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Abstract

Boolean operations applied in biology and integrated with electronic transducers allow
the development of a new class of digital biosensors for the detection of multiple input
signals simultaneously and in real-time. With the help of Boolean functions (AND,
OR, etc.), an electrical output signal will be directly delivered, representing a �1� or
�0� binary notation, corresponding to a �true� or �false� statement, respectively. Such
digital biosensors have the future potential to create medical devices and systems for
intelligent or smart diagnostics.

The present thesis describes the realization of di�erent enzyme-based biomolecular
logic gates combined with electronic transducers for the possible application in medicine
or food industry. In a �rst concept, a so called BioLogicChip is developed combining
a �sense-act-treat� function integrated on one chip. The present system exemplarily
mimics an �arti�cial pancreas� designed as a closed-loop drug-release system. A glu-
cose sensor is constructed as enzyme-based AND logic gate, a temperature-depending
hydrogel imitates the actuator function switching ON and OFF with its shrinking
or swelling property, and an additional insulin sensor is developed to monitor and
control the release of the drug (here: insulin) from the actuator. In this study, the
results of the individual components such as the amperometric glucose sensor, the
temperature-dependent hydrogel and the amperometric insulin sensor are presented,
which are necessary to create such BioLogicChip.

Moreover, a digital adrenaline biosensor is developed to proof the catheter position
during adrenal vein sampling. The sensor consists of an oxygen electrode modi�ed by
a bi-enzyme system with the enzymes laccase and pyrroloquinoline quinone-dependent
glucose dehydrogenase (PQQ-GDH) to realize substrate-recycling principle to detect
low adrenaline concentrations (in the nanomolar concentration range). The sensor`s
behavior at di�erent pH values and at di�erent temperatures is studied. Measure-
ments in Ringer`s solution are performed. In addition, the sensitivity of the biosensor
to other catecholamines such as noradrenaline, dopamine and dobutamine is investi-
gated. Furthermore, the adrenaline biosensor is successfully examined in human blood
plasma. Finally, �proof-of-principle� experiments have been performed by combining
the adrenaline biosensor with Boolean operations to get a rapid qualitative statement
of the presence or absence of adrenaline, thus validating the correct position of the
catheter in a YES/NO form.

This adrenaline biosensor is further miniaturized as a thin-�lm platinum adrenaline
biosensor. Here, the bioelectrocatalytical measurement principle is applied by immobi-
lization of the enzyme PQQ-GDH to detect adrenaline in the nanomolar concentration
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range, too. The measurement conditions such as pH value, glucose concentration in the
analyte solution and temperature are optimized with regard to a high sensitivity and
low detection limit. Also, this sensor has been veri�ed towards other catecholamines
(noradrenaline, dopamine and dobutamine). The platinum thin-�lm adrenaline biosen-
sor is successfully applied in blood plasma for the detection of di�erent spiked adrenaline
concentrations. Furthermore, the developed adrenalin biosensor is able to detect the
concentration di�erence between adrenal blood (adrenaline concentration of &100 nM)
and peripheral blood (adrenaline concentration of 1 - 5 nM). A high adrenaline concen-
tration (&100 nM) would indicate the right position of the catheter into adrenal veins
during adrenal vein sampling.

In contrast to the above-mentioned amperometric biosensor examples for biomolecular
gates, also a �eld-e�ect-based platform is given attention in this thesis. The �eld-e�ect
electrolyte-insulator-semiconductor (EIS) sensor consists of a layer structure of Al/p-
Si/SiO2/Ta2O5 and is used to create an acetoin biosensor for the �rst time to control
di�erent fermentation processes. The sensor chip is modi�ed by the enzyme acetoin
reductase from B. clausii DSM 8716T for the catalytical reaction of (R)-acetoin to
(R,R)-butanediol and meso-butanediol, respectively, in the presence of NADH. The
linear measurement range, the optimal immobilization strategy (cross-linking by using
glutaraldehyde and adsorptive binding) as well as the optimal working pH value and
long-term stability are investigated by means of constant-capacitance measurements.
Finally, the acetoin sensor was successfully applied in wine probes to detect di�erent
spiked acetoin concentrations. The sensor shows opportunities to be further developed
as digital acetoin biosensor.
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1 Introduction

Digital electronics strongly in�uence and assist our daily life. Examples for that are
modern telecommunications-, household- or multimedia systems such as mobile phone,
co�ee machine, rice cooker, tablet computer etc. The centerpiece of all these traditional
computer-based devices is Boolean algebra with its 16 two input functions such as
AND, OR, XOR, NAND, realized as logic gates. With the help of these logic
gates, complex logic units are built (e.g., register or memory), peripheral devices are
controlled (e.g., monitor, keypad, printer or speakers), memory access of data and
program instructions are performed and data are processed [1, 2]. One predominant
feature of digital electronics is that Boolean operations are applied to one or more
binary input signals to provide a simple and succinct single output signal (true or false)
[2]. By combining di�erent Boolean functions as a cascade of Boolean operations, all
mathematical algorithms can be described.

Recent research in the �eld of biosensors is devoted to apply the principle of Boolean
operations also in biology. In this case, one or more (bio)chemical input signals, con-
verted by biochemical processes, result in one distinct output signal. Due to Boolean
algebra, a �1� or �0� binary notation will be delivered corresponding to �true� or �false�
statements, respectively. Such biomolecular systems are highly attractive and could
have a wide �eld of applications in the areas of chemistry, biotechnology and medicine.
Numerous examples were demonstrated by the research groups of Katz, Willner and de
Silva [3�7]. Often, logic gates are based on enzymatic reactions with one or more sub-
strates representing chemical input signals. The applied enzymes as biocatalysts corre-
spond to an information processing unit, consequently the resulting product or products
of the chemical reaction(s) are representing the chemical output signal(s). Biosensors
in combination with Boolean operations are introduced in literature as �biomolecular
computing� or �biocomputing� [8].
This introduction gives an idea about the advantages by applying biomolecules in

combination with logic gates in chapter 1.1. Additionally, chapter 1.2 summarizes com-
mon Boolean operations. Hereafter, a short overview on the current state-of-the-art of
several issues of biomolecular gates with di�erent application possibilities is introduced
in chapter 1.3. Finally, chapter 1.4 guides through the publications that are collected
in the present cumulative thesis and overviews the aims and scope of this work.

1.1 Using molecules in logic devices

Biomolecular logic gates are applications for computation at the nanoscale level by
utilizing biologic molecules or materials [9] such as DNA [3, 10�13], enzymes [14�17]
or even cells [18, 19]. To create biomolecular logic gates, di�erent molecules can be

1



1 Introduction

combined to perform parallel reactions resulting in a speed of information processing.
Furthermore, logic gate systems can be often easily recon�gured by a �exible variation of
the input signals. The combination of several biologic gates results in simple computer
devices performing basic arithmetic operations such as half-adder/half-substractor or
full-adder/full-substractor [20�22]. All common logic operations can be realized with the
help of molecules based on chemical approaches. In this context, the binary encoding
of information is used, where for each signal below a threshold will be assigned as
�0� and above the threshold as �1� to get a fast �false� or �true� answer, respectively,
bene�cial, when there is no need for a quantitative but rather a qualitative rapid answer.
This binary logic is a general concept and can be applied to any type of signal either
chemical, biological or optical. Hence, it can be used for molecular systems to mimic
logic functions [8, 23].
Based on these ideas, one of the �rst realized examples of biomolecular logic gates has

been established in the pioneering works by Aviram 1988 and de Silva 1993 [7, 24]. Most
common applications of molecular logic gates compromise chemical input signals and
optical output signals, mostly with the help of �uorescence. One example is presented
by de Silva [7], reporting for the �rst time about a molecular logic AND gate using
hydrogen ions and sodium ions as chemical input signals with a receptor that operates
as logic device and �uorescence as optical output. The �uorescence signal depends on
the binding e�ect of one or both ions to the receptor. Since then, the complexity of
such biomolecular logic gates has steadily increased.

1.2 Basic principles of logic operations

With the application of Boolean logic and by combining di�erent Boolean functions, a
simple and precise description of the output signal of a device depending on one or more
input signals will be provided. The construction and functionality of di�erent basic
logic gates, which are required to describe complex biological reactions, are presented
subsequently by consideration of a single 2-input logic circuit with input variables
labeled as input A and input B [8, 25]. Typical 2-input logic circuits such as OR,
AND, NOR, NAND and XOR are introduced:

OR logic gate

Fig 1.1 shows the symbol of the OR gate with the corresponding truth table. The
absence of the respective input signal is taken as logic level input �0� , whereas the
presence of input signals is named as �1� . If either input A or input B, or both are
present, taken as the logic level input �1� (input signal combinations: 1,0; 0,1; 1,1), a
biochemical reaction takes place. This results in an output signal �1� . If neither inputs
are available (input signal: 0,0), no reaction occurs and the logic output signal �0� is
given.
AND logic gate

In contrast to the OR gate, the AND gate`s output is only �1� , if both inputs
are present at the same time (input A and input B (1,1)), resulting in a biochemical

2



1.2 Basic principles of logic operations

Fig. 1.1: Symbol of OR logic gate with two inputs (A and B) and the corresponding truth table.

reaction. The absence of one or both input signals (input signal combinations: 1,0;
0,1; 0,0) forms the output signal �0� as shown in Fig. 1.2 (AND gate symbol with the
corresponding truth table).

Fig. 1.2: Symbol of AND logic gate with two inputs (A and B) and the corresponding truth table.

NOR logic gate

The NOR (Not OR) gate behaves as the negation of the OR gate. According to
Fig. 1.3, an output signal �1� results only, if input A and input B are absent (input
signal combination: 0,0). If one or both inputs are present (input signal combinations:
1,0; 0,1; 1,1), no reaction takes place, and a logic output signal �0� is resulting.

Fig. 1.3: Symbol of NOR logic gate with two inputs (A and B) and the corresponding truth table.

NAND logic gate

The NAND gate (Not AND) delivers an output signal �1� , in the case when neither
or either of the inputs (input A and input B) are present (input signal combinations:
0,0; 1,0; 0,1). On the other hand, an output signal �0� is generated, if both inputs
are present (input signal combinations: 1,1) as seen in Fig 1.4.
XOR logic gate

The XOR gate (excluded OR) allows the output signal �1� when either one of the
inputs (input A, input B) is present (input signal combinations: 1,0; 0,1) and a reaction
takes place, and is resulting in the output signal �0' (= compensation of the signal)

3



1 Introduction

Fig. 1.4: Symbol of NAND logic gate with two inputs (A and B) and the corresponding truth
table.

when neither or both of the inputs (input signal combinations: 0,0; 1,1) are present
(see Fig. 1.5).

Fig. 1.5: Symbol of XOR logic gate with two inputs (A and B) and the corresponding truth table.

1.3 State-of-the-art of biomolecular logic gates

Recent developments in the �eld of biomolecular logic gates based on e.g., AND, OR,
XOR, NOR (see chapter 1.2) have demonstrated to be able to mimic the operation of
electronic logic gates. With the help of biomolecular logic gates, a new research area
in advanced diagnostics, therapeutics or drug-release systems is opened [26�31]. In the
following, di�erent examples of such biomolecular logic gates are presented.

1.3.1 Biologic gates for biomedical applications

The development of biologic (biomolecular) gates is very promising in the �eld of
biomedical applications. Novel concepts of multi-signal processing can mimic natural
biochemical pathways with operations according to the �biocomputing� concept. First
approaches were developed for analyzing di�erent biomarker characteristics for certain
medical disorders. This is realized by the combination of multi-enzyme cascades with
Boolean operations to provide reliable diagnostics of di�erent physiological conditions.
Up to now, it is possible to create a network of di�erent logic gates with up to 10 input
signals to process biochemical informations [28]. Advantages of �biocomputing� based
on enzyme logic gates over optical immunoassays, magnetic resonance imaging or elec-
tromyography performed in the hospitals, which are costly, are that such approaches
could be helpful, when there is a need of rapid and reliable diagnosis of physiological
conditions followed by a timely optimal therapeutic treatment. Furthermore, biochemi-
cal information-processing systems by applying cascades of enzyme logic gates is highly
promising for point-of-care injury diagnostics, when a rapid determination of patho-
logical situations is necessary. It should also be noted, that only few devices exist in
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1.3 State-of-the-art of biomolecular logic gates

hospitals that can diagnose multiple injuries simultaneously.

For example, biochemical logic systems composed of enzyme-based logic gates o�er
great potential for the detection of di�erent injury biomarkers. Depending on the kind
of injury, certain proteins are released into blood or urine where they can be detected.
Here, particularly relevant is that the detection of only one biomarker would not be
meaningful for one speci�c injury. Only detection of several biomarkers at the same
time in the pathological concentration range would be an indication of a certain injury.
The analysis of more biomarkers could be performed by implementation of Boolean
operations, and by using binary bit pattern(s) consisting of 0 and 1 in order to digitize
this process. For biomedical applications, logical 0 represents the normal physiologic
state and logical 1 describes the pathological condition. Due to the application of
parallel-working, enzyme-based logic gates, di�erent unique bit patterns occur, where
each bit pattern describes a speci�c pathophysiological state, representing one type of
injury.

In the last years, di�erent working groups developed biomolecular logic systems for
biomedical applications. One recent concept describes the development of enzyme-
based logic gates consisting of an AND and XOR logic gate identifying di�erent types
of injuries such as trauma brain injury and hemorrhagic shock by detecting relevant
biomarkers such as norepinephrine, oxygen, glucose and lactate [32]. A more complex
concept of such digital biosensor is reported in literature, where multiple pathophys-
iologic conditions can be detected by applying highly parallelized enzyme logic gates
resulting in di�erent injury codes depending on the input signals. In this case, an array
of NAND and AND gates to process numerous biomarker inputs such as creatine ki-
nase, lactate dehydrogenase, norepinephrine, glutamate, alanine transaminase, lactate,
glucose, gluthathione disul�de, and gluthatione reductase to diagnose soft-tissue injury,
traumatic brain, liver injury, abdominal trauma, hermorrhagic shock, and oxidative
stress is applied [28, 33, 34]. For a better understanding of the functionality of such
enzyme-based logic gates applied in the �eld of biomedicine, one concept is explained
in more detail by Wang's and Katz`s group [35] in the following:

Soft tissue injury (STI) can be diagnosed by measuring of already established parame-
ters as input signals such as creatine kinase (CK) and lactate dehydrogenase (LDH) and
by mimicking a Boolean NAND logic gate. As shown in Fig. 1.6a), an enzyme cascade
consisting of CK, pyruvate kinase (PK), and LDH where CK and LDH are input 1 and
input 2, respectively, is demonstrated. CK catalyzes the conversion of the reversible
phosphorylation of creatine (CRTN) in the presence of adenosine triphosphate (ATP),
while LDH catalyzes the reaction of pyruvate to lactate when NADH is oxidized to
NAD+ (nicotinamide adenine dinucleotide). The physiological and pathophysiological
level of LDH and CK are detected optically in combination with electrochemical moni-
toring of the reduced NADH, which represents the output signal. Fig. 1.6c) overviews
the truth table of the NAND gate with the corresponding input signals and the re-
sulting output signals. In accordance to the functionality of a NAND gate (see also
chapter 1.2), logical input signals �0� and �1� represent a normal or an elevated level
of CK and LDH, respectively. If both input signals are normal (0,0) or only one of
them (0,1; 0,1), an output signal �1� is generated. During an acute cardiac event, the
level of the biomarkers CK and LDH can individually rise and fall. On the other hand,
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LDH has been routinely employed in the assessment of muscular exertion and fatigue
(�tness), but also for tissue breakdown and hemolysis. Only the simultaneous presence
of elevated levels of both input signals (CK and LDH) at the same time (1,1) would
trigger an output signal �0�, corresponding to a positive STI diagnosis. A threshold
level is de�ned where a NADH concentration below this level represents a positive diag-
nosis. Meaning, the NADH concentration decreases under this threshold, if both input
signals, CK and LDH, are present at the same time, indicating the occurrence of STI.

Fig. 1.6: (a) Schematic of the enzyme logic gate cascade with the inputs CK (input 1) and LDH
(input 2) where NADH serves as output signal; (b) the corresponding NAND gate with the two
input signals and one output signal; and (c) with the corresponding truth table (original from
[35] with permission of Elsevier).

The described concepts can be further developed by combining these biomolecular
logic gates with an actuator function to create a �sence-act-treat� system. Since, the
resulted output signal could be used to activate either an electrochemical transducer
or a chemical actuator, for example, to release a certain drug as demonstrated in Refs.
[36, 37].
Nevertheless, most reported �biocomputing� systems are �proof-of-principle� concepts,

demonstrating the possibility of detecting di�erent biomarkers even simultaneously and
performing logical operations by applying biomolecular systems. But non of the pre-
sented concepts is ready yet for practical use. Future studies are still necessary to
transfer these concepts to real-life biosensor approaches.

1.3.2 Concatenation of logic gates

(Bio)chemical reactions with (bio)chemical inputs can mimic logical operations or a
concatenated set of logic gates. Systems of consecutive operations of several logic gates
that operate in series were established, which is essential to solve more complicated
problems in practice. In recent years, some interesting examples have been drawn much
attention based on enzymatic logic gates. Due to the skillful combination of biocatalysts
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relying on substrates that are the product of a preceding logic operation, a cascade of
concatenated enzymatic logic gates can be developed [38]. In literature, there are several
examples of the creation of such concatenation logic gates composing up to three to four
gates [39�46].
One impressive example is reported by Willner`s working group [47] in which three

logical operations (OR, AND, XOR) are combined containing four di�erent enzymes:
acetylcholine esterase (AChE), choline oxidase (ChOx), microperoxidase-11 (MP-11)
and glucose dehydrogenase (GDH). As demonstrated in Fig 1.7, acetylcholine (input
A) and butyrycholine (input B) are the input signals of the �rst logical operation with
the enzyme AChE. If either one of them is present or both of them, choline (as output
product) is generated, catalyzed by the enzyme AChE, which corresponds to an OR
logic gate. At the same time, choline (product of the �rst reaction) serves as input signal
for the second logic gate which is activated together with oxygen (input C). In this case,
only in the presence of choline and oxygen at the same time, H2O2 is produced, catalyzed
by the enzyme ChOx, resulting in an AND logic gate. The third logic gate consists of
the enzymes MP-11 and GDH. H2O2 from the preceding AND gate is used as input
for MP-11. The presence of H2O2 results in the production of NAD+. Additionally,
glucose reacts with GDH while NADH is produced. A change of the NAD+/NADH
concentration is recognized only, when either H2O2 or glucose is present. In the case of
the presence of both inputs (H2O2 and glucose) together at the same time, MP-11 and
GDH are activated. In this case, the oxidation of NADH to NAD+ catalyzed by MP-11
is compensated by the reduction of NAD+ to NADH during the reaction of glucose
with GDH. Hence, no net changes in the concentration of NAD+/NADH is formed,
like in the absence of both input signals. This chemical reaction constellation can be
constituted as XOR logic gate. The resulting NADH absorption was photometrically
read out at the end as sensor signal.

Fig. 1.7: Scheme of three concatenated logic gates with acetolcholine, butyrylcholine, O2 and glu-
cose as input signals, mimicking an OR and AND, XOR logic gate, respectively (original from
[47], copyright (2006) National Academy of Sciences, U.S.A. with permission).
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1.3.3 Biologic gates with integrated switchable platforms

Those enzyme-based concatenated logic gates can be used to create various bioelec-
tronic devices such as a molecular keypad lock, encoder/decoder [48], multiplexer/de-
multiplexer [49], or switchable systems [50, 51], which are just starting to emerge. The
application of e.g., keypad-lock systems is attractive when an object or data should be
kept secret for some persons. The output signal of such con�gurations is dependent on
the right combination of the inputs on the one hand, but also on the correct order of
the input signals, on the other hand. Only with the correct �password�, the lock can
be opened [52]. One advantage of this system is the easy recon�guration by combining
additional biochemical inputs to increase the complexity of the security system [53].
Di�erent keypad-lock systems can be found in literature based on enzymatic reactions
where the output signals were read out optically [52�57].
As an example, the group of Katz [54] developed a novel approach of an enzyme-

based biomolecular keypad lock. It consists of a biochemical reaction chain, includ-
ing the hydrolysis of sucrose catalyzed by the enzyme invertase (INV) to glucose, the
oxidation of glucose by the enzyme glucose oxidase (GOx) in the presence of oxy-
gen to yield H2O2, followed by the oxidation of a synthetic dye, 2,2'-azino-bis (3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS) to a colored product ABTSox catalyzed
by the enzyme microperoxidase-11 (MP-11) in the presence of H2O2, see Fig. 1.8a). As
demonstrated in Fig. 1.8b), the biomolecular keypad-lock system is represented as the
network consisting of three concatenated AND gates.

Fig. 1.8: (a) Biomolecular keypad-lock system with the corresponding biocatalytic reaction chain;
(b) network of three concatenated AND gates (original from [53] with permission of the ACS
Publications).

EachAND gate is activated by two input signals consisting of a chemical one (sucrose,
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glucose or H2O2) and a biocatalyst (Inv, GOx or MP-11). The production of ABTSox
at the end of the reaction chain was read out optically.
The logic responses of the system have been studied by the addition of the immobilized

enzymes: INV, GOx and MP-11 (input signals: A, B, C, respectively). The presence of
the respective enzyme is considered as logic �1�, while the absence is described as logic
�0�. Eight di�erent combinations of the three (A, B, C) input signals are possible and
shown in Fig. 1.9a) with the corresponding output signal, which are detected by the
optical detection method, Fig. 1.9b).

Fig. 1.9: (a) Truth table for the network of three concatenated AND gates with the input signals
A, B, C; (b) optical detection of the output signals depending on presence/absence of the input
signals A, B, C (original from [54] with permission of the ACS Publications).

But, the most important feature of the application of such a keypad-lock system is
the dependence of the output signal on the correct order of the di�erent input signals.
Here, six di�erent combinations are possible by the variation of the input signals A, B,
C which is shown in Fig. 1.10a).

Fig. 1.10: (a) Truth table of the biomolecular keypad lock system by varying the order of the
di�erent input signals (A, B, C); (b) optical detection of the output signals depending on the
order of the input signals A, B, C (original from [54] with permission of the ACS Publications).
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As can be seen from the corresponding measurement results in Fig. 1.10b), only one
correct order of the di�erent input signals with the right combination (A,B,C) results
in the output signal 1 (�ON�), allowing to open the lock. In contrast to that, all other
input combinations correspond to an output signal 0 (�OFF�) and the lock stays close.

1.4 Aim and scope of this thesis

Building a computer consisting of enzymatic reactions means, logical operations such as
AND, OR, NAND, XOR etc., are mimicked by biomolecular reactions. With such
devices multiple biochemical signals can be detected simultaneously and converted into
one output signal, opening a new avenue of digital biosensors, which is advantageously
in medicine for diagnostics or drug-release systems or even in food industry, to only
name two examples. Currently, most of the already developed concepts of biomolecular
gates use chemicals as input signals and optical detection mode for the output signals
(e.g., �uorescence) [38, 50]. This technique has some challenges, due to the fact, that
emitted photons have a multidirectional nature; additionally, �uorescence light consists
of less e�cient emission/re-absorption mechanism which limits the development of more
complex, concatenated logical systems [38]. Furthermore, it is also di�cult to create
reversible logic gate systems with photonic changes as output signal without adding
additional chemicals [58].
An alternative strategy is the development of �biocomputing� systems with electronic

transducers (e.g., electrodes modi�ed with enzymes) processing an output signal in
combination with biomolecular logic gates having the possibility to miniaturize those
sensor chips and additionally integrate signal processing. Such systems are advanta-
geously over optical immunoassays performed in the hospitals or other optical detection
method because the analyte can be detected label-free. This label-free detection method
is bene�cial since it has a high possibility to realize more convenient systems for the
reason that no labeling with external reagents such as �uorescent dyes is required,
which is normally necessary to achieve a highly sensitive and selective reporting of the
target analyte. Moreover, this labeling procedure is time-consuming, costly and may
cause to non-speci�c signal issues associated with the labeling itself.

Therefore, this thesis deals with the development and optimization of individual
biosensors coupled with electrochemical enzyme logic gate principles. For a possible
application in medicine, such a biosensor platform could make a reliable diagnose due
to the combination and processing of information with the help of logical interactions,
which would be extremely useful for e.g., cancer diagnosis. With this system, di�er-
ent biomarkers as well as selected reactions should be able to detect label-free, and to
make a diagnosis with high speci�city and reliability. The (bio)chemical signals will
be converted to a mathematic algorithm, which is based on �0� and �1�, corresponding
to a �biological� computer. The resulting bit pattern(s) correlate with a speci�c dis-
ease, which enables a proper medication for the patient due to an integrated actuator
function. By applying logical operations, a reliable and prompt diagnose can be made,
corresponding to a �personalized medicine� approach.
Such a biosensor could be also applied in biotechnology to control e.g., fermenta-
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tion processes. In contrast to the medical application, typical biotechnological markers
should be detected. The converted (bio)chemical signal into the bit pattern(s) corre-
sponds to the state of the fermentation process. Instead of the release of a certain drug,
a speci�c and required substance can be released by triggering the actuator function
(e.g., glucose) to optimize the feeding strategy for such fermenter.
In this thesis, di�erent �proof-of-principle� experiments have been realized by apply-

ing micro-/nanotechnologies in combination with Boolean operations. Di�erent trans-
ducer principles such as amperometry (together with thin-�lm sensors) and �eld-e�ect
measurements (together with capacitive �eld-e�ect sensors) were applied and the sensor
structures were modi�ed with di�erent enzymes. The individual developed systems were
characterized and optimized regarding their application in medicine or food industry.
In literature, only a few examples are described with logical systems in combination

with such biosensors [44, 59�67]. Fig 1.11 exempli�es an enzyme-based AND logic gate
in combination with an electrolyte-insulator-semiconductor (EIS) sensor consisting of
the enzymes glucose oxidase (GOx), invertase (Inv) and urease (Ur) being in solution.
Sucrose and oxygen are used as input signals. The absence of the respective input signal
is considered as logic 0, while the presence of the input signal is described as logic 1.

Fig. 1.11: Schematic of an enzyme-based AND logic gate activated by the input signals oxygen
and succrose, resulting in a pH change as output signal generated from an EIS sensor (original
from [62] with permission of the ACS Publications).

As already shown in chapter 1.2, AND logic gate means, that only in the simulta-
neous presence of both input signals, oxygen and sucrose (input signal combination:
1,1), the biocatalytical reaction cascade proceeds; sucrose is converted into glucose
and fructose catalyzed by the enzyme invertase. In a second reaction step, glucose will
be converted in the presence of oxygen to gluconic acid resulting in an acidi�cation.
This pH change can be detected by the pH-sensitive EIS sensor as the output signal 1.
The biochemical reaction cascade can not be completed, if any or both input signals
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are missing (input combinations: 0,0; 0,1; 1,0), hence, no gluconic acid is produced
resulting in an unchanged pH value as output signal 0. In the presence of both inputs,
oxygen and glucose (1,1), the pH value of the analyte solution is decreased due to
the chemical reaction. With the immobilized enzyme urease, a RESET function is
integrated and can be activated by addition of urea, resulting in the formation of NH3

and the pH value is increased.

After an introduction into the state-of-the-art in chapter 1 and theoretical aspects
in chapter 2, the main objective of this thesis has been the development of di�erent
�proof-of-principle� concepts of enzyme-based biomolecular logic gates in combination
with electrochemical transducers. Di�erent applications in �elds such as medicine
or bio-/food technology are envisaged to get the possibility of on-line measurements.
Moreover, with such digital biosensors rapid analytic methods can be created to obtain
a qualitative YES/NO decision in a form of binary bit patterns consisting of 1 and 0.
The content of this thesis describes three di�erent applications of individually developed
biomolecular logic systems referring to chapter 3 to chapter 8.

Chapter 3 describes a concept of a �sense-act-treat� system, which has been re-
alized to create a closed-loop drug-delivery system for the treatment of e.g., diabetes
patients. The combination of continuous monitoring of the glucose concentration with
an insulin pump is known as arti�cial pancreas. Such devices can help to avoid hypo-
glycemia of diabetes patients that can lead to seizures, coma or even death [68, 69].
Currently, closed-loop hospital settings consist of automatically controlling the blood
glucose level, but a combination with an automatic insulin delivery pump is still a
grand challenge [70, 71]. Therefore, there is a high motivation for the development of
closed-loop drug-delivery systems. The presented concept of a so called �BioLogicChip�
can detect multiple input signals simultaneously and thanks to Boolean operations, one
electrical output signal is generated consisting of logical 0 or 1. The chip-based amper-
ometric sensor for the detection of the glucose level by using the enzyme glucose oxidase
is combined with a Boolean AND logic gate with the inputs glucose and oxygen. Only
in the presence of both inputs together, glucose will be catalytically converted by the
enzyme. The resulting logic output current will activate a heater with an immobilized
temperature-dependent hydrogel. Depending on the current, the temperature of the
heater will increase or decrease. Hence, the hydrogel is able to shrink or swell triggered
by a low or high glucose concentration, respectively. This hydrogel serves as an ac-
tuator and releases a certain amount of drug, e.g., insulin. Furthermore, the required
dosage and timing of the insulin release is controlled by the glucose concentration and
monitored by an additional insulin sensor.

