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Abstract

In this work I study the statistical properties of the Gaussian symplectic ensemble
(GSE) by means of microwave experiments on quantum graphs mimicking spin-1/2
systems. Additionally, the transport property of three terminal microwave graphs
with orthogonal, unitary and symplectic symmetry is investigated.

In the first part of this thesis, following the spirit of the idea proposed by Joyner
et al. we construct microwave quantum graphs to realize a antiunitary symmetry T
that squares to minus one, T 2 = −1. This symmetry induces degenerate eigenval-
ues, which are called Kramers doublets. If the classical dynamics of the system is
chaotic, statistical features of the spectrum can be well described by the correspond-
ing statistics of random matrix Gaussian symplectic ensemble. Indeed, Kramers
doublets are observed in reflection spectrum as expected from the scattering prop-
erties of a symplectic graph. The level spacing distribution of these doublets is com-
pared with the corresponding random matrix predictions. Since the level spacing
distribution accounts for the short range eigenvalue correlation, to study the spec-
tral long range correlation the spectral two point correlation function and its Fourier
transform, the spectral form factor are analyzed. In order to further examine the
fluctuation of the eigenvalues smoothed quantities such as number variance and
spectral rigidity are discussed. The graphs used in the experiment consist of two
subgraphs coupled via one pair of connecting bonds. Theoretical study shows that
the level spacing distribution for graphs with one pair of connecting bonds deviates
by few percents from the random matrix prediction. This difference is too small to
be resolved in the experiment. The one pair of bonds approximation is introduced
to better understand the symplectic graph we used in the experiment. This model is
extended to address more general cases of the symplectic graph. Finally, the param-
eter dependent dynamical transition of the statistical features of the spectrum from
GSE via Gaussian unitary ensemble (GUE) to Gaussian orthogonal ensemble (GOE)
is studied.

In the second part of this thesis, the collaborative work with Dr. A. M. Martínez-
Argüello from Mexico is briefly presented. A three terminal setup is proposed to
study the universal transport properties of systems with orthogonal, unitary and
symplectic symmetry. The probability distribution for a transport related quantity is
predicted analytically and microwave graphs are constructed to test this prediction.
The absorption within the system is modeled by effective Hamiltonian approach.
The parameters of the absorption and coupling are extracted from the experimental
autocorrelation function. This allowed a comparison between experiment and the-
ory without any free parameters. Finally, a quantitative good agreement between
experiment and theory was found for all three symmetry classes.
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Zusammenfassung

In dieser Arbeit untersuche ich das Gaußsche symplektische Ensemble (GSE) in
einem Mikrowellen-Netzwerk, im folgenden Graph genannt, mit einer Symmetrie,
die einen Spin-1/2 simuliert. Im weiteren werden die Transporteigenschaften von
Mikrowellengraphen mit drei offenen Enden für orthogonale, unitäre und symplek-
tische Symmetrie untersucht.

Im ersten Teil der Arbeit konstruieren wir, einer Idee von Joyner et al. folgend,
Mikrowellengraphen mit einer antinuitären Symmetrie T , also mit der Eigenschaft
T 2 = −1. In einem System mit einer solchen Symmetrie erwartet man ein Eigen-
wertspektrum bestehend aus Kramersdupletts. Wenn die klassische Dynamik des
Systems chaotisch ist, sollten die statistischen Eigenschaften des Spektrums durch
die des Gaußschen symplektischen Zufallsmatrix-Ensembles beschrieben werden.
In der Tat wurden Klamers-Dupletts im Reflexionsspektrum gefunden, wie man
sie von den Streueigenschaften eines symplektischen Graphen erwartet. Die Ab-
standsverteilung der Dupletts wird mit der entsprechenden Zufallsmatrix-Vorhersage
verglichen. Da die Abstandsverteilungen durch die kurz-reichweitigen Eigenwert-
Korrelationen bestimmt werden, wurde für die langreichweitigen Korrelationen auch
die spektrale Zweipunktkorrelation und ihre Fouriertransformation, der spektrale
Formfaktor analysiert. Weiter wurden auch geglättete Größen wie die Varianz der
Eigenwerte in einem vorgegebene Intervall, Varianz der Level-Anzahl (number vari-
ance) und die spektrale Rigidität (spectral rigidity) untersucht. Die in den Exper-
imenten verwendeten Graphen bestehen aus zwei Untergraphen, die durch zwei
Verbindungen miteinander gekoppelt sind. Theoretische Untersuchungen zeigten,
dass die Abstandsverteilungen bei Kopplung mit nur zwei Bindungen um einige
Prozent von der erwarteten Zufallsmatrixverteilung abweichen, zu klein, um sie im
Experiment aufzulösen. Weiter wurde ein parameterabhängiger Übergang von GSE
über das Gaußsche unitären Ensemble (GUE) zum Gaußsche orthogonalen Ensem-
ble (GOE) untersucht.

Im zweiten Teil der Arbeit wurden in Zusammenarbeit mit Dr. A. M. Martínez-
Argüello aus Mexiko, Mikrowellengraphen mit drei offenen Enden mit wahlweise
orthogonaler, unitäre und symplektischer Symmetrie untersucht. Eine transportab-
hängige Verteilungsfunktion wurde analytisch berechnet und in Mikrowellengraphen
getestet. Benötigte Absorptions- und Kopplungsparameter wurden experimentell
aus der spektralen Autokorrelationsfunktion bestimmt. Das ermöglichte eine Ver-
gleich zwischen Experiment und Theorie ohne freie Parameter. Es wurde eine quan-
titative Übereinstimmung zwischen Experiment und Theorie für alle drei Ensembles
gefunden.





ix

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1

2 Review of basic theory 3
2.1 Time reversal invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Without spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Time reversal symmetry with spin-1/2 interaction . . . . . . . . 5
2.1.3 Kramers degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Structure of H matrix for T2 = −1 system . . . . . . . . . . . . . 7
2.1.5 System without time reversal invariant . . . . . . . . . . . . . . 9

2.2 Gaussian ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 An idea to realize Gaussian symplectic ensemble . . . . . . . . . . . . . 12

2.3.1 Universality in subspectra . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Quantum graph with GSE statistics . . . . . . . . . . . . . . . . 13

3 Microwave realization of Gaussian symplectic ensemble 19
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Brief theoretical overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Quantum graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Symplectic quantum graph . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Scattering properties of GSE graphs . . . . . . . . . . . . . . . . 26
3.2.4 Single pair of bonds approximation . . . . . . . . . . . . . . . . 28

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Transmission spectra . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Reflection spectra and resonance extraction . . . . . . . . . . . . 36

3.5 Spectral fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Level spacing distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Spectral correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.1 Spectral two-point correlation function R2(L) . . . . . . . . . . 49
3.7.2 Spectral form factor K(τ) . . . . . . . . . . . . . . . . . . . . . . 50
3.7.3 Number variance Σ2(L) and spectral rigidity ∆3(L) . . . . . . . 51

3.8 Dynamical transition from GSE via GUE to GOE . . . . . . . . . . . . . 54

4 Scattering experiments on graphs with orthogonal, unitary and symplectic
symmetry 59
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



x

4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Summary 69

A Appendix A 71

B Acknowledgments 79

C Wissenschaftlicher Werdegang 81



1

Introduction

The statistical study of spectra of quantum systems is almost as old as quantum
mechanics (since 1900) itself [1]. Random matrix theory (RMT) has proven to be
an extremely powerful tool to describe fluctuation properties spectra of chaotic sys-
tems [1–4]. Random matrix was initiated by Wigner [5], developed by Dyson and
Mehta in the 1950s and 60s to describe the statistical properties of the spectra of
complex nuclei [6], and later extended by several others [7]. For systems with time
reversal symmetry (TRS) and no half-integer spin in particular there is an abundant
number of studies, theoretical, numerical and experimental, showing that the uni-
versal spectral properties are perfectly well reproduced by the corresponding prop-
erties of the Gaussian orthogonal random matrix ensemble (GOE) (see Ref. [8] for a
review). This is the essence of the famous Bohigas-Giannoni-Schmit (BGS) conjec-
ture [1] which has been proved to be true by many theoretical, numerical and experi-
mental studies. For systems with TRS and half-integer spin the Gaussian symplectic
ensemble (GSE) holds instead, and for system without TRS the Gaussian unitary
ensemble (GUE). There are few number of experimental studies of the spectra of
systems absence of TRS showing GUE statistics [9–12] including our work [13] pre-
sented in this thesis. For the GSE, to our knowledge, there are very few studies
reported GSE statistics. Alt et al. [14] were able to determine the spectral form factor
for the GSE case by taking only every second eigenvalue of a GOE spectrum of the
microwave hyperbola billiard. The RMT theoretical basis of this method was dis-
cussed in Chapter 10.6 and Chapter 10.7 of Mehta’s monograph [2]. Recently Kuem-
meth et al. reported that the integrated level spacing distribution of the spectra of
Au nanoparticles followed Wigner GSE statistics [11]. Regarding many respects of
the GSE the experimental situation is still statistically insufficient.

When it comes to study the level fluctuation of a GSE system, it has been taken as
essential that one has to deal with a system of a real spin-1/2 particle (system of odd
number of particles with half-integer spin). In fact, the GUE statistics is observed
in systems without breaking TRS [15, 16] including experimental studies [17–19].
Moreover, in Ref. [20] the possibility to realize the GOE statistics in billiards with
a magnetic field, which breaks the TRS, if there an additional reflection symmetry
exists. This may invoke one to think the essence of the problem. Following Dyson’s
threefold way [21], to observe GSE statistics one needs only an antiunitary sym-
metry T that squares to minus one, T 2 = −1. This is sufficient to guarantee GSE
statistics if the system is chaotic [22]. In addition, it leads to Kramers degeneracy
in the spectrum. To realize such a symmetry without considering spin one needs
special nonconventional symmetry as mentioned above to realize GUE and GOE
statistics. Recently, a system with such a symmetry is proposed by Joyner et al. [23]
in the form of a quantum Graph. Quantum graphs were introduced by Kottos and
Smilansky [24] to study various aspects of quantum chaos. Throughout this thesis
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we will discuss our experimental results obtained from microwave quantum graphs
and compare with RMT predictions.

In chapter 3 we start to explain the theoretical basses to the experiment and then
present our experimental results. Here we have analyzed the level spacing distri-
bution of our microwave symplectic quantum graph which was constructed based
on the main idea suggested by Ref. [23]. Then to examine the long range correlation
of experimental eigenvalues we present results for quantities like spectral two point
correlation function, spectral form factor, number variance and spectral rigidity. At
the end, we will shortly present our observation of the dynamic transition of the
spectral fluctuation from Gaussian symplectic ensemble (GSE) via Gaussian unitary
ensemble (GUE) to Gaussian orthogonal ensemble (GOE).

In chapter 4 we briefly discuss our collaborative work with Dr. A. M. Martínez-
Argüello from Mexico. At the beginning of this part we will propose a three termi-
nal scattering device and make analytical prediction for a transport related quantity.
Then we will talk about the experimental test of this prediction by means of mi-
crowave graphs with orthogonal, unitary and symplectic symmetry. At the end we
will compare briefly the experimental results with corresponding theoretical predic-
tions and discuss about the treatment of absorption and imperfect coupling.
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Review of basic theory

2.1 Time reversal invariance

Since this Chapter is mainly a review based one previous works [4, 8, 23], we will
keep some notations to give respect for the original works.

In order to study the invariance properties of a physical system we will look at
the Hamiltonian of that system. One may write the Schrödinger equation for the
system of interest as

ih̄ψ̇(x, t) = Hψ(x, t) (2.1)

A system is called invariant under time reversal operation if two given solutions
of the Schrödinger Eq. (2.1) ψ(x, t) and ψ′(x, t′) with t′ = −t are uniquely related
to each other [4]. The general form of the Hamiltonian of a time reversal invariant
system strongly depends on whether the system is involved in spin-1/2 interaction.

2.1.1 Without spin

In the case of a system of a spinless particle with time reversal invariance, the Hamil-
tonian can be written in the following form

H(x, p) =
p2

2m
+ V(x), (2.2)

where the V(x) is a real potential, i.e., V(x) = V∗(x). The first term is proportional
to the square of the momentum operator p, therefore the Hamiltonian is real. In the
position representation the conventional reversal is

t→ −t, x→ x, p→ −p, (2.3)
ψ(x)→ ψ∗(x) = Kψ(x). (2.4)

where K is the complex conjugate operator, it means taking complex conjugate for
all quantities following after it. If we just apply t→ −t to Eq. (2.1), we will have

− ih̄ψ̇(x,−t) = Hψ(x,−t) (2.5)

If we simply apply K on both sides of above equation

K(−ih̄ψ̇(x,−t)) = K(Hψ(x,−t)) (2.6)
ih̄Kψ̇(x,−t) = HKψ(x,−t) (2.7)

ih̄ψ̇′(x, t) = Hψ′(x, t) (2.8)
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where we employed KH = H for the real Hamiltonian. Therefore, if ψ(x, t) is one
solution for the Schrödinger Eq. (2.1), then ψ′(x, t) = Kψ(x,−t) is also a solution.

In position representation, the K operator leaves the position intact, i.e., K |x〉 =
|x〉 and any given eigenstate ψ of the system can be written as

|ψ〉 = ∑
x

ψx |x〉 , (2.9)

and when K acts on |ψ〉
K |ψ〉 = ∑

x
ψ∗x |x〉 (2.10)

Of course, to be general, we can define the complex conjugate operator K
′

with re-
spect to any arbitrary representation |n〉

K
′ |ψ〉 = K

′
∑
n

ψn |n〉 = ∑
n

ψ∗n |n〉 (2.11)

K can always be understood in terms of K
′

with

K = UK
′

(2.12)

where U is a unitary matrix and responsible for the transformation from one basis
to the other.

Conventionally, the time reversal operator is denoted with T, and for a system of
spinless particles we take

T = K (2.13)

This operator T is defined by Eqs. (2.3), (2.4) to change the sign of the momenta (and
the spin, if there is any) of all particles but to leave the positions unchanged. Since
the time reversal operator T is an antiunitary operator, it might be appropriate to
briefly review its properties. Firstly, it preserves the norm

|〈Tψ|Tφ〉|2 = |〈ψ|φ〉|2 ; (2.14)

Secondly, from its definition, it is a anti-linear operator

T(aψ + bφ) = a∗Tψ + b∗Tφ. (2.15)

These two important properties of T, makes it antiunitary as

〈Tψ|Tφ〉 = 〈ψ|φ〉∗ = 〈φ|ψ〉 . (2.16)

which means that the transformation by time reversal operator T on the whole sys-
tem transforms the overlap of two wave functions of the system into its complex
conjugate.

For a system without half-integer spin, T square is unity

T2 = 1 (2.17)

which means that T = T−1. Invariant property of the system under time reversal T
implies that T commutes with the Hamiltonian H

[H, T] = 0 (2.18)
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The Hamiltonian of a system that has an operator with the above two properties
given by Eq. (2.17) and Eq. (2.18) can always be real and this can be achieved without
diagonalization [4]. If we just take some T invariant basis to construct the H matrix

Hµν =
〈
ψµ|Hψν

〉
(2.19)

=
〈

Tψµ|THψν

〉∗ (2.20)

=
〈
ψµ|THT2ψν

〉∗
(2.21)

=
〈
ψµ|THTψν

〉∗ (2.22)
= H∗µν. (2.23)

As a matter of fact, the Hamiltonian of a time reversal invariant system without spin-
1/2 interactions can always be described by a real symmetric matrix. An orthogo-
nal transformation transforms this real H matrix to another real H′ matrix without
changing its eigenvalues and Hermitian property

H′ = OHOT (2.24)

where O is an orthogonal matrix, OOT = 1.

2.1.2 Time reversal symmetry with spin-1/2 interaction

In a previous section, we have seen that the time reversal operator T for a system
of a spinless particle is simply the complex conjugate operator K, because the corre-
sponding system Hamiltonian given by Eq. (2.2) is real.

Since now we are going to study the T operator for a system of spin-1/2 particle,
we shall start with the typical spin Hamiltonian

H = H0 + a~L~S (2.25)

where~L =~r× 1
i
~∇ is the orbital angular momentum operator and~S = h̄

2~σ is the spin
angular momentum operator with Pauli spin matrices~σ = (σx, σy, σz), and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.26)

These matrices obey the commutation relations

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy (2.27)

Due to the second term in Eq. (2.25), the Hamiltonian is no longer real. Therefore,
T cannot just simply act as the complex conjugate operator as it did for systems of
spinless particles.

