebra of g associated with the

simple roots �1,… , �r−1, then the inclusion induced map Ag → Ak/J , where J ⊆ Ak is the ideal generated by all

polynomials of odd degree, is surjective.

Proof. To clarify the exposition, we only consider the case that gℂ is of type Cr , the proof in case that gℂ is of

type Br only requires minor modi�cations. Recall from proposition 5.2 that it su�ces to verify the statement

for an arbitrary Lie algebra whose complex�cation is of type Cr . We shall make use of this fact and proceed as

in the proof of corollary 5.7: let n be a Lie algebra such that nℂ is of type A2r−1, �x a maximal torus b in n, a

choice of positivity Ω+ for the roots Ω on bℂ, and let Φ be the simple roots. Further suppose that h is the �xed

point set of an involution � on n which is induced by the non–trivial automorphism on the Dynkin diagram

of nℂ. �en hℂ is of type Cr , and if we enumerate the simple roots Φ = {�1,… , �2r−1} as in example 4.11 and

denote the restriction of �i to the complex�cation of b� by �̃i , then �̃1,… , �̃r are simple roots for the notion of

positivity induced by Ω+, enumerated as in example 4.19.

Now consider the subalgebra m of n associated with Π ⧵ {�r}. It decomposes as m = m1 ⊕m2, where the ideals

m1 and m2 of m are the subalgebras of n associated with the simple roots {�1,… , �r−1} and {�r+1,… , �2r−1},

respectively. Note that the �xed point subalgebra f = m�
is the subalgebra of h associated with the simple roots�̃1,… , �̃r−1 and that � maps m1 onto m2. �e claim thus follows from proposition 5.8 once we show that the

polynomials in the 1–eigenspace E of � ∗ ∶ An → An surject onto Am1 /Im1 , where Im1 ⊆ Am1 denotes the ideal

generated by all polynomials of odd degree, because the map An → Af factors through Ah → Af. But in the

paragraph preceding this corollary we have observed that E surjects onto An/In, where In is the ideal generated

by all polynomials of odd degree, and by corollary 5.3 the canonical map An → Am1 is surjective. �us, the

map E → Am1 /Im1 must be surjective too.

Another fact from [11], which enters the next corollary and also proposition 5.12, concerns the Samelson

subspace P ⊆ Pg of (g, k), where k is a compact subalgebra of g. Denote by �g ∶ Pg → Ag the transgression.

�en a primitive element ! ∈ Pg is contained in the Samelson subspace P if and only if �g(!)||k is contained

in the subspace generated by all elements of the form �g(�)||k ⋅ f with f ∈ A+k a non–constant polynomial and� ∈ Pg arbitrary, see [11, Corollary II, sect. 10.8]. �us, if v1,… , vr is a homogeneous basis of Pg and x1,… , xr its

image under �g , so that Ag ≅ ℝ[x1,… , xr ], then vi is contained in P if and only if xi is contained in the subspacex1|k ⋅ A+k + … + xr |k ⋅ A+k .

Corollary 5.10. Suppose that gℂ is of type Dr (r ≥ 4) and let the simple roots Π = {�1,… , �r} be enumerated

as in example 4.12. If k is the subalgebra of g associated with the simple roots Π ⧵ {�r} or with the simple roots
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Π ⧵ {�r−1}, then the inclusion induced map Ag → Ak/J , where J ⊆ Ak is the ideal generated by all polynomials

of odd degree, is surjective.

Proof. We shall only treat the case that k is the subalgebra associated with the simple roots Π0 = Π ⧵ {�r}, the

other case being similar. Recall from proposition 5.1 that a maximal torus for k is given by

s = g ∩ r−1⨁i=1 [gℂ�i , gℂ−�i] ,
that Δ ∩ spanℤΠ0 bijectively corresponds to the set of roots on sℂ via restriction, and that Δ+ induces a notion

of positivity with simple roots the restrictions �̃1,… , �̃r−1 of the roots �1,… , �r−1. In particular, the subalgebras

q and h of k associated with the simple roots {�̃1,… , �̃r−2} and {�̃2,… , �̃r−2} are equal to the subalgebras of

g associated with the simple roots {�1,… , �r−2} and {�2,… , �r−2}. We will show that the canonical inclusion

induces a surjection Ag → Aq/Jq, where Jq is the ideal generated by all polynomials of odd degree, but before

doing so, let us see how surjectivity of the aforementioned map implies the statement of the corollary. For this,

we will have to distinguish the cases r odd and even.

If r = 2k + 1, then we note that the map Ak/Jk → Aq/Jq is actually an isomorphism: indeed, Ak → Aq

is surjective by corollary 5.3, Ak is a polynomial algebra on r − 1 generators of degrees 2, 3,… , r , and Aq is

polynomial algebra on r−2 generators of degrees 2, 3,… , r−1. Since r = 2k+1 is odd,Ak/Jk andAk/Jq hence are two

polynomial algebras on k generators of degrees 2, 4,… , 2k. For degree reasons the epimorphism Ak/Jk → Aq/Jq
then necessarily has to be an isomorphism.

�e case r = 2k is more involved. Let � ∶ k → k be an automorphism induced by the non–trivial auto-

morphism of the Dynkin diagram of kℂ and note that h is �–invariant; in fact, the restriction � ∶ h → h is an

automorphism induced by the non–trivial Dynkin diagram automorphism of hℂ. Put m = h� , n = k� and recall

from our discussion before corollary 5.9 that in the commutative diagramAg
// Ak/Jk≅
��

// Ah/Jh≅
��Ag

// An
// Am,

in which all maps are induced by canonical inclusions and Jh is the ideal generated by all polynomials of odd

degree, the vertical maps are well–de�ned isomorphisms, because n, m are folded subalgebras and Jk, Jh are

precisely the kernels of the restrictions Ak → An, Ah → Am. Also note that Aq/Jq → Ah/Jh is surjective by

corollary 5.3, so ifAg → Aq/Jq is a surjection, thenAg → Am is surjective as well. Now we use the transgressionPg → Ag to identify a homogeneous basis v1,… , vr of the primitive subspace Pg with homogeneous polynomialsx1,… , xr ∈ Ag. Similarly, we may use the transgressions of n and m to choose homogeneous polynomialsp1,… , pk in An, q1,… , qk−1 in Am, and since m is totally non–cohomologous to zero in n, we may choose these

polynomials in such a way that the diagram of graded algebrasAg
// An

// Am

ℝ[x1,… , xr ]≅ OO t // ℝ[p1,… , pk] //

≅ OO ℝ[q1,… , qk−1],≅ OO

where the lower right horizontal map sends pi to qi if i ≤ k − 1 and to zero if i = k, commutes. Note that nℂ and

mℂ
are of type Ck and Ck−1, so the sets of degrees of the basic invariants of g, m, and n are{2, 4,… , 2r − 2} ∪ {r}, {2, 4,… , 2k}, and {2, 4,… , 2k − 2},

respectively (cf. [15, Table 1, sect. 3.7]), whence for degree reasons pk must be of degree 2k. Also, we may
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assume xi to be of degree 2i if i ≤ r − 1 and xr to be of degree r . With this arrangement the surjectivity of

the map Ag → Am implies that the subalgebra generated by t(x1),… , t(xk−1) coincides with the subalgebra

generated by p1,… , pk−1. Moreover, if k +1 ≤ i ≤ r −1, then the element t(xi), whose degree is at most 4k −2, but

not 2k, is contained in the ideal I = p1 ⋅A+n +…+pk−1 ⋅A+n , whence the elements vk+1,… , vr−1 must be contained

in the Samelson subspace P ⊆ Pg of the pair (g, n). Since P is bounded in dimension by rank(g) − rank(n) = k,

at most one of the elements vk , vr can hence be contained in P . In particular, if we write t(xk ) = cpk + u andt(xr ) = dpk + v, with u, v ∈ I and c, d ∈ ℝ, then one of c or d must be non–zero, for otherwise both vk and vr
would be contained in P . Since p1,… , pk−1 are already part of the image of t , it follows that t is surjective.

�us, it remains to verify that Ag → Aq/Jq is an epimorphism, and we argue as follows. Let � ∶ Π → Π be

the involution exchanging �r−1 with �r and �xing all other simple roots. It is an automorphism of the Dynkin

diagram of gℂ and hence extends to an involution � ∶ g → g. Let f be its �xed point set, put b = t� , and denote

by �1,… , �r−1 the restrictions of the simple roots �1,… , �r−1 to the Cartan subalgebra bℂ of fℂ. We already

observed that �1,… , �r−1 is a set of simple roots for a suitable notion of positivity, and because �1,… , �r−2 are

�xed by � , proposition 5.5 implies that q = q� also is the subalgebra of f associated with the simple roots�1,… , �r−2. Since fℂ is of type Br−1 (see [7, Lemma 5.2]), with short root �r−1, corollary 5.9 thus implies thatAf → Aq/Jq is surjective. But f is also a folded subalgebra, and hence restriction gives a surjection Ag → Af. In

total, Ag → Aq/Jq is surjective.

For the proof of proposition 5.12 below we will have to collect some more results from [11]. Given a Lie

subalgebra k of g we shall use the symbol Ak to denote the set of invariant polynomials on k with grading

induced by viewing k∗ as a graded vector space concentrated in degree 2. More precisely, Ak is the graded

algebra which is equal to Ak as an algebra, but whose k–th graded component Ak
k is zero, if k is odd, and Ajk,

if k = 2j is even. �us, a homogeneous polynomial of degree k in Ak corresponds to a homogeneous element

of degree 2k in Ak and the transgression �∶ Pg → Ag is homogeneous of degree 1. Now suppose that k is

compact and let d be the anti–derivation on Ak ⊗ Λ(Pg) sending Ak ⊗ 1 to zero and an element 1 ⊗ w withw ∈ Pg to �(w)|k ⊗ 1. �e di�erential graded ℝ–algebra (Ak ⊗ Λ(Pg), d) is called the Koszul complex for the

pair (g, k), see [11, Section 10.8]; in the notation of [11, Section 2.17], the space Ak together with the restrictiond|Pg ∶ Pg → Ak is a symmetric Pg–algebra and the Koszul complex for (g, k) coincides with the Koszul complex

for the symmetric Pg–algebra (Ak, d|Pg ). By [11, �eorem III, sect. 10.8] there is an isomorphism of graded

algebras between H(Ak ⊗ Λ(Pg)) and H(g, k), so the graded algebra structure of H(g, k) is determined by the

one of H(Ak ⊗ Λ(Pg)).

Let P ⊆ Pg be the Samelson space and choose a graded vector space P ′ ⊆ Pg complementary to P , that is, such

that Pg = P ⊕ P ′. A well–known theorem (cf. [11, �eorem V and corollary I, sect. 2.15]) now states that there

is an isomorphism of graded algebras between H(Ak ⊗ Λ(Pg)) and H(Ak ⊗ Λ(P ′)) ⊗ Λ(P ), where we think ofAk ⊗ Λ(P ′) as a di�erential graded subalgebra of (Ak ⊗ Λ(Pg), d). In particular, if (g, k) is formal, then P ′ = 0
and H(Ak ⊗ Λ(P ′)) reduces to Ak/J , where J is the ideal in Ak generated by the image of the inclusion induced

map Ag → Ak, see [11, �eorem VII, sect. 2.19].

Lemma 5.11. Let k be a compact Lie algebra and h ⊆ k a simple subalgebra. �en the inclusion induced mapAk → Ah is a surjection in degree 2.
Proof. For every vector space V there is a natural isomorphism of graded vector spaces between S(V ∗) and the

space of symmetric multilinear forms Sym(V ); it induces the commutative diagram

Sym2(k)k ≅ //

��

A2k
��Sym2(h)h ≅ // A2h,

where both vertical maps are induced by the canonical inclusion �∶ h → k. Hence, it will su�ce to verify the
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surjectivity of the map �∗ ∶ Sym(k)k → Sym(h)h in degree 2. Let ⟨⋅, ⋅⟩ be an ad–invariant inner product on k, that

is, such that adX is skew–symmetric for all X ∈ k; such an inner product exists, because we are assuming k to be

compact. �en �∗⟨⋅, ⋅⟩ is an ad–invariant inner product on h, so the image of �∗ ∶ Sym2(k)k → Sym2(h)h is at least

one–dimensional and h is necessarily compact. However, it is a well–known consequence of Schur’s Lemma

(see [16, Proposition 5.1, sect. V.1]) that the space of ad–invariant symmetric bilinear forms on a compact simple

Lie algebra is one–dimensional. In fact, �x some ad–invariant inner product ⟨⟨⋅, ⋅⟩⟩ on h. Choose ℎ ∈ Sym2(h)h
arbitrarily and de�ne T ∶ h → h by requiring that ⟨⟨T (X ), Y⟩⟩ = ℎ(X, Y ) holds for all X, Y ∈ h. �e ad–

invariance of ⟨⟨⋅, ⋅⟩⟩ and ℎ implies that adX ◦T = T ◦ adX holds for all X ∈ h and the symmetry of ℎ forces T
to be self–adjoint with respect to ⟨⟨⋅, ⋅⟩⟩. �erefore, T is diagonalizable, with real eigenvalues, and if � is an

eigenvalue of T , then the kernel of T − � id is a non–trivial ideal of h, hence already equal to h.

Proposition 5.12. Suppose that gℂ is of type E7 and that the simple roots Π = {�1,… , �7} are enumerated as

in example 4.14. Let k be the subalgebra of g associated with Π ⧵ {�1} and J ⊆ Ak the ideal generated by all

polynomials of odd degree. �en the canonical restriction Ag → Ak/J is surjective.

Proof. Note that kℂ is a Lie algebra of type E6, so the set of degrees of the basic invariants of k is {2, 5, 6, 8, 9, 12};

the set of degrees of the basic invariants of g is {2, 6, 8, 10, 12, 14, 18}. Let v2, v6, v8, v10, v12, v14, v18 be a

homogeneous basis of Pg, increasingly ordered by degree, and x2,… , x18 ∈ Ag the images under the transgression

(note the grading). We claim that there is a dichotomy: either the element v6 corresponding to the homogeneous

polynomial x6 of degree 6 is contained in the Samelson space P ⊆ Pg of (g, k) or the mapAg → Ak/J is surjective.

To see this, suppose that v6 is not contained in P and let h be the �xed point set of an automorphism on k induced

by the non–trivial automorphism of the Dynkin diagram of kℂ. �en h is a folded subalgebra, with hℂ of typeF4, and its set of degrees of basic invariants is given by {2, 6, 8, 12}. �us, as in the proof of corollary 5.10, the

kernel of the inclusion induced map Ak → Ah is precisely J and we may choose homogeneous polynomials p2,p5, p6, p8, p9, p12 in Ak and q2, q6, q8, q12 in Ah, enumerated in increasing order of degree, such that the diagram

Ag
// Ak

// Ah

ℝ[x2,… , x18]≅ OO
// ℝ[p2,… , p12] //

≅ OO ℝ[q2,… , q12],≅ OO

where the lower right horizontal map sends (p2, p6, p8, p12) to (q2, q6, q8, q12) and p5, p9 to zero, commutes. Now

recall that vi is an elment of P if and only the restriction of xi to k is contained in x2|k ⋅ A+k + … + x18|k ⋅ A+k and

that x2 restricts to a non–zero multiple of p2 as well as q2 by lemma 5.11. So if v6 ∉ P , then x6|k = cp6 + dp32 for

some non–zero constant c ∈ ℝ and some constant d ∈ ℝ, and x6|h = cq6 + dq32 as well. We conclude that x2|h
and x6|h generate the same subalgebra as q2 and q6, and it follows for degree reasons that the restrictions of the

elements x10, x14, and x18 are contained in the ideal q2 ⋅ A+h + q6 ⋅ A+h . Hence, v10, v14, and v18 are contained in

the Samelson space of the pair (g, h), and since the la�er space is at most three–dimensional, the element x8|h
cannot be contained in the ideal generated by x2|h and x6|h. Similarly, x12|h cannot be contained in the ideal

generated by the restrictions of x2, x6, and x8. But this means that Ag → Ah is surjective, and since the kernel

of Ak → Ah is the ideal generated by p5 and p9, which is exactly J , the map Ag → Ak/J is surjective as well.

