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Abstract 

Chiral transition metal catalysts in which the chirality exclusively originates from a stereogenic 

metal center witness a more recent advance and their excellent catalytic performance has been 

demonstrated through applications into diverse enantioselective transformations, especially 

visible-light-activated photoredox reactions. This thesis deals with the synthesis of new chiral-at-metal 

rhodium Lewis acid catalysts and their applications in enantioselective photoredox chemistry. 

1) Synthesis of a new member of the rhodium-based chiral Lewis acids family, named RhS, with 

exclusive octahedral centrochirality which features the Λ-configuration (left-handed propeller) and 

Δ-configuration (right-handed propeller) has been accomplished. Both enantiomers Λ- and Δ-RhS 

contain two cyclometalating 5-tert-butyl-2-phenylbenzothiazoles in addition to two exchange-labile 

acetonitriles with a hexafluorophosphate counterion, were synthesized conveniently through a 

chiral-auxiliary-mediated strategy. Compared with the previously developed Λ/Δ-RhO complexes 

bearing corresponding benzoxazoles, the Λ/Δ-RhS have been recognized as better chiral Lewis acid 

catalysts due to the higher steric congestion directed by the benzothiazole ligands, in which the longer 

CS bonds over CO bonds position the steric bulky tertiary butyl groups closer to the substrate 

coordination site (chapter 3.1). Subsequently, the newly developed chiral-at-rhodium Lewis acids were 

applied to visible-light-activated asymmetric photoredox catalysis as discussed in chapters 3.2-3.5. 

2) The chiral Lewis acid Λ-RhS combined with the photoredox catalyst [Ru(bpy)3](PF6)2 enabled 

the visible-light-activated redox coupling of -silylalkyl amines with 2-acyl imidazoles to afford, after 

desilylation, 1,2-amino-alcohols in yields of 69–88% and with high enantioselectivities (54–99% ee). 

The reaction is proposed to proceed via single electron transfer (SET) between the -silylamine 

(electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a 

stereocontrolled radical–radical recombination (chapter 3.2). 

3) A new and simple commercially available photoredox mediator 4,4′-difluorobenzil was 

developed to cooperate with the chiral-at-rhodium Lewis acids Λ/Δ-RhS. This synergistic catalytic 

system permits an enantioselective three-component photoreaction to provide the 

fluoroalkyl-containing products under dual CC bond formation with high enantioselectivities (up to 

98% ee) and modest diastereoselectivities (up to 6:1 dr). Excellent diastereoselectivities (up to >38:1:1 

dr) for natural chiral compound derivatives were observed. The photoexcited 4,4′-difluorobenzil is 
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proposed to enable the single electron oxidation of sodium perfluoroalkyl sulfinates under the 

generation of corresponding perfluoroalkyl radicals which are trapped by electron-rich vinyl ethers to 

deliver -oxy carbon-centered radicals. These nucleophilic radical species are involved in a 

subsequent Rh-catalyzed radical conjugate addition with acceptor-substituted alkenes (chapter 3.3). 

4) The single chiral-at-rhodium Lewis acids catalyzed radical conjugate addition of -amino alkyl 

radicals with acceptor-substituted alkenes provided the CC formation products in good yields (up to 

89%) and with excellent enantioselectivities (up to 97% ee) under visible-light-activated 

photocatalyst-free conditions. The -amino alkyl radicals are generated from simple glycine 

derivatives upon single electron reduction triggered by the photoreductant Hantzsch ester. This 

methodology is recognized as a practical and versatile avenue to access diverse pharmaceutically 

demanding chiral -substituted -aminobutyric acid analogs, including previously unaccessible 

derivatives containing fluorinated quaternary stereocenters. Synthetically valuable applications are 

demonstrated by providing straightforward access to the pharmaceuticals or related bioactive 

compounds (S)-pregabalin, (R)-baclofen, (R)-rolipram and (S)-nebracetam (chapter 3.4).  

5) Visible-light-activated enantioselective β-C(sp
3
)H functionalization of 2-acyl imidazoles and 

2-acylpyridines with 1,2-dicarbonyl compounds catalyzed by a single chiral-at-rhodium Lewis acid 

Δ-RhS derivative was developed. The CC bond formation products are obtained in high yields (up to 

99%) and with excellent stereoselectivities (up to >20:1 dr and up to >99% ee). Experimental and 

computational studies support a mechanism in which a photoactivated Rh-enolate intermediate, 

produced through the coordination of an acceptor-substituted ketone to the central rhodium in the 

presence of base, transfers a single electron to the 1,2-dicarbonyl compound followed by 

deprotonation at β position of initial ketone and a subsequent stereocontrolled radical-radical 

recombination. The chiral-at-rhodium Lewis acid is capable of serving a dual function as a chiral 

catalyst and a photoredox (pre)catalyst (chapter 3.5). 
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Zusammenfassung 

Chirale Übergangsmetallkatalysatoren, welche nur achirale Liganden koordinieren und bei denen 

die Chiralität des gesamten Komplexes auf ein stereogenes Metallzentrum zurückgeführt werden kann, 

bilden eine neuere Klasse von asymmetrischen Übergangsmetallkatalysatoren. Ihre ausgezeichneten 

katalytischen Fähigkeiten wurde durch die Anwendungen in verschiedenen enantioselektiven 

Umwandlungen demonstriert, insbesondere auch in lichtaktivierten Photoredoxreaktionen. Diese 

Arbeit beschäftigt sich mit der Synthese neuartiger Rhodium-basierter chiraler 

Lewissäurekatalysatoren mit ausschliesslich metallzentrierter Chiralität und deren Anwendungen in 

der enantioselektiven Photoredoxchemie. 

1) Die Synthese eines neuen Mitglieds der Familie Rhodium-basierter chiraler Lewis-Säuren 

wurde entwickelt. Der neue Komplex wurde RhS genannt. Mit einer ausschliesslich oktaedrischen 

Zentrochiralität weist der racemische Komplex eine Λ-Konfiguration (linksdrehender Propeller) und 

Δ-Konfiguration (rechtsdrehender Propeller) auf. Die beiden Enantiomere, Λ- und Δ-RhS, enthalten 

zwei cyclometallierende 5-tert-Butyl-2-phenylbenzothiazole, zwei austauschlabilen Acetonitrile und 

ein Hexafluorophosphat-Gegenion. Sie wurden mit Hilfe einer Chirales-Auxiliar-vermittelten Strategie 

enantiomerenrein synthetisiert. Im Vergleich zu den zuvor entwickelten Λ/Δ-RhO-Komplexen, die 

entsprechende Benzoxazole tragen, wurden Λ/Δ-RhS als bessere chirale Lewis-Säure-Katalysatoren 

ermittelt. Dies kann mit einer höheren sterischen Abschirmung erklärt werden. Durch die im Vergleich 

zu den C-O-Bindungen im Benzoxazol längeren C-S-Bindungen der Benzothiazole befinden sich die 

tert-Butylgruppen von RhS näher am Reaktionszentrum (Kapitel 3.1). Anschließend wurden die neu 

entwickelten chiralen Rhodium-Lewissäuren auf die durch sichtbares Licht aktivierte asymmetrische 

Photoredoxkatalyse angewendet, wie es in den Kapiteln 3.2-3.5 beschrieben wurde. 

2) Die mit dem Photoredoxkatalysator [Ru(bpy)3](PF6)2 kombinierte chirale Lewis-Säure Λ-RhS 

ermöglichte die durch sichtbares Licht aktivierte Redoxkupplung von -Silylalkylaminen mit 

2-Acylimidazolen. Nach der Desilylierung wurden 1,2-Aminoalkohole mit Ausbeuten von 69% bis 

88% und mit hohen Enantioselektivitäten (54-99% ee) erhalten. Es wird vorgeschlagen, dass die 

Reaktion über einen Einzelelektronentransfer (SET) zwischen dem -Silylalkylamin (Elektronendonor) 

und dem Rhodium-Chelat-2-Acylimidazol (Elektronenakzeptor) verläuft, gefolgt von einer 

stereokontrollierten Radikal-Radikal-Rekombination (Kapitel 3.2). 
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3) Ein neuer und kommerziell erhältlicher Photoredox-Vermittler 4,4'-Difluorbenzil wurde 

entwickelt. Dieser Vermittler kann mit den chiralen Rhodium-Lewis-Säuren Λ/Δ-RhS kooperieren. 

Dieses synergistische katalytische System ermöglichte eine enantioselektive 

Drei-Komponenten-Photoreaktion, um die fluoralkylhaltigen Produkte unter dualer CC-Verknüpfung 

mit hohen Enantioselektivitäten (bis zu 98% ee) und moderaten Diastereoselektivitäten (bis zu 6: 1 dr) 

zu liefern. Ausgezeichnete Diastereoselektivitäten (bis zu > 38: 1: 1 dr) für natürliche chirale 

Verbindungsderivate wurden beobachtet. Es wird vorgeschlagen, dass das photoangeregte 

4,4'-Difluorbenzil die Einzelelektronenoxidation von Natriumperfluoralkylsulfinaten unter Erzeugung 

von entsprechenden Perfluoralkylradikalen ermöglicht, die durch elektronenreiche Vinylether 

abgefangen werden, um -Oxy-Kohlenstoff-zentrierte Radikale zu liefern. Diese nucleophilen 

Radikalspezies sind an einer anschließenden Rh-katalysierten radikalkonjugierten Addition mit 

Akzeptor-substituierten Alkenen beteiligt (Kapitel 3.3). 

4) Unter durch sichtbares Licht aktivierten Photokatalysator-freien Bedingungen lieferte die durch 

chirale Rhodium-Lewis-Säuren katalysierte radikalische Addition von -Aminoalkylresten mit 

Akzeptor-substituierten Alkenen die CC-Bildungsprodukte in guten Ausbeuten (bis zu 89%) und mit 

ausgezeichneten Enantioselektivitäten (bis zu 97% ee). Die -Aminoalkylreste wurden aus einfachen 

Glycinderivaten bei der durch den Photoreduktanten-Hantzsch-Ester ausgelösten 

Einzelelektronenreduktion erzeugt. Diese Methode wird als ein praktischer und vielseitiger Weg 

angesehen, um Zugang zu verschiedenen pharmazeutisch anspruchsvollen chiralen -substituierten 

-Aminobuttersäure-Analoga zu erhalten, einschließlich bisher unerreichbarer Derivate, die fluorierte 

quartäre Stereozentren enthalten. Synthetisch wertvolle Anwendungen wurden durch einen einfachen 

Zugang zu den Pharmazeutika oder verwandten bioaktiven Verbindungen (S)-Pregabalin, (R)-Baclofen, 

(R)-Rolipram und (S)-Nebracetam (Kapitel 3.4) demonstriert. 

5) Eine durch sichtbares Licht aktivierte enantioselektive β-C(sp
3
)H-Funktionalisierung von 

2-Acylimidazolen und 2-Acylpyridinen mit 1,2-Dicarbonylverbindungen wurde entwickelt, welche 

von einem einzigen chiralen Rhodium-Lewis-Säure-Δ-RhS-Derivat katalysiert wird. Die 

CC-Bindungsbildungsprodukte wurden in hohen Ausbeuten (bis zu 99%) und mit ausgezeichneten 

Stereoselektivitäten (bis zu > 20: 1 dr und bis zu > 99% ee) erhalten. Experimentelle und theoretische 

Untersuchungen stützen den folgenden Mechanismus. Zuerst bildet sich ein Rh-Enolat-Intermediat in 

Gegenwart einer Base durch Koordination eines Akzeptor-substituierten Ketons an das zentrale 
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Rhodium. Das photoaktivierte Rh-Enolat-Intermediat überträgt ein einzelnes Elektron auf die 

1,2-Dicarbonylverbindung. Nach der Deprotonierung an β-Position des anfänglichen Ketons kommt es 

zu einer stereokontrollierten Rekombination der beiden Radikale. Die chirale Rhodium-Lewis-Säure 

ist in der Lage, eine doppelte Funktion als chiraler Katalysator und als Vorläuer des 

Photoredox-Katalysators zu erfüllen (Kapitel 3.5). 
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Chapter 1: Theoretical Part 

1.1 Introduction  

Over the past century, photochemistry has witnessed significant progress to lead the discovery of 

diverse unconventional synthetic methodologies in organic chemistry. In contrast with the 

well-established ultraviolet (UV) light mediated photosynthesis, the visible-light-induced 

photocatalysis is a more recent advance. Utilizing visible light, ideally sunlight, as driving forces 

contents the quest for renewable and clean sources of energy in modern organic synthesis, which in 

turn, affords fruitful synthetic protocols under sufficiently mild conditions. Remarkably, most of these 

unusual protocols are inaccessible under thermal control. Among the mechanistic scenarios of 

photocatalysis, including energy transfer, atom transfer and single electron transfer (SET), the 

SET-based photoredox catalysis has attracted much attention from the broad organic chemistry 

community.
1
 

 

Figure 1. Visible-light-induced photoredox catalytic processes as exemplified by [Ru(bpy)3]
2+

. MLCT 

= metal to ligand charge transfer. ISC = intersystem crossing. SET = single electron transfer 

With respect to the term of photoredox catalysis, typically, transition metal complexes, such as the 

commonly used Ru(bpy)3
2+ 

at
 
substoichiometric amounts, upon absorption of a photon at visible region, 
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an electron on the non-bonding metal-centered orbital (HOMO) could be excited to the π system of the 

ligand framework (LUMO), defined as metal to ligand charge transfer (MLCT) (Figure 1). 

Subsequent intersystem crossing affords a long-lived triplet state photocatalyst which constitutes an 

ideal source of electrochemical potential to promote single electron transfer (SET) events with organic 

substrates or other reaction partners. Namely, this excited photocatalyst could either donate a 

high-energy electron out (termed as oxidative quenching) or accept a single electron (termed as 

reductive quenching). Nevertheless, the resulted catalyst at the reduced or oxidized state features the 

strong thermodynamic driving force back to the original ground state, thereby promoting a second 

reverse-path SET event. The overall process would provide radical cations or anions which could 

directly undergo the chemical bond formations. Alternatively, these intermediates, upon subsequent 

transformation, afford thermodynamically relatively stable species that engage into diverse synthetic 

processes. One of the most interesting aspects of the visible-light-induced photoredox catalysis is the 

combination with asymmetric catalysis. Namely, the forementioned photogenerated intermediates 

could undergo the formation of carbon-carbon or carbon-heteroatom bonds under the stereocontrol of 

a chiral catalyst. The photoredox catalyst and asymmetric catalyst could derive either from the 

identical or a separated source.  

However, over the past decades the development of highly enantioselective photoreactions 

remains as a formidable challenge, mainly due to the high reactivity of the photogenerated 

intermediates as well as the low activation barriers of the following bond formation processes. 

Alongside with the renaissance of the photoredox catalysis in the recent years, tremendous success has 

been achieved using the conventional or emerging catalytical techniques. The following section will 

highlight representative examples on asymmetric photoredox catalysis based on the types of the chiral 

catalysts, including organocatalysts, transition metal catalysts, traditional Lewis acids and the 

emerging chiral-at-metal catalysts (Figure 2). 
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Figure 2. Representative photoredox and asymmetric catalysts. The chiral-at-iridium Lewis acid and 

the chiral amine (only in special cases) constitute dual functions of photoredox/asymmetric catalyst. 
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1.2 Asymmetric Photoredox Chemistry with Organocatalysts 

Organcatalysis triggered the leading invention of the visible-light-induced enantioselective 

photoreodx chemistry, and has been demonstrated as one of the most powerful architectures.
2
 The 

following sections will briefly review the organo-catalyzed photoredox reactions. 

1) Covalent interaction catalysts: chiral amine and N-heterocyclic carbene 

Due to the dedicated work from several research groups, the chiral amine has been demonstrated 

as one of the most impressive tools to promote the asymmetric photoredox catalysis. The chiral amine 

mediated enamine catalysis could cooperate smoothly with the visible-light-induced photoredox 

catalysis. Alternatively, in some cases, the electron-rich enamine intermediate (donor) would interact 

with the electron-deficient substrate (acceptor), thereby affording the transient electron donor acceptor 

(EDA) complex. This colored complex is capable of absorbing visible light, subsequently undergoing 

internal single electron exchange. Very recent reports reveal that the chiral enamine and iminium ion 

could even get directly excited under the irradiation with visible light and then trigger the single 

electron reduction/oxidation of suitable substrates, respectively.  