Therein, the main focus was the development of a concept for the investigation of the
on-chip integration of molecular logic principles with the glucose sensor combined with
Boolean operations. The working capability of the temperature-dependent hydrogel
able to switch �ON/OFF� was studied by measuring the impedance at di�erent temper-
atures of the interdigitated circular electrode onto which the hydrogel is immobilized.
Furthermore, an IrxOy sensor was developed and characterized for the detection of
di�erent insulin concentrations.
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In chapter 4, a digital adrenaline sensor to support medical diagnosis tools such
as adrenal vein sampling (AVS) is introduced. Patients with primary aldosteronism
(PA) are su�ering from aldosteron-producing adenoma, which cause drug-resistant
hypertension. These tumors are often less than 1 cm in diameter and therefore, they
are not always detectable by a CT (computer tomography) scan [72]. The only reliable
diagnosing method is the AVS, which is a straightforward diagnostic test, but only
used in a few centers worldwide. This medical examination procedure is not only
technically challenging, furthermore, it is invasive and risky [73�75]. Due to the small
size of adrenal veins, it is quite di�cult to recognize the right veins and to distinguish
other vessels [74, 76]. To facilitate AVS, adrenaline can be used as biomarker since the
adrenaline concentration in adrenal veins is much higher (&100 nM) in comparison to
peripheral blood (1 - 5 nM) [77, 78]. Hence, an adrenaline concentration of higher than
∼100 nM would indicate the right position of the catheter into the adrenal vein. A lower
adrenaline concentration would have the consequence that the physician has to correct
the catheter`s position. Consequently, the detection of the adrenaline concentration
can be an indication of the position of the catheter during AVS. In this study, the main
emphasis was the development of a high-sensitive sensor for the detection of adrenaline
in the nanomolar concentration range. To realize this, an oxygen sensor is modi�ed by
a bi-enzyme system of laccase and pyrroloquinoline quinone (PQQ)-dependent glucose
dehydrogenase (GDH) to implement a substrate-recycling principle. First of all, the
functionality of this amperometric sensor system was investigated and optimized in
both, in phosphate bu�er solution as well as in Ringer`s solution. Furthermore, a
concept of a digital adrenaline biosensor was developed by applying Boolean opera-
tions. For the application of the biosensor to support AVS, a precise and quantitative
detection of the adrenaline concentration is not necessary, but rather a rapid signal, in
a more qualitative YES/NO answer: if the adrenaline concentration is around 100 nM
and hence, the catheter position is right, or if there is a low adrenaline concentration
(about <5 nM) and the catheter has to be repositioned.

In chaper 5, an optimization of the introduced adrenaline biosensor described in
chapter 4 is illustrated. Here, a laccase and PQQ-GDH were used having an optimum
activity at a pH value relevant for measurements in real blood samples. Additionally,
the sensitivity of the developed biosensor has been studied to other catecholamines such
as noradrenaline, dobutamine and dopamine. This chapter is additionally provided by
�rst experiments performed in human blood plasma, where di�erent adrenaline concen-
trations were spiked into.

A continue study is presented in chapter 6, where the amperometric adrenaline
biosensor system has been further miniaturized. Therefore, a platinum thin-�lm elec-
trode was modi�ed by an enzyme membrane containing PQQ-GDH to realize the
bioelectrocatalytical ampli�cation principle. Here, in a �rst reaction step, adrenaline
will be oxidized to adrenochrome at the electrode surface by an applied potential of
+450 mV to the platinum working electrode vs. Ag/AgCl reference electrode. Followed
by the second reaction step, adrenochrome is reduced back to adrenaline catalyzed by
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the enzyme PQQ-GDH in the presence of glucose. Due to this recycling reaction, the
sensor signal is ampli�ed. In this study, the main focus was given to the characterization
of the chip-based sensor system, where temperature, pH value and glucose concentra-
tion were optimized. The long-term stability of the developed biosensor was studied as
well as the lower detection limit. Additionally, sensitivity to other catecholamines such
as dopamine, noradrenaline and dobutamine has been investigated. To demonstrate
the applicability of the adrenaline biosensor to support AVS, it was applied in human
blood plasma for the detection of di�erent adrenaline concentrations. Furthermore,
preliminary studies were performed to detect the adrenaline-concentration di�erence
between adrenal blood (&100 nM) and peripheral blood (1 - 5 nM).

A review about the developed biomolecular logic gates combined with di�erent kinds
of transducers is reported in chapter 7. Here, three di�erent �proof-of principle� studies
are focused. At �rst, a biomolecular logic gate in combination with a �eld-e�ect sensor,
which has been developed and characterized by A. Poghossian is therefore only shortly
discussed. Three enzymes (glucose oxidase, esterase and urease) are immobilized onto
one chip. This logic gate is structured as OR logic gate with the input signals glucose
and ethyl butyrate, and has also an integrated RESET function realized by the enzyme
urease with urea as substrate.
The second example describes the digital adrenaline biosensor from chapter 4 with

two concatenated AND logic gates consisting of the enzymes laccase building the �rst
AND logic gate with the input signals adrenaline and oxygen and PQQ-GDH as part of
the second AND logic gate with the input signals adrenochrome and glucose, resulting
in a substrate recycling in the presence of all input signals together. By de�ning an
internal threshold level for the output signal, a YES/NO decision can be given.
The last example shows an enzyme-based molecular logic gate with biosensor/actuator

function integrated onto one chip, the so called �BioLogicChip�. The concept of this
�sense-act-treat� system is already introduced in chapter 3. The system consists of
a glucose sensor designed as enzyme-based AND logic gate, a temperature-dependent
hydrogel immobilized onto a thermoresistive heater serving as actuator to release a
certain amount of insulin triggered by logical operation and an amperometric insulin
sensor to monitor the release of the drug. The characterization of the individual com-
ponents is overviewed.

Chapter 8 deals with the development of a novel acetoin biosensor to control and
monitor fermentation processes, because acetoin is a major fermentation product of
bacilli and Enterobacteriaceae. Acetoin is an important contributor to e.g., wine or
beer �avor and aroma but it is also naturally contained in fruits, corn, meat and some
fermented foods. Furthermore, acetoin has a signi�cant importance for microorganisms
in avoiding acidi�cation, when participating in the regulation of the NADH/NAD+ ratio
and in storing carbon [79, 80].
The presence of acetoin is usually indicated by a �buttery�, �butteryscotch�, �honey�

or �to�ee� tone [81, 82] and plays an important role during the fermentation process of
alcoholic beverages. The acetoin level during fermentation could be e.g., an indicator
of the degree of the beer`s maturity and hence, the maturation time. In general, many
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fermentation processes can be controlled more precisely by on-line monitoring of the
acetoin concentration.
In this contribution, a pH-sensitive capacitive EIS �eld-e�ect structure with the

enzyme acetoin reductase from B. clausii DSM 8716T (developed in our institute) for
the detection of acetoin in the presence of NADH is introduced for the �rst time. Two
di�erent immobilization strategies, namely cross-linking by using glutaraldehyde and
adsorptive immobilization were studied. Typical biosensor properties such as linear
concentration range, pH optimum, reproducibility and long-term stability were in-
vestigated. In addition, the newly developed acetoin biosensor was applied in white
wine samples for the detection of di�erent, spiked acetoin concentrations. This acetoin
biosensor can be further developed as on-line digital system by applying Boolean op-
erations to get a YES/NO answer, if the fermentation process or the beer maturity is
completed, or not.

At the end, chapter 9 is concluding this thesis with the �nal summary of the ob-
tained results from the introduced, conceptualized enzyme-based logic gates with their
achievements in di�erent application �elds, and an outlook including current ideas and
future strategies.
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2 Theory

Biosensors represent a subgroup of chemical sensors and transform biochemical infor-
mation into an analytically useful signal, e.g., into an electrical signal [1]. Sensors in
combination with enzymes are getting more and more attractive to develop biochemical
sensors due to the enzyme`s exceptional, natural substrate speci�city or extremely high
selectivity to a given substrate. Due to the application of enzymes, the biochemical re-
action can be accelerated by lowering the activation energy without getting the enzymes
changed. In the following chapters 2.1 to 2.3, an overview of the applied measurement
principles considered for the enzyme-based electrochemical biosensors in this thesis is
provided.

2.1 Field-e�ect potentiometric sensors

The potentiometric measurement method is a classical analytical technique and used
for numerous practical applications, see exemplarily [2�6] and references therein. Here,
the potential di�erence between an ion-selective electrode and a reference electrode is
the measured quantity and depends on the activity of the ions containing in the analyte
solution under ideally zero current conditions. In this context, the focus is given on
the electrolyte-insulator-semiconductor (EIS) system, which is highly attractive for the
detection of potential di�erences [7, 8].

2.1.1 Basic principle of a metal-insulator-semiconductor �eld-e�ect
structure (MIS)

The structure of capacitive �eld-e�ect EIS sensors corresponds to metal-insulator-
semiconductor an (MIS) capacitors, furthermore, their functionality can be derived
from an MIS device, which is shown in Fig 2.1.

Fig. 2.1: Schematic of an MIS structure with VG as gate voltage (adapted from refs. [9]).
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2 Theory

The MIS sensor consists of e.g., a p-type semiconductor substrate composing of silicon,
which is covered by a thermally grown thin insulating layer out of SiO2 that is assumed
to be ideal thus, no current passes through this layer. On top of this structure, there is a
metal gate layer [9, 10]. The thickness of the insulator layer is usually approximately 50 -
100 nm. In order to measure the capacitance of the MIS structure, a DC (direct current)
voltage is applied through to the metal gate layer superimposed by an additional AC
(alternating current) voltage to measure the capacitance [11, 12].
There are three distinct operation states (accumulation, depletion, inversion) of an

MIS capacitor depending on the applied gate voltage VG. For the case of a p-type semi-
conductor, a typical course of a theoretical capacitance-voltage (C-V) curve is shown
in Fig. 2.2, whereas the appropriate operation regime with the energy-band diagram of
the MIS structure is depicted in Fig 2.3:

Fig. 2.2: Theoretical capacitance-voltage (C-V) curve of a p-type MIS structure at high and low
measuring frequencies. φs: semiconductor-surface potential, Ci: insulator capacitance, CFB :
�at-band capacitance, CLFmin: low-frequency minimum capacitance, CHFmin

: high-frequency
minimum capacitance, VT : threshold voltage (adapted from [9]).

Accumulation regime: A negative gate voltage VG<0 is applied to the metal elec-
trode. In response to that, positively charged holes accumulate from the silicon to the
semiconductor surface (semiconductor/gate insulator interface). Due to the increase
of the hole concentrations at the semiconductor surface, the valence band will bend
closer to the Fermi level EF at the interface semiconductor-insulator. The energy-band
distance between valence band Ev and the conducting gap Ec remains always constant,
thus, Ec is also adjusted upwards close to the interface. Under this condition, the device
behaves as a conventional plate capacitor with C ∼= Ci (Ci: insulator capacitance) [9,
10, 14].
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2.1 Field-e�ect potentiometric sensors

Fig. 2.3: Charge distribution and energy-band diagram of the MIS structure in accumulation (a),
depletion (b) and inversion (c) mode, respectively. M: metal, I: insulator, S: semiconductor, Qm:
charge on the metal gate, Qh: charge of the accumulation holes, Qd: charge in the depletion
region (charge of the uncovered acceptors), wd: width of depletion region, wm: maximum width
of the depletion region, Qe: electron charge in the inversion region. The (+) symbols near the
valence band at the semiconductor-insulator interface represent the accumulated holes. The (-)
symbols near the conducting band represent the electrons in the inversion layer (adapted from [9,
10, 13]).

Depletion regime: This regime arises when a slightly positive charge (VG>0) is
applied to the metal gate and hence, the holes are repelled from the semiconductor
surface. Consequently, the space-charge region of positive charge carriers is depleted.
The decrease of the hole concentration at the semiconductor surface implies the increase
of the distance between the Fermi level and the valence band. Hence, the energy band
bends downwards resulting in two di�erent layers, the insulator layer and the layer
of the depletion region. In this regime, the MIS structure can be described as two
capacitors in series, the insulator capacitance and the applied voltage-dependent space-
charge capacitance of the semiconductor CSC (see equation 2.1):

1

C
=

1

Ci
+

1

CSC
(2.1)

The voltage regime, at which the energy bands are horizontally throughout the semi-
conductor up to the surface, is called �at-band voltage when the net charge density in
Si is zero [9].
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Inversion regime: With increasing of the applied gate voltage (VG�0), the thick-
ness of the depletion area increases. Considering the energy-band diagram, Fig 2.3c),
the energy-band edges bend down further at the interface semiconductor-insulator. If
the Fermi level bends below the intrinsic energy level (Ei), an inversion layer of n-type
silicon arises although the substrate is p-doped [9, 12]. When the AC frequency is low
(below around 100 Hz), the gate-charge �uctuations are slowly enough that the inver-
sion charge is able to follow this variation. Hence, the total capacitance is again equal
to that of the insulator. At higher frequencies, the inversion-charge �uctuation is too
slow to achieve an equilibrium. As a result, the depletion-layer width increases until
reaching a constant �nal value.

2.1.2 Solid-liquid interface

Electrical double layer

Whenever a solid surface comes into contact with a liquid, there is a potential di�er-
ence at the solid-liquid boundary. The excess charge from electrons and dipoles from
the electrolyte results in an electric �eld across the phase boundary. The layer where
these charges are existing is called electrical double layer [15] (see Fig. 2.4).

Fig. 2.4: Schematic of the electrical double layer with inner and outer Helmholtz plane (adapted
from [16]).
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2.1 Field-e�ect potentiometric sensors

However, there are three hypotheses describing the phenomena of the electrical double
layer:

• The simplest hypothesis describes an inner layer which is close to the electrode
and contains solvent molecules as well as speci�cally adsorbed ions linked at the
electrode surface by van der Waals- or chemical forces. The layer arising through
the center of these molecules, parallel to the electrode surface, known as inner
Helmholtz layer (IHP), is shown in Fig. 2.4. Solvated ions are nonspeci�cally
adsorbed directly at the surface where the surface charges are neutralized. The
plane passing through the center of these ions is de�ned as outer Helmholtz layer
(OHP). Both Helmholtz layers are also referred as compact layer [11, 16, 17].

• But, the Helmholtz model does not consider the thermal motion of ions, which
results in detaching of the ions from the compact layer and form a di�use double
layer that is called Gouy-Chapmann layer (second theory) [11, 16]. This layer
describes a three-dimensional area consisting of distributed ions and spreads over
from the OHP into the bulk solution; it comprises the compensation of the forces
of the electrical �eld and forces induced by thermal motion [16].

• The third theory combines the ideas of Helmholtz - and Gouy-Chapman model
and is known as Stern model. Here, the ions which are directly adsorbed to the
surface build an immobile Helmholtz plane, while the mobile ions outside of this
plane are distributed as described in Gouy-Chapman theory [17].

2.1.3 Enzyme-based electrolyte-insulator-semiconductor (EIS) structure

EIS-enzyme sensors are based on pH changes due to enzyme-substrate interactions.
Such an EIS structure with the immobilized enzyme is shown in Fig. 2.5.
The basic structure of EIS sensors is similar to that of the MIS system with the

di�erence in the layer over the insulator, which is replaced by a transducer layer, an
electrolyte and a reference electrode. The pH sensitivity of the EIS sensor can be
explained by the site-binding theory in the following.

Site-binding theory

With the site-binding theory, the pH sensitivity of a �eld-e�ect device can be ex-
plained. The transducer layer of e.g., an EIS sensor consists of a pH-sensitive mate-
rial such as SiO2, Al2O3, or Ta2O5 containing neutral surface-hydroxyl groups (MOH).
Bringing the transducer surface in contact with the analyte solution, depending on the
pH value, the neutral surface-hydroxyl sites are able to bind (MOH2

+) or release (MO� )
protons. The surface reactions are shown with HB

+ as protons in the bulk-analyte so-
lution in equation 2.2 and equation 2.3 [9, 18]:

MOH
 MO− + HB
+ (2.2)
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Fig. 2.5: Schematic of an EIS sensor with an immobilized enzyme (adapted from refs. [9]).

MOH2
+ 
 MOH + HB

+ (2.3)

Fig. 2.6 illustrates di�erent conditions of the surface charge depending on the pH
value of the analyte solution. Each material has a net neutral charge at a certain pH
value, named point of zero charge pHPZC . In Tab. 2.1, di�erent materials with their
pHPZC values are listed [19�21].

Fig. 2.6: Schematic of the electrolyte-oxide interface with the corresponding surface groups de-
pending on the pH value of the analyte (adapted from [21]).

At pH values higher than the pHPZC , the oxide surface is negatively charged, whereas
at pH values lower than the pHPZC , the surface is positively charged. Hence, a pH
change of the analyte solution will lead to a potential change of the oxide surface.

The resulting pH-dependent electrical surface charge of the gate insulator will cause
a modulation of the capacitance of the EIS structure [21]. The pH sensitivity of the EIS
system at the interface oxide-electrolyte towards the pH change in the analyte solution
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2.1 Field-e�ect potentiometric sensors

Tab. 2.1: Literature values of pHPZC for di�erent materials.

SiO2 Ta2O5 Si3N4 Al2O3

pHPZC 2.5 2.8 3.2 7.5

(δpHB) can be described with the following equations equation 2.4 and equation 2.5 [8,
21]:

δϕ

δpHB
= −2.3

kT

q
α (2.4)

with

α =
1

(2.3kTCdif/q2βint) + 1
(2.5)

where δϕ is the potential change, k represents the Boltzmann constant, T is the
absolute temperature and q describes the elementary charge. α is a dimensionless
sensitivity parameter, which can assume values ranging from 0 to 1, and depends on
the intrinsic surface-bu�er capacity βint and the di�erential double-layer capacitance
Cdif . Herein, βint de�nes the number of possible binding sites at the oxide surface and
Cdif is mainly determined by the ion concentration of the analyte solution.
As a result of equation 2.4 and equation 2.5, the maximum Nernstian sensitivity of

59.1 mV/pH (at 25 ◦C) can be achieved with an α value of approximately 1. This
is the case, when the oxide has a high surface-bu�er capacity βint (high density of
surface-active sites) and a low double-layer capacitance (low electrolyte concentration).
One common example of such an oxide is Ta2O5, having a large surface-site density
(∼1015 cm−2), resulting in a high pH sensitivity. On the other side, SiO2 possesses less
surface sites (5 · 1014 cm−2). Hence, a lower pH sensitivity is expected [8, 21, 22].
The Nernstian equation is de�ned as followed [7] (see equation 2.6):

E = E0 +
RT

zF
ln(as) (2.6)

where E is termed as electrode potential, E0 is the standard electrode potential. z
and as are the ionic charge and ion activity, respectively, R is the gas constant, and T
is the absolute temperature.

Measurement procedure

The capacitance of the EIS sensor is modulated in the same way as already described
for the MIS structure. In contrast to the MIS structure, the charge-carrier distribution
in an EIS system at the semiconductor surface is not only controlled by an external DC
voltage, furthermore, it is also depending on the electrochemical interaction between
the analyte solution and the pH-sensitive layer (transducer layer). Electrochemical
interactions cause a horizontal shift of the C-V curve (a typical C-V curve is shown in
Fig. 2.2), depending on the change of the pH value in the analyte solution. At a �xed
capacitance value within the linear region of the C-V curve, typically about 60% of the
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maximum capacitance, the potential change over time can be determined [11] result-
ing in the constant capacitance (ConCap) mode. For more details, see also chapter 2.5.1.

For the development of an enzymatic �eld-e�ect sensor with high sensitivity and
selectivity, a selected enzyme is immobilized on the EIS chip. One example is demon-
strated in [23], where di�erent concentrations of urea are detected by a modi�ed EIS
sensor with the enzyme urease. Due to the enzymatic reaction, with increasing of the
urea concentration, the OH−-ion concentration is also increased (increase of the pH
value), resulting in a bias-voltage shift to higher values. The dynamic response of the
ConCap measurements at a �xed capacitance demonstrates also, that with increasing
of OH−-ion concentration from the enzymatic reaction (catalytic hydrolysis of urea into
ammonium ions), the potential is increased.
Another example of an enzyme-based EIS sensor is discussed in [24]. Here, the en-

zyme penicillinase is immobilized onto the sensor surface for the catalytical reaction
of penicillin, resulting in an increase of the H+-ion concentration (decrease of the pH
value). Due to this reaction, the bias voltage shifts to lower values, i.e. to the left
along the voltage axis. With increasing of the penicillin concentration, the potential is
decreased during the ConCap measurements.

2.2 Basic principle of cyclic voltammetry

Cyclic voltammetry provides information about a redox system, where a linear potential
scan is applied in order to measure the resulting current for the reaction of an analyte.
For a cyclic voltammetric experiment, a three-electrode arrangement is usually chosen,
which is schematically illustrated in Fig. 2.7.
The redox electrode at which the electrochemical reaction occurs is the working elec-

trode (WE). The material of the WE can in�uence the performance of the voltammetric
measurement. Hence, the WE electrode should provide a high signal-to-noice ratio as
well as reproducible response (signal) values. The selection of the material depends
on the redox behavior of the target analyte but also from the backround current over
the potential region that is required for the measurement. Furthermore, some other
material aspects have to be taken into account such as conductivity of the electrode,
surface reproducibility, mechanical properties, cost, availability, and toxicity. The most
frequently used WE materials are carbon or noble metals (e.g., platinum and gold) [16].
An Ag/AgCl electrode is typically applied as reference electrode (RE). The RE should
be placed close to the WE to reduce potential drops because of the resistance of the
analyte solution. The measurement set-up also consists of a counter electrode (CE),
e.g., out of platinum, to avoid current �ow through the RE. The cell current is directed
through the CE, the solution and the WE to adjust the potential di�erence between
WE and RE.
In cyclic voltammetry, the potential is applied to the WE and measured against the

RE, resulting in two circuits: the current-�ow circuit containing WE and CE and the
current-free one, where the potential di�erence between WE and RE is measured. The
current �ow through the RE is negligible, its potential can be regarded as constant.
Hence, the measured potential change can be considered as potential change of the WE
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2.2 Basic principle of cyclic voltammetry

Fig. 2.7: Schematic of a three-electrode measurement set-up with WE, CE and RE to perform
voltammetric measurements.

resulting in a triangular potential waveform shown in Fig 2.8a) [11, 16, 25].
Due to the electrochemical reaction at the electrode surface, the analyte concentration

is decreased at this surface and should be compensated by di�usion of the species
from the analyte solution. But in most cases, the reaction at the electrode surface is
faster than the supply by di�usion. With the help of Fick`s law, the time-dependent
concentration pro�le of the analyte can be described as equation 2.7 [11]:

j(r, t) = −D∇(r, t) (2.7)

where the �ux j of the analyte at point r and time t is proportional to the analyte
concentration. D describes the proportional factor and is called di�usion coe�cient.
The corresponding current, resulting from the applied potential at the WE, is recorded

by using a potentiostat. An exemplary measurement curve is shown in Fig. 2.8b) for a
reversible system (see equation 2.8):

Ox+ ne− 
 Red (2.8)

Here, Ox depicts the oxidized species and Red the reduced one. With decreasing the
potential, Ox is reduced resulting in an increase of the current in the negative direction.
As depletion of the Ox concentration at the electrode surface, the current peak will
decay. With reversal of the scan-rate direction, the potential increases, Red is oxidized,
which is indicated by a peak of the current in the positive direction [25]. The peak
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Fig. 2.8: (a) Triangular wave form generated for cyclic voltammetry sweeping forth and back be-
tween two �xed values E1 and E2; (b) the current potential yields a peak-shaped curve with a
half-wave potential E1/2≈ E0 with the resulting current i1/2 and -i1/2. E

−
p and E+

p describes the
anodic and cathodic peak potential, respectively, with the corresponding current -ip and ip, the
peak current ip is proportional to the analyte`s bulk concentration c0; (adapted from [11]).

current for reversible systems at 25 ◦C is given by the Randles-Sevcik equation 2.9:

ip = (2.69 · 1015)n
3
2AcD

1
2 v

1
2 (2.9)

with n as the number of electrons, A depicts the surface area of the electrode, c is the
analyte concentration, D the di�usion coe�cient, and v the scan rate. The measured
current is directly proportional to the reaction concentration and the square root of the
scan rate. Both, the anodic and the cathodic peak potentials are independent of the
scan rate. For reversible processes, the magnitude of both peaks is similar.

2.3 Basic principle of amperometric sensors

Since the development of the �rst enzyme-based glucose sensor by Clark in 1962 [26],
many e�orts have been done for the development of several amperometric sensors for
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di�erent kinds of applications such as environmental analysis or medicine, see examples
in [27�32]. Usually, the amperometric measurement set-up is the same as already shown
in Fig. 2.7.
Amperometry is based on the detection of a current through a working electrode over

time. This involves a change of the applied potential to the working electrode from a
value, where no Faradaic reaction occurs to a potential value that facilitates reduction
or oxidation of a certain electroactive species in an unstirred solution (see Fig. 2.9a)).
Here, the mass transport is controlled by di�usion. The measured current represents
the concentration change only close to the electrode surface. Consequently, the di�usion
layer increases corresponding to the depletion of the analyte, indicated by a decrease of
the current slope depending on time. Hence, the Faradaic current iF decays with time
which is described by the Cottrell equation 2.10 [16, 33]:

iF = nFAc

√
D

πT
(2.10)

whereby n is the number of electrons, F describes the Faradaic constant, D is the
di�usion coe�cient, A represents the surface area of the electrode, T is the time and c
is the concentration of the analyte solution. The obtained curve of the Faradaic current
(if ) over time is shown in Fig. 2.9b).
Despite this Faradaic current which provides the analytical information and is a

result of electrochemical reaction at the electrode surface, there is an additional current,
the so-called capacitive current ic (or non-Faradaic current) that occurs due to the
compensation of the charges at the electrode-electrolyte boundary. Here, ions in the
analyte solution migrate to or from the interface to compensate the changes of the
electrode charge resulting in a zero charge. As typical for a capacitor, the current
decreases exponentially with time [12, 16] (see equation 2.11):

ic =
Es − Ei

Rs
exp(− t

RsC
) (2.11)

where Rs represents the electrical resistance of the analyte solution and C corresponds
to the capacitance of the electrical double layer at the electrolyte-electrode interface.
If there is an electrochemical reaction in the system, the measuring quantity it (total

current) is the Faradaic current together with the capacitive current, as depicted in
Fig. 2.9. That leads to a superimposition of the Faradaic current by the capacitive
current at low analyte concentrations. Hence, the chronoamperometric signal contains
both currents for a small value t (t<50 ms). By considering the di�erent rates of decay
of if and ic, the capacitive current decays much faster. Consequently, after a certain
time, this current can be neglected and the Faradaic current displays the quantity value
[12, 16].

2.3.1 Oxygen sensor

One of the most studied electrochemical reactions is the amperometric detection of
oxygen. The applications of oxygen electrodes are ranging from biology to medicine or
industrial purposes, energy production or safety [34]. Nowadays, noble metals such as
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Fig. 2.9: Principle of the chronoamperometric method with (a) potential-time waveform where Ei

is the applied potential, here, no electrochemical reaction occurs, Es promotes the reduction or
oxidation of an electrochemical species at time t0; (b) resulting current where if describes the
Faradaic current, ic is the capacitive current and it depicts the total current, td is the time delay
after which the current sampling lessens the contribution of the capacitive current to the total
current and ∆ts is the width of the sampling interval; (adapted from [12]).

Pt and AU, or C are used as electrode material where one four-electron reduction is
obtained due to the reaction of molecular oxygen [34] (see equation 2.12):

O2 + 2H2O + 4e− ⇒ 4OH−(EI) (2.12)

while the following reactions occur at the silver anode in equation 2.13 and equa-
tion 2.14:

4Ag⇒ 4Ag+ + 4e− (2.13)

and
4Ag+ + 4Cl− ⇒ 4AgCl (2.14)

The �rst amperometric oxygen sensor was developed by L.L. Clark to determine
the oxygen concentration in blood. The sensor consisted of a platinum disk cathode,
a silver anode and an internal bu�er KCl solution. The big advantage of the Clark-
oxygen electrode is that both, cathode and anode, are covered by an oxygen-permeable
membrane [35]. According to the application of the electrode and to achieve a high
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sensitivity, several membranes are available for oxygen sensors, namely e.g., Te�on,
polyethylene, or silicon rubber. Such membrane has two tasks, on the one hand, the
electrode surface should be protected against clogging, and on the other hand, a di�usion
barrier for e.g., organic impurities should be provided to ensure a stable current. Oxygen
di�uses through this oxygen-permeable membrane from the analyte solution and will
be reduced as mentioned in equation 2.12 [12]. The obtained steady-state current is
proportional to the oxygen concentration in the analyte solution and can be calculated
under consideration of the di�usion in equation 2.15 [34]:

i =
3πFr0DsSsP (r1)

Ds(r1 − r0)/Dmr1 + Smr0r1
(2.15)

Here, r0 and r1 describe the outer radius of the membrane and the radius of the
electrode, respectively. The subscripts s and m stand for the solution and membrane,
respectively. S is the solubility of oxygen in the analyte solution and membrane. P(r1)
describes the oxygen partial pressure at the membrane surface.

In general, for amperometric measurements, an external potential is applied to the
WE against the RE promoting the analyte reaction. One alternative approach is a
galvanic oxygen sensor having a similar design as amperometric gas sensors, with the
di�erence that the chemical reaction occurs without an externally applied potential
[12]. A galvanic oxygen sensor typically consists of two electrodes which are in contact
with the electrolyte solution through an oxygen-permeable membrane. Similar to the
working principle of the Clark-oxygen sensor, oxygen di�uses through the membrane,
where the reduction reaction takes place at the cathode. But in the case of the galvanic
sensor, the applied potential is close to zero. The potential of the cathode, which is
necessary for the reduction reaction, is established by selecting anode materials such
as lead or cadmium, which are su�ciently electronegative in the electrochemical series
in combination with e.g., a silver cathode. The electrons, which are required for the
reduction of oxygen, are provided by the anode, where an equal magnitude oxidation
takes place. As the oxygen-reduction reaction is a cathodic one, lead from the anode is
oxidized to form lead oxide. If the whole anode material is consumed, oxygen can not
longer be detected by this sensor. The lifetime of a typical galvanic oxygen sensor is
therefore approximately between one and two years [12, 36].