Because the time reversal operator flips the sign of a spin, we have

TσxT−1 = −σx, TσyT−1 = −σy, TσzT−1 = −σz (2.28)

and

UKσxKU−1 = −σx, UKσyKU−1 = −σy, UKσzKU−1 = −σz (2.29)
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where U is a unitary matrix. We know that only the Pauli spin matrix σy is complex,
thus

KσxK = −σx, KσyK = σy, KσzK = −σz (2.30)

and now we have specific requirements for the unitary matrix U in (2.29) as

UσxU−1 = −σx, (2.31)

UσyU−1 = σy, (2.32)

UσzU−1 = −σz. (2.33)

We can construct this U matrix in terms of Pauli spin matrices,

U = a0 I + a1σx + a2σy + a3σz, (2.34)

where I is the 2× 2 unit matrix and a0, a1, a2 and a3 are arbitrary coefficients. The
conditions given by Eqs. (2.31), (2.32) and (2.33) fix a0 = 0, a1 = 0, a3 = 0, while a2
remains unrestricted. Therefore, U has the form

U = a2σy. (2.35)

Unitarity UU† = 1 imposes a2 to have unit modulus and it is possible to set a2 = i,
so that U for spin-1/2 particles reads

U =

(
0 1
−1 0

)
. (2.36)

At the end, the conventional time reversal operator for a system of spin-1/2 particles
will take the form

T = UK = iσyK = ei π
2 σy K. (2.37)

We have already seen that if we flip twice the time arrow for a spinless time reversal
invariant (TRI for short) system, everything should go back to itself, as shown by
Eq. (2.17). Due to the spin-1/2 interaction in TRI system, the T operator has the
unique form given in Eq. (2.37) and if we flip the time arrow two times,

T2 = iσyKiσyK (2.38)

=

(
−1 0
0 −1

)
(2.39)

= −I (2.40)

For the wave function |ψ〉 of spin-1/2 system one gets

T2 |ψ〉 = − |ψ〉 , (2.41)

thus applying T twice changes the sign. This unique feature of T for a spin-1/2 TRI
system might be understood as a rotation by 2π. If we define a rotation operator as

Rz(θ) = exp(−iSzθ/h̄) (2.42)

= exp(−iσz
θ

2
) (2.43)

= cos(
θ

2
)− iσzsin(

θ

2
) (2.44)
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then for θ = 2π

Rz(2π) = cos(
2π

2
)− iσzsin(

2π

2
) (2.45)

= cos(π) (2.46)
= −1. (2.47)

For a spin-1/2 system, changing the sign of a wave function by 2π rotation is equiv-
alent to applying T two times.

2.1.3 Kramers degeneracy

Whenever the system has a time reversal symmetry (TRS) the full Hamiltonian al-
ways commutes with T

[H, T] = 0, (2.48)

it means, in other words, if |ψ〉 is an eigenfunction of H with corresponding eigen-
value E, then T |ψ〉 is also an eigenfunction to the same eigenvalue E. This is true
regardless of whether the system does or does not have spin-1/2 interaction. How-
ever, by employing T2 = +1 one can find time reversal invariant basis vectors which
obey

|ψ〉 = T |ψ〉 . (2.49)

In contrast, in a system with antiunitary symmetry T2 = −1, the eigenfunctions |ψ〉
and T |ψ〉 are always orthogonal to each other,

〈ψ|Tψ〉 = 〈Tψ|TTψ〉∗ (2.50)
= − 〈Tψ|ψ〉∗ (2.51)
= − 〈ψ|Tψ〉 (2.52)
= 0. (2.53)

Thus, it is easy to see that each eigenvalue of H corresponds to two linearly inde-
pendent eigenfunctions |ψ〉 and T |ψ〉, in other words the Hamiltonian H has doubly
degenerate eigenvalues. This is the well known Kramers degeneracy.

2.1.4 Structure of H matrix for T2 = −1 system

In the previous sections we have seen that a Hamiltonian matrix is real for a system
with TRI and without spin-1/2 interaction, and is complex in absence of TRI. Here,
we will look at the elements of H matrix of a system with T2 = −1. When it comes to
such system, T is defined by multiplying complex conjugate operator K by iσy (see
Eq. (2.37)) instead of just by K itself, as for systems with TRS T2 = +1. Thus, it is
convenient to use the quaternion τ expressed in terms of the Pauli spin matrices as

τ = iσ (2.54)

with components

τx =

(
0 i
i 0

)
, τy =

(
0 1
−1 0

)
, τz =

(
i 0
0 −i

)
(2.55)

each of them squares minus one,

τ2
x = τ2

y = τ2
z = −1, (2.56)
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and any two of them are anti-commutative to each other,

{τx, τy} = 0, {τy, τz} = 0, {τz, τx} = 0, (2.57)

where {A, B} = AB + BA is the anti-commutation relation and all quaternion ma-
trices commute with themselves

[τi, τi] = 0, where i = x, y, z (2.58)

Now by using the quaternion τ instead of σ, the full system Hamiltonian of TRI
system with spin-1/2 particles given by Eq. (2.25) can be written in nicer form,

H = H0 + Hτ

= H0 + Hxτx + Hyτy + Hzτz,
(2.59)

here H0 is real operator and due to the cancellation of the complex number i−1 in the
spin-orbit Hamiltonian term in Eq. (2.25) by replacing the Pauli operator σ with the
quaternion one τ, operators Hx, Hy, Hz are real as well. If we utilize the quaternion
operator τ, the time reversal operator for spin-1/2 system can be rewritten as

T = τyK = Kτy (2.60)

Because of the anti-commutation relations given in (2.57), T commutes with all com-
ponents of quaternion τ

[T, τx] = 0, [T, τy] = 0, [T, τz] = 0. (2.61)

it is then straightforward to see that the full Hamiltonian H commutes with T =
Kτy. Due to the Kramers degeneracy the basis functions always come in pairs ψ and
ψ′ = Kτyψ = T ψ, and where K is the complex conjugate operator. We can construct
2× 2 matrix of H by simply using two pairs of these basis vectors as

Hnm =

(
〈ψ′n|H|ψ′m〉 〈ψ′n|H|ψm〉
〈ψn|H|ψ′m〉 〈ψn|H|ψm〉

)
. (2.62)

The elements of Hnm are not independent of each other, but related by〈
ψ′n|H|ψ′m

〉
= (〈ψn|H|ψm〉)∗〈

ψn|H|ψ′m
〉
= −(

〈
ψ′n|H|ψm

〉
)∗

If we set a = 〈ψ′n|H|ψ′m〉 and b = 〈ψn|H|ψ′m〉, then the matrix Hnm can be rewritten
as

Hnm =

(
a −b∗

b a∗

)
(2.63)

with a, b ∈ C. When we put the full Hamiltonian given by Eq. (2.59) into Hnm,

Hnm = (H0)nm I + (Hx)nmτx + (Hy)nmτy + (Hz)nmτz, (2.64)

here I is the 2× 2 unit matrix and the coefficients (H0)nm, (Hx)nm, (Hy)nm, (Hz)nm are
real. With this unique properties we call Hnm a quaternion real matrix.

It is worth-mentioning that the rank of the full Hamiltonian H matrix for systems
without TRI or with TRI but without of spin-1/2 is N×N. In comparison to this fact,
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for systems with T2 = −1, the Hamiltonian matrix has rank 2N × 2N. This is due
to the Kramers degeneracy, where all basis vectors come in pairs and this makes the
Hilbert space exactly two times larger. In any case, the Hamiltonian can be repre-
sented by N × N matrix and each element is then 2× 2 quaternion real matrix. The
allowed transformation which leaves the form (2.64) of matrix elements invariant is
called symplectic transformation,

H′ = SHSR, (2.65)

where S is symplectic, SSR = 1. The dual of S is SR, defined as

SR = ZSTZ−1 (2.66)

here Z is a 2N × 2N block diagonal matrix and each diagonal element is a 2 × 2
matrix block Znm = τyδnm.

2.1.5 System without time reversal invariant

For any given physical system of interest whether it has TRS or not, it is possible to
write

Hψ = Eψ (2.67)

where H is the system Hamiltonian and E is the corresponding eigenvalue for the
eigenstate ψ. It is straightforward to construct real H matrix by using eigenstates as
its basis

H = diag(E1, E2, E3, ...) (2.68)
= H∗. (2.69)

In general, the Hamiltonian of a system without time reversal invariance is a com-
plex Hermitian matrix. Under the canonical unitary transformation the Hamiltonian
preserves its Hermitian property and its eigenvalues will not change.

2.2 Gaussian ensembles

We have reviewed that for systems with time reversal invariance and absence of
spin-1/2 interaction, the system Hamiltonian matrix can be represented as a real
symmetric matrix. For systems without time reversal invariance, this Hamiltonian
matrix is Hermitian complex, and for time reversal invariant system with spin-
1/2 interaction, the corresponding system Hamiltonian matrix is a self-dual matrix
which is invariant under symplectic transformation (see Sec. 2.1.4). Random matrix
theory (RMT) is a suitable theory to model these system specific Hamiltonians. The
basic idea is to model the system by replacing corresponding Hamiltonian with a
matrix of randomly chosen elements. We are not, of course, totally free to chose the
matrix elements, because the matrix elements should obey the restrictions set by the
symmetry of the system of interest.

In a fully chaotic system, unlike the integrable system where the eigenvalues are
uncorrelated, eigenvalues of the Hamiltonian matrix are correlated. Since the canon-
ical transformations, namely orthogonal, unitary and symplectic, map the system
Hamiltonian H to H′ while leaving the corresponding matrix structure unchanged,
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the correlated probability p(H11, ..., HNN) should also be unchanged

p(H11, ..., HNN) = p(H′11, ..., H′NN). (2.70)

The procedure of deriving this correlated distribution are well explained in Ref. [8,
25]. For the aforementioned three classical symmetry classes, this correlated distri-
bution reads

p(H11, ..., HNN) =

(
A
π

)N/2 (2A
π

)N(N−1)/2

exp

(
−A ∑

n,m
H2

nm

)
(2.71)

for the orthogonal class which correspond to a system with anti-unitary symmetry
where T squares to plus one, T2 = +1, and

p(H11, ..., HNN) =

(
A
π

)N/2 (2A
π

)N(N−1)

exp

(
−A ∑

n,m
[(HR)

2
nm + (HI)

2
nm]

)
(2.72)

for the unitary class where the system does not have time reversal symmetry and
(HR)nm, (HI)nm are the real and imaginary part of system Hamiltonian matrix Hnm.
The last one is for symplectic class,

p(H11, ..., HNN) =

(
A
π

)N/2 (2A
π

)2N(N−1)

× exp

(
−A ∑

n,m
[(H0)

2
nm + (Hx)

2
nm + (Hy)

2
nm + (Hz)

2
nm]

) (2.73)

in this case the system has anti-unitary symmetry where T squares to minus one,
T2 = −1 and (H0)nm, (Hx)nm, (Hy)nm , (Hz)nm are quaternion components of Hnm,
which is a Hamiltonian matrix and invariant under symplectic transformation. For
all three cases the matrix elements are Gaussian distributed and the quantity A is a
constant, which can be identified in terms of the variance of diagonal or non diago-
nal matrix elements [8]. The above three expressions (2.71), (2.72) and (2.73) are so
important that the set of random matrices where elements of each matrix obey them
define the random matrix Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary
Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE), respectively.

Since in experiments usually the energy is determined, the correlated distribu-
tion function of energies makes it easier to compare experiments than the probabil-
ity distribution function of the matrix elements of Gaussian ensembles . For all three
Gaussian ensembles, the correlated distribution function of energies takes the same
form,

p(E1, ..., EN) = C ∏
n>m

(En − Em)
β × exp

(
−A ∑

n
E2

n

)
(2.74)

here C and A are constants. The quantity β here is the universality class index and
takes values β = 1 for GOE, β = 2 for GUE and β = 4 for GSE. For β = 0 one obtains
the Poisson distribution and there is no correlation between eigenvalues.
Perhaps the most frequently studied quantity in spectral correlation analysis of a
system is the nearest neighbor spacing distribution function P(s). Here, s is the
distance between two neighboring energies s = En+1 − En. If we just consider the
simplest 2× 2 matrices for our Gaussian ensembles, then we will have ensembles
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of eigenvalues E1, E2. By using expression given by Eq. (2.74) one can define the
nearest neighbor spacing distribution P(s) as

p(s) =
∫ +∞

−∞
dE1

∫ +∞

−∞
dE2P(E1, E2)δ(s− |E1 − E2|) (2.75)

by utilizing the fact that total probability is normalized to one∫ +∞

−∞
p(s)ds = 1, (2.76)

and the mean level spacing is one

〈s〉 =
∫ +∞

−∞
sp(s)ds = 1. (2.77)

Since the matrix elements of the Hamiltonian of a symplectic system are described
in terms of the 2× 2 quaternions, the matrix is 4× 4 for GSE case . One ends up with
the following expressions for the three ensembles

p(s) =



π

2
s exp

(
−π

4
s2
)

β = 1 (GOE) (2.78a)

32
π2 s2 exp

(
− 4

π
s2
)

β = 2 (GUE) (2.78b)

218

36π3 s4 exp
(
− 64

9π
s2
)

β = 4 (GSE) (2.78c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p(
s)

GOE

GUE

GSE

Fig. 2.1. Theoretical level-spacing distributions p(s) of Wigner GOE
given by Eq. (2.78a), GUE given by Eq. (2.78b) and GSE given by

Eq. (2.78c)

Although these distributions are obtained from Gaussian ensembles of 2× 2 matri-
ces, they only differ little from the asymptotic level spacing distributions for ensem-
ble of matrices with infinitely large rank (see Section 4.5 and Section 4.12 of Ref. [25]
for more details). The level spacing distributions in Fig. 2.1 show different behaviors
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of level repulsion for small spacing s → 0: linear for β = 1, quadratic for β = 2 and
quartic for β = 4 and overall Gaussian fall-offs for large s.

2.3 An idea to realize Gaussian symplectic ensemble

In this section we will study the main idea introduced in Ref. [23] to realize a system
corresponding to the Gaussian symplectic ensemble.

2.3.1 Universality in subspectra

In quantum mechanics, the quantum mechanical symmetry operator U(s) can be
defined as

U(g)ψ(r) = ψ(g−1(r)) (2.79)

where g is the classical symmetry operator and the Hamiltonian of the symmet-
ric quantum system commutes with this operator. The representation of the sym-
metry group G can be formed with these unitary operators U(g) and they satisfy
U(g)U(g′) = U(gg′) for g, g′ ∈ G. For an appropriately chosen basis of eigenfunc-
tions of the Hamiltonian, the operators U(g) have block diagonal form and each of
these blocks correspond to one irreducible representation of G. When the group G
has a finite number of elements, there are only a finite number of irreducible rep-
resentations labeled by α, and the dimension sα of the irreducible representation
α is the corresponding block size. Therefore, the irreducible representation α has
sα energy-degenerate eigenfunctions. We can form these sα eigenfunctions into sα-
dimensional vector |α, n〉, then the symmetry operator acts on it as

U(g) |α, n〉 = M(α)(g)T |α, n〉 , (2.80)

where the label n is for different blocks which are corresponding to the same irre-
ducible representation α and M(α)(g) is the matrix representation of the operator g in
the irreducible representation α. Eq. (2.80) defines the subspectra of the irreducible
representation α. If we consider the behavior of a system under time reversal op-
eration, all irreducible representations can be classified into one of the three types,
depending on how an irreducible representation relates to its own complex conju-
gate. Firstly, if there does not exist a unitary matrix S such that

M(α)(g) = S−1M(α)(g)∗S, for g ∈ G (2.81)

then α is said to be complex. Secondly, if there exist such a unitary matrix S that
satisfies the Eq. (2.81) and S = ST, then α is said to be real, meaning all Mα(g) can
be made real by performing some unitary transformation. Finally, if Eq. (2.81) holds
true and S = −ST, then an appropriate unitary transformation leads to a quaternion
real form consisting of 2× 2 blocks

( a −b∗
b a∗

)
with a, b ∈ C, thus the representation α

is called pseudo-real or quaternionic (see also Sec. 2.1.4).
Following Ref. [26], one can construct the transferred time-reversal operator T̃ =

ST, where T is complex conjugate operator and S is given by Eq. (2.81). The sym-
metry operator U(g) acts on the vector T̃ |α, n〉 in the same fashion as it did on the
vector |α, n〉 as

U(g)T̃ |α, n〉 = M(α)(g)T T̃ |α, n〉 , (2.82)
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only when the irreducible representation α is real or quaternionic. Thus, T̃ is the
correct antiunitary symmetry of the subspace associated to the irreducible represen-
tation α.

According to the above analysis, such an operator T̃ can be obtained for the sub-
space corresponding to pseudo-real or quaternionic representation. In sections 2.1.3,
2.2 we have seen that, when the antiunitary symmetry operator T̃2 = −1, eigenvec-
tors |α, n〉 and T̃ |α, n〉 are orthogonal and in the eigenvalue spectrum one should
expect the Kramer doublets and the statistics of these doublets for chaotic system
should obey random matrix GSE statistics. In the next section, we will see how one
can obtain the subspace associated to the pseudo-real representation.