In 2008, MacMillan and co-workers reported the first example on intertwining the 

visible-light-activated photoredox catalysis with asymmetric enamine catalysis.
3
 The enantioselective 

-alkylation of aldehydes with electron-deficient -bromo carbonyl compounds proceeded efficiently in 

the presence of Ru(bpy)3Cl2 and chiral imidazolidinone under the irradiation of a household 15 W 

compact fluorescent lamp (CFL) (Figure 3). The methodology was later proved to be of reproducible 

and robust by switching from the Ru-based photoredox catalyst to the Eosin Y and semiconductors.
4
  

This cooperative photoredox/enamine catalysis was further demonstrated as a versatile approach 

for the -functionalization of aldehydes including trifluoromethylation
5
 and cyanoalkylation

6
. Especially, 

the -cyanoalkylated aldehydes are valuable feedstocks for the synthesis of a wide range of medicinally 

relevant heterocycles and other derivatives. For instance, the natural product ()-bursehernin was 

obtained from an oxonitrile product over four steps in overall 80% yield and with excellent 

stereoselectivity (>30:1 dr, 94% ee). 
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Figure 3. -Alkylation of aldehydes enabled by dual photoredox/enamine catalysis. 

A proposed reaction mechanism is outlined in Figure 3. Accordingly, the electrophilic radical 

species which was generated by single electron reduction mediated a photoredox catalytic cycle, could 

reacted towards an enamine intermediate under the formation of CC bond. The produced 

–aminoalkyl radical was further converted into an iminium ion by promoting a single electron 

reduction to the photoredox cycle, alternatively to the electron-deficient bromo compounds (chain 
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mechanism). The iminium ion was hydrolyzed to deliver the -alkylated product accompanied with 

the regeneration of the chiral imidazolidinone which would enable a new enantioselective enamine 

catalytic cycle. Luo and co-workers later extended this dual photoredox/enamine catalysis system to 

the asymmetric -alkylation of -dicarbonyl compounds to forge the all-carbon quaternary 

stereocenters with excellent enantioselectivities.
7
 

 

Figure 4. Enantioselecctive -alkylation of aldehydes through photoexcited EDA and radical chain 

mechanism. EDA = electron donor acceptor. PET = photoinduced electron transfer 

Subverting the idea on using cooperative catalysis to trigger the asymmetric photoredox chemistry, 

Melchiorre’s group reported a unique enantioselective photoreaction scheme in the absence of any 

photoredox catalyst, while based on a single chiral secondary amine catalyst. This single catalyst 
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mediated photoredox reaction gave rise to the enantioenriched -alkylated aldehydes, as well with high 

efficiency (Figure 4).
8

 The elaborated mechanism investigation revealed that the colorless 

electron-rich enamine intermediate (donor) interacted with the electron-deficient organobromide 

compound (acceptor) to deliver an electron-donor-acceptor (EDA) complex in the nonpolar solvent. 

This colored complex was capable of absorbing visible light, followed by a single electron transfer 

(SET) between the two components to afford a radical ion pair. Subsequently, the 

organobromide-based radical anion underwent a heterolytic fragmentation to provide an electrophilic 

alkyl radical which was interfaced with a new chiral enamine to generate to generate an -aminoalkyl 

radical. This electron rich radical species then promoted the direct single electron reduction of 

organobromide compound to provide an iminium ion and an electrophilic alkyl radical, which process 

was identified as “radical chain mechanism”.
9

 Upon hydrolysis of the iminium ion, the 

enantioenriched -alkylated aldehydes were afforded and accompanied with the regeneration of the chiral 

secondary amine. This unusual EDA-based strategy was later applied into the enantioselective 

-alkylation of ketones with a cinchona-based primary amine catalyst.
10

  

 

Figure 5. Single chiral amine catalyzed enantioselective photoredox chemistry through the direct 

photoexcitation of enamine. CFL = compact fluorescent lamp. 

Interestingly, Melchiorre and co-workers later found the enamine intermediate capable of 

photoexcitation by absorbing light in the near-UV region under the irradiation of 23 W CFL, which 

then triggered the single electron reduction of bromomalonate (Figure 5).
11

 Mechanistic 

investigations revealed that the photoexcited enamine served as a sacrificial initiator of a radical chain 



Chapter 1. Theoretical Part 

8 
 

propagation pathway. Besides, MacMillan group also reported that a single chiral primary amine was 

capable of enabling the asymmetric photoredox chemistry, namely catalyzing the enantioselective 

-amination of aldehydes using (ODN)-N-functionalized carbamates as aminyl radical precursors 

(ODN=2,4-dinitrophenylsulfonyloxy).
12

 However, the authors didn’t discuss the possibility of EDA 

complex formation, the direct excitation of enamine and the radical chain mechanism in this report.  

 

Figure 6. -Alkylation of aldehydes through photoexcited iminium ion intermediate enabled by single 

chiral amine catalyst. TMS = trimethylsilyl. TDS = thexyl-dimethylsilyl. 

Later, inspired by the obervation that the iminium ion is capable of absorbing visible light and 

triggers photochemical events in the biological system, Melchiorre’s group reported the utilization of 

this chemical process to enable the enantioselective -alkylation of enals with the silanes in high 

yields and good enantioselectivities (Figure 6).
13

 There are two key issues in this chemical 

transformation: 1) the iminium ion absorbing the visible light while the individual reaction partner not 

and 2) the high oxidation potential of the photoexcited iminium ion. A single electron transferred from 

the silane to the photoexcited iminium ion, after desilylation, affording two radical species. These two 

radicals recombined, thereby providing the chiral -alkylated aldehydes. 
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Figure 7. Enantioselective radical conjugate addition reaction enabled by dual photoredox/enamine 

catalysis. [Ir] = Ir[dF(CF3)ppy]2(dtbbpy)PF6.  

Using the dual catalysis strategy, Melchiorre and co-workers disclosed another interesting 

photoreaction to accomplish the construction of often challenging all-carbon quaternary stereocenters 

(Figure 7).
14

 The photogenerated -aminoalkyl radical reacted towards the iminium ion which was 

produced by condensation of chiral amine catalyst and β,β-disubstituted cyclic enone. The following 

stereocontrolled radical conjugate addition provided the CC formation products containing all-carbon 

quaternary stereocenters in good enantioselectivities (6490% ee). The key to success for this reaction 

is tailored design of the chiral amine catalyst, thereby the introduced redox-active carbazolyl being 

capable of triggering the rapid intramolecular single electron transfer (SET) between the electron-rich 

carbazole moiety and the short-lived -iminyl radical cation. This electron-relay process prevented the 

highly reactive -iminyl radical cation to undergo the undesired radical elimination (β-scission), 

therefore giving back to the –aminoalkyl radical and the iminium ion. 

Turning back to the cooperative enamine/photoredox catalysis, MacMillan’s group further 

extended this strategy to enable the -C(sp
3
)H activation of aldehydes and ketones, however, only 

providing one example of -arylation products with unsatisfactory enantioselectivity (50% ee) using a 

cinchona-based primary amine catalyst.
15

 As outlined in Figure 8, this reaction scheme was built 

within the redox coupling between the cyclohexanone and the 1,4-dicyanobenzene. Accordingly, the 

cyclohexanone, upon condensation with the chiral amine catalyst, afforded an enamine intermediate. 

This electron-rich intermediate would exchange a single electron with electron deficient 

1,4-dicyanobenzene molecular which process was mediated by an electron shuttle, photoexcited 

fac-Ir(ppy)3. A subsequent unique stereocontrolled radical-radical coupling provided the corresponding 

-aryl ketone with the enantioselectivity of 50% ee. Coupling reagent scope of this photoinduced 

-functionalization protocol was further extended to the ketones
16

, enones
17

 and imines
18

. However, 
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all of the corresponding CC formation products with these reagents were obtained in racemic form. 

Overall, the -functionalization of saturated carbonyl compounds using dual photoredox/enamine 

catalysis still remains as a formidable challenge. The invention of new catalytic techniques would lead 

to the solution of this puzzle.  

 

Figure 8. -Arylation of the aldehydes and ketones enabled by dual photoredox/enamine catalysis. [Ir] = 

fac-Ir(ppy)3. 

While the chiral-amine-based dual asymmetric photoredox catalysis was established, the 

MacMillan’s group turned to investigate a triple catalysis system containing an additional hydrogen 

atom transfer (HAT) catalytic cycle. This triple catalysis scheme provided the -alkylated aldehydes 

with good outcome through the trapping of 3πe
-
 enaminyl radical cation intermediates using simple 

olefins (Figure 9).
19
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Figure 9. -Alkylation of aldehydes enabled by triple photoredox/enamine/HAT catalysis. 

 

Figure 10. Proposed mechanism for triple photoredox/enamine/HAT catalysis. 

The proposed mechanism is outline in Figure 10. Accordingly, condensation of the chiral amine 

catalyst and an aldehyde substrate would deliver an electron-rich enamine intermediate, which could 

quench the visible-light-excited iridium-based photocatalyst by single electron reduction. From which 

process an electrophilic 3πe
-
 enaminyl radical cation intermediate along with a reductive Ir

II 
species 
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were generated. This 3πe
-
 enaminyl radical cation intermediate added rapidly to the simple olefin 

under the CC formation within the chiral environment directed by the amine catalyst to afford a 

second alkyl radical. The produced nucleophilic radical was supposed to abstract a hydrogen atom 

form a thiophenol constituting an acidic and weak SH (BDE = 78 kcal mol
-1

). Subsequently, the 

target enantioenriched aldehyde product was liberated from the iminium ion by hydroxylation and the 

chiral amine catalyst was regenerated which would trigger a new catalytic cycle. While the thiyl 

radical was reduced by the above mentioned Ir
II 

species followed by protonation to produce the HAT 

catalyst thiophenol as well as the ground state Ir-based photoredox catalyst. 

In 2012, a dual photoredox/chiral N-heterocyclic carbene (NHC) catalysis protocol was 

demonstrated by Rovis’ group to enable the enantioselective α-acylation of tertiary amines (Figure 

11).
20

 The photoredox catalyst Ru(bpy)3Cl2 in combination with the external stoichiometric amount of 

oxidant m-dinitrobenzene (m-DNB) would provide the iminium ion from the tertiary amine under the 

double single electron oxidation. Meanwhile, the condensation of chiral N-heterocyclic carbene (NHC) 

catalyst with the aldehydes afforded the nucleophilic Breslow intermediate which could intercept with 

forementioned iminium ion, upon elimination of NHC, thereby producing the chiral α-amino ketones. 

This photoredox scheme constituted a net oxidation mechanism using m-DNB as terminal oxidant.  

 

Figure 11. Asymmetric α-acylation of tertiary amines enabled by dual photoredox/NHC catalysis. [Ru] 

= Ru(bpy)3Cl2. NHC = N-heterocyclic carbene. 
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2) Non-covalent interaction catalysts: chiral Brønsted acid, thiourea and ammonium ion  

The chiral Brønsted acid has been recognized as another powerful architecture for 

enantioselective cooperative photocatalysis. In 2013, Knowles group
21

 demonstrated the pioneering 

contribution to this field. As shown in Figure 12, the enantioselective intramolecular reductive 

coupling of ketones and hydrazones was demonstrated by using cooperative photoredox/Brønsted acid 

catalysis to provide the syn 1,2-amino alcohols in high yields (4596%) and with excellent 

enantioselectivities (7795% ee).  

 

Figure 12. Enantioselective synthesis of syn 1,2-amino alcohols through dual photoredox/Brønsted 

acid catalysis. CPA = chiral phosphoric acid. PCET = proton-coupled electron transfer. [Ir] = 

[Ir(ppy)2(dtbbpy)]PF6. HE = Hantzsch ester. 

Mechanistically, the chiral phosphoric acid (CPA) associated with the ketone moiety through 

hydrogen-bonding interaction. This adduct accepted a single electron from the highly reducing [Ir]
II
 

species which was generated from the reductive quenching of photoredox catalyst 

[Ir(ppy)2(dtbbpy)]PF6. The single electron reduction was in concert with the proton transfer from the 

CPA to the oxygen anion of the produced ketyl radical, which process was defined as proton-coupled 

electron transfer (PCET). The following stereocontrolled CC formation, single electron reduction of 

the nitrogen-centered radical and the CPA catalyst release would provide the target syn 1,2-amino 
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alcohols 

Very recently, Jiang
22

 and co-workers reported that a chiral phosphoric acid (CPA) and a 

photoactivated dicyanopyrazine-derived chromophore (DPZ) dual catalysis system could enable a 

radical conjugate addition-protonation process between N-aryl glycines with α-branched 

2-vinylpyridines and 2-vinylquinolines (Figure 13). This reaction afforded a range of chiral α-tertiary 

azaarenes with high yields (up to 97%) and excellent enantioselectivities (up to >99%), and even 

applied to a two-step synthesis of an enantiomerically pure pharmaceutical (R)-pheniramine with high 

efficiency (76% yield and 91% ee). 

 

Figure 13. Radical conjugate addition-enantioselective protonation by dual photoredox/Brønsted acid 

catalysis. 

Intrigued by the versatile spread of N-heterocycles including pyridines and quinolines in the 

enantioenriched bioactive molecules, Phipps group
23

 developed an alternative strategy of 

CPA/photoredox catalysis for the involvement of these heterocycles in the enantioselective 

Minisci-type reaction by providing -heterocyclic amines with high yields and excellent 

enantioselectivities (Figure 14). 
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Figure 14. Enantioselective Minisci-type reaction through dual photoredox/Brønsted acid catalysis. 

The proposed reaction mechanism is shown in Figure 15. Accordingly, the chiral phosphoric acid 

(CPA) could bind to the N-heteroarenes by hydrogen-bonding interaction thus providing the SOMO 

activation. And the formed conjugate ion of CPA would remain to associate with the pyridinium cation 

through electrostatic and hydrogen bonding interactions, as well incorporated the incoming of the 

photogenerated –aminoalkyl radical. The following radical conjugate addition proceeded smoothly 

under the CPA-directed chiral environment, and most importantly, the phosphate promoting the 

deprotonation at the -position of amino radical cation to render the radical-conjugate-addition step 

irreversible. While the resulting CC formation radical intermediate promoted a single electron to the 

photoredox cycle and followed by deprotonation to deliver the target chiral -heterocyclic amines.  
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Figure 15. Proposed mechanism for dual photoredox/Brønsted acid catalysis promoted Minisci-type 

reaction. 

The Brønsted acid catalyst would cooperate very well with the photoredox catalyst, and as well 

trigger the asymmetric catalysis in the absence of any photocatalyst, thereby utilizing the substrate 

which was capable of interacting with some other reactive compounds to afford specific 

electron-donor-acceptor (EDA) complex. A related report was disclosed by Jiang’s group, in which the 

benzil and amine substrates would deliver an EDA complex which was amendable to be excited by 

visible light.
24

 With a single electron transferring from donor to acceptor, a ketyl radical would bound 

to a chiral Brønsted acid catalyst, after hydrogenation and protonation, afforded the enantioenriched 

alcohol in high efficiency.  

Besides chiral phosphoric acids (CPAs), chiral arylaminophosphonium salts were also introduced 

into asymmetric photocatalysis. For example, Ooi and co-workers reported a remarkable cooperative 

catalysis of chiral arylaminophosphonium ions and Ir-based photocatalysts for achieving a highly 

enantioselective redox coupling of N-arylaminomethanes with N-sulfonyl imines.
25

 The photoredox 

catalytic cycle could be imitated by both the reductive
25a

 and the oxidative quenching events
25b

. As 

shown in Figure 16, the photoexcited Ir(III)-based photocatalysts, due to their intrinsic 

electrochemical properties could be quenched by the N-arylaminomethanes (reductive quenching) or 

the N-sulfonyl imines (oxidative quenching), to afford the Ir(II) and Ir(IV) species. These species 

would further trigger single electron transfer events, thereby producing the prochiral radical anions or 
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amino radical cations. Nevertheless, the chiral arylaminophosphonium salt would interact with the 

produced the prochiral radical anions to give the chiral ion pairs. Concurrently, the -amino alkyl 

radicals were formed upon the deprotonation/desilylation of the corresponding amino radical cations. 

Afterwards, the cross coupling reactions between the above two radicals proceeded under the 

stereocontrol of the chiral arylaminophosphonium. Enantioenriched 1,2-diamine derivatives were 

obtained in high yields (6090% for reductive quenching and 2886% for oxidative quenching) and 

with high enantioselectivities (8598% ee for reductive quenching and 7897% ee for oxidative 

quenching). 