2.4 Enzyme-immobilization techniques

The immobilization method of the applied enzymes to the sensor surface plays a de-
cisive role and has an in�uence on the overall sensor performance. In general, the
highly selective primary interaction of enzyme and substrate can be destroyed by the
application of an inappropriate immobilization strategy. The operational stability and
long-term use of enzymatic biosensors represent an important task. Both factors can
also be associated with the applied immobilization strategy, which can be distinguished
into four principal techniques, namely adsorption, entrapment, covalent binding and
cross-linking [37, 38].
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The physical adsorption-immobilization method is characterized by weaker, monoco-
valent interactions such as hydrogen bonds, hydrophobic interactions, van der Waals
forces, a�nity binding, or ionic binding of the enzyme with the surface of the electrode,
or mechanical binding of the enzyme. It is a reversible immobilization method where
the enzyme can be removed from the sensor surface under gentle conditions, which is
bene�cial when the enzyme`s activity has decayed and the sensor can be loaded with
fresh enzyme [39]. This method has the advantage that a high amount of enzyme can
be loaded onto the electrode surface. Furthermore, the enzyme`s natural structure and
functionality will be hardly in�uenced. On the other hand, this technique is easy and
fast to handle but it has a low long-term stability due to the relatively weak non-speci�c
forces, often resulting in an enzyme leakage from the matrix [39].

There are several substances, which can be used for the entrapment of enzymes such
as polyacrilamide, calcium alginate, agar, agarose, chitosan polymer or gel. Entrapment
is an irreversible immobilization method. However, due to the application of these ma-
terials, a poor mechanical strength can be a consequence, but also, the materials can
have an in�uence on the di�usion limitation of the substrate/product [37, 39]. There-
fore, more recently, two anion-exchange polymers have been suggested to immobilize
enzymes, e.g., Na�on or Eastman AQ can incorporate the enzymes by separation of
anionic-interfering species such as ascorbic- or urin acid. A big advantage by using such
polymers is the possibility to immobilize the enzyme directly onto the electrode surface
resulting in a thinner layer than conventional precast membranes [37].

Covalent binding and cross-linking pertain to the chemical immobilization methods.
Cross-linking is performed by using, for example, glutaraldehyde or cyanoric chloride
to perform intermolecular cross-linkages between the enzyme molecules by means of
bi- or multifunctional reagents. In the case of covalent binding, which is the most
commonly used method, the enzymes are covalently bound to the sensor surface via
their side chains, which are not essential for their catalytical activity. The activity and
stability of the covalently bound enzyme depends on several factors: size and shape of
the electrode surface, composition of the electrode material, speci�c condition during
coupling and the direction of the enzyme binding. Both methods, cross-linking and
covalent binding are irreversible immobilization methods [39]. These techniques are
useful, when the sensor surface is so small that the appropriate membrane should be
fabricated directly on the sensor. Also, the enzyme loading onto the sensor surface can
be controlled better, giving a more stable and reproducible enzyme activity [25].

Alternatively, electrochemically prepared polymer �lms are applied for the immobi-
lization of enzymes. In this case, the �lms consist of aromatic organic compounds (e.g.,
pyrrole, tiophene, phenylene diamine or phenol) which are deposited onto the electrode
surface that is already loaded by the enzyme previously by adsorption or cross-linked,
or the polymer includes the enzyme as a counterion [40]. The thickness of such polymer
�lms is usually in the nanometer range. Furthermore, these polymer membranes can
also improve the selectivity due to their functionality as permselective membrane and
provide a barrier against electrode fouling [37].
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2.5 Measurement techniques

In the following paragraph, the measurement techniques to perform the experiments in
this thesis are shortly described.

2.5.1 Capacitance-voltage- and constant-capacitance measurements

For the detection of di�erent analytes, corresponding enzymes are immobilized onto
the EIS-sensor surface; the set-up is used to perform capacitance-voltage- (C-V) and
constant-capacitance (ConCap) measurements. As already mentioned in chapter 2.1, to
obtain the characteristic C-V curve, a DC-bias voltage is applied between the rear-side
contact of the EIS structure and the reference electrode, which is superimposed by a
small AC voltage (usually 10 - 50 mV). For sensor measurements, the important part
of the EIS sensor is the depletion region. Fig. 2.10, left, shows typical C-V plots for a
p-doped EIS sensor.

Fig. 2.10: Typical C-V curves of an EIS sensor depending on the pH changes of the analyte solution
(left) and corresponding calibration curve at a �xed capacitance (right).

With increasing or decreasing of the pH value of the analyte solution due to the
enzymatic reaction at the membrane-electrolyte surface, the curves are shifted to the
left or right along the voltage axis. To obtain the calibration plot from the C-V curves,
a �xed capacitance (about 60% of the maximum capacitance) is chosen. The resulting
voltage is plotted versus the corresponding pH value of the analyte solution, which is
depicted in Fig. 2.10, right.

In the ConCap-measurement mode, the dynamic response of the sensor signal, de-
pending on the pH value of the analyte solution at a �xed bias voltage, is recorded over
time, which is demonstrated in Fig. 2.11, left. To obtain the calibration plot from the
ConCap curve, the steady-state voltage signal is plotted versus the corresponding pH
value of the analyte solution (see Fig. 2.11, right). Both curves, obtained from the C-V
curves as well as from the ConCap plot, should yield the same calibration behavior.
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Fig. 2.11: Typical ConCap plot of an EIS sensor depending on the pH changes of the analyte
solution (left) and corresponding calibration curve at a �xed capacitance (right).

2.5.2 Amperometry

For amperometric measurements, an oxidation/reduction potential for the electroactive
species of interest has been adjusted. Therefore, at �rst, a cyclic voltammogram has
to be recorded, which is shown in Fig. 2.8b). A potential is selected where the elec-
troactive compound is depleted at the electrode surface and the transfer of the species
is di�usion-limited. Hence, it should be a value between E1/2 and E+

p for oxidation
reactions and between E1/2 and E−

p for reduction reactions. The resulting Faradaic
current is plotted over time. With stepwise increasing of the analyte concentration,
the current is also gradually increased. An example of a typical (chrono)amperometric
measurement is depicted in Fig. 2.12, left, with the derived calibration curve in Fig 2.12,
right. The calibration curve is obtained by plotting the current measured at the end
of each concentration step (steady-state condition) against the corresponding analyte
concentration.
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3 Concept for a biomolecular logic chip

3.1 Abstract

A concept for a new generation of an integrated multifunctional biosensor/actuator
system is developed, which is based on biomolecular logic principles. Such a system is
expected to be able to detect multiple biochemical input signals simultaneously and in
real-time and convert them into electrical output signals with logical operations such
as OR, AND, etc. The system can be designed as a closed-loop drug release device
triggered by an enzyme logic gate, while the release of the drug induced by the actuator
at the required dosage and timing will be controlled by an additional drug sensor. Thus,
the system could help to make an accurate and speci�c diagnosis. The presented concept
is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose
oxidase system, a temperature-responsive hydrogel mimicking the actuator function
and an insulin (drug) sensor. In this work, the results of functional testing of individual
amperometric glucose and insulin sensors as well as an impedimetric sensor for the
detection of the hydrogel swelling/shrinking are presented.
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3.2 Introduction

As medical diagnostic techniques continue to progress toward therapies based on bio-
markers as an indicator for a particular disease state, the development of highly sen-
sitive, speci�c, and cost-e�ective sensors and systems for the detection of clinically
relevant biomarkers are important issues in clinical diagnostics [1�3]. Some well-known
examples of biomarkers are prostate-speci�c antigen for prostate cancer, cardiac tro-
ponin, or creatine kinase for myocardial infarction, C-reactive protein as an indicator
of in�ammation, etc. [4, 5]. Recently, enzyme biomarkers have also been used for a
forensic identi�cation of ethnic groups [6]. However, biomarkers often relate to several
di�erent disorders, making the diseases speci�cation sophisticated. The diagnostic value
of biomarkers for the disease speci�cation can be increased by the detection of panels
of biomarkers [7, 8].
Recent research e�orts in the �eld of molecular logic gates and biocomputing using a

variety of recognition elements, including enzymes, DNA (deoxyribonucleic acid), RNA
(ribonucleic acid), and biochemical pathways in living cells, show a great potential for
this new technology (see e.g., Refs. [9�15]). Molecular logic and computation potentially
could also be applied to create medical devices and systems for intelligent or smart
diagnostics [16�19]. For example, AND and INHIBIT logic gates that respond to
the presence of both interleukin-8 protein and bacterial DNA in a sample have been
realized in [17]. In addition, a multi-enzyme logic-gate network has been developed to
assess the traumatic brain injury and soft tissue injury [18, 19]. Moreover, biomolecular
logic principles have been utilized for the development of a �Sense-and-Act� system for
biologically triggered drug-release applications [20, 21].
In this work, we present a novel and very promising platform for on-chip integra-

tion of molecular logic principles with a multi-functional biosensor/actuator system �
so-called biomolecular logic chip (BioLogicChip). Such a chip is expected to be able
to detect multiple biochemical input signals (e.g., panel of biomarkers or cascade of
biochemical reactions) simultaneously and in real-time in a micro�uidic system and
convert them into electrical output signals with logical operations such as OR, AND,
etc. The resulting bit patterns consisting of �zeroes� and �ones� correlate with a speci�c
disease. With these logic operations, the actuator function can be addressed and stim-
ulated, resulting in the release of the respective agent (e.g., drugs for the treatment of
the patient). The BioLogicChip represents a �sense/act/treat� logic biosensor/actuator
system capable for a highly speci�c and reliable diagnosis and drug administration as it
responds only to speci�c combinations of biochemical input signals that are processed
by the biomolecular logic gate.

3.3 Concept for the BioLogicChip

The proposed concept is exemplarily demonstrated by using the enzyme logic gate based
on a glucose/glucose oxidase system and a temperature-responsive hydrogel mimicking
the actuator function (e.g., hydrogel valve) shown in Fig. 3.1. Here, the chip is designed
as a closed-loop drug-release device triggered by the enzyme logic gate. The glucose
level is measured by an amperometric sensor using the enzyme glucose oxidase, whereat
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3 Concept for a biomolecular logic chip

glucose and oxygen serve as input signals to mimic the Boolean AND logic operation.
The absence of the respective analytes in the solution is considered as the input signal 0,
while addition of analytes is used as the input signal 1. If both input signals or either one
of them are missing (input signal 0,0; 0,1; 1,0), no enzymatic reaction occurs and the
logic output signal is 0. In the presence of both the glucose and oxygen (input signal
1,1), an oxidation of glucose catalyzed by glucose oxidase results in the production
of gluconic acid and hydrogen peroxide, yielding a glucose concentration-dependent
current change (logic output signal 1). The logic output current will activate the heater
on which a temperature-responsive hydrogel is positioned. Thus, the temperature-
dependent shrinking/swelling of the hydrogel could be activated in accordance to the
logic output of the enzyme logic gate. If hydrogel is designed, for instance, as �uidic
valve closing some compartment containing the drug of interest, it can act as an actuator
releasing the particular drug (e.g., insulin in order to reduce the glucose level) in the
solution as the hydrogels shrinks. Alternatively, drug molecules could be incorporated
within the hydrogel. The release of the drug at the required dosage and timing will
be controlled by the glucose level and monitored by an additional drug sensor (here,
an insulin sensor). In this work, the results of functional testing of the individual
amperometric glucose and insulin sensors as well as an impedimetric sensor for the
detection of the temperature-induced hydrogel shrinking are presented.

Fig. 3.1: Schematic of a BioLogicChip consisting of an enzyme logic gate based on a glucose/glucose
oxidase system, a temperature-responsive hydrogel valve mimicking the actuator function (drug
release from the closed compartment in the solution as the hydrogel shrinks) and a drug (insulin)
sensor for the control of the drug release. The chip is exemplarily designed as a closed-loop
drug-release device triggered by the enzyme logic gate.
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3.4.1 Chemicals

Glutaraldehyde, bovine serum albumine (BSA), bovine insulin (≥ 27 USP units/mg),
enzyme glucose oxidase (EC 1.1.4., from Aspergillus niger), glucose monohydrate, and
the bu�er components were purchased from Sigma�Aldrich (St. Louis). Hydrochlorid
acid was bought from Merck Titrisol (Darmstadt, Germany). N-isopropylacrylamide
(NIPAAm, 99%, Sigma�Aldrich), cross-linking agent N,N'-methylenebis (acrylamide)
(BIS, 98%, Merck), and the photoinitiator Irgacure 2959 (Ciba) were used as received,
without any additional pur�cation.

3.4.2 Preparation of sensors structures

The sensor chips were fabricated by means of conventional silicon- and thin-�lm tech-
nologies. First, 500 nm (SiO2) was grown by thermal wet oxidation of a p-Si wafer.
Then, 20 nm titanium as adhesion layer and subsequently, 200 nm platinum as electrode
material for the amperometric glucose sensor were deposited on the (SiO2) surface by
electron-beam evaporation and patterned by means of lift-o� technique. The wafer was
cut into separate chips with size of 1 x 2 cm2. The schematic layer structure and pho-
tograph of the chip are shown in Fig. 3.2. This basis structure was also used for the
preparation of the amperometric insulin sensor. After the surface cleaning with acetone,
isopropanol and deionized water, the chips were glued onto the substrate holder, electri-
cally connected by means of an ultrasonic wedge bonder and encapsulated with silicone
rubber (TSE 399C, Momentive Performance Materials, Switzerland). The contact area
of the Pt electrodes with the analyte was approximately 0.4 cm2.
The glucose biosensor was prepared by attaching an enzyme membrane on the plat-

inum electrode. For this, 125.7 µL phosphat bu�er (pH 7.4) containing GOD with
a concentration of 166.6 U/mL was mixed with 20 µL of BSA (10 vol%) and 20 µL
glutaraldehyde (2 vol%) solutions. The resulting volumetric ratio of all three compo-
nents was 1�2�2 (enzyme�BSA�glutaraldehyde) [22]. A total of 30 µL of the membrane
cocktail was then dropped on the platinum electrode resulting in an enzyme loading of
approximately 1 U/electrode. After drying, the chip was rinsed with bu�er solution to
remove unbound components and stored at 4 ◦C until required.
The impedimetric sensor for the hydrogel-shrinking detection is based on a platinum

interdigitated circle structure and was fabricated as described before for the glucose
sensor. The circular structure consists of 24 �ngers with a width of 100 µm and a gap
between the electrodes of 150 µm (see Fig. 3.3).
The temperature-responsive hydrogel was prepared from a pre-polymer solution con-

sisting of 100 mM NIPAAm, 1 mM BIS and 0.45 mmol Irgacure dissolved in 60 mL
deionized water under stirring. The poly-(N-isopropylacrylamide) (PNIPAAm) hydro-
gel �lm was prepared by the photopolymerization method described in [23]. With the
help of a photomask during the UV light exposure, the size of the hydrogel was de�ned.
After drying at room temperature, the thickness of the hydrogel was approximately
10 µm in the dry state.
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3 Concept for a biomolecular logic chip

Fig. 3.2: Layer structure of the amperometric glucose sensor (top) and photograph of the biosensor
chip (bottom).

Fig. 3.3: Platinum interdigitated circle structure.

Di�erent metal electrodes have been discussed in literature for the amperometric de-
tection of insulin [24]. For example, a modi�ed glassy carbon electrode with a composite
of ruthenium oxide and cyanoruthenate has shown promising results in the �ow-injection
analysis under acidic conditions [25]. The application of natural antibodies and even
more directly imprinted polymers and antibody replicae for the detection of insulin
have been reported in [26]. However, insulin had a limited stability in bu�er solu-
tions at pH>4. A more stable amperometric detector for insulin has been prepared
by electroplating the equated iridium complexes on the classy carbon electrode. The
nanometer-thick �lm of IrxOy could be used for the fast amperometric determination of
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insulin at low concentrations (<1 µM) dissolved in pH 7.4 bu�er solution [27]. There-
fore, IrxOy was chosen as an electrode material for the insulin oxidation. In this work,
the IrxOy layer was fabricated by thermal oxidation (at 700 ◦C [28]) for 1 h of a 20 nm
thick iridium �lm deposited on top of the Si�SiO2�Ti�Pt structure. The schematic layer
structure and photograph of the insulin sensor is shown in Fig. 3.4.

Fig. 3.4: Layer structure of the amperometric insulin sensor (top) and photograph of the prepared
chip (bottom).

3.4.3 Electrochemical sensor characterization

For the electrochemical characterization of the amperometric glucose and insulin sen-
sor, the Pt and IrxOy working electrodes were connected to a potentiostat (PalmSens,
Palm Instruments BV, Netherlands). A three-electrode arrangement was used, where a
conventional liquid-junction Ag/AgCl electrode (Metrohm) was utilized as a reference
electrode and a platinum wire as a counter electrode. To oxidize the hydrogen peroxide
that is produced during the enzymatic reaction, a constant potential of +600 mV vs.
Ag/AgCl was applied to the platinum working electrode and the current was monitored
as a function of time. This potential value for hydrogen peroxide oxidation has been de-
termined from the linear-sweep voltammetry measurements in the di�usion-controlled
plateau region. For the oxidation of the insulin, a constant potential of +800 mV [28]
was applied on the IrxOy electrode. The experiments were performed at room temper-
ature.
The swelling/shrinking behavior of the temperature-responsive PNIPAAm hydrogel

was studied at di�erent temperatures (28 - 42 ◦C) using an impedance measurement
system IM6e (Zahner Elektrik GmbH, Germany).
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3.5 Results and discussion

3.5.1 Enzyme-based AND logic gate

Before experiments with the AND enzyme logic gate, the glucose sensitivity of the
prepared amperometric glucose biosensor has been tested. Fig. 3.5 depicts the response
of the glucose sensor recorded in solutions with di�erent glucose concentrations from
0.2 - 2.34 mM (a) and the corresponding calibration curve (b). As expected, the current
increases with increasing the glucose concentration. The sensor exhibits a sensitivity of
9.15 ± 0.15 µA/mM in a linear concentration range of 0.2 - 2.34 mM glucose, which is
comparable with results reported for glucose oxidase modi�ed electrodes based on Au
�lms [29].

Fig. 3.5: Amperometric detection (a) and sensitivity plot (b) of glucose in the concentration range
of 0.2 - 2.34 mM, determined by the glucose biosensor.

Figure 3.6 shows the logic output signal of the enzyme biosensor AND gate with glu-
cose and oxygen as input signals. In this experiment, the sensor with the immobilized
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glucose oxidase was consecutively exposed to (a) glucose- and oxygen-free bu�er solu-
tion, (b) glucose-free bu�er in the presence of dissolved oxygen (with a concentration
obtained in the solution under equilibrium with air), (c) oxygen-free glucose solution
(10 mM), and (d) bu�er solution containing both the glucose (10 mM) and dissolved
oxygen. To obtain oxygen-free solution, nitrogen was bubbled through the solution
for 30 min before starting the measurement. In addition, the presence or absence of
oxygen in solution was controlled by an oxygen sensor (Atlas Scienti�c). As can be
seen, a large signal (∼17 µA) has been registered only if both substrates (glucose and
oxygen) are present in the solution (input 1,1). Thus, only in the presence of glucose
and dissolved oxygen the enzymatic reaction is completed, resulting in a �nal prod-
uct (hydrogen peroxide) detected by the amperometric sensor. As a result, the sensor
generates an electronic signal corresponding to the logic output signal produced by the
enzymes. If both or either one of the inputs are missing (inputs 0,0; 0,1; 1,0), no
enzymatic reaction occurs and therefore, no (or only a very small) current change was
detected. The truth table with respective input signal combinations is also reviewed in
Fig. 3.6.

Fig. 3.6: Ouput signal of an enzyme-based AND logic gate by di�erent combinations of glucose
and oxygen inputs, determined by the glucose biosensor.

3.5.2 Impedimetric detection of hydrogel shrinking

Hydrogels are cross-linked polymer structures capable for absorbing a large amount of
water. Stimuli-responsive hydrogels are able to swell or shrink and thus, to change their
volume signi�cantly in response to external stimuli (e.g., pH, ionic strength, tempera-
ture) [30, 31]. At low temperatures, the PNIPAAm hydrogel is in a highly swollen state.
Above the phase-transition temperature (around 32 - 34 ◦C [23]), the polymer network
chains collapse.
To examine the feasibility of the prepared hydrogel �lm to work as a drug-release

device enabling to switch �ON/OFF�, impedance of the interdigitated circular electrodes
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was measured at di�erent temperatures reaching from 28 ◦C to 42 ◦C. The open-circuit
impedance measurement was performed at a frequency of 1053 Hz and is presented in
Fig. 3.7. At temperatures lower than the phase-transition temperature, the impedance
has a constant value of 2.5 kΩ. The impedance is increased sharply at temperatures
above 33.4 ◦C and achieves to a value of 14.8 kΩ at 42 ◦C. The high impedance at
high temperatures corresponds to the collapsed and hydrophobic gel phase containing
little water, while the low impedance at low temperatures corresponds to a swollen state
with high water content. In contrast, comparative impedance measurements with the
interdigitated circular electrodes without the immobilized hydrogel depicted a linearity
decrease of the impedance by increasing of the temperature due to the increase of
the conductivity of water. These experiments clearly demonstrate the feasibility of
the PNIPAAm hydrogel �lms as temperature-responsive actuator. Future experiments
envisage combining the hydrogel actuator together with a drug reservoir releasing the
agent (e.g., insulin) of interest.

Fig. 3.7: Characterization of the temperature-dependent swelling/shrinking behavior of the
PNIPAAm hydrogel �lm by impedance measurements at temperatures between 28 ◦C and 42 ◦C.

3.5.3 Insulin sensor

Morphological characterization

The prepared IrxOy �lm was characterized by energy-dispersive X-ray spectroscopy
[EDX, Magellan 400 (FEI)] and atomic force microscopy (AFM, NanoWizard R© II, JPK
Instruments, Germany). With the use of EDX images (data not shown), the oxidation
of iridium could be con�rmed. To obtain further details of the surface morphology
of the iridium layer, the sensor surface was investigated with AFM. For this, areas
of 5.0 x 5.0 µm2 were scanned prior to and after 1 h oxidation (see Fig. 3.8). The
oxidation procedure resulted in a raise of surface roughness, indicated by increasing
average roughness values Ra of 1.2 nm (before oxidation) to 4.7 nm (after oxidation).
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3.5 Results and discussion

Fig. 3.8: AFM height images of the iridium layer before oxidation (a) and after 1 h oxidation (b).

Electrochemical characterization

Insulin is a peptide hormone and can be directly electrochemically detected, among
other things, by its oxidation at modi�ed electrodes [25, 32]. The measurement of the
oxidation of insulin is a preferred mode of determination since it avoids interferences
associated with the reduction of oxygen at the sensing electrode. The electrochemical
oxidation of insulin was subjected by using an IrxOy-modi�ed electrode. The resulting
sensor signal was recorded by amperometric measurements. Therefore, a stock solution
of 0.42 mM insulin was prepared freshly prior to measurement by dissolving powdered
insulin from porcine pancreas in 2.5 mL of 0.02 M HCl. This stock solution was further
diluted with 0.05 M phosphate bu�er (pH 7.4) solution to de�ne working solutions with
desired concentrations [27]. Figure 3.9 exemplarily presents the calibration curve from
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the oxidation of insulin measured by the IrxOy sensor with an oxidation time of 1 h of
the iridium layer. The sensor was able to detect insulin in the concentration range of
0.1 - 0.5 µM with a sensitivity of 4.36 ± 0.91 nA/µM. Insulin at higher concentrations
cannot be detected. This may be a consequence of approaching the solubility limit of
insulin since insulin is known to be sparingly soluble at neutral pH. The measurement
shows a feasible application of using the IrxOy electrode to monitor the insulin at lower
concentrations.

Fig. 3.9: Sensitivity plot of insulin in the concentration range of 0.1 - 0.5 µM measured by the
IrxOy sensor.

3.6 Conclusions

In this work, a concept for the BioLogicChip � a �sense/act/treat� logic biosen-
sor/actuator system capable for a highly speci�c and reliable diagnosis and drug
administration � is presented. The BioLogicChip is expected to be able to detect
multiple biochemical input signals and convert them into logic output signals corre-
lating with a speci�c disease. With these logic operations (AND, OR, etc.), the
actuator function can be stimulated, resulting in the release of a particular agent (e.g.,
drugs). The proposed concept has been demonstrated through the example of a closed-
loop drug-release system triggered by the enzyme logic based on a glucose/glucose
oxidase system and the logic actuator based on a temperature-responsive hydrogel.
In proof-of-concept experiments, the amperometric Pt glucose sensor for the enzyme
logic function, an impedimetric sensor for the detection of swelling/shrinking of the
temperature-responsive PNIPAAm hydrogel �lm (mimicking the actuator function)
and an IrxOy-based amperometric insulin sensor (for the drug-release control) have
been prepared and successfully tested. Future work will be directed to integrate single
sensors and actuators onto one chip and combine them with a micro�uidic device as
well as to develop a �sense/act/treat� system based on multiple enzyme logic gates and
actuators triggered by a cascade of enzymatic reactions.
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4 Adrenaline biosensor based on substrate-recycling ampli�cation

4.1 Abstract

An amperometric biosensor using a substrate-recycling principle was realized for the de-
tection of low adrenaline concentrations (1 nM) by measurements in phosphate bu�er
and Ringer`s solution at pH 6.5 and pH 7.4, respectively. In �proof-of-principle� exper-
iments, a Boolean logic-gate principle has been applied to develop a digital adrenaline
biosensor based on an enzyme AND logic gate. The obtained results demonstrate that
the developed digital biosensor is capable for a rapid qualitative determination of the
presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could
be used in clinical diagnostics for the control of a correct insertion of a catheter in the
adrenal veins during adrenal venous-sampling procedure.
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4.2 Introduction

Inadequate high aldosterone secretion by an aldosterone-producing adenoma is one of
the most frequent causes of hypertension [1]. Patients with primary aldosteronism (PA)
have considerably higher cardiovascular morbidity and mortality than patients with
essential hypertension [2, 3]. Because of the therapeutical aspects, patients with PA
undergo an adrenal venous-sampling (AVS) procedure for aldosteronoma localization
and di�erential diagnosis. The technique used is invasive and complicated because
adrenal veins are in general di�cult to cannulate [4]. Since adrenaline concentration in
adrenal veins is much higher (&100 nM) than in the periphery (.1.2 nM) [5, 6], the
concentration di�erence of adrenaline can be used as an indicator for the correct inser-
tion and positioning of the catheter in the adrenal veins and successful AVS procedure
[7, 8]. This requires a fast adrenaline detection method with a high sensitivity and low
detection limit in the nanomolar concentration range.

Adrenaline belongs to the substance group of catecholamines. Several methods have
been developed for the determination of catecholamines, mainly high-performance liq-
uid chromatography, �uorescence spectroscopy, capillary electrophoresis, chemilumi-
nescence [9�11] and electrochemical detection [12, 13]. Electrochemical detection using
biosensors o�er faster and more versatile analytical methods for clinical or biomedi-
cal applications. However, for very low analyte concentrations sensitivity is often not
su�cient; consequently, di�erent ampli�cations methods have been developed. Electro-
chemical recycling of the analyte between two closely arranged electrodes (preferentially
interdigitated electrodes) allows a repeated participation of analyte molecules in the sig-
nal generation [14]. An alternative is chemical recycling by coupling a chemical reaction
to the electrochemical detection reaction [15]. With the application of a proper biolog-
ical molecule the sensor's selectivity and sensitivity can be further improved. This can
be reached by combining the enzymatic reaction with an electrochemical conversion
[16] or most e�ciently by using two enzymes [17]. In biochemical recycling approach,
the analyte is converted by one enzyme in a product which can be converted back to
the original substrate by a second enzyme and thus amplifying the response by several
orders of magnitude, as described in [18, 19]. Other examples are ultrasensitive sensors
for the detection of phenolic substances ranging from micromolar to nanomolar levels
which were developed by combining oxidase enzymes with a pyrroloquinoline quinone
(PQQ)-dependent glucose dehydrogenase (GDH) [20, 21]. However, maximum sensitiv-
ity with the applied enzymes used in [20, 21] was obtained at pH 6.0, which limits the
application of these biosensors for the detection of adrenaline in biological liquids such
as blood.

The present study describes an adrenaline biosensor based on a laccase/PQQ-GDH
bi-enzyme system and the substrate-recycling principle with optimal working charac-
teristics in the pH range relevant for blood samples. In contrast to [20, 21], we utilize
a genetically modi�ed laccase variant, which is active in a broad pH range between
pH 3.5 to pH 8.0 and stable in phosphate bu�er solution (PBS) [22]. The sensor has
been tested in PBS and Ringer's solution (RS), a substitute for blood plasma or other
physiological liquids. In addition, in �proof-of-principle� experiments, the possibility of
construction of a digital adrenaline biosensor based on a Boolean AND logic gate with
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a YES/NO output has been demonstrated for the �rst time.