�erefore, we only need to show that v6 is not contained in P , and we assume v6 ∈ P to hold for a contra-

diction. �en (g, k) is formal and v8 cannot be contained in P . �us, by the same reasoning as before, p2 and p8
must be contained in the ideal I generated by the image of the restriction map Ag → Ak. Once more it follows

for degree reasons that modulo the ideal (p2, p8) generated by p2 and p8 we have the equalitiesx10|k = ap25 , x12|k = bp12 + cp26 , x14|k = dp9p5, and x18|k = ep12p6 + f p29 + gp36 ,
for certain real constants a, b, c, d , e, f , and g. As a consequence, the ideal I0 generated by p2, p5, p8, and the

restrictions of x12 and x18 already contains I , because x10|k , x14|k ∈ I0. By the discussion preceeding lemma 5.11
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the quotient Ak/I is �nite–dimensional, Ak/I ⊗ Λ(P ) being isomorphic to H(g, k), so the quotient Ak/I0 must be

�nite–dimensional too. �is observation leads to the desired contradiction, becauseAk/I0 ≅ ℝ[p2,… , p12]/(p2, p5, p8, x12|k , x18|k) ≅ ℝ[p6, p9, p12]/(bp12 + cp26 , ep12p6 + f p29 + gp36)
is a quotient of a polynomial algebra in three variables by an ideal generated by two homogeneous, but non–

constant polynomials, which is in�nite–dimensional. �us, v6 is not an element of P .

6. Equivariant and ordinary cohomology of simple ℤ2 × ℤ2–symmetric spaces

6.1. Inner automorphisms

�roughout this section, we �x a simple, compact connected Lie group G and two commuting involutive Lie

group automorphisms �1, �2 on G. As in section 2, we denote by Ki = (G�i )0 the �xed point set of �i , i = 1, 2,
choose a maximal torus S ⊆ (G�1 ∩ G�2 )0 and an Ad– as well as �1– and �2–invariant negative–de�nite inner

product ⟨⋅, ⋅⟩ on g. �en T1 = ZK1 (S) is a maximal torus in K1, T = ZG (T1) a maximal torus in G. Let Δ be the

gℂ–roots with respect to the Cartan subalgebra tℂ, Δ+ a choice of positive roots with simple roots Π, Γ ⊆ Δ the

set of roots vanishing on s, and Γ+ ∶= Γ∩Δ+. Once an enumeration Π = {�1,… , �r} of the simple roots has been

chosen, we shall also denote by (u1,… , ur ) the basis dual to the basis (�1,… , �r ) of spanℝΠ.

Our �rst goal is to show that the pair (g, k1 ∩ k2) is (equivariantly) formal if �1 and �2 are both inner auto-

morphisms. If Γ is empty, then this is certainly the case, as then s = t is a maximal torus (cf. proposition 2.1),

whence k1 ∩ k2 is a Lie subalgebra of maximal rank. �us, we may assume that Γ ≠ ∅. Now we observe that Γ
is a set of strongly orthogonal roots by proposition 2.2 and that p(�) = ∑�∈Γ+ 2⟨�, �⟩/⟨�, �⟩ is an even number

for all � , cf. proposition 3.5. �erefore, Γ possesses a normal form, that is, there exists a Weyl group elementw ∈ W (Δ) such that w(Γ) ∩ Δ+ is one of the sets speci�ed in examples 4.11 to 4.15 or examples 4.18 to 4.21. It

is a well–known fact (see [16, �eorem 4.54, sect. IV.6]) that the abstract Weyl group W (Δ) corresponds under

the isomorphism spanℝΔ → (it)∗, � ↦ � |it, to the action induced by the coadjoint action of the analytic Weyl

group NG (T )/T on (it)∗, so there exists an element n ∈ NG (T ) such that the dual map (Adn)∗ coincides withw on spanℝΔ. Put A ∶= (cn)−1 and consider the inner automorphisms A◦�1◦A−1 and A◦�2◦A−1. �ese are two

commuting involutions and their �xed point subalgebra is A(k1 ∩ k2) with maximal torus A(s). Moreover, the set

of roots vanishing on A(s) is(A−1)∗(Γ) = {�◦A−1 | � ∈ Δ} = {�◦Adn | � ∈ Δ} = (Adn)∗(Γ) = w(Γ),
and since A maps [k1 ∩ k2]f onto [A(k1 ∩ k2)]f , there is no loss of generality if we assume that w = id. Also note

that by corollary 3.7 we may assume that

�1 = cℎ with ℎ = exp( ∑�∈Γ+ i�|� |2H�) ,
as cℎ commutes with �2 and k1 ∩ k2 and gAdℎ ∩ k2 share the same maximal torus s.

Now we check that [k1∩k2]f contains a subalgebra that is totally non–cohomologous to zero in g by considering

the various Lie algebra isomorphism classes that gℂ may assume.

�eorem 6.1. If gℂ is of type Ar , r ≥ 1, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. As noted before, we may assume that Γ is in normal form and that the simple roots Π = {�1,… , �r} are

enumerated as in example 4.11. Recall that the rank r of G necessarily is an odd number, say r = 2k + 1, and

that Γ ∩ Δ+ = {�1,… , �k+1}, with �i = �i + … + �r−i+1. Since �1 is given by conjugation with elements in T , the

�xed point set kℂ1 of �1 is the direct sum of tℂ and those root spaces gℂ� on which �1 acts as the identity. Now if
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� = m1�1 + … +mr�r is a root, then

�1|gℂ� = exp( i�2 k+1∑j=1 2⟨�j , �⟩⟨�j , �j⟩ ) ⋅ id = (−1)mk+1 id,
so �1 is the identity of the root space of � if and only if mk+1 ∈ 2ℤ. However, every positive root of g is of the

form �i + �i+1 + … + �j for integers 1 ≤ i ≤ j ≤ r , whence the �xed point set of �1 is

kℂ1 = tℂ ⊕ ⨁�∈Δ′ gℂ ⊕ ⨁�∈Δ′′ gℂ� ,
where Δ′ = Δ ∩ spanℤ{�1,… , �k} and Δ′′ = Δ ∩ spanℤ{�k+2,… , �2k+1}. �us, we have

kℂ1 = ( ⋂i≠k+1 ker �i) ⊕( k⨁i=1 [gℂ�i , gℂ−�i] ⊕ ⨁�∈Δ′ gℂ) ⊕( 2k+1⨁i=k+2 [gℂ�i , gℂ−�i] ⊕ ⨁�∈Δ′′ gℂ)= ( ⋂i≠k+1 ker �i) ⊕ iℂ1 ⊕ iℂ2 ,
where i1 is the subalgebra of g associated with the simple roots �1,… , �k and i2 is the subalgebra associated

with �k+2,… , �2k+1. We claim that �2 maps i1 onto i2. Indeed, the common kernel of all simple roots di�erent

from �k+1 constitutes the one–dimensional center of kℂ1 and hence is invariant under �2. �e subalgebras iℂ1 and

iℂ2 are simple ideals of kℂ1 , both of type Ak , and thus either interchanged by �2 or invariant subspaces. However,�2 maps the root � = �1 +… + �k onto � = −(�k+2 +… + �2k+1) and hence also sends gℂ� isomorphically onto gℂ� .

�erefore, �2(i1) intersects i2 non–trivially, whence �2(i1) = i2.
Now it follows from proposition 5.1 and corollary 3.3 that k1 ∩ k2 is of rank k, and we have just observed

that the �xed point set of �2 on i1 ⊕ i2 is isomorphic to the diagonal Δ(i1) ⊆ i1 ⊕ i1, a Lie algebra of rank k.

�erefore, �2 acts as − id on Z(k1), and k1 ∩ k2 is precisely the �xed point set of �2 on i1 ⊕ i2. Since i1 is totally

non–cohomologous to zero in g by corollary 5.3 and every invariant polynomial on g is in particular a �xed

point of � ∗2, the theorem now follows from proposition 5.8.

�eorem 6.2. If gℂ is of type Br , r ≥ 2, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. Let �1,… , �r be the simple roots associated with Δ+, enumerated as in example 4.18. �is time, there are

three normal forms to consider, and all of them can be treated simultaneously as follows. We know that s, the

maximal torus of k1∩k2, is the �xed point set of �2 on t, so in the second normal form, there exists an odd numberk < r such that sℂ is the common kernel of the roots {�1, �1, �3, �3,… , �k , �k}, with �i = �i + 2(�i+1 + … + �r ) fori < r . �e �rst and third normal forms state that sℂ is the common �xed point set of the root re�ections de�ned

by the elements in one of the sets {1} or {�1, �1, �3, �3,… , �k , �k , k+2}, where i = �i + … + �r and k < r is

again odd. �us, in all three cases, the maximal torus sℂ is given by

sℂ = r⨁j=�+1 [gℂ�j , gℂ−�j ] ,
where � = |Γ+|. But this means that s is the maximal torus of the Lie subalgebra of g associated with the simple

roots ��+1,… , �r , which is non–cohomologous to zero in g by corollary 5.7.

�eorem 6.3. If gℂ is of type Cr , r ≥ 3, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. According to example 4.19, there are two normal forms to consider, one of which cannot apply: indeed,

if Γ+ would be equal to {�1, �2,… , �r−1, �r}, where �i = 2(�i + … + �r−1) + �r , then by corollary 3.3 k1 ∩ k2 would

be of rank 0, which is impossible. �erefore, we only need to consider the normal form in which Γ+ is equal to{�1,… , �i , i+1, i+3,… , r−1} for some i < r such that r − i is even, where j = �j − �j is the highest short root in

the root subsystem spanned by {�j ,… , �r}. To compute the �xed point set of �1, let � = m1�1 +… +mr�r be an
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arbitrary root and set m0 ∶= 0. We have, for all i < r − 1,2⟨�i , �⟩⟨�i , �i⟩ = mi −mi−1, 2⟨i , �⟩⟨i , i⟩ = mi+1 −mi−1, 2⟨r−1, �⟩⟨r−1, r−1⟩ = 2mr −mr−2, and �1|gℂ� = (−1)mr id,
so a root vector of � is �xed if and only if mr ∈ 2ℤ. However, there is no root with mr ∉ {0, −1, 1}, because the

highest root of gℂ is �1 = 2(�1 +… + �r−1) + �r . �us, the �xed point set of �1 is k1 = Z(k1) ⊕ h, where the centerZ(k1) = ℝZ is spanned by an element Z ∈ t in the common kernel of the roots in Π ⧵ {�r} and h is the rank r − 1
subalgebra of g associated with the simple roots Π ⧵{�r}; in fact, hℂ is of type Ar−1. �e automorphism �2 sends

h to h, so the restriction �2 ∶ h → h cannot be an inner automorphism, as otherwise k1 ∩ k2 would be of rank at

least r−1, and we claim that this implies that k1∩k2 is equal to h� . To see this, recall that h is compact semisimple,

whence there exists a maximal torus b ⊆ h and a choice of positive roots Ω+ for the roots Ω on bℂ, all of which

are �2–invariant. Let Φ ⊆ Ω+ be the corresponding simple roots and � ∶ h → h the automorphism induced by

the Dynkin diagram automorphism �2 ∶ Φ → Φ; the �xed point set f of � shares the maximal torus b� = b�2
with h�2 , so �2 ∶ Φ→ Φ must be non–trivial. But there is only one non–trivial Dynkin diagram automorphism

on a Lie algebra of type Ar−1, and thus fℂ must be of type Ck , if r = 2k, or of type Bk , if r = 2k +1, cf. [7, Lemma

5.2]. In both cases h�2 is of rank k ∶= ⌊r/2⌋, so according to the decomposition k1 = Z(k1) ⊕ h the rank of k1 ∩ k2
must be at least k. On the other hand, Γ+ consists of i + (r − i)/2 elements, whence k1 ∩ k2 is of rank (r − i)/2 by

corollary 3.3, and this is only possible if either r is even and i = 0 or r is odd and i = 1. In any case it follows

for rank reasons that k1 ∩ k2 = h�2 . In particular, k1 ∩ k2 and f share a maximal torus, so it will su�ce to verify

that f is totally non–cohomologous to zero in g. However, the ideal Jh in Ah generated by all polynomials of odd

degree is exactly the kernel of the inclusion induced surjection Ah → Af, and restriction induces a surjectionAg → Ah/Jh by corollary 5.9. Hence, Ag → Af is surjective and f is totally non–cohomologous to zero in g.

�eorem 6.4. If gℂ is of type Dr , r ≥ 4,then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. We can immediately rule out one of the normal forms that may appear by example 4.12: if r is even andΓ+ = {�1, �1,… , �r−3, �r−3, �r−1, �r}, then k1 ∩ k2 is a Lie algebra of rank r − |Γ+| = 0, which is impossible. �us,

there are only two normal forms to consider. �e second normal form that we shall treat is when r = 2k is even

and Γ+ is equal to the set {�1, �3,… , �r−3, }, where �i = �i + 2(�i+1 + … + �r−2) + �r−1 + �r and  ∈ {�r−1, �r}.

Both cases,  = �r−1 and  = �r , can be handled analogously, so let us assume that  = �r . �en the proof of

theorem 6.3, almost verbatimely carries over: in fact, if � = ∑rj=1mj�j is a root and i < r − 2, then2⟨�i , �⟩⟨�i , �i⟩ = mi+1 −mi and

2⟨�r−2, �⟩⟨�r−2, �r−2⟩ = 2mr−2 −mr−3 +mr−1 +mr ,
so �1 restricts to (−1)mr ⋅ id on gℂ� . Hence k1 is equal to Z(k1) ⊕ h, where Z(k1) is the one–dimensional center

of k1, spanned by an element in the joint kernel of all roots in Γ+, and h is the subalgebra associated with the

simple roots �1,… , �r−1, with hℂ of type A2k−1. Since rank(k1 ∩ k2) ≤ r − 2, the restriction �2 ∶ h → h cannot

be inner, h�2 must be equal to k1 ∩ k2, and the �xed point set f of an automorphism � ∶ h → h induced by the

non–trivial Dynkin diagram automorphism of hℂ with respect to a suitable Cartan subalgebra shares a maximal

torus with h�2 . By corollary 5.9, f is totally non–cohomologous to zero in g.

�us, we consider the last normal form, according to which Γ+ = {�1, �1,… , �k , �k} holds for some odd

number k ≤ r − 2. �e e�ect of �1 on the root space of a root � = m1�1 + … +mr�r is

�1|gℂ� = exp( i�2 k∑j=1 2⟨�j , �⟩⟨�j , �j⟩ + 2⟨�j , �⟩⟨�j , �j⟩ ) id = (−1)m1+…+mk id,
and we will further have to distinguish between the cases k = 1 and k > 1.

�e case k = 1. Here k1 is equal to Z(k1) ⊕ h, where Z(k1) is one–dimensional and h is the subalgebra of g

associated with the simple roots �2,… , �r . Let �̃2,… , �̃r denote their restrictions to the complexi�cation of the

standard maximal torus b = g ∩ ⨁ri=2[gℂ�i , gℂ−�i ] of h and put Π0 = {�̃2,… , �̃r}. Further let � ∶ g → g be an
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automorphism induced by the automorphism Π → Π which exchanges �r−1 with �r and �xes all other roots,

and observe that � leaves invariant b and Π0, interchanges �̃r−1 with �̃r , and �xes all other elements of Π0.
Moreover, the connected subgroup H ⊆ G with Lie algebra h is compact, because h is compact semisimple, and

we claim that there exists a Weyl group element ℎ ∈ H such that Adℎ ◦�2◦Adℎ−1 ∶ Π0 → Π0 coincides with� ∶ Π0 → Π0. In fact, �2 leaves invariant b and the Weyl group acts transitively on the set of Weyl chambers, so

we may choose ℎ such that Adℎ ◦�2◦Adℎ−1 leaves invariant Π0. �en Adℎ ◦�2◦Adℎ−1 ∶ Π0 → Π0 cannot be the

identity map, as otherwise the r − 1 dimensional torus b would be �xed by Adℎ ◦�2◦Adℎ−1 , which is impossible,

because h�2 has rank r − 2. Now if r ≠ 5, then the Dynkin diagram of hℂ is either of type A3 or of type Dr−1
with r − 1 ≥ 5, and since there is only one non–trivial automorphism on such diagrams, the existence of ℎ is

veri�ed for r ≠ 5. If r = 5 we observe that�2(�̃2) = �2(�2)|bℂ = s�1s�1 (�2)||bℂ = −�̃2,
where �̃2 denotes the restriction of �2, and that �2 �xes the remaining roots �̃3, �̃4, and �̃5. Let ℎ ∈ H be an

element such that (Adℎ)∗ corresponds on spanℝΠ0 to the Weyl group element w ∶= s� s�′ with � = �̃2 + �̃3 + �̃4
and �′ = �̃3 + �̃4 + �̃5. Recalling that hℂ is of type D4, with triple node �̃3, we computew(�̃2) = �̃5, w(�̃3) = �̃3, w(�̃4) = −�̃2, and w(�̃5) = �̃2,
soAdℎ ◦�2◦Adℎ−1 is as desired. Now we already observed that for rank reasons h�2 equals k1 ∩k2. SinceAdℎ(h�2 )
and f ∶= h� share the maximal torus Adℎ(s) (indeed, fℂ is of type Br−2), it hence su�ces to verify that f is totally

non–cohomologous to zero in g. But if �1,… , �r−1 denotes the restrictions of the simple roots �1,… , �r−1 to

the complexi�cation of the maximal torus t� of g� , then according to proposition 5.5 f is the subalgebra of g�
associated with �2,… , �r−1. �is subalgebra is totally non–cohomologous to zero in g� by corollary 5.7, and

since g� is a folded subalgebra, also f is totally non–cohomologous to zero in g.