 

Figure 16. Dual photoredox/Brønsted acid catalysis promoted enantioselective redox coupling of 

N-arylaminomethanes with N-sulfonyl imines. 
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In 2014, Stephenson and Jacobsen reported a sequential photoredox (1
st
 step) and chiral 

anion-bonding (2
nd

 step) catalytic approach to trigger the enantioselective Mukaiyama Mannich 

reaction.
26

 As shown in Figure 17, initially, the photoinduced net oxidation catalysis with CCl4 as 

terminal oxidant  afforded the racemic -chloroamines; subsequently, upon switching the reaction 

conditions as well as adding the chiral thiourea catalyst and the silyl enol ether, the enantioenriched 

-amino esters were obtained in good yields (1172%) and with high enantioselectivities (4299% ee). 

The chiral thiourea was proposed to form the counterion pair between H-bonded chloride anion and 

the iminium cation, thereby providing the stereocontrol under CC formation process. 

 

Figure 17. Enantioselective Mukaiyama Mannich reaction through sequential photoredox and chiral 

anion-bonding catalysis. 

Interestingly, a chiral phase transfer catalyst (PTC) was demonstrated to be applicable in the 

asymmetric photoredox catalysis in the absence of photocatalyst, thereby permitting the 

enantioselective perfluoroalkylation of cyclic β-ketoesters (Figure 18).
27

 This reaction was proposed 

to proceed through a visible-light-activated electron-donor-acceptor (EDA) complex which was 

formed between a PTC-stabilized enolate intermediate and the perfluoroalkyl iodide. 
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Figure 18. Single chiral phase transfer catalyst (PTC) enabled enantioselective perfluoroalkylation of 

cyclic β-ketoesters. 

Just recently, Luo’s group reported a single organic chiral ion pair catalyst was capable of 

promoting enantioselective anti-Markovnikov hydroetherification of alkenols in high yields and with 

moderate enantioselectivities under visible-light-activated photoredox conditions (Figure 19).
28

 

Mechanistically, a chiral ion pair acridinium photoredox catalyst get excited upon irradiation of the 

visible light and then reductively quenched by the alkene to regenerate the organophotoredox catalyst 

as well as produce a cation-radical intermediate. Concurrently, the chiral phosphate ion exchanged 

from the excited photocatalyst to the cation-radical intermediate. The follow-up deprotonation and 

CO formation would be under the control of the chiral phosphate ion. While the CO formation 

radical species abstracted a hydrogen atom from the 2-phenylmalononitrile, the enantioenriched 

substituted tetrahydrofuran was obtained with high yield and moderate enantioselectivity. Even though 

this chiral ion pair catalyst design is fantacy, the reaction outcome remains as the unsatisfactory stage. 

Soon after, Nicewicz’s group reported a similar strategy to trigger the enantioselective cation 

radical Diels-Alder reaction by employing a single chiral ion pair catalyst comprised of a pyrilium salt 

and a chiral N-triflyl phosphoramide anion. However, the reaction outcome is as well sluggish.
29
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Figure 19. Enantioselective anti-Markovnikov hydroetherification of alkenols through single chiral 

ion pair catalyst. 

1.3 Asymmetric Photoredox Chemistry with Transition Metal Catalysts 

 

Figure 20. Enantioselective decarboxylative Csp
3
Csp

2
 cross-coupling reaction enabled by dual 

photoredox/nickel catalysis 

In 2016, Fu’s and MacMillan’s groups reported the merger of synergistic photoredox and nickel 

catalysis to accomplish the enantioselective decarboxylative Csp
3
Csp

2
 cross-coupling, thereby 

providing an efficient access to valuable chiral benzylic amines.
30

 As shown in Figure 20, the 

abundant feedstock α-amino acids and aryl halides coupled under the cooperation of chiral nickel 
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catalysis and Ir-based photoredox catalysis to produce the CC formation products with good reaction 

outcome (45-84% yield and 82-93% ee). Accordingly, the α-amino acid undergoes a well-established 

visible-light-activated decarboxylation to afford an -aminoalkyl radical; concurrently, the nickel 

catalyst would react towards the aryl halide to give a Ni(II)-aryl complex, which interfaced the 

-aminoalkyl radical. The resulting diorganonickel(III) adduct then undergoes a reductive elimination 

process under the induction of the chiral environment directed by a semicorrin-like ligand, thereby 

producing the target benzylic amines. 

Later in 2017, Rovis’ and Doyle’s groups reported an alternative dual photoredox/nickel catalysis 

scheme though the similar strategy (Figure 21).
31

 The cyclic meso-anhydrides underwent 

enantioselective desymmetrization with the benzyl trifluoroborates under the cooperation of chiral 

nickel catalysis and organo photoredox catalysis to provide trans keto-acids as major isomer 

(6:1- >20:1) in high enantioselectivities (36-94% ee) and good yields (34-90%). Within this protocol, 

the Ni(0) catalyst first reacted with the anhydride through oxidative addition under a stereocontrolled 

fashion to afford a Ni(II) complex. Subsequently, this Ni(II) species would intercept with the benzylic 

radical generated by oxidative organo photoredox catalysis to deliver the Ni(III) complex. With the 

following reductive elimination, the target product trans keto-acid was obtained and the nickel 

catalysis was regenerated. 

 

Figure 21. Enantioselective desymmetrization of cyclic meso-anhydrides enabled by dual 

photoredox/nickel catalysis. 

With respect to the single transition metal mediated photoredox chemistry, Fu and co-workers 
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introduced an elegant catalytic strategy by using single copper catalysis to promote the cross-coupling 

between racemic tertiary alkyl chloride electrophiles with amines to forge quaternary stereocenters 

with high yields and excellent enantioselectivities (Figure 22).
32

 This report represents the first 

example involving the asymmetric base metal catalysis with visible-light-induced photoredox catalysis 

employing a single in situ assembled chiral catalyst. The proposed reaction mechanism is outlined in 

Figure 22. Accordingly, a copper(I)-amine complex get excited under the irradiation of visible light, 

subsequently transferred a single electron to the alkyl chloride under the formation of an alkyl radical 

and a Cu(II) species. The nucleophilic Cu(II) complex would react towards the electrophilic alkyl 

radical under the formation of CN bond through an outer- or innersphere pathway. Afterwards, a Cu(I) 

intermediate was generated and then trapped by the amines to trigger a catalytic cycle. The employed 

simple CuCl salt and the phosphine ligand highlighted this work significantly. 

 

Figure 22. Enantioselective cross-coupling of racemic tertiary alkyl chlorides with amines enabled by 

visible-light-activated single copper catalysis. 
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1.4 Asymmetric Photoredox Chemistry with Traditional Lewis Acid Catalysts 

Yoon’s group contributed pioneering efforts on merging enantioselective Lewis acid catalysis 

with photocatalysis for quite a lot of chemical transformations, including photocycloadditions
33

, and 

radical conjugate addition.
34

 For example, Yoon showcased the highly enantioselective [2+2] 

photocycloaddition of enones through a dual photoredox/Lewis acid catalysis strategy (Figure 23). 

This protocol provided the corresponding non-racemic cyclobutanes with moderate 

diastereoselectivities (1.5:1 to 9:1 dr) and excellent enantioselectivities (8497% ee). Interestingly, an 

imine-based chiral ligand and a corresponding reduced amine-based one provided the reverse 

configuration at the  position of produced cyclobutanes. The key aspect of this reaction scheme was 

the Eu-based Lewis acid, upon coordination to the enone, decreased the reductive potential of which, 

thereby rendering it amendable to be reduced under Ru-based photoredox conditions. This elegant 

reaction design has suppressed the un-catalyzed background reactions completely.  

 

Figure 23. Enantioselective [2+2] cycloaddition enabled by dual photoredox/Lewis acid catalysis. 

Later in 2015, Yoon reported a highly enantioselective radical conjugate addition reaction 

between the -amino alkyl radical and the Michael acceptor (Figure 24).
34

 The Ru-based photoredox 
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catalysis was employed to permit the generation of the nucleophilic -amino alkyl radical species 

from -silylalkyl amines, which subsequently added to the enone, while the asymmetric Lewis acid 

catalyst provided good stereocontrol over this radical conjugate addition process.  

 

Figure 24. Enantioselective radical conjugate addition reaction eabled by dual photoredox/Lewis acid 

catalysis. 

On the other hand, base metal Lewis acid was also applicable in the enantioselective 

photochemistry, even constituted the dual role of photoredox and asymmetric catalyst. Gong and 

co-workers disclosed a unique asymmetric photoredox scenario by using the simple Ni
II
-DBFOX 

catalyst (Figure 25).
35

 This single nickel catalyst system, upon visible-light-excitation, was capable of 

initiating single electron transfer (SET) events from -silyl alkylamines and concurrently activating 

the ,-unsaturated carbonyl compounds with bidentate coordination interaction. The follow-up 

radical conjugate addition of the -amino alkyl radical to the Ni-bound enone proceeded 

enantioselectively under the chiral environment arranged by the DBFOX ligand. Notably, similar with 

Melchiorre and Yoon’s work on the enantioselective radical conjugate addition reaction discussed 

above, the herein produced non-racemic CC formation products were also recognized as the 

analogues of pharmaceutically important -substituted chiral -aminobutyric acids (GABAs). 

However, the limited amine substrate scope on aryl versions hampered the access to the free or 

generally protected amino moiety; therefore the transformation to chiral GABAs can’t be realized. 
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Figure 25. Enantioselective radical conjugate addition reaction enabled by single Ni-based Lewis acid 

catalyst under visible-light-activated photoredox conditions. 
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1.5 Asymmetric Photoredox Chemistry with Chiral-at-Metal Lewis Acid Catalysts 

 

Figure 26. Structures of chiral-at-metal iridium and rhodium Lewis acid catalysts. 

Meggers group recently introduced a new class of chiral-at-metal Lewis acid (Figure 26) which 

comprised the functions of photoactivation, substrate activation and asymmetric induction in one 

catalyst, and was demonstrated to be capable of enabling versatile visible-light-activated photoredox 

reactions. 

In 2014, the former group members Haohua Huo and Xiaodong Shen reported a unique catalytic 

scheme in which the chiral-at-Ir Lewis acid Λ-IrS/IrO could integrate asymmetric catalysis with 

photoredox catalysis.
36

 Mechanistic investigations revealed that the chiral iridium(III) complex upon 

coordinating to a 2-acyl imidazole delivers an in situ assembled photoactive species (enolate 

intermediate, Figure 27) with the assistance of a weak base. This photoactive enolate species can be 

activated by visible light and promotes a single electron transfer (SET) to the electron-deficient 

organobromo compounds under the release of corresponding electrophilic carbon-centered radicals. 

The iridium enolate intermediate does not only serve as the photoactive species but also consitutes a 

key intermediate in the catalytic cycle by reacting with the generated electrophilic radicals to provide 

the CC formation products after protonation and liberation from the metal center. High catalytic 

reactivity of the chiral-at-Ir catalyst Λ-IrS was observed by obtaining the -alkylation products with 

up to quantitative yield and 99% ee. However, the initially developed related benzoxazole catalyst 

Λ-IrO showed inferior enantioselectivity. Subsequently, the benzothiazole catalyst Λ-IrS was 

successfully employed for enantioselective -trichloromethylations of 2-acyl imidazoles and 2-acyl 
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pyridines with excellent enantioselectivities of up to >99% ee.
37

 Herein the related benzoxazole 

catalyst Λ-IrO again provided inferior results compared with Λ-IrS. This observation was attributed to 

a decreased steric shielding of the catalytic site due to the shorter CO bonds in the benzoxazole 

moieties compared to the CS bonds of benzothiazoles which leads to less steric hindrance of the two 

tert-butyl groups.
38

  

 

Figure 27. Enantioselective photoredox reactions enabled by single chiral-at-Ir Lewis acid catalysts. 

In this discussed photoredox chemistry (Figure 27) the visible-light-excited in situ assembled 

photoactive species was oxidatively quenched, whereas in further investigations, our former group 

member Chuanyong Wang disclosed a complementary reductive quenching scheme (Figure 28). For 

instance, the Ir-based Lewis acid Λ-IrO was found to be capable of catalyzing the enantioselective 

redox coupling reaction of 2-acyl imidazoles with -silyl alkylamines under net oxidative photoredox 

conditions.
39

 A further redox neutral example demonstrated a unique stereocontrolled radical-radical 

recombination reaction scheme.
40

 Accordingly, the photoactivated iridium-bound trifluoromethyl 

ketone could permit a single electron oxidation from a tertiary amine under the formation of an 

iridium-bound ketyl radical and an amino radical cation which undergo fast -deprotonation to 

produce an -aminoalkyl radical. The following radical-radical cross-coupling between the 

-aminoalkyl radical and the ketyl radical proceeds smoothly to access 1,2-amino alcohols after 
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proton transfer, in an enantio- and diastereoselective (if applicable) fashion with up to 99% ee and 

10:1 dr. However, a strong electron-withdrawing group CF3, which apparently enhances the oxidative 

potential of the in situ assembled photoactive species, was essential for this transformation. 

 

Figure 28. Single chiral-at-Ir Lewis acid catalyst Λ-IrS mediated asymmetric radical-radical 

cross-coupling reactions under photoredox conditions. 

With respect to the Rh-based asymmetric photoredox catalysis, the former group member Wei 

Yuan found that the chiral-at-rhodium(III) catalyst Λ-RhO was capable of assembling a photoactivated 

oxidant (Rh-I) in situ, thereby promoting a highly enantioselective cross-dehydrogenative-coupling 

(CDC) reaction.
41

 As shown in Figure 29a, the tertiary amine, upon undergoing twice single electron 

oxidation through Rh-based photoredox catalysis in the presence of air, delivered an iminium ion. This 

electrophilic intermediate would intercept with the rhodium-enolate species (Rh-II), followed by the 

catalyst release, affording -amino carbonyl compounds in good yields (35-81%) and with excellent 

enantioselectivities (79-97% ee). Soon later, Kang and co-workers reported that a Λ-RhO derivative 

could trigger the enantioselective radical conjugate addition reaction to provide -amino carbonyl 

compounds (Figure 29b).
42

 The reaction is supposed to be initiated by the coordination of the enone 

to the Rh-based Lewis acid and the resulting adduct (Rh-IV) is photoexcited and then promotes single 

electron oxidation of the tertiary amine. The produced -aminoalkyl radical then react with the 
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Rh-bound enone (Rh-IV), thus giving rise to the CC formation product Rh-V. Upon the late stage 

electron/proton transfer and catalyst release, the -amino carbonyl compounds were obtained in 

moderate diastereoselectivities (52:48 to 93:7 dr) and excellent enantioselectivities (90->99% ee). 

However, a different mechanism can be envisioned. Accordingly, the single electron exchange 

between the tertiary amine and the excited Rh-IV might afford an -aminoalkyl radical accompanied 

with a Rh-bound enol radical, followed by a stereocontrolled radical-radical recombination. Possibly, 

the radical-radical recombination pathway and the radical conjugate addition mechanism compete with 

each other.  

 

Figure 29. a) Enantioselective cross-dehydrogenative-coupling (CDC) reaction mediated by single 

chiral-at-rhodium complex Λ-RhO; b) enantioselective radical conjugate addition reaction mediated 

by single Λ-RhO derivative.  

In addtion, the former group member Xiaodong Shen found that the Rh-based Lewis acid 

(Δ-RhO) was also capable of triggering visible-light-induced photoredox catalysis through an 

oxidative quenching pathway which complemented the forementioned reductive quenching scenario.
43

 

As shown in Figure 30, the enantioselective -amination of 2-acyl imidazoles was accomplished by 

using (ODN)-N-functionalized carbamates (ODN=2,4-dinitrophenylsulfonyloxy)
12 

under the 

chiral-at-Rh Lewis acid catalyzed photoredox conditions. The CN bond formation products were 
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obtained with high yields (52-99%) and excellent enantioselectivities (92-98%).  

 

Figure 30. Single chiral-at-Rh Lewis acid catalyst mediated enantioselective photoredox reaction. ODN 

= 2,4-dinitrophenylsulfonyloxy. 