4.3 Experimental

4.3.1 Materials

Glutaraldehyde, bovine serum albumin (BSA), glycerol, CaCl2 and the bu�er compo-
nents (monosodium phosphate and disodiumphosphate) were purchased from Sigma�
Aldrich (USA). The laccase was provided by AB Enzymes GmbH (Germany). Glucose
dehydrogenase (from Acinetobacter calcoaceticus) was provided by Roche Diagnostics
(Germany). Cellulose acetate �lter with a pore size of 0.2 µm was obtained from Sarto-
rius Stedim Biotech GmbH (Germany). Adrenaline solution (1 mg/mL) was purchased
from Sano��Aventis GmbH (Germany). PQQ was bought from Wako (Japan) and RS
(8.6 g/L NaCl, 0.3 g/L KCl, 0.33 g/L CaCl2 · 2H2O) was purchased from Bernburg
(Germany).

4.3.2 Modi�cation of the oxygen sensor with enzyme membrane

For the realization of the adrenaline biosensor, a commercial galvanic oxygen sensor
(Atlas Scienti�c, USA) was modi�ed by a bi-enzyme (laccase/GDH) membrane. Unlike
the polarographic oxygen sensor, the galvanic sensor does not need a constant volt-
age applied to it. In the galvanic oxygen sensor, the electrodes are dissimilar enough
to self-polarize and reduce oxygen molecules without an applied voltage. The enzyme
membrane was prepared from the membrane cocktail consisting of 15 µL of the laccase
(1.82 U/µL) solution, 15 µL of GDH (0.03 U/µL) solution combining 20 µM PQQ and
1 mM CaCl2 [23], 60 µL of BSA (10 vol%) and 60 µL mixture of glutaraldehyde (2
vol%) and glycerol (10 vol%) solutions, respectively. All components were mixed with
the resulting volumetric ratio of 1/2/2 (enzymes/BSA/glutaraldehyde-glycerol). Detail
information for determination of the enzyme activity is described in [24, 25]. A total of
100 µL of the membrane cocktail was then dropped onto a Te�on block. After drying
for 24 h at 4 ◦C, the enzyme membrane with a thickness of approximately 130 µm was
�xed with the help of a cellulose acetate �lter (dialysis membrane) and silicon rub-
ber (TSE 399C, Momentive PerformanceMaterials, Switzerland) onto the high-density
polyethylene (HDPE) layer of the oxygen sensor (see Fig. 4.1).

4.3.3 Measuring setup

For the electrochemical characterization, the adrenaline biosensor was connected to a
potentiometer (2007 Multimeter, Keithley Instruments) and exposed to the solution
containing di�erent concentrations of adrenaline (see Fig. 4.1) The sensor measures the
oxygen consumption due to the oxidation of adrenaline by the laccase. The produced
output voltage (delivered by the galvanic oxygen sensor) is proportional to the oxygen
consumption in the solution due to the enzymatic reaction. The sensitivity of the
biosensor to adrenaline was investigated in both PBS and RS containing 20 mM glucose.
Adrenaline solutions with various concentrations from 1 nM to 1 µM were prepared from
a stock solution of 0.1 mM adrenaline, stored at 4 ◦C in the dark. At each adrenaline
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Fig. 4.1: Measurement setup for the detection of adrenaline (schematically).

concentration, the sensor signal was recorded for about 20 min. All experiments were
carried out at room temperature under continuous stirring.

4.4 Results and discussion

4.4.1 Substrate-recycling principle

In order to measure low adrenaline concentrations (in the nanomolar concentration
range), the substrate-recycling principle based on a bi-enzyme system (laccase/PQQ-
GDH) has been proposed in [17, 20, 21]. PQQ acts here as a prostethic group for the
GDH and binds via Ca2+ ions to the apoenzyme. Fig. 4.2 schematically shows the
substrate-recycling principle for the enzymatic signal ampli�cation of the adrenaline
biosensor: In the presence of dissolved oxygen, the enzyme laccase oxidizes adrenaline
to adrenochrome; in a second oxidation reaction, GDH transforms glucose into glucono-
lactone, while adrenochrome is reduced back to adrenaline, the substrate of the �rst
reaction.

Fig. 4.2: Scheme of the substrate-recycling principle for the ampli�cation of the adrenaline-sensor
signal.

Thus, the combination of both enzymes laccase and GDH results in an ampli�cation
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of the adrenaline signal. The amount of dissolved oxygen consumed during the enzy-
matic reactions serves as measuring parameter to evaluate the adrenaline concentration
and is detected by means of a galvanic oxygen sensor modi�ed with the bi-enzyme
(laccase/GDH) membrane.

4.4.2 Electrochemical sensor characterization

In experiments with the genetically modi�ed laccase only, the maximum adrenaline
sensitivity in PBS has been achieved at a pH value around pH 8.0 [26]. On the other
hand, the highest activity of PQQ-GDH is known to be in a weakly acidic to neutral
pH range [23, 27]. Hence, it has to be tested whether the combination of these two
enzymes can result in an enzyme system with high sensitivity around the neutral pH
range � as requested for the intended application (e.g., in adrenal veins). Therefore,
the pH behavior of the adrenaline sensor was investigated in the range of pH 6.0 -
pH 8.0. Fig. 4.3 summarizes the normalized adrenaline sensitivity of the developed
biosensor, where the data points represent the adrenaline sensitivity averaged for three
measurements in the concentration range of 300 - 1000 nM adrenaline. It can be clearly
seen that high sensitivity can be obtained at pH values &6.5. This veri�es that the
use of the genetically modi�ed laccase with a di�erent pH behavior is bene�cial for a
recycling system with PQQ-GDH making the sensor applicable at around neutral pH.
The �gure also illustrates that in PBS a decrease in response at pH 7.4 was found which
did not occur when RS was used. This can be explained by the fact that phosphate ions
can compete with Ca2+ ions necessary for the PQQ-binding in the GDH [28]. However,
this does not limit the use of the system for the intended application under physiological
conditions.

Fig. 4.3: Normalized sensitivity of the adrenaline biosensor with the enzymes laccase and GDH
measured in PBS and RS, respectively, at di�erent pH values.

In further experiments, the lower detection limit of the adrenaline biosensor has been
studied in PBS as well as in RS with pH 6.5 at which the maximum sensitivity has been
observed. Fig. 4.4a demonstrates the dynamic response of the developed adrenaline
biosensor measured in both PBS and RS with di�erent adrenaline concentrations (1 -
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300 nM). As expected, the sensor signal measured in both solutions decreases with
increasing adrenaline concentration due to the oxygen consumption during the oxida-
tion reaction of adrenaline by the enzyme laccase. The inset in Fig. 4.4a depicts the
calibration curves of the adrenaline biosensor in PBS and RS, respectively. The calibra-
tion curves were nearly linear in a wide concentration range of 5 - 100 nM adrenaline
with a slope of -0.15 mV/nM and -0.12 mV/nM in PBS and RS, respectively. As can
be recognized from the zoomed curves in Fig. 4.4b, the developed biosensor is capable
for measurements of very low adrenaline concentrations with detection limits of about
1 nM.

Fig. 4.4: a) Dynamic response of the adrenaline biosensor with laccase/PQQ-GDH measured in
PBS as well as in RS of pH 6.5 (1 mM CaCl2), containing di�erent adrenaline concentrations
of 1 - 300 nM; inset �gure represents the calibration curves of the sensor; b) zoomed dynamic
response for the evaluation of the lower detection limit.

In order to verify the applicability of the developed sensor at physiological pH con-
ditions, additional measurements were performed in PBS as well as in RS at pH 7.4.
The results of these experiments are compiled in Fig. 4.5 As expected, the adrenaline
sensitivity measured in PBS of pH 7.4 was about two times smaller (-0.06 mV/nM in the
linear range of 5 - 100 nM) than that of measured in PBS of pH 6.5. This is consistent
with results shown in Fig. 4.3. On the other hand, the sensitivity of the adrenaline
sensor measured in RS at pH 7.4 (-0.11 mV/nM) was about the same as in RS at pH
6.5. This is a result of the better match of the pH optima of laccase and PQQ-GDH
used in this study compared to previous developments [20] and the absence of inhibiting
ions in the RS.
In comparison to reported detection limits of 293 nM [12] and 0.5 nM [20] in bu�er

solution of pH 6.5 and pH 6.0, respectively, the developed biosensor provides a detectable
signal at physiological level of pH 7.4 even at an adrenaline concentration of 1 nM (see
Fig. 4.5b). These experiments underline the possibility of application of the developed
adrenaline biosensor in biological liquids, in particular, in blood samples.
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Fig. 4.5: a) Dynamic response of the adrenaline biosensor with laccase/PQQ-GDH measured in
PBS as well as in RS of pH 7.4 (1 mM CaCl2), containing di�erent adrenaline concentrations
of 1 - 300 nM; inset �gure represents the calibration curves of the sensor; b) zoomed dynamic
response for the evaluation of the lower detection limit.

4.4.3 Digital adrenaline biosensor based on AND logic gate

Typically, biosensors provide quantitative information on the concentration of analytes.
Recent advances in molecular logic gates [29�37] have opened opportunities for devel-
opment of so-called digital biosensors. In contrary to quantitative measurements with
conventional biosensors, digital biosensors enable processing of multiple biochemical in-
put signals according to Boolean logic and �nally, generate qualitative binary output
signals in the form of YES/NO decisions [38�40]. The potential of this approach for
biomedical applications has recently been demonstrated by introducing digital biosen-
sors for diagnostic and forensic applications [41, 42]. The digital biosensor concept
could be bene�cial when there is no need for precise, quantitative measurements of
biomarker concentrations, but rather a rapid qualitative answer on the presence (or ele-
vated concentration)/absence of a biomarker is required (e.g., directly during a surgical
operation). In the following, preliminary results on the development of such digital
adrenaline biosensor based on the substrate-recycling principle in combination with
enzyme logic gates with YES/NO output are presented.
As �rst �proof-of-principle�, such digital adrenaline biosensor can be represented as

two concatenated enzyme-based AND logic gates (AND 1 and AND 2), containing
two enzymes: laccase and GDH (see Fig. 4.6). In order to digitalize chemical processes,
the reacting species are considered as logic input signals re�ecting two levels of their
concentrations. The presence of the particular analytes in the solution corresponds
to the input signal 1, while absence of analytes is considered as the input signal 0.
The enzyme-based AND 1 gate is activated by two chemical input signals: adrenaline
(input 1) and dissolved oxygen (input 2). In the presence of dissolved oxygen, the
enzyme laccase oxidizes adrenaline to adrenochrome. At low adrenaline concentrations,
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the amount of dissolved oxygen consumed during enzymatic reactions is small. As a
consequence, small changes in sensor signal can be expected as schematically shown
in Fig. 4.6 (lower diagram I). The second AND 2 gate is activated by glucose (input
3) and adrenochrome (product of adrenaline-oxidation reaction, input 4) and serves
for ampli�cation of the sensor signal. During the second oxidation reaction, PQQ-
GDH transforms glucose into gluconolactone, while adrenochrome is reduced back to
adrenaline, the substrate of the �rst reaction (which can be started again). Due to the
substrate recycling, the consumption of dissolved oxygen is thus increased, resulting
in a high sensor signal change (see diagram II). The reaction cascade cannot start
if adrenaline or/and dissolved oxygen is missing, and the substrate-recycling reaction
cannot be completed if glucose is missing, all resulting in a logic output signal 0.

Fig. 4.6: Schematic of a digital adrenaline biosensor based on substrate-recycling principle. The
digital biosensor consists of two concatenated enzyme-based AND logic gates (AND 1 and AND
2) containing two enzymes (laccase and GDH). The expected changes in sensor signal by low and
high oxygen consumption are added, too (see schematic diagrams I and II).

Fig. 4.7 illustrates the normalized output signal of the digital adrenaline biosensor
based on the substrate-recycling principle. In this experiment, the developed adrenaline
biosensor with the immobilized laccase/PQQ-GDH was consecutively exposed to i) PBS
with dissolved oxygen (with a concentration obtained in the solution under equilib-
rium with air), ii) PBS containing dissolved oxygen and glucose, iii) PBS containing
adrenaline and dissolved oxygen, iv) PBS containing adrenaline, glucose and dissolved
oxygen. These experiments allow not only the functional testing of the dissolved oxygen
sensor, but also to study the sensor signal in solutions containing di�erent combinations
of input analytes (adrenaline, dissolved oxygen and glucose).
As can be seen, the highest output was recorded in solution containing dissolved

oxygen, thus verifying correct functioning of the galvanic dissolved oxygen sensor. In the
absence of adrenaline in the solution, the addition of glucose does not a�ect the sensor
output, because no oxidation reaction takes place. As expected, a small signal output
has been observed in the solution containing adrenaline and dissolved oxygen; this case
corresponds to the adrenaline sensor without substrate-recycling ampli�cation. On the
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Fig. 4.7: Normalized output signal of the digital adrenaline biosensor recorded in PBS (pH 6.5)
containing di�erent combinations of input analytes (adrenaline (1 µM), dissolved oxygen (air
saturation) and glucose (20 mM)).

other hand, due to the substrate-recycling reaction and high oxygen consumption, a high
signal change of about 35% has been recorded in the presence of adrenaline, dissolved
oxygen and glucose in the solution. Thus, only in the presence of these three analytes
in the solution, the cascade of enzymatic reactions is completed, resulting in a signal
ampli�cation and logic output 1. Hence, the developed digital sensor could be able
to distinguish elevated adrenaline concentrations in form of a YES/NO output as an
indicator for the correct insertion and positioning of the catheter in the adrenal veins.
It is worth mentioning that in the described model study, the logic 0/1 values of the

chemical input signals correspond to the complete absence/presence of the analyte or
species contributing to the biochemical reactions. For practical applications, the logic 0
and 1 chemical input signals should be considered as physiologically normal (∼1 nM for
adrenaline) and pathologically elevated (or abnormal exceeding a prede�ned threshold
taken from clinical data) concentrations, respectively, that requires a calibration of
digital biosensors. Here, the advantage of di�erential measurements in the adrenal and
femoral veins can be exploited in order to detect the increase in adrenaline concentration
in adrenal veins.

4.5 Conclusions

Detection of adrenaline in biological liquids, particularly in blood samples, is of high
interest in clinical diagnostics. In this study, an amperometric adrenaline biosensor
based on an improved laccase/PQQ-GDH bi-enzyme system has been developed and
tested in both PBS and RS with di�erent pH values. A lower detection limit of about
1 nM adrenaline has been achieved at physiological pH values by using the modi�ed
enzyme laccase (exhibiting a high activity in a wide pH range) in combination with

68



References

PQQ-GDH and the substrate-recycling principle for signal ampli�cation.
In addition, in a �proof-of-concept� experiment, the possibility of creation of a digital

adrenaline biosensor based on two concatenated enzyme-based AND logic gates has
been demonstrated. The important feature of those digital biosensors is their rapid
qualitative analysis in response to the presence/absence of various combinations of an-
alytes or biomarkers. In the future, such digital adrenaline biosensor could be used in
clinical diagnostics as a novel tool for the control of the correct insertion and positioning
of the catheter in the adrenal veins during AVS procedure. It will be able to distinguish
the adrenaline concentration in adrenal veins and in the periphery, and �nally generate
a rapid qualitative output signal on the pathophysiological/physiological concentrations
in the form of a binary YES/NO.
Future works will be directed to test functioning of the digital adrenaline biosensor in

real blood samples considering also cross-selectivity towards di�erent catecholamines.
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5 Detection of adrenaline in blood plasma

5.1 Abstract

An amperometric bi-enzyme biosensor based on substrate-recycling principle for the
ampli�cation of the sensor signal has been developed for the detection of adrenaline
in blood. Adrenaline can be used as biomarker verifying successful adrenal venous-
sampling procedure. The adrenaline biosensor has been realized via modi�cation of a
galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modi�ed
laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The mea-
surement conditions such as pH value and temperature were optimized to enhance the
sensor performance. A high sensitivity and a low detection limit of about 0.5 - 1 nM
adrenaline have been achieved in phosphate bu�er at pH 7.4, relevant for measurements
in blood samples. The sensitivity of the biosensor to other catecholamines such as no-
radrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been
successfully applied for the detection of adrenaline in human blood plasma.
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5.2 Introduction

Primary aldosteronism (PA) is an adrenal disease of salt retention and the most fre-
quent cause of secondary hypertension. Patients with PA have a signi�cant higher
cardiovascular morbidity and mortality risk than patients with essential hypertension,
even when they are selected to have comparable blood-pressure values [1, 2]. For sub-
type diagnosis of PA, adrenal venous sampling (AVS) is the method of choice. Success
of AVS is dependent on the accuracy and speed of catheter insertion into the adrenal
veins. Rapid assessment of cortisol is used to prove a correct AVS procedure. However,
the determination of cortisol is hampered by its binding to protein and long biological
half-life. In addition, the determination of cortisol by an immunoassay takes relatively
long [3]. Alternatively, adrenaline (epinephrine) can serve as biomarker, because of its
higher concentration di�erence in adrenal (&100 nM; sometimes up to 1000 nM) and
peripheral blood (1 - 5 nM) [4, 5]. An adrenaline concentration of about 100 nM or
more would be a safe indication of correct catheter position in adrenal veins, thereby
accelerating the medical examination and preventing unnecessary exposure of the pa-
tient to X-rays. On the other hand, if the adrenaline concentration in adrenal venous
blood is signi�cantly lower than 100 nM, the catheter tip has to be repositioned during
AVS procedure.

At present, numerous sensors have been proposed for the detection of adrenaline
by using e.g., an enzyme laccase-modi�ed oxygen sensor with a lower detection limit
(LDL) of 3 µM [6], screen-printed electrodes modi�ed with a thin iridium oxide �lm
capable for the detection of adrenaline down to 30 nM [7] or carbon �ber microelectrodes
having a LDL of about 50 nM adrenaline [8]. However, their application to support
medical examinations is limited due to insu�cient lower detection limit. For medical
application of the adrenaline biosensor to support AVS procedure, a sensor with a high
sensitivity and a low detection limit (in the nanomolar concentration range) is required.
Hence, di�erent signal-ampli�cation principles by applying substrate recycling have
been proposed to improve the biosensor performance [9�11], utilizing a bi-enzyme system
(laccase/PQQ-GHD). As shown in Fig. 5.1, in a �rst reaction, adrenaline is oxidized by
the laccase under oxygen consumption to adrenochrome. This oxygen consumption is
measured by the galvanic oxygen sensor. Then, glucose is converted into gluconolactone,
while adrenochrome is reduced back to adrenaline (i.e., original product) catalyzed by
the PQQ-GDH [12]. The second reaction step is oxygen-independent. Thus, by applying
the bi-enzyme laccase and PQQ-GDH system, adrenaline can be recycled (up to several
1000 times), resulting in a higher oxygen consumption and an ampli�cation of the
adrenaline biosensor signal. Thus, by applying this measurement principle, the lower
detection limit can signi�cantly be improved. The resulting output voltage delivered by
the galvanic oxygen sensor is related to the oxygen consumption due to the oxidation of
adrenaline by the laccase and is proportional to the adrenaline concentration in solution.

It has been demonstrated that with such signal ampli�cation methods a LDL in the
low nanomolar or even subnanomolar concentration range can be achieved [13�17]. For
instance, enzymatic ampli�cation was applied to develop an ultrasensitive adrenaline
biosensor with detection limit of about 0.5 nM [10]. Recently, we introduced an am-
perometric laccase/PQQ-GDH bi-enzyme adrenaline biosensor with LDL of 1 nM using
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5 Detection of adrenaline in blood plasma

Fig. 5.1: Schematic of the biosensor set-up for the detection of adrenaline based on substrate-
recycling principle for sensor-signal ampli�cation employing the enzymes laccase for the oxidation
of adrenaline to adrenochrome and PQQ-GDH for the reduction of adrenochrome to adrenaline.

substrate-recycling principle and a commercial oxygen sensor [18]. However, maximum
sensitivity and LDL values of above described biosensor based on substrate-ampli�cation
principle were achieved at pH 6 - 6.5, that could also limit its application in biomedicine,
in particular for adrenaline detection directly in untreated whole blood samples or in
blood plasma.
In the present work, we report on a high-sensitive and low-detection limit bi-enzyme

adrenaline biosensor based on substrate-recycling ampli�cation principle using a genet-
ically modi�ed laccase variant and a PQQ-GDH both having optimum activity in pH
range relevant for blood samples [19, 20]. The biosensor has been tested in phosphate
bu�er solution (PBS) with di�erent pH values and adrenaline concentrations at various
temperatures, in order to �nd out optimal measurement conditions for enhanced sensor
performance. In addition, the sensitivity of the biosensor to other catecholamine such as
noradrenaline, dopamine and dobutamine has been studied. The results of preliminary
experiments on adrenaline detection in blood plasma have been presented, too.

5.3 Experimental

5.3.1 Materials

The genetically modi�ed laccase (27 U/mg) was provided by AB Enzymes GmbH
(Germany) [19] and quinoprotein GDH (760 U/mg, E.C. 1.1.5.2, from microorgan-
ism not speci�ed by the company) was bought from Sorachim SA (Switzerland) [20].
PQQ was purchased from Wako (Japan). Glutaraldehyde, bovine serum albumin
(BSA), glycerol, CaCl2 and the PBS bu�er components (monosodium phosphate
and disodium phosphate) were obtained from Sigma-Aldrich (USA). Cellulose ac-
etate �lter (pore size: 0.2 µm) was bought from Sartorius Stedim Biotech (Germany).
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Adrenaline solution (1 mg/mL) was purchased from Infectopharm (Germany), nora-
drenaline (1 mg/mL) was bought from Sano� (Germany), dopamine (250 mg/mL) was
acquired from Carinopharm (Germany) and dobutamine (250 mg/50 mL) from Frese-
nius (Germany). Adrenaline, noradrenaline, dopamine and dobutamine stock solutions
of 1 µM and 100 µM were freshly prepared and stored at 4 ◦C in the dark.

5.3.2 Preparation of the enzyme membrane and measuring set-up

The adrenaline biosensor was prepared by means of modi�cation of a commercial gal-
vanic oxygen sensor (Atlas Scienti�c, USA) with a bi-enzyme membrane composed of
a laccase/PQQ-GDH system. In contrast to [18], the GDH used in this work has a
higher activity, is stable in the pH range of pH 3.5 - 8.5 with a maximum activity in
PBS at pH 7.0 and optimum temperature range of 30 - 37 ◦C [20]. For the preparation
of the bi-enzyme membrane, a suspension consisting of 15 µL laccase (2.21 U/µL) so-
lution, 15 µL of GDH (1.18 U/µL) solution solved in PBS (10 mM, pH 7.4), together
with 20 µM PQQ, 1 mM CaCl2 [21], 60 µL of BSA (10 vol%) and 60 µL of a glutaralde-
hyde (2 vol%) / glycerol (10 vol%) solution was prepared. 100 µL of the mixture was
placed onto a Te�on block to dry at room temperature. The membranes were stored at
4 ◦C before using. For the preparation of the adrenaline biosensor, the membrane was
mounted between a cellulose acetate �lter and an O2-permeable, high-density polyethy-
lene (HDPE) layer of the commercial oxygen sensor (see Fig. 5.1). Additionally, the
cellulose acetate �lter was �xed with silicon rubber (RTV 118Q, Momentive Perfor-
mance Materials, Switzerland). Between the measurements, the sensor has been stored
in PBS (10 mM, pH 7.4) containing 20 µM PQQ and 1 mM CaCl2.
The principle of the galvanic oxygen sensor is the use of carefully selected electrode

materials to realize a self-polarization su�cient for electrochemical reduction of oxygen
at the working electrode. This causes a current depending on the oxygen concentration
in the analyte solution, which is converted into an output voltage. The main advantage
of this galvanic principle is that there is no need for an external source. The commercial
galvanic oxygen sensor used in this study consists of a zinc rod which serves as anode
submerged in an electrolyte. The cathode is a silver disk which is covered by the HDPE
membrane. For more details about the sensor, see [22]. Electrochemical experiments
were carried out by connecting the adrenaline bi-enzyme biosensor to a potentiometer
(2007 Multimeter, Keithley Instruments). The biosensor was exposed to the solution
containing di�erent concentrations of adrenaline or other catecholamines and the output
signal was recorded for 20 min under continuous stirring. In all experiments, the analyte
solution contained 20 mM glucose that is a su�cient amount to ensure the recycling
process [17].

5.4 Results and discussions

It is known that the pH value and temperature of the solution may strongly in�uence
the enzyme activity and thus, also the biosensor performance. Therefore, before mea-
surements in blood plasma, the adrenaline biosensor was studied in PBS at di�erent
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pH values and temperatures in order to determine optimal measurement conditions for
further characterization in terms of sensitivity, detection limit and stability.

5.4.1 Determination of optimum pH and temperature

The genetically modi�ed laccase used in this work is stable in a broad pH range [19] and
the mono-enzyme adrenaline biosensor using only laccase has a pH optimum at pH 8.0
as experimentally determined in [6]. On the other hand, the used GDH has a maximum
activity at pH 7.0 [20]. From the point of view of biosensor characteristics and its
application, more important is the optimum pH (further referred as pHs) at which the
sensor modi�ed with the bi-enzyme membrane demonstrates maximum sensitivity. This
pHs could di�er from the pH optimum of the particular enzymes and has to be examined.
Intuitively, it can be expected, that pHs of the bi-enzyme recycling adrenaline biosensor
could be between the pH optimum for laccase and GDH, respectively.

Fig. 5.2 (top) depicts exemplarily the calibration curves of the bi-enzyme adrenaline
biosensor measured in PBS with di�erent pH values from pH 6.5 to pH 8.5 at room
temperature. At each pH value, the sensor signal was recorded for di�erent adrenaline
concentrations in PBS between 5 nM and 100 nM. The dependence of the adrenaline sen-
sitivity on the pH value is shown in Fig. 5.2 (bottom), where each data point represents
the average sensitivity evaluated from the twice-repeated series of measurements with
two biosensors. In contrast to [18], in this study, a maximum sensitivity (0.17 mV/nM)
was observed at pH 7.4. Moreover, the adrenaline sensitivity at pH 7.4 was three times
higher than that of reported (0.06 mV/nM in the adrenaline concentration range of 5 -
100 nM, at pH 7.4) in [18]. The sensitivity is decreased down to about 0.05 mV/nM and
0.03 mV/nM at pH values of 6.5 and 8.5, respectively. These results demonstrate that
the developed adrenaline biosensor could be bene�cial for the application in biological
liquids at physiological pH level of pH 7.4.

For future application of the adrenaline biosensor to support AVS procedure, it should
be also able to work in real blood samples at temperatures up to 37 ◦C. Generally, fun-
gal laccases are known to be thermally unstable [19]. However, the laccase variant used
in this work is stable at temperatures lower than 50 ◦C with an optimum temperature
of 37 ◦C. The applied PQQ-GDH has its optimum activity at temperatures of about
30 - 37 ◦C [20]. To determine working temperature of the adrenaline biosensor with
the bi-enzyme (laccase/PQQ/GDH) membrane, the temperature behavior of the sensor
has been studied in PBS (pHs 7.4, containing di�erent concentrations of adrenaline
from 5 nM to 100 nM) in a temperature range from 20 ◦C to 35 ◦C. For better con-
trolling of the temperature, a Peltier tempering unit (Lauda-Brinkman, LP, USA) with
an integrated Pt 1000 and a magnetic stirrer has been applied. At each adjusted tem-
perature, the sensor signal was measured at varius adrenaline concentrations and then,
the adrenaline sensitivity was evaluated. All measurements were repeated twice with
two biosensors. The highest sensitivity of the biosensor to adrenaline was observed at
a temperature of 30 ◦C. At lower and higher temperatures, the sensitivity is strongly
decreasing to less than 40% of the maximum sensitivity (data not shown).
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5.4 Results and discussions

Fig. 5.2: (Top) Calibration curves of the adrenaline biosensor modi�ed with the enzymes laccase
and PQQ-GDH recorded in PBS (pH 6.5 - pH 8.5) with di�erent adrenaline concentrations from
5 nM to 100 nM at room temperature. (Bottom) Dependence of the average adrenaline sensitivity
(set of two series of measurements with two biosensors each) on the pH value of the solution.

5.4.2 Detection limit and long-term stability

In further experiments, three adrenaline biosensors were characterized in PBS at optimal
measuring conditions (pH 7.4, and 30 ◦C) in terms of lower detection limit and long-
term stability. An example of the dynamic response of the sensor in PBS containing
di�erent adrenaline concentrations from 1 nM to 100 nM is shown in Fig. 5.3 with the
corresponding calibration curve (inset graph). As expected, with increasing adrenaline
concentration, the sensor signal is decreased due to the oxygen consumption during
the oxidation reaction of adrenaline catalyzed by the enzyme laccase. The adrenaline
sensitivity was about 0.67 mV/nM in the linear range of 1 - 10 nM adrenaline. As can be
seen, even at an adrenaline concentration of 1 nM, the biosensor provides a detectable
signal of about 1.0 mV (some biosensors were able to detect even 0.5 nM adrenaline).
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5 Detection of adrenaline in blood plasma

Thus, the developed biosensor is capable for adrenaline detection in the low nanomolar
and even subnanomolar concentration range. The LDL by using a signal-to-noise ratio
of S/N = 3 [23] was estimated to be 0.1 nM.

Fig. 5.3: Dynamic response of the adrenaline biosensor measured in PBS of pH 7.4 at 30 ◦C with
the corresponding calibration curve (inset graph).

The long-term stability of the developed adrenaline biosensor has been examined in
PBS over one week. The biosensor was stable during the �rst three days of measure-
ments with sensitivity-value �uctuations within not more than 0.02 mV/nM. However,
after seven days, the adrenaline sensitivity decreased to about 35% of the original sensi-
tivity on the �rst day. Further experiments regarding to the composition of the enzyme
membrane and membrane attachment to the oxygen sensor are needed in order to en-
hance the long-term stability of the adrenaline biosensor.