2.3.2 Quantum graph with GSE statistics

Since the spectral statistics of a well connected large quantum graph agreed with
the corresponding random matrix predictions for classically chaotic quantum sys-
tems [12, 24, 27], the quantum graph would be the good tool to realize a pseudo-real
subspace and show GSE statistics from the corresponding spectrum. To do this one
must consider a discrete symmetry group with pseudo-real irreducible representa-
tion, where isolating the necessary subspace is easier. The simplest possible one is
the quaternion group Q8

Q8 := {±1,±I,±J,±K : I2 = J2 = K2 = I JK = −1}. (2.83)

All group elements can be written as products [29] involving two generators, say,for

TABLE 2.1: Multiplication table ( Cayley table ) of group Q8 [28]

1 I J K -1 -I -J -K
1 1 I J K -1 -I -J -K
I I -1 K -J -I 1 -K J
J J -K -1 I -J K 1 -I
K K J -I -1 -K -J I 1
-1 -1 -I -J -K 1 I J K
-I -I 1 -K J I -1 K -J
-J -J K 1 -I J -K -1 I
-K -K -J I 1 K J -I -1

instance, I and J. This group possesses 5 conjugacy classes which are {1}, {-1}, {± I},
{± J}, {± K}, therefore there are 5 different irreducible representations and since the
sum of squares of dimensions of those irreducible representations is 8, their dimen-
sions should be 1, 1, 1, 1, 2. In other words, this quaternion group has four one
dimensional real irreducible representations given by M(I) = ±1, M(J) = ±1 and
one two dimensional pseudo-real or quaternion irreducible representation, given by

M(5)(I) =
(

i 0
0 −i

)
(2.84)
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and

M(5)(J) =
(

0 1
−1 0

)
. (2.85)

Now if we set S = M(5)(J), then it automatically satisfies S = −ST and it leads to

T̃2 = STST (2.86)

= M(5)(J)TM(5)(J)T (2.87)

= M(5)(J)M(5)(J) (2.88)
= −1 (2.89)

So, this is the right symmetry group and we have to construct a quantum graph with
it. To do that one could employ the so called Cayley graph of the group Q8. This is
the straightforward and standard group theoretical tool in which one could encode
the abstract structure of the group by using a finite set of generators which are, in
our case, group elements I and J. Cayley graph can be connected by setting all group
elements as vertices and connecting them by bonds which are corresponding to the
generators of the group. We add arrows on bonds which are connecting the two
vertices via the right generator either I or J obeying the group multiplication rule as
shown in the table 2.1. The resulting graph is shown in Fig. 2.2 (a)

Fig. 2.2. (a) is the Cayley graph of the quaternion group Q8; (b) is the
part of the extended version of (a) by simply replacing each vertex
with a subgraph to get more complex spectra. This figure is from

Ref. [23].

where all blue bonds are corresponding to the same generator I and all red bonds
are corresponding to the same generator J. For example, the bond b = (K, J) with
assigned arrow shows the action of the generator I by right multiplication as J = KI
and in the same manner, the arrow along the red bond b = (K,−I) shows the action
of the generator J as −I = KJ. In order to treat this Cayley graph as a quantum
graph, one should assign certain lengths to each bond. We set LI for all bonds which
are correspond to the group element I and LJ for all bonds which correspond to the
group element J. Furthermore, the graph is symmetric with respect to left multi-
plication such that ∀g, g ∈ Q8 for a bond of length LI defined by b = (g, gI), the
application of any element h of Q8 gives a bond b′ = (g′, g′ I) with g′ = hg of the
same length LI .
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Now the resulting quantum graph can be made more complex in order to ob-
serve random matrix statistics by simply replacing each vertex with a complex enough
identical subgraph as shown in Fig. 2.2 (b) and keeping the connecting rules which
obeys the symmetry of original Cayley graph. Another point to be considered is
that the spectrum of the whole graph includes not only the spectrum of four one
dimensional irreducible representations, but also the spectrum of one two dimen-
sional irreducible representations. To get pure GSE statistics, one has to isolate the
subspace of this pseudo-real irreducible representation from the whole graph. This
can be achieved by implementing the technique called quotient graph introduced
in Ref. [30, 31]. The strategy is mainly based on reducing the eigenfunctions of the
whole Q8 graph to one eighth of it. This quotient graph can be constructed by taking
one of the eight vertices and half of each bonds attached to this vertex of the Cayley
graph of Q8 group.

We can take any arbitrary vertex, for instance K and cut exactly in the middle of
its directly attached bonds (−J, K), (K, J), (I, K) and (K,−I) and introduce v1, v2, v3,
v4 at the middle points of these bonds, respectively. The generator I takes the point
v2 of bond (K, J) to the point v1 of bond (−J, K). Similarly, the generator J brings
the point v4 to the point v3, as shown in Fig. 2.3 (b). A subspectrum associated to the
pseudo-real irreducible representation can be isolated by imposing correct boundary
conditions on boundaries v1, v2, v3 and v4 at any given position.

Let us say the wave function associated to pseudo-real irreducible representation
at arbitrary position x on this quotient graph is ψ(x) = 〈x|α, n〉with two components
ψ1(x) and ψ2(x) which correspond to the same eigenenergy. If we simply look at the
fig. 2.3 (b), we can see that the wave function ψ(ν1) is a result of the operation of
U(I) on ψ(ν2) combining this with corresponding definition in Eq. (2.79) of U(I),

U(I)ψ(ν2) = ψ(I−1ν2) = ψ(ν1) (2.90)

according to the relation (2.80), we can write the action of U(I) as

U(I)ψ(ν2) = M(5)(I)Tψ(ν2), (2.91)

By comparing the above two Eqs. (2.90) and (2.91) we have

ψ(ν1) = M(5)(I)Tψ(ν2). (2.92)

If we set the coordinate on a bond which is increasing along the direction as shown
in Fig. 2.3, then Eq. 2.92 is defined at each position along the bond, and the boundary
condition holds a similar relation for the derivative of the wave function, i.e,

ψ′(ν1) = M(5)(I)Tψ′(ν2) (2.93)

By going through a similar process we will have

ψ(ν3) = M(5)(J)Tψ(ν4) (2.94)

ψ′(ν3) = M(5)(J)Tψ′(ν4) (2.95)

The above equations from Eq. 2.92 to Eq. 2.95 are boundary conditions to isolate
the pseudo-real irreducible representation on this quotient graph, which is exactly
one eighth of the original Cayley graph of Q8. Since the eigenfunction of this quo-
tient graph shown in Fig. 2.3 (b) has two components which are energy degenerate
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eigenfunctions we write it in the form

ψ(x) =

ψ1(x)

ψ2(x)

 . (2.96)

With this we can rewrite the Eq. (2.92) asψ1(ν1)

ψ2(ν1)

 =M(5)(I)T
(

ψ1(ν2)
ψ2(ν2)

)
(2.97)

=

(
i 0
0 −i

)T (
ψ1(ν2)
ψ2(ν2)

)
=

(
i 0
0 −i

)(
ψ1(ν2)
ψ2(ν2)

)
=

(
iψ1(ν2)
−iψ2(ν2)

)

This shows the fact that the action associated with group element I is just giving
phase +π

2 and −π
2 within each component of the wave function since

ψ1(ν1) = iψ1(ν2), (2.98)
ψ2(ν1) = −iψ2(ν2). (2.99)

For the derivative ψ′(x), the analogous effect holds;

ψ′1(ν1) = iψ′1(ν2), (2.100)
ψ′2(ν1) = −iψ′2(ν2) (2.101)

Proceeding as before, we will rewrite Eq. (2.94) asψ1(ν3)

ψ2(ν3)

 =M(5)(J)T
(

ψ1(ν4)
ψ2(ν4)

)
(2.102)

=

(
0 −1
1 0

)(
ψ1(ν4)
ψ2(ν4)

)
=

(
−ψ2(ν4)
ψ1(ν4)

)
.

This shows that the operation corresponding to group element J connects the two
components of this quotient graph eigenfunction ψ(x) such that one path which
relates one component to the other gives a minus sign, while the other path leaves
the component untouched, since

ψ1(ν3) = −ψ2(ν4), (2.103)
ψ2(ν3) = ψ1(ν4) (2.104)
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and, for the derivative ψ′(x),

ψ′1(ν3) = −ψ′2(ν4), (2.105)
ψ′2(ν3) = ψ′1(ν4) (2.106)

Fig. 2.3. (a) is the one eighth of the Cayley graph of the quaternion
group Q8; (b) is the one copy of the fundamental domain with two
component wave function associated with pseudo-real irreducible
representation ; (c) is the two copies of the fundamental domain
showed in (b) with only one component wave function. This figure is

from Ref. [23].

Now it would be better to reside the two components of the wave function of
the quotient graph, which is the fundamental domain, shown in Fig. 2.3 (b). We use
two copies of that quotient graph as shown in Fig. 2.3 (c) to put the two components
of the wave function into one of the sub quotient graph. Leads the resulting full
quotient graph with one component wave function is given in Fig. 3.3 (a). In this
way, these two sub-quotient graphs are coupled with each other and the resulting
wave function has only one component. The resulting graph obeys the antiunitary
symmetry T̃ that squares to minus one, i.e, T̃2 = −1. If we label the subgraph at the
left with G1 and subgraph at the right with G2 in Fig. 3.3 (a) and any position on G1
with x1 and on G2 with x2, then the action of T̃ on the wave function ψ(x) of this
whole system can be described as

T̃ψ(x1) =− ψ∗(x2), (2.107)
ψ∗(x1) =T̃ψ(x2), (2.108)

By this, T̃ exchanges wave functions such that the wave function on one subgraph
is an exact complex conjugate of the wave function on the other subgraph with a
minus sign and vice versa without altering the sign. This realizes the antiunitary
symmetry T̃ that squares to minus one. For example,

T̃T̃ψ(x1) = −T̃ψ∗(x2) = −ψ(x1), (2.109)

⇒ T̃2 = −1. (2.110)

Furthermore, such a symmetry introduces the Kramers degeneracy in the spectrum
of this quotient graph. In Ref. [23], spectrum of this quotient graph is obtained via
numerical calculation and the nearest neighbor spacing distribution p(s) of its eigen-
values agreed well with the random matrix Wigner GSE distribution as shown in
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Fig. 3.1 (right). It would be important to state that this intriguing idea to realize GSE
statistics without involving real spin gives more approaches to realize symplectic
symmetry and GSE statistics in experiments.
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Microwave realization of Gaussian
symplectic ensemble

3.1 Motivation

Random Matrix Theory (RMT) has achieved tremendous success in the study of sta-
tistical properties of various chaotic systems [2, 25], like hydrogen atom in a strong
magnetic field, ultracold quantum gas and microwave chaotic cavities. Bohigas,
Giannoni and Schmitt conjectured that the universal features of the spectrum of a
chaotic system are well described by random matrix theory (RMT) [1]. The statis-
tical fluctuation of systems with time reversal symmetry and without spin one half
interaction is reproduced by corresponding statistical features of the random matrix
Gaussian orthogonal ensemble (GOE). There are abundant number of experimen-
tal realizations of GOE statistics [8] including recent experiments with microwave
graphs [12, 32]. For systems without time-reversal symmetry, the spectral fluctu-
ation can be described by the random matrix Gaussian unitary ensemble (GUE).
There are a few number of experimental realizations of such system [9, 11–13]. For
systems with time-reversal symmetry and with spin-1/2 interactions the spectral
features can be described by the corresponding features of the random matrix Gaus-
sian symplectic ensemble (GSE). As this symmetry class is commonly associated
with half-integer spin, due to such a unique feature there was no any experimental
realization until a recent one [11] and my research presented in this thesis. These
results are published in [13, 33].

Fig. 3.1 (left) shows the quantum graph proposed in Ref. [23]. This graph meets
the two very crucial conditions, explained in detail in Sec. 2.3, which are sufficient to
realize the pure GSE spectrum on this graph, and numerical studies showed that the
resulting level spacing indeed follows the Wigner random matrix GSE prediction as
shown in Fig. 3.1 (right).
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Fig. 3.1. The introduced quotient graph (left) and histogram of near-
est neighbor spacing distribution of eigenvalues of the graph at the
left side (histogram). The lines correspond to the Wigner RMT pre-

dictions for GOE, GUE and GSE. This figure is from Ref. [23].

This chapter is structured as follows: First of all, I will give the basic definition
and terminologies related to quantum graphs and study some particular features of
symplectic quantum graphs as well. Secondly, I will introduce the setup we have
used in the experiment. Thirdly, our results about the level spacing statistics are
presented. Fourthly, I will show the results concerning long range correlations such
as two point correlation function R2(L), spectral form factor K(τ), number variance
Σ2(L) and spectral rigidity ∆3(L). Lastly, we will report the dynamical transition
from GSE via GUE to GOE in both experimentally and numerically. Finally, we
summarize the contents presented in this chapter.
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3.2 Brief theoretical overview

3.2.1 Quantum graph

Quantum graphs (networks), as an ideal tool to study quantum chaos which deals
with quantum systems exhibiting chaotic motion in the classical limit, were intro-
duced by Kottos and Smilansky [24]. Following their definition, a quantum graph
is a network obtained by connecting several edges or bonds at certain number of
vertices. An example of a quantum graph is shown in Fig. 3.2. A bond with the
vertices i and j can be noted as b = (i, j). In order to apply quantum mechanics,
for example the Schrödinger equation, on a graph one has to determine position on
any arbitrary bond on the graph, therefore a coordinate xi,j is assigned to each bond
b of length Li,j ≡ Lj,i, where xi is the distance from vertex i and similarly xj is the
distance from vertex j. The connectivity of each graph may be described in terms
of its V ×V connectivity (adjacency) matrix which is denoted as Cij, where V is the
total number of vertices of the graph. Its matrix elements can be defined as follows:

Cij = Cji =


1 if i and j are connected ,

0 otherwise ,

(3.1)

where i, j = 1, 2, . . . , V. Quantum graph is seen as an ideal physical network where
the length scale along the bonds (connecting wires) is much greater than their width.

(a)

(b)

Fig. 3.2. An example of a quantum graph which has 4 vertices and
3 bonds. (a) is a sketch of a quantum graph and (b) is corresponding

microwave quantum graph. (Lengths are not scaled)
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Therefore the wave function on each bond b = i, j can be defined as a solution of
one-dimensional Schrödinger equation at position xi(

−Aij − i
d

dxi

)2

ψij(xi) = k2ψij(xi), (3.2)

or with position xj (
−Aji − i

d
dxj

)2

ψji(xj) = k2ψji(xj), (3.3)

where Aij and Aji are the magnetic vector potentials which break time reversal sym-
metry for a given nonzero magnetic field. The well known solutions for the Eqs. (3.2)
and (3.3) can be written as

ψij(xi) = aije−i(k−Aijxi) + bijei(k+Aijxi), (3.4)

and using xj

ψji(xj) = ajie−i(k−Ajixj) + bjiei(k+Ajixj), (3.5)

respectively. The two wave functions in these two representations are related via

bij = aije−(k−Aij Lij), (3.6)

and
bji = ajie−(k−Aji Lij). (3.7)

This means that the incoming wave at vertex j coming from i is identical to the out-
going wave from the vertex i in the direction j. aij is the amplitude for propagation
of the wave function from vertex i to j along the bond b = (i, j) and its correspond-
ing time reversed propagation along this same bond is aji which is, of course, from
vertex j to vertex i. The incoming and outgoing amplitudes aij and bij are related by
the scattering matrix S as

b = Sa, (3.8)

where a, b are the vectors incoming and outgoing amplitudes of propagation, re-
spectively.

Just as for quantum billiards there is a one-to-one mapping onto the correspond-
ing microwave graphs which we are going to cover in this thesis, where the voltage
at a node corresponds to the wave function and the current to the derivative of the
wave function along the edges (see Ref. [12] for more details). In order to guarantee
that the Schrödinger operator at Eqs. (3.2), (3.3) is self-adjoint, the wave function on
the graph must satisfy two boundary conditions at the vertices. One is

ψij(xi)|xi=0 = ψi (3.9)

which requires that at each vertex i, the wave function assumes a value denoted
by ψi which is independent of the bond from where the vertex is approached; the
second condition is current conservation, which is specified as

∑
j

(
−iAij +

∂

∂xi

)
ψij(xi)|xi=0 = 0, (3.10)

where the sum is over all vertices j connected to vertex i. Eq. (3.10) holds for Neu-
mann boundary conditions, which is the case in our experiment. For microwave
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graphs, these two boundary conditions are equivalent to the well-known Kirchhoff
relations used mostly in electronic circuits. The continuity condition can be met by
construction of the graph by properly choosing the incoming amplitude aij and out-
going one bij. However, the current conservation condition implies a system of ho-
mogeneous linear equations which has nontrivial solutions only if the determinant
of the associated secular matrix h(x) vanishes,

det[h(k)] = 0, (3.11)

where the matrix elements of h(k) can be written as

hij(k) =


−∑n 6=i Cincot(kLim) for i = j,

Cije−iφij [sin(kLij)]
−1 for i 6= j.