Mechanistically, the chiral-at-Rh complex (Δ-RhO) is supposed to coordinate to the 2-acyl 

imidazole, and upon deprotonation, delivers a Rh-stabilized enolate intermediate (Rh-II). Under the 

irradiation of 24 W blue LEDs (455 nm), this intermediate gets photoexcited and constitutes an 

electron (re)initiator, thereby promoting a single electron to the (ODN)-N-functionalized carbamate 

(ODN = 2,4-dinitrophenylsulfonyloxy). After fragmentation, a highly electrophilic aminyl radical is 

produced and subsequently reacts with the intermediate Rh-II. The CN bond formation is under the 

control of the chiral environment directed by octahedral coordination geometry. This process provided 

the Rh-bound ketyl radical intermediate (Rh-III) which is a highly reductive agent, thereby being 

capable of transfering a single electron to the photoredox cycle to regenerate the ground state rhodium 

complex. Alternative, the intermediate (Rh-III) could directly promote the single electron reduction of 

the substrate (ODN)-N-functionalized carbamate, thereby furnishing the concept of “chain transfer”.
44
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Notably, the related congener IrO could not catalyze this transformation at all. This observation could 

be traced back to the higher ligand-exchange kinetics of the Rh-based Lewis acid than the Ir-based one, 

which was crucial to match the highly reactive aminyl radicals. 

1.6 Conclusions 

Visible-light-induced catalytic enantioselective photochemistry has been at the forefront of 

chemical research over the past decade. Chemists from the broad synthetic chemistry community 

provided considerable contributions on the development of diverse elegant protocols. Within these 

emerging catalytic tools, organocatalysis is dominant. The leading breakthrough was achieved by 

using a cooperative strategy with dual enamine and photoredox catalysis to promote the 

enantioselective -functionalization of ketones and aldehydes. Sometimes, mechanistically, the single 

chiral amine can comprise the dual role of asymmetric induction and photoactivation upon interaction 

with the substrates. Compatibility of chiral Brønsted acids with asymmetric photoredox catalysis was 

demonstrated by stereocontrolled transformations of carbonyl derivatives and aza-arenes. The 

generality of other techniques for organo-catalyzed asymmetric photoredox chemistry, including 

N-heterocyclic carbene catalysis, hydrogen bonding catalysis and so on, is still quite narrow and needs 

to be further extended.  

Transition metal catalysis as one of the most powerful tools to forge enantioselective 

photoreactions, showcased its potential by permitting the stereocontrolled formation of CC/N bonds 

in several cases. Another interesting chiral catalyst architecture is the traditional Lewis acid. Recent 

publications reveal that the metal salts associated with the chiral ligands could promote asymmetric 

photoredox catalysis with or without a separated photoredox catalyst, to trigger a variety of chemical 

transformations. 

The Meggers group introduced a class of unusual chiral-at-metal Lewis acid catalysts in which 

the chirality originates exclusive from the stereogenic metal center. These chiral-at-metal complexes 

have already been demonstrated as quite useful catalytic tools to promote diverse enantioselective 

photoreactions through integrating the dual functions of photoredox and asymmetric catalysis, thereby 

leading to novel asymmetric photoreactions. 
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Chapter 2: Aim of the Work 

Chiral transition metal complexes play a prominent role as catalysts for the asymmetric synthesis 

of non-racemic compounds.
1
 The required chirality typically originates from chiral mono- or 

multidentate ligands within the coordination sphere of the metal catalyst. Chiral transition metal 

catalysts in which the chirality exclusively originates from a stereogenic metal center witness a more 

recent development especially by the contribution from the Meggers research group.
2
 With the 

elaborated efforts of the former group members Haohua Huo, Xiaodong Shen and Chuanyong Wang, a 

new family of chiral-at-metal iridium (dubbed IrO
3
 and IrS

4
) and rhodium (dubbed RhO

5
) Lewis 

acid catalysts were introduced (Table 1).  

Table 1. Structures of chiral-at-metal Lewis acids. 

 

Entry Complex M X Remarks 

1 - and -IrO Ir O ref. 3 

2 - and -IrS Ir S ref. 4 

3 - and -RhO Rh O ref. 5 

4 - and -RhS Rh S unknown 

These C2-symmetrical complexes contain two cyclometalating 5-tert-butyl-2-phenybenzoxazoles 

or the analogous benzothiazoles, in addition to two labile acetonitrile ligands. The cyclometalating 

ligands create a propeller-type geometry with left-handed ( enantiomer) and right-handed ( 

enantiomer) screw sense. Importantly, a key aspect of the overall catalyst design is the strongly 

-donating phenyl ligands, which create a strong ligand field going along with a high ligand activation 

energy thereby rendering the bis-cyclometalated propeller unit configurationally inert (important for 
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retaining the catalyst’s chirality), while at the same time the strong kinetic trans-effect of the phenyl 

ligands labilize the coordinated acetonitrile ligands (important for catalysis). Meggers and several 

other groups demonstrated over the past several years that these bis-cyclometalated iridium(III) and 

rhodium(III) complexes and derivatives thereof are very versatile catalysts for a variety of asymmetric 

transformations, ranging from enolate chemistry and conjugate additions to asymmetric transfer 

hydrogenations.
2d

 An especially interesting aspect of this class of catalysts is their ability to become 

activated by visible light thereby catalyzing asymmetric photoreactions.
6 

1) Expanding the family of chiral-at-metal Lewis acid catalysts 

In previous investigations on the catalytic activity of these chiral-at-metal Lewis acids, two 

interesting observations are noticeable. Firstly, the Rh-based Lewis acid (RhO) often show higher 

catalytic activity than the Ir-based one (IrO) which can be rationalized with a more rapid ligand 

exchange kinetics of the rhodium complex. Secondly, the IrS comprising the cyclometalating 

benzothiazole ligands often displays higher asymmetric induction than its benzoxazole congener IrO 

which can be explained with an improved steric congestion directed by the benzothiazoles, in which 

the longer CS bonds over CO arranges the steric bulky tertiary butyl groups closer to the substrate 

coordination site.
,7 

Therefore, it would be highly desirable to access the other type of Rh-based Lewis 

acid catalyst containing the benzothiazole ligand (dubbed RhS).  

2) Discovering novel visible-light-induced asymmetric transformations 

Visible-light-induced asymmetric photoredox catalysis has been demonstrated as a powerful 

synthetic tool to access enantioenriched molecules.
6
 However, discovery of novel enantioselective 

photoreactions is mainly hampered by the development of new chiral catalysts which could get 

photoexcited directly upon interaction with substrates or cooperate harmoniously with an external 

achiral photocatalyst. Therefore, the other goal of this thesis is to make use of the chiral-at-rhodium 

complex RhS for discovering new methodologies in the field of asymmetric photoredox chemistry. 

The potential higher turnover frequencies of RhS compared to IrS should be an advantage for 

reactions involving short-lived photogenerated intermediates. The to be expected less favorable 

photophysical properties of RhS compared to IrS will be compensated by complementing with 

suitable photoactive species, thus furnishing the concept of “asymmetric cooperative photoredox 
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catalysis” as demonstrated also by other groups.
8
 Overall, a new chiral-at-metal Lewis acid catalyst 

might lead to the discovery of some unconventional new photoreactions. 
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Chapter 3: Results and Discussion 

3.1 Synthesis of the New Chiral-at-Rh Lewis Acid Catalyst /-RhS 

3.1.1 Synthetic Design 

Chiral-at-metal transition metal complexes devoid of any ligand-based chirality are traditionally 

resolved into their enantiomers by crystallizing salts with chiral counterions so that the often different 

solubility of the diastereomeric salts can be exploited.
1
 However, in order to not solely rely on 

unpredictable solubility differences of diastereomeric salts, our research group developed a 

chiral-auxiliary-mediated strategy
2
 which was initially used for the asymmetric synthesis of chiral 

ruthenium complexes
3
 and later applied into the synthesis of enantiopure chiral-at-metal iridium and 

rhodium complexes including the metal templated “organocatalysts”
4
 and Lewis acids.

5
  

 

Figure 31. Synthetic strategies for chiral-at-metal iridium and rhodium catalysts.  

With respect to the synthesis, as shown in Figure 31a, the racemic Ir-based complexes 1 or 2, 
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which were prepared from cyclometalating reaction of IrCl3·xH2O and corresponding ligands, reacted 

towards the chiral auxiliary salicylthiazoline to provide a mixture of two diastereomeric complexes 

Λ-(S)-3 and Δ-(S)-3. These two diastereoisomers were then resolved by the regular silica gel 

chromatography, followed by stereospecific substitution under the acidic conditions to deliver the 

target enantiopure complexes. This synthetic protocol has provided very efficient access to a variety of 

metal-templated “organocatalysts”
4
 and the chiral-at-iridium Lewis acid catalysts (/-IrO and 

/-IrS)
5, 6

. However, in the later research on the resolution of Rh-based complexes, Chuanyong 

Wang found that the most frequently used thiazoline- and oxazoline-based chiral auxiliaries in 

Meggers lab couldn’t deliver any stable diastereomeric complexes which were suitable for the 

resolution or purification on the standard silica gel chromatography
7
. C. Wang next turned to another 

type of naturally abundant auxiliary, enantiopure -amino acids. As shown in Figure 31b, introducing 

the L-proline to the rhodium center afforded two diastereomeric rhodium prolinato complexes -(S)-5 

and -(S)-5, which again showed limited stability on the column chromatography. However, these two 

complexes displayed distinct solubility in the mixed solvent of CH2Cl2/Et2O, thereby the insoluble 

-(S)-5 was isolated by washing out the soluble -(S)-5. The following acid-induced stereospecific 

substitution afforded the enantiopure chiral-at-rhodium Lewis acid -RhO. The opposite 

configurational catalyst -RhO was obtained through the D-proline-mediated synthetic route.
8
 A 

drawback of this method needed to be pointed out is that the soluble diastereomers (-(S)-5 and 

-(R)-5) can’t be obtained in sufficient purity due to the inaccessible purification method in the 

Meggers lab. 

Intrigued by these established synthetic strategies for chiral-at-metal iridium and rhodium 

complexes, the author of this thesis decided to investigate the synthesis of the potentially highly active 

catalysts /-RhS using the forementioned chiral-auxiliary-mediated synthetic protocol.  
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3.1.2 Synthesis and Characterization 

 

Figure 32. Attempts on resolution of rac-RhS using enantiopure amino acids. 

In line with C. Wang’s work on the auxiliary-mediated synthesis of chiral-at-rhodium catalysts 

/-RhO, the enantiopure L-proline should be the first choice for /-RhS. The synthesis started 

with rhodium trichloride hydrate which was first converted into rac-RhS (1.70 g, 53% yield, data from 

Xiaoqiang Huang) by reaction with 2 equiv of 5-tert-butyl-2-phenylbenzothiazole 6, followed by 

treatment with 2.0 equiv. of AgPF6 in MeCN (Figure 33). The rac-RhS was then reacted with the 

L-proline to provide a mixture of diastereomeric isomers -(S)-7 and -(S)-7. Unfortunately, these 

two complexes didn’t show any applicable solubility distinction in a range of screened solvents or the 

combination thereof, and as well were not stable on the stand column chromatography. Moreover, 

screening other natural or unnatural amino acids didn’t lead to any resolution of the corresponding 

diastereomers.  

After running into a stone wall on using enantiopure amino acids as chiral auxiliaries, the author 

of this thesis decided to turn back to the oxazoline mediated strategy. Upon analyzing reasons of the 

instability of oxazoline-coordinated rhodium complexes in C. Wang’s research, the cleavage of RhO 

ionic bond under acidic conditions should be the key aspect. Taking this into account, a 

monofluorinated salicyloxazoline (S)-8
9
 was introduced in which the fluorine would decrease the 

basicity of the oxygen, therefore most likely hampering the cleavage of RhO ionic bond under acidic 

conditions, especially upon interaction with the silica gel on column chromatography. The realization 

of this proposal was accomplished as outlined in Figure.
6, 10

 Accordingly, the rac-RhS was reacted 

with the auxiliary (S)-8 to afford diastereomers -(S)-9 and -(S)-9, which unexpectedly, displayed 
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completely distinct solubility in EtOH (Figure 34). More gratifyingly, both isomers were stable on the 

silica gel chromatography as expected. Overall, combining the washing with silica gel 

chromatography strategies, the rac-RhS got readily resolved into pure diastereomers -(S)-9 (44% 

yield) and -(S)-9 (46% yield). Configurations were assigned based on the crystal structure of -(S)-9 

as shown in Figure 35. Following stereospecific substitutions in acetonitrile provided straightforward 

access to the enantiopure chiral-at-rhodium Lewis acids -RhS and -RhS (90% yield and >99:1 er 

for each one). 

 

Figure 33.Chiral-auxiliary-mediated synthesis of enantiomerically pure Λ- and Δ-RhS. 

 

Figure 34. Reaction system after first time centrifugation (left) and after washing by EtOH for another 

three more times (right). 
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Figure 35. Crystal structure of the auxiliary complex -(S)-9. ORTEP drawing with 50% thermal 

ellipsoids. 

CD spectra of the complexes - and -RhS are shown in Figure 36 and confirm their 

mirror-imaged structures. HPLC performed on chiral stationary phase validate the high enantiomeric 

purity of the individual enantiomers (Figure 37). For the -enantiomer an e.r. of 99.9:0.1 was 

determined, while peak tailing prevents and accurate validation of the -enantiomer and was estimated 

as >99:1 e.r.  
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Figure 36. CD spectra of - and -RhS recorded in CH3OH:CH2Cl2 (4:1). 

 



Chapter 3. Results and Discussion 

42 
 

100 105 110 115

0

2

4

6

8

10

12

100 105 110 115

0

5

10

15

20

25

30

100 105 110 115

0

5

10

15

20

25

time (min)

in
te

n
s
it
y
 (

a
.u

.)

  

 

Figure 37. HPLC traces of racemic, - and -RhS. HPLC conditions: Daicel Chiralpak IB, 250 x 4.6 

mm, column temp. = 25 °C, abs = 254 nm, flow rate = 0.6 mL/min, solvent A = 0.1% aqueous TFA, 

solvent B = MeCN, gradient = 40% to 50% B in 180 min. 

3.1.3 Evaluation of Catalytic Activity of Λ-RhS 

 

Figure 38. Comparison of catalytic activity of -RhS and -RhO. 

Preliminary investigation on the catalytic performance of the newly prepared chiral-at-rhodium 

Lewis acids /-RhS is outline in Figure 38. Accordingly, the enantioselective Michael addition 

reaction of Meldrum’s acid and 2-acyl imidazole catalyzed by the -RhO provided the CC formation 

product (S configuration) in 99% yield and 85% ee (conducted by C. Wang).
8
 However, using the 

-RhS instead, an increased enantioselectivity (93% ee with R configuration) was obtained with 

unchanged yield (99%). Another comparison was demonstrated using a photoredox reaction. The 
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-RhO catalyzed asymmetric -amination of 2-acyl imidazole under photoredox conditions provided 

the target CN product in excellent enantioselectivity (97% ee),
11

 while the -RhS gave an even 

better stereocontrol (>99.5% ee) (conducted by Xiaodong Shen). 

The improve catalytic activity of RhS over RhO is attributed to higher steric congestion directed 

by the benzothizole ligands, in which the longer CS bonds over CO bonds, arranged the steric bulky 

tertiary butyl groups closer to the exchange-labile acetonitrile ligands. As outline in Figure 39, the 

superimposed crystal structures of -RhS and mirror-imaged -RhO (contributed by Dr. K. Harms), 

not only confirmed the assigned metal-centered configuration of -RhS but also revealed differences 

in how two tert-butyl groups flank the coordination site around the two acetonitrile ligands. In 

comparison with RhO, the tert-butyl groups of RhS are in closer proximity to the labile acetonitriles 

as quantified by a 0.9 Å shorter intramolecular distance between quaternary carbons of the two 

tert-butyl groups in RhS (10.5 Å) over RhO (11.4 Å). This is consistent and analogous with a 

comparison of the related benzooxazole and benzothiazole iridium complexes.
12

 

 

Figure 39. Superimposed crystal structure of -RhS (grey) with inverted -RhO (green). Fitted are 

the central metal together with the metal-bound atoms. Atoms are displayed as 50% thermal ellipsoids.  
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3.1.4 Conclusions 

Herein the synthesis of new chiral-at-metal benzothiazole complexes Λ/Δ-RhS has been 

accomplished, which expands the family of bis-cyclometalated rhodium(III) complexes for 

applications in asymmetric catalysis. Compared with the previously reported benzoxazole complexes 

Λ/Δ-RhO, the benzothiazole ligands in Λ/Δ-RhS provide a higher steric congestion around the labile 

acetonitrile ligands, thereby making Λ/Δ-RhS as superior asymmetric catalysts. Applications of the 

new chiral Lewis acid catalysts to other interesting asymmetric photoredox transformations would be 

presented in the following chapters. 
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3.2 Cooperative Rhodium/Ruthenium Asymmetric Photoredox Catalysis to Access 

Chiral 1,2-Aminoalcohols 

3.2.1 Research Background and Reaction Design 

 

Figure 40. Photoinduced catalytic enantioselective radical conjugate addition by Yoon and the former 

group member H. Huo. 