5.4.3 Sensitivity to other catecholamines

Adrenaline, noradrenaline, dopamine and dobutamine belong to the group of cate-
cholamines with di�erent substituent groups on the aromatic ring and the terminal
amino group [24]. Adrenaline, noradrenaline and dopamine are present in blood,
whereas dobutamine belongs to the group of synthesized catecholamines [25, 26]. Due
to their similar chemical structure, the presence of di�erent catecholamines in solution
can in�uence the biosensor signal during adrenaline measurements. Therefore, the
sensitivity of the developed biosensor to noradrenaline, dopamine and dobutamine has
been proven. All measurements were repeated two times with two di�erent sensors each
see Fig. 5.4.
Fig. 5.4 (top) depicts exemplarily the dynamic response of the biosensor measured at

di�erent noradrenaline, dopamine and dobutamine concentrations between 1 nM and
100 nM in PBS of pH 7.4 at 30 ◦C and the corresponding calibration curvse (Fig. 5.4
bottom), respectively. As can be seen, the sensor was practically insensitive to nora-
drenaline, dopamine and dobutamine up to concentrations of about 50 nM, 10 nM and
100 nM, respectively. The developed sensor has no cross-sensitivity towards dopamine
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5.4 Results and discussions

Fig. 5.4: Dynamic response of the developed biosensor measured in PBS of pH 7.4 at 30 ◦C con-
taining di�erent catecholamines with concentrations from 1 nM to 100 nM (top) with the corre-
sponding calibration curves (bottom).

and noradrenaline at concentrations that are relevant in adrenal venous blood, which are
in the picomolar concentration range [27, 28]. These experiments demonstrated that
the developed biosensor is suitable for the detection of adrenaline in complex media
(e.g., in blood) containing di�erent catecholamines.

5.4.4 Detection of adrenaline in blood plasma

The adrenaline detection in blood is of high interest for a future application of the
adrenaline biosensor to support medical tumor diagnosis, especially during AVS pro-
cedure. Therefore, the developed adrenaline bi-enzyme sensor has been characterized
in real blood plasma (peripheral blood) containing di�erent adrenaline concentrations
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from 1 nM to 150 nM. Before starting with the experiments, blood of patients was
centrifuged for three minutes and adjusted to about 30 ◦C. Then, 20 mM of glucose
has been added to blood plasma, following by spiking with di�erent concentrations of
adrenaline. The measurements in blood plasma were repeated twice with two sensors
each. The results of these preliminary experiments are presented in Fig. 5.5. As ex-
pected, with increasing adrenaline concentration, the sensor signal is decreased due to
the oxygen consumption. Compared with measurements in bu�er solution, the initial
potential is lower due to less dissolved oxygen content in blood compared to bu�er solu-
tion [29, 30]. Nevertheless, a detectable signal of about 0.1 mV could be measured at an
adrenaline concentration of 1 nM in blood plasma. The average adrenaline sensitivity
was about 0.01 mV/nM in the concentration range of 1 nM - 100 nM. These experiments
have shown the suitability of the biosensor for the detection of the adrenaline level in
real blood samples, in particular, in both adrenal blood with a concentration of &100
nM adrenaline and in peripheral blood with 1 - 5 nM adrenaline.

Fig. 5.5: Dynamic response of the biosensor measured in human blood plasma (pH 7.4 at 30 ◦C)
with di�erent adrenaline concentrations from 1 nM to 150 nM.

5.5 Conclusions

An amperometric bi-enzyme adrenaline biosensor has been developed with the aim of
future applications for adrenaline detection in blood samples during AVS procedure.
The biosensor was investigated in PBS with di�erent pH values (pH 6.5 - 8.5) and
adrenaline concentrations (1 nM - 100 nM) and at various temperatures (20 - 35 ◦C).
A high sensitivity and a lower detection limit of 0.5 - 1 nM were achieved due to
a) enzymatic ampli�cation of the sensor signal using substrate-recycling principle; b)
utilization of the enzymes laccase and PQQ-GDH both exhibiting a high activity at pH
values relevant for blood samples; and c) optimization of measuring conditions (pH 7.4,
30 ◦C). The adrenaline biosensor was practically insensitive to other catecholamines
such as noradrenaline, dopamine and dobutamine at concentrations up to several orders
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of magnitude higher than their content in adrenal venous blood. Finally, the developed
adrenaline biosensor has been successfully tested in blood plasma samples spiked with
di�erent concentrations of adrenaline (1 - 150 nM). The achieved results demonstrate
the ability of the biosensor to detect adrenaline at concentrations corresponding to
adrenaline levels in both peripheral and adrenal blood.
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6 Chip-based biosensor for the detection of adrenaline

6.1 Abstract

A chip-based amperometric biosensor referring on using the bioelectrocatalytical am-
pli�cation principle for the detection of low adrenaline concentrations is presented. The
adrenaline biosensor has been prepared by modi�cation of a platinum thin-�lm elec-
trode with an enzyme membrane containing the pyrroloquinoline quinone-dependent
glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature,
pH value, and glucose concentration have been optimized to achieve a high sensitivity
and a low detection limit of about 1 nM adrenaline measured in phosphate bu�er at
neutral pH value. The response of the biosensor to di�erent catecholamines has also
been proven. Long-term stability of the adrenaline biosensor has been studied over 10
days. In addition, the biosensor has been successfully applied for adrenaline detection in
human blood plasma for future biomedical applications. Furthermore, preliminary ex-
periments have been carried to detect the adrenaline-concentration di�erence measured
in peripheral blood and adrenal venous blood, representing the adrenal vein-sampling
procedure of a physician.
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6.2 Introduction

6.2 Introduction

Catecholamines such as adrenaline (epinephrine), noradrenaline (norepinephrine) and
dopamine belong to a class of chemical neurotransmitters and hormones. They are ca-
pable for many profound changes in the body, e.g., regulation of physiological processes
and the development of neurological, psychiatric, endocrine and cardiovascular diseases
[1, 2]. The determination of adrenaline concentrations in blood plasma or urine can help
to diagnose di�erent diseases such as hypertension, pheocromocytoma or neuroblastoma
[3]. For example, adrenal vein sampling (AVS) is a necessary medical diagnostic test of
adrenal gland tumors, where blood from both adrenal glands (left and right) is drained
[4, 5]. However, adrenal glands are di�cult to cannulate which is especially true for the
small right adrenal vein (1 - 15 mm length in cadaver studies) (see Fig. 6.1).

Fig. 6.1: Schematic of the anatomy of the human body, which illustrates the left and right adrenal
veins with the corresponding adrenal glands; the catheter has to be pushed through the femoral
vein into both adrenal veins.

This can become an obstacle in the study and signi�cantly extend the exposure time
to radiation and is consuming human resources. It may also lead to a mistakable
cannulation of nearby accessory hepatic veins or to dilution of adrenal venous blood with
that from other larger veins. Classically, a catheter tip is placed in the right adrenal
vein where blood is sampled from the femoral vein collected simultaneously. Thereafter
(in view centers at the same time through a second catheter), the left adrenal vein
is cannulated, and again, blood specimen from the left adrenal out�ow and from the
femoral vein are obtained and subjected to hormone analysis. The ratio of the cortisol
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concentration in the adrenal veins to that of the femoral vein informs the physician on
the extent of dilution of adrenal venous blood with peripheral extraadrenal blood and
is a measure of selectivity of the study. Since cortisol has a relative long half-live and
is bound to protein, the ratio of adrenal venous to peripheral cortisol can be as low
as 2. However, one possible new approach is the detection of a certain biomarker to
con�rm the right position of the catheter in adrenal veins. In this case, adrenaline can
be used as such biomarker. Since the adrenaline concentration in adrenal vein samples
is known to be signi�cantly higher (&100 nM) than in peripheral samples (.1 nM) [6,
7], a presence of high adrenaline concentration of about 100 nM would con�rm the right
position of the catheter during AVS.

Common methods for the detection of adrenaline in medicine are high-performance
liquid chromatography, �uorescence spectroscopy or capillary electrophoresis [8�13]. Al-
though these methods are highly sensitive, they are not suitable for point-of-care testing
at the patient due to the complex and labor-intensive procedures [14]. In the last few
years, di�erent biosensors have been developed for the detection of adrenaline. One
strategy is the application of amperometric biosensors that are based on substrate-
recycling principle by combining phenol-oxidizing enzymes such as e.g., tyrosinase, phe-
noloxidase or laccase in combination with pyrroloquinoline quinone (PQQ)-dependent
glucose dehydrogenase (GDH) [15�18]. By using the substrate-recycling principle, the
analyte is oxidized by one enzyme into a product, which can be reduced back to the
original substrate by the second enzyme. Due to the recycling process, catecholamines
can be detected down to the nanomolar concentration range [18�20]. Recently, we have
reported on a biosensor based on laccase and PQQ-GDH by using substrate-recycling
principle for the detection of adrenaline with a lower detection limit of about 1 nM at
pH 7.4 in both phosphate bu�er and Ringer`s solution [21]. In this case, a genetically
modi�ed laccase variant has been applied which is active in a broader pH range, making
the sensor applicable for the detection of adrenaline at a pH value in the physiological
range. This is bene�cial, when the adrenaline biosensor is applied in biological liquids,
in particular in blood samples. However, because the sensor signal is proportional to
the oxygen consumption due to the enzymatic reaction, small oxygen changes in the
surrounding have in�uence on the sensor response. In addition, the oxygen concen-
tration of real blood samples can vary and hence, the sensor signal could be falsi�ed.
Alternatively, the detection of catecholamines can be also performed by applying a
monoenzymatic recycling electrode modi�ed by e.g., laccase, PQQ-GDH or tyrosinase
[22�24]. In this case, the analyte is oxidized or reduced at the electrode surface by an
applied potential and the resulting product is transformed back to the initial analyte
catalyzed by an enzyme. One example is shown in [23], where a screen-printed electrode
is modi�ed by the enzyme laccase or PQQ-GDH allowing the detection of di�erent cat-
echolamines in the nanomolar concentration range. With this sensor system, dopamine
(not adrenaline) could be detected down to a concentration of 50 nM at pH 5.5 by
applying the enzyme laccase, or 2 nM at pH 8.5 by applying the enzyme PQQ-GDH.
Nevertheless, the described sensors have an insu�cient lower detection limit, in partic-
ular for the detection of adrenaline, and their pH optimum does not conform to the pH
value of biological liquids.

In this study, we report on a high-sensitive thin-�lm adrenaline biosensor based on the
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bioelectrocatalytical ampli�cation principle by using a PQQ-GDH, which enables the
detection of adrenaline in the nanomolar concentration range at physiological conditions
(pH 7.4). The enzyme from company Sorachim was designed to have a pH optimum
at about pH 7.0 [25]. With the developed biosensor set-up � to our knowledge � for
the �rst time successful measurements in real blood samples have been performed. The
measuring conditions (pH, temperature and glucose concentration) have been optimized
to enhance the biosensor performance. In addition, the long-term stability as well as the
sensitivity to other catecholamines (noradrenaline, dopamine and dobutamine) has been
investigated. Finally, preliminary results obtained with this biosensor could distinguish
between peripheral and adrenal venous blood by the di�erent content of adrenaline
concentrations.

6.3 Experimental

6.3.1 Materials

The quinoprotein GDH was bought from Sorachim SA (Switzerland, 757 U/mg) [25].
The cofactor PQQ was purchased from Wako (Japan). For the preparation of PBS,
the components (monosodium phosphate and disodiumphosphate) were obtained from
Sigma-Aldrich (USA), as well as glutaraldehyde, bovine serum albumin (BSA), glyc-
erol, CaCl2 and sulfuric acid. Adrenaline solution (1 mg/mL) was purchased from
Infectopharm (Germany), noradrenaline (1 mg/mL) was obtained from Sano� (Ger-
many), dopamine (250 mg/mL) was bought from Carinopharm (Germany) and dobu-
tamine (250 mg/50 mL) from Fresenius (Germany). The stock solutions of the used
catecholamines of 1 µM and 100 µM, respectively, were freshly prepared before mea-
surements and stored at 4 ◦C in the dark.

6.3.2 Preparation of the sensor structures

The platinum thin-�lm sensor chips were fabricated by means of conventional silicon-
and thin-�lm technologies. In brief, a 500 nm SiO2 layer was grown by thermal wet
oxidation of a p-Si wafer. Afterwards, an adhesion layer (20 nm titanium) and a 200 nm
thick platinum layer, which serves as electrode material, were deposited on the SiO2

surface by electron-beam evaporation and patterned by means of lift-o� technique. The
completed wafer was separated into 1 cm x 2 cm chips. The chips were glued into a
substrate holder. The electrical connecting was done by an ultrasonic wedge bonder.
For the details of the sensor structure, see [26]. It is known that in electrochemical
experiments the quality and the purity of the electrode surface will have an e�ect on
the measurements. Therefore, each sensor was electrochemically cleaned immediately
before modi�cation with the enzyme membrane. For the cleaning process, the electrode
potential was cycled in sulfuric acid solution (50 mM) until a stable cyclic voltam-
metry (CV) scan has been achieved [27]. Sample potential was cycled from -400 mV
to 1400 mV (vs. Ag/AgCl reference electrode) at a rate of 0.1 V/s. Up to 12 cy-
cles had to be approximately performed. The adrenaline biosensor was prepared by
modi�cation of the platinum thin-�lm electrode with the enzyme membrane containing
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PQQ-GDH. For the preparation of the enzyme membrane cocktail, 8 µL of the GDH
(1.18 U/µL) solution was solved in PBS (10 mM, pH 7.4) together with 20 µM PQQ,
1 mM CaCl2, 8 µL BSA (10 vol%) and 8 µL glutaraldehyde (2 vol%) / glycerol (10
vol%) solution. Di�erent volumetric ratios were tested to achieve a high sensitivity
and a low detection limit of 1 nM adrenaline for the adrenaline biosensor. At �rst, a
volumetric ratio of 1-1-1 (enzyme-BSA-glutaraldehyde/glycerol) was studied. But in
this case, the enzyme membrane did not get su�ciently dry and could not be used
for the detection of adrenaline; the membrane had a sticky-like behavior. Therefore,
the enzyme membrane with the PQQ-GDH was prepared in accordance to the protocol
described in [21]. Here, the same membrane cocktail was prepared as already described
above, but with less amount of GDH solution (4 µL), resulting in a volumetric ratio
of 1-2-2 (enzyme-BSA-glutaraldehyde/glycerol). 20 µL of the membrane cocktail was
pipetted onto the platinum electrode. Here, the membrane gave the best sensor results
(see also chapter 6.5). When further decreasing the amount of enzyme solution, less
enzyme activity is immobilized onto the sensor surface. Consequently, the sensitivity
towards adrenaline is decreased, too. After drying, the encapsulation of the electrode
with silicon rubber (TSE 399C, Momentive Performance Materials, Switzerland) was
followed. The resulting active area of the Pt electrode with the covered enzyme mem-
brane was approximately 0.4 cm2. If not in use, the sensors were stored in air at 4 ◦C
in the dark.

6.4 Measurement procedure

Fig. 6.2 illustrates the measurement set-up with the layer structure of the Pt sensor
chip and the bioelectrocatalytical principle of substrate recycling by using PQQ-GDH.

Fig. 6.2: Schematic of the measurement set-up with a photograph of the assembled sensor chip
and its layer structure; the zoomed picture is illustrating the working principle of the adrenaline
biosensor based on the bioelectrocatalytical substrate ampli�cation.
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The adrenaline biosensors were electrochemically characterized in a three-electrode
arrangement using a potantiostat (PalmSens, Palm Instrumet BV, Netherlands). A
platinum wire (MaTeck, Germany) was used as counter electrode, and an external
liquid-junction Ag/AgCl electrode (Metrohm, Germany) as reference electrode. The
electrodes were mounted into a Peltier-tempering unit (Lauda-Brinkman, LP, USA)
including the stirring function with an integrated Pt 1000 sensor to control the tem-
perature. All measurements were carried out in 20 mL analyte solution. By an ap-
plied constant potential of +450 mV to the platinum working electrode vs. Ag/AgCl,
adrenaline is in a �rst reaction step oxidized to adrenochrome at the electrode surface.
Afterwards, in a second reaction, in the presence of glucose, adrenochrome is reduced
back to adrenaline catalyzed by the enzyme PQQ-GDH. The recycling of adrenaline
implies an ampli�cation of the sensor signal. The generated current is related to the
di�erent adrenaline concentrations. For the measurements, the sensor chip was exposed
into analyte solution with di�erent adrenaline concentrations and the sensor signal was
recorded for about 25 min.

6.5 Results and discussions

6.5.1 Electrochemical characterization of the adrenaline biosensor

The freshly drained blood during AVS procedure has a temperature around 37 ◦C.
Therefore, the developed biosensor should be able to detect adrenaline at body temper-
ature. The temperature behavior of the sensor with the immobilized PQQ-GDH has
been investigated in PBS of pH 7.4 containing 20 mM glucose in a temperature range
between 22 ◦C and 40 ◦C. At each temperature, adrenaline concentrations were varied
between 1 nM and 150 nM. Fig. 6.3a) shows the sensitivity of the developed biosen-
sor with data points representing the average of two performed measurement cycles.
The adrenaline biosensor depicts a relatively broad temperature optimum from 30 ◦C
to 37 ◦C with sensitivity values between 4.0 nA/nM and 4.5 nA/nM. The in�uence of
the pH value of the bu�er solution has been studied in the range from pH 6.5 to pH
8.0. The sensor signal was recorded at di�erent adrenaline concentrations between 1
nM and 150 nM in PBS containing 20 mM glucose. The experiments were performed at
30 ◦C. The results of these experiments are depicted in Fig. 6.3b). Each data point rep-
resents again the average of the adrenaline sensitivity of two performed measurements.
Maximum sensitivity of 4.5 nA/nM could be reached at a pH value of 7.4, demonstrat-
ing that the biosensor is capable for measurement cycles in biological solutions having
physiological pH conditions. The bioelectrocatalytical measurement principle allows the
detection of adrenaline in the nanomolar concentration range. The reaction involves the
oxidation of adrenaline at the electrode surface by an applied potential of +450 mV.
In a second reaction step, the oxidation product (adrenochrome) is reduced back to
adrenaline catalyzed by the enzyme PQQ-GDH, while glucose is oxidized to gluconolac-
tone. Hence, the addition of glucose is necessary to complete the bioelectrocatalytical
measurement system. Fig. 6.3c) demonstrates the dependence of the mean sensitivity
of the adrenaline biosensor on glucose concentrations between 5 mM and 50 mM. The
measurements were performed in PBS of pH 7.4 at 30 ◦C with adrenaline concentrations
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Fig. 6.3: Mean values of the adrenaline sensitivity (set of two series of measurements) of the thin-
�lm biosensor recorded in PBS with di�erent adrenaline concentrations from 1 nM to 150 nM:
(a) at di�erent temperatures (22 - 40 ◦C) at pH value of 7.4 and with 20 mM glucose; (b) at
di�erent pH values (pH 6.5 - 8.0) at 30 ◦C and with 20 mM glucose; (c) containing di�erent
glucose concentrations (5 - 50 nM) at pH value of 7.4 and at 30 ◦C.
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between 1 nM and 150 nM. The highest sensitivity of 4.5 nA/nM has been observed at
a glucose concentration of 20 mM, which is also comparable with results described in
literature [28]. At a glucose concentration of 5 mM (typical glucose concentration in
blood), the sensitivity decrease is about 35%. But, even at these glucose concentrations
corresponding to the glucose level in blood, a lower detection limit for the adrenaline
biosensor of 1 nM could be achieved. Thus, the sensor should be su�ciently sensi-
tive enough for the detection of adrenaline in real blood samples taken from adrenal-
and peripheral veins without an additional amount of glucose. From Fig. 6.3, optimal
measurement conditions in terms of maximum sensitivity can be de�ned as: pH 7.4,
temperature of 30 ◦C and 20 mM glucose concentration. Therefore, further experiments
were performed at optimal measurements conditions.

Fig. 6.4: Dynamic response of the adrenaline biosensor at di�erent concentrations of adrenaline
measured in PBS of pH 7.4 at 30 ◦C containing 20 mM glucose (a); corresponding calibration
curve with standard deviation of the adrenaline biosensor (b).

Fig. 6.4 presents an example of the dynamic response with the corresponding cal-
ibration curve of the adrenaline biosensor at di�erent adrenaline concentrations from
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1 nM to 150 nM. As expected, with increasing the adrenaline concentration, the cur-
rent is increased due to the oxidation of adrenaline at the sensor surface. A sensi-
tivity of 8.8 nA/nM in the concentration range between 1 nM and 10 nM adrenaline
and 4.2 nA/nM in the concentration range between 50 and 150 nM adrenaline could
be achieved. A sensor-signal change at an adrenaline concentration of 1 nM has been
clearly detected that is su�cient for the adrenaline detection in adrenal blood (>100 nM
adrenaline) and peripheral blood (1 nM adrenaline).

6.5.2 Study of cross-sensitivity of the adrenaline biosensor to di�erent
catecholamines

Adrenaline, noradrenaline and dopamine are natural catecholamines and are present in
human blood. The catecholamine molecules consist of a catechol nucleus and they di�er
in their side-chain amine [2, 29, 30].

Fig. 6.5: Dynamic response of the biosensor measured in PBS of pH 7.4 at 30 ◦C containing di�erent
catecholamines in the concentration range from 1 nM to 150 nM (a); corresponding calibration
plots of the biosensor (b).
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In contrast, dobutamine is a synthesized catecholamine and is used in human and
veterinary medicine as a therapeutic drug for e.g., coronary heart disease [31].
Since the natural and synthesized catecholamines are very similar in their chem-

ical structure, the sensitivity of the developed biosensor to adrenaline and to other
catecholamines has been compared. Fig. 6.5 demonstrates exemplarily the dynamic
responses of the biosensor measured at di�erent adrenaline, dobutamine, dopamine,
and noradrenaline concentrations, respectively, between 1 nM and 150 nM (Fig. 6.5a))
with the corresponding calibration curves (Fig. 6.5b)). The response of the biosensor to
adrenaline, dopamine and noradrenaline shows a typical concentration-dependent be-
havior. The highest sensitivity was observed for adrenaline. No signi�cant sensor-signal
change was recorded during measurements performed in dobutamine solution.
Despite of a cross-selectivity of the adrenaline biosensor towards dopamine and no-

radrenaline, it can be applied for adrenaline measurements in real samples such as
adrenal veins, because of the very low level of dopamine (<1.5 nM) and noradrenaline
(<0.2 nM) in adrenal veins [9]. Hence, their presence in blood practically does not in-
�uence the biosensor signal during adrenaline measurements performed in human blood
during AVS.

6.5.3 Long-term stability of the adrenaline biosensor

To study the stability of the adrenaline biosensor, four sensors were periodically charac-
terized over a time period of 10 days. At each day, sensitivity of the adrenaline biosensor
was tested under optimal measuring conditions at di�erent adrenaline concentrations
between 1 nM and 150 nM. Fig. 6.6 summarizes the mean values of the obtained sensi-
tivities of the four individual adrenaline biosensors over 10 days with the corresponding
standard deviation shown as error bars.

Fig. 6.6: Stability of the adrenaline biosensor (N = 4 sensors) over a time period of 10 days with
standard deviation.

Within the �rst four days, the sensors show practically a constant sensitivity of about
3.5 nA/nM. After ten days, the sensitivity value decreases to about 25% to an average
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sensitivity of about 2.5 nA/nM.

6.5.4 Application of the adrenaline biosensor in real blood samples

The main goal of this work was the development of a chip-based adrenaline biosensor
with lower detection limit in the nanomolar concentration range and its capability for
adrenaline measurements in human blood samples. In the future, such a sensor could
be applied to support AVS for adrenal secretory tumor diagnosis. Therefore, prelimi-
nary experiments have been performed to detect adrenaline in human blood plasma. A
39-year old obese patient known to have hypokalemic hypertension due to primary al-
dosteronism underwent AVS. During the study, freshly extracted blood from the femoral
vein and the right adrenal out�ow was centrifuged for about three minutes to produce
plasma before starting with the measurements. Part of the obtained peripheral blood
plasma (pH 7.4) was spiked with di�erent concentrations of adrenaline from 50 nM to
1000 nM. Additionally, 20 mM glucose has been added to the blood plasma (pH 7.4).
Measurements were carried out at 30 ◦C.

The results of these experiments are shown in Fig. 6.7a). The dynamic response of the
adrenaline biosensor in blood plasma shows similar sensor behavior as in bu�er solution.
With increasing the adrenaline concentration, the sensor signal is also increased due to
the resulting oxidation current. The zoomed curve in Fig. 6.7a) demonstrates that
a lower detection limit of about 50 nM could be reached. The higher current value
recorded in blood plasma without adrenaline indicates the existence of other substances
in blood plasma contributing to the total current, in�uencing the biosensor signal.

For future application, the adrenaline biosensor should be able to detect the
adrenaline-concentration di�erence between peripheral blood (.1 nM adrenaline) and
adrenal venous blood (&100 nM adrenaline) to proof the position of the catheter. Ex-
periments with plasma of the above mentioned patient have been performed to study
the biosensor behavior in blood samples of both origins. The measurements have been
carried out under optimum conditions (30 ◦C, 20 mM glucose). The pH value of the
blood plasma was controlled by a pH meter (Mettler-Toledo, Germany) and was at pH
7.4.

Fig. 6.7b) demonstrates the results of these experiments. The generated current of
both blood plasma samples was recorded for about 40 min. The sensor signal was stable
after 15 min conditioning. These �rst measurements could validate that the developed
chip-based adrenaline biosensor is able to distinguish the adrenaline concentration in
peripheral and adrenal blood. The di�erence between the two blood samples (periph-
eral and adrenal venous) at 40 min would correspond to a change of about 200 nM
adrenaline assuming that the current changes for the adrenaline-spiked blood samples
in Fig. Fig. 6.7a) are valid. Of interest, the selectivity indices (ratio of adrenal to
femoral vein cortisol plasma concentrations) were 47.4 and 2.0 for the right and left
adrenal veins (determined by means of an immunoassay as an additional clinical diag-
nosis method), respectively, and are in line with the biosensor results. The AVS study
showed a lateralization of aldosterone secretion to the adrenal gland which carried a
small tumors lesion. Its removal led to biochemical cure and clinical improvement [32].
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Fig. 6.7: Dynamic response of the adrenaline biosensor measured in human blood plasma (pH 7.4 at
30 ◦C) spiked with di�erent adrenaline concentrations from 50 nM to 150 nM and zoomed curve
demonstrating the lower detection limit (a); response of the biosensor measured in peripheral and
adrenal venous blood sample and zoomed curve demonstrating the signal di�erence recorded in
peripheral and adrenal venous blood (b).

6.6 Conclusions

A high-sensitive, amperometric chip-based adrenaline biosensor modi�ed with an en-
zyme membrane consisting of PQQ-GDH has been developed and characterized re-
garding the pH-, temperature- and glucose-concentration optimum. Due to the applied
bioelectrocatalysis as measuring principle, adrenaline is recycled resulting in a signal am-
pli�cation. Other working groups used already the bioelectrocatalysis as measurement
principle. For example, [22] applied the enzyme tyrosinase for the recycling reaction of
catechol, where 0,04 µM could be detected at a pH value of pH 6.0. The group of Lisdat
et al. [23] applied the enzyme laccase for the detection of dopamine, noradrenaline and
adrenaline, where dopamine could be detected with the highest sensitivity and a lower
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detection limit of 50 nM at pH 5.5. Additionally, they performed also experiments by
applying the enzyme PQQ-GDH for the recycling of dopamine, resulting in a lower
detection limit of 2 nM at pH 8.5 with a glucose concentration of 10 mM in the analyte
solution. In summary, all these developed biosensors possess an insu�cient lower de-
tection limit for the measurement of adrenaline during AVS. Furthermore, the adjusted
pH value in those works does not correspond to the blood pH value. Hence, in this
study, a chip-based biosensor has been developed for the detection of 1 nM adrenaline
measured in PBS at physiological pH value of pH 7.4. Additionally, the sensor has been
studied regarding its cross-selectivity against dopamine, noradrenaline and dobutamine.
The highest sensitivity has been observed during adrenaline measurements. Preliminary
experiments have been carried out in human blood plasma, where an adrenaline concen-
tration of 50 nM could be measured. Furthermore, the adrenaline biosensor has been
studied in peripheral blood and adrenal blood and the biosensor was able to detect the
adrenaline-concentration di�erence (around 200 nM) between both real blood samples.
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7 Coupling of biomolecular logic gates with electronic transducers

7.1 Abstract

The integration of biomolecular logic principles with electronic transducers allows de-
signing novel digital biosensors with direct electrical output, logically triggered drug-
release, and closed-loop sense/act/treat systems. This opens new opportunities for
advanced personalized medicine in the context of theranostics. In the present work, we
will discuss selected examples of recent developments in the �eld of interfacing enzyme
logic gates with electrodes and semiconductor �eld-e�ect devices. Special attention is
given to an enzyme OR/Reset logic gate based on a capacitive �eld-e�ect electrolyte-
insulator-semiconductor sensor modi�ed with a multi-enzyme membrane. Further ex-
amples are a digital adrenaline biosensor based on an AND logic gate with binary
YES/NO output and an integrated closed-loop sense/act/treat system comprising an
amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.
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7.2 Introduction

Recent developments in the �eld of biocomputing using di�erent biomolecules have re-
sulted in a variety of biochemical Boolean logic gates (AND, NAND, OR, XOR,
NOR, INHIB, etc.) and more complex digital logic devices such as adders, sub-
tractors, multiplexers, and keypad locks (see e.g., recent reviews [1�7] and references
therein). Typical biomolecules in this context are enzymes and DNA (deoxyribonucleic
acid) molecules. Although the idea to construct biocomputers from biomolecules, ions
or even living cells has attracted signi�cant interest, the current biochemical comput-
ing devices are not yet competitive with electronic computing systems [5, 8, 9]. Most
of the developments on molecular logic gates and circuits reported so far are �proof-
of-principle� experiments, demonstrating basic concepts or mimicking the operation of
their electronic analogues. Moreover, biomolecular logic gates usually work in bulk solu-
tions and often utilize optical output signals (�uorescent or colorimetric), which makes
it di�cult to implement multiple logic devices together in the same analyte [10]. Hence,
transferring biomolecular logic principles to solid substrates and their integration with
electrochemical/electronic devices is not an easy task [5, 9, 11].