�e case k ≥ 2. We shall see that this case cannot occur, the reason being as follows. Let Δ0 be the roots of

kℂ1 with respect to tℂ and observe that Δ+0 ∶= Δ0 ∩ Δ+ is a notion of positivity. We claim that the simple rootsΠ0 ⊆ Δ+0 decompose as a disjoint union Π0 = Π′0 ∪ Π′′0 withΠ′0 = {�i + �i+1 | i even, i < k} ∪ {�k+1,… , �r} and Π′′0 = {�j + �j+1 | j odd, j < k} ∪ {�},
where � = �k−2 − �k−1. Indeed, a root � is contained in Δ0 if and only if the integer u1(�) + … + uk (�) is even,

so Π′0 and Π′′0 are subsets of Δ+0 . Since none of the simple roots �1,… , �k is contained in Δ0, we conclude that�i + �i+1 is a simple root for i < k. Now the roots of gℂ are contained in one of the sets

spanℤ(Π ⧵ {�r−1}) ∩ Δ, spanℤ(Π ⧵ {�r}) ∩ Δ, or

{ j−1∑s=i �s + 2 r−2∑t=j �t + �r−1 + �r ||||| i < j ≤ r − 1
} ,

and the former two sets are root subsystems of type Ar−1. Hence, if � and �′ are two elements of Δ+0 with� = � + �′, then either uk−2(�) = 1 or uk−2(�′) = 1. Without loss of generality, assume that uk−2(�) = 1 anduk−2(�′) = 0. �en also uk−1(�) = 1, for otherwise � ∉ Δ0, and this implies that uk−1(�′) vanishes too. But then�′ is only a root if uk (�′) < 2, whence in order for � ∈ Δ0 to hold we must have uk (�) = 2 and already � = �.

�us, � is simple and Π′0 ∪ Π′′0 ⊆ Π0. Since k is odd, Π′0 and Π′′0 consist, respectively, of m ∶= (k − 1)/2 + (r − k)
and n ∶= (k − 1)/2 + 1 elements, and since m + n = r , we actually have an equality Π0 = Π′0 ∪ Π′′0 ; in particular,

k1 is semisimple.

By examining the various root strings of the elements of Π′0 and Π′′0 , we �nd that any two elements �′ ∈ Π′0
and �′′ ∈ Π′′0 are strongly orthogonal, and that Δ0 ∩ spanℤΠ0, Δ0 ∩ spanℤΠ′′0 are two root systems of types Dm
and Dn (or An , if n < 4), respectively; for example, if n ≥ 4, then �k−4 + �k−3 is the triple node. Hence, if we let

i′, i′′ be the subalgebras of k1 associated with the simple roots Π′0 and Π′′0 , then k1 = i′ ⊕ i′′ as Lie algebras and�2 either interchanges i′ with i′′ or leaves both ideals invariant. However, �2(�r ) = �r , because �r is contained
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in the common kernel of all roots in Γ+. So �2 has to leave Π′0 and i′ invariant, hence also i′′. But the �xed point

set of an involution on a Lie algebra of type D� (or A� with � ≤ 3) is at least of rank � − 1, whence k1 ∩ k2 must

be of rank at least r − 2, contradicting the inequality r − |Γ+| ≤ r − 4.
�eorem 6.5. If gℂ is of type E6, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. We shall see that in this case the subalgebra k1 ∩ k2 is actually of full rank. Assuming the contrary, then,

as in the proofs for the previously dealt Lie algebra types, we may assume Γ to be in normal form and the simple

roots Π = {�1, �2, �3, �4, �5, �6} to be enumerated as in example 4.13. �us,Γ+ = {�, �1, �2, �3}, where � = �1 + 2�2 + 3�3 + 2�4 + �5 + 2�6 and �i = �i + … + �4−i .
Given a root � = m1�1 + … +m6�6, we have2⟨�, �⟩⟨�, �⟩ = m6, 2⟨�, �1⟩⟨�1, �1⟩ = m1 +m5 −m6, and

2⟨�, �2⟩⟨�2, �2⟩ = m2 +m4 −m1 −m5 −m6,
so �1 restricts to (−1)m3+m6 id on gℂ� . Hence, if Δ0 are the roots of kℂ1 with respect to tℂ and Δ+0 = Δ0 ∩ Δ+ is the

notion of positivity induced by Δ+, with simple roots Π0, thenΠ′0 = {�1, �2, �3 + �6, �4, �5} and Π′′0 = {� − �6}
are two sets of positive roots. We claim that Π0 = Π′0 ∪ Π′′0 . In fact, the elements of Π′0 are simple in Δ+0 , because�3 and �6 are not roots of kℂ1 . �us, it only remains to verify the simplicity of � ∶= � − �6, for then Π′0 ∪ Π′′0
consists of 6 elements and k1 hence is a Lie subalgebra of rank 6. So suppose that � = � + �′ for roots �, �′ ∈ Δ+0
and write � = m1�1 + … + m6�6, �′ = n1�1 + … + n6�6. Since u6(�) is equal to 1, we may assume that m6 = 1
and n6 = 0. �en �′ is contained in spanℤ(Π ⧵ {�6}), a root system of type A5, and hence there exist integerss ≤ t ≤ 5 such that ni = 1 for all s ≤ i ≤ t and ni = 0 else. However, the only simple root di�erent from �6 that

is not perpendicular to � = � − �6 is �3, and since � = � − �′ is a root, whereas � + �′ is not, because � is the

highest root, it follows that

0 ≠ 2⟨�′, �⟩⟨�′, �′⟩ = n3 2⟨�3, �⟩⟨�′, �′⟩ ,
so n3 = 1. But then �′ is not a root of kℂ1 , because n3 + n6 = 1 is not an even number.

�erefore, Π0 = Π′0 ∪ Π′′0 and k1 is semisimple. Let i′ and i′′ be the subalgebras of k1 associated with Π′0 andΠ′′0 , respectively. By examining the roots strings, we �nd that ⟨�3 + �6, �⟩ = 0, so the roots in Π′0 are orthogonal

to �, and that Π′0 is of type A5. �erefore, k1 = i′ ⊕ i′′ is a direct sum of Lie algebras and �2 necessarily has to

leave i′ invariant. Since the �xed point set of an involution on i′ has rank at least 3 and r − |Γ+| = 2, we obtain

the desired contradiction.

�eorem 6.6. If gℂ is of type E8, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. Note that one of the normal forms states that Γ+ consists of 8 elements, and hence cannot apply. �e

other normal form can be treated similarly as in the proof of theorem 6.5. Here are the details. Recall thatΓ+ = {�, � ′, �1, �1}, where � is the highest root, � ′ is the highest root of the root subsystem of type E7 spanned

by the simple roots {�1,… , �7}, and �1 is the highest root of the root subsystem of type D6 spanned by the

simple roots {�1,… , �6}. Hence, if � = m1�1 + … +m8�8 is a root, then2⟨�, �⟩⟨�, �⟩ = m8, 2⟨� ′, �⟩⟨� ′, � ′⟩ = m7 −m8, 2⟨�1, �⟩⟨�1, �1⟩ = m2 −m7 −m8, and �1|gℂ� = (−1)m1+m8 id .
Let Δ0 be the set of roots of kℂ1 with respect to tℂ. �en Π′0 = Π ⧵ {�1, �8} ∪ {�1 + �8} and Π′′0 = {� − �8} are

two sets of positive roots with respect to the notion of positivity Δ+0 induced by Δ+. Moreover, Π′0 are simple

36



roots in Δ+0 , and we check that � ∶= � − �8 is simple too. So let �, �′ ∈ Δ+0 with � = � + �′ be given. Sinceu8(�) = 1, we may assume that u8(�) = 1 and u8(�′) = 0. In particular, �′ is contained in the root subsystem of

type E7 spanned by Π ⧵ {�8}, and since u1(�) = 1, u1(�′) can either be 0 or 1. �e la�er possibility is excluded,

because �′ would not be a root of kℂ1 otherwise, and so u1(�′) = 0. But the only root di�erent from �8 that is not

perpendicular to � is �1, and since � − �′ = � is a root and � + �′ is not, we must have

0 ≠ 2⟨�′, �⟩⟨�′, �′⟩ = u1(�′) 2⟨�1, �⟩⟨�′, �′⟩ = 0,
which is impossible. �erefore, � is simple too. Now it follows that Π′0 ∪Π′′0 is a simple system for kℂ1 and that k1
is a sum of two simple ideals of types E7 and A1. Since any involution on a Lie algebra of type E7 has full rank,

but r − |Γ+| = 4, Γ must be empty.

�eorem 6.7. If gℂ is of type F4, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. �e proof is very similar to the proofs of theorems 6.5 and 6.6. We only need to consider the normal form

in which Γ+ is equal to {�, �1, 2}, with � = 2�1+4�2+3�3+2�4 the highest long root of Δ+, �1 = 2�1+2�2+�3 the

highest long root of the root subsystem of type C3 spanned by {�1, �2, �3}, and 2 the highest short root of the

root subsystem of type B2 spanned by {�2, �3}. Note that �1 and 2 are long and short roots in Δ, respectively,

so if � ∈ Δ is arbitrary, with � = m1�1 +m2�2 +m3�3 +m4�4, then2⟨�, �⟩⟨�, �⟩ = m4, 2⟨�1, �⟩⟨�1, �1⟩ = m1 −m4, 2⟨2, �⟩⟨2, 2⟩ = 2m3 −m1 − 2m4, and �1|gℂ� = (−1)m3+m4 .
Denote by Δ0 the roots of kℂ1 with respect to tℂ and put Δ+0 ∶= Δ0 ∩Δ+. It follows that Π′0 = Π ⧵{�3, �4}∪{�3+�4}
and Π′′0 = {�}, with � = � −�4, are sets of positive roots in Δ0. �e elements of Π′0 are simple in Δ+0 and we claim

that � is simple as well. To see this, assume that � = � + �′ holds for roots �, �′ ∈ Δ+0 . Since u4(�) = 1, we may

assume that u4(�) = 1 and u4(�′) = 0. �en �′ is contained in the root subsystem spanned by {�1, �2, �3}, and

since its highest long root is �1, it follows that u3(�′) equals 0 or 1. Hence, since �′ is supposed to be a root of

kℂ1 , we must have u3(�′) = 0. But the only simple root di�erent from �4 not perpendicular to � is �3, and since� − �′ is a root but � + �′ is not, we have

0 ≠ 2⟨�′, �⟩⟨�′, �′⟩ = u3(�′) 2⟨�3, �⟩⟨�′, �′⟩ = 0,
a contradiction. �us, Π′0 ∪ Π′0 is a simple system for kℂ1 and the subalgebras i′, i′′ associated with Π′0, Π′′0 are

actually two ideals. �eir complexi�cations are Lie algebras of types A3 and A1, respectively, whence the �xed

point set of �2 on k1 is a subalgebra of rank at least 2. But the normal form dictates that the rank of k1 ∩ k2 be 1,
which is impossible. �erefore, Γ must be empty and k1 ∩ k2 has full rank.

�eorem 6.8. If gℂ is of type E7, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. Of the three normal forms that may appear by example 4.14, one states that Γ+ consists of 7 elements

and hence cannot apply. If Γ+ = {�, �1, �3, �6}, where � is the highest root of Δ+ and �1, �3 are the highest roots

of the root subsystems of types D6, D4 spanned by Π ⧵ {�7} and Π ⧵ {�1, �2, �7}, respectively, then for a root� = m1�1 + … +m7�7 we have2⟨�, �⟩⟨�, �⟩ = m7, 2⟨�1, �⟩⟨�1, �1⟩ = m2 −m7, 2⟨�3, �⟩⟨�3, �3⟩ = m4 −m2m −m7, and �1|gℂ� = (−1)m6+m7 id .
It follows, similarly as in theorems 6.5 and 6.6, that Π′ = Π ⧵{�7}∪{�6 +�7} and Π′′ = {� −�7} are two mutually

orthogonal sets whose union is the set of simple roots for k1 with respect to the notion of positivity induced byΔ+. �e sets Π′ and Π′′ give rise to a decomposition of k1 into two ideals whose complexi�cations are of types
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Type of ambient Lie algebra Type of �xed point setA3 A1 ⊕ A1 or C2A2r (r ≥ 1) BrA2r+1 (r ≥ 2) Cr+1 or Dr+1Dr+1 (r ≥ 3) Bp ⊕ Br−pE6 C4 or F4
Table 1. Possible Lie algebra type of the �xed point set of an outer involution on a complex simple Lie algebra.

�e case A3 is listed separately to clarify the meaning of D2.
D6 and A1, respectively, and since the �xed point set of an involution on a Lie algebra of type D6 has rank at

least 5, we conclude that this normal form cannot occur either.

Finally, suppose that Γ+ = {�, �1, �1}. �en �1 is given by (−1)m1 id on the root space of a root � = m1�1 +… + m7�7 and the �xed point set of �1 has a one–dimensional center; it decomposes as k1 = Z(k1) ⊕ h, where

h is the subalgebra of k1 associated with the simple roots Π ⧵ {�1}. �e proof now proceeds along the same

lines as the proof of theorem 6.3: using the standard maximal torus, the standard set of roots, positive roots,

and simple roots introduced in proposition 5.1, we �nd that hℂ is of type E6 and that the �xed point set f of

an automorphism � ∶ h → h induced by the non–trivial automorphism of the Dynkin diagram of hℂ shares

a maximal torus with h, because k1 ∩ k2 has rank 4 and �2 ∶ h → h hence cannot be an inner automorphism.

Moreover, f is a folded subalgebra in h, with fℂ of type F4, and the kernel of the surjective map Ah → Af is the

ideal J generated by all polynomials of odd degree. Since Ag → Ah/J is a surjection by proposition 5.12, f is

totally non–cohomologous to zero in g.

�eorem 6.9. If gℂ is of type G2, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. Indeed, k1 ∩ k2 must be of full rank and Γ must be empty, for if Γ was non–empty, the only normal form

for root systems of type G2 would state that Γ+ consists of two elements, whence s would be trivial.

6.2. Outer automorphisms

We continue to use the notation established in the previous section, but this time we assume that �1 is an outer

automorphism; �2 might be inner or outer. For this case we will have to employ the classi�cation of involutive

automorphisms on complex simple Lie algebras given in [14, �eorem 5.15, chap. X], or more precisely the

classi�cation of the type of the �xed point set of such automorphisms presented in [14, Tables II and III, pp. 514

and 515]. For the convenience of the reader we have reproduced the classi�cation results for the cases that arise

from non–inner automorphisms in table 1.

As an immediate consequence of this classi�cation we have

�eorem 6.10. If gℂ is of type E6, then some h ∈ [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. According to table 1 kℂ1 is either of type C4 or F4 and hence does not admit any outer automorphism.

�erefore, �2 ∶ k1 → k1 �xes a maximal torus of k1, whence [k1 ∩ k2]f = [k1]f , and we already know that there

exists a subalgebra h ∈ [k1]f with the desired property.

Proposition 6.11. Suppose that the Dynkin diagram of gℂ only admits one non–trivial automorphismA∶ Π→Π. �en there exists an involution � ∶ G → G induced by A and elements t ∈ T1, n ∈ NH (T1) ⋅ T such that�1 = ct ◦� and �2 = cn◦� , where � ∈ {� , idG} and H = (G� )0.
Remark 6.12. If one only requires that n be contained in NG (T1), then the statement of proposition 6.11 is

known, cf. [23, Lemma 5.3]. �e point of proposition 6.11 is that we can take n ∈ NH (T1) ⋅ T .

Proof. First of all note that �1 ∶ Π → Π and A must coincide, because �1 is not inner, whence both maps are

non–trivial automorphisms on the Dynkin diagram of gℂ. Now let Π′ ⊆ Π be the set of all simple roots that are

38



�xed by �1 and choose a subset Π′′ ⊆ Π ⧵ Π′ with the property that Π = Π′ ∪ Π′′ ∪ �1(Π′′) is a disjoint union;

such a decomposition exists, because �1 ∶ Π→ Π is an automorphism of order 2. Next, pick a non–zero weight

vector E� for each simple root � ∈ Π′ ∪ Π′′ and put E� ∶= �1(E�1(�)) for all � ∈ �1(Π′′). In this way we obtain

a collection of root vectors {E� | � ∈ Π}, one for each simple root. �e elements of Π constitute a real basis of(it)∗, because g is (semi–)simple, and the only eigenvalues of �1 are 1 and (−1), so we may pick an element X ∈ t

such that �(iX ) = � , if �1(E� ) = −E� , and �(iX ) = 0 else. In particular, X is contained in the joint kernel of all

members of Π′′ and �1(Π′′), and since �(X + �1(X )) = 2�(X ) holds for all � ∈ Π, we even have X ∈ t1. Now

consider the automorphism � ∶= cexp(X )◦�1. It satis�es � (E� ) = EA−1(�) for all � ∈ Π, and since � and �1 agree

on t, � is an automorphism induced by A.