The catalytic enantioselective radical conjugate addition reaction was a formidable challenge 

when the author of this thesis started to pursue his doctoral degree in Meggers group. This can be 

attributed mainly to the strong uncontrollable background reaction which results from the high 

reactivity of the involved alkyl radicals.
1
 A limited number of examples existed. Sibi and co-workers 

disclosed that the magnesium bisoxazoline complex (5% mol) as chiral Lewis acid was capable of 

catalyzing radical conjugate addition of isopropyl radical to an oxazolidinone cinnamate with good 

outcome (92% yield and 90% ee).
2
 Recently, Yoon’s group reported that a dual photoredox/Lewis acid 

catalysis could promote the highly enantioselective radical conjugate addition of α-aminoalkyl radicals 

to α,β-unsaturated carbonyl compounds (Figure 40a).
3
 With respect to the research of the Meggers 

group, H. Huo found that the previously developed single chiral-at-iridium Lewis acid Λ-IrO with a 

loading of 20 mol% could catalyze a similar transformation to provide the CC formation product 12 

in 43% yield and with inferior enantioselectivity of 37% ee under photoredox conditions. While using 

stoichiometric amount of Λ-IrO (100 mol%), a satisfactory enantioselectivity was obtained (85% ee).
4
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Figure 41. a) Substrate redesign; b) attempt to enantioselective radical conjugate addition. n.d. = not 

detected. PC = photocatalyst 

Intrigued by these results, especially the work of H. Huo, the author of this thesis decided to 

further investigate the potential of photoinduced enantioselective radical conjugate additions by using 

the chiral-at-metal catalysts developed in the Meggers group. Considering that the strong uncatalyzed 

background reaction was the key challenge, it was reasonable to introduce a redesigned Michael 

acceptor with lower reactivity which should be beneficial to decrease the background or other 

undesired side reactions. Moreover, with respect to the employed substrate E-10 in H. Huo’s initial 

attempt, a photoinduced isomerization reaction of E to Z was possible
5
 and these two isomers would 

deliver the products with opposite absolute configurations under Λ-IrO catalyzed conditions (Figure 

41a). The overall result was the diminution of the enantioselectivity of the target CC formation 

product. Taking these aspects into account, a new cyclohexene-based Michael acceptor 13 was 

introduced, which contained two substituents at the  carbon, therefore decreasing its electrophilicity. 

And the cyclic configuration afforded the alkene without E and Z isomerization.  

As discussed in chapter 1.5, the chiral-at-rhodium complex RhO which provided high turnover 

frequency over IrO/S in ligand exchange processes, showed excellent catalytic activity for 
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photoinduced enantioselective -amination reactions.
6
 Inspired by this observation, the newly 

designed α,β-unsaturated carbonyl compound 13 was subjected to a reaction with the -silyl alkyl 

amine 11 in the presence of Λ-RhO (4 mol%) under the irradiation of 23 W CFL. Disappointingly, no 

target CC formation product 14 was observed. However, upon the addition of an established 

photoredox catalyst Ru(bpy)3(PF6)2 (1 mol%) to the reaction, unexpectedly, an 1,2-addition product 

was isolated as the silyl ether 15 in 60% yield and 93% ee, whereas no 1,4-additon was observed. The 

structure of 15 identified as chiral 1,2-aminoalcohol analogue was confirmed by X-ray crystallography. 

Even though the initially designed radical conjugate addition was not accomplished, the herein 

obtained 1,2-aminoalcohol analogue (15) was found to be structurally related to the products reported 

by C. Wang as discussed in chapter 1.5, in which the ketone substrates was limited to compounds 

containing α-CF3 groups.
7
 The author of this thesis then wondered if it is possible to use the herein 

unexpected dual catalysis strategy to expand the limited substrate scope of C. Wang’s work to alkyl- 

and arylsubstituted ketones (Figure 42). 

 

Figure 42. Catalytic enantioselective synthesis of 1,2-aminoalcohol under photoredox conditions. PC 

= photoredox catalyst. 
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3.2.2 Initial Experiments and Reaction Development 

 

Figure 43. Photoinduced enantioselective redox coupling reaction using the general ketone 16a. 

The investigation on expanding the scope of photoinduced redox coupling reaction started with 

the acceptor-substituted ketone 16a. As outlined in Figure 43, the chiral-at-metal rhodium-based 

Lewis acid -RhO
8
 together with the established photocatalyst [Ru(bpy)3]

2+
 (Rubpy)

9
 catalyzed the 

reaction of 16a with the α-silylalkyl amine to provide the CC formation product 17 in good yield of 

68% and decreased enantioselectivity of 41%. With this promising result using the general ketone 16a, 

the author of this thesis moved to the dedicated optimization and the result is shown in Table 2. 

Accordingly, removing the trimethylsilyl (TMS) group with TBAF ahead of the workup increased the 

yield of the corresponding alcohol 19a to 73% (entry 2). The enantioselectivity of the aminoalcohol 

coupling product was then stepwise improved by increasing the steric bulk of the substituent at the 

imidazole nitrogen (R
1
, entries 35), with the best result obtained for a 2-phenylphenyl substituent, 

reaching 93% ee. Importantly, replacing the rhodium-catalyst with the analogous iridium congener 

-IrO
10

 abolished product formation, both in the presence or absence of an additional photocatalyst 

(entries 6 and 7). This can probably be traced back to a different spin localization/delocalization in the 

iridium ketyl intermediate. Finally, the newly developed second-generation chiral-at-metal 

rhodium-based Lewis acid -RhS,
11

 in which the benzoxazole ligands are replaced with 

benzothiazoles, provided in combination with [Ru(bpy)3]
2+ 

the best results with 76% yield and 95% ee 

for the reaction 16d + 18a  19d (entry 8). Control experiments confirm that this reaction requires 

both visible light and the ruthenium photocatalyst (entries 9 and 10). Furthermore, the TMS group 

appears crucial for this reaction as a related amine (18b) devoid of any silyl group suppressed product 
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formation completely (entry 11).  

Table 2. Reaction development and control experiments. 

 

entry cat. PC
b
 hc

 cpd 16 cpd 18 t (h) yield (%)
d
 ee (%)

e
 

1 -RhO Rubpy yes 16a 18a 14 68 (17) 41 

2 -RhO Rubpy yes 16a 18a 14 73 (19a) 41 

3 -RhO Rubpy yes 16b 18a 14 74 (19b) 82 

4 -RhO Rubpy yes 16c 18a 14 73 (19c) 88 

5 -RhO Rubpy yes 16d 18a 14 72 (19d) 93 

6 -IrO Rubpy yes 16d 18a 24 50 (19d) 0 

7 -IrO none yes 16d 18a 24 43 (19d) 3 

8 -RhS Rubpy yes 16d 18a 5 76 (19d) 95 

9 -RhS Rubpy none 16d 18a 20 n.r. n.d. 

10 -RhS none yes 16d 18a 20 n.r. n.d. 

11 -RhS Rubpy yes 16d 18b 20 n.r. n.d. 

a
Reaction conditions: To a mixture of 16a-d (0.1 mmol), [Ru] (1.0 mol% or none), and 

catalyst (4 mol% or none) in MeCN/DMAC (4:1) (1ml) was added the amine 18a-b (0.15 

mmol). The reaction mixture was stirred at r.t. under nitrogen and, except for entry 9, 

irradiated with a 23 W CFL. Afterwards, the solvent was evaporated to dryness and the residue 

was redissolved in THF, then treated with TBAF (0.5 mmol). The TBAF addition was omitted 

for entry 1. 
b
Rubpy = [Ru(bpy)3](PF6)2.

c
23 W CFL. 

d
Isolated yields. n.r. = no reaction. 

e
Determined by HPLC on chiral stationary phase. n.d. = not determined. PC = photoredox 

catalyst. 
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3.2.3 Substrate Scope 

Having obtained the optimized reaction conditions, the substrate scope with respect to 

α-trimethylsilyalkyl amines (Figure 44) was next investigated. Acoordingly, both the para- and 

meta-methylated N-phenyl moiety of the α-silylamines afforded the individual products (19e-f) in 

good yields (81-82%) and with excellent enantioselectivities (97-98%). A benzyl substituted 

α-silylamine also exhibited good tolerance by providing 19g in 78% yield and with 93% ee. Notably, 

the reaction between 2-acyl imidazole and the 1,2,3,4-tetrahydroquinoline derivative provided the 

1,2-amino alcohol (19h) with a satisfactory result (70% yield and 95% ee). Gratifyingly, the 

N,N-diaryl α-silylamines have been applied into this chemistry successfully (19i-j), despite a relatively 

longer reaction time was necessary when the bis(4-(tert-butyl)phenyl substituted α-silylamine 

involved. 

 

Figure 44. Substrate scope with respect to α-silylalkyl amines. 

Next, the substrate scope with respect to 2-acyl imidazoles was evaluated. Figure 45 reveals that 

both aromatic as well as aliphatic substituents at the acyl group are tolerated, providing the respective 

1,2-amino alcohols 19k-s in 70-88% yield and with enantioselectivities of 54-99% ee. With respect to 

substituents in the aromatic moiety, methyl groups (products 19k and 19l) and a phenyl group (product 

19q) provide excellent enantioselectivities of 96-98% ee. An acetoxy substituent also afforded the 
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product 19p with high yield and high enantioselectivity. However, more strongly electron withdrawing 

or electron accepting substituents lead to inferior results. For example, while a chloro substituent still 

provides the product 19m with high yield (88%) and satisfactory enantioselectivity (93% ee), a methyl 

ester or methoxy group in para-position provided the products 19n and 19o only with 54% ee and 

86% ee , respectively. 

 

Figure 45. Substrate scope with respect to 2-acyl imidazoles. 
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3.2.4 Mechanistic Study 

 

Figure 46. Proposed mechanism for the observed silyl effect in the visible-light activated Rh/Ru dual 

catalysis. SET = single electron transfer. 

A proposed mechanism is illustrated in Figure 46. Accordingly, visible light activated 

[Ru(bpy)3]
2+

 (E1/2
PC*/PC

 = + 0.77 V vs SCE in MeCN) oxidizes in a well-established mechanism the 

-silylmethylamine (Ep = ~0.41 V vs SCE in MeCN) to the corresponding radical cation, which 

subsequently undergoes a rapid desilylation to provide an α-aminomethyl radical.
12

 Notably, a related 

N,N-dimethyl aniline constitutes a much higher oxidative potential (Ep = ~0.75 V vs SCE in MeCN) 

compared with the -silylmethylamine.
13

 

To take into account the observed silyl effect, the released trimethylsilyl group is proposed to be 

captured by the rhodium-coordinated 2-acyl imidazole (intermediate I) to afford the very electron 

deficient silylated intermediate II. This is followed by an electron transfer from the reduced 

photocatalyst to regenerate the catalyst in the ground state and provide a rhodium coordinated, 

silylated ketyl (intermediate III), which then undergoes a radical-radical recombination with the 

α-aminomethyl radical to form the rhodium-coordinated CC coupling product (intermediate IV). 

Replacement of the product (19) by a new substrate (16) will then initiate a new catalytic cycle. Thus, 
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in this mechanism, Ru(bpy)3(PF6)2 serves as a light-activated electron shuttle between the α-silylalkyl 

amine (electron donor) and the 2-acyl imidazole (electron acceptor), followed by a radical-radical 

coupling, in which the stereochemistry is controlled by the chiral rhodium Lewis acid. Figure 47 

shows a crystal structure of a derivative of intermediate I and the structure of the proposed 

intermediate III which can rationalize the observed S-configuration of the products.  

 

 

Figure 47. Crystal structure of a derivative intermediate I and the proposed structure of intermediate 

III with the indicated stereocontrolled radical-radical recombination. 

Mechanistic experiments are shown in Figure 48. Control experiments demonstrate that the silyl 

group, although crucial for observing the CC coupling product with a 2-acyl imidazole, is actually 

not required for the production of intermediate α-aminomethyl radicals. Accordingly, the radical 

species generated from both -silylmethylamine 18a and the dimethyl amine 18b are trapped by an 

electron deficient alkene to give the product 20 in comparable yield (Figure 48a). Additionally, in the 

presence of the photoredox catalyst Ru(bpy)3(PF6)2 (1 mol%), reaction of the -silylmethylamine 18a 

with the 2-acyl imidazole 16a provides the redox coupling product silyl ether with 30% yield, while 

the dimethyl amine affords no product under the same conditions (Figure 48b). Moreover, an amine 

substrate (18c) with the more bulky bis(cyclopropyl)methylsilyl group afforded only 7% yield of the 

aminoalcohol. Overall, these experiments support the mechanistic picture that the trimethylsilyl group 

exerts an important role as an additional Lewis acid
14,15

 to activate the rhodium-coordinated 2-acyl 

imidazole and facilitates a reduction by lowering the ligand-centered LUMO, whereas the related 

di(cyclopropyl)-methlysilyl group is too bulky to interact with the rhodium-coordinated substrate and 

the N,N-dimethyl aniline can’t deliver a second Lewis acid in the reaction system even though 

undergoing smooth single electron oxidation. 
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Figure 48. Mechanistic experiments. 

3.2.5 Conclusions 

A visible-light-driven enantioselective radical-radical cross-coupling was discovered by 

cooperativity between a rhodium-based chiral Lewis acid and a ruthenium photoredox catalyst and in 

which a trimethylsilyl group appeared to play a crucial role as an in situ released Lewis acid. This 

protocol expands the substrate scope to a much broader scheme compared with the previous work by 

C. Wang. In this way synthesized diverse nonracemic 1,2-aminoalcohols represent a reductive 

Umpolung of the carbonyl reactivity triggered by a photoinduced electron transfer.
16
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3.3 Synthesis of Fluoroalkyl-Containing Compounds through Enantioselective 

Three-Component Photoredox Reaction 

3.3.1 Research Background and Reaction Design 

 
Figure 49. a) H. Huo and C. Wang’s work on photoinduced radical conjugate addition reaction; b) 

proposal for this study. PC = photoredox catalyst. [Ir1] = Ir(dF(CF3)ppy)2(bpy)PF6. [Ir2] = fac-Ir(ppy)3. 

PET = photoinduced electron transfer. EWG = electron withdrawing group. EDG = electron donating 

group.  

In 2016, the former group member H. Huo accomplished the visible-light-induced 

enantioselective radical conjugate addition of organotrifluoroborates and acceptor-substituted alkenes 

by using the cooperative catalysis of chiral-at-rhodium Lewis acid -RhS and established photoredox 

catalysts (Figure 49a).
1
 C. Wang further extended this elegant methodology to the functionalization 

of C(sp
3
)H bonds through intramolecular 1,5hydrogen atom transfer (1,5-HAT).

2
 Both of these two 
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reaction schemes provided the CC formation products with excellent enantioselectivities (up to 99% 

and 97% ee, respectively) by suppressing the often prevailing racemic background reaction, which 

typically needed to be counterbalanced with high catalyst loadings. With respect to the mechanism, a 

nucleophilic radical A is thought to be typically produced upon the release of a leaving group triggered 

by photoinduced electron transfer (PET). This radical species is the supposed to add to the 

rhodium-bound acceptor-substituted alkenes to provide the CC formation products in a catalytic 

enantioselective fashion. Inspired by this mechanistic scenario, the author of this thesis became 

interested in the development of methods for generating nucleophilic radicals. As illustrated in Figure 

49b, a radical cascade pathway was proposed for the generation of a nucleophilic radical. Accordingly, 

this new design started with the production of an electrophilic radical under photoredox conditions, 

which was subsequently trapped by an electron-rich olefin to deliver the nucleophilic radical species. 

This species is an equivalent of intermediate A in the previous work and would then add to the 

Michael acceptor under the stereocontrol of the chiral-at-rhodium Lewis acid catalyst. Overall, this 

newly proposed radical cascade scheme would trigger a catalytic asymmetric three component 

photoredox reaction which provides the non-racemic dual CC formation products in highly efficient 

fashion.  