Analyzing the chemical output signals of biomolecular logic systems is in most cases
only possible with a limited number of techniques such as optical analysis of the chemi-
cal products. The interfacing of biomolecular logic systems with biosensing- and signal-
reading devices still receives comparatively little attention. However, future progress in
the design of biomolecular logic systems, particularly when extrapolating this to �molec-
ular computers�, will necessarily rely on the integration of molecular signal-processing
systems with various output-reading methodologies. A route on which already progress
has been achieved is the coupling of biomolecular logic systems to electrochemical in-
terfaces and signal-responsive materials. The integration of these logic systems with
electronic transducers, e.g., electrodes [12, 13] and semiconductor �eld-e�ect devices
[10, 11, 14, 15], is indeed promising to move from �proof-of-concept� studies to ready-
to-use logic devices with direct electrical output. These molecular logic elements might
even enable gate-to-gate communication with the possibility of addressing and switching
between �ON� and �OFF� states. Moreover, interfacing of biomolecular logic systems
with electronic transducers and stimuli-responsive materials may result in novel digital
biosensors and actuators [8, 16], logically triggered drug-release systems [12, 17�20], and
closed-loop intelligent sense/act/treat biochips [21, 22]. Such biochips are considered
as highly attractive for personalized medicine and theranostics.

This work summarizes selected examples of recent developments and ongoing research
in the �eld of biomolecular logic gates that are combined with electronic transduc-
ers, mainly focusing on work performed at the Institute of Nano- and Biotechnologies
(Aachen University of Applied Sciences, Germany). Special attention is given to enzyme
logic gates based on a capacitive �eld-e�ect electrolyte-insulator-semiconductor (EIS)
sensor modi�ed with a multi-enzyme membrane and a digital adrenaline biosensor based
on the substrate-recycling principle. In addition, a concept for an integrated closed-loop
sense/act/treat system is introduced. The present article provides a compact overview
on selected results regarding the combination of biomolecular enzyme-based logic gates
with electronic transducers. In addition, more technical details are collected in the
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Supporting Information to allow readers following the conceptual explanations together
with the technological background.

7.3 Enzyme logic gates based on �eld-e�ect EIS sensor

Interfacing biomolecular logic gates with �eld-e�ect devices is a highly forward-looking
approach to directly convert biochemical (logic) signals into processed electrical output
signals. Such systems can be understood as electrochemical analogues of electronic logic
elements. In previous experiments, capacitive �eld-e�ect devices have been widely used
for measuring the concentration of di�erent ions and products of enzymatic reactions
[23�25] as well as for the detection of various charged macromolecules (DNA, proteins,
polyelectrolytes) and nanoobjects (e.g., gold nanoparticles, carbon nanotubes) [26�31].
Consequently, also EIS sensors can be favorably applied as a universal platform for
developing various chemical and biomolecular logic gates. The main focus of the present
work lies on enzyme logic gates because biochemical reactions are often catalyzed by
enzymes (e.g., in living cells). In addition, enzyme logic gates are particularly promising
to create digital biosensors and can be easily integrated with electronic devices using
various well-established enzyme-immobilization techniques.
The possibility to couple enzyme logic gates with a �eld-e�ect capacitive EIS sensor

was �rst demonstrated in [14, 15], where Al�p-Si�SiO2 structures modi�ed with pH-
responsive gold nanoparticles were applied for designing single AND-Reset and OR-
Reset logic gates. In these logic gates, either enzymes [15] or their substrates [14] were
used as input signal, while the product (H+ ions) of the enzymatic reactions, activated
by di�erent combinations of chemical input signals, provided the output signal. The
pH-induced charge changes of the gold-nanoparticle shells and SiO2-gate surface of the
EIS sensor resulted in an electronic signal (typically, shift of capacitance-voltage curves
along the voltage axis) corresponding to the logic output produced by the enzymes.
These primary studies have shown that enzyme logic systems can indeed be successfully
interfaced with �eld-e�ect transducers. In subsequent experiments, AND-Reset and
OR-Reset logic gates were developed using EIS sensors modi�ed with a multi-enzyme
membrane. The operation principle of these devices is based on local pH changes due
to a cascade of enzymatic reactions. At the same time, the pH of the bulk solution
remained constant [10, 11]. The results for the single OR-Reset gate are exemplarily
presented below.
Figure 7.1 shows schematically the capacitive EIS sensor with the immobilized enzyme

membrane; to perform the measurements, the set-up is completed with the analyte, an
Ag/AgCl reference electrode and an impedance analyzer. The EIS chips (with sizes
of 10 mm x 10 mm) consisting of an Al (300 nm) �p�Si�SiO2 (30 nm) �Ta2O5 (60
nm) structure were prepared from a p-doped Si wafer (thickness: ∼400 µm, resistiv-
ity: 1�10 Ωcm, Si-Mat, Germany). The enzyme membrane for the OR-Reset logic
gate combines three enzymes: glucose oxidase (GOD), esterase (Est) and urease (Ur).
The multi-enzyme membrane was prepared by drop-coating of the membrane mixture
onto the Ta2O5 surface. For details of chip fabrication and multi-enzyme membrane
immobilization, see the Supporting Information.
The operating principle of the enzyme logic OR-Reset gate is based on local pH
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Fig. 7.1: Layer structure and measurement set-up of EIS sensor modi�ed with immobilized multi-
enzyme membrane. RE: reference electrode.

variations due to enzymatic reactions near the Ta2O5 surface of the EIS-sensor chip.
Therefore, the pH sensitivity of the enzyme-modi�ed EIS sensor has been addition-
ally studied before enzyme logic-gate measurements. In comparison to blank (without
enzyme membrane) Ta2O5 gate �eld-e�ect sensors, for which a pH sensitivity of 55 -
58 mV/pH was reported previously (see [32, 33]), the pH sensitivity of the enzyme-
modi�ed EIS structure was slightly lower (∼48 mV/pH between pH 3 and pH 9).
Figure 7.2 (top) sketches the enzyme-basedOR-Reset logic gate, which was activated

by the substrates glucose or/and ethyl butyrate, respectively, while urea was used to
implement the Reset function [10]. The input signal combination (1,0) corresponds
to the presence of glucose, the input signal combination (0,1) to the presence of ethyl
butyrate, and input (1,1) means that both analytes are present. For the OR logic-
gate experiments, the multi-enzyme EIS sensor was exposed to bu�er (pH 7.5), glucose
(1 mM), ethyl butyrate (1 mM) or a mixture of glucose/ethyl butyrate solutions as
biochemical inputs. The resulting EIS-sensor signal, corresponding to the logic output of
the enzymatic reactions, was monitored by dynamic constant-capacitance measurements
(ConCap [30]) using an impedance analyzer (Zahner Elektrik, Germany).
Both, the catalytic conversion of glucose by GOD (when dissolved oxygen is present)

or ethyl butyrate by Est, form acids, in that case gluconic acid, butyric acid, or both of
them. These acids induce a local pH decrease at the Ta2O5 surface of the EIS sensor [10,
11]. The latter modulates the electronic output signal of the EIS sensor in accordance
with the logic output derived from the biochemical reactions, which are activated by
di�erent combinations of chemical input signals. A typical dynamic ConCap response,
see Figure 7.2 (bottom), shows exemplary signal changes of 127 mV (glucose signal) and
167 mV (ethyl butyrate signal) [10]. The signal changes towards more negative voltages
underline the local acidi�cation at the Ta2O5 surface of the EIS sensor.
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Fig. 7.2: Schematic of the enzyme OR-RESET logic gate including enzymatic reactions and truth
table (top); ConCap signal bu�er (pH 7.5), 1 mM glucose, 1 mM ethyl butyrate (EB), mixture
of 1 mM glucose / 1 mM ethyl butyrate or mixture of 1 mM ethylbutyrate / 10 mM solutions
(bottom). Part of the �gure (bottom graph) is reproduced from Ref. [10] with permission of the
Royal Society of Chemistry.
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Referring to the pH sensitivity of the enzyme-modi�ed EIS sensor with ∼48 mV/pH,
the achieved signal changes in Figure 7.2 correspond to a local pH change (decrease) of
∆pH≈2.6 (for glucose) and ∆pH≈3.4 (for ethyl butyrate). At the same time, control
experiments (data not shown) evidenced that the pH of the bulk solution remained
practically constant at pH 7.5. In addition, after each measurement cycle in either
glucose- or ethyl butyrate solution, the sensor signal was measured in pH bu�er (pH
7.5) to check the reproducibility of the EIS sensor signal (see Figure 7.2, bottom).
To guarantee reversible operation, such logic gate must be returned (switched) back

to its initial state (so-called Reset function) [10, 34]. Then, the system will be ready to
respond to the next incoming chemical signals. In previous experiments with enzyme
logic gates coupled to EIS sensors, the Reset function was activated via changing the
pH value of the bulk solution. This can be done by adding urea to a Ur-containing
solution [14] or by exposing the logic transducer again to the original bu�er solution
[11]. Ideally, activation of the Reset function directly at the EIS sensor surface by local
enzymatic reactions (i.e., a local pH change) could be highly advantageous because of
the possibility to address and to switch a particular gate in a logic network [10]. An
example of such local Reset function is presented in Figure 7.2 (bottom), where the
EIS sensor covered with multi-enzyme membrane containing Ur is exposed to 10 mM
urea solution. A fast signal change of ∼220 mV was registered, which corresponds to
a local pH increase by ∆pH≈4.5 directly at the Ta2O5 surface of the EIS sensor while
the pH of the bulk solution remained unchanged.
The present example demonstrates the successful integration of the biomolecular logic

gate with a silicon-based EIS �eld-e�ect sensor. Only logic pH changes, derived from
the local enzymatic reactions in close vicinity to the sensor surface, were detected as
the logic output signal while the bulk pH remains constant. This way, the suggested
approach could allow individual addressing and switching of the respective logic gates,
even in complex networks, via local pH variations induced by generating H+ or OH� ions
through water electrolysis or enzymatic reactions. In addition, logic output signals of
the �eld-e�ect device can be applied to activate down-stream electrochemical reactions
or logic actuators releasing species for next logic steps.

7.4 Digital adrenaline biosensor based on AND logic gates

Developing digital biosensors that use logic principles to di�erentiate between clinical
conditions on basis of critical biochemical parameters and disease-speci�c biomarkers
attracts more and more research groups [8]. In contrast to conventional biosensors,
which usually provide precise, quantitative information on the concentration of analytes,
digital biosensors deliver qualitative output signals in a binary YES/NO format (see e.g.,
[7, 8, 16, 18]). Digital biosensors could be especially useful in application �elds in which
there is no need for a quantitative determination of analyte concentrations, but where
rapid qualitative information is required regarding the presence (exceeding a prede�ned
threshold level) or absence of a certain analyte. Recently, a digital adrenaline biosensor
has been introduced which employs the substrate-recycling principle in combination
with enzyme logic gates [35]. Such a digital biosensor is considered as a bene�t in
clinical medicine during the adrenal venous sampling (AVS) procedure for adrenal tumor

111



7 Coupling of biomolecular logic gates with electronic transducers

localization and di�erential diagnosis [36]. Typically, the adrenaline concentration in
adrenal veins is about 100-times higher (&100 nM) than in the periphery [37, 38].
Thus, the adrenaline-concentration di�erence can serve as qualitative indicator (binary
YES/NO signal) for correct catheter positioning during the AVS procedure [39, 40]. The
developed adrenaline biosensor was able to detect very low adrenaline concentrations
(1 nM) in both phosphate bu�er (PBS) and Ringer`s solutions (substitute for blood
plasma). However, in model logic-gate experiments, the logic 0 of the input signal
was taken as the physical absence of adrenaline, although for practical applications it
should correspond to the normal physiological concentration. In addition, as logic 1
of the input signal, an adrenaline concentration of 1 µM was selected, exceeding the
pathophysiological or elevated level of adrenaline in adrenal veins signi�cantly.
In this work, we present a digital adrenaline biosensor with logic 0 and 1 values of

the input signals corresponding to the normal physiological adrenaline concentration in
the periphery and an elevated level of adrenaline in adrenal veins, respectively. To de-
tect nanomolar adrenaline concentrations, the substrate-recycling principle based on a
bi-enzyme system of laccase/pyrroloquinoline quinone (PQQ)-dependent glucose dehy-
drogenase (GDH) was used [41�43]. In this biochemical recycling approach, the analyte
is converted by one enzyme into a product, which can be converted back to the original
substrate by a second enzyme and thus, allows amplifying the response signal by several
orders of magnitude.
The schematics of a digital adrenaline biosensor based on substrate-recycling ampli-

�cation is shown in Figure 7.3. This biosensor consists of two concatenated AND
logic gates (AND 1 and AND 2) with enzymes laccase and PQQ-dependent GDH,
respectively.

Fig. 7.3: Digital adrenaline biosensor (schematically) with two concatenated AND logic gates
(AND 1 and AND 2) containing the enzyme laccase and GDH for the substrate recycling.

AND 1 gate is activated by adrenaline (input A) and dissolved oxygen (input B),
whereas AND 2 gate is activated by glucose (input C) and adrenochrome (prod-
uct of the adrenaline-oxidation reaction, input D). Laccase oxidizes adrenaline to
adrenochrome only when dissolved oxygen is present (AND 1 gate). For AND 2
gate, PQQ-GDH oxidizes glucose to gluconolactone, while adrenochrome is reduced
to adrenaline, which can serve again as input A and trigger the reaction continuously
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(substrate-recycling principle). As a result, the oxygen consumption is increased, yield-
ing a high sensor-signal change (logic 1). In contrast, the enzymatic reaction cascade
is hindered if either dissolved oxygen or glucose are missing. In such situation, a low or
even no sensor-signal change is expected (logic 0) [35]. The quantity of dissolved oxygen
consumed during the oxidation of adrenaline by laccase depends on the adrenaline con-
centration in solution and has been detected using a commercial galvanic oxygen sensor
modi�ed with the bi-enzyme (laccase/GDH) membrane. Details of the preparation of
the bi-enzyme membrane are described in the Supporting Information.

Fig. 7.4: (top) Output signal of the digital adrenaline biosensor recorded in adrenaline-free PBS,
pH 7.4 (concentration of dissolved oxygen under equilibrium with air) and in PBS containing
20 mM glucose and adrenaline with concentrations of 1 nM and 100 nM, respectively. At each
adrenaline concentration, the sensor signal was measured for about 20 min. All experiments were
carried out at room temperature under continous stirring; (bottom) the bar charts are showing
changes in the output signal of the adrenaline sensor and the dashed line de�nes the threshold
level for the output signal.

Figure 7.4 (top) shows the output signal of the digital adrenaline biosensor recorded
in adrenaline-free PBS, pH 7.4 (concentration of dissolved oxygen under equilibrium
with air) and in PBS containing 20 mM glucose and adrenaline with concentrations of
1 nM and 100 nM, respectively. This corresponds to the normal physiological adrenaline
concentration in the periphery and to the elevated level of adrenaline in adrenal veins.
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As can be seen, a small signal change of about 0.1 mV was detected in PBS containing
1 nM adrenaline. In case of the solution containing 100 nM, a larger signal change of
12 mV was recorded. For practical applications, the logic 0 and 1 chemical input signals
should be considered as physiologically normal ( 1 nM adrenaline in the periphery blood)
and as elevated (in adrenal veins, exceeding a de�ned threshold from clinical data),
respectively. Alternatively, the threshold level separating the logic 0 and 1 values can
be personally tailored for each patient. Since the di�erence between the signal changes
corresponding to logic 0 and 1 is signi�cant, the threshold level in Figure 7.4 (bottom) is
exemplarily �xed at 2 mV (dashed line). Only in the correct positioning of the catheter,
causing the output signal to exceed the prede�ned threshold, would result in a logical
1 value. Hence, the developed digital sensor is able to distinguish elevated adrenaline
concentrations in form of a YES/NO output as an indicator for the correct insertion
and positioning of the catheter in the adrenal veins.

7.5 On-chip integration of molecular gates with
biosensor/actuator system

One of the most promising areas for biomolecular logic gates and systems is their appli-
cation in the logically triggered activation of actuator devices. Coupling of logic output
with actuators, capable for release and/or delivery of therapeutic agents (drugs), might
lead to intelligent sense/act and sense/act/treat theranostic (therapeutic and diagnos-
tic) devices [8, 17, 44�46]. Recently, we proposed a challenging concept based on the
on-chip integration of biomolecular gates with a biosensor/actuator system � a so-called
biomolecular logic chip (BioLogicChip) [22]: The BioLogicChip will be capable of de-
tecting multiple analytes (e.g., a panel of biomarkers) and subsequently convert them
into electrical output signals in accordance to de�ning speci�c combinations of logic
�0� and �1� , which are characteristic for particular diseases. Based on the logic op-
erations, the actuator system can be activated to release a particular substance (e.g.,
drug for patient treatment). Thus, the BioLogicChip represents an integrated closed-
loop sense/act/treat logic system, allowing a highly speci�c and reliable diagnosis as
well as a personalized drug administration for optimal therapeutic intervention. The
BioLogicChip responds to de�ned combinations of biochemical signals, processed to-
gether by corresponding biomolecular logic gates [22].
The concept for a BioLogicChip is schematically shown in Figure 7.5, tailored as

closed-loop insulin-release actuator triggered by an enzymeAND logic gate, which relies
on a glucose/GOD system. Besides the amperometric glucose biosensor, it features a
temperature-responsive hydrogel for the actuator function (hydrogel valve). Further
elements are a thermoresistive heater for heating-up the hydrogel above the phase-
transition temperature, an impedance sensor for detecting hydrogel shrinking, a drug
reservoir, and an amperometric insulin sensor for the drug-release control.
TheAND logic gate provides a logic �1� only in case that both substrates, i.e. glucose

and dissolved oxygen, are present. Depending on a prede�ned threshold value, this logic
�1� will then activate the heater and cause the temperature-dependent shrinking (or
swelling) of the hydrogel. Since the hydrogel works as an actuator valve that is opening
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Fig. 7.5: Concept of BioLogicChip (schematically) designed as closed-loop drug-release device trig-
gered by an enzymatic AND logic gate. The chip consists of an enzymatic biosensor (glu-
cose/GOD), an actuator (hydrogel valve) for drug release from a closed reservoir in a micro-
�uidic channel when hydrogel is shrinking, a thermoresistive heater (to heat hydrogel above
phase-transition temperature), an impedance sensor (to detect hydrogel shrinking), and an in-
sulin sensor (to monitor insulin release).

(or closing) a reservoir containing insulin, it can induce an insulin release to reduce
the glucose level of a patient with a therapeutic status. The insulin release (dosage,
timing) will be monitored by a downstream-placed insulin sensor and a feedback control
of the glucose level using a glucose biosensor [22]. Chapter 7.5.1 to chapter 7.5.3 brie�y
describe the individual sensors, i.e. the glucose- and insulin biosensors as well as the
impedimetric sensor (to monitor the temperature-induced hydrogel shrinking). Details
of materials used, sensors preparation, and measurement set-up can be found in a recent
article [22] and in the Supporting Information.

7.5.1 Glucose sensor

Figure 7.6 (top) depicts a cross-section of the layer structure (inset graph) and sensor
signal (current), depending on glucose concentrations in the range 0.5 - 15 mM.
The three-electrode set-up used in this experiment consisted of a liquid-junction

Ag/AgCl reference electrode, a platinum counter electrode, and a sensor chip (plat-
inum working electrode). For amperometric H2O2 detection � as a product of glucose
oxidation by GOD � a potential of +600 mV was applied. With increasing glucose
concentration, the H2O2 concentration raises, yielding a higher current output as sen-
sor signal. The average sensitivity was found to be 4.4 ± 0.15 mA/mM in the glucose
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Fig. 7.6: (top) Cross-section of the layer structure (inset graph) and sensor signal (current) de-
pending on the glucose concentration (0.5 - 15 mM) measured at an applied potential of 600 mV
on the working electrode; (middle) open-circuit impedance-spectroscopy characteristics of the
interdigitated circular electrodes covered with a PNIPAAm hydrogel �lm measured at di�erent
temperatures (inset shows photograph of impedimetric sensor); (bottom) cross-section of the
layer structure (inset graph) and calibration curve of the insulin sensor measured at an applied
potential of 800 mV on the working electrode.
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concentration range from 0.5 to 7 mM. When integrated into the BioLogicChip, at ele-
vated glucose concentrations, the glucose sensor will activate the actuator function by
applying a logic output signal to the heater.

7.5.2 Hydrogel-shrinking sensor

Hydrogels are cross-linked polymer structures, which can absorb a large volume of wa-
ter. Depending on external stimuli, they can change their volume (swelling or shrink-
ing) more than 100-fold [47, 48]. For developing a hydrogel-based actuator, we used
the temperature-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm), which
is often used for �uidic applications [49, 50]. The swelling/shrinking properties of the
PNIPAAm �lm (serving as a hydrogel valve) were studied using an impedimetric sensor
based on interdigitated circular Pt electrodes. Figure 7.6 (middle) shows the open-
circuit impedance spectroscopic characteristics of the interdigitated circular electrodes
(covered with a PNIPAAm �lm) measured at di�erent temperatures. The inset depicts
a photograph of this impedimetric sensor. For simplicity, we compare impedance values
at di�erent temperatures recorded in the frequency range in which the temperature
dependence of the impedance signal is well visible (e.g., at 1000 Hz). Temperatures
below the phase-transition temperature (around 32 - 34 ◦C [49]) correspond to the
highly swollen state (high water content) of the PNIPAAm hydrogel, resulting in a
low impedance of about 2.5 kΩ. Above the phase-transition temperature, the hydrogel
collapses and switches to the shrinking state with low water content. Consequently,
the impedance increases starting at 34.6 ◦C to reach a value of 14.8 kΩ at 42.2 ◦C.
The temperature-induced swelling/shrinking behavior of the PNIPAAm enables its ap-
plication as temperature-responsive actuator. It can be designed as a hydrogel valve
combined with an insulin reservoir or, alternatively, insulin molecules can be incorpo-
rated inside the hydrogel and subsequently released.

7.5.3 Insulin sensor

Recently, it was demonstrated that nanometer-thick �lms of IrxOy prepared by thermal
oxidation of an iridium �lm (700 ◦C [51] for 1 h in air) can be applied for amperometric
insulin detection. In this experiment, the insulin concentration in bu�er solution (pH
7.4) was varying between 0.1 µM and 0.5 µM [22]. Further experiments showed that the
performance of this insulin sensor can be improved by increasing the oxidation time of
iridium. Figure 7.6 (bottom) displays a schematic cross-section of the layer structure of
this insulin sensor (a 20 nm thick iridium �lm was thermally oxidized for 5 h at 700 ◦C)
together with the output signal depending on the insulin concentration. For insulin
oxidation, a potential of +800 mV [22] was applied to the IrxOy working electrode vs.
the Ag/AgCl reference electrode. The calibration curve is nearly linear in the insulin
concentration range from 5 nM to 50 nM with a sensitivity of 0.4 ± 0.07 nA/nM. The
estimated lower detection limit was determined to be about 5 nM. These results show
the feasibility of the developed IrxOy-based amperometric sensor for the detection of
very low insulin concentrations.
The next development step will be the integration of all three components (i.e., glucose

sensor, temperature-responsive hydrogel for insulin release, and insulin sensor) on one
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chip. Such a closed-loop chip could be a very promising platform for the treatment of
diabetes patients in the future.
Other studies have already shown that closed-loop control systems were comparable

with conventional insulin-pump therapy [52]. Similar to arti�cial pancreas technolo-
gies, the development of such BioLogicChip designed as closed-loop drug-release device
triggered by an enzymatic AND logic gate could prevent in a future application the
variation of the glucose level during the continuous glucose sensing [53]. The Medtronic
MiniMed 670G system is the �rst FDA (Food and Drug Administration) -approved
closed-loop system that monitors glucose and automatically adjusts the delivery of in-
sulin based on the glucose level [54]. The system consists of a continuous glucose monitor
and an additional insulin pump. In contrast to the Medtronic system, the BioLogicChip
contains an additional insulin sensor, which allows the control of insulin concentration
and dynamic of insulin release. Furthermore, in most cases of arti�cial pancreas sys-
tems, multiple handheld devices to monitor the glucose level, compute hormone delivery
rates and control hormone delivery pumps might be problematic due to the complexity
of such systems [55]. In this way, an integration of all functionalities onto one chip
might be advantageous.

7.6 Conclusions

In this work, we have presented selected examples of integrating enzyme logic princi-
ples with electronic transducers (semiconductor �eld-e�ect devices and electrodes). An
enzyme OR/Reset logic gate consisting of a �eld-e�ect EIS structure covered with a
multi-enzyme membrane has been developed and studied experimentally. The work-
ing principle of this OR/Reset gate is based on local pH changes at the surface of
the EIS sensor, arising from a cascade of enzymatic reactions. This approach possibly
enables the activation of downstream electrochemical reactions as well as addressable
switching �ON� and �OFF� of particular logic gates inside the logic network via local pH
changes. A digital adrenaline biosensor based on two concatenated AND logic gates
with the binary YES/NO output has been developed, where the logic 0 and 1 values
of the input signals correspond to the normal physiological adrenaline concentration
in the periphery and elevated level of adrenaline in adrenal veins, respectively. Due
to the substrate-recycling principle, the developed biosensor is able to detect very low
adrenaline concentrations down to the nanomolar range. Only in the case of correct
catheter position, causing the output signal to exceed a prede�ned threshold level, the
output signal would result in a logical 1 value. In future, this digital biosensor is in-
tended for clinical diagnostics as a novel tool for the control of a correct insertion and
positioning of a catheter in the adrenal veins during AVS procedure.
In addition, an integrated sense/act/treat system designed as a closed-loop drug-

release device was studied. The system combines a digital glucose sensor based on a
logic AND gate, a hydrogel actuator with heating element, a drug reservoir, and a
drug sensor. We expect that such a sense/act/treat system can be used in personalized
medicine for diagnosis and drug administration to optimize therapeutic interventions,
owing to the fact that it responds only to speci�c combinations of biochemical signals
processed by the biomolecular logic gates.
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While the present paper summarized recent experimental achievements on digital
logic systems in the authors' laboratory, much broader research activities have taken
place in other laboratories in the area of non-conventional computing, particularly with
respect to enzyme-based logic gates and circuits [17, 56�80]. The results reported by
all these laboratories will certainly trigger further developments in the integration of
various logic systems with electronic transducers and actuators. Overall, the transition
of logic elements from mostly optical means for reading output signals to electronic
transduction tools would be bene�cial for developing many novel logic elements for
information processing, biosensing, and bioactuation.
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7.7 Supporting information

7.7.1 Enzyme logic gates based on a �eld-e�ect EIS sensor

Materials

The enzymes esterase (Est, EC 3.1.1.1), glucose oxidase (GOD, EC 1.1.3.4) and urease
(Ur, EC 3.5.1.5) were purchased from Sigma�Aldrich and Sinus Biochemicals. Other
reagents and chemicals (pH-bu�er solutions, KCl, bovine serum albumin (BSA), glu-
taraldehyde, glycerol, β-D-glucose, ethyl butyrate, urea) were purchased from Fluka
and Sigma�Aldrich. The analyte solutions for the logic gate experiments were prepared
by dissolving glucose or ethyl butyrate in a working bu�er (1 mM phosphate bu�er, pH
7.5, adjusted with 100 mM KCl).

Preparation of EIS sensors

The EIS chips consisting of an Al�p-Si�SiO2�Ta2O5 structure were fabricated from a p-
Si wafer by standard microfabrication processes. First, a high-quality SiO2 layer with a
thickness of 30 nm was prepared by thermal dry oxidation of Si under O2 atmosphere at
1000 ◦C for about 30 min. Afterwards, a Ta2O5 layer with a thickness of approximately
60 nm was prepared by electron-beam evaporation of 30 nm Ta, followed by thermal
oxidation in oxygen atmosphere at 530 ◦C for about 45 min. To create the Ohmic
contact to the Si, the SiO2 layer on the rear side of the wafer was etched and then,
a 300 nm thick Al layer was deposited by electron-beam evaporation and annealed in
nitrogen atmosphere at 400 ◦C for 10 min. Finally, the wafer was cut into single chips
with the sizes of 10 mm × 10 mm.