For the second part of the statement, we �rst show that �2 = cn◦� holds, at least with n an element of NG (T1).
�is is true if �2 is an inner automorphism (cf. proposition 3.2), so let us assume that �2 is outer. Note that �2
permutes the roots of tℂ, and so maps the Weyl chamber de�ned by Δ+ (that is, the set of elements Y ∈ it with�(Y ) > 0 if and only if � ∈ Δ+) onto a di�erent Weyl chamber. As is known, the Weyl group acts transitively

on the set of Weyl chambers, hence we �nd g ∈ NG (T ) such that Adg−1 ◦�2 preserves the Weyl chamber de�ned

by Δ+, and consequently also Δ+ and Π. Also note: cg−1◦�2 is outer, because an automorphism is inner if and

only if it �xes a maximal torus. In particular, the non–trivial map Adg−1 ◦�2 ∶ Π→ Π must coincide with A, so

we may use the weight vectors {E� | � ∈ Π} chosen earlier and proceed analogously as in the �rst part of the

proof to �nd t′ ∈ T such that cg−1◦�2 = ct′◦� , the only di�erence to the proof of the �rst part being that the root

vector E� of a root � ∈ Π′′ is not necessarily mapped onto EA(�), but rather a scalar multiple of EA(�); this is

why t′ can only be assumed to be an element of T . �en we have �2 = cgt′◦� and n ∶= gt′ must be contained

in NG (T1) by proposition 3.2.

To conclude the proof, it thus will su�ce to show that NG (T1) = NH (T1) ⋅ T . To this end, recall that T
is the unique maximal torus of G containing T1, so any element of X ∶= NG (T1) also normalizes T , whenceP ∶= NH (T1) ⋅ T actually is a (closed) subgroup of X . Consider the inclusion induced diagramX /P // NG (T )/P NG (T )/T .oo

�e le� hand map is injective and the right hand map is a surjection originating from the Weyl group of G, soX /P is a �nite set. To compute its number of elements, we use [8, Proposition 2.3], according to which

dimH0(X /P ) = dimH0(X )dimH0(P ) ⋅ dimH0(P ∩ X0).
Now P = NH (T1) ⋅ T is a space having as many components as NH (T1) does, because T is path–connected, and

the identity component of X = NG (T1) is ZG (T1) = T . Moreover, H is a folded subgroup with maximal torusT1, and it was shown in [7, Proposition 4.4] that the number of connected components of NG (T1) equals the

number of connected components of NH (T1). �erefore, X /P is connected, and so NG (T1) = NH (T1) ⋅ T .

Now suppose that the Dynkin diagram of gℂ only admits one non–trivial automorphism. �en by proposi-

tions 3.4 and 6.11 we may assume that �1 = ct ◦� and that �2 = cn◦� , where t ∈ T , n ∈ NH (T1), � ∈ {� , idG}, andH is the identity component of the �xed point set of an automorphism � ∶ G → G induced by the non–trivial

Dynkin diagram automorphism Π→ Π. Moreover, if w ∈ W (Δ) is a Weyl group element that is represented by(Adℎ)∗ for some element ℎ ∈ H , then we may assume that Γ is equal tow(Γ): in fact, in this case cℎ and � commute,

and since t1 = t� , ℎ must be an element of NH (T1). �us, cℎ−1◦�1◦cℎ = c(cℎ)−1(t)◦� and cℎ−1◦�2◦cℎ = c(cℎ)−1(n)◦� are

two commuting involutions with common �xed subalgebra Adℎ(k1 ∩ k2) and for which w(Γ) is the set of roots

vanishing on the maximal torus Adℎ(s).
Having applied all desired transformations to Γ, we de�ne Π

odd
⊆ Π to be the set of simple roots � for whichp(�) ∶= ∑�∈Γ+ 2⟨�, �⟩/⟨�, �⟩ is odd and put Πeven ∶= Π ⧵ Π

odd
. We have shown in corollary 3.7 and propo-

sition 3.5 that no root in Π
odd

is �xed by � and that for any choice of integers {�� ∈ {±1} | � ∈ Π
odd

} such

that �� = −�� (�) there exists an element p ∈ T with the property that for all simple roots � the map Adp is
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multiplication with �� i on gℂ� , if � ∈ Π
odd

, and equal to id else. We also showed that there exists s ∈ T such

that Ads restricts to multiplication with exp(i� ∑�∈Γ+⟨�, �⟩/⟨�, �⟩) on gℂ� , that �1 ∶= cps is an involution which

commutes with �2 ∶= �2, and that s is a maximal torus for the common �xed point set of �1 and �2.
�eorem 6.13. If gℂ is of type Ar , then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. Note that if r = 2k is even, then kℂ1 is of type Bk by table 1 and hence only admits inner automorphisms.

�us, [k1 ∩ k2]f = [k1]f and the claim follows in this case, cf. also theorem 6.10.

Henceforth, we assume that r = 2k −1 is odd. �en k ≥ 2, necessarily, and we further suppose that �2 ∶ k1 →
k1 is not an inner automorphism. By table 1 kℂ1 must be either of type A1 ⊕ A1 or of type Dk and �2 ∶ k1 → k1
either interchanges the two simple summands of k1 or is an outer automorphism of order two. In both cases we

have rank (k1 ∩ k2) = rank (k1) − 1 and rank k1 = k. Now note that the Dynkin diagram of gℂ only admits one

non–trivial automorphism, so the considerations preceeding this theorem apply. In particular, we know from

corollary 3.3 that rank (k1 ∩ k2) = rank (k1) − |Γ+|, so Γ+ consists of a single element  , and this element must be

�xed by � because of lemma 3.6. If we enumerate the simple roots Π as in example 4.11, then � maps a root �k−i
to �k+i , and since the elements of Δ+ are of the form �i + �i+1 + … + �j for integers i, j with i ≤ j, we hence have = �k−� + … + �k+� for some � = 0,… , k − 1.

To conclude the theorem, let us consider the involutions �1 and �2 constructed earlier. Observe that

2⟨ , �i⟩⟨ , ⟩ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, i = k − � or i = k + � ,−1, i = k − � − 1 or i = k + � + 1,2, i = k and � = 0,0, else,

and recall that we need to choose integers {�� ∈ {±1} | � ∈ Π
odd

} satisfying �� = −"� (�) in order to de�ne �1.
We de�ne �� to be equal to 1 if and only if � = �i for some i ≤ k. With this choice it follows that for any root� ∈ Δ with � = m1�1 + … +m2k−1�2k−1 we have �1|gℂ� = (−1)m , where

m = {m1, � = k − 1,mk−� +mk+�+1, else.
Now we are ready to determine the �xed point subalgebra f1 of �1. In fact, if Δ0 ⊆ Δ are the roots of fℂ1 with

respect to tℂ and Δ+0 is the notion of positivity induced by Δ+, with resulting simple roots Π0, then

Π0 = {Π ⧵ {�1}, � = k − 1,Π ⧵ {�k−� , �k+�+1} ∪ { + �k+�+1}, else,
because a root � ∈ Δ+0 with � = m1�1 + … + m2k−1�2k−1 either has m1 = 0, if � = k − 1, or mk−� = mk+�+1, if� ≠ k − 1. �us, f1 = Z(f1) ⊕ m has a one–dimensional center Z(f1) given by the common kernel of the 2k − 2
elements in Π0. Moreover, the roots of f1 correspond bijectively to the roots of mℂ

with respect to mℂ ∩ tℂ
via restriction and the positive roots induce a notion of positivity whose simple roots are the restrictions of

the elements in Π0. In particular, if � = k − 1, then m is the subalgebra of g associated with �2,… , �2k−1 and

hence is of type A2(k−1). Since we already know that rank (k1 ∩ k2) = k − 1, �2 ∶ m → m hence must be an

outer automorphism and f1 ∩ f2 = m�2
, where f2 = g�2 . Since [f1 ∩ f2]f contains a subalgebra which is totally

non–cohomologous to zero in m and Ag → Am is surjective, the claim follows if � = k − 1.
An analogous argument shows that the claim also holds if � = 0: for i = 1,… , k we de�ne mi to be the

subalgebra of g associated withΠ⧵{�i , �i+1}∪{�i+�i+1}. �en mk = m andAdg ∶ mi → mi+1 is an isomorphism,

provided that g ∈ NG (T ) is such that (Adg−1 )∗ = s�i+1 . Since the inner automorphism corresponding to s�1 maps

the Lie subalgebra of g associated with {�2,… , �r} onto m1, it hence follows that m is totally non–cohomologous
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to zero in g, so the equivalence class [f1 ∩ f2]f of f1 ∩ f2 = m�2
will contain a respresentative which is totally

non–cohomologous to zero in g as well.

Finally, we consider the case � ≠ 0, k − 1. One can show, but we will not, that m is a sum of two simple

ideals whose complexi�cations are of types A2� and A2(k−�−1), and that these ideals are �2–invariant. Since

the arguments of the previous cases cannot be adapted to this situation, we compute s instead and explicitly

construct a subalgebra which is totally non–cohomologous to zero in g.

To this end, recall that by corollary 3.3 s is the �xed point set of sH on t1 = t� and that H = H�k−� +…+H�k+� .

We also know that t1 is a maximal torus of h = g� , that the restrictions �1,… , �k of �1,… , �k to tℂ1 form a set of

simple roots for the notion of positivity induced by Δ+, and that hℂ is of type Ck , with long root �k . In particular,

since the elements Li = 1/2(H�i +H�2k−i ) are �xed by � and satisfy ⟨Li , ⋅⟩ = �i on t1, we must haveℂLi = [hℂ�i , hℂ−�i ]
for all i = 1,… , k. Moreover, the elements Li with i < k − � − 1 or i > k − � are �xed by sH , as is Lk−�−1 + Lk−� ,

and since s is of rank k − 1, they must comprise a basis of is. So, if we write Φ = {�1,… , �k} and de�ne mi
to be the subalgebra of h associated with Φ ⧵ {�i , �i+1} ∪ {�i + �i+1}, then mk−�−1 shares the maximal torus s

with f1 ∩ f2. But the Weyl group element Adx of h with (Adx−1 )∗ = s�i and x ∈ NH (T1) maps mi isomorphically

onto mi+1, and the Weyl group element of h representing s�1 maps m1 isomorphically onto the subalgebra of h

associated with {�2,… , �k}. Since the la�er is totally non–cohomologous to zero in h by corollary 5.7 and h is

totally non–cohomologous to zero in g, it follows that mk−�−1 must be totally non–cohomologous to zero in g

as well. Hence, mk−�−1 ∈ [f1 ∩ f2]f is the desired subalgebra.

�eorem 6.14. If gℂ is of type Dr , r ≥ 4, then some element in [k1 ∩ k2]f is non–cohomologous to zero in g.

Proof. We �rst note that we may assume r = 2k + 1: from the classi�cation we know that k1 = i′ ⊕ i′′ is a sum

of two simple ideals whose complex�cations are of types Bk and Br−k−1, respectively. Since Lie algebras of typeBm only admit inner automorphisms (even in the case m = 1), it follows that �2 either �xes a maximal torus of

k1 or that �2 interchanges i′ and i′′. In the former case k1 ∈ [k1 ∩ k2]f is totally non–cohomologous to zero in g,

and in the la�er case rank i′ = rank i′′, so r = 2k + 1.
In particular, r ≠ 4, so the Dynkin diagram of gℂ only admits one non–trivial automorphism and the maps �1,�2 are de�ned. Enumerate the simple roots Π as in example 4.12. We show that the root re�ections s�1 ,… , s�2k−1 ,

and s�2k−1 , where �2k−1 = �2k−1 +�2k +�2k+1, can be represented by (Adℎ)∗ with ℎ ∈ NH (T1). Indeed, it is a well–

known fact (cf. the proof of [16, �eorem 4.54, sect. IV.6]) that the root re�ection s� of a root � is represented byAdexp(X ) for some element X ∈ gℂ� ⊕gℂ−� , so if � is the identity on gℂ� , then s� can be represented by some element

in NH (T1). �is is de�nitely the case for the simple roots �1,… , �2k−1, just by de�nition of an automorphism

induced by a Dynkin diagram automorphism; and if X2k−1, X2k , and X2k+1 are non–zero weight vectors for the

roots �2k−1, �2k , and �2k+1, respectively, such that � (X2k ) = X2k+1, then [X2k+1, [X2k−1, X2k]] is a non–zero root

vector for �2k−1 and�([X2k+1, [X2k−1, X2k]]) = [X2k , [X2k−1, X2k+1]] = [[X2k , X2k−1], X2k+1] = [X2k+1, [X2k−1, X2k]],
because adX2k is a derivation and �2k , �2k+1 are perpendicular.

Now observe that the root subsystem Ω of Δ spanned by the roots {�1,… , �2k−1, �2k−1} is of type D2k , with

triple node �2k−2 connected to the mutually perpendicular roots �2k−3, �2k−1, and �2k−1. Moreover, we deduce

from our explicit description of the roots Δ given in theorem 6.4 that Ω is equal to the set of all roots in Δ
which are �xed by � , whence Γ is a set of strongly orthogonal roots in Ω. �us, if we can show that p is

even valued on Ω, then it follows from theorem 4.9 together with our discussion before theorem 6.13 that we

may assume Γ+ to be in one of the normal forms obtained in example 4.12, because the Weyl group W (Ω) is

generated by the root re�ections s�1 ,… , s�2k−1 , and s�2k . However, p(�i) is even for roots i ≤ 2k − 1, because

such roots are �xed by � and hence contained in Πeven. Moreover, the roots in Γ are �xed by � as well, whencep◦� = p, and since � (�2k ) = �2k+1, it hence follows that p(�2k−1) = p(�2k−1) + 2p(�2k ) is even. Combined

with the facts rank k1 = 2k, rank (k1 ∩ k2) = k, and |Γ+| = rank k1 − rank (k1 ∩ k2), we henceforth assume Γ+
to be equal to one of the sets {�1, �1, �3, �3,… , �k−1, �k−1}, {�1, �3,… , �2k−1}, or {�1, �3,… , �2k−3, �2k−1}, where
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�i = �i + 2(�i+1 + … + �2k−1) + �2k + �2k+1. Suppose that �2k−1 ∈ Γ+, so Γ+ is the second of the three sets in

question. �en we have

pj ∶= p(�j ) = ∑�∈Γ+ 2⟨�, �j⟩⟨�, �⟩ = {1, j = 2k, 2k + 1,0, else,
so Π

odd
= {�2k , �2k+1} consists of two elements. Hence, if we choose ��2k = −i, ��2k+1 = i, then �1 is (−id) on

gℂ�2k+1 and the identity on the root space of all other simple roots cf. corollary 3.7. �us, the �xed point set

f1 of �1 is f1 = Z(f1) ⊕ m, where m is the subalgebra of g associated with the simple roots {�1,… , �2k}. Its

complexi�cation is of type A2k and since the inclusion m → g induces a surjection Ag → Am modulo the ideal

in Am generated by all polynomials of odd degree, it follows that m�2 = (f1)�2 shares a maximal torus with a

subalgebra that is totally non–cohomologous to zero in g, cf. also the proof of theorem 6.4.

�e proof is similar in case �2k−1 is contained in Γ+, the di�erence being that p2k = p2k+1 = −1 and thatp2k−1 = 2. Hence, if we let ��2k = i, ��2k+1 = −i, then �1 is (−id) on the root space of the roots �2k−1, �2k+1
and the identity on the weight spaces of the remaining simple roots. �us, f1 = Z(f1) ⊕ m, and this time m is

the subalgebra of g associated with {�1,… , �2k−2, �2k−1 + �2k+1, �2k}. But for any element g ∈ NG (T ) such that(Adg−1 )∗ = s�2k+1 the automorphism Adg sends the subalgebra of g associated with {�1,… , �2k} isomorphically

onto m, so Ag → Am is surjective modulo the ideal J ⊆ Am generated by all polynomials of odd degree too.

Since J is the kernel of any involution on m that is induced by the non–trivial Dynkin diagram automorphism

on some Cartan subalgebra of mℂ
, the claim follows.