(3.12)

where Cij are the elements of connectivity matrix as defined in Eq. (3.1). φij = AijLij
is a phase resulting from a possible vector potential which breaks the time reversal
invariance of the graph if a non zero magnetic field is present. The spectrum of
the entire graph can then be generated from the solutions of determinant conditions
given by Eq. (3.11).

3.2.2 Symplectic quantum graph

In Ref. [23] a quotient graph as shown in Fig. 3.3 (a) was proposed to realize GSE
symmetry. It might be worthwhile to mention that the graph in Fig. 3.3 (a) is some-
what different from the one shown in Fig. 3.1 and used in Ref. [23] from which the
GSE statistics was numerically achieved (the histogram at right). From the symme-
try point of view both are equivalent graphs which are obeying the symmetry condi-
tions set by Eqs. (2.98) to (2.105) on the wave function of the graph. As explained in
Ref. [23], this graph has been constructed by connecting two geometrically identical
subgraphs to populate two components ψ1(x), ψ2(x) of the wave function ψ(x) as-
sociated to the quaternionic representation of Quaternion group Q8. The symmetry
conditions set in Eqs. (2.98) and (2.100) are showing the fact that along the connect-
ing bonds of one subgraph there is a phase shift of +π

2 and −π
2 on the second sub-

graph. The Eqs. (2.103) and (2.105) are setting conditions to the connection between
two subgraphs via one (or more) pair (or pairs) of connecting bonds such that on
one of these bonds correspond to ψ2 → ψ1, gives a phase shift of π while the sec-
ond ones associated to ψ1 → ψ2 does not give phase shift or zero phase shift. Such
a unique configuration ensures the whole graph has a geometric inversion center.
Due to these symmetry conditions, the whole graph is symmetric with respect to an
antiunitary operator T that squares to minus one, T2 = −1 as shown in Eq. (2.109).
The graph in Fig. 3.1 has two pairs of connecting bonds between the two subgraphs
in order to get rather stronger coupling and more complex spectrum while the one
in Fig. 3.3 (a) has only one pair of connecting bonds. In our experiments we will deal
with both configurations. For the graph with one pair of connecting bonds shown
in Fig. 3.3 the secular matrix h(k) can be written as

h = hdis + v, (3.13)

where the first term at the right side corresponds to the secular matrix of the dis-
connected subgraphs and second term accounts for the connecting bonds. It is con-
venient to introduce an order for rows and columns with labels the vertices on the
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Fig. 3.3. (Color online) (a) Sketch of the graph proposed in Ref. [23]
to study GSE statistics without spin. The four arrows denote bonds
along which additional phases are acquired. (b) Schematic drawing of
one of the realized microwave graphs. Subgraph 1 is highlighted by a
grey background. The dashed lines correspond to phaseshifters with
variable lengths. The two subgraphs contain microwave circulators
at nodes 7 and 7̄, respectively, with opposite sense of rotation. The
nodes marked by “O” are closed by open end terminators. They were
used to allow for an easy realization of alternative graphs. Subgraphs
1 and 2 are connected at nodes 0 and 0̄, respectively, to ports P1 (P2) of
the VNA. (c) Photograph of the graph sketched in (b) consisting of T-
junctions, semirigid cables with identification tags, circulators, open
end terminators, and phaseshifters with step motors. Again subgraph

1 is highlighted.
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whole graph as {1, 2, 3, ..., n; 1̄, 2̄, 3̄, ..., n̄}, where the labels without bar correspond to
the vertices on subgraph 1 and labels with bar correspond to the vertices on sub-
graph 2. In this way the secular matrix hdis can be written as

hdis =

(
h0 .
. h∗0

)
(3.14)

where h0 is the secular matrix of one subgraph and h∗0 is of the second one. The
empty off-diagonal elements are denoted with dots. We have seen that the symme-
try conditions (2.98) and (2.100) imposed on corresponding wave functions of each
subgraphs are showing the fact that the only difference between the two subgraphs
is the sign of i (or phase shift of π

2 ) in one of the bonds. This makes their correspond-
ing secular matrices just complex conjugates of each other. For simplicity, consider
only one pair of bonds which are connecting vertex 1 with vertex 2̄ and vetex 1̄ with
vertex 2, respectively. Then the matrix elements of v will be

v11 = v22 = v1̄1̄ = v2̄2̄ = − cot(kl) (3.15)

v12̄ = v2̄1 = −v21̄ = −v1̄2 = [sin(kl)]−1 (3.16)
vij = vī j̄ = vi j̄ = vī j = 0 otherwise (3.17)

where l is the length of these two connecting bonds. Now we can extend this to the
entire graph by simply changing the sequence of rows and columns to {1, 1̄; 2, 2̄; 3, 3̄; ...; n, n̄}
and the resulting 2n × 2n matrix h̃(k) can be written as n × n matrix by means of
quaternion matrix (see Chap. 2) elements

[h̃(k)]nm = [Re(h0)nm + vnm] 1− Im(h0)nmτz − vnm̄τy (3.18)

where

1 =

(
1 ·
· 1

)
, τz =

(
−ı ·
· ı

)
, τy =

(
· −1
1 ·

)
(3.19)

The rearranging of rows and columns does not change the determinant such that
det[h(k)] = det[h̃(k)]. The matrix elements [h̃(k)]nm commute with Cτy, where C
denotes the complex conjugate operator, and hence the whole matrix commutes with
the generalized time reversal operator

T = diag(Cτy . . . , Cτy) , (3.20)

where T squares to minus one,
T 2 = −1 . (3.21)

A system with such symplectic symmetry has always been considered to require
a spin-1/2 particle or odd number of spin-1/2 particles. Thus, we expect Kramers
doublets in the spectrum showing the signatures of GSE statistics provided the sys-
tem is chaotic [25]. The idea introduced in Ref. [23] allows us to realize GSE experi-
mentally without considering the involvement of a real spin-1/2 particle. To realize
such a system with symplectic symmetry by means of graph, there are only two cru-
cial conditions to meet: one is to preserve of two identical subgraphs with secular
matrices h0(k) and h∗0(k) being complex conjugates of each other; the second one is
a phase difference of π between the two bonds connecting the two subgraphs.
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3.2.3 Scattering properties of GSE graphs

To get the spectral properties of a quantum graph, we have to connect external leads
as a probe to certain vertices of the graph to perform the measurement. These ex-
ternal cables must be connected in a symmetric fashion such that the symplectic
symmetry of the graph is unchanged. For example, if one cable connected to the
vertex at the lower left in Fig. 3.3 (a), then the second cable must be connected to the
vertex at upper right. Following the results of Ref. [27], for a quantum graph of N
vertices and L connecting leads, the L× L scattering matrix is given by

S = 2iWT
[

h(k) + ıWWT
]−1

W − 1 (3.22)

where h(k) is the secular matrix defined in Eqs. (3.12) and (3.13) and W is a N × L
vertices-leads matrix which corresponds to the coupling of the graph to the environ-
ment. For our experiments with microwave graphs, the coupling is ideal due to the
whole standard 50 Ω impedance matching technology. Therefore the coupling con-
stant of these external probing leads to the system of interest will be perfect. Thus
the elements of coupling matrix W in Eq. (3.22) are

Wvl =


1 if l is attached to the vertex v,

0 otherwise ,

(3.23)

Since h(k) is hermitian, the scattering matrix S in Eq. (3.22) is unitary which en-
sures the current conservation condition, meaning that there are no energy losses
through any existing scattering channels which are, in our case, the probing leads (or
cables). Since in experiments absorption is inevitable, scattering matrices obtained
by measurements will not be perfectly unitary but subunitary. One can model this
finite absorption effect in terms of large number of weakly coupled fictitious chan-
nels [34]. The effects of absorption and imperfect coupling in our microwave graphs
shall be discussed in a later section.

By setting the Green function G = h−1(k) which has been defined as G = [E−
H]−1 with H being the Hamiltonian of uncoupled system in the context of quantum
billiards and quantum dots, the graph scattering matrix given in Eq. (3.22) may be
transformed:

S = 2iWTG
1

1 + iWWTG
W − 1 (3.24)

= 2iWTG
∞

∑
n=0

(−i)n(WWTG)nW − 1

= 2iWTGW
∞

∑
n=0

(−i)n(WTGW)n − 1

= 2iWTGW
1

1 + iWTGW
− 1

= −1− iWTGW
1 + iWTGW
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Application of the time reversal operator T to S yields

S = T −1S†T (3.25)

If there are only two channels, as in the present experiment, S is a 2× 2 matrix

S =

(
a b
c d

)
. (3.26)

For this special situation Eq. (3.25) yields

S = T −1S†T = −τyC
(

a∗ c∗

b∗ d∗

)
Cτy =

(
d −b
−c a

)
(3.27)

whence follows a = d and b = c = 0, or

S = eıα
(

1 0
0 1

)
. (3.28)

The antiunitary symmetry T with T 2 = −1 thus implies that there is no transmis-
sion. The information of the graph properties is thus encoded in the reflection phase
α. Let’s set "0" as label to vertices where both probing cables are attached to the
graph, then the elements S00 of S can be written as

S = eiα = −1− iG00

1 + iG00
, (3.29)

where the phase α is

α = π − 2 arctan

(
∑
n

an

k− kn

)
, (3.30)

with kn the zeros of secular determinant |h(k)| from Eq. (3.11) and for each of these
zeros there will be a significant jump in the reflection phase. This point makes the
eigenvalue extraction process much easier. It will be discussed in section related to
data extraction.
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3.2.4 Single pair of bonds approximation

Although for the proposed graph in Fig. 3.3 (a), the time reversal operator T with
T 2 = −1 ensures that all eigenvalues are doubly degenerate and nearest neighbor
spacing distribution follows GSE, it does not guarantee that the coupling of two
GUE subgraphs via one pair of connecting bonds is strong enough to turn these two
identical GUE spectra into a complete GSE spectrum which fully obeys Wigner GSE
statistics. In order to address this question the secular matrix given by Eq. (3.12) is
not so convenient. Since the spectrum of a system is a set of eigenvalues of corre-
sponding Hamiltonian, this allows us to model the whole graph in terms of a prop-
erly constructed Hamiltonian. Assuming that the Hamiltonian of one subgraph is
H0 and the other one is H̄0, then the total Hamiltonian H, according to scattering
theory, can be written as

H =

(
H0 VV̄†

V̄V† H̄0

)
(3.31)

where the off-diagonal blocks are responsible for the coupling of these two sub-
graphs.The matrix elements of the diagonal blocks, in the eigenbases of H0 and H̄0,
are corresponding eigenvalues (H0)nm = E0

nδnm and (H̄0)nm = Ē0
nδnm of discon-

nected subgraphs with Neumann boundary conditions at the coupling point, re-
spectively. In the off-diagonal blocks, V and V̄ are N × K matrices with N being
the size of H0 and H̄0 and K being the number of bonds which connect the two
GUE subgraphs. In the bases of H0 and H̄0, the elements of V and V̄ are just val-
ues of the wave functions of each disconnected subgraphs at the coupling points,
i.e, Vnk = ψn(xk) = ψnk and V̄nk = ψ̄n(xk) = ψ̄nk , respectively. Since for the graph
we are taking into account H0 and H̄0 are complex conjugate of each other, their
corresponding eigenvalues are equal, E0

n = Ē0
n and V∗nk = V̄nk. If we consider the

case in Fig. 3.3, where only one pair of connecting bonds is used to couple the two
subgraphs, we may set a zero phase shift on the bond b = (2̄, 1) and phase shift of
π on the other bond b = (2, 1̄) at their coupling points. For this specific case, the
corresponding off-diagonal elements in Eq. (3.31) are[

VV̄†
]

nm
= Vn1V̄m2̄ + eıπVn2V̄m1̄ (3.32)

= ψn1ψm2 − ψn2ψm1 = Ṽnm

and [V̄V†]mn = −Ṽ∗nm. When it comes to the nearest neighbor spacing distribution,
despite the small difference [4] between random matrix prediction where infinitely
large matrices are considered and the one by Wigner approximations, we will fol-
low the latter since such a small deviation is hard to distinguish in most experimen-
tal studies and they are exact for 2× 2 Gaussian random matrix ensembles. In the
spirit of Wigner approximation we will restrict the size of the total Hamiltonian H
in Eq. (3.31) to 2. However, due to the 2× 2 quaternions the actual H matrix is 4× 4
for the symplectic case. Without loss of generality, we set the average energy to be
zero,

E1/2 = ± a
2

. (3.33)
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To find the eigenvalues of H, we will write down its characteristic polynomial as
follows

χ(E) =

∣∣∣∣∣∣∣∣
E− a/2 · · −Ṽ12
· E + a/2 Ṽ12 ·
· Ṽ∗12 E− a/2 ·
−Ṽ∗12 · · E + a/2

∣∣∣∣∣∣∣∣ (3.34)

=
[

E2 − (a/2)2 −
∣∣Ṽ12

∣∣2]2
. (3.35)

We can clearly see that χ(E) is the product of two identical quadratic equations. This
means that all eigenvalues are doubly degenerate which is exactly the manifestation
of Kramers degeneracy. The distance of two eigenvalues is

s =
√

a2 + 4
∣∣Ṽ12

∣∣2 (3.36)

and distribution of these nearest neighbor spacing is

p0(s) =
〈

δ

(
s−

√
a2 + 4

∣∣Ṽ12
∣∣2)〉 (3.37)

After some calculation, for more details look at Ref. [13], one ends up with

p0(s) = 16s4
π∫

0

dϕ sin ϕ cos2ϕ e−
4
π s2 cos2 ϕK̂1(πs sin ϕ) (3.38)

where K̂(t) = tK(t) is a modified Bessel function. The factor t compensates the
singularity of K(t) for t → 0. K̂(t) is regular for t → 0, K̂(0) = 1. p0(s) thus shows
a quartic level repulsion for s → 0, just as the Wigner GSE distribution. From the
definition of p0(s) by Eq. (3.37), the total probability is one, as it should be:

∞∫
0

p0(s)ds = 1 (3.39)

but the mean level spacing must be one as well and it does not fulfill this condition
automatically as

s̄ = 〈s〉 =
∞∫

0

sp0(s)ds = 1.32417 . . . (3.40)

Thus, by rescaling p0(s) one gets the new level spacing distribution

p(s) = s̄p0(s̄s) (3.41)

which has the mean level spacing of one. In Fig. 3.4 this distribution based on one
pair of connecting bonds approximation is compared with both random matrix sim-
ulation and Wigner GSE distribution, which is given as

p GSE(s) =
218

36π3 s4 exp
(
− 64

9π
s2
)

. (3.42)
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Fig. 3.4. Level-spacing distribution for the single pair of bonds ap-
proximation (solid line), see Eq. (3.41), and for the Wigner GSE distri-
bution (dashed line), see Eq. (3.42). In addition the result of a ran-
dom matrix simulation is shown (blue histogram). In the simula-
tions we created random matrices for an ensemble of 2000 matrices
of size 1000 × 1000, i.e. the size of each GUE subblock H0 and H̄0,
see Eq. (3.31), was 500× 500. We used only the central 0.1 fraction of
each spectrum to calculate the distribution of next-nearest neighbor
spacings s in order to avoid problems with the non-constant density

of states.

From this figure we can see that there is a good agreement in overall features be-
tween the Wigner GSE distribution and the distribution based on one pair of bonds
approximation, most importantly for the case of small spacing (for example, s < 0.5).
Furthermore, the histogram shows the result of random matrix simulation with ma-
trices of size 1000 which is much larger than the size of the Hamiltonian matrix
H which is used to derive the analytic result of one pair of connecting bonds ap-
proximation. We can see that the histogram follows with the analytical distribution,
Eq. (3.41) very well. To get such a good agreement between the two-bond approxi-
mation and random matrix simulation and to clearly distinguish the two-bond ap-
proximation approach from Wigner GSE distribution, in random matrix simulation
105 Kramers doublets had been needed which is hard to achieve in experiments.
Lastly, this two-bond approximation approach allows us to study how many pairs
of such connecting bonds are sufficient to get full overlap of the spectrum of whole
GSE graph with Wigner GSE statistics, at least numerically. We will discuss this
point in a later section.



3.3. Experimental setup 31

3.3 Experimental setup

In order to realize the Gaussian Symplectic Ensemble (GSE) experimentally on the
basis of the idea proposed by Joyner et al. [23] we have performed measurements on
microwave graphs. One of the two important ingredients of the idea introduced by
Ref. [23] is the phase shift of +π

2 on bonds of one subgraph and phase shift of −π
2

on the second subgraph. Since we did not know an easy way to achieve this con-
dition, we took the main idea but proceeded in a somewhat different way namely
by constructing two geometrically identical subgraphs with an opposite direction
of propagation in the two subgraphs by means of two circulators. One can see this
clearly from the sketch and photograph of whole GSE graph in Fig. 3.3 (b), (c), re-
spectively.

Fig. 3.5. Components we used to build our microwave graphs. Up-
per left are coaxial cables; Upper right shows a T-junction; Lower left
is a mechanical phase shifter; Lower right is a circulator (the arrow
indicates that propagation from port 1 to port 2 is allowed and the

opposite is forbidden).