Modi�cation of the EIS sensor with the multi-enzyme membrane

The enzymes were immobilized on the Ta2O5 surface by cross-linking with BSA and
glutaraldehyde. To prepare a membrane solution, the enzyme cocktail consisting of
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GOD (5.9 kU/ml), Est (0.4 kU/ml), and BSA (40 mg/ml) was mixed in the ratio
of 1:1 v/v with 1% v/v glutaraldehyde solution comprising 10% v/v glycerol. The
multi-enzyme membrane was prepared via drop-coating method by applying 2 µL of
the particular membrane solution onto the Ta2O5 surface, followed by drying in air at
room temperature for 30 min and rinsing in ultrapure water to remove non-immobilized
components. For the Ur immobilization, 1 µL of the solution containing Ur (70 kU/ml)
in phosphate saline bu�er (1 mM, pH 7.5) mixed in the ratio of 1:1 with 1% aqueous
glutaraldehyde solution comprising 10% glycerol was applied onto the surface of the EIS
structure.

Measurement setup

For the experiments, the EIS-sensor chip was mounted into a home-made measuring
cell, sealed by an O-ring, and contacted on its front side by the electrolyte and the
reference electrode (conventional liquid-junction Ag/AgCl electrode, Metrohm). The
contact area of the EIS sensor with the solution was about 0.5 cm2. For measurements,
a DC polarization voltage was applied via the reference electrode and a small AC voltage
(20 mV) was applied to the system in order to measure the capacitance of the sensor
using an impedance analyzer (Zahner Elektrik, Germany). For the OR enzyme logic-
gate experiments, the particular analyte solution (1 mM ethyl butyrate or glucose, pH
7.5) was applied to the sensor surface as biochemical input, and the logic output signals
have been read out by means of the ConCap method. All potential values are referred
to the reference electrode.

7.7.2 Digital adrenaline biosensor based on AND logic gates

Materials

Glutaraldehyde, BSA, glycerol, CaCl2 and the bu�er components (monosodium phos-
phate and disodiumphosphate) were purchased from Sigma�Aldrich (USA). The laccase
was provided by AB Enzymes GmbH (Germany). Glucose dehydrogenase (GDH) was
provided by Roche Diagnostics (Germany). Cellulose acetate �lter with a pore size
of 0.2 µm was obtained from Sartorius Stedim Biotech GmbH (Germany). Adrenaline
solution (1 mg/mL) was purchased from Sano��Aventis GmbH (Germany). Pyrrolo-
quinoline quinone (PQQ) was bought from Wako (Japan) and Ringer`s solution (8.6 g/L
NaCl, 0.3 g/L KCl, 0.33 g/L CaCl2 · 2H2O) was purchased from Bernburg (Germany).

Modi�cation of the oxygen sensor with enzyme membrane

For the realization of the adrenaline biosensor, a commercial galvanic oxygen sensor
(Atlas Scienti�c, USA) was modi�ed by a bienzyme (laccase/GDH) membrane. The
enzyme membrane was prepared from the membrane cocktail consisting of 15 µL of the
laccase (1.82 U/µL) solution, 15 µL of GDH (0.03 U/µL) solution combining 20 µM
PQQ and 1 mM CaCl2, 60 µL of BSA (10 vol%) and 60 µL mixture of glutaraldehyde
(2 vol%) and glycerol (10 vol%) solutions, respectively. All components were mixed
with the resulting volumetric ratio of 1/2/2 (enzymes/BSA/glutaraldehyde-glycerol).
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A total of 100 µL of the membrane cocktail was then dropped onto a Te�on block.
After drying for 24 hat 4 ◦C, the enzyme membrane with a thickness of ∼130 µm was
�xed with the help of a cellulose acetate �lter (dialysis membrane, pore size 0.2 µm,
Sartorius Stedim Biotech GmbH, Germany) and silicon rubber (TSE 399C, Momentive
Performance Materials, Switzerland) onto the high-density polyethylene layer of the
oxygen sensor.

Measurement setup

For the electrochemical characterization, the adrenaline biosensor was connected to a
potentiometer (2007 Mulitmeter, Keithley Instruments) and exposed to the solution
containing di�erent concentrations of adrenaline. Adrenaline solutions with various
concentrations were prepared from a stock solution of 0.1 mM adrenaline. The output
voltage of the galvanic oxygen sensor is proportional to the oxygen consumption in the
solution.

7.7.3 Integration of molecular logic principles with a multi-functional
biosensor/actuator system

Materials

Glutaraldehyde, BSA, bovine insulin (27 USP units/mg), GOD (EC 1.1.4., from As-
pergillus niger), glucose monohydrate, and the bu�er components were purchased from
Sigma�Aldrich (St. Louis). Hydrochlorid acid was bought from Merck Titrisol (Darm-
stadt, Germany). N-isopropylacrylamide (NIPAAm, 99%, Sigma�Aldrich), cross-linking
agent N,N`-methylenebis(acrylamide) (BIS, 98%, Merck), and the photoinitiator Ir-
gacure 2959 (Ciba) were used as received.

Preparation of glucose sensor

The sensor chips consisting of a p-Si�SiO2�Ti�Pt structure were fabricated by means
of silicon- and thin-�lm technologies. First, 50 nm SiO2 was grown by thermal wet
oxidation of a p-Si wafer. Then, 20 nm titanium as adhesion layer and subsequently,
200 nm platinum as electrode material for the amperometric glucose sensor were de-
posited on the SiO2 surface by electron-beam evaporation and patterned by means of
lift-o� technique. The wafer was cut into separate chips with a size of 1 × 2 cm2. This
basis structure was also used for the preparation of the amperometric insulin sensor.
After the surface cleaning with acetone, isopropanol and deionized water, the chips
were glued onto the substrate holder, electrically connected by means of an ultrasonic
wedge bonder and encapsulated with silicone rubber (TSE 399C, Momentive Perfor-
mance Materials, Switzerland). The contact area of the Pt electrodes with the analyte
was ∼0.4 cm2.
The glucose biosensor was prepared by attaching an enzyme membrane on the plat-

inum electrode. For this, 126 µL phosphat bu�er (pH 7.4) containing GOD with a
concentration of 166.6 U/mL was mixed with 20 µL of BSA (10 vol%) and 20 µL glu-
taraldehyde (2 vol%) solutions. The resulting volumetric ratio of all three components

121



7 Coupling of biomolecular logic gates with electronic transducers

was 1:2:2 (enzyme:BSA:glutaraldehyde). A total of 30 µL of the membrane cocktail
was then dropped on the platinum electrode resulting in an enzyme loading of about
1 U/electrode. After drying, the chip was rinsed with bu�er solution to remove unbound
components and stored at 4 ◦C.

Preparation of impedimetric sensor for the detection of hydrogel shrinking

The impedimetric sensor for the hydrogel-shrinking detection is based on a platinum in-
terdigitated circle structure and was fabricated as described before for the glucose sensor.
The circular structure consists of 24 �ngers with a width of 100 µm and a gap between
the electrodes of 150 µm. The temperature-responsive hydrogel was prepared from a
pre-polymer solution consisting of 100 mM NIPAAm, 1 mM BIS and 0.45 mM Irgacure
dissolved in 60 mL deionized water under stirring. The poly-(N-isopropylacrylamide)
(PNIPAAm) hydrogel �lm was prepared by the photopolymerization method. After
drying at room temperature, the thickness of the hydrogel was approximately 10 µm in
the dry state.

Preparation of insulin sensor

The insulin sensor was prepared by thermal oxidation of a 20 nm thick iridium �lm
deposited on a p-Si�SiO2�Ti�Pt structure used for the preparation of glucose sensor.

Electrochemical characterization of sensors

For the electrochemical characterization of the amperometric glucose and insulin sen-
sor, the Pt and IrxOy working electrodes were connected to a potentiostat (PalmSens,
Palm Instruments BV, Netherlands). A three-electrode arrangement was used, where a
conventional liquid-junction Ag/AgCl electrode (Metrohm) was utilized as a reference
electrode and a platinum wire as a counter electrode. The swelling/shrinking behavior
of the temperature-responsive PNIPAAm hydrogel was studied at di�erent tempera-
tures (28.6 - 42.2 ◦C) using an impedance measurement system IM6e (Zahner Elektrik
GmbH, Germany).
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8 Field-e�ect biosensor for the detection of acetoin

8.1 Abstract

A capacitive electrolyte-insulator-semiconductor (EIS) �eld-e�ect biosensor for acetoin
detection has been presented for the �rst time. The EIS sensor consists of a layer
structure of Al/p-Si/SiO2/Ta2O5/enzyme acetoin reductase. The enzyme, also referred
to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T , has been recently
characterized. The enzyme catalyzes the (R)-speci�c reduction of racemic acetoin to
(R,R)- and meso-butane-2,3-diol, respectively. Two di�erent enzyme-immobilization
strategies (cross-linking by using glutaraldehyde and adsorption) have been studied.
Typical biosensor parameters such as optimal pH-working range, sensitivity, hysteresis,
linear concentration range and long-term stability have been examined by means of
constant-capacitance (ConCap) mode measurements. Furthermore, preliminary exper-
iments have been successfully carried out for the detection of acetoin in diluted white
wine samples.
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8.2 Introduction

Acetoin and diacetyl are widely distributed in various beverages, and are also used in
foods and cosmetics as �avouring and fragrance, as well as in chemical synthesis [1�4].
These compounds are products of fermentative metabolism in di�erent microorganisms.
Acetoin can be formed, e.g., in most bacteria from pyruvate and is thus a product of
carbohydrate metabolism, or from diacetyl while NAD(P)H serves as a cofactor of the
enzyme acetoin reductase [5, 6].
During the fermentation process of alcoholic beverages, such as beer or wine, acetoin

plays an important role in their quality due to its buttery-like taste, although acetoin is
not pungent smelling [7].Typical acetoin concentrations in alcoholic beverages are in the
range of 10 µM to 50 µM in beer, 500 µM in white wine and 150 µM in red wine [7�
9]. The detection of acetoin content during the fermentation process could control the
quality of alcoholic beverages due to its involvement in the wine bouquet or its in�uence
in the beer �avor. Furthermore, the acetoin concentration during beer storage is used
as a parameter to establish the degree of the beer`s maturity [8]. Precise detection of
the acetoin level can be used to avoid unnecessary maturation time [7, 10]. Hence, its
control of concentration change during the fermentation course could help assess the
fermentation process, as well as the maturation process.
Several methods have already been described for the detection of acetoin, mainly col-

orimetric techniques, like the Voges-Proskauer test, which is the most commonly applied
procedure for the detection of acetoin in analytical microbiology or gas chromatography
[11, 12]. However, none of these techniques provide the advantages that can be achieved
by using a biosensor which o�ers a faster analytical approach and that does not need
additional trained sta�.
Capacitive EIS sensors are �eld-e�ect devices that are used for the detection of

surface-potential changes, e.g., due to pH alterations [13]. These changes can also be in-
duced by, e.g., enzymatic reactions [14�17], and binding of charged molecules, like DNA
[18�21]. These sensors can also be applied for the development of enzyme logic gates
[22�24]. Furthermore, EIS sensors have many advantages over conventional analytical
methods such as small size, low weight and fast response time, and they are easy and
cost-e�ective in fabrication [25�27]. Furthermore, due to the miniaturized sensor layout,
only a small sample volume is necessary for the measurement. Additionally, with an
array of di�erent modi�ed EIS sensors, several analytes can be detected simultaneously.
In this study, we report on the development of a chip-based biosensor for the ace-

toin detection for the �rst time. The sensor is based on a pH-sensitive capacitive EIS
�eld-e�ect structure consisting of an Al/p-Si/SiO2/Ta2O5 layer set-up. The chip was
modi�ed using a recently introduced acetoin reductase from B. clausii DSM 8716T [28]
accountable for the reduction of acetoin in the presence of NADH as a cofactor [29]. The
local pH shift induced by the enzymatic reaction resulted in the modulation of the �at-
band potential of the �eld-e�ect biosensor, arising in a shift of the capacitance-voltage
(C-V) curve of the EIS structure. Two immobilization strategies, namely adsorptive
binding and cross-linking by forming cross-linkages between the enzyme molecules, have
been investigated to attach the acetoin reductase to the pH-sensitive Ta2O5 surface of
the EIS-sensor chip. Characteristic biosensor parameters such as linear concentration
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range, pH optimum of the �eld-e�ect sensor with the immobilized enzyme, sensitivity,
lower and upper detection limit, hysteresis and long-term stability will be discussed. In
addition, the newly developed acetoin biosensor was applied for measurements in real
samples such as white wine.

8.3 Experimental

8.3.1 Materials

Acetoin and the cofactor NADH were acquired from Sigma-Aldrich (USA), as well as
glutaraldehyde, glycerol and NaCl. TRIS-HCl bu�er (0.2 mM) was purchased from
Carl Roth (Germany). The respective pH values of the bu�er solution were adjusted by
addition of 0.1 M NaOH or 0.1 M HCl. The enzyme acetoin reductase from B. clausii
(∼380 U/mL) is produced in our institute as described before [28].

8.3.2 Preparation of the sensor structures

The applied capacitive EIS sensor consists of the following layer stack: a p-doped silicon
substrate with a thickness of ∼400 µm and a speci�c resistance of ρ = 5 - 10 Ωcm, a
30 nm thermally grown SiO2 insulating layer and a 60 nm thick Ta2O5 gate-insulator
layer (for that 30 nm Ta is deposited by electron-beam evaporation, followed by a
thermal oxidation step). A rear-side contact, consisting of a 300 nm thick aluminum
layer is deposited by electron-beam evaporation and annealed afterwards. As a �nal
step, the wafer is separated into 1 cm x 1 cm chips with a diamond saw. Fig. 8.1 shows
the EIS-sensor set-up with the di�erent layers. Detailed information about the sensor`s
fabrication process is described in [27]. The Ta2O5 layer as gate insulator has been
selected because of its well-known excellent pH behavior and high permittivity but also
because of its chemical stability [30, 31].

The acetoin EIS biosensor was developed by modifying the Ta2O5 surface with the
enzyme acetoin reductase. Immediately before modi�cation, each sensor was cleaned
in acetone, isopropanol and deionized water for 5 minutes, respectively. Two di�erent
immobilization strategies have been investigated. As �rst immobilization method, the
enzyme acetoin reductase is adsorptively bound to the sensor surface. For this, ∼80 µL
of acetoin reductase solution was dropped onto the sensor surface. For the second immo-
bilization procedure, cross-linking is performed by formation of cross-linkages between
the enzyme molecules, where the membrane cocktail consisting of 48 µL glutaraldehyde
(2 vol%) / glycerol (10 vol%) solution and 32 µL of enzyme solution was mixed. 80 µL
of the membrane cocktail was pipetted onto the Ta2O5 surface. After drying of the
di�erent prepared EIS sensors, they were mounted into a homemade measuring cell,
sealed by an O-ring to protect the rear-side contact and to de�ne the contact area of
the EIS sensor with the analyte solution (∼0.5 cm2). Before measurements, the sensors
were stored at 4 ◦C in the dark.
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Fig. 8.1: Schematic of the measurement set-up with the Al-p-Si-SiO2-Ta2O5 EIS sensor modi�ed
with the enzyme acetoin reductase for the detection of acetoin.

8.4 Measurement principle

Fig. 8.1 illustrates the measurement set-up with the developed acetoin �eld-e�ect biosen-
sor. For the electrochemical characterization of the acetoin biosensor chip, C-V (capac-
itance/voltage) and ConCap (constant capacitance) measurements were performed by
connecting the EIS chip with an impedance analyzer IM6 (Zahner Elektrik, Germany).
Before performing ConCap measurements, C-V curves of each sensor chip, in a gate-
voltage range between -2 V and 2 V with steps of 100 mV were recorded to de�ne a �xed
capacitance value (in the linear range of the depletion region, ∼60% of the maximum
capacitance) using a feedback-control circuit. With the help of ConCap measurements,
potential and/or charge changes at the Ta2O5 surface can be detected in real time.
An external liquid-junction Ag/AgCl electrode (Metrohm, Germany) �lled with 3 M
KCl was applied as the reference electrode. The C-V- and ConCap measurements were
carried out at a frequency of 120 Hz. A 20 mV ac (alternating current) voltage has
been applied between the Ag/AgCl reference electrode and the rear-side Al contact,
to measure the capacitance. The measurement principle for the detection of acetoin
using the capacitive �eld-e�ect sensor is based on the enzymatic reaction as depicted in
equation 1.1. (R)- and (S)-acetoin will be reduced by the R-speci�c enzyme acetoin re-
ductase to (R,R)-2,3-butanediol and meso-butanediol, respectively, while NADH serves
as a cofactor and will be oxidized to NAD+ (nicotinamide adenine dinucleotide).

acetoin+NADH +H+ acetoin reductase−−−−−−−−−−−−→ 2, 3− butanediol +NAD+ (8.1)

As a result of this enzymatic reaction, the hydrogen-ion concentration decreases,
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and this pH change can be detected by the pH-sensitive Ta2O5 transducer surface of
the �eld-e�ect sensor. The resulting change in the �at-band potential of the sensor is
recorded and corresponds to the measured acetoin concentration. All measurements
were performed in a dark Faraday cage at room temperature. Before starting the mea-
surements, the sensor chip was incubated in 0.2 mM TRIS-HCl bu�er solution (pH 7.1)
containing 150 mM NaCl for 2 h. All solutions contained 500 µM of the cofactor NADH
and all measurements were performed in 1 mL analyte solution containing di�erent ace-
toin concentrations varying from 1 µM to 500 µM. The pH value of the solutions used
was additionally controlled by a pH meter (Mettler-Toledo, Germany).

8.5 Results and discussions

8.5.1 Electrochemical characterization of the capacitive acetoin biosensor

Before surface modi�cation, the functionality and pH sensitivity of the bare EIS-sensor
chip was studied. Therefore, the pH sensitivity of each sensor was determined in the
ConCap measurement mode with standard pH bu�er solutions (Titrisol, Merck, Ger-
many). The result of a typical ConCap-measurement of a bare EIS-sensor chip is pre-
sented in Fig. 8.2, for the pH values of 7-8-9-8-7-6-5-6-7, respectively. Each pH value
has been recorded for 5 minutes. As the pH bu�er solution is changed, an immediate
signal step is perceived. This result shows that the EIS sensor is highly reproducible
as demonstrated for pH 7.0, which was measured three times within this measurement
cycle, yielding a potential at this pH value that is always -179 ± 5 mV. The correspond-
ing calibration curve is shown in the inset �gure of Fig. 8.2 and demonstrates a nearly
Nernstian pH sensitivity of 55.9 mV/pH, as described in literature [27].
Additionally, di�erent acetoin concentrations in the range between 30 µM and 90 µM

were tested with the bare sensor chip (i.e., without the immobilized enzyme) (data not
shown). The variation of the acetoin concentration only resulted in negligible potential
changes of less than 3 mV, which can be related to slight pH variations of the analyte
and drift e�ects of the sensor chip itself. In a further experiment, the EIS-sensor chip
modi�ed with the enzyme acetoin reductase was also examined with regard to its original
pH sensitivity in Titrisol bu�er solutions of di�erent pH values (identical procedure as
performed in Fig. 8.2). The sensor modi�ed by the enzyme possesses a similar sensitivity
of 55.7 mV/pH as for the bare EIS sensor. Thus, the immobilized enzyme has no
in�uence on the pH response of the pH-sensitive Ta2O5-transducer layer.
The immobilization of the enzyme onto the sensor surface is always an essential step

in the development of a biosensor. Several immobilization methods such as adsorptive
binding, covalent bonding, entrapment or cross-linking have been discussed in literature
(Sassolas et al. 2012). For the immobilization of the enzyme acetoin reductase, two
di�erent immobilization methods were investigated, in particular, adsorptive binding
and cross-linking by using glutaraldehyde to form a stable membrane which is drop-
coated onto the sensor surface. Biosensor chips were prepared with each immobilization
method.
The in�uence of the enzyme immobilization on the sensitivity of the capacitive ace-

toin EIS-biosensor chip was studied at di�erent acetoin concentrations ranging between
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Fig. 8.2: Typical ConCap measurement for di�erent pH values of Titrisol bu�er solution of a bare
EIS sensor; the inset �gure depicts the resulting calibration curve with an average slope of
55.9 mV/pH between pH 5 and pH 9.

30 µM and 90 µM in 0.2 mM TRIS-HCl bu�er solution, containing 150 mM NaCl and
500 µM NADH at pH 7.1. Fig. 8.3a) shows the results of the mean values of the sen-
sitivities. The two bars depict the mean values of the sensitivities obtained from each
three individual sensors modi�ed using adsorptive binding and cross-linking, respec-
tively. The highest sensitivity has been observed with the sensors modi�ed by means
of cross-linking with a mean sensitivity of 65 mV/dec, while the sensors modi�ed using
adsorptive immobilization only have a mean sensitivity of 27 mV/dec. These results
demonstrate that although the adsorption method causes little to no enzyme inactiva-
tion, the enzymes are probably loosely attached to the sensor surface resulting in less
amount of enzymes, which are �xed on the surface and hence, a lower acetoin sensitivity
was achieved. Therefore, for the subsequent experiments, the sensor was modi�ed by
applying the cross-linking method for the immobilization of the enzyme.

To investigate the lower and upper detection limit of the developed biosensor chip
towards acetoin, ConCap measurements were furtherly performed in the acetoin con-
centration range between 1 µM and 500 µM. Fig. 8.3b) shows an S-shaped calibration
curve, as typically expected for electrochemical biosensors. The sensor signal is plotted
versus the logarithmic acetoin concentration. A linear behavior in the acetoin concen-
tration range between 10 µM and 90 µM with a sensitivity of 65 mV/dec is given. A
saturation e�ect is resulting for acetoin concentrations higher than 150 µM. Due to the
enzymatic reaction, the pH increase close to the sensor surface might lead to an enzyme
inhibition due to the pH dependence of acetoin reductase`s activity (see also Fig. 8.4).
Note that a shift in the biosensor signal of about 65 mV for varying acetoin concentra-
tions corresponds to a pH shift from originally pH 7.1 to about pH 8.2 at the biosensor
surface. This is de�ned by the pH sensitivity of the Ta2O5 layer with immobilized en-
zyme of about 56 mV/pH as described above. On the other side, the curve starts to
get �at at low acetoin concentrations (<10 µM) that de�nes the detection limit of the
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biosensor set-up.

Fig. 8.3: (a) Mean values of the sensitivity with standard deviation (set of three series of measure-
ments for each immobilization method) for the capacitive acetoin EIS-biosensor chip recorded
in bu�er solution with di�erent acetoin concentrations from 30 µM to 90 µM. (b) Calibration
plot with standard deviation obtained with the capacitive, cross-linked acetoin EIS-biosensor chip
measured in the acetoin concentration range between 1 µM and 500 µM.

To study the pH in�uence on the sensitivity of the developed capacitive acetoin
EIS biosensor in more detail, measurements in the ConCap mode were performed by
variation of the pH of the bu�er solution over a range from pH 6.5 to pH 8.0. Di�erent
acetoin concentrations ranging from 30 µM to 90 µM (bu�er solution) were taken into
account for the measurement. Fig. 8.4a) summarizes the mean values and their standard
deviations of the sensitivity obtained for three individual acetoin biosensors determined
at each pH value. Maximum response with a sensitivity of 65 ± 4 mV/dec could be
reached at a pH value of ∼7.1, which is also consistent with the pH optimum of the
used acetoin reductase (∼pH 7.0) for the given reaction [28].
Fig. 8.4b) demonstrates an example of a ConCap measurement of the acetoin biosen-
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Fig. 8.4: (a) Mean values of the sensitivity with standard deviation (set of three series of mea-
surements) for three fabricated capacitive acetoin EIS biosensors recorded in TRIS-HCl bu�er
containing 150 mM NaCl in the pH range between pH 6.5 and pH 8.0 with di�erent acetoin
concentrations from 30 µM to 90 µM. (b) Typical ConCap-calibration measurement of di�erent
acetoin concentrations in the range from 30 µM to 90 µM measured by the acetoin biosensor
chip. (c) Reproducibility measurement of bu�er solution alternating with 60 µM acetoin.
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sor with regard to its hysteresis behavior and response time. Acetoin concentrations
were varied starting with a concentration of 30 µM up to 90 µM and then decreasing
the concentration again down to 30 µM. Each concentration was recorded for 3 min and
was varied in steps of 30 µM. A clear dependence of the sensor signal on the acetoin
concentration is observed. The sensor signal is increasing with an increase of the acetoin
concentration due to the decrease of the H+-ion concentration as discussed in equation
8.1 a�ected by the biocatalytic reaction. Furthermore, the sensor output is almost the
same in the upward and downward series of the performed measurement with a small
hysteresis of less than 5 mV. In contrast to standard measurement techniques for the de-
tection of acetoin [12], the response time t90% is only about 25 s by using the developed
acetoin EIS biosensor.
To proof the reproducibility of the developed acetoin biosensor chip, the sensor signal

of the measurement performed in TRIS-HCl bu�er solution at pH 7.1 was recorded in
alternation with an acetoin concentration of 60 µM in the ConCap mode. Fig. 8.4c)
shows exemplarily the results obtained with one sensor, when this cycle is repeated four
(60 µM acetoin) and �ve (bu�er) times, respectively. The sensor signal is increased to
a value of -137 ± 1 mV with each acetoin concentration step and again decreased when
measured in bu�er solution to a value of -189 ± 1 mV. This experiment again underlines
that the sensor delivered reproducible and reversible results independent of the titration
direction, only with a small hysteresis of ∼1 mV.
The stability of a biosensor often limits its use to a certain number of measurements,

and losses of sensitivity are caused due to either the decrease of the applied enzyme ac-
tivity or the enzyme leakage out from the sensor surface after a certain time. Therefore,
the biosensor`s stability has been studied over a time period of 5 days (see Fig. 8.5).

Fig. 8.5: Long-term stability of the acetoin biosensor. Mean values of the sensitivity with standard
deviations of three individual biosensors recorded in bu�er solution at di�erent days (day 1 to day
5) with di�erent acetoin concentrations from 30 µM to 90 µM.

At each day, di�erent acetoin concentrations between 30 µM and 90 µM were mea-
sured in bu�er solution. Three individual biosensor chips were tested. Between the
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measurements, the sensors were stored under dry conditions in the refrigerator at 4 ◦C.
The results of mean values of the obtained sensitivities with their standard deviations
are overviewed in Fig. 8.5.

Within the �rst two days, the biosensors show good sensitivities of about 65 mV/dec
and 55 mV/dec, respectively. However, after two performed measurement days, the
sensitivity starts to decrease rapidly to a value of 3 mV/dec at day 5. These results
are comparable to results obtained, when the pure enzyme activity was investigated in
solution without immobilization [28].

8.5.2 Application of the acetoin biosensor chip in wine

The aim of the newly developed capacitive acetoin EIS biosensor is to control and
monitor fermentation processes to avoid unnecessary storage of beer or wine. Therefore,
such biosensor chip should be able to detect acetoin in real fermentation samples.

In this study, preliminary experiments have been performed in diluted white wine
samples (alcohol 10 vol%) to verify the ability of the acetoin biosensor. The pH value
of white wine was about pH 3.3. After dilution with TRIS-HCl bu�er solution (pH
7.1) containing 150 mM NaCl (wine to bu�er mixture of 1:50), the pH value was about
pH 3.8. Therefore, the pH value was adjusted to pH 7.1, the optimum working pH
of the �eld-e�ect sensor with the immobilized enzyme, by addition of 0.1 M NaOH.
Di�erent acetoin concentrations between 1 µM and 500 µM were spiked to the wine-
bu�er mixture. As already demonstrated for the bu�er solution containing varying
acetoin concentrations (see Fig. 8.3), Fig. 8.6a) depicts again a typical S-shaped calibra-
tion curve obtained in the wine-bu�er mixture with the potential recordings depending
on the logarithmic acetoin concentration. Here, a linear behavior was reached in the
acetoin concentration range between 10 µM and 90 µM with an average sensitivity of
40 mV/dec. Note that the average sensitivity is somewhat lower than for the acetoin
measurements in bu�er without wine (65 mV/dec). On the other hand, the sensitivity
and detection limit of the developed biosensor is su�cient to detect acetoin in the in-
dustrially relevant concentration range. For the detection of higher concentrations, the
sample might be diluted if necessary.

Fig. 8.6b) demonstrates exemplarily a ConCap response of the acetoin biosensor in
bu�er solution and wine-bu�er mixture, both at pH 7.1, without acetoin or spiked with
di�erent acetoin concentrations (30 µM to 90 µM). The sensor signal obtained in each
solution was recorded for 3 min. Again, with increasing acetoin concentrations, the
biosensor signal raises, clarifying the clear dependence of the biosensor signal in wine-
bu�er mixtures with spiked acetoin content. Interestingly, an increase in the biosensor
signal was also observed for the pure wine-bu�er mixture (without additionally spiked
acetoin). The shift in contrast to the sensor signal in bu�er might be explained due to
the naturally present acetoin content in that sample. These experiments in wine-bu�er
mixture underline that the developed acetoin biosensor can detect di�erent acetoin
concentrations even in real samples.
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Fig. 8.6: (a) Calibration plot with standard deviation obtained with the capacitive acetoin EIS
biosensor measured in a concentration range between 1 µM and 500 µM in a wine-bu�er mixture
(1:50). (b) ConCap measurement of di�erent acetoin concentrations in a wine-bu�er mixture
(1:50) in the range from 30 µM to 90 µM measured by the acetoin biosensor chip.