Now suppose that Γ+ is neither of the two previous sets. �en Π
odd

is empty and �1 = (−1)m1+…+mk−1 . �e

proof given in theorem 6.4 carries over almost verbatimely if k − 1 > 1, the only di�erence being that �2 does

not �x �2k+1 but �2k−1. Hence, the same rank considerations show that this case cannot occur. If k − 1 = 1,
we note that �2 �xes L3 = H�3 and L4 = 1/2(H�4 + H�5 ), so iL3 and iL4 are basis vectors for s. Moreover, if we

write �̃i for the restriction of �i to the complexi�cation of t1 = t� , then ⟨L3, ⋅⟩ = �̃3 and ⟨L4, ⋅⟩ = �̃4, hℂ is of

type B4, and {�̃1,… , �̃4} is a set of simple roots on tℂ1 with respect to the notion of positivity induced by Δ+,

with short root �̃4. �erefore, s is the maximal torus of the subalgebra m of h associated with {�̃3, �̃4}, which

is totally non–cohomologous to zero in h by corollary 5.7, and since h is a folded subalgebra, m is also totally

non–cohomologous to zero in g.
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Chapter III.

An algebraic model for the equivariant cohomology of isotropy actions

1. g–actions

Let g be a (�nite–dimensional real) Lie algebra, Λ(g) the exterior algebra of g, and Ω(g) the space of alternating

forms on g. �en Ω(g) is a di�erential graded ℝ–algebra with respect to the exterior derivative d, which is the

unique anti–derivation, homogeneous of degree 1, such that d!(X, Y ) = −!([X, Y ]) holds for all ! ∈ Ω1(g) and

all X, Y ∈ g. We can use d to introduce a di�erential on Λ(g): for each integer p ≥ 0 there is a canonical and

non–degenerate pairing ⟨⋅, ⋅⟩∶ Ωp(g) ⊗ Λp(g)→ ℝ,! ⊗ (X1 ∧ … ∧ Xp)↦ !(X1,… , Xp),
so we may uniquely de�ne a linear map ) ∶ Λ(g)→ Λ(g), homogeneous of degree −1, which is dual to (−d)with

respect to this pairing, that is, such that we have ⟨!, )�⟩ = −⟨d!, �⟩ for all ! ∈ Ωp(g) and all � ∈ Λp+1(g). �e

non–degeneracy of the pairing above readily shows that ) is a di�erential, but, unfortunately, it is not an anti–

derivation on Λ(g) with respect to the canonical ring structure on Λ(g), unless d is trivial. In fact, ) vanishes onΛ1(g), because d is zero on Ω0(g), while we have )(X ∧ Y ) = [X, Y ] for all X, Y ∈ g.

Moreover, just as the adjoint map induces a representation g → End(Ω(g)), X ↦ −(adX )∗, where (adX )∗ ∶Ω(g) → Ω(g) is the unique extension of adX ∶ g∗ → g∗ to a derivation in Ω(g), we obtain a representation

g → End(Λ(g)) by extending each of the maps adX ∶ g → g to a derivation adX ∶ Λ(g) → Λ(g). �e mapsadX and (adX )∗ then are dual to each other with respect to the canonical pairing between Ω(g) and Λ(g), and

we shall denote the subalgebra of all invariant elements in Λ(g) by Λ(g)g or simply Λ, if there is no source for

confusion.

De�nition 1.1. Let (M, d) be a di�erential graded ℝ–module (ℝ–dgm for short), that is, a ℤ–graded vector

space M over ℝ together with a di�erential d ∶ M → M , homogeneous of degree 1. An action of g in (M, d)
is a tuple (i,) consisting of ℝ–linear maps i ∶ g → End(M) and  ∶ g → End(M), subject to the following

conditions, for all X, Y ∈ g:

(1) iX is homogeneous of degree −1 and X is homogeneous of degree 0,
(2) we have (iX )2 = 0 and i[X,Y ] = X ◦iY − iY ◦X ,

(3) [X,Y ] = X ◦Y − Y ◦X ,

(4) X = d◦iX + iX ◦d .

We remark that if g is the Lie algebra of a Lie group G, then [13] refers to (M, d) and (i,) as a G⋆–module,

cf. [13, De�nition 2.3.1, sect. 2.3]. If M actually is a di�erential graded ℝ–algebra, X is a derivation, and iX
is an anti–derivation for all X ∈ g, then the data of the de�nition above is also known as a di�erential graded

g–algebra (cf. [9, De�nition 3.1]) or operation of g (see [11, De�nition, sect. 7.1], although there it additionally

is required that M is non–negatively graded).

Example 1.2.

(1) If we consider the contraction operator iX ∶ Ω(g) → Ω(g), X ∈ g, as a map i ∶ g → End(Ω(g)), X ↦ iX ,

and the contragredient representation as a map −ad∗ ∶ g → End(Ω(g)), X ↦ −(adX )∗, then the pair(i, −ad∗) is a g–action in the di�erential graded ℝ–module (Ω(g), d).
43



(2) Let LX ∶ Λ(g)→ Λ(g) denote multiplication from the le� with X ∈ g in the algebra Λ(g). �en LX is dual

to iX ∶ Ω(g) → Ω(g) with respect to the canonical pairing introduced earlier, and since adX and (adX )∗
are also dual to each other, it follows that (L(⋅), ad) is a g–action in (Λ−∙(g), )), where Λ−∙(g) coincides withΛ(g) as a vector space, but its p–th graded component is given by (Λ−∙(g))p = Λ−p(g) for all integers p.

For example, if X , Y are arbitrary elements of g and ! ∈ Ω(g) and � ∈ Λ(g) are arbitrary homogeneous

elements of (ordinary) degree p > 0, then to verify the equation L[X,Y ] = adX ◦LY−LY ◦ adX , we observe that

⟨!, L[X,Y ](�)⟩ = ⟨i[X,Y ]!, �⟩ = ⟨(−adX )∗iY! + iY (adX )∗!, �⟩ = ⟨!, −LY adX (�) + adX LY (�)⟩.
(3) If g is the Lie algebra of a Lie groupG andM is a (smooth)G–manifold, then g acts on theℝ–dgm (Ω(M), d)

of forms on M together with the exterior derivative d∶ Ω(M) → Ω(M). In fact, if given a vector �eld X
on M we let iX denote contraction of a form with X and write X for the Lie derivative in the direction

of X , then the de�ning equations for an action are satis�ed by all pairs of vector �elds X , Y on M . In

particular, if X ∈ g, then the assignments X ↦ iX and X ↦ X de�ne an action of g in Ω(M), whereX is the vector �eld induced by the G–action, that is, the complete vector �eld with �ow M × ℝ → M ,(t, p)↦ exp(−tX ).p. Note that some authors declare −X to be the induced vector �eld, however we shall

see later that the choice of sign that we make is dictated if we require that all maps between di�erential

graded ℝ–modules be chain maps.

(4) Actions can be pulled back along Lie algebra homomorphisms: if (i,) is a g–action in a di�erential gradedℝ–module M , h is a Lie algebra, and F ∶ h → g is a homomorphism of Lie algebras, then (i◦F ,◦F ) is an

h–action in M .

Now suppose that g–acts on an ℝ–dgm (M, d) and extend the representation of g in S(g∗) and M to the tensor

product of vector spaces S(g∗)⊗M via the assignment X ↦ X , with X ∶= (− adX )∗ ⊗ id + id⊗X for all X ∈ g.

We denote by Cg(M) the space of all invariant elements in S(g∗)⊗M and endow Cg(M)with the ℤ×ℤ–bigrading

Cp,qg (M) ∶= (Sp(g∗) ⊗ Mq−p)g .
As is well known, Cg(M) is a double complex, called Cartan complex, whose total cohomology is commonly

referred to as the equivariant cohomology of the g–action on (M, d). �e details are collected in

Proposition 1.3. Let X1,… , Xn be a basis of g with dual basis "1,… , "n ∈ g∗. Let further id⊗d andM"j ⊗ iXj be theℝ–linear maps on S(g∗) ⊗M induced by the ℝ–bilinear assignments (f , m)↦ f ⊗ d(m) and (f , m)↦ f "j ⊗ iXjm,

respectively.

(1) �e maps d and X commute for all X ∈ g, and

(2) i extends to a homomorphism of ℝ–algebras i ∶ Λ(g)→ End(M).
(3) �e maps id⊗d and � ∶= ∑nj=1M"j ⊗ iXj restrict to endomorphisms on Cg(M). As such they are di�erentials

and homogeneous of bidegrees (0, 1) and (1, 0), respectively.

(4) the maps id⊗d and � anti–commute on Cg(M).
Proof. To prove the �rst item, note that

X ◦d = (d◦iX + iX ◦d)◦d = d◦(d◦iX + iX ◦d) = d◦X .
�e second statement is a consequence of the fact that, for all X, Y ∈ g, we have 0 = iX+Y ◦iX+Y and that the

right hand side of this equation is equal to iX ◦iY + iY ◦iX , by linearity of the map i.
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To prove the third item, note that id⊗d is even a di�erential on S(g∗) ⊗ M , and we claim that so is �. In fact,S(g∗) is a commutative ring, so M"j ◦M"i = M"i ◦M"j for all i, j and

�◦� = n∑i,j=1(M"i ◦M"j ) ⊗ (iXi ◦iXj ) = n∑i<j(M"i ◦M"j ) ⊗ (iXi ◦iXj ) − ∑i>j(M"i ◦M"j ) ⊗ (iXj ◦iXi ) = 0.
Moreover, since d commutes withX for allX ∈ g, also id⊗d commutes with the representation of g in S(g∗)⊗M .

Hence, to �nish the proof of the third statement it su�ces to show that � commutes with X too. To this end,

we compute, using that X is a derivation on S(g∗), for all pure tensors f ⊗ m
(X ◦�)(f ⊗ m) = n∑j=1X (f "j ) ⊗ iXjm + (f "j ) ⊗ X iXjm

= (�◦X )(f ⊗ m) + n∑j=1(fX ("j )) ⊗ iXjm + (f "j ) ⊗ i[X,Xj ]m,
and observe that X ("j ) = −∑ni=1 "j ([X, Xi])"i , whencen∑j=1(fX ("j )) ⊗ iXjm = − n∑i=1 n∑j=1(f "i) ⊗ "j ([X, Xi])iXjm = − n∑i=1(f "i) ⊗ i[X,Xi]m.

To verify the last item, we �rst observe that the operator ∑nj=1M"j ◦Xj vanishes identically on S(g∗). In fact,

since each of the maps Xj is a derivation on S(g∗), it will su�ce to check this for ℎ ∈ g∗, and for such an element

we compute n∑j=1 "jXj (ℎ) = − n∑i,j=1 ℎ([Xj , Xi])"i"j = 0,
the last equation being true due to the skew–symmetry of [⋅, ⋅]. Now observe that on Cg(M) we have

(id⊗d)◦� + �◦(id⊗d) = n∑j=1M"j ⊗ Xj = − n∑j=1(M"j ◦Xj ) ⊗ id .
It should be noted that the de�nition of the di�erentials does not depend on the actual choice of basis and

dual basis. Indeed, there is a canonical homomorphism of ℝ–algebras from S(g∗) into the space of all maps

g∗ → ℝ given by interpreting a tensor f ∈ S1(g∗) as the form X ↦ f (X ), and this homomorphism is injective

in each degree. Hence, for each degree p one obtains an identi�cation of Sp(g∗) ⊗ M with a certain subspace of

all maps g∗ → M , usually referred to as the space of M–valued polynomials on g. Under this identi�cation the

sum id⊗d − � becomes the map sending an M–valued polynomial f to the map X ↦ d(f (X )) − iX (f (X )).
We use the symbol Hg(M) to denote the cohomology of the Cartan complex (Cg(M), id⊗d − �). If M = Ω(X )

is the space of smooth forms on a smooth manifold X and G is compact connected, then Hg(M) is isomorphic,

as an Ag–algebra, to the topological model HG (X ) of equivariant cohomology introduced in section I.1, cf. [12,

�eorem C.4]. Next, suppose that g also acts on an ℝ–dgm (N , d′) and let Φ∶ M → N be a chain map, i. e. a

map with Φ◦d = d′◦Φ. Motivated by the next result, we call Φ a morphism of g–actions if Φ additionally is a

morphism of representations and if Φ◦i − i◦Φ or Φ◦i + i◦Φ is the zero map g → End(M,N ); thus either for allX ∈ g we have Φ◦iX = iX ◦Φ or for all X ∈ g we have Φ◦iX = −iX ◦Φ.

Proposition 1.4. Suppose that g is compact and let M , N be two di�erential graded ℝ–modules which are

acted on by g. Further suppose that Φ∶ M → N is a morphism of g–actions, homogeneous of degree 0, which

induces an isomorphism on cohomology, that the inclusions Mg → M and N g → N are quasi–isomorphisms,

and that there exists an integer q0 ∈ ℤ withMq = 0, N q = 0 for all q < q0. �en the map � ⊗Φ∶ Cg(M)→ Cg(N )
is a quasi–isomorphism, where � is the linear map sending a homogeneous polynomial f ∈ Sp(g∗) to �p ⋅ f and� ∈ {±1} is chosen in such a way that Φ◦iX = � ⋅ iX ◦Φ for all X ∈ g.
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Proof. Note that � ⊗Φ is a map of double complexes: if we denote the di�erentials on M and N by dM and dN ,

respectively, then certainly (id⊗dN )◦(� ⊗Φ) = (� ⊗Φ)◦(id⊗dM ), since Φ is assumed to be a chain map. If f ⊗ m is

a pure tensor with f homogeneous of degree p and X1,… , Xn is a basis of g with dual basis "1,… , "n , then(M"j ⊗ iXj )◦(� ⊗ Φ)(f ⊗ m) = �p ⋅ (f "j ) ⊗ iXjΦ(m)= �p+1 ⋅ (f "j ) ⊗ Φ(iXjm)= (� ⊗ Φ)◦(M"j ⊗ iXj )(f ⊗ m),
and this implies that �N ◦(� ⊗Φ) = (� ⊗Φ)◦�M . Consequently, � ⊗Φ induces a map between the vertical �ltrations

on Cg(M) and Cg(N ) (called “�rst �ltration” in [3, Section A.2]), hence also a map � ⊗Φ∶ E1,M → E1,N between

the �rst pages of the associated spectral sequences. �is map �ts into a commutative diagram

Hq(Cp,∙g (M), id⊗dM)
��

�⊗Φ // Hq(Cp,∙g (N ), id⊗dN )
��Ep,q1,M �⊗Φ // Ep,q1,N

for all integers p, q, where the vertical maps are isomorphisms, and since we are assuming that M , N are con-

centrated in positive degrees with the exception of �nitely many negative degrees, it will su�ce to show that

the upper horizontal map is an isomorphism for all p, q to conclude that � ⊗ Φ∶ E1,M → E1,N and hence also� ⊗ Φ∶ Hg(M)→ Hg(N ) is an isomorphism, see [3, Section A.4].

However, since g is compact, the canonical inclusionAg⊗Mg → (S(g∗)⊗M)g = Cg(M) is a quasi–isomorphism,

cf. [11, Proposition IV, sect. 7.6]. Similarly,Ag⊗N g → Cg(N ) is a quasi–isomorphism, so we have, for all integersp and q, a commutative diagram

Apg ⊗ Hq−p(Mg) �⊗Φ //
��

Apg ⊗ Hq−p(N g)
��Hq(Cp,∙g (M)) �⊗Φ // Hq(Cp,∙g (N ))

in which the vertical maps are again isomorphisms. Moreover, Φ is a morphism of the representations of g inM and N , hence restricts to a map Φ∶ Mg → N g
. �is restriction of the quasi–isomorphism Φ must again be a

quasi–isomorphism, because Mg → M as well as N g → N are so. �erefore, the upper horizontal map in the

diagram above is an isomorphism, as is � ⊗ Φ∶ Hg(M)→ Hg(N ).
2. Constructing g–actions

�roughout this section we �x a compact connected Lie group G and a di�erential graded ℝ–module (M, d).
Recall that we set Λ = Λ(g)g and suppose that we are given an ℝ–algebra homomorphism i ∶ Λ→ End(M)with

the following property: whenever � ∈ Λ is homogeneous of degree p, then

(1) i� is homogeneous of degree −p and

(2) i� ◦d = (−1)p ⋅ d◦i� .

Note that i turns M into a le� Λ–module, and if given � ∈ Λ we de�ne R� ∶ Λ(g) → Λ(g) via R� (�) = � ∧ � for� ∈ Λ(g), then Λ(g) becomes a right Λ–module. Hence, we may form the tensor product of Λ–modules

 ∶= Λ(g) ⊗ΛM.
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Observe that  does not canonically inherit a bigrading fromΛ(g) andM , however, if we let k = ∑j−i=k Λi(g)⊗ΛM j
, then  = ⨁k∈ℤ k is a ℤ–grading.

Proposition 2.1. Let f ∶ M → M be an ℝ–linear map with i� ◦f = (−1)p ⋅ f ◦i� for all homogeneous elements� ∈ Λ of degree p and let � ∶ Λ(g)→ Λ(g) be the degree involution, that is, the linear map taking a homogeneous

element � ∈ Λp(g) to �(�) = (−1)p ⋅ �. �en the assignment Λ(g) ×M →  , (�,m)↦ �(�) ⊗Λf (m), is Λ–balanced

and hence descends to an ℝ–linear map � ⊗Λ f ∶  →  .