A circulator is a microwave device which allows the microwave to propagate
in specific directions only. For instance, the circulator shown in Fig. 3.5 allows the
microwave from port 1 to port 2, from port 2 to port 3 and from port 3 to port 1
only. This will be done, in reality, by allowing maximum propagation in allowed
directions and minimum propagation in forbidden directions. This feature can also
be seen from the scattering matrix of a circulator,

S =

 0 0 1
1 0 0
0 1 0

 . (3.43)

As most experimental devices our circulator is not perfect. The performance of the
circulator used in the experiment is illustrated in Fig. 3.6. The transmission from
port 2 to port 1 , |S12|2, is suppressed and transmission in opposite direction |S21|2 is
maximum within the documented operating frequency range from 6-12 GHz.
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Fig. 3.6. Example of the performance of a circulator. Port 3 of the
circulator showed in Fig. 3.5 is terminated with standard 50 Ω ter-
minator to avoid the possible reflection from port 3. Transmission

coefficients |S21|2 (red line) and |S12|2 (blue line) are measured.

Due to this unique feature, the circulators break the time reversal symmetry, re-
sulting in identical GUE spectra on each of the two subgraphs with the same secular
matrix h0. However, the two circulators have to be connected in opposite sense of
rotations (see the circulator at vertices 7 and 7̄ in Fig. 3.3 (b)) which turns one secular
matrix h0 of one subgraph into its complex conjugate h∗0 on the second. Such special
configuration of the two subgraphs has the same effect as the±π

2 phase shifts on the
bonds of the two subgraphs.

The second ingredient is the phase difference of π between connecting bonds
of two subgraphs. At the beginning, we will start with the case of only one pair
of connecting bonds. We have tried several different approaches. First we inserted
pairs of circulators in each bond oriented such that the waves could pass in both
directions. Both open ends were closed with short-end terminators in one bond
and open-end terminators in the other one. This should result in the desired phase
difference of π between the two bonds. The idea worked in principle, but the phase
difference showed up not to be π, but deviated several percent from π as shown in
Fig. 3.7. Probably this could be improved by a suitable fine-tuning of the terminators,
but for the moment we discarded this option. Next we tried it with I&Q vector
modulators (Model: M2L-68N-S from GT Microwave Inc.) which allow to adjust
arbitrary phases and amplitudes in transmission. The observed spectra, however,
showed up to be mostly independent on the phase difference imposed. We attribute
this to the large insertion loss of 12 dB of the IQ modulators.

Since these two approaches did not work properly, we have overcome this prob-
lem by using two mechanical phase shifters which change the phase of microwave
within the bonds by changing its length (like in a trombone). Fig. 3.5 shows a photo
of one phase shifter with a sketch of its internal U shaped moving part.
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Fig. 3.7. The phase difference obtained by using a pair of circulators.
The red line is the measured phase difference and the green dashed

line is the ∆ϕ = π.

In this approach the phase shift ∆ϕ not only depends on the change of optical length
∆l, but also on frequency ν via the relation,

∆ϕ = k∆l =
2πν

c
∆l, (3.44)

where k is the wave number and c is the velocity of light within the phaseshifter.
A sketch of the microwave graph we used in our experiments is given in Fig. 3.3

(b) to make it easier for the reader to visualize the connection of whole graph and a
photograph of one of the graphs used in the experiment. Microwave coaxial semi-
rigid cables with SMA (see Fig. 3.5) connectors by Huber and Suhner EZ-141 are
used as bonds of the graph and are connected by T-junctions (see Fig. 3.5) repre-
senting the vertices. The inner and outer radii of the cables are 0.45 and 1.45 mm,
respectively, hence, below 34.8 GHz only the lowest TEM is propagating (see Sec.
8.8 of Ref. [35]). The index of refraction of the cables is 1.43. The phase shifters
(ATM, P1507) are equipped with step motors to control the length change automat-
ically. The measurements of all scattering matrix elements were performed with an
Agilent 8720ES vector network analyzer (VNA) by coupling its two probing ports to
symmetrically equivalent vertices of the two subgraphs. The corresponding reflec-
tion and transmission amplitudes will be denoted in the following by Sij, i, j = 0, 0̄.
Since the operating frequency range of our circulators (Aerotex I70-1FFF) is from 6
GHz to 12 GHz as shown in Fig. 3.6, our data analysis process will be focused an this
frequency interval. Both the step motor and vector network analyzer are controlled
via a computer program.
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3.4 Measurement results

3.4.1 Transmission spectra

We have seen that the two subgraphs are complex conjugates of each other by con-
struction. Since the phase difference between the two connecting bonds depends
on both the microwave frequency ν and the length change ∆l introduced by phase
shifters, in order to get the phase difference of π we have performed series of mea-
surements, where each single measurement is taken for a constant ∆l. Then the spec-
trum of this one measurement contributes only once the condition of ∆ ϕ = π or we
may meet equivalent conditions such as ∆ ϕ = 3π, ∆ ϕ = 5π . . . if the frequency is
high enough that length variation is larger than several half wavelengths.

6 7 8 9 10 11 12

Frequency ν [GHz]

0

1

2

3

4

∆
l 
[c

m
]

Fig. 3.8. Transmission |S00̄|
2 in dependence of frequency in a gray

scale, where the white corresponds the the maximum and the black
corresponds the minimum. Spectra for different ∆l are stacked on
top of each other. The green and red solid curves of ∆l = c/(2 ν) and

∆l = 3 c/(2 ν) correspond to ∆ϕ = π and ∆ϕ = 3π, respectively.

Fig. 3.8 shows a set of transmission spectra, which is the modulus square of the
transmission coefficient |S00̄|

2, in gray scale with white corresponding to maximum
transmission and black corresponding to minimum transmission. This plot is ob-
tained by stacking altogether 396 spectra above of each other, where each spectrum
corresponds to a single ∆l of the phase shifter. The range of ∆l is from ∆lmin ≈ 0
to ∆lmax =4.4 cm. The green line corresponds to ∆l = c/(2 ν) and the red line
corresponds to ∆l = 3 c/(2 ν), which means ∆ϕ = π and ∆ϕ = 3π, respectively.

In order to get the transmission spectrum S00̄ for constant phase from Fig. 3.8 we
made a transformation from ∆l to ∆ϕ by using the relation given by Eq. (3.44). The
rearranged spectrum is shown in Fig. 3.9. By using the Eq. (3.44), one can calculate
the possible maximum phase difference ∆ϕ for a given frequency ν as

∆ϕmax =
2π∆lmax

c
ν (3.45)

The inaccessible region set by this limit is left white. From the plot one can clearly
see that the pattern on the spectrum has 2π periodicity as expected. We can see that
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at positions ∆ϕ = π (green line) and ∆ϕ = 3π (red line) the transmission has a
minimum. This is exactly what is expected for graphs with symplectic symmetry by
Eq. (3.28), where for a GSE graph the total transmission between symmetry equiv-
alent vertices i and ī is zero. In our experiment it is not exactly zero, but strongly
suppressed.
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ϕ

Fig. 3.9. The same data set with Fig. 3.8, but rearranged to yield
spectra for constant ∆ϕ. The green and red solid line corresponds to

constant ∆ϕ = π and ∆ϕ = 3π, see Eq. (3.44).

This can be understood as an interference effect. All possible transmission paths
between coupling points 0, 0̄ to VNA probes P1, P2, respectively, come in pairs and
due to the special configuration of two circulators the propagation on one path is op-
posite to its symmetrically corresponding partner. And one of this path goes through
one of the phase shifter while the second one goes through another phase shifter and
it results in lengths differences ∆l between these paired paths. Depending on their
corresponding phase difference ∆ϕ, there will be a constructive or destructive in-
terference on bonds. It can be directly observed from Fig. 3.9 that the regions at
∆ϕ = 0 and ∆ϕ = 2π are much brighter and the regions at ∆ϕ = π and ∆ϕ = 3π
are much darker. Apart from this, the periodicity of the pattern is easily observable:
for instance, the patterns just below the lines at ∆ϕ = π and ∆ϕ = 3π and in the
frequency window from 9.5 GHz to 12 GHz are repeated.

In order to better visualize this interference effect, the whole transmission spec-
trum is projected onto ∆ϕ axis. The result is shown in Fig. 3.10. At ∆ϕ = π and
∆ϕ = 3π the transmission, which must be zero as predicted by Eq. (3.28), is not
exactly zero, but about 10% of the maximum transmission. This is reflecting the in-
evitable tolerances in the construction of the two subgraphs. The dashed green and
red lines are corresponding to ∆ϕ = π and ∆ϕ = 3π when the ∆ϕ is obtained from
the length change ∆l introduced by two phase shifters and lengths of the cables. We
can see that these dashed lines are not at the minima of frequency averaged trans-
mission 〈|S00̄|

2〉ν. In comparison, there are also solid green and red lines which are
exactly at the minima which are obtained by calibration of the length change in the
experiment. The discrepancy between calculated and measured phase differences
∆ϕ associated to the dashed and solid lines, respectively, correspond to an optical
length of about 1.4 mm. Such a length difference is small enough to be neglected



36 Chapter 3. Microwave realization of Gaussian symplectic ensemble

when we the consider the total typical optical length of 3.3 m of the graphs used in
the measurements. This is also within the range of tolerance provided by the me-
chanical workshop. Therefore, we can rely on this approach to adjust the ∆l such
that the transmission minima are exactly at the position ∆ϕ = π and ∆ϕ = 3π.

0 π 2π 3π

∆ϕ

0.0

0.04

0.08

0.12

〈 |S
0
0̄|2〉 ν

Fig. 3.10. Transmission 〈|S00̄|
2〉ν, averaged over all frequencies ν be-

tween 6 and 12 GHz in dependence of ∆ϕ. See the text for the discus-
sion of the solid and dotted lines.

3.4.2 Reflection spectra and resonance extraction

In the description of the experimental setup we have stated that the two circulators
on subgraphs break time reversal symmetry and turn the disconnected subgraphs
into GUE graphs, meaning that spectral statistics of each of these disconnected sub-
graphs obeys corresponding statistical features of Gaussian unitary random matrix
ensembles. Breaking the time reversal symmetry by means of special techniques and
devices by introducing vector potential to the system is not unusual in microwave
experiments. As the first experimental study of quantum graphs with microwaves
Hul et al. [12] have used a Faraday isolator on one bond to break time reversal sym-
metry. In a recent work [32] by our group, a microwave circulator, exactly of the
type we used in our graph, was used on one bond of quantum microwave graphs to
break time reversal symmetry. In the case of quantum billiards [9, 10] ferromagnetic
stripes are used to break time reversal invariance. In order to check that the two
disconnected subgraphs are identical we have measured reflection spectra of them
and observed that indeed they have identical spectra within the limits of our mea-
surement resolution. To make sure that the subgraph with one circulator, just the
half of the graph shown in Fig. 3.3 (b) (c) without phase shifter, obeys GUE statis-
tics we have prepared 7 different graphs by simply replacing one of the cables with
different lengths and extracted their resonances from corresponding reflection spec-
tra. Fig. 3.11 shows the obtained nearest neighbor spacing distribution which agrees
well with Wigner GUE distribution given by Eq. (2.78b). This check guarantees that
we have indeed constructed two identical GUE subgraphs.

Let us now look into the spectra of the whole combined graph with a single pair
of connecting bonds. In Fig. 3.9 and Fig. 3.10 we have observed that there is almost
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Fig. 3.11. Level-spacing distribution for the disconnected subgraph.
The results of 7 different subgraphs have been superimposed to im-
prove the statistics. The green dashed line corresponds to the Wigner
GOE distribution given by Eq. (2.78a) and the red solid line corre-

sponds to the Wigner GUE distribution given by Eq. (2.78b).

zero transmission at ∆ϕ = π and ∆ϕ = 3π, as already expected by Eq. (3.28). There-
fore, we rather analyzed the reflection spectra, more precisely the modulus square of
the reflection coefficient |S00|2 measured at vertex 0 coupled to Port1 (P1 in the sketch
of the setup, see Fig. 3.3) of Vector Network Analyzer (VNA). Again, as we did for
the transmission spectra, we stacked all 396 individual reflection spectra above of
each other for constant length change ∆l of phase shifters. We then rearranged the
data set to the constant phase difference ∆ϕ which we plotted in gray scale with
dark being the minimum reflection and white being the maximum reflection. The
result is shown in Fig. 3.12 in the working range of circulators from 6 GHz to 12
GHz. From this figure one may not see too much information. Thus to see more
details we plotted a smaller frequency window from 7.37 GHz to 7.712 GHz (the left
shaded region in Fig. 3.12) shown in Fig. 3.13 (a) where the part of the spectra below
the red line is repeated on the top of the spectra (the part above the white horizontal
line) to emphasize the periodicity of the spectra as a function of the phase difference
∆ϕ with a period of 2π. Each dip in a reflection spectrum is a resonance which is
encoded as dark and the corresponding frequency is the eigenfrequency. We have
additionally edited the figure by adding red and green dashed lines along the dark
patterns which are eigenfrequencies periodically shifting with the change of ∆ϕ just
to lead the readers eye.

Due to the limited dynamic range of our phase shifters we are only able to di-
rectly measure the spectra including the repetition of the pattern at around ∆ϕ = π
for the frequency windows of around 9.8 GHz to 12 GHz, this is limited by the rela-
tion (3.45), which can bee seen from the Fig. 3.9 and Fig. 3.12. We have zoomed in a
smaller frequency window ranges 11.3 GHz to 11.75 GHz (the right shaded region
in Fig. 3.12) shown in Fig. 3.13 (b). From this figure we can clearly see that spectra
around ∆ϕ = π have been repeated full details after exactly 2π of change in phase
difference ∆ϕ, it means around ∆ϕ = 3π.
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Fig. 3.12. Reflection |S00|2 spectra for constant ∆ϕ. The green
and red solid line corresponds to constant ∆ϕ = π and ∆ϕ = 3π,
see Eq. (3.44). The shaded resions are presented in more detail in

Figs. 3.13 (a), (b), respectively.

One can easily notice that at some regions two nearby resonances are hard to be
resolved or in some cases resonances just disappear for short ranges of ∆ϕ. And
such cases are observed more at higher frequency range. Hence in the measurement
a resonance may be overlooked for some unknown reasons or the reflection ampli-
tude is so small to be observed, meaning that the resonance must be there because a
resonance is defined by the graph itself and can not be destroyed or created by the
parametric change of the phase difference ∆ϕ which can only shift a resonance and
may also effect its intensity.

If we look more closely at Fig. 3.13 (a) and Fig. 3.13 (b) starting from ∆ϕ = 0 along
the increasing of ∆ϕ up to the top of the figures, one notices that the resonances are
experiencing a breathing pattern, forming Kramers doublets at the π line in Fig. 3.13
(a) and at π and 3π lines in Fig. 3.13 (b). If we guide our eyes along the red and green
dashed lines with the increasing ∆ϕ, then it can be noticed that two singlets are com-
ing close each other along ∆ϕ = 0 → ∆ϕ = π (and ∆ϕ = 2π → ∆ϕ = 3π ), exactly
at ∆ϕ = π (and ∆ϕ = 3π) they overlap each other and form the Kramers doublets.
We have observed such Kramers doublets along the whole frequency window from
6 GHz to 12 GHz for each single graph. When ∆ϕ departs from this position(s) the
doublets are split, see Fig. 3.13. Such dynamics is better visible in Fig. 3.14 showing
the evolution of individual spectra in orange. The dashed orange line corresponds to
the spectrum at ∆ϕ = π with resonances, Kramers doublets, at 7.40092 GHz, 7.45191
GHz, 7.51599 GHz, 7.57799 GHz, 7.625 GHz, 7.679 GHz which are marked with blue
dots in Fig. 3.14. The full reflection spectrum from 6 GHz to 12 GHz of one GSE
graph is given in Appendix (A).

There is a complete equivalence to the Zeeman splitting of spin doublets: In our
experiment the antiunitary symmetry is destroyed when departing from the π (and
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Fig. 3.13. Reflection |S00|2 in dependence of frequency in a gray scale.
The spectra for different ∆ϕ are stacked onto each other. (a) At fre-
quency range from 7.37 - 7.712 GHz. The bottom part of the spectra
has been repeated at the top, the part above the white line, to empha-
size the periodic structure. The colored dotted lines are guides to the
eye to emphasize the parametric dynamics of the resonances. (b) At
higher frequency range from 11.3 - 11.75 GHz. In this window the 2π
periodic repetition is directly observed from the measurement data.
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3π) line, whereas for conventional spin systems this effect occurs when a mag-
netic field is applied. Such a Zeeman splitting of Kramers doublets is reported in
Ref. [11], where magnetic field dependence of resonances of a chaotic quantum dot,
a nominally 10 nm diameter gold colloid, is studied. This demonstrates that we have
been successful in constructing a graph with antiunitary symmetry T with T 2 = −1.
The mutual distances between the doublets are same within 20%. This shows a clear
tendency towards an constant level spacing at the π line, which is one of the finger-
prints of a GSE spectrum.