On the other hand, the author of this thesis was also quite interested in the discovery of new 

photoredox catalysts or mediators which are simple and readily available. In 2016, the Li group 

reported a practical photochemical method for the trifluoromethylation of unactivated arenes and 

heteroarenes using acetone (UV activation) and diacetyl (visible-light activation) as simple photoredox 

initiators or mediators.
3
 In particular, diacetyl as a simple commercially available material is very 

appealing for visible-light-induced single electron transfer (SET) but the requirement to use it as a 

cosolvent poses a significant drawback. The author of this thesis then envisoned that some other 

α-diketones
4
 with improved photoredox properties would be applicable to the forementioned 

three-component photoredox reaction at a substoichiometric amount.   
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Figure 50. a) Previous work and this study on visible-light-induced three-component fluoroalkylation 

reactions; b) Reaction design based on asymmetric Lewis acid catalysis in combination with -diketone 

organophotoredox chemistry. PET = photoinduced electron transfer. SET = single electron transfer. 

While turning to the photoredox reaction using three or multiple components, the 

visible-light-induced three-component fluoroalkylations have witnessed increasing popularity because 

perfluoroalkyl radicals can be generated conveniently under photoredox conditions and are then used 

in the context of multicomponent reactions (MCRs)
5
 for the efficient synthesis of organofluorine 

compounds.
6

 For example, Akita and coworkers introduced an elegant three-component 

oxytrifluoromethylation under photoredox conditions to efficiently difunctionalize CC double bonds 

in a regioselective fashion.
7
 Magnier and Masson further extended this approach to the more 

challenged oxyperfluoroalkylation by using S-perfluoroalkyl sulfilimino iminiums as versatile 

fluorinated radical source.
8
 In all these cases, the reactions are initiated by the generation of 

perfluoroalkyl radicals through photoinduced electron transfer (PET), followed by their addition to 
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alkenes
9
 which leads to the formation of secondary radicals (intermediate I in Figure 50a). These 

secondary radicals are then often oxidized by single electron transfer (SET) and trapped with a 

nucleophile to furnish the racemic three-component product II. Xiao and Chen described an 

alternative three-component radical cascade process in which the secondary radicals (intermediate I) 

were directly trapped by aryldiazonium salts and later underwent single electron oxidation to deliver 

various trifluoromethylated azo compounds under photoredox conditions.
10

 Despite the vast efforts 

that have been devoted to racemic visible-light-induced multicomponent-based perfluoroalkylation,
11

 

catalytic asymmetric versions remain elusive, presumably due to the challenge of achieving 

satisfactory asymmetric inductions with highly reactive free radicals. However, beyond photoredox 

chemistry, X.-Y. Liu
12

 and G. Liu
13

 recently reported several examples concerning the catalytic 

asymmetric synthesis of trifluoromethyl containing compounds based on MCRs in which Cu(I) is 

proposed to initiate single electron transfer (SET) from Togni’s [CF3
+
] reagent. 

Overall, inspired by all these studies, the author of this thesis therefore envisioned a new 

Rh-catalyzed three-component enantioselective radical conjugate addition reaction using α-diketones 

as photoredox mediators. The reaction design is outlined in Figure 50b. Accordingly, a photoexcited 

α-diketone, presumably bearing an extended -system with aryl substituents to improve visible light 

absorption and stabilize radical anion intermediates, should be quenched reductively by the Langlois 

reagent
14

 or related sodium perfluoroalkyl sulfinates (21)
15

 to generate a perfluoroalkyl radical along 

with ketyl radical. The electron-deficient fluorinated radical is then selectively trapped by the 

electron-rich terminal alkene 22 to provide under C–C bond formation an α-oxyl carbon-centered 

radical species which subsequently engages in a rhodium-catalyzed asymmetric addition to an 

acceptor-substituted alkene (Rh-IRh-II) to create a second CC single bond in an enantioselective 

and diastereoselective fashion. SET from the reduced photoredox mediator (ketyl intermediate) to the 

rhodium-coordinated radical (Rh-II) followed by protonation then provides the rhodium-coordinated 

product (Rh-III) accompanied with a regenerated -diketone. After dissociation of the product the 

rhodium catalyst can engage in a new catalytic cycle. This visible-light-activated three-component 

radical cascade reaction would provide structurally complex organofluorine building blocks in an 

efficient fashion under conditions of asymmetric catalysis. 
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3.3.2 Initial Experiments and Reaction Development 

Experimental study started by investigating the reaction Langlois reagent 21a, vinyl ether 22a, 

and α,-unsaturated N-acylpyrazole 23a under photoredox conditions (Table 3). Encouragingly, the 

combination of -RhS
16

 (6 mol%) and the organic photoredox mediator benzil
17

 (40 mol%) enabled 

the asymmetric three-component fluoroalkylation reaction to provide 24a under dual CC bond 

formation, but only in 10% yield, with a limited diastereoselectivity (2:1), and a low enantioselectivity 

of 40% ee for each diastereomer (entry 1). No desired product was observed by employing the chiral 

Lewis acid catalyst -RhS (6 mol%) in the absence of benzil (entry 2). The yield and 

enantioselectivity were improved somewhat to 19% by adding NH4PF6 as a proton transfer mediator 

(entry 3). We next rationalized that electron-withdrawing groups introduced into benzil should be 

beneficial due to an increased oxidation potential. Interestingly, when we used 4,4'-difluorobenzil 

instead of benzil the yield remained unchanged at 19% but the enantioselectivity increased 

significantly to 67% ee (entry 4). When we conducted the reaction at a reduced temperature of 57 ℃, 

a satisfactory yield of 24a of 64% and an excellent enantioselectivity of 96% ee for each formed 

diastereomer (2:1 dr) was achieved (entry 5). Notably, these two diastereomers could be resolved by 

regular column chromatography on silica gel. Several control experiments were conducted to show the 

superiority of the herein employed chiral Rh-based Lewis acid catalyst in combination with the 

inexpensive organic photoredox mediator 4,4'-difluorobenzil. For example, Sc(OTf)3 (20 mol%) or 

Cu(OAc)2 (20 mol%) instead of -RhS, provided a decreased yield (26%, entry 6) or no product 

formation (entry 7), respectively. Meanwhile, product formation was completely abolished with other 

ketones, such as anthraquinone
18

 and 9-fluorenone
19

,
 

which have been well-established for 

photoinduced hydrogen atom transfer (entries 8 and 9). Other control experiments verified that visible 

light and oxygen-free conditions were essential for this chemical transformation (entries 10 and 11). 

More details concerning the optimization of conditions, comparison with other photoredox mediators 

as well as light sources are available in the Experimental Part. 
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Table 3. Reaction development and control experiments
a
 

 

entr

y 

catalyst photoredox mediator T (℃) additive hv
b
 yield (%)

c
 dr

d
 ee (%)

e
 

1 -RhS benzil 25 none yes 10% (20 h) 2:1 40/40 

2 -RhS none 25 none yes 0 (48 h) n.a. n.a. 

3 -RhS benzil 25 NH4PF6 yes 19% (20 h) 2:1 51/51 

4 -RhS 4,4'-difluorobenzil 25 NH4PF6 yes 19% (20 h) 2:1 67/67 

5 -RhS 4,4'-difluorobenzil 5-7 NH4PF6 yes 64% (28 h) 2:1 96/96 

6
f
 Sc(OTf)3 4,4'-difluorobenzil 5-7 NH4PF6 yes 26% (48h) 2:1 n.a. 

7
f
 Cu(OAc)2 4,4'-difluorobenzil 5-7 NH4PF6 yes 0 (48 h) n.a. n.a. 

8 -RhS anthraquinone 5-7 NH4PF6 yes 0 (48 h) n.a. n.a. 

9 -RhS 9-fluorenone 5-7 NH4PF6 yes 0 (48 h) n.a. n.a. 

10 -RhS 4,4'-difluorobenzil 5-7 NH4PF6 no 0 (48 h) n.a. n.a. 

11
g
 -RhS 4,4'-difluorobenzil 5-7 NH4PF6 yes 0 (48 h) n.a. n.a. 

a
Reaction conditions: 21a (0.6 mmol), 22a (0.3 mmol) and 23a (0.1 mmol), Rh catalyst (6 mol%), and 

-diketone (40 mol%) in acetone/H2O (9:1, v/v, 0.1 M) were stirred at the indicated temperature for 

2048 h under an atmosphere of nitrogen, unless otherwise noted. 
b
Light source: 24 W blue LEDs. 

c
Isolated yields; reaction time provided in brackets. 

d
Determined by 

19
F NMR analysis of the crude 

products. 
e
Determined by HPLC analysis on a chiral stationary phase; ee of both diastereomers are 

shown. 
f
20 mol% of Sc(OTf)3 and Cu(OAc)2 were employed respectively. 

g
Reaction was conducted 

under air. n.a. = not applicable. 
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3.3.3 Substrate Scope 

Table 4. Substrate scope with respect to N-acylpyrazoles and sodium perfluoroalkyl sulfinates
a
 

 

entry RF R
1
 R

2
 t (h) yield (%)

b
 dr

c
 ee (%)

d
 

1
e
 CF3 (21a) Bz(CH2)4O (22b) iPr (23a) 30 70 (24b) 2.1:1 92 / 93 

2 CF3 (21a) Bz(CH2)4O (22b) 3-pentyl (23b) 48 57 (24c) 1.7:1 95 / 95 

3
f
 CF3 (21a) Bz(CH2)4O (22b) cyclopentyl (23c) 30 53 (24d) 1.9:1 97 / 94 

4
f
 CF3 (21a) Bz(CH2)4O (22b) cyclohexyl (23d) 30 65 (24e) 2.0:1 96 / 90 

5 CF3 (21a) Bz(CH2)4O (22b) tBu (23e) 66 47 (24f) 6.0:1 96
h
 

6 CF3 (21a) BnO(CH2)4O (22c) Et (23f) 14 26 (24g) 1.7:1 70 / 78 

7 CF3 (21a) Bz(CH2)4O (22b) 
(23g) 

28 86 (24h) 2.0:1 94 / 92 

8
g
 C4F9 (21b) Bz(CH2)4O (22b) iPr (23a) 38 51 (24i) 2.7:1 91 / 91 

9
g
 C6F13 (21c) BzO(CH2)4O (22a) iPr (23a) 30 42 (24j) 2.6:1 90 / 87 

a
Reaction conditions: sodium perfluoroalkyl sulfinates 21a-c (0.6 mmol), vinyl ethers 22a-c (0.3 

mmol) and N-acylpyrazoles 23a-g (0.1 mmol), Λ-RhS (6 mol%), 4,4'-difluorobenzil (40 mol%) in 

acetone/H2O (9:1, v/v, 0.1 M) at 5-7 ℃ for 1466 h under an atmosphere of nitrogen, under 

irradiation with 24 W blue LEDs, unless otherwise noted. 
b
Isolated yields. 

c
Determined by 

19
F NMR 

analysis. 
d
Determined by HPLC analysis on a chiral stationary phase; ee of both diastereomers are 

shown. 
e
Λ-RhS (4 mol%) was employed. 

f
Λ-RhS (8 mol%) was employed. 

g
Δ-RhS (4 mol%) and 

4,4'-difluorobenzil (25 mol%) were employed. 
h
Ee of major diastereomer shown. 

Next, the substrate scope with respect to α,-unsaturated N-acylpyrazoles and sodium 

perfluoroalkyl sulfinates was evaluated. Table 4 shows that the asymmetric three-component 

fluoroalkylation reactions afforded the desired dual C–C bond formation products 24bj in 26–86% 

yields, 1.7:1–6.0:1 dr and 70–97% ee. A tertiary alkyl group at the alkene (product 24f) provided good 

diastereoselectivity (6:1) as well as excellent enantioselectivity (96% ee). However, the ethyl 

substituent gave inferior results (product 24g, 26 % yield, 1.7:1 dr, 70% / 78% ee) which could be 

traced back to the decomposition of the corresponding α,-unsaturated N-acylpyrazole substrate 23f 

(see Experimental Part). The perfluoroalkylation products 24i and 24j were obtained with satisfactory 
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results (42–51% yields, 2.6:1–2.7:1 dr and 87–91% ee) with a relatively low loading of Δ-RhS (4 

mol%) and 4,4'-difluorobenzil (25 mol%). Notably, except for 24d and 24g, all other chiral fluorinated 

products could be purified by regular column chromatography to obtained >10:1 or even >20:1 dr for 

the main stereoisomer.  

 

Figure 51. Substrate scope with respect to vinyl ethers. 
a
Δ-RhS (6 mol%) was employed. 

b
Ee of major 

diastereomer was available. dmp= 3,5-dimethylpyrazole. The absolute and relative configuration of 

compound 24k was determined as described in the Experimental Part and all other compounds were 

assigned accordingly. 

Furthermore, a wide range of vinyl ethers were investigated under our developed photoredox 

conditions, thus providing the dual C–C bond formation adducts in yields of 36–82%, with 1.3:1–2.7:1 

dr, and 90–98% ee, and with excellent diastereoselectivities of >28:5:1–>38:1:1 for chiral vinyl ethers 

(Figure 51). Good tolerance for various functional groups including ester, ketone, hydroxyl, amide 

and phosphine oxide (24a, 24k–t) was observed. In particular, a set of natural compound derivatives 

(24q, 24u–v, 24y) were compatible with this protocol, thereby implying the versatility of our method 

even in the context of more complex molecules. Notably, the product 24q, 24u–v and 24y with natural 

chirality, which were produced in high diastereoselectivities under asymmetric catalysis conditions, 
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could be further purified by regular column chromatography to obtained >50:1 dr, and all other chiral 

fluorinated products could be obtained with >10:1 or even >20:1 dr for the main stereoisomer by 

simple chromatography. 

Finally, to further demonstrate the utility of this methodology, a gram-scale reaction was 

performed along with the recovery of both the organic photoredox mediator and the Lewis acid 

catalyst (Figure 52). Compared to the original smaller scale catalytical reaction, each diastereomer of 

24w was isolated in somehow decreased yield (37% for major, 15% for minor, 1.0 g in total), but still 

identical enantioselectivities (97% and 94% ee, respectively). The 4,4'-difluorobenzil was isolated by 

column chromatography in 84% yield. Importantly, the chiral Lewis acid catalyst Δ-RhS was 

recovered by assistance of a chiral auxiliary 25 to afford Δ-(R)-aux-RhS (70% yield, > 99:1 dr) after 

filtration and washing according to our previously developed method
12a

. 

 

Figure 52. Gram-scale reaction and catalysts recovery. 
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3.3.4 Mechanistic Study  

 

Figure 53. UV-Vis absorption (black) and luminescence emission (blue) spectra of 4,4'-difluorobenzil 

were collected in acetone/H2O (9:1, v/v, 4 mM), ex = 400 nm. 

 

Figure 54. Probing radical pathway. 

Several experiments support the proposed function of 4,4'-difluorobenzil as a 

visible-light-activated photoredox mediator. A UV/Vis absorption and emission spectrum of 

4,4'-difluorobenzil is shown in Figure 53 and reveals that this chromophore indeed absorbs visible 

light with a long wavelength absorption maximum at λmax = 380 nm and a shoulder reaching into the 

blue region. Conducting the reantion in the presence of air, the radical inhibitor TEMPO (3 equiv) or 

the triplet quencher pyridazine (40 mol%) affords no dirsed CC formation product 4a which provides 

indicator for a radical pathway (Figure 54). 



Chapter 3. Results and Discussion 

66 
 

 

Figure 55．I0 and I are respective luminescence intensities in the absence and presence of the indicated 

concentrations of the corresponding quenchers, 4,4'-difluorobenzil was dissolved in acetone/H2O (9:1, 

v/v, 4 mM), ex = 375 nm. 

Although 1,2-dicarbonyl compounds typically engage in hydrogen atom transfer (HAT) upon 

photoactivation, several aspects support a visible-light-induced SET over HAT. Firstly, a Stern-Volmer 

plot revealed that Langlois reagent (Eox = + 1.05 V vs SCE in MeCN)
20

 efficiently quenches the 

photoexcited 4,4'-difluorobenzil (E1/2
PC*/ PC•

 = > 1.22 V vs SCE in MeCN ) in a concentration 

dependent manner, which is indicative for SET quenching and cannot be explained by HAT (Figure 

53b). In contrast, vinyl ether 22a was not capable of quenching the excited state of 4,4'-difluorobenzil, 

whereas the quenching with the pyrazole substrate 23a was less efficient and can be explained with 

energy transfer.  