Proof. Let � ∈ Λ and � ∈ Λ(g) be homogeneous elements of respective degrees p and q, and choose m ∈ M
arbitrarily. Balancedness of the map in question is implied by the chain of equations�(R� (�)) ⊗Λ f (m) = (−1)p+q ⋅ � ⊗Λ i� f (m) = (−1)q ⋅ � ⊗Λ f (i�m) = �(�) ⊗Λ f (i� (m)).
Remark 2.2. Note that � and f are not maps of right– and le�–Λ–modules, though, so the notation � ⊗Λ f is

not customary. However, if g ∶ Λ(g) → Λ(g) is an endomorphism of the right Λ–module Λ(g), not necessarily

homogeneous, then we still have (g ⊗Λ id)◦(� ⊗Λ f ) = (g◦�) ⊗Λ f and (� ⊗Λ f )◦(g ⊗Λ id) = (�◦g) ⊗Λ f , because the

maps on the right hand sides of the previous two equations are induced by Λ–balanced maps Λ(g) × M →  .

For example, if � ∈ Λ(g), � ∈ Λ is homogeneous of degree p, and m ∈ M , then we have(�◦g)(R� (�)) ⊗Λ f (m) = (−1)p ⋅ R�((�◦g)(�)) ⊗Λ f (m) = (�◦g)(�) ⊗Λ f (i�m).
Similarly, if ℎ∶ M → M is a map of the le�Λ–moduleM , then (�⊗Λf )◦(id⊗Λℎ) = �⊗Λ(f ◦ℎ) and (id⊗Λℎ)◦(�⊗Λf ) =� ⊗Λ (ℎ◦f ).
Proposition 2.3. �e map ) is a morphism of the right Λ–module Λ(g).
Proof. It is a well known fact (cf. [11, Lemma I, sect. 5.12]) that each element in Λ is closed with respect to ).

Now suppose that we have shown that )(R� (�)) = R� ()(�)) for all homogeneous elements � of degree at most p
and all elements � ∈ Λ. Let X, X1,… , Xp ∈ g and put � = X1 ∧ … ∧ Xp . By the Cartan formula and because R�
commutes with LX and adX , it follows that()◦R� )(LX (�)) = ()◦LX )(R� (�)) = R�(adX (�) − LX ◦)(�)) = (R� ◦))(LX (�)).
Since the elements of the form LX (�) span Λp+1(g), we inductively conclude that R� ◦) = )◦R� .

In a similar fashion, one shows that each element X ∈ g gives rise to maps LX⊗Λ id∶  →  and adX ⊗Λ id∶ →  , uniquely determined by the condition that a pure tensor �⊗Λm be mapped to (LX⊗Λ id)(�⊗m) = LX (�)⊗Λm
and (adX ⊗Λ id)(� ⊗ m) = adX (�) ⊗ m, respectively.

Proposition 2.4. �e map � ∶= ) ⊗Λ id +� ⊗Λd is a di�erential on  , homogeneous of degree 1, and the tuple(L(⋅)⊗Λ id, ad ⊗Λ id) is a g–action in ( , �).
Proof. �e maps ) and � anti–commute, hence so do ) ⊗Λ id and � ⊗Λ d , which is why � is a di�erential on

 . It is homogeneous of degree 1, because so are � ⊗Λ d and ) ⊗Λ id, by our choice of grading. Next, recall

that (L(⋅), ad) already is a g–action in (Λ−∙(g), )) by example 1.2, so of all the properties that need to be veri�ed

in order for the speci�ed tuple to de�ne a g–action in ( , �), those not involving the di�erential � are already

satis�ed. Hence, it only remains to verify the Cartan formula. �e la�er indeed holds for all X ∈ g, because LX
and � anti–commute, whence�◦LX ⊗Λ id +LX ⊗Λ id ◦� = ()◦LX + LX ◦)) ⊗Λ id +(�◦LX + LX ◦�) ⊗Λd = adX ⊗Λ id .

Our next goal is to show that the natural inclusion M →  , m ↦ 1 ⊗Λm, is a quasi–isomorphism between(M, d) and ( , �) by providing an explicit quasi–inverse map  → M . To construct this map, we need to make
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a general observation. So suppose that X is a topological space and that I ∶ C(X ) → ℝ is an ℝ–linear map on

the space of continuous real valued functions on X . Given a �nite–dimensional ℝ–vector space V , equipped

with its canonical smooth structure, we can extend I to an operator I ∶ C(X, V ) → V by requiring that the

following universal property be satis�ed: for all forms � ∈ V ∗ and all continuous functions f ∶ X → V we have(�◦I )(f ) = I (�◦f ). Indeed, if v1,… , vn is any basis of V with dual basis "1,… , "n , then the operator C(X, V )→ V
mapping f to ∑ni=1 I ("i◦f )vi satis�es the universal property for each "j , whence by linearity of I it must be

satis�ed for arbitrary forms � ∈ V ∗.
We apply this reasoning in case that X is a compact oriented (smooth) manifold, with or without boundary,

and I = ∫X dx is a notion of integration of continous functions on X . More precisely, ∫X f (x) dx = ∫X fV
for some �xed volume form V on X , where the right hand side is the ordinary integral of forms on oriented

manifolds. Extend ∫X dx to an operator C(X,Λ(g))→ ℝ and suppose that f ∶ X → G is a continuous function.

�en for all � ∈ Λ(g) the assignment X → Λ(g), x ↦ Adf (x)(�), de�nes another continuous function, where

we have extended each Adg ∶ g → g to a homomorphism of ℝ–algebras Adg ∶ Λ(g) → Λ(g). Consequently,

we obtain an operator

�X,f ∶ Λ(g)→ Λ(g), � ↦ ∫X Adf (x)(�) dx,
which is homogeneous of degree 0. Also note that if an ℝ–linear map F ∶ Λ(g)→ Λ(g) commutes with Adg for

all g ∈ G, then it also commutes with �X,f : in fact, if � ∈ (Λ(g))∗ and � ∈ Λ(g) are arbitrary, then by the universal

property

(�◦�X,f ◦F )(�) = ∫X �(Adf (x)(F (�))) dx = ∫X (�◦F )(Adf (x)(�)) dx = (�◦F ◦�X,f )(�),
whence �X,f ◦F = F ◦�X,f . In particular, ) and R� commute with �X,f : the former because the exterior derivative d
on Ω(g) commutes with (Adg )∗ ∈ End(Ω(g)) and (Adg )∗ is dual to Adg ∈ End(Λ(g)) with respect to the canonical

pairing between Λ(g) and Ω(g); and the la�er because G is connected, so that Λ = Λ(g)g is precisely the space of

elements which are invariant with respect to the representation Ad∶ G → End(Λ(g)). �erefore, �X,f descends

to a well–de�ned chain map �X,f ⊗Λ id∶  →  .

Let us be more speci�c about the choices that we make if X = [0, 1] or X = G, since these are the only cases

of interest to us. If X = [0, 1], we take the volume form used to de�ne �[0,1],f to be the standard volume form on[0, 1], and then �[0,1],f (�) is just the ordinary integral of the path t ↦ Adf (t)(�) in Λ(g). For X = G we chooseV to be a biinvariant volume form, so �G,id(�) will be Ad– and hence ad–invariant. Given that we will make

frequent use of �G,id, let us also write � ∶= �G,id. Now the promised quasi–inverse map M → A is introduced

in the following

Proposition 2.5. �ere is a unique ℝ–linear map � ∶  → M taking a pure tensor � ⊗ m to � (� ⊗ m) = i�(�)m,

and this map is a chain map.

Proof. We just argued that � commutes with R� for all � ∈ Λ, so the assignmentΛ(g)×M → M , (�,m)↦ i�(�)m,

is Λ–balanced and induces a map � ∶  → M . Moreover, since the elements of Λ are )–closed and � commutes

with ), we have �◦) = 0. �is implies that � is a chain map, for if � ∈ Λ(g) is homogeneous of degree p andm ∈ M is arbitrary, then(�◦�)(� ⊗Λm) = i�()(�))m + i�(�(�))dm = (−1)p ⋅ i�(�)dm = di�(�)m = (d◦� )(� ⊗Λm).
�eorem 2.6. �ere exists a chain homotopy H ∶ Λ(g) → Λ(g), homogeneous of degree 1, between � and id
which commutes with R� for all � ∈ Λ.

Proof. In fact, a fairly standard chain homotopy will do. Here are the details. First note that since G is compact

and connected we �nd a �nite open cover  of G such that each set U ∈  admits a smooth map FU ∶ U ×
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[0, 1] → G connecting the identity map on U to the constant map U → {e}, that is, such that FU (g, 1) = g
and FU (g, 0) = e for all g ∈ U and the neutral element e ∈ G. We further �nd a partition of unity (�U )U∈
subordinate to  . For � ∈ Λ(g) we de�ne

�U (�) ∶= ∫G �U (g) Adg (�) dg and �U ∶= ∫G �U (g)� dg.
By linearity of the (extended) integral we then have �(�) − � = ∑U∈ �U (�) − �U . Next, �x U ∈  , � ∈ Λ(g), a

point g ∈ G, and t ∈ [0, 1]. If we let k ∶= AdFU (g,t), thendds ||||s=t AdFU (g,s)(�) = Adk dds ||||s=t Adk−1FU (g,s)(�) = (Adk ◦ adWU (g,t))(�),
where WU (g, t) ∈ g is the vector �eld which at e evaluates to  ′(t) and  (s) = k−1FU (g, s); to see this, recall

that there is an isomorphism TidEnd(g)→ End(g) taking a tangent vector �′(0), � a smooth curve in End(g), to

the map X ↦ dds |||s=0 �(s)(X ) and use that (Ad ◦ )′(t) = (d Ad)e( ′(t)). We also observe that WU (g, t) depends

smoothly on t since  (t) = e and the exponential map of G is a di�eomorphism onto some open neighborhood

of e. Combined with the universal property of the extended integral and the fundamental theorem of calculus

we conclude that

Adg (�) − � = ∫ 10 dds ||||s=t AdFU (g,s)(�) dt = ∫ 10 (AdFU (g,t) ◦ adWU (g,t))(�) dt.
Now put TU (g, �) ∶= �U (g) ⋅ ∫ 10 (AdFU (g,t) ◦LWU (g,t))(�) dt and note that TU (g, ⋅) commutes with R� for all � ∈ Λ,

because LX and Adk do so for all X ∈ g, k ∈ G. Hence, if we use the generalized Cartan formula to replaceadWU (g,t) by )◦LWU (g,t) +LWU (g,t)◦) in the displayed formula above, multiply the result with �U (g), and integrate

over G a�erwards, then we obtain

�U (�) − �U = ∫G )(TU (g, �)) + TU (g, )(�)) dg = ()◦HU + HU ◦))(�),
where we have set HU (�) = ∫G TU (g, �) dg. Again, observe that HU commutes with R� for all � ∈ Λ, becauseTU (g, ⋅) already does. �us, if we write H ∶= ∑U∈ HU , then � − id = )◦H + H ◦) and H is as claimed.

Corollary 2.7. H induces a chain homotopy H ⊗Λ id, homogeneous of degree −1, between � ⊗Λ id and id .

Proof. Part of the statement of theorem 2.6 was that H commutes with R� for all Λ, so we obtain a well de�ned

map H ⊗Λ id∶  →  . Moreover, � and H anti–commute, because H is homogeneous of degree 1. �erefore,H ⊗Λ id ◦� + �◦H ⊗Λ id = (H ◦) + H ◦)) ⊗Λ id +(H ◦� + �◦H ) ⊗Λd = � ⊗Λ id − id .
Corollary 2.8. �e natural inclusion M →  , m ↦ 1 ⊗Λm, is a quasi–isomorphism with quasi–inverse � .

3. Compatibility with existing actions

We continue to use the notation of the previous section and additionally assume that (j,) is an action of a Lie

algebra m in (M, d) satisfying the following property: if � ∈ Λ is homogeneous of degree p, then

(1) jA◦i� = (−1)p ⋅ i� ◦jA and

(2) A◦i� = i� ◦A
for all A ∈ m. �e second condition says that A is a homomorphism of the Λ–moduleM , hence induces a well–

de�ned map id⊗ΛA ∶  →  for all A ∈ m, and by proposition 2.1 we obtain a linear map � ⊗Λ jA ∶  → 
sending a pure tensor � ⊗Λ m to �(�) ⊗Λ jA(m).
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Proposition 3.1. We set i(X,A) ∶= LX ⊗Λ id +� ⊗Λ jA and (X,A) ∶= adX ⊗Λ id + id⊗ΛA for all X ∈ g, A ∈ m.

�en the assignments (X, A)↦ i(X,A) and (X, A)↦ (X,A) de�ne a g ⊕m–action in ( , �).
Proof. Ultimately, this is a consequence of the fact that the degree involution � ∶ M → M commutes with

all homogeneous maps of even degree and anti–commutes with all homogeneous maps of odd degree. In more

detail, let [⋅, ⋅]∶ End()×End()→ End() also denote the commutator of endomorphisms. �en for allX, Y ∈ g

and A, B ∈ m we have[(X,A), i(Y ,B)] = [adX ⊗Λ id, LY ⊗Λ id] + [adX ⊗Λ id, � ⊗Λ jB] + [id⊗ΛA, LY ⊗Λ id] + [id⊗ΛA, � ⊗Λ jB]= i[X,Y ] ⊗Λ id +� ⊗Λ j[A,B].
In a similar fashion one veri�es the equation [(X,A),(Y ,B)] = ([X,Y ],[A,B]), the right hand side of which, by

de�nition of the bracket on the sum g ⊕ m, is equal to [(X,A),(Y ,B)]. To validate the Cartan formula recall that� = ) ⊗Λ id +� ⊗Λd and that both �◦) + )◦� and LX ◦� + �◦LX vanish, so we computei(X,A)� + � i(X,A) = (LX ⊗Λ id)� + �(LX ⊗Λ id) + (� ⊗Λ jA)� + �(� ⊗Λ jA) = adX ⊗Λ id + id⊗ΛA.
4. An exact sequence

Let G be a compact connected Lie group, g its Lie algebra, and put Λ = Λ(g)g. If M and N are le�– and right–Λ–modules, respectively, then restriction of scalars turns M and N into ℝ–vector spaces, so the tensor product

(of ℝ–modules) N ⊗M = N ⊗ℝM is declared. It is a real vector space and contains N ⊗ΛM as a quotient. In fact,

we have a short exact sequence of real vector spaces0 // I // N ⊗ M // N ⊗ΛM // 0,
where I ⊆ N ⊗ M is the subspace spanned by all elements of the form (n�) ⊗ m − n ⊗ (�m), with n ∈ N , m ∈ M ,

and � ∈ Λ; the map N ⊗ M → N ⊗ΛM is the natural map sending a pure tensor n ⊗ m to n ⊗Λm. Moreover, iff ∶ N → N and g ∶ M → M are ℝ–linear maps, then the assignment N ⊗M → N ⊗ΛM , (n,m)↦ f (n)⊗Λg(m),
is Λ–balanced if and only if I is an invariant subspace of f ⊗ g ∶ N ⊗ M → N ⊗ M .

Speci�cally, if N = Λ−∙(g), M is a di�erential graded ℝ–module with di�erential d , and i∶ Λ→ End(M) is as

in section 2, making M a le�–Λ–module, then the balancedness of the maps adX ⊗Λ id, LX ⊗Λ id, ) ⊗Λ id, and� ⊗Λd implies that the maps adX ⊗ id, LX ⊗ id, ) ⊗ id, and � ⊗ d restrict to endomorphisms of I for all X ∈ g.