Fig. 3.14. Reflection |S00|2 in dependence of frequency in a gray scale.
The spectra for different ∆ϕ are stacked onto each other. This shows
the same window shown in Fig. 3.13 (a) the part below the white
line. The orange lines are showing individual spectra |S00|2 for sev-
eral constant values of ∆ϕ, the dashed orange line corresponds to the
spectrum at ∆ϕ = π, which is separately analyzed in Fig. 3.15. The six
Kramers doublets are marked with blue dots and the solid horizontal

red line is for constant ∆ϕ = π.

In Sec. 3.2.3 we have seen that the scattering matrix of a graph with symplec-
tic symmetry does not have transmission, and reflection coefficients are unity, see
Eq. (3.28). The effect of absorption within the bonds of the graph was not consid-
ered. Taking absorption into account each eigenfrequency results in a dip in the
reflection spectrum. In standard methods, one has to fit the resonance to Lorentzian
line shape in order to obtain the associated eigenfrequency. By Eq. (3.28) it was
shown that the most information about the GSE graph properties are stored in the
reflection phase such that each zeros of the determinant of the graph secular matrix
|h(k)| give jumps in the reflection phase. Fig. 3.15 shows the spectrum of the same
six Kramers doublets at ∆ϕ = π of Fig. 3.13 (a). The upper panel shows the mod-
ulus square of reflection coefficient ,|S00|2. In the middle panel the corresponding
reflection phase α00 is plotted. One can see that the phase jumps are not so sharp
as one may expect, but with some finite width due to the unavoidable absorption
within the bonds. The imperfect calibration is responsible for the overall decrease
of the phase along the frequency ν. The phases introduced during the propagation
of the microwave along the whole graph are possible to be removed via calibration.
Nonetheless, some phases resulting from the connectors are not easy to handle. The
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plot in lower panel shows the modulus square of the phase derivative, where the
contribution from the overall decrease had been subtracted before. We can clearly
note that now all the six resonances are much more narrower than the directly ob-
tained original resonances showed in upper panel.
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Fig. 3.15. (top) Reflection |S00|2 for ∆ϕ = π for the same frequency
range as in Fig. 3.13 (b). (middle) Phase α00 of the reflection. (bottom)

Squared phase derivative |dα00/dν|2.

This method provides us with a more efficient approach towards the process
of the resonance extraction than performing Lorentzian line fitting as mentioned
earlier. By setting a discrimination level to the value of modulus squared phase
derivative 〈|S00|2〉ν along the whole range of 6 to 12 GHz approximately 90 % of all
resonances can be automatically identified in few minutes. As wee can see from the
lower panel of Fig. 3.15 that due to absorption there are some resonances which can
not be identified automatically, for instance the one at 7.57799 GHz, due to the very
small value of 〈|S00|2〉ν. Then we can look at the dynamics of the singlets at both
sides of ∆ϕ = π line. The ∆ϕ depending evolution of the left member of a doublet is
marked with a red dotted line and the corresponding right member is marked with
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a green dotted line, see Fig. 3.13 (a) and Fig. 3.13 (b). While ∆ϕ is approaching the
π line or 3π line, the left and right singlets gradually come close to each other and
eventually at π or 3π merge into one doublet. By this way, we can identify several
more resonances. Due to the imperfection in our setup around 10 % of doublets do
not appear exactly at ∆ϕ = π, but somewhere above or below the ∆ϕ = π line. This
means that there two already separated singlets at ∆ϕ = π line instead a doublet.
In this case we have taken the eigenfrequencies of these two singlets and taken the
average of them as the eigenfrequency of the corresponding doublet. The possible
uncertainty such introduced to the resonance frequency is around 10 % of the mean
level spacing. As a result, this will not give noticeable disturbances to the level
spacing distributions and correlation of energy levels, as we shall show later.

The Weyl law for a quantum graph of total length L given in Eq. (3.48) at the next
section allows us to predict the average number of resonances in certain frequency
range. Here L is the optical length L = n Lg with Lg being the total geometrical
length of the graph and n the refractive index of the dielectric material filled between
the inner and outer conductors, in our case n = 1.43. By comparing the expected av-
erage number given by the Wey law and experimentally extracted resonances we
conclude that in average 7.5 % of eigenvalues have been missed. In microwave ex-
periments, it is hard to avoid few percent of missing levels. In our experiment the
following two sources may be responsible for missed eigenvalues: one, misidentifi-
cation of nearby resonances by a single one; second, when the coupling point of the
VNA port is very close to the nodal line, resonances will be missed. Thanks to the
strong repulsion between neighboring eigenvalues of GSE spectrum the eigenvalues
are well isolated and tend to equally spacing as can be seen from the Fig. 3.13. There-
fore the first case can be excluded. For the second case it is possible to avoid missing
level or decrease the number of possible missing levels by repeating the measure-
ment at different coupling point of the system to the VNA port. However, as will be
seen later, the results are sufficient to show the GSE behavior.
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3.5 Spectral fluctuations

After the extraction of the eigenfrequencies of Kramers doublets for the whole graph,
we are able to calculate the density of states by the standard definition

ρ(k) = ∑
i

δ(k− ki), (3.46)

where k = (2 π ν)/c is the wave number of the microwave and c is the vacuum
velocity of light. With this level density we can construct a staircase function N(k) =∫

ρ(k′)dk′ which fluctuates around a smoothly varying part which is described by
the Weyl law for the mean level density and one fluctuating part as

N(k) = NWeyl(k) + N f luc(k), (3.47)

This is actually a special case of Gutzwiller’s trace formula [36] (see also chapter 7
and 8 of Ref. [8] for more details).
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Fig. 3.16. The blue solid line is the staircase function N(k) for set
of eigenvalues corresponding to Kramers doublets of one symplectic
graph. The total length of the graph is 334.05 cm and total of 128
eigenvalues are identified. The red straight line is for the linear fitting

to extract the smoothed part of N(k).

Fig. 3.16 shows the staircase function N(k) of one of our graphs. The mean of
this staircase function NWeyl(k) can be obtained by simply fitting a line NWeyl(k) =
aexp k + b to the experimentally measured staircase function N(k). The slope of the
best fit line is aexp = 1.0210. For a quantum graph, the Weyl formula NWeyl(k) is
given as

NWeyl(k) = N̄(0) +
L
π

k, (3.48)

where N̄(0) = 1/2 and L is the total length of the graph being considered. Note
that Kottos and Smilansky [24] have used a somewhat different definition, as they
have defined directed graphs thus doubling the length of their graphs. For the case
of quantum billiards the Weyl law depends on area and perimeter of the billiard.
However, a quantum graphs is one dimensional system, thus the Weyl law only
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depends on the length of the whole graph. The measured total optical length of
the graph is 334.05 cm resulting in a theoretical value for the slope from the Weyl
law of ath = 1.0633, which is close to the slope of experimental staircase function.
The experimental data agreed well with the Weyl law given in Eq. (3.48), and the
fluctuation of the staircase function around the mean is hardly noticeable.

The fluctuating part N f luc(k) can be obtained by subtracting the smoothed part
NWeyl(k) from the experimental staircase function N(k) as

N f luc(k) = N(k)− NWeyl(k) , (3.49)
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Fig. 3.17. The blue solid line is showing the fluctuating part given in
Eq. (3.49) of the staircase function N(k) plotted in Fig. 3.16. The red

dashed line

Fig. 3.17 shows the fluctuation of the levels versus the wave number k. From the
overall structure, it is exhibiting an oscillation around zero. This fluctuating part
contains information on the underlying classical dynamics of the system [37]. In
principle, with this information one can identify associated periodic orbits. How-
ever, due to the small number of accessible eigenvalues for one symplectic graph,
we shall not proceed in that direction.



3.6. Level spacing distribution 45

3.6 Level spacing distribution

In previous section we have demonstrated that our microwave graph shown in
Fig. 3.3 has symplectic symmetry which is usually associated with spin-1/2 sys-
tems. In this section we will focus on nearest neighbor spacing distribution (NNSD)
of those Kramers doublets observed at ∆ϕ = π.

Fig. 3.18 shows the level spacing distribution p(s) of symplectic graphs with
one pair of connecting bonds, where s = s′/〈s′〉 is the normalized level spacing,
〈s′〉 is the mean level spacing which is normalized to one for each single graph
and s′ = νn+1 − νn is the spacing between two nearest resonances, for symplectic
case the doublets. This result is obtained by collecting eigenfrequencies associated
to Kramers doublets from 9 different graphs and altogether 1130 eigenvalues are
used. These different graphs are achieved by: (i) replacing pair(s) of bonds with
other bonds of different lengths; (ii) changing the coupling points of the graph to the
probing leads. For each of these graphs with a typical optical length of 3.3 m, there
are about 130 doublets observed. The green dashed line corresponds to the Wigner
GUE distribution as given in Eq. (2.78b) and the red solid line is corresponding to
the Wigner GSE distribution which is given in Eq. (2.78c). The experimental result,
the histogram, fits well to the Wigner GSE distribution and is clearly at odds with
a GUE distribution. The dotted black line is for level spacing distribution obtained
from the one pair of connecting bonds approximation given in Eq. (3.41). During the
preparation of thesis we have noticed that already Kuemmeth et al. [11] observed
GSE statistics in the spectra of Au nanoparticles.
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Fig. 3.18. Spectral nearest neighbor spacing distribution for symplec-
tic graphs with a single pair of connecting bonds obtained by super-
imposing the results from 9 different spectra (blue). The solid red and
dashed green line correspond to GSE and GUE Wigner distributions,
respectively, see Eqs. (3.42) and (2.78b). The dotted black line corre-
sponds to the single pair of bonds approximation given in Eq. (3.41).

This result makes the whole spin-1/2 physics [38] accessible to microwave analogue
studies.

In Sec. 3.2.4 we have seen that one pair of connecting bonds is not sufficient to
couple two subgraphs with identical GUE spectra such that the spectrum of resulting
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coupled graph agrees completely with Wigner GSE statistics. Nevertheless, the level
spacing distribution shows the quartic level repulsion at small spacings as shown
in Fig. 3.4, which is one of the main characteristics of GSE statistics. In order to
increase the coupling between the two GUE subspectra we have modified the graph
by simply adding another one pair of connecting bonds as shown in the sketch (3.19).
One phase shifter sketched as a dashed blue line (and noted by PS1 on the sketch)
is placed on the one bond, b = (6̄, 4), the second phase shifter PS2 is placed on the
bond b = (1̄, 3), sketched as a dashed red line. Therefore, one pair includes b4̄6, b6̄4,
while the another pair includes b13̄, b3,1̄. When the phase shifters at one step, say at
the origin, the lengths of cables are chosen such that L4̄6 = L6̄4 and L13̄ = L3,1̄. When
performing the measurement for the graph with this configurations care must be
taken, because the phase difference ∆ϕ between the two bonds of each pairs must
be exactly the same. After many times of testing, we were successful to achieve this
requirements and the resulting phase difference ∆ϕ is taken care via the calibration
of the length difference ∆l on both pairs again by checking the transmission minima
as did for the graph with one pair of connecting bonds, Sec. 3.4.1. We used the same
approach in the extraction of resonances at ∆ϕ = π.
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Fig. 3.19. The sketch of the GSE graph with two pairs of connecting
bonds. Where the dashed red line corresponds to one phase shifter
and dashed blue line correspond to another phase shifter. The lengths
of bonds are not to scale. The red shaded points at vertex 7 and 7̄

correspond to the position of circulators.

Fig. 3.20 shows the level spacing distribution of this graph with two pairs of con-
necting bonds. We used altogether 777 eigenvalues collected from 5 different graphs
which are obtained by changing the lengths of their bonds. The spacings s between
nearest neighboring levels are normalized by the mean level spacing 〈s〉 = 1 for
each graph. The experimental result agrees well with the Wigner GSE distribution
given by Eq. (3.42), the green dashed line corresponds to the Wigner GUE distribu-
tion given by Eq. (2.78b) and the black dotted line is for the distribution from the one
pair of connecting bonds approximation given in Eq. (3.41).
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Fig. 3.20. Spectral nearest neighbor spacing distribution for symplec-
tic graphs with a two pairs of connecting bonds obtained by superim-
posing the results from 5 different spectra (blue). The solid red and
dashed green line correspond to GSE and GUE Wigner distributions,
respectively, see Eqs. (3.42) and (2.78b). The dotted black line corre-
sponds to the single pair of bonds approximation given in Eq. (3.41).

In principle one should expect to see the effect of one extra pair of connecting
bonds from the resulting level spacing distribution in comparison with the distribu-
tion from one pair of connecting bonds approximation given by in Eq. (3.41). To see
the difference one would have to use at least 10 times more eigenvalues. Comparing
Figs. 3.18 and 3.20 one notices that the statistical evidence is not sufficient to see the
influence of the additional pairs of bonds. from the symplectic graph with one pair
of connecting bonds, due to the statistically insufficient experimental data we did
not observe significant improvements in our experimental result, the histogram in
Fig. 3.20, from the symplectic graph with two pairs of connecting bonds. Therefore,
from the practical point of view the Wigner GSE distribution is completely sufficient
to describe the experimental data, although in random matrix simulations, the his-
togram in Fig. 3.4, the difference to the single pair of bonds approximation is clearly
distinguishable, where 105 Kramers doublets from random matrix simulation have
been used and the same number of energy levels are used in Ref. [23] to obtain the
result shown in Fig. 3.1 for the GSE graph with two pair of connecting bonds as well.

A further increase of number of pairs of connecting bonds would boost the com-
plexity of the experiment and would require considerable extra efforts, but the nu-
merically it is easy to address this problem. Fig. 3.21 shows the random matrix result
for the level spacing distribution of gradually increased number of pairs of connect-
ing bonds. The random matrix spectra were generated based on the Hamiltonian
given by Eq. (3.31), where the off-diagonal elements are given by Eq. (3.32) for GSE
graph with only one pair of connecting bonds. In the random matrix simulation a
more general form was used as given in Eq. (3.50),

[
VV̄†

]
nm

=
b

∑
i=1

[
ψn,2i−1ψm,2i+eı∆ϕψn,2iψm,2i−1

]
(3.50)
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was used to generate the off-diagonal elements for graphs with more number of con-
necting bonds, where b is the number of pairs of bonds in Eq. (3.50) and ∆ϕ = π for
the symplectic case. Sure enough for ten pairs of connecting bonds the level spac-
ing distribution completely converges to Wigner GSE distribution. A more detailed
description of this result can be found on the Appendix B of Ref. [13].
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Fig. 3.21. The level spacing distribution p(s) for random matrix sim-
ulation for the GSE graph, using the Hamiltonian given in Eq. (3.31)
and with off-diagonal blocks given by Eq. (3.50) for ∆ϕ = π with
several different number of pairs of connecting bonds b = 1 (blue),
b = 2 (gray) and b = 10 (black). The green dashed line is for Wigner
GSE distribution and the red solid line is for the distribution from
one pair of bonds approximation given in Eq. (3.41). The size of the
GSE subblocks H0 and H̄0 is 500. Each histogram is a result of 2000

realizations.
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3.7 Spectral correlations

One way to quantitatively distinguish random matrix Gaussian ensembles is the
nearest neighbor spacing distribution (NNSD) p(s) which measures the short range
correlation between neighboring energy levels. Random matrix theory has provided
several other quantities to discriminate Gaussian ensemble in terms of long range
spectral correlations. In this section we will present our experimental results from
the symplectic spectra in this regards.

3.7.1 Spectral two-point correlation function R2(L)

The spectral two-point correlation function is the probability density to find two
different eigenenergies with distance L = En − Em,

R2(L) =
1
N ∑

n,m

′ δ (L− En + Em) (3.51)

where L is given in unit of the mean level spacings. The two-point correlation func-
tion R2(L) shows oscillation for L > 1 for all three random matrix Gaussian ensem-
bles. This oscillation is actually originated from the level repulsion. For the Gaussian
symplectic ensemble (GSE), this oscillation is much stronger than for the other two
ensembles thanks to the strong quartic level repulsion.
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Fig. 3.22. Experimental two-point correlation function R2(L), to-
gether with the random matrix prediction for the GSE (solid red) and

the GUE (dashed green), respectively.

The experimental result for R2(L) from the GSE graph is presented in Fig. 3.22
together with the theoretical R2(L) for GSE and GUE systems. The same data set
used for Fig. 3.18 is used. The random matrix ensemble-averaged theoretical R2(L)
for all three Gaussian ensembles are given in Ref. [2], and is given for GUE system
by

R2(L) = 1−
(sin(πL)

πL

)2
, (3.52)
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and for the GSE system by

R2(L) = 1−
(sin(2πL)

2πL

)2
+

d
dL

(
sin(2 πL)

2 πL

) ∫ L

0

(
sin(2 πt)

2 πt

)
dt. (3.53)

The behavior for small L→ 0 is

R2(L) ∼
{

L2 , (GUE)
L4 , (GSE) (3.54)

The experiment agrees very well with theoretical R2(L) for GSE system such that the
expected strong oscillation with peaks at integer L for GSE from the theory is repro-
duced by the experiment. The experimental R2(L) for overall L follows rather GSE
than GUE. Moreover, the oscillation with increasing L is stronger than the theoretical
expectation by Eq. (3.53). This is suggesting that the level correlation is stronger than
the random matrix theoretical prediction. Indeed the behavior of the experimental
spectral rigidity ∆3(L) for L ≤ 12 is in favor of this suggestion, see Sec. 3.7.3.