8.6 Conclusions

A capacitive EIS �eld-e�ect biosensor has been modi�ed by a recently introduced ace-
toin reductase. Due to the immobilized enzyme, racemic acetoin will be converted to
(R,R)-2,3-butanediol and meso-butanediol, respectively, in a H+-consuming reaction
resulting in a pH change that can be detected by the EIS sensor. The acetoin biosen-
sor has been characterized regarding the immobilization method and the pH optimum.
The developed biosensor depicted the highest sensitivity through immobilization of the
enzyme via cross-linking by using glutaraldehyde at a pH value of 7.1. Furthermore, re-
producible measurement results could be achieved at di�erent acetoin concentrations in
the range between 10 µM and 100 µM with an average acetoin sensitivity of 65 mV/dec.
The sensor shows a long-term stability of around two days, which should be further im-
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proved. Ongoing experiments are dealing with the stabilization of the enzyme`s activity.
Moreover, �rst experiments in white wine have been carried out where acetoin concen-
trations between 10 µM and 90 µM could be successfully detected, giving a hint that
the sensor can be applied to real fermentation solutions. In future experiments, possi-
ble cross-sensitivity e�ects towards diacetyl and acetylbutanediol shall be investigated,
especially for diacetyl, which is also an important �avor in beer and responsible for
the buttery taste [32]. Additionally, the obtained results in real samples, such as wine
or beer, should be compared with already established measurement methods, like gas
chromatography.
Thus, both substances (acetoin and diacetyl) can be used as indicator for di�erent

fermentation processes and could prove the quality of alcoholic beverages. By applying
Boolean operations (such asAND,OR,NAND,...) [33, 34] and by de�ning a threshold
voltage of the particular biosensor signal (depending on the fermentation process), the
overall sensor read-out could give an indication of the status of the fermentation course.
Because diacetyl and acetoin are both key indicators whether beer has been adequately
matured, or if the fermentation time of wine is successfully completed. By detecting both
parameters, the fermentation could be stopped at the right time to avoid unnecessary
fermentation or maturation time to accelerate the process. Furthermore, the unpleasant
buttery-like �avor, which occurs due to exceeded fermentation/maturation process, can
be avoided.
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9 Concluding remarks and perspectives

Biocomputing implies the application of logic principles known from digital electronics
in combination with biology. Here, one or more (bio)chemical input signals can be
detected and due to Boolean operations, basing on biochemical processes, one output
signal according to the binary notation, consisting of 0 and 1 corresponding to a
YES/NO answer, is delivered. They are already many concepts of biologic gate sys-
tems with the idea for their application in e.g., medicine when a rapid diagnosing of a
disease is required. In this case, several biomarkers are detected and depending on the
output pattern(s), a certain disease can be diagnosed. But up to now, so far developed
concepts often use all-photonic detection methods to read out an output signal, which
makes it quite di�cult to combine several di�erent logic gates in one system. Due to
photoreaction, irreversible operations are formed which can be problematic for creating
resetting and recycling devices without adding chemicals. Since the chemical reaction
occurs in the analyte solution, and by applying e.g., �uorescence markers or other dyes,
the analyte is a�ected and hence, the following reactions can be falsi�ed. Furthermore,
by applying optical detection methods, the analyte solution has to be prepared before
measurements that is time-consuming and not sustainable when every second counts
for the patient.
Hence, the initial situation led to the development of di�erent concepts of biologic gates
integrated on electrochemical transducers for label-free detection. Such systems allow
the design of novel digital biosensors with direct electrical output signals corresponding
to the input signals. Three di�erent digital biosensors are conceptualized for a possible
application in medicine or food industry with realizing of �proof-of-principle� experi-
ments.

As �rst concept, a BioLogicChip has been developed combining a �sense-act-treat�
function integrated on one chip. The BioLogicChip is developed to diagnose a speci�c
disease depending on a particular biomarker or on the combination of di�erent biomark-
ers (serving as input signal). At the same time, with the same device, a certain amount
of drug that is necessary can be administered. Here, multiple biochemical input signals
can be detected simultaneously and due to Boolean operations (AND, OR, etc.), the
actuator is triggered to release a substance. Furthermore, the amount and time of the
drug release is monitored by the addition of a drug sensor.
This concept has been exemplarily demonstrated as �arti�cial pancreas� and is pro-

posed as closed-loop drug-release system triggered by an enzyme logic gate. The glucose
level of the patient is determined by a chip-based biosensor. This amperometric sen-
sor is designed as enzyme-based AND logic gate with the inputs glucose and oxygen.
The chip-based amperometric glucose sensor exhibits a linear behavior in the milimolar
concentration range. Furthermore, preliminary studies were carried out of the enzyme
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AND gate biosensor. As a result, in the absence of either or both input signals, no
chemical reaction occurs, no output is generated, resulting in an output signal of logic
0. Only in the presence of both inputs (oxygen and glucose), the enzymatic reaction
can be completed, thus, an output current (as logic 1) is generated which could be used
to address the actuator.
A temperature-dependent hydrogel (poly-(N-isopropylacrylamide) (PNIPAAm)) is

characterized with regard to its possible application as actuator. Therefore, the
impedance of the interdigitated circular electrode with the deposited hydrogel was
measured at temperatures between 28 ◦C and 42 ◦C. At lower temperatures, the
impedance is constant that implies the swelling state of the hydrogel. At higher tem-
peratures than the phase-transition temperature (>34 ◦C), the impedance is sharply
increased corresponding to the collapsed state. Due to the swelling and shrinking char-
acteristic of the hydrogel, switching between �ON� and �OFF�, a certain amount of a
drug (here, e.g., insulin) can be released, which is additionally monitored. In contrast to
conventional systems, the BiologicChip provides an additional chip-based IrxOy sensor
for the detection of insulin. Successful experiments with insulin concentrations in the
nano- to micromolar concentration range were carried out.

• Perspectively, all three individual components, such as the amperometric sensor
with the enzyme-based AND logic gate, the temperature-dependent hydrogel
using as actuator and the chip-based IrxOy sensor for the detection of insulin,
should be combined into one system, onto one chip. Moreover, this chip, which
is based on biomolecular logic principles, should be integrated into a micro�uidic
system to realize the closed-loop drug-release system. However, there are still some
challenges which have to be considered, such as the generated current from the
glucose AND logic gate has to be ampli�ed resulting in a su�ciently high current
to address the actuator. This could be either done by an external ampli�cation
source or by a (bio)chemical ampli�cation of the sensor signal. In addition, the
temperature-dependent hydrogel should be further developed to be feasible to
release a de�ned amount of a certain drug. For the future, the hydrogel could be
used as a valve to separate the drug into a chamber of the micro�uidic system. It
could be also possible to further modify the hydrogel in a way that the medical
drug is already incorporated into the hydrogel and due to the shrinking e�ect, a
de�ned amount of the drug will be washed out automatically.

• In future, the BioLogicChip could be developed as e.g., point-of-care (POC) di-
agnostic device for the application in emergency rooms, operation rooms, or any
situation in which a rapid result is required and a fast administration of the
drug is necessary. Such a device would be developed with the advantages of low-
cost, lightweight and portability, and requires a minimum of sample preparation.
The challenge in the developing of POC systems is the integration of the blood
collection from the patient, sample pre-treatment (if necessary), analyte-speci�c
reaction, signal production, signal detection and reporting of the results. All these
di�erent components have to be compatible with each other. Especially, with the
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higher amount of individual devices integrated into one system, the compatibility
is getting extremely ambitious.

• Another strategy could be the development of the BioLogicChip as an implantable
device. In this case, the whole system has to be miniaturized for an implantation
under the skin. With such system, the blood glucose level of the patient could
be monitored continuously to make the life of diabetes patients saver and more
comfortable. If the glucose level increases, a certain amount of insulin will be
released automatically, depending on the glucose level. However, there are some
challenges to be solved. The main challenge is the miniaturization of the system.
The glucose sensor as well as the insulin sensor should have a high sensitivity
but their size should be as small as possible. Additionally, after some time, the
amount of insulin, which is integrated in the BioLogicChip will decrease and �ow
into the human`s body, as desired. Hence, it has to be re�lled. Either insulin has
to be injected into the system from outside of the body, or the whole BioLogicChip
has to be replaced. Additionally, the developed device has to be biocompatible
(a task which has not yet been solved for the last 30 years), it has to be always
reliable and may not bring harm to the human`s body.

The main part of the thesis was spent for the development and improvement of a dig-
ital adrenaline biosensor that is introduced as second concept. This biosensor is of high
interest for medical applications, in particular to support adrenal vein sampling (AVS).
People with adrenal gland tumors have to undergo the AVS procedure to diagnose pri-
mary aldosteronism, which is the most frequent cause of hypertension. Since AVS is a
technically demanding procedure in which correct cannulation of the right adrenal veins
is quite sophisticated due to their small size, adrenaline could serve as a biomarker due
to its concentration di�erence between adrenal veins (&100 nM) and peripheral blood
(.5 nM). Therefore, the sensor should be able to detect the adrenaline concentration
di�erence in adrenal blood and peripheral blood to proof the position of the catheter
and hence, to facilitate and to accelerate the medical examination. For the realization
of the adrenaline biosensor, a commercially available galvanic oxygen sensor is modi�ed
by a laccase/pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH)
bi-enzyme system to realize the substrate-recycling principle in order to amplify the
biosensor signal. In a �rst reaction step, adrenaline is oxidized by the enzyme laccase
to adrenochrome under oxygen consumption, followed by the second reaction where
adrenochrome is catalyzed by the enzyme PQQ-GDH again back to adrenaline in the
presence of glucose. Here, the oxygen consumption is the measured quantity. The
sensor has been studied in both bu�er solution as well as in Ringer`s solution and ex-
hibited that it has a high activity in a wide pH range. A lower detection limit of 1 nM
at physiological pH values (pH 7.4) and at 30 ◦C could be achieved. In addition, the
sensitivity of the adrenaline biosensor has been studied towards di�erent catecholamines
present in blood or arti�cial ones such as noradrenaline, dobutamine and dopamine.
The sensor is almost insensitive against the arti�cial dobutamine. A sensor signal at a
concentration of 10 nM and 50 nM for noradrenaline and dopamine, respectively, has
been observed. However, the detectable concentrations of noradrenaline and dopamine
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are much higher than their concentrations in adrenal venous blood and hence, they have
no in�uence on the sensor signal during medical adrenaline measurements. Finally, the
developed adrenaline biosensor has been successfully examined in blood plasma samples
spiked with adrenaline concentrations between 1 nM and 150 nM. These experiments
demonstrate that the sensor enables the detection of adrenaline at concentrations
corresponding to adrenal- and peripheral blood. Additionally, �proof-of-principle� ex-
periments of the digital adrenaline biosensor have been performed. This biosensor
is structured as two concatenated enzyme-based AND logic gates with the enzyme
laccase, which is part of the �rst AND logic gate and PQQ-GDH in combination with
the second AND logic gate. With this digital adrenaline biosensor, a rapid qualitative
analysis about an elevated or normal adrenaline concentration in the body �uids can be
given, by de�nition of a personally tailored threshold level separating the logic 0 and 1
values. With the help of the digital adrenaline biosensor, the physician can control and
correct the position of the catheter, if necessary. This would accelerate and facilitate
this complicated medical investigation. Furthermore, since AVS procedure is usually
controlled by a computer tomography scan, with a faster insertion of the catheter into
the right vein, the patient will be exposed less time to the radiation.

In a continues study, the adrenaline biosensor is further developed as miniaturized
chip-based biosensor system consisting of a platinum thin-�lm sensor chip fabricated by
means of conventional silicon- and thin-�lm technology and modi�ed with the enzyme
PQQ-GDH. With this chip-based biosensor, the bioelectrocatalytical measurement prin-
ciple for the recycling reaction of adrenaline is generated, to amplify the sensor signal.
By an applied potential of +450 mV to the working electrode vs. the Ag/AgCl reference
electrode, adrenaline will be �rst oxidized at the electrode surface to adrenochrome,
followed by the second reaction, where adrenochrome is reduced back to adrenaline,
catalyzed by the immobilized enzyme PQQ-GDH while glucose will be reduced to glu-
conolactone. The amperometric chip-based biosensor has been characterized regarding
the working pH-, temperature- and glucose-concentration optimum, respectively. Here,
a lower detection limit of 1 nM at physiological pH value of pH 7.4 and at 30 ◦C with a
glucose concentration of 20 mM could be achieved. Long-term stability of the adrenaline
biosensor has been studied over 10 days. Also the chip-based biosensor has been tested
for its sensitivity towards other catecholamines such as noradrenaline, dopamine and
dobutamine. The highest sensitivity has been observed during measurements with
adrenaline. Finally, preliminary studies in blood plasma were successfully carried out.
The sensor was able to detect the adrenaline-concentration di�erence between adrenal
blood and peripheral blood from patients su�ering from an adrenal gland tumor with
hypokalemic hypertension, which favors its application to support the AVS.

This biosensor has a high potential for the application as POC system during AVS in
the operation room to proof the correct position of the catheter. There are two possible
application methods (�elds) which can be bene�cial for the physician:

• The �rst one is the idea to further develop this chip-based biosensor as a kind of
smart adrenaline hand-held device (as known from a glucose biosensor). Thus,
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it would be possible to measure adrenalin concentrations location-independently.
That means, directly, next to the patient, the blood drained during AVS can
be veri�ed regarding its adrenaline concentration and depending on the output
signal, the physician has the chance to correct the catheter, if necessary, directly
during the medical examination. This has the advantage that the patient has to
undergo only once this painful AVS procedure, because the physician can be sure
that the �nally collected blood is from the desired adrenal vein.

• The second idea is the integration of the digital adrenaline biosensor into the
catheter, which is used to diagnose adrenal gland tumors during AVS. Further-
more, the biosensor could be coupled with an indicator lamp, �xed on the catheter.
Depending on the catheter position and hence, depending on the adrenaline con-
centration, the lamp starts to �ash. If there is a low adrenaline concentration
corresponding to peripheral blood, the light �ashes e.g., �red� indicating that the
physician has to additionally correct the position of the catheter, until the light
is �green�. The latter corresponds to a high andrenaline concentration in adrenal
glands. In this case, the adrenaline biosensor has to be further miniaturized be-
cause the diameter of such a catheter is less than 1 cm. A big challenge is here
that the biosensor has to be biocompatible because it has direct contact to the
patient`s blood in the body. Basic prerequisite is that it must not lead to health
impairment of the patient.

For both ideas, the biosensor has to be distinctly miniaturized. All three electrodes,
such as reference-, counter- and working electrode, should be integrated onto one chip
to make the biosensor easier to handle. As a consequence, this miniaturization can
have an in�uence on the biosensor`s sensitivity and should be compensated by e.g.,
a higher loading of the enzyme PQQ-GDH onto the sensor surface to reach a higher
activity. Also, in this thesis, measurements were performed in blood plasma. The aim
is, however, to measure adrenaline without pre-treatment of the blood. The biosensor`s
behavior can be di�erent during measurements in whole blood and has to be studied
�rst. In general, the developed adrenaline biosensor has to undergo clinical studies to
proof the functionality of the device to di�erent situations with di�erent patients a num-
ber of times. Additionally, for medical devices, approval regulations (such as Food and
Drug Administration regulations or European Medicines Agency) have to be considered.

After demonstrating biologic gates based on amperometric biosensors, enzyme-based
logic gates based on �eld-e�ect EIS (electrolyte-insulator-semiconductor) biosensors
have been presented. A novel biosensor has been developed for the detection of acetoin
during fermentation processes (e.g., fermentation of beer or wine). Since acetoin is pale
to yellow and is indicated by a buttery-like taste and a pleasant yogurt-creamy order, it
can in�uence the taste and hence, the quality of alcoholic beverages. The detection of
acetoin during fermentation processes could monitor and control the quality of alcoholic
beverages due to its involvement in the wine bouquet or its in�uence in the beer �avor.
The introduced �eld-e�ect EIS biosensor consists of a layer structure of Al/p-

Si/SiO2/Ta2O5 and has been modi�ed by the enzyme acetoin reductase (butane-2,3-diol
dehydrogenase from Bacillus clausii DSM 8716T ) for the catalytic reaction of racemic
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acetoin to (R,R)-2,3-butanediol and meso-butanediol, respectively. This reaction re-
sults in a pH change due to the H+-ion consumption. The biosensor exhibits a linear
concentration behavior at acetoin concentrations between 3 mM and 90 mM. Two
di�erent immobilization strategies have been compared, namely adsorptive binding
and cross-linking (by forming cross-linkages between the enzyme molecules using glu-
taraldehyde). The highest sensitivity has been reached with the biosensors modi�ed
by means of cross-linking method. A pH optimum at pH 7.1 has been obtained. The
long-term stability of this biosensor has been investigated over �ve days. Here, the
developed biosensor showed a long-term stability of around two days. Additionally,
with this biosensor it was possible to detect spiked acetoin concentrations in real white
wine samples.
Acetoin has a broad usage and is mainly found in food and drinks to enhance the

�avor of the products such as breakfast cereals, cheese, chewing gum, fats and oils,
puddings or sweet sauces. Therefore, the fast detection of acetoin by the developed
biosensor could � besides the fermentation process � also facilitate the monitoring of
the production of di�erent food products, to ful�ll the requirements as independent
control system. The following tasks, however, have to be addressed �rst:

• Since the developed chip-based biosensor shows a long-term stability of only two
days, the enzyme`s activity has to be further stabilized to apply the sensor more
often (e.g., one week).

• This biosensor should be examined regarding its cross-sensitivity towards diacetyl
or acethylbutanediol, two compounds that are also present during fermentation
processes.

• Furthermore, since acetoin and diacetyl attribute to the beer- and wine �avor, the
biosensor should be further developed to realize a digital acetoin/diacetyl biosen-
sor by applying Boolean operations. As a variant, a more complex logic gate has
to be developed by immobilization of a second enzyme onto the biosensor surface
for the detection of diacetyl. Depending on the desired buttery-like taste of the
certain alcoholic beverage, a threshold value has to be de�ned (below this thresh-
old value, a logic 0 is generated, and above this value, a logic 1 is given). Thus,
a �YES/NO� answer should be delivered about the status of the fermentation
process.

In summary, several concepts of biologic gates integrated on di�erent transducers for
a rapid label-free detection of certain biomarkers were demonstrated in this thesis. In
contrast to the most developments on molecular logic gates discussed in literature �
which are mostly biomolecular logic gates based on optical output signals such as e.g.,
�uorescence � the presented concepts take bene�t from electrical output signals. This
has the advantage that multiple logic devices can be implemented together in the same
analyte. The application of electronic transducers instead of optical signal-reading
devices is highly promising to move from �proof-of-concept� studies to �nally ready-
to-use logic devices with direct electrical output. Furthermore, more complex logic
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gate devices can be build up. A gate-to-gate communication can be realized without
in�uencing or changing the analyte solution. Furthermore, a desired logic gate can be
electrochemically and independently addressed and it is possible to switch between the
�ON� and �OFF� state of the single logic gate within the network.

For the future, the combination of biomolecular logic principles with electronic trans-
ducers should be further extended, to enable the establishment of new multifunctional
sensor- and actuator principles. An example of the functionality of such biosensor plat-
form is exemplarily demonstrated in Fig. 9.1.

Fig. 9.1: Schematic of a biosensor platform in combination with actuators and logically triggered
drug-release system(s).

One of the advantages of biomolecular logic systems with electronic transducers is
their combination with stimuli-responsive materials, like hydrogels; therewith, an actu-
ator function can be triggered depending on the output signal of the logical operation.
With those a biosensor chips, an array of electrical and/or light-addressable chemical or
biochemical sensors modi�ed with corresponding biomolecules, such as enzymes or anti-
bodies, can detect several analytes (e.g., biomarkers) as well as selected reactions (e.g.,
enzyme cascades), and with the help of Boolean operations a logic output signal can
be generated. The read-out bio-/chemical signals correspond to mathematic algorithms
consisting of �0� and �1�. For a possible application in medicine, the resulting bit pat-
tern correlates with a certain disease (disease 1: 0110; disease 2: 1010). In this case,
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with this biosensor chip, in combination with logical principles, a speci�c diagnose with
high reliability can be provided: for example, di�erent biomarkers indicating cancer
(e.g., pancreas cancer, breast cancer) can be determined. Furthermore, with the same
system, the required medication should be released (e.g., Taxol or Vincristine). Hence,
a new generation of biosensors in combination with actuators together with logically
triggered drug-release systems could be developed, to result in closed-loop intelligent
sense/act/treat biochips. These logic biochips are considered as highly attractive as
new generation of digital biosensors for the application in personalized medicine and
theranostics.
Nonetheless, to obtain these goals, there are several remaining challenges which have

to be considered and �nally solved:

• With the development of more complex biomolecular logic gates in combination
with electronic transducers, the chemical cross-reactivity could be an issue for sys-
tems that are more complex than the ones described herein as �proof-of-principle�
examples. Therefore, the used biomolecules and bioreceptors have to be selected
carefully to avoid undesired sensor signals.

• Due to the small size of the desired biosensor platform, each individual sensor
has to be miniaturized, which can in�uence its sensitivity behavior as well as its
stability in operation.

The further development of such a biosensor platform to a programmable diagnostic
computer is conceivable in the future. The device might be, for example, implanted into
the human`s body, consisting of an integrated sensor technology which is able to respond
automatically to metabolic variations. Furthermore, it could diagnose symptoms and
release a prompt and certain amount of a drug for the treatment of the patient with the
integrated actuator function. Such diagnostic device could be equipped with speci�c
bioreceptor arrangements corresponding to the biomarkers for the diagnosis of diseases,
which are typical for certain risk patients (with e.g., cardiovascular dysfunction due to
living conditions such as smoking, obesity, or family burden). The integrated computer
has to be programmed depending of the used bioreceptor/biomarker combination to
select the measurement principle (such as amperometry or potentiometry) with de�ned
threshold values dependent on the patient conditions. This intelligent biocomputer is
able to diagnose and distinguish between e.g., a heart failure or sporty overexertion,
dizziness or brain tumor etc. In addition, the biosystem should be easily adapted
to the patient in a personalized way by choosing the right combination of biorecep-
tors/biomarkers. For such personalized biocomputing systems, attention should be paid
to e.g., pre-existing condition and family burden: both, patient monitoring/treatment in
a critical medical condition and a timely early diagnosis, might be possible. The whole
humanity would bene�t from such an essential step in the development of a medical
expert system in a form of an implantable biocomuter.
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In der vorliegenden Arbeit wurden verschiedene Konzepte mit biologischen Schaltungen,
die auf elektronischen Transducern integriert sind, entwickelt. Damit können neuartige
digitale Biosensoren aufgebaut werden, die in Abhängigkeit der Eingangssignale ein
elektrisches Ausgangssignal generieren.

Als erstes Konzept wird ein "BioLogicChip" vorgestellt, der die "Sense-act-treat"-
Funktion auf einem Chip kombiniert. Mit diesem BioLogicChip soll es möglich sein,
eine bestimmte Krankheit abhängig von spezi�schen Biomarkern zu diagnostizieren.
Gleichzeitig soll mit diesem Chip eine bestimme Menge des benötigten Wirksto�s dem
Patienten verabreicht werden können. In dieser Arbeit wurde das Konzept exemplar-
isch als "künstliche Pankreas" dargestellt, bei der die Glukosekonzentration mit Hilfe
eines Chip-basierten Biosensors bestimmt wird. Der Glukosesensor wurde als logische
AND-Schaltung konzipiert, mit Glukose und Sauersto� als Eingangssignale. Nur wenn
beide Eingangssignale gleichzeitig vorhanden sind, kommt es zur Reaktion und ein
Strom wird generiert. Dieser Strom kann dann zur Adressierung des impedimetrischen
Sensors genutzt werden, auf dem ein temperaturabhängiges Hydrogel immobilisiert
ist. Dieses Hydrogel dient, auf Grund seiner Quell- und Schrumpf-Eigenschaft, als
Aktuator und kann somit zwischen "AUF" und "ZU" schalten. Damit kann eine bes-
timmte Menge eines Wirksto�s (z.B. Insulin) freigesetzt werden. Um das Hydrogel auf
seine Aktuatorfunktion zu prüfen, wurde die Impedanz bei verschiedenen Tempera-
turen (28 ◦C - 42 ◦C) untersucht. Unterhalb der Phasenübergangstemperatur ist der
Impedanzwert konstant, was dem aufgequollenen Zustand des Hydrogels entspricht. Bei
höheren Temperaturen (34 ◦C) steigt die Impedanz an und entspricht dem kollabierten
Zustand. Im Gegensatz zur konventionellen "künstlichen Pankreas", wird bei dem
BioLogicChip die Freisetzung des Wirksto�s durch den Aktuator zusätzlich sensorisch
überprüft. Hierbei dient ein Chip-basierter IrxOy-Sensor zur Insulinmessung im nano-
bis mikromolaren Konzentrationsbereich.

Als zweites Konzept wurde ein digitaler Adrenalinbiosensor entwickelt, der die Neben-
nierenvenenkatheteruntersuchung (AVS) unterstützen soll. Mit diesem Sensor sollen die
Adrenalinkonzentrationsunterschiede zwischen Nebennierenblut und peripherem Blut
gemessen werden, um so die Position des Katheters zu überprüfen. Zur Entwicklung
des Adrenalinbiosensors wurde eine 2-Enzymmembran (bestehend aus Laccase und
Pyrroloquinolinchinon-abhängiger Glukose-Dehydrogenase (PQQ-GDH)) auf einem
Sauersto�sensor �xiert. Damit �ndet das Substraterecycling-Prinzip Anwendung,
wodurch das Sensorsignal verstärkt wird. Im ersten Reaktionsschritt wird Adrenalin
mit Hilfe der Laccase unter Sauersto�verbrauch zu Adrenochrom oxidiert. Anschlieÿend
wird das entstandene Adrenochrom wieder über die PQQ-GDH zurück zu Adrenalin
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reduziert, bei gleichzeitiger Oxidation von Glukose. Der verbrauchte Sauersto� wird
mittels O2-Sensor gemessen und ist proportional zur Adrenalinkonzentration. Mit dem
Adrenalinsensor konnte in Pu�er- und Ringerlösung eine untere Nachweisgrenze von
1 nM bei pH 7,4 und 30 ◦C erreicht werden. Auÿerdem wurde die Queremp�ndlichkeit
gegenüber anderen Katecholaminen (Noradrenalin, Dopamin, Dobutamin) überprüft.
Bei den natürlich vorkommenden Katecholaminen konnte ein Sensorsignal erst bei
10 nM Noradrenalin und 50 nM Dopamin erfasst werden; gegenüber künstlichem Dobu-
tamin war der Sensor unemp�ndlich. Zusätzlich konnten gespikte Adrenalinproben
(1 nM - 150 nM) im Blutplasma untersucht werden. Die Experimente zeigten, dass
Konzentrationen im Nebennierenblut und peripheren Blut detektiert werden können.
Auÿerdem wurden mit dem digitalen Adrenalinsensor "Proof-of-principle"-Experimente
aus zwei aufeinanderfolgenden logischen AND-Schaltungen durchgeführt (Laccase als
erste logische AND-Schaltung; PQQ-GDH als zweite logische AND-Schaltung). Mit
diesem digitalen Adrenalinbiosensor kann eine schnelle, qualitative Analyse über die
Adrenalinkonzentration im Blut erfolgen; der Arzt kann die Position des Katheters
überprüfen und gegebenenfalls korrigieren.

Im weiteren Verlauf wurde der Adrenalinbiosensor hinsichtlich seiner Miniaturisier-
barkeit weiterentwickelt. Dazu wurde ein Chip-basierter Platinsensor mit dem Enzym
PQQ-GDH modi�ziert, um das bioelektrokatalytische Messprinzip zu ermöglichen,
um so Adrenalin zu recyclen und das Sensorsignal zu verstärken. Der Chip-basierte
Adrenalinbiosensor wurde bezüglich pH-, Temperatur- und Glukose-Optimum charak-
terisiert. Dabei konnte eine untere Nachweisgrenze von 1 nM bei einem physiologischen
pH-Wert von pH 7,4, bei 30 ◦C und bei einer Glukosekonzentration von 20 mM erre-
icht werden. Darüber hinaus wurde die Langzeitstabilität des Biosensors über zehn
Tage untersucht. Zusätzlich wurde die Sensitivität des Chip-basierten Biosensors
gegenüber verschiedener Katecholaminen (Noradrenalin, Dopamin und Dobutamine)
validiert. Die höchste Emp�ndlichkeit wurde bei Messungen mit Adrenalin erreicht.
Es konnten erfolgreich erste Messungen in Blutplasma durchgeführt werden. Mit dem
entwickelten Adrenalinbiosensor konnte auÿerdem die Konzentrationsdi�erenz zwischen
Nebennierenblut und peripherem Blut gemessen werden.

Neben logischen Schaltungen mit amperometrischen Sensoren wurden auch logische
Schaltungen mit Felde�ekt-Sensoren am Beispiel eines Acetoinbiosensors entwickelt.
Dieser soll für die Bestimmung verschiedener Acetoinkonzentrationen (z.B. in der Fer-
mentation von Bier und Wein) eingesetzt werden. Der Felde�ekt-Sensor wurde mit Hilfe
des Enzyms Acetoinreduktase modi�ziert, wodurch razemisches Acetoin zu (R,R)-2,3-
Butandiol und Meso-Butandiol katalytisch umgesetzt wird. Bei dieser Reaktion wer-
den H+-Ionen verbraucht. Der entwickelte Sensor zeigt ein lineares Verhalten bei Ace-
toinkonzentrationen zwischen 3 mM und 90 mM. Die höchste Sensitivität des Acetoin-
biosensors konnte bei pH 7,1 erreicht werden. Es wurde die Langzeitstabilität über fünf
Tage überprüft. Darüber hinaus wurden gespikte Acetoinkonzentrationen in Weiÿwein
gemessen. Zukünftig könnte der Sensor als digitaler Acetoin/Diacecyl-Biosensor weit-
erentwickelt werden, da beide Substanzen zum Geschmack von Bier/Wein beitragen.
Boole`sche JA/NEIN-Aussagen würden so den Status der Fermentation abbilden.
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