Hence, (L(⋅) ⊗ idM , ad⊗ idM ) is a g–action in Λ−∙(g) ⊗ M which restricts to a g–action in I , and if u is another

compact Lie algebra and F ∶ u → g is a Lie algebra homomorphism, then also u acts on (I , �0), (Λ−∙(g) ⊗ M, �0),
and  = Λ(g) ⊗ΛM via the pullback of the respective g–action along F , where �0 ∶= ) ⊗ id +� ⊗ d . We claim that

we obtain an exact sequence of di�erential graded Au–modules0 // Cu(I ) // Cu(Λ−∙(g) ⊗ M) // Cu() // 0.
Indeed, since tensoring with a �xed vector space preserves exact sequences, this is immediate for the le� portion

of the sequence above. To see that the map S(u∗) ⊗Λ−∙(g) ⊗M → S(u∗) ⊗  is still surjective a�er passing to the

subspaces of u–invariant elements, note that due to the compactness of u we have, by [11, Lemma I, sect. 4.3,

and theorem III, sect. 4.4], for each p ≥ 0 a projection �p ∈ End(S≤p(u∗) ⊗ Λ−∙(g)) onto the space of u–invariant

elements (S≤p(u∗) ⊗ Λ−∙(g))u whose kernel is spanned by all elements of the form X (f ⊗ �), where X ∈ g,f ∈ S≤p(u∗), and � ∈ Λ(g). �ey assemble to a projection � onto the u–invariants in S(u∗)⊗Λ−∙(g), and � commutes

with id⊗R� for all � ∈ Λ. �us, the map � ⊗ idM , which — by de�nition of the u–action in S(u∗) ⊗ Λ−∙(g) ⊗ M —

is the projection onto the u–invariants, induces a map � ⊗Λ idM . Hence, if x ∈ S(u∗) ⊗ Λ−∙(g) ⊗ M is a preimage

of y ∈ Cu(), then so is (� ⊗ id)(x) ∈ Cu(Λ−∙(g) ⊗ M).
Now the short exact sequence of di�erential graded Au–modules induces a long exact cohomology sequence
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of Au–modules, which may be rewri�en as the exact sequenceHu(I ) // Hu(Λ−∙(g) ⊗ M) // Hu()�kk

with � the “connecting homomorphism”. Explicity, � is the map, homogeneoeus of degree 1, sending x ∈ Hu(),
say with x represented by ∑j fj ⊗ �j ⊗Λmj , to the class of ∑j �0(fj ⊗ �j ⊗ mj ) in Hu(I ).
Proposition 4.1. Suppose that Mq = 0 for all but �nitely many q < 0 and that F ∶ u → g is not the trivial map.

�en Hu(Λ−∙(g) ⊗ M) is a torsion Au–module.

Lemma 4.2. Suppose that Mq = 0 for all but �nitely many q < 0. �en the Au–module Hu(Λ−∙(g) ⊗ M) is

isomorphic to Hu(Λ−∙(g)) ⊗ H(M), the u–action in Λ−∙(g) being the pullback of the g–action along F ∶ u → g.

Proof. Recall that g acts on Λ−∙(g) ⊗ M via (L(⋅) ⊗ idM , ad⊗ idM ) and that the u–action is the pullback of this

g–action along the map F . On the other hand, a g–action in the ℝ–dgm (Λ−∙(g) ⊗ H(M), ) ⊗ id) is declared by(L(⋅) ⊗ id, ad⊗ id), and if s∶ H(M) → ker(d) is a section, that is, an ℝ–linear map, homogeneous of degree 0,
such that s(x) represents the cohomology class x ∈ H(M), then id⊗s∶ Λ−∙(g) ⊗H(M)→ Λ−∙(g) ⊗M is a map of

g–actions. In fact, we have �0◦(id⊗s) = (id⊗s)◦() ⊗ id), because s maps into the kernel of d and �0 = ) ⊗ id +� ⊗d .

�us, if id⊗s is a quasi–isomorphism, then it also induces an isomorphism ofAu–modulesHu(Λ−∙(g) ⊗ H(M))→Hu(Λ−∙(g) ⊗ M), as according to [11, �eorem III, sect. 4.4] the inclusion of the u–invariants in Λ−∙(g) is a

quasi–isomorphism, so that proposition 1.4 applies. Since we have a canonical isomorphism of Au–modulesHu(Λ−∙(g)) ⊗ H(M) ≅ Hu(Λ−∙(g) ⊗ H(M)), the claim will then follow.

�erefore, it only remains to show that id⊗s is a quasi–isomorphism. But (Λ−∙(g) ⊗ M, �0) is just the tensor

product of two di�erential graded ℝ–modules, so, by the Künneth formula (cf. [20, �eorem 10.1, chap. V]),

the map p∶ H(Λ−∙(g)) ⊗H(M)→ H(Λ−∙(g) ⊗ M) sending [�] ⊗ [m] to [� ⊗ m] is an isomorphism, where square

brackets indicate equivalence classes. Since the kernel of )⊗id is spanned by all elements �⊗x with � ∈ ker ), the

restriction of id⊗s to ker() ⊗ id) factors through p, and it follows that id⊗s must be a quasi–isomorphism.

Proof of proposition 4.1. By lemma 4.2 it will su�ce to show that Hu(Λ−∙(g)) is a torsion Au–module, and

we �rst assume that F ∶ u → g is injective. Put k ∶= F (u). If Y1,… , Yn is a basis of k with dual basis "1,… , "n ,

then F−1(Y1),… , F−1(Yn) is a basis of u with dual basis "1◦F ,… , "n◦F ; this observation shows that (F ∗) ⊗ id in-

duces an isomorphism of di�erential graded ℝ–modules Ck(Λ−∙(g))→ Cu(Λ−∙(g)), and under this isomorphism

multiplication in Hk(Λ−∙(g)) with a polynomial f ∈ Ak corresponds to multiplication with F ∗(f ) in Hu(Λ−∙(g)).
�erefore, it su�ces to show that Hk(Λ−∙(g)) is a torsion Ak–module.

But, neglecting gradings, Hk(Λ−∙(g)) is just H(g, k): to see this, choose a non–zero element V ∈ Λm(g), wherem = dim g, and de�ne the Lie algebraic Poincaré duality isomorphism D∶ Λk (g) → Ωm−k (g), � ↦ i�V, for

all k. It is a map of representations, because any non–zero element in Λm(g) is invariant, g being compact,

and it satis�es D◦LX = iX ◦D for all X ∈ g. Using the Cartan formula and that V is )–closed, we conclude

by induction on k that d◦D = D◦) on Λm−k (g), so id⊗D induces an isomorphism of (ungraded) vector spacesHk(Λ−∙(g))→ Hk(Ω(g)). As is well known (see e.g. [11, Section 10.9]),Hk(Ω(g)) ≅ H(g, k), by compactness of k. In

particular,Hk(Λ−∙(g)) is �nite–dimensional, and since multiplication inHk(Λ−∙(g))with a homogeneous elementf ∈ Ak of degree k > 0 is a homogeneous endomorphism of Hk(Λ−∙(g)) of degree 2k and Ak is non–trivial, it

follows that Hk(Λ−∙(g)) is a torsion Ak–module.

Now let F be arbitrary, but non–trivial, and put u1 ∶= ker F . �en u1 is an ideal in u, and since u is compact,

we �nd a compact ideal u2 ⊆ u complementary to u1, that is, such that u = u1 ⊕ u2 as Lie algebras. �e

canonical isomorpism S((u1)∗)⊗ S((u2)∗)→ S(u∗) induced by the projections u → u1 and u → u2 restricts to an

isomorphismAu1⊗Au2 → Au and induces, since u1 acts trivially onΛ−∙(g), an isomorphism of di�erential gradedℝ–modules Au1 ⊗ Cu2 (Λ−∙(g)) → Cu(Λ−∙(g)), where we consider the le� hand side as the tensor product of the

trivial ℝ–dgm (Au1 , 0)with Cu2 (Λ−∙(g)). In particular, we have an isomorphism Au1 ⊗Hu2 (Λ−∙(g))→ Hu(Λ−∙(g))
under which multiplication with a polynomial f ∈ Au2 corresponds to multiplication with the pullback of f along
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the projection u → u2. Since u2 is non–trivial by assumption, our earlier considerations show that Hu2 (Λ−∙(g))
is a torsion Au2–module, whence also Hu(Λ−∙(g)) is a torsion Au–module.

Corollary 4.3. Under the hypothesis of proposition 4.1 the connecting homomorphism induces an isomorphism

of K (Au)–vector spaces Hu()[S−1]→ Hu(I )[S−1], where S = Au ⧵ {0} and K (Au) = Au[S−1] is the quotient �eld

of Au.

Proof. We just checked that Hu(Λ−∙(g) ⊗ M) is a torsion Au–module, that is, a trivial K (Au)–vector space.

Since localization preserves exact sequences [5, Proposition 2.5, sect. 2.2], the localization at S of the long exact

cohomology sequence for the triple (I ,Λ−∙(⊗)M, ) hence reduces to an isomorphismHu()[S−1]→ Hu(I )[S−1].
5. Applications to smooth manifolds

5.1. General results

Let G be a compact connected Lie group with Lie algebra g and M a manifold which is acted on by G (from the

le�). We already have seen in example 1.2 that theG–action induces a g–action on (Ω(M), d) via the assignmentsX ↦ iX and X ↦ X , where X is the vector �eld induced by X ∈ g and iX , X denotes contraction with,

respectively Lie derivative in direction of X . Our goal in this section is to introduce on Ω(M)g, the di�erential

graded submodule of Ω(M) consisting of g–invariant elements, a right–Λ–module structure and to show thatΩ(M) is quasi–isomorphic, through a morphism of g–actions, to Λ(g) ⊗Λ(Ω(M)g).

We extend the assignment g → End(Ω(M)), X ↦ iX , to a morphism of ℝ–algebras Λ(g) → End(Ω(M)),� ↦ i� , and set Tg ∶ M → M , p ↦ g.p, for all g ∈ G. Also note that Ω(M)g = Ω(M)G , because G is connected.

Proposition 5.1. Choose an invariant form ! ∈ Ω(M)g and � ∈ Λ(g). For all g ∈ G we have(Tg )∗(i� !) = iAdg−1 (�) !.
Proof. Observe that if X ∈ g is arbitrary, then Adg−1 X is Tg–related to X . Indeed, the integral curve of the

former vector �eld emanating at p is given by the curve t ↦ exp(Adg−1 X ).p = g−1.(exp(X ).gp), so a�er

composing with Tg we obtain the integral curve t ↦ exp(tX ).gp of X starting at g.p = Tg (p). Hence, by

invariance of ! we have (Tg )∗(i� !) = iAdg−1 (�) (Tg )∗! = iAdg−1 (�) !.
Corollary 5.2. For all � ∈ Λ the map i� restricts to an endomorphism Ω(M)g → Ω(M)g. Moreover, if � ∈ Λ(g)
is homogeneous of degree p and ! ∈ Ω(M)g, then di�! = i)� ! + (−1)p ⋅ i� d!.
Remark 5.3. We stress that the formula above holds even in case that p is equal to or exceeds the degree of

(any homogeneous component of) !. In this case the right hand side of the formula vanishes identically.

Proof. �e �rst statement is an immediate consequence of proposition 5.1. To prove the second assertion, we

proceed by induction on the degree of �, that is, we show that for all elements � ∈ Λ(g) of degree at most p
the claimed formula holds. If p = 0, then � is a scalar and the operator i� is just multiplication by �. For the

induction step, note that it will su�ce to consider elements of the form LX (�) with � ∈ Λ(g) of degree p, sinceΛp+1(g) is spanned by such elements. �en we have iLX (�) = iX ◦i� , whence for invariant forms ! on M the

Cartan formula implies diLX (�) ! = X i� ! − iX di� !;
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note that this formula in particular holds for 0–forms (i.e. smooth functions), so the equation remains true in

case that ! is homogeneous and of degree at most p. On the other hand, if q ∈ M , then by proposition 5.1

(X i� !)q = ddt ||||t=0 ((Texp(−tX ))∗(i� !))q = ddt ||||t=0 (iAdexp(tX )(�) !)q = (iadX (�) !)q ,
because contraction of forms on a �xed tangent space is a linear endomorphism of a �nite–dimensional vector

space and hence commutes with taking di�erential. Using the Cartan formula in Λ(g) as well as the induction

hypotheses, we thus �nd

diLX (�) ! = (i)(LX (�)) + iLX ()(�)))! − iX( i)� + (−1)p ⋅ i�d)! = i)(LX (�)) ! + (−1)p+1 ⋅ iLX (�) d!.
In particular, if � ∈ Λ is homogeneous of degree p, then d◦i� = (−1)p ⋅ i� ◦d on Ω(M)g. Hence, if we considerΩ(M)g a le�–Λ–module via the maps i� and let  ∶= Λ(g) ⊗Λ(Ω(M)g), then the results of the previous sections

apply to  .

�eorem 5.4. �e map Λ(g) × Ω(M)g → Ω(M), (�, !) ↦ i�!, is Λ–balanced and descends to a quasi–

isomorphism of g–actions Φ∶  → Ω(M).
Proof. We extended i ∶ g → End(Ω(M)) to a homomorphism of ℝ–algebras, so we have iR� (�)! = i�i�! for all� ∈ Λ(g) and � ∈ Λ, and this proves that we indeed have a well–de�ned map Φ on  . For the same reason we

have Φ◦(LX ⊗Λ id) = iX ◦Φ for all X ∈ g. Checking that Φ is a chain map amounts to verifying that the diagram

k � //

Φ
��

k+1Φ
��Ω(M)k d // Ω(M)k+1

is commutative for all integers k, which it is by de�nition of � and corollary 5.2; carefully note that the diagram

in particular commutes when k is negative and so one or both spaces in the bo�om row of the diagram are

trivial, whereas the spaces in the top row might be non–zero, cf. remark 5.3. Next, note that in the proof of

corollary 5.2 we also showed that X i�! = iadX (�)! for all X ∈ g and all � ∈ Λ(g), ! ∈ Ω(M)g, proving that

X ◦Φ = Φ◦(adX ⊗Λ id).
Finally, recall from corollary 2.8 that the canonical inclusion Ω(M)g →  is a quasi–isomorphism. Since by

compactness of G also the canonical inclusion Ω(M)g ↪ Ω(M) is a quasi–isomorphism [11, Proposition XIII,

sect. 7.20] and the la�er map factors through Φ, so must be Φ.

Corollary 5.5. Let U be a compact connected Lie group, F ∶ U → G a homomorphism of Lie groups, and

consider the pulled back action of u in  , Ω(M) along F ∶ u → g. �en id⊗ΛΦ∶ Hu() → Hu(Ω(M)) is an

isomorphism of Au–modules.

Example 5.6 (Actions by multiplication, biquotients). Let H and K be two compact and connected Lie groups,� ∶ H → G and � ∶ K → G two Lie group homomorphisms, and consider the action of a closed subgroupU ⊆ H × K on M = G given by (ℎ, k).g = � (ℎ)g� (k−1) for all (ℎ, k) ∈ U and g ∈ G. We can consider the

induced u–action as the pullback of a g ⊕ g–action on Ω(G): indeed, G × G acts on G by the rule (g1, g2).g =g1g(g2)−1 for all g1, g2, g ∈ G, and then the u–action is the pullback of the induced g ⊕ g–action along the map� ⊕� ∶ u → g⊕g. �us, according to corollary 5.5 the u–equivariant cohomology can be modeled on the ℝ–dgm

 = Λ(g ⊕ g) ⊗Λ(Ω(G)g⊕g), where now Λ = Λ(g ⊕ g)g⊕g.

Let us be explicit about theΛ–module structure onΩ(G)g⊕g. If we denote by �1 and �2 the inclusions of g = g⊕0
and g = 0⊕g into g⊕g, respectively, and extend both maps to ℝ–algebra homomorphismsΛ(g)→ Λ(g ⊕ g), then

they induce an isomorphism Λ(g) ⊗ Λ(g)→ Λ(g ⊕ g) sending �1 ⊗ �2 to �1(�1)�2(�2). �is isomorphism restricts

to an isomorphism Λ(g)g ⊗ Λ(g)g → Λ(g ⊕ g)g⊕g, so it will su�ce to examine the e�ect of each of the factors
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separately. To this end, note that Ω(G)g⊕g is just the space of biinvariant forms on G, so the map Ψ∶ Ω(g) →Ω(G) extending a form ! ∈ Ω(g) to a le�–invariant form on G restricts to an isomorphism Ω(g)g → Ω(G)g⊕g.

Moreover, if X ∈ g, then �1(X )(e) = −X (e) and �2(X )(e) = X (e),
because the integral curves of these vectors �elds starting at the identity element e ∈ G are given by t ↦exp(−tX ) ⋅ e and t ↦ e ⋅ exp(−tX )−1, respectively. Since contracting a biinvariant form on G with an element ofΛ gives a biinvariant form again (corollary 5.2) and a le�–invariant form is determined by the value it takes ate, it follows that for ! ∈ Ω(g)g and homogeneous � ∈ Λ(g)g, say of degree p, we havei�1(�)Ψ(!) = (−1)p ⋅ Ψ(i�!) and i�2(�)Ψ(!) = Ψ(i�!).

5.2. Commuting actions

Let G and K be two compact connected Lie groups, both acting on a smooth manifold M . Suppose that the

actions commute and that we are interested in computing the equivariant cohomology of the induced g ⊕ k–

action on Ω(M). One way to do so is to consider Ω(M) as a Λ(g ⊕ k)g⊕k–module and to apply the previously

established results, but in the present situation it actually su�ces to regard Ω(M) as a module over Λ = Λ(g)g.