3.7.2 Spectral form factor K(τ)

The most conspicuous quantity to distinguish Gaussian ensembles is the spectral
form factor K(τ), which is defined as the Fourier transform of the spectral two-point
correlation function,

K(τ) =
1
N ∑

n,m

′ e2πıτ(En−Em) . (3.55)

where τ = t/TH is the normalized time with TH = 2 π h̄ρ̄ being the Heisenberg-time
and ρ̄ the mean level density. For the GUE the ensemble averaged form factor is
given by

K(τ) =
{

τ , τ ≤ 1
1 , τ > 1

(3.56)

For the GSE the ensemble averaged form factor is given by

K(τ) =
{ 1

2 |τ| −
1
4 |τ| ln |1− |τ|| , τ ≤ 2

1 , τ > 2
(3.57)

The logarithmic singularity at τ = 1 described by Eq. (3.57) is an unmistakable sig-
nature of the GSE system, while for other Gaussian ensembles the form factor K(τ)
is continuous for all values of τ. Fig. 3.23 is showing the experimental result for K(τ)
together with theoretical predictions for GSE and GUE systems. The experimental
result agrees well with theoretical prediction given by Eq. (3.57) including the sin-
gularity at τ = 1 expected by theory for GSE system, which is nicely reproduced in
the experiment. In the experimental result we did not remove the diagonal term of
the double sum in Eq. (3.55), which in turn results in a delta peak at τ = 0.
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Fig. 3.23. The spectral form factor K(τ). The blue solid line is for the
experimental result and the random matrix theoretical spectral form
factor (or Dyson-Mehta statistics) K(τ) for GSE (orange solid), GUE
(green dashed). The peak at τ = 0 from the double sum in Eq. (3.55)

was not removed from the experimental result.

3.7.3 Number variance Σ2(L) and spectral rigidity ∆3(L)

In many experiments the available data are not sufficient to exhibit expected features
of the system via the spectral two-point correlation function R2(L) and spectral form
factor K(τ). But smoothed quantities such as the number variance Σ2(L) and spec-
tral rigidity ∆3(L) may still reveal the statistical properties of the system. Following
Ref. [8] the number variance Σ2(L) is defined as the variance of the number n(E, L)
of eigenvalues in an interval of length L, centered at the energy E,

Σ2(L) = 〈(n(E, L)− 〈n(E, L)〉)2〉 (3.58)

where n(E, L) =
∫ E+L/2

E−L/2 ρ(E) dE and its ensemble average 〈n(E, L)〉 = L is indepen-
dent of E. By assuming the mean level density normalized to one, Eq. (3.58) may be
written as

Σ2(L) = L− 2
∫ L

0
(L− E)(1− R2(E)) dE (3.59)

We can see that Σ2(L) is somehow a smoothed version of the two-point correlation
function R2(E). The experimental result for Σ2(L) is plotted in Fig. 3.24. An overall
good agreement between the experimental result and random matrix prediction for
GSE is found for L ≤ 2, for larger values of L there are clear deviations which can
be understood as the effect of missing levels.
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Fig. 3.24. The spectral number variance Σ2(L). The blue solid line
is for the experimental result and the theoretical number variance ∆3
for GSE (red dashed), GUE (green dashed), GOE (black dotted) and

Poisson (dashed-dotted).

The next quantity to check is the spectral rigidity ∆3(L) introduced by Dyson and
Mehta [2, 39], which is also based on the two-level correlation function and more
frequently used than the number variance Σ2(L). The spectral rigidity is defined as
the ensemble average of the minimum of the χ2 function obtained in the fit,

∆3(L) =
〈

min
a,b

∫ E+L/2

E−L/2
[n(E)− (b E + a)]2 dE

〉
, (3.60)

where n(E) is the integrated density of states. It is actually the staircase function in
Eq. (3.47) with mean slope of one, indeed the slope found from fitting in Fig. 3.16
is 1.0210 very close to one. a and b are the intercept and slope of the fitted line,
respectively. We can see that the spectral rigidity does not depend on the energy
level itself, but does on the all possible distances L of these levels. Alternatively,
∆3(L) can be expressed in terms of the number variance Σ2(L) as

∆3(L) =
2
L4

L∫
0

(
L3 − 2L2E + E3)Σ2(E)dE . (3.61)

Fig. 3.25 shows the experimental result and random matrix theoretical prediction for
spectral rigidity ∆3(L). The experimental result, the blue solid line, agrees with the
random matrix prediction, the red dashed line, for L ≤ 2 and for larger values of
L up to L = 12 the experimental spectral rigidity is below the random matrix pre-
diction. For L > 12 the experimental result is above the random matrix prediction,
this is again due to the missing levels. The effect of missing level on the statistical
properties of a spectrum can be found in more details in Ref. [40, 41].

∆3(L) measures the degree of rigidity of the spectrum in such a way that for a
given range L, the smaller ∆3(L) is, the stronger is the rigidity, signifying the long
range correlations between levels [39]. Therefore, the spectrum of our GSE graph
at ∆ϕ = π is even more rigid and the levels are much stronger correlated than
predicted degree expected by random matrix theory, at least for L ≤ 12.
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Fig. 3.25. The spectral rigidity ∆3(L). The blue solid line is for the
experimental result and the theoretical spectral rigidity (or Dyson-
Mehta statistics) ∆3 for GSE (red dashed), GUE (green dashed), GOE

(black dotted) and Poisson (dashed-dotted).



54 Chapter 3. Microwave realization of Gaussian symplectic ensemble

3.8 Dynamical transition from GSE via GUE to GOE

Although our experiment was designed with the motivation to realize GSE statistics,
the measured spectra shown in Fig. 3.12 do not only allow to analyze the spectrum
at ∆ϕ = π where the GSE statistics is observed as expected, but also provide a broad
range of spectra for all values of ∆ϕ from 0 to 2 π and even up to 3 π at higher fre-
quencies. We take advantage of this particular feature of the experimental spectra
of our GSE microwave graph to study the spectral level dynamics depending on
∆ϕ. In all previous sections we have mainly studied the spectrum at ∆ϕ = π in
details. ∆ϕ = π corresponds to the minus sign in Eq. (3.16) (middle) and the corre-
sponding spectrum of the graph has antiunitary symmetry of T , squaring to minus
one, T 2 = −1 and the statistics of the observed Kramers doublets showed Wigner
GSE type. For the case of ∆ϕ = 0 or ∆ϕ = 2 π that minus sign in Eq. (3.16) (mid-
dle) is missing and the resulted spectrum has still the antiunitary symmetry T , but
now obeying T 2 = +1, the corresponding statistics of the eigenvalues is expected
to follow Wigner GOE statistics. At all other values of ∆ϕ in between 0 and π, set
∆ϕ = 3 π/2 or π and 2 π the corresponding spectra do not have an antiunitary
symmetry, in other words, the antiunitary symmetry is broken, thus Wigner GUE
statistics is expected (regarding in this respect see Sec. 2.5 of Ref. [4]).

Apart from changing symmetry for different values of ∆ϕ, the whole spectra
have another interesting feature to be discussed. As the unique property of our
setup the phase difference ∆ϕ can be changed by changing the length difference ∆l
introduced by two phase shifters, this results in a change of the mean level density
∆ρWeyl = ∆l/π = ∆ϕ/(π k), where k is the microwave wave number. Varying ∆ϕ
from 0 to 2 π results in a change of 2/k of the mean level density ρWeyl . If ∆ϕ changes
by 2 π, the mean integrated density of states NWeyl(k) = k ρWeyl by a factor of 2. From
the Figs. 3.13 and 3.16 we see that this is also true for the exact integrated density of
states, the staircase function N(k), thanks to the periodicity of the spectra. Following
any resonance from ∆ϕ = 0 to ∆ϕ = 2π it arrives two resonances to the right at the
crossing of the 2π line. Wrapping the spectra onto a cylinder by identifying the line
∆ϕ = 0 with the line ∆ϕ = 2π the spectra may hence be interpreted in terms of
just one pair of resonances twisted spiral-like along the cylinder surface. The two
members of the pair merge whenever they cross the π line and typically have a
maximal spacing when crossing the 2π line.

In order to check the symmetries expected for spectra associated with differ-
ent values of the phase difference ∆ϕ, we shall focus our analysis on the spectra
at ∆ϕ = π, ∆ϕ = 3 π/2 and ∆ϕ = 2 π where GSE, GUE, GOE statistics are expected,
respectively. The spectrum at ∆ϕ = π has already been considered in details. How-
ever, the approach explained in Sec. 3.4.2 is used to extract the resonances of the
spectrum at ∆ϕ = π no longer works efficiently for the spectra at ∆ϕ = 3 π/2 and
∆ϕ = 2 π. In principle, fitting the spectrum to complex Lorentzian should work but
it would be quite exhausting for altogether 14 graphs with around 250 and around
220 eigenvalues at ∆ϕ = 3 π/2 and ∆ϕ = 2 π, respectively. Therefore, to iden-
tify resonances we looked at the minima of each corresponding spectrum. The well
known drawback of this method is that it is quite difficult even confusing to decide
the correct resonance frequency when it comes to the overlapping resonances. For
one or the other reason few percent of our doublets were not split well at ∆ϕ = 2 π
particularly at ∆ϕ = 3 π/2 where the reminiscences of symplectic symmetry are still
considerable, this can also be seen from Fig. 3.13. We admit that the quality of the
extracted data could be further improved.

Fig. 3.26 is showing the results. The plots at left column, from top to bottom,
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are the nearest neighbor spacing distributions p(s) of the spectra for ∆ϕ = π, ∆ϕ =
3 π/2 and ∆ϕ = 2 π, respectively. In order to make the discussion coherent, we have
used individual 2 levels of each Kramers doublet instead of using corresponding
Kramers doublet as one single level, this gives an additional peak to the level spacing
distribution at s = 0 corresponding to the zero distance between the two member
levels of each doublet. When we do so we have to ensure that the mean level spacing
is 〈s〉 = 1, this moves the distribution of Kramers doublets to the right by factor of
two. So the experimental data is collected from all 14 different graphs with one pair
of connecting bonds and two pairs of connecting bonds.

The experimental level spacing distributions of the spectra at ∆ϕ = π and ∆ϕ =
2 π agreed well with Wigner GSE and Wigner GOE distributions, respectively. For
the level spacing distribution of the spectrum at ∆ϕ = 3 π/2 a deviation from the
Wigner GUE distribution is found. Since all the three classical Gaussian random
matrix ensembles, namely GOE, GUE and GSE, with corresponding indices β = 1,
β = 2 and β = 4, can be discriminated by means of the order of level repulsion
at small distances of neighboring levels by comparing their level spacing distribu-
tions pβ(s). One expects for s → 0 linear level repulsion p1(s) ∼ s for GOE system,
quadratic level repulsion p2(s) ∼ s2 for GUE system and quartic level repulsion
p4(s) ∼ s4 for GSE system. To see the small distance behavior of level spacing dis-
tribution p(s) we have used integrated level spacing distribution

I(s) =
∫ s

0
p(s̄)ds̄, (3.62)

The analytic expression for β = 1 is

I1(s) = 1− e−
π
4 s2

(3.63)

for β = 2 The analytic expression for β = 1 is

I2(s) = er f (
√

as)− a s e−a s2
(3.64)

where a = 4
π . For β = 4

I4(s) =
3
√

π c
8 a3/2 er f (

√
a s)− c s3

2
e−a s2 − 3 c s

4a
e−a s2

(3.65)

where a = 64
9π and c = 212

34π2 and er f (x) in Eqs. (3.64), (3.65) is the error function. Due
to the integration given by Eq. (3.62), the expected level repulsion exponent will be
increased by one as Iβ(s) ∼ sβ+1 for small distances s ∼ 0.

Both the experimental and theoretical results are presented on the right column
of Fig. 3.26. To make the repulsion exponents clearly visible, we plotted Iβ(s) ver-
sus s in double logarithmic scale. The plots d) and f) correspond to ∆ϕ = π and
∆ϕ = 2 π showing a good agreement over nearly two orders of magnitudes of the
integrated level spacing distribution Iβ(s) for the cases of β = 4 and β = 1, respec-
tively. The antiunitary symmetry T with T 2 = −1 or T 2 = +1 thus really maps
onto a spectral repulsion p(s) ∼ sβ with β = 4 and 1, respectively. For the case of
∆ϕ = 3 π/2, the experimental result is clearly at odds with the integrated Wigner
GUE level spacing distribution, but still it shows the expected repulsion exponent
for β = 2 (the dotted black line in plot e)).

At the beginning of this section we have argued that the antiunitary symmetry T
with T 2 = −1 at ∆ϕ = π will be broken for all values of ∆ϕ departing from π to 2 π,
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Fig. 3.26. Level-spacing distributions [left, a) - c)] and correspond-
ing integrated level-spacing distributions [right, d) - f)] for ∆ϕ=π,
∆ϕ=1.5π and ∆ϕ=2π (from left to right). The green dashed, cyan
dotted, and red solid lines correspond to the Wigner GOE, GUE, and
GSE distributions, respectively. For the integrated spacings only the
respective distribution is plotted as solid line. The dotted line in e)

indicates a slope of 3.
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but the experimental result showed in plot b) is indicating that this is not perfectly
true for spectra we analyzed. The level dynamics depending on ∆ϕ is not sufficient
to completely destroy the correlation between the two member of the Kramers dou-
blets. As it seems, when ∆ϕ departs from ∆ϕ = π line, the degeneracy is lifted and
Kramers doublets start to split, but the correlation between the previous two mem-
bers of each doublet maintains up to considerable value of ∆ϕ. The level spacing
distribution p(s) for the small spacing like s < 0.5 is exceeding to the left from the
expected GUE curve in plot b) of Fig. 3.26. This feature can be understand as an
indication of the remaining correlation of members of each doublet. Similar behav-
ior is also observed in random matrix simulation from the level spacing distribution
of a spectrum for a GSE graph with one pair of connecting bonds and two pairs of
connecting bonds, shown in Fig. 3.27. For ten pairs of connecting bonds, the level
spacing distribution agrees completely to Wigner GUE distribution (See Appendix
B of Ref. [13] to more details of the simulation).
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Fig. 3.27. The level spacing distribution p(s) for random matrix sim-
ulation for the GUE graph, using the Hamiltonian in Eq. (3.31) and
with off-diagonal blocks in Eq. (3.50) for ∆ϕ = 3 π/2 with several
different number of pairs of connecting bonds b = 1 (blue), b = 2
(gray) and b = 10 (black). The solid red curve is for Wigner GUE
distribution. The size of the GUE subblocks H0 and H̄0 is 500. Each

histogram is a result of 2000 realizations.
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Scattering experiments on graphs with
orthogonal, unitary and symplectic
symmetry

4.1 Motivation

During the last decade transport properties and scattering of waves within different
systems have been studied both theoretically and experimentally. The area of meso-
scopic quantum systems has been one of the popular playground in this regard. The
Landauer-Büttiker formalism provides a unique way which allows one to study the
electrical conductance of a medium by looking at relevant scattering properties of
the system of interest. Based on this approach the classical analogies of quantum
systems have been used as auxiliary tools for a better understanding of the conduc-
tance properties of an electrical devices in two-terminal configurations. There are an
abundant number of scattering experiments for systems with time reversal symme-
try (TRS) and there are few number of scattering experiments on systems without
time reversal symmetry. To our knowledge, including our result discussed in previ-
ous Chap. 3 there are only two experimental studies are available for systems with
time reversal symmetry and spin-1/2 interaction [11, 13, 33].

When it comes to the measurement of the conducting features of devices, multi-
terminal probing technique are quite popular [42, 43]. Alternatively to the mostly
used two-terminal configuration, three terminal systems provide information of non-
local effects associated with transport observables. There is a comprehensive theo-
retical understanding of quantum graph [24, 27], and there are also a number of
microwave experiments on the subject [12, 13, 32, 33].