Secondly, the direct reaction of Langlois reagent 21a with 4,4'-difluorobenzil in the presence of 

visible light afforded the compound 26 as the main product (42% yield) which supports a mechanism 

that photoexcited 4,4'-difluorobenzil induces a single electron transfer from Langlois reagent, followed 

by a radical-radical coupling (Figure 56). And the standard reaction provided a side product 27 in a 

yield of about 9%, which is also proposed to be formed by radical-radical recombination between the 

intermediate I and II. 

A final support of 4,4'-difluorobenzil as a SET over HAT mediator came from a comparison with 

anthraquinone and 9-fluorenone, which are well-established HAT inducers upon photoactivation but 

were not capable of enabling the here reported reaction (Table 1, entries 8 and 9). Taken together, all 

here discussed experiments provide strong evidence for the role of 4,4'-difluorobenzil as a photoredox 
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mediator. 

However, the extinction coefficient of the substrate-coordinated rhodium complex (ε420 = 2338 

M
-1

cm
-1

) is approximately hundred-fold higher compared to 4,4′-difluorobenzil (ε420 = 22.8 M
-1

cm
-1

) 

(see Experimental Part), so that the involvement of a mechanism in which the substrate-coordinated 

rhodium complex serves as a photosensitizer to first absorbs the visible light and to then transfers the 

triplet energy to ground state 4,4′-difluorobenzil cannot be excluded. 

 

Figure 56. Radical trapping experiment. 

The here described role of α-diketones acting as photoredox mediators is distinct from previous 

reports in which mono- and 1,2-dicarbonyl compounds were mainly employed for light-activated 

hydrogen atom transfer (HAT) or triplet energy transfer. For example, Chen et al. reported an approach 

for benzylic C−H mono- and difluorination catalyzed by 9-fluorenone and xanthone, respectively, in 

which photoexcited diarylketones play a crucial role to selectively abstract a benzylic hydrogen 

atom.
19

 Melchiorre et al. reported p-anisaldehyde as a triplet sensitizer to enable the intermolecular 

atom transfer radical addition (ATRA) of haloalkanes onto olefins.
21

 In other examples, phenyl 

glyoxylic acid and its corresponding ethyl ester were reported to permit efficient hydroacylation of 
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dialkyl azodicarboxylates by activating the involved aldehydes via photoinduced hydrogen atom 

transfer (HAT).
22

 Besides, benzil and other α-diketones have long been known as triplet sensitizers
23 

for the isomerization of stilbenes
24

 and the epoxidation of olefins
25

. Just recently, Ooi reported an 

unusual photoredox ketone catalysis in which a thioxanthone catalyst acted as a photo-excited 

reductant and permitted CH imidation and acyloxylation of arenes.
26 

3.3.5 Conclusions 

Herein a chiral-at-rhodium Lewis acid catalyzed asymmetric three-component fluoroalkylation 

reaction was introduced which proceeded under visible light activation with the simple organic 

photoredox mediator 4,4'-difluorobenzil. This process opens a new avenue to the catalytic asymmetric 

synthesis of trifluoromethyl and perfluoroalkyl-containing compounds from easily accessible starting 

materials. Moreover, the employed chiral Lewis acid catalyst and the simple organic photoredox 

mediator can be recovered by operationally simple work-up procedures.  
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3.4 Synthesis of -Substituted γ-Aminobutyric Acid Derivatives through 

Enantioselective Photoredox Catalysis 

3.4.1 Research Background and Reaction Design 

 

Figure 57. a) Proposal for photoredox-catalyst-free asymmetric radical conjugate addition; b) reports 

on using Hantzsch ester (HE) as visible-light-activated photoreductant. PC = photoredox catalyst. LG 

= leaving group. [Rh] = chiral-at-rhodium Lewis acids /Δ-RhS.  

As discussed in chapter 3.3, former group members H. Huo and C. Wang disclosed two elegant 

enantioselective radical conjugate addition reaction schemes (classified as Giese reaction), respectively, 

by using the chiral-at-rhodium Lewis acid in combination with a photoredox catalyst.
1
 The author of 

this thesis further extended this dual catalysis system to the enantioselective three-component 

fluoroalkylation reaction.
2
 Notably, the Kang group recently reported a single chiral-at-rhodium 

Lewis acid capable of catalyzing enantioselective photoredox reaction of 

N-aryl-tetrahydroisoquinolines with acceptor-substituted alkenes.
3
 However, the mechanism of this 

reaction in not completely clear and the proposed radical conjugate addition mechanism might 

compete with a radical-radical recombination pathway.
4
 Additionally, the limited substrate scope of 

using N-aryl-tetrahydroisoquinolines and inferior diastereoselectivities render this method of 

questionable utility.  

Intrigued by these studies, the author of this thesis holds a great interest on the development of 

asymmetric radical conjugate addition reactions under photoredox-catalyst-free conditions for some 

practical applications (Figure 57a). An inspiration was sparked by the reports on using commercially 
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available Hantzsch ester (HE) as a visible-light-activated photoreductant (Figure 57b). For example, 

Cheng and Li reported that a bromo compound underwent single electron reduction which was 

promoted by visible-lighted-activated HE to afford an alkyl radical.
5
 Chen recently found that HE 

upon interaction with an N-alkoxyphthalimide molecular delivered an electron donor acceptor (EDA) 

complex with enhanced photophysical properties.
6
 This complex can get excited directly under the 

irradiation with visible light, followed by internal single electron exchange and fragmentation, 

affording a carbon-centered radical. Interestingly, the produced radical species in these two protocols 

are highly nucleophilic, and should be amendable to a Rh-catalyzed radical conjugate addition reaction 

scheme. 

 

Figure 58. a) Approaches to non-racemic γ-amino carbonyl derivatives through photoinduced radical 

conjugate addition reaction; b) representative -substituted GABA-based drugs. 

Moreover, the photoinduced enantioselective radical conjugate addition reaction of nucleophilic 

-aminoalkyl radicals to Michael acceptors has recently been recognized as an avenue to 

pharmaceutically valuable -substituted -aminobutyric acids (GABAs) (Figure 58a). As discussed 

before, Yoon and coworkers reported that aromatic α-silylalkyl amines, upon undergoing single 

electron oxidation mediated by Ru-based photoredox catalyst, could deliver -aminoalkyl radicals.
7
 

These radicals subsequently engaged in the enantioselective conjugate addition to ,-unsaturated 

alkenes catalyzed by Sc-based chiral Lewis acid. Melchiorre later reported a dual photoredox/organo 

catalysis system as an approach to -substituted GABA analogs, but substrates were limited to 

aromatic tertiary amines and to cyclic enones.
8
 However, due to the employment of aniline as 

-aminoalkyl radical precursors in these reports, no practical synthetic transformations have been 
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accomplished to access the GABA-based drugs, such as (R)-baclofen
9
, (S)-pregabalin

10
, arbaclofen 

placarbil
11

, and (R)-rolipram
12

 (Figure 58b). Thus, despite the noteworthy progress, the currently 

narrow substrate scope and limited follow-up functional group interconversions render these methods 

of low utility. 

 

Figure 59. Reaction design for the synthesis of -substituted -aminobutyric acid analogs. HE = 

Hantzsch ester. PG = protecting group. NHPI = N-hydroxyphthalimide. 

Overall, inspired by all the aspects discussed above, the author of this thesis introduced a reaction 

proposal on the practical synthesis of -substituted -aminobutyric acids (GABAs) through 

Rh-catalyzed enantioselective radical conjugate addition, in which the HE is supposed to act as 

photoreductant to promote the formation of -aminoalkyl radicals. Accordingly, a glycine derivative 

N-(acyloxy)phthalimide (28)
13

 bearing an easily removable N-protected group and an O-phthalimide 

ester group as the redox handle, might provide easily accessible and very general precursors of a large 

variety of -aminoalkyl radicals upon single electron reduction promoted by the photoreductant HE. 

The produced radicals would subsequently be interfaced with established chiral-at-rhodium Lewis acid 

catalyzed radical conjugate addition, ,-unsaturated N-acylpyrazoles 29 (intermediate Rh-I) to 

provide intermediate Rh-II, which after reduction and protonation afford the Rh-bound products 

(Rh-III).
14

 Replacement of the product by another substrate leads to a new catalytic cycle. This 

visible-light-activated single Rh-catalyzed asymmetric radical conjugate addition could provide access 

to general enantiopure -substituted -aminobutyric acid analogs in an efficient fashion.  
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3.4.2 Initial Experiments and Reaction Development 

Table 5. Reaction development and control experiments
a
 

 

entry 
compound 29 

PC yield (%)
b
 ee (%)

c
 

X R
1
 R

2
 

1 H Me 3,5-di-Me (29a) none 86 (30a) 94 

2 H Me 3,5-di-Me (29a) fac-Ir(ppy)3 89 (30a) 91 

3 H Ph 3,5-di-Me (29b) none 54 (30b) 90 

4 H Ph 3-Me (29c) none 84 (30c) 95 

5 Me Ph 3-Me (29d) none 0 (30d) n.a. 

6
d
 F Ph 3-Me (29e) none 70 (30e) 93 

7
e
 H Ph 3-Me (29c) none 0 (30c) n.a. 

8
f
 H Ph 3-Me (29c) none 14 (30c) 93 

a
Reaction conditions: 28a (0.30 mmol), 29a-e (0.20 mmol), Λ-RhS (0.016 mmol), and Hantzsch ester 

(HE) (0.40 mmol) in acetone (1.0 mL, 0.2 M) were stirred at r.t. for 16 hours under N2 and irradiated 

with 23 W CFL unless otherwise noted. 
b
Isolated yield. 

c
Determined by HPLC analysis on a chiral 

stationary phase. 
d
Δ-RhS (0.016 mmol) and 2 mL of acetone were employed (0.1 M). 

e
Reaction 

conducted in the dark. 
f 
Reaction assembled under air, then sealed the tube. r.t. = room temperature. 

n.a. = not applicable. PC = photoredox catalyst. 

The experimental study started by investigating the reaction of N-(acyloxy)phthalimide 28a with 

,-unsaturated N-acylpyrazole 29a under photoredox conditions (Table 5). In the presence of 

chiral-at-Rh Lewis acid catalyst -RhS and Hantzsch ester (HE) as the photoreductant under the 

irradiation with a household 23 W CFL, the CC formation product 30a, identified as a -methyl 

γ-aminobutyric acid analog, was isolated in 86% yield and 94% ee (entry 1). For comparison, when a 

photoredox catalyst fac-Ir(ppy)3 (1 mol%) was added, the product 30a was obtained with even 

decreased enantioselectivity (91% ee) (entry 2). This observation indicates that the accelerated 

production of -aminoalkyl radical whit additional photocatalyst might bring with stronger 

uncatalyzed background.  
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Next, the tolerance of a -phenyl (29b) instead of a -methyl group (29a) in ,-unsaturated 

N-acylpyrazoles was investigated, which showed a more limited scope in our previous reports,
1, 2

 but 

would lead to an important class of potentially bioactive -aryl -aminobutyric acids. As a result, using 

N-acylpyrazole 29b as substrate, the CC formation product 30b was afforded with inferior yield 

(54%) and decreased enantioselectivity (90% ee) (entry 3). But when we modified the substituents on 

the pyrazole moiety, we found that employing a 3-Me-substituted pyrazolyl (29c) instead of the 

3,5-bis-substituted pyrazolyl (29b) not only improved the yield (84%) but also afforded an excellent 

enantioselectivity (95% ee) (entry 4).
15

 A -disubstituted -methyl--phenyl alkene (29d) could not 

deliver any CC formation product under these optimized conditions (entry 5). However, a 

disubstituted -fluorine--phenyl ,-unsaturated N-acylpyrazole 29e delivered the target product 30e 

in 70% yield and 93% ee accompanied with the formation of a fluorinated quaternary stereocenter, 

which is a formidable challenge in the field of asymmetric photocatalysis
24

 (entry 5). Control 

experiments verified that visible light (entry 7) is essential for this transformation. Under air 

atmospheric conditions, 30c was produced but in a strongly diminished yield (entry 8). 

Even though -methyl--phenyl alkene (29d) couldn’t afford any CC formation product, the 

author of this thesis still would like to investigate the tolerance of some other ,-disubstituted 

N-acylpyrazoles to forge all-carbon quaternary stereocenters. Unfortunately, with elaborated efforts, it 

proved to be not applicable to γ-aminobutyric acid analogs bearing -all-carbon quaternary 

stereocenters under the developed reaction conditions. Even a -chlorine--phenyl substituted 

,-unsaturated N-acylpyrazole was not tolerated. The tested ,-disubstituted N-acylpyrazoles are 

listed below: 

 

Figure 60. Limitations of the developed methodology. 
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3.4.3 Scope of γ-Aminobutyric Acid Analogs 

 

Figure 61. Scope with respect to synthesis of -alkyl and -aryl substituted γ-aminobutyric acid analogs. 

*Δ-RhS was employed. 

Encouraged by the success on enantioselective synthesis of the representative -alkyl (30a), 

-aryl (30c) and -fluorine--aryl (30e) -aminobutyric acid analogs, the author of this thesis next 

investigated the generality of this approach. The scope with respect to the synthesis of -alkyl and 

-aryl substituted -aminobutyric acid analogs is outlined in Figure 61. The ,-unsaturated 

N-acylpyrazoles display good tolerance with respect to substituents at the -position, including various 

alkyl groups (30g-i), an ethoxy group (30j), electron-rich phenyl moieties (30k-l, 30u), as well as 

electron-deficient substituents (30m-n). Heteroaromatic rings, like an indolyl (30o) and a thienyl 

moiety (30p) lead to the target products with satisfactory results. Furthermore, 

N-(acyloxy)phthalimides accompanied with different N-protected amino moieties could also enable 
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this transformation smoothly by affording products 30q-t with 55-87% yields and 91-96% ee. It is 

worth noting that an estrone derived N-acylpyrazole (28r) provided the corresponding -aminobutyric 

acid analogy (30v) with high yield (85%) and excellent diastereoselectivity (92% de). This observation 

demonstrates that our protocol is applicable for the incorporation of bioactive motifs to the side chain 

of -aminobutyric acid.  

 

Figure 62. Substrate scope with respect to synthesis of -fluorine--aryl substituted γ-aminobutyric 

acid analogs. 

The scope with respect to synthesis of -fluorine--aryl -aminobutyric acid analogs is outlined in 

Figure 62. Accordingly, substituents at different positions of the phenyl moiety show little influence 

on the reaction outcome by providing 30w-y in good yields (68-71%) and excellent 

enantioselectivities (94-96% ee). Electron-donating groups (30z-30aa), a bulky tert-butyl group 

(30ab), and a chlorine (30ac) were also accommodated. Additionally, a carbazole moiety was tolerated 

well by affording the CC formation product 30ad in 62% yield and 93% ee.  
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3.4.4 Synthetic Applications 

 

Figure 63. Synthetic applications. Reaction conditions: (i) LiOH, THF/H2O; (ii) LiOH, THF/H2O; (iii) 

D-Phenylglycine methyl ester hydrochloride, Et3N, HOBt; (iv) NaBH4; (v) Pd/C, H2 (1 atm); (vi) LiCl, 

MeOH then TFA followed by Et3N; (vii) Diethylphosphonoacetic acid, LHMDS; (viii) 

3,5-Dimethylpyrazole, T3P, Et3N; (ix) N-Benzyloxycarbonyloxy succinimide; K2CO3; (x) NHPI, DCC, 

DMAP; (xi) Δ-RhS, HE, 23 W CFL; (xii) Pd/C, H2 (1 atm). More details are available in Experimental 

Part. 

With a range of -substituted -aminobutyric acid analogs in hand, the synthetic application of 

this protocol was evaluated (Figure 63, see details in the Experimental Part). The pyrazole moiety can 

easily be transformed into a broad range of functionalities under mild conditions. For example, 

treating 30n with LiOH in THF/H2O at room temperature, after cleaving the pyrazole group, provided 

the corresponding N-protected -aminobutyric acid Boc-(R)-baclofen (31) in excellent yield (90%) and 

unchanged enantioselectivity (90% ee). Boc-(S)-pregabalin (32) could be obtained efficiently by the 

same method. Furthermore, compound 30v was converted to the dipeptide 33 in 83% yield and as a 

single diastereomer by reacting with D-phenylglycine methyl ester. A -amino alcohol (34) and a 
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-lactam (35) bearing fluorinated quaternary stereocenters were obtained smoothly under mild 

transformation conditions. Additionally, the -aminobutyric acid analog 30u was converted into the 

anti-inflammatory drug (R)-rolipram
 
(36) in 93% yield and without any loss of enantioselectivity (95% 

ee). To further demonstrate the practicability of our protocol, the synthetic route to 

Boc-(S)-nebracetam which is an enantiopure form of a N-protected nootropic drug
16

, is shown in 

Figure 63b. Accordingly, the CC coupling partners 28e and 29z were synthesized over two steps 

from commercially available materials 37 and 39, respectively, and were then subjected to the 

developed asymmetric radial conjugate addition reaction, followed by a cyclization, thereby delivering 

the Boc-(S)-nebracetam (41) with 94% ee and 55% yield over the two steps. Overall, the herein 

outlined synthetic applications clearly demonstrate that our approach is very versatile for the synthesis 

of structurally diverse enantiopure -substituted γ-aminobutyric acids and their derivatives. 