More precisely, let X and Y # denote the vector �elds on M induced by the G– and K–action, respectively,

where X ∈ g and Y ∈ k. Denote by Tg ∶ M → M , p ↦ g.p, and Sk ∶ M → M , p ↦ k.p, translation by g ∈ G
and k ∈ K and note that Tg and Sk commute by assumption; in particular, (Sk )∗ and consequently Y # restricts

to an endomorphism on Ω(M)g for all Y ∈ k. Moreover, if X ∈ g, then X is Sk–related to itself for every k ∈ K ,

so for any form ! on G and all Y ∈ k, t ∈ ℝ we have(Sexp(−tY ))∗(iX!) = iX (Sexp(−tY ))∗!.
Di�erentiating this equality, we hence �nd that Y #◦iX = iX ◦Y # . By the same reasoning iY # restricts to a mapΩ(M)g → Ω(M)g, so we are in the situation of proposition 3.1, with jY = iY # . �us, we have a g ⊕ k–action in

 = Λ(g) ⊗Λ(Ω(M))g.

Proposition 5.7. �e map Φ∶  → Ω(M) introduced in theorem 5.4 is a morphism of g ⊕ k–actions.

Proof. In fact, given Y ∈ k it is immediate that Φ◦(0,Y ) = Y #◦Φ. Moreover, if � ⊗Λ! is a pure tensor, with� ∈ Λ(g) homogeneous of degree p, then(Φ◦i(0,Y ))(� ⊗Λ!) = (Φ◦� ⊗Λ iY # )(� ⊗Λ!) = (−1)p ⋅ i�iY #! = iY # i�!.
�ese observations, together with the fact that Φ already is a morphism of g–actions, imply that Φ is a morphism

of g ⊕ k–actions.

Since Φ is a quasi–isomorphism, corollary 5.5 generalizes accordingly and we have

Corollary 5.8. Let U be a compact connected Lie group, F ∶ U → G × K a homomorphism of Lie groups, and

consider the pulled back action of u in  , Ω(M) along F ∶ u → g ⊕ k. �en id⊗ΛΦ∶ Hu() → Hu(Ω(M)) is an

isomorphism of Au–modules.

Example 5.9 (Homogeneous spaces). Let H ⊆ G be a closed connected subgroup, suppose that M = G/H , and

that G acts on G/H by multiplication from the le�; no additional assumptions are made about the action of K .

If U is another compact connected Lie group and F ∶ U → G × K is a homomorphism, then we can pull back

the action of g ⊕ k along F ∶ u → g ⊕ k. According to corollary 5.8 the equivariant cohomology of this u–action

on Ω(G/H ) then is computed by the u–action on  = Λ(g) ⊗Λ (Ω(G/H )g), and Ω(G/H )g is just the space of

le�–invariant forms on G/H .
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Now the map Ψ∶ Ω(g, h) → Ω(G/H )g extending an h–basic form on g to a le�–invariant form on G/H is

an isomorphism of di�erential graded ℝ–modules, so we can also pullback the k–action on G/H along Ψ to

a k–action (j,) on the di�erential graded ℝ–submodule Ω(g, h) of Ω(g). Under this isomorphism Ψ the mapi� corresponds, just as in example 5.6, to the map (−1)p ⋅ i� on Ω(g, h), whenever � ∈ Λ is homogeneous of

degree p. Also observe that we still have jY ◦i� = (−1)p ⋅ i� ◦jY and Y ◦i� = i� ◦Y for all Y ∈ k, so g ⊕ k acts

on  = Λ(g) ⊗ΛΩ(g, h) as well. Moreover, if we pull back this g ⊕ k action on  along F , then the induced

map id⊗Ψ∶ Hu() → Hu() is an isomorphism of Au–modules too, because Ψ∶ Ω(g, h) → Ω(G/H )g is an

isomorphism. Hence, the equivariant cohomology of the u–action on Ω(G/H ) is also isomorphic, as an Au–

module, to Hu().
As an explicit example, let K = {e} be the trivial subgroup, U ⊆ G any closed connected subgroup, and F the

inclusion. �en Hu() is the equivariant cohomology of the action of U on G/H given by le�–multiplication,

and the action of u in  is just the restriction of the g–action (L(⋅)⊗Λ id, ad ⊗Λ id).
5.3. Symmetric spaces

Let G be a compact connected Lie group, � ∶ G → G an involution and U ∶= (G� )0 the identity component of

the �xed point set of � . If H ⊆ G is a closed connected subgroup, then we have shown in example 5.9 that u acts

on  = Λ(g) ⊗ΛΩ(g, h) via the pullback of the g–action (L(⋅)⊗Λ id, ad ⊗Λ id) along the inclusion, and that Hu()
is isomorphic, as an Au–module, to the equivariant cohomology of the U–action on G/H by le�–multiplication.

As an application of this result we shall show

�eorem 5.10. Suppose that H contains U . �en the action of U on G/H by le�–multiplication is equivariantly

formal.

Lemma 5.11. Let ! ∈ Ω(g, h) be a closed form, homogeneous of degree p. �e map Λ−∙(g)→ , � ↦ �⊗Λ!, is

homogeneous of degree p and a map of u–actions. Hence, it induces a map of double complexes j ∶ Cu(Λ−∙(g))→Cu().
Proof. Just observe that �(� ⊗Λ!) = () ⊗Λ id)(� ⊗Λ!) for all � ∈ Λ(g), because ! is closed. Now it is immediate

from the g–actions in Λ−∙(g) and  that the assignment Λ−∙(g)→ , � ↦ � ⊗Λ!, is a map of g–actions, and by

de�nition of the grading in  this assignment is homogeneous of degree p.

Lemma 5.12. �e map Λ(g) × Ω(g, h)→ , (�, !)↦ � (�) ⊗Λ(� ∗!), descends to a map � ⊗Λ(� ∗)∶  → , and� ⊗Λ (� ∗) is a morphism of u–actions.

Proof. Given � ∈ Λ(g) and ! ∈ Ω(g, h) we have � ∗(i�!) = i� (�)� ∗(!), so the map Λ(g) × Ω(g, h) →  sending

a pair (�, !) to � (�) ⊗Λ (� ∗!) is Λ–balanced. �e resulting map � ⊗Λ (� ∗) is morphism of u–actions, because u is

the �xed point set of � , whence LX ◦� = �◦LX and adX ◦� = �◦ adX for all X ∈ u.

Lemma 5.13. Let �∶ Λ(g)→ Λ(g) be the projection onto Λ (cf. theorem 2.6) and write E+ for the 1–eigenspace

of � ∶ Λ(g)→ Λ(g). �en E+ is �–invariant.

Proof. By the universal property of the extended integral we have (�◦�)(�) = ∫G (�◦Adg )(�) dg for all elements� in (Λ(g))∗ and � ∈ Λ(g), and if f ∶ G → ℝ is continuous, then the right hand side is de�ned as ∫G f (g) dg =∫G fV for some biinvariant volume form V on G. Observe that since g decomposes as g = u ⊕ p, where p is the(−1)–eigenspace of � on g, and since the map Ω(g)→ Ω(G)G extending a form on Ω(g) to a le�–invariant form

is an isomorphism, we have � ∗(V) = � ⋅ V for some � ∈ {±1}. In particular, if � ∈ E+ and we let f (g) ∶= Adg (�),
then �◦f = f ◦� , because �◦Adg = Ad� (g) ◦� , and

(�◦�◦�)(�) = ∫G (�◦�◦f )(g) dg = ∫G (�◦f ◦� )V = � ⋅ ∫G � ∗((�◦f )V) = ∫G (�◦f )V = (�◦�)(�),
because � ∗ is orientation preserving if and only if � = 1.
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Proof of theorem 5.10. We need to show that the spectral sequence associated with the vertical �ltration onCu() collapses on the �rst page, see [13, Section 6.9]. Equivalently, we need to prove that the map Hu() →H() induced by the map S(u∗) ⊗  →  sending a pure tensor f ⊗ ! to f (0) ⋅ ! is surjective. �us, we �xx ∈ H(), and since the natural inclusion Ω(g, h) →  is a quasi–isomorphism, we may assume that x is

represented by an element of the form 1 ⊗Λ!, with ! ∈ Ω(g, h) homogeneous of degree p ≥ 0.
Let E+, E− be the 1– and (−1)–eigenspaces of � ∶ Λ(g) → Λ(g) and denote by j ∶ Cu(Λ−∙(g)) → Cu()

the map constructed in lemma 5.11. We shall prove by induction that for each r ≥ 0 there exist elementsc0,… , cr ∈ Cu(Λ−∙(g)) with the following properties:

(1) c0 = 1 ⊗ 1,
(2) ci is contained in C i,−iu (Λ−∙(g)) ∩ S(u∗) ⊗ E+, and

(3) dC (j(c0 + … + cr )) ∈ Cr+1,p−ru (),
where dC = id⊗�−� is the di�erential on Cu(), � is the di�erential on , and � = ∑t M�t ⊗LXt ⊗Λid for some basisX1,… , Xk of u with dual basis �1,… , �k . Note that existence of such elements implies surjectivity of the map in

question, because Cu() vanishes in bidegrees (∗, −i) for su�ciently large i ≥ 0. Also note that the statement is

true for r = 0 and c0 = 1 ⊗ 1, because ! is closed and j(c0) = 1 ⊗ 1 ⊗Λ! is an element of bidegree (0, p), whencedC (j(c0)) = −�(j(c0)) is an element of bidegree (1, p). �erefore, we may assume that the induction hypothesis

holds up to some natural number r ≥ 0, and choose c0,… , cr satisfying the induction statement.

Our �rst claim is that c′ ∶= �(j(cr )) is closed with respect to id⊗� . We have just checked this in case that r = 0,
so assume that r > 0. Since by induction hypothesis the element dC (j(c0 +…+ cr )) is of bidegree (r + 1, p − r), all

homogeneous components of dC (j(c0 +…+ cr )) of bidegree di�erent from (r + 1, p − r) must vanish individually.

However, the map j is homogeneous of bidegree (0, p), so the element (id⊗�)(j(ci)) has bidegree (i, p − i + 1) and�(j(ci)) is of bidegree (i + 1, p − i). �erefore, we already must have (id⊗�)(j(cr )) = �(j(cr−1)), and so(id⊗�)((�◦j)(cr )) = −(�◦(id⊗�))(j(cr )) = −(�)2(j(cr−1)) = 0,
because (id⊗�) and � anti–commute and � already is a di�erential.

Now consider the projection � from Λ(g) onto Λ. We have already seen in section 2 that � descends to a

well–de�ned map � ⊗Λ id on , that � ⊗Λ id commutes with the g–representation in , and that there exists a

chain homotopy H ∶ Λ−∙(g)→ Λ−∙(g), homogeneous of degree −1, between � and idwhich also induces a chain

homotopy H ⊗Λid between � ⊗Λid and the identity map on . Since c′ is closed with respect to id⊗� , we hence

have c′ − (id⊗� ⊗Λ id)(c′) = ((id⊗�)◦(id⊗H ⊗Λ id))(c′) = ((id⊗) ⊗Λ id)◦(id⊗H ⊗Λ id))(c′),
because any element in the image of j is already closed with respect to id⊗� ⊗Λd.

Observe that the expression (id⊗� ⊗Λ id)(c′) is identically zero: in fact, it follows from the very de�nition of

the map j that we have (id⊗� ⊗Λ id)◦j = j◦(id⊗�). Moreover, if � ∈ E+, then also LX (�) ∈ E+ for all X ∈ u, and

since � leaves the space E+ invariant as well, we have

(id⊗� ⊗Λ id)(c′) = k∑t=1(j◦(id⊗�)◦(M"t ⊗ LXt ))(cr ) ∈ j (S(u∗) ⊗ (E+ ∩ Λ2r+1)) .
However, if � ∈ E+ is homogeneous of degree 2r + 1, then necessarily � ∈ Λ+(u) ⊗ Λ(p), where Λ+(u) now is

the space generated by all homogeneous elements of non–zero degree. Since ! ∈ Ω(g, h) is h–basic and u ⊆ h,

we hence have i�! = 0 for all such �. As � ⊗Λ ! = ±1 ⊗Λ i�! for all homogeneous � ∈ Λ, it follows that(id⊗� ⊗Λ id)(c′) = 0.
It remains to note that, due to the compactness of u and [11, �eorem III, sect. 4.4], both S(u∗) ⊗ Λ−∙(g) andS(u∗)⊗ can be exhausted as a union of �nite–dimensional u–invariant subspaces and hence admit decomposi-
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tions Cu(Λ−∙(g))⊕W and Cu()⊕W ′
, respectively, whereW is the subspace spanned by all elements of the form

X (a) with a ∈ S(u∗) ⊗ Λ−∙(g), X ∈ g, and W ′
is the subspace spanned by all elements of the form X (b) withb ∈ S(u∗)⊗; that is,W andW ′

are the kernels of the projections onto the u–invariants. Since Cu(Λ−∙(g)) further

decomposes as a sum of the 1– and (−1)–eigenspaces of id⊗� , we may decompose (id⊗H )(�(cr )) accordingly as(id⊗H )(�(cr )) = cr+1 + n + w , wherecr+1 ∈ Cr+1,−r−1u (Λ−∙(g)) ∩ S(u∗) ⊗ E+, n ∈ Cu(Λ−∙(g)) ∩ S(u∗) ⊗ E−, and w ∈ W.
Since j sends W into W ′

, id⊗) ⊗Λ id leaves W ′
invariant, and c′ is an element of Cu(), it follows that c′ =(id⊗) ⊗Λ id)(j(cr+1 + n)). Moreover, since every homogeneous element in Ω(g, h) of degree q is an eigenvector

of � ∗ to the value (−1)q , it follows that j(n) is an eigenvector of id⊗� ⊗Λ(� ∗) for the eigenvalue (−1)p+1, whereasc′ and j(cr+1) are eigenvectors for the eigenvalue (−1)p . �erefore, we already must havec′ = (id⊗) ⊗Λ id)(j(cr+1)) = (id⊗�)(j(cr+1)),
whence the elements c0,… , cr+1 are as required by the induction claim.

Remark 5.14. As already pointed out earlier, theorem 5.10 above can actually be deduced from the main the-

orem of [6], which treats the case H = U . To see this, note that we may assume that u contains no non–zero

ideal of g. In fact, if g′′ ⊆ u is an ideal of g, then g = g′ ⊕ g′′, h = h′ ⊕ g′′, and u = u′ ⊕ g′′ for some ideal g′
in g, where h′, u′ ⊆ g′. Write G′, G′′, H ′

, and U ′
for the corresponding Lie groups. Since the action of u′ ⊕ g′′

on Ω(g′ ⊕ g′′, h′ ⊕ g′′) de�ned in example 5.9 is isomorphic to that of u on Ω(g, h), the action of U on G/H is

equivariantly formal if and only if so is the action of U ′ ×G′′ on (G′ ×G′′)/(H ′ ×G′′), which, in turn, is the case

if and only if U ′
acts in an equivariantly formal fashion on G′/H ′

. Hence, we may assume G = G′, H = H ′
, andU = U ′

right away.

We claim that then necessarily h = (u ∩ [g, g]) ⊕ a for some subspace a ⊆ Z(g). Indeed, it follows from [14,

Proposition 5.2, sect. VIII.5], that [g, g] decomposes as [g, g] = l1 ⊕ … ⊕ ln in such a way that each li is an

ideal in [g, g] and such that u ∩ [g, g] = u1 ⊕ … ⊕ un , where ui = u ∩ li . Moreover, li is an invariant subspace

of the involution de�ning u, and if pi is the (−1)–eigenspace of this involution on li , then the representation

ui → End(pi), X ↦ adX , is irreducible. Now �x an index j > 0 and let hj denote the image of h under the

projection Z(g) ⊕ [g, g] → lj . Note that this projection is a Lie algebra homomorphism, whence hj is a Lie

subalgebra, and that uj ⊆ hj , because uj ⊆ h. If uj was a proper subspace of hj there would be an element X ∈ h

whose component Xj ∈ hj under the aforementioned projection would not be contained in uj , and since uj ⊆ h

and lj = uj ⊕ pj , we could assume Xj ∈ pj . �us, hj ∩ pj would be a non–trivial uj–invariant subspace, whence

by irreducibility of the representation of uj in pj necessarily hj ∩ pj = pj would have to hold. But then we would

have lj ⊆ h, because

h ⊇ [uj , h] = [uj , hj] ⊇ [uj , pj] = pj ,
contradicting our assumption that h does not contain any ideal of g. �erefore, uj = hj . So if X ∈ h is arbitrary

and we write X = X ′ +X ′′ with X ′ ∈ Z(g) and X ′′ ∈ [g, g], then X ′′ ∈ u and hence already X ′ ∈ h, proving that

h = (u ∩ [g, g]) ⊕ (h ∩ Z(g)). It remains to note that also u = (u ∩ [g, g]) ⊕ (u ∩ Z(g)) and that the action of U onG/H is equivariantly formal if G is Abelian.
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