In this chapter I will present our results of a currently undergoing joint project
with Dr. A. M. Martínez-Argüello from Mexico. I will start with the presentation
of a scheme for a three terminal quantum device to study coherent transport and a
theoretical prediction for the distribution of a three-terminal-transport related quan-
tity. The distribution function of this quantity is universal and depends only on the
time reversal invariant properties of the system. On the basis of the equivalence
relation between electrical conductance and transmission coefficients we employed
three different three-terminal quantum graphs with time reversal symmetry without
spin-1/2, without time reversal symmetry and with time reversal symmetry includ-
ing spin-1/2 interaction to check the theoretically predicted behavior. At the end
we will discuss corresponding experimental results including the effect of imperfect
coupling and absorption.
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4.2 Theory

For a multi-terminal electrical device, the electrical current Ii on terminal i can be
written as

Ii = ∑
j

Gij(Vi −Vj), with Gij = G0Tij, (4.1)

where Vi is the voltage at terminal i, Gij is the conductance from terminal j to termi-
nal i, Tij is the corresponding transmission coefficient from terminal j to terminal i,
G0 = e2

h is the elementary conductance quantum, if the spin degeneracy is included,
the quantum of conductance is G0 = 2e2

h . Let restrict ourselves to a device with only
three terminals T1, T2, T3 as shown in Fig. 4.1 and set one of these terminals, lets say
terminal T3, as a probe such that there is no current flowing through this terminal, i.
e. I3 = 0.

DeviceTerminal 1 Terminal 2

Terminal 3

Junction

Fig. 4.1. Sketch of a three-terminal setting that allows the measure-
ment of the voltage along a device. The device carries a current while
the vertical wire measures the voltage drop. Thin lines represent per-

fect conductors connected to sources of voltages V1, V2, and V3.

The voltage at terminal 3, is a weighted average of the voltages in the other termi-
nals, the weight may be determined by the conductance coefficients from the other
terminals to the probe, means the T3. Thus, one can write V3 as

V3 =
1
2
(V1 + V2) +

1
2
(V1 −V2) f , (4.2)

where
f =

T31 − T32

T31 + T32
, (4.3)

Equation. (4.2) shows that the voltage at terminal T3 is fluctuating about the average
of V1 and V2. The value f can be varied from −1 to +1 and only depends on the
transmissions from T1 to T3 and T2 to T3. Godoy et al. [44, 45] have studied the volt-
age drop along a disordered quantum wire by utilizing this three-terminal method.

As shown in Fig. 4.1 our proposed setup to experimentally study this quantity
f consists of two main building blocks: one is a quantum graph with orthogonal,
unitary and symplectic symmetry; the other one is a microwave T-junction. This
three terminal device is realized by connecting one of the tree arms of the T-junction
to one vertex of a quantum graph. The graphs we are going to use have chaotic
dynamics characterized by the orthogonal, unitary and symplectic symmetry with
corresponding labels β = 1, β = 2 and β = 4, respectively. In order to study the
fluctuation of f we shall use the scattering approach of random matrix theory. The
graphs used in the experiments have two channels, thus its corresponding scattering
matrix may be written as

Sg =

(
rg t′g
tg r′g

)
, (4.4)
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where rg (r′g) and tg (t′g) are the reflection and transmission amplitudes, for incidence
from the left (right). Since the second building block of our three-terminal device,
T-Junction, has three electrically equivalent arms, one can describe it with the fol-
lowing 3× 3 scattering matrix

S0 =
1
3

 −1 2 2
2 −1 2
2 2 −1

 . (4.5)

The intrinsic nature of our experimental three-terminal setup yields 3× 3 scattering
matrix S for our whole setup showed in Fig. 4.1. Standard scattering theory relates
the S of whole device and Sg, S0 of its building blocks in following way

S = SPP + SPQS0
1

13 − SQQS0
SQP, (4.6)

where 13 is the 3× 3 unit matrix, S0 is the scattering matrix of the T-Junction and

SPP =

 rg 0 0
0 0 0
0 0 0

 , SPQ =

 t′g 0 0
0 1 0
0 0 1

 , (4.7)

SQP =

 tg 0 0
0 1 0
0 0 1

 , SQQ =

 r′g 0 0
0 0 0
0 0 0

 . (4.8)

where rg, t′g, tg, r′g are the elements of the graph scattering matrix Sg (see Eq. (4.4)).
The expression of S given in Eq. (4.6) has very intuitive meaning: the first term
SPP on the right hand side corresponds to the reflections at the terminals; the second
term takes care of all complex multiple scattering processes within the three-terminal
device, where SQP represents the transmission from outside of the device to its whole
inside region, (13− SQQS0)−1 contains the multiple reflections between the junction
and the graph and SPQ is representing the transmitted portion from the inside of the
device to outside, means through the terminals.

The transmission coefficient is given as Tij = |Sij|2, where Sij are the scattering
elements of S of the whole three-terminal system and takes values according to the
system symmetry

Sij =


Real, TRS, no spin-1/2 β = 1
Complex, no TRS β = 2
Real quaternion, TRS + spin-1/2 β = 4

(4.9)

where TRS stands for time reversal symmetry. Now our main quantity f can be
rewritten in terms of the elements of S as

f =
|S31|2 − |S32|2
|S31|2 + |S32|2

(4.10)

Let’s assume there is no energy loss within the graph such that the corresponding
scattering matrix Sg is unitary

SgSg
† = 1. (4.11)

Depending on the symmetry of the graph, Sg belongs to one of the Circular Ensem-
bles: Orthogonal (COE) for β = 1, Unitary (CUE) for β = 2, and Symplectic (CSE)
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for β = 4. Thus, one can parametrize the scattering matrix Sg as

Sg =

[
−
√

1− τ e2iφ′ a−1√τ ei(φ+φ′)

a
√

τ ei(φ+φ′)
√

1− τ e2iφ

]
, (4.12)

where 0 6 τ 6 1, 0 6 φ, φ′ 6 π, and a is a real, complex, or real quaternion number
of modulus 1 for β = 1, 2 or 4, respectively. Now the scattering matrix S given
in Eq. (4.6) can be parametrized and the expression for f in Eq. (4.10) can also be
written in terms of parameters as

f =
τ − |1 +

√
1− τ e2iφ|2

τ + |1 +
√

1− τ e2iφ|2
, (4.13)

where the parameter a disappears. Following Ref. [46] the probability density of Sg
can be written as

dPβ(Sg) =
β

2
τ−1+β/2 dτ

dφ

π

dφ′

π
da. (4.14)

By using this Eq. (4.14) and integrating over all parameters, one gets the probability
distribution of f as

p
β
( f ) =

(β− 1)!!
β [Γ(β/2)]2

(1− f )β/2

(1 + f )1−β/2 . (4.15)

This distribution of f dominates for negative values of f and can be understood intu-
itively from the unique configuration of the device such that the terminal T2 is much
closer to the terminal T3 than to the terminal T1, resulting in a higher probability of
transmission from terminal T2 to terminal T3 rather than terminal T1 to terminal T3.
The width of the distribution is a signature of the nonlocal effects in measurement
of the probe port.

Equation. (4.15) is our main theoretical result which is valid in an ideal situation:
It applies to quantum systems in the absence of any inelastic process and to classical
wave systems in the absence of dissipation and imperfect coupling to the device.
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4.3 Experimental setup

Fig. 4.2 shows the experimental setups and corresponding sketches of the three-
terminal device. The main components of the setup were explained in the previous
Chap. 3. Figure a) is the sketch of GOE graph and b) is the corresponding microwave
graph. Figure c) and d) are for the case of GUE graph which is realized simply by
replacing one of the T-junctions on the graph shown in figure b) by a microwave
circulator which breaks the time reversal symmetry. Figure e) is the sketch of the
three-terminal setup for the case of symplectic symmetry.
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Fig. 4.2. Experimental setup and corresponding sketch of three-
terminal device shown in Fig. 4.1. a) and b) are for the graph with
time reversal symmetry (GOE); c), d) are for the graph without time
reversal symmetry (GUE), the circulator breaks the time reversal sym-
metry; e) is the sketch for the graph with time reversal symmetry and
spin-1/2 interaction and its corresponding graph without the third
terminal is given in Fig. 3.3 (c). The red shaded region correspond to

the circulator in figure c) and figure e).
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In order to understand how the symplectic symmetry is realized with this setup,
one can see the details in previous Chap. 3 and Ref. [13, 33]. One can see that the
third terminal T3 is, as explained in the previous section, realized by connecting
one T-junction to one of the vertex of microwave graph with orthogonal, unitary
and symplectic symmetries. The complex scattering matrix elements were measured
via an Agilent 8720ES vector network analyzer (VNA). Since our analyzer has only
two ports, when we performed the measurement a standard 50 Ω terminator is con-
nected to one of the three terminals while the other two being used to take measure-
ments.

Before we start to take series of measurements we have checked if the graph
represented by sketch e) in Fig. 4.2 still maintains the required symplectic symmetry
after adding the third terminal. To do that we have checked the unitary property by
looking at one arbitrary element, lets say S12 of the scattering matrix S and

S12S12
† =

(
1611.0622 + 0 −22.5551 + i49.4429

−22.5551− 49.4429 1811.7863

)
. (4.16)

Since Sij for β = 4 is real quaternion, SijSij
† must be proportional to the 2× 2 unit

matrix. However, in the experiment this can not be achieved with arbitrary accuracy
due to power losses. Nevertheless, Eq. (4.16) shows the fact that the system still
remains the symmetry within the limit of tolerance in the experiment. We have
measured all necessary elements of S-matrix given by Eq. (4.6) for all three symmetry
classes.
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4.4 Results

The experimental results are given in Fig. 4.3. The left column, from top to bottom
shows the experimentally measured value of the quantity f for β = 1 (GOE), β = 2
(GUE) and β = 4 (GSE), respectively. For the case of β = 1, the measurement
was performed from 1 GHz to 17 GHz frequency regime, while due to the working
frequency of the circulator for the case of β = 2 and β = 4 the frequency range
is limited to 6 to 12 GHz. The right column, from the top to bottom shows both
experimental and theoretical distribution of f for the cases of β = 1, β = 2 and
β = 4, respectively. For the cases β = 1 and β = 2 data from two realizations were
used and for β = 4 data from only one realization is used. The histogram represents
the experimental result and the black solid line is for the theoretical predictions given
by Eq. (4.15).

The clear visible deviations between experiment and theory for case β = 1 and
β = 2 can be explained by the power losses within the whole setup. The effect
of the absorption can be quantified by assuming that the scattering matrix of the
graph does not conserve flux; while the effect of the coupling can be modeled by
adding identical barriers, with transmission intensity Ta, between the graph and
port 1, between the graph and the T-junction, and between the T-junction and port
2, respectively. Following Ref. [47], such scattering matrix, that we denote by S̃g, can
be written as

S̃g(E) = 1− 2πiW̃† 1
E− H̃+ iπW̃W̃†

W̃, (4.17)

where E is the energy and W̃ accounts for the coupling between the resonant modes
of the graph and the scattering channels. Here, H̃mn = Hmn + i(γ∆/4π)δmn, with H
being the Hamiltonian that describes the closed microwave graph with mean level
spacing ∆ and it is taken from the Gaussian ensembles corresponding to the symme-
try present in the graph. The imaginary part of H̃ mimics the absorption quantified
by the parameter γ. It can be extracted from the experimental data through the au-
tocorrelation function between elements of the scattering matrix.
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Fig. 4.3. f as a function of the frequency is shown in the left column,
and its corresponding distribution in the right column, for β = 1
(top), 2 (middle), and 4 (bottom). In the right column the black solid
lines represent the analytical result for the ideal case, Eq. (4.15), while
the dashed lines correspond to RMT simulations with power losses
and imperfect coupling of the T-junctions to the graph, where all pa-
rameters were fixed before hand using the autocorrelation functions
(see Fig. (4.4)). For the statistical analysis we used an ensemble of

5× 104 realizations.

After some mathematics, they can be written as

C(β)
aa (t)
T2

a
=



[
3

(1+2Tat)3 − b1,2(t)
(1+Tat)4

]
e−γt for β = 1,

[
2

(1+Tat)4 − 26 b2,2(t)
(2+Tat)6

]
e−γt for β = 2,

[
6

(1+Tat)6 − 212 b4,2(t)
(2+Tat)10

]
e−2γt for β = 4,

(4.18)

where bβ,2(t) is the two-level form factor [50] and Ta is the coupling strength, which
is also extracted from the experiment via Ta = 1− |〈Saa〉|2 with the average 〈Saa〉



4.4. Results 67

10-2

100
C

   
(t)

/T

10-2

100

C
   

(t)
/T

0 1 2
t

10-2

100

C
   

(t)
/T

(1
)

(2
)

(4
)

aa
aa

aa
2

2
2

a
a

a

Fig. 4.4. Fitting of the autocorrelation function, Eq. (4.18), to the experimen-
tal data. The parameters are Ta = 0.98 and γ = 1.9 for β = 1, Ta = 0.96 and

γ = 0.5 for β = 2, and Ta = 0.97 and γ = 0.2 for β = 4.

taken over the frequency. The corresponding expression for the GOE is given in
Ref. [48], while for all β in Ref. [49].

Fig. (4.4) shows the autocorrelation function C(β)
aa (t) of the experimental data.

The best fit yields Ta = 0.98 and γ = 1.9, for β = 1, Ta = 0.96 and γ = 0.5, for β = 2,
and Ta = 0.97 and γ = 0.2, for β = 4, and they are plotted as dashed lines. The
coupling values for all three setups are obtained from the experimental data. One
notices that the coupling is almost perfect due to the standard 50Ω technology. As
expected the coupling parameters are almost the same for the three symmetries but
the absorption parameter is significantly different from one symmetry to another.
In particular, we notice that the value of γ for β = 2 is almost twice the value for
β = 4. This may be due to the interplay of reflection and absorption [51], i.e., the
higher the reflection the smaller the absorption. This is the situation of the β = 4
case which presents twice the reflection than that of the β = 2 case (two subgraphs).
Also, the circulators introduce more reflections for β = 2 and 4 in comparison with



68
Chapter 4. Scattering experiments on graphs with orthogonal, unitary and

symplectic symmetry

the β = 1 case with no circulators. The parameters Ta and γ are used in Eq. (4.17),
from which we obtain T31 and T32, and finally compute f . The results are shown in
Fig. (4.3) (lower panels) as dashed lines. A good agreement with the experimental
distribution is observed. For the symplectic case the agreement between experiment
and theory is good even without the correction due to absorption and imperfect cou-
pling; since γ is relatively small, p4( f ) depends only weakly on the port couplings
which are almost perfect.
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Summary

In this work, I have presented a number of experimental results which can be de-
scribed by random matrix theory (RMT) and scattering theory.

The main results are presented in Chapter 3. Here, following an idea by Joyner et
al. [23], we have constructed microwave quantum graphs simulating spin-1/2 sys-
tems with an antiunitary symmetry of T obeying T 2 = −1. From the reflection
spectrum we observed a set of Kramers doublets. The nearest neighbor spacing
distribution of these doublets agrees to the random matrix Wigner GSE prediction.
Moreover, to study the long range correlation, we examined the spectral two point
correlation function R2(L) and its Fourier transform, the spectral form factor K(τ),
as well as smoothed quantities such as the number variance Σ2(L) and the spectral
rigidity ∆3(L). Despite the existence of a few percent of missing levels, the exper-
imental results of these quantities exhibited overall good agreement with the GSE
statistics expected from random matrix theory. As the experiment is only connect-
ing two subgraphs by one pair of bonds we introduced a one pair of connecting
bonds approximation and extended it to the case of a GSE graph with more pairs
of connecting bonds. The numerical random matrix simulation confirmed that one
needs ten pairs of connecting bonds to arrive at the Wigner GSE distribution. Finally,
we have studied a parameter dependent dynamical transition from GSE via GUE to
GOE statistics. For particular values of the varying parameter, the experimental re-
sults showed the level repulsion expected for all three cases, namely GOE, GUE and
GSE.

In chapter 4, we have presented the work which has been done in close collabo-
ration with Dr. A. M. Martínez-Argüello from Mexico. The measurements analyzed
in this part have been performed when he has visited our laboratory. We have stud-
ied the transport properties of three terminal microwave graphs with orthogonal,
unitary and symplectic symmetry. Here, a theoretical prediction for f was given,
a universal symmetry dependent probability distribution related to the transport
within the three terminal system. We examined this prediction experimentally by
means of microwave scattering experiments on quantum graphs with orthogonal,
unitary and symplectic symmetry. After considering the effect of absorption good
agreement was found between the experimental results and the theoretical predic-
tion. Surprisingly, for the symplectic case, the result shows that the absorption could
hardly disturb the symmetry, in contrast to the orthogonal and unitary case.
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Appendix A

Here I shall present the full reflection spectra |S00|2 for constant ∆ϕ for one of the
studied graphs. The green and red solid lines correspond to constant ∆ϕ = π and
∆ϕ = 3π, respectively, determined by Eq. (3.44). They are zoomed of Fig. 3.12. The
only difference between these two ones is that in Fig. 3.12 the unaccessible region
limited by the Eq. (3.45) is white (upper part) while it is black here in this zoomed
version. Each individual plot spans a 1 GHz frequency window. The features as
shown in Fig. 3.13 are visible with clear Kramers doublets in the entire frequency
window from 6 to 12 GHz. The green and red horizontal lines are for the constant
values of ∆ϕ = π and ∆ϕ = 3π, respectively.

Fig. A.1
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Fig. A.2
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Fig. A.3
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