3.4.5 Conclusions 

In conclusion, a highly practical and versatile synthetic access to the pharmaceutically important 

class of -substituted GABA analogs was introduced. The methodology is based on catalytic 

asymmetric photoredox catalysis using a simple glycine derivative as the precursor for -aminoalkyl 

radicals which are then engaged in highly enantioselective rhodium-catalyzed Giese-type radical 

conjugate additions. The commercially available HE acts as the visible-light-activated reductant to 

promote single electron transfer events. Furthermore, for the first time enantioselective radical 

conjugate additions to -fluorine--aryl substituted ,-unsaturated enones are achieved which 

provides a potentially very valuable access to GABA analogs with -fluorinated quaternary 

stereocenters. 
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3.5 Asymmetric -CH Functionalization of Acceptor-Substituted Ketones through 

Single Rh-based Photoredox Catalysis 

3.5.1 Research Background and Reaction Design 

 

Figure 64. a) Production of rhodium stabilized allylic radical intermediate under photoredox 

conditions as accomplished by the group members Huang, Luo and Zhou; b) MacMillan’s report on 

the -C(sp
3
)H functionalization though a photogenerated 5e


 intermediate.  

In 2017, the group members X. Huang and S. Luo introduced a unique reaction design to enable 

the enantioselective -alkylation of enones under visible-light-activated photoredox conditions.
1
 In 

this reaction scheme, the enone substrate, upon coordination to chiral-at-rhodium Lewis acid, 

constituted a decreased reductive potential, therefore undergoing a mild single electron reduction 

(Figure 64a). This process provided the key intermediate, Rh-stabilized allylic radical species, which 

experienced the follow up radical trapping with an allyl sulfone and proton transfer to deliver the 

non-racemic CC formation product. Concurrently, Z. Zhou in his Master thesis at Xiamen University 

disclosed a highly enantioselective -amination protocol through proton-coupled electron transfer 

(PCET) mechanism under asymmetric photoredox conditions, in which the Rh-stabilized allylic 

radical species was again proposed as the key reaction intermediate to undergo a stereocontrolled 

radical-radical recombination.
2
 The photogenerated Rh-stabilized allylic radical species in these two 

reports wre then recognized to be both structurally and reactively related to the 5e

 intermediate in 

MacMillan’s work as discussed in chapter 1.2. As shown in Figure 64b, MacMillan and coworkers 

developed a photoredox-catalyzed -C(sp
3
)H functionalization protocol in which the saturated 

carbonyl compound (e.g. cyclohexanone), upon condensation with amine catalyst, underwent single 
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electron oxidation to afford an enaminyl radical cation. The following deprotonation of the generated 

radical cation at the -position of initial carbonyl substrate gave rise to the key 5e

 intermediate. 

With the similar reactivity as discovered by X. Huang, S. Luo and Z. Zhou, this 5e

 intermediate 

could be involved into interesting reactions including radical trapping with electron-deficient alkenes
3
 

and radical recombination with second radical species
4
. However, most of these transformations have 

been accomplished in the racemic form. Only one asymmetric example in -arylation reactions was 

accessed by using a chiral amine catalyst, affording the corresponding CC formation product in an 

unsatisfactory enantioselectivity of 50% ee.  

 

Figure 65. Proposal for chiral-at-rhodium Lewis acid catalyzed enantioselective -C(sp
3
)H 

functionalization under photoredox conditions. 

Intrigued by all this precedence, the author of this thesis introduced a new proposal on the 

enantioselective -C(sp
3
)H functionalization of acceptor-substituted ketones using the 

chiral-at-rhodium Lewis acid catalyst. As proposed in Figure 65, an acceptor-substituted ketone would 

coordinate to the Rh-based Lewis acid in a bidentate fashion, in the presence of base, to deliver a 

Rh-enolate intermediate. This chemistry has been well established by the efforts of the Meggers lab 

and several other groups.
5
 The obtained neutral Rh-enolate intermediate would then get excited under 

visible light irradiation, thereby constituting a strong photoexcited reducing agent. By interacting with 

a suitable electron acceptor, this photoexcited Rh-enolate intermediate would donate a single electron 

to the acceptor, followed by a deprotonation at the -position of the initial ketone substrate, to provide 

the forementioned Rh-stabilized allylic radical species, a rhodium enolate radical anion. This key 

intermediate would be subsequently involved in a stereocontrolled bond formation reaction. Overall, 

the herein proposed chiral-at-rhodium Lewis acid catalyzed enantioselective -C(sp
3
)H 

functionalization under photoredox conditions might provide a new avenue to access non-racemic 

molecules in a sustainable fashion. 
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3.5.2 Initial Experiments and Reaction Development 

Inspired by using ketones as single electron acceptor in photochemical reactions,
6

 the 

experimental investigation started with the reaction of 2-acyl imidazole 42a with a set of different 

carbonyl compounds 43a-f in the presence of the chiral-at-rhodium catalyst Δ-RhS1
7
 (4 mol%) and 

DABCO (20 mol%) under the irradiation with blue LEDs (Table 6). Surprisingly, the course of the 

reaction strongly depended on the structure of the carbonyl compounds. Whereas no product was 

observed with benzophenone (43a) (entry 1), fluorenone (43b) provided the homocoupling product 44 

in 40% yield (entry 2). Using the 1,2-diketone benzil (43c), the homocoupling product 44 was even 

formed in a yield of 73% and with excellent diastereoselectivity (>20:1 dr) and enantioselectivity 

(>99% ee) (entry 3). This asymmetric -C(sp
3
)−H functionalization was encouraging, however, 

homocouplings are typically of more limited utility and the author of this thesis thus seeking to 

establish a more versatile heterocoupling. Revealingly, the α-ketoester 43d in the presence of Δ-RhS1, 

gave a complete switch in the reaction outcome. No homocoupling product 44 was detected but 

instead the heterocoupling product 45a formed in high yield (95%) with excellent enantioselectivity 

(98% ee) and moderate diastereoselectivity of 5.5:1 (entry 4). Exchanging the methyl ester (43d) with 

a more bulky tert-butyl (44e) or cyclohexyl (44f) ester afforded slightly improved 

diastereoselectivities of 5.9:1 (product 45b) and 6.4:1 (product 45c), respectively (entries 5 and 6). We 

next modified the rhodium catalyst and found that introducing a phenyl group into the cyclometalating 

ligand, providing the catalyst Δ-RhS2,
8
 not only improved the diastereoselectivity to 10.0:1 but 

afforded also a perfect enantioselectivity (>99% ee) at high yield (98%) (entry 7). It is worth noting 

that a related iridium complex (Δ-IrS), which is known to enable photoactivated enolate photoredox 

chemistry,
9
 failed to promote this catalytic, asymmetric -functionalization (entry 8). Control 

experiments verified that visible light and oxygen-free conditions are essential for this transformation 

(entry 9).  
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Table 6. Reaction development and control experiments
a
 

 

entry catalyst 43a-f 

NMR yield (%)
b
 

dr
c
 ee (%)

d
 

44 45 

1 Δ-RhS1 43a 0 0 n.a. n.a. 

2 Δ-RhS1 43b 40 0 n.d. n.d. 

3 Δ-RhS1 43c 73 0 >20:1 >99 

4 Δ-RhS1 43d 0 95 (45a) 5.5:1 98 

5 Δ-RhS1 43e 0 95 (45b) 5.9:1 98 

6 Δ-RhS1 43f 0 98 (45c) 6.4:1 98 

7 Δ-RhS2 43f 0 98 (45c) 10.0:1 >99 

8 Δ-IrS 43f 0 0 n.a. n.a. 

9
e
 Δ-RhS2 43f 0 0 n.a. n.a. 

a
Reaction conditions: 42a (0.1 mmol), 43a-f (0.3 mmol), chiral Lewis acid catalyst (0.004 mmol), and 

DABCO (0.02 mmol) in acetone (1 mL) stirred at r.t. for 16 h under N2 and irradiated with blue LEDs 

(24 W) unless otherwise noted. 
b
Determined by 

1
H NMR of the crude products. 

c
Determined by 

1
H NMR 

analysis of the crude main product. 
d
Determined by HPLC analysis of the crude main product on a chiral 

stationary phase; ee of major diastereomer is shown. 
e
Reaction conducted in the dark or under air. r.t. = 

room temperature. n.d. = not determined. n.a. = not applicable. 
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3.5.3 Substrate Scope 

 

Figure 66. Substrate scope with respect to 2-acyl imidazoles and 2-acyl pyridines. Structure of 45i was 

determined by X-ray crystallography and all other compounds were assigned accordingly. *Reaction 

was performed at 50 ℃. 

The substrate scope with respect to the acceptor-substituted ketones (Figure 66) was next 

evaluated. 2-Acyl imidazoles (products 45c-p) have good tolerance for various functional groups 

including alkyl groups (45d and 45e), ethers (45f-h, 45m), a thioether (45i), a hydroxyl (45j), bromines 

(45k and 45n), an olefin (45o), and an indole moiety (45p). Strongly electron-withdrawing groups (45l, 

45m) lead to more sluggish reactions but provided satisfactory results upon heating to 50 °C. 2-Acyl 

pyridines were also found to be tolerated well by providing the C−C formation products (45ra-rc) with 

excellent diastereo- and enantioselectivities (>20:1 dr and 97 to >99% ee). It is worth noting that six of 

these products were obtained with an enantiomeric excess of 99% or higher. 
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Figure 67. Substrate scope with respect to 1,2-dicarbonyl compounds. *Acetone/CH2Cl2 (1:1, vol/vol) 

was used as solvent. Z = 2-(N-phenyl imidazole). 

The scope of asymmetric functionalization of -methylene with respect to 1,2-dicarbonyl 

compounds is shown in Figure 67. The C−C coupling products 45s-w were obtained in yields of 

87-97% with 9:1 to 19:1 dr and excellent 98-99% ee. 1,2-Dicarbonyl compounds as simple as 

3,4-hexanedione could also enable this transformation by affording product 45x in 85% yield with 2:1 dr 

and 95% ee for both diastereomers. Furthermore, two chiral α-ketoesters provide the expected products 

45y and 45z in good yields of 88% and 82% and with excellent diastereoselectivities of 99:1:1:1 and 

99:30:1:1, respectively. This demonstrates the versatility of this catalytic approach in the context of 

complex molecules. 

However, when introducing a methyl group at the -position, no C−C formation product (45q) was 

formed and the starting material was recovered with 95% yield (analyzed by 
1
H NMR). Apparently, the 

aryl moiety at the -position of the carbonyl group is required to facilitate the H activation. The 

limitation of the moieties at the -position as well as the N-heteroaryl rings was further investigated, 

and the result was outlined in Figure 68. 
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Figure 68. Limitations of the substrate scope. 

3.5.4 Synthetic Transformation 

 

Figure 69. Removal of directing group. 

As show in Figure 69, the directing imidazole group was cleaved smoothly by a methyl triflate 

induced conversion to provide the corresponding γ-lactone 46 without any loss of the 

enantioselectivity (98% ee) and diastereoselectivity (>20: 1 dr). 
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3.5.5 Mechanistic Study 

 

Figure 70. Proposed mechanism. 

A proposed mechanism is outlined in Figure 70. The catalytic cycle is initiated by the bidentate 

coordination of substrate 42a to the Rh-catalyst (Rh-I) followed by a base-induced deprotonation to 

provide the key intermediate Rh-enolate Rh-II. The exctinction coefficient at 420 nm for the 

intermediate Rh-enolate is 3-4 orders of magnitudes higher compared to the ketoester 44d which 

disfavors a direct excitation of the 1,2-dicarbonyl compound followed by HAT
10

 and instead supports a 

mechanism through photoexcited Rh-II (see Experimental Part). Calculated and measured redox 

potentials are consistent with a reduction of the ketoester 44d by photoexcited Rh-II, followed by a 

proton transfer, to produce the stabilized, persistent -carbon-centered radical intermediate Rh-III
11

 

accompanied with formation of -hydroxy radical. In the case of using ketoesters 44d-f, a 

stereocontrolled radical-radical recombination
12

 occurs to provide the cross-coupling intermediate 

Rh-IV, and after protonation to give the Rh-coordinated product (Rh-V). Apparently, the 

radical-radical recombination efficiency depends on the nature of the -hydroxy radical and effects the 

switch between homo- and heterocoupling. 

A number of observations support the proposed mechanism. Control experiments in the dark, under 

air, or in the presence of the radical scavengers TEMPO or BHT, all completely suppressed the C−C 

bond formation (Table 6 and Figure 71a), thereby supporting a radical mechanism. A determined 
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quantum yield of 0.08 is consistent with the absence of a chain process. Radical and enolate intermediate 

trapping experiments were conducted by adding phenyl vinyl ketone 47 as a trapping reagent (Figure 

71b). In these experiments, the C−C bond formation product 48 was isolated in 40% yield and with 87% 

ee, supporting the intermediate formation of the enolate intermediate (Rh-II), which is then trapped by 

compound 47. Interestingly, a dual C−C formation product 49 was also obtained in 37% yield and 

with >10:1 dr and 92% ee, together with some amounts of the homocoupling product 3, which is 

supportive of the formation of the electron-rich Rh-enolate radical intermediate Rh-III. 

 

Figure 71. An overview of mechanistic studies. 

It is worth noting that computational studies of the key Rh-enolate (Rh-II) intermediate at 

M06/6-31g*/LANL2DZ//6-311++G**/LANL2DZ+CPCM level of theory show that the bond 

dissociation energy (BDE) of the -C(sp
3
)−H in Rh-II is lowered by 73 kJ/mol (316 kJ/mol for 42a vs 

243 kJ/mol for Rh-II) (Figure 71c), thus rendering a direct hydrogen atom abstraction by a 

photoexcited 1,2-dicarbonyl compound an alternative for generating the same radical intermediates. 

However, the Rh-enolate intermediate Rh-II serves as a very efficient light-harvesting antenna which 

will suppress direct photoactivation of the dicarbonyl reaction partner and therefore renders a stepwise 
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electron- and proton-transfer initiated by photoactivated Rh-enolate Rh-II more likely. The 

computational study was conducted by Anthony R. Rosales, a Ph.D. student from Prof. Olaf Wiest’s 

research group at the University of Notre Dame. Other mechanistic investigations including the 

comparison of different light sources, bases, solvents and the redox potentials of key reaction partners 

are listed as following:  

1) Trapping of the Intermediates  

 

Figure 72. Trapping experiments under the conditions with benzil (44c) and -ketoester (44f). 

Radical trapping experiments were conducted under the condition with benzil (44c) and 

-ketoester (44f), respectively, which are outline in Figure 72. Under standard conditions using a 

ketoester instead of benzil, the hetero-coupling was dominant and thus reduced the yield of the 

trapping product 48 and completely suppressed 49. 

Additionally, the formation route of cyclobutane product 49 was clearly demonstrated in Figure 73. 

In this proposal benzil serves as the terminal oxidant and becomes reduced to benzoin. 
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Figure 73. Formation route of cyclobutane product 49. 

2) Comparison of Different Light Sources 

As shown in Table 7, the reaction preceded faster using LEDs with shorter emission wavelength 

(emission maxima shown). However, the enantioselectivities decreased somewhat so that blue LEDs 

with an emission maximum at 450 nm provided the best compromise out of reaction time and 

enantiomeric excess.  

Table 7. Comparison of different light sources
a
 

 

Entry Light source Yield (%)
b
 dr

c
 ee (%)

d
 

1 450 nm 95 (16 h) >20:1 98 

2 400 nm >95 (10 h) >20:1 97 

3 390 nm >95 (10 h) >20:1 96 

a
Reaction conditions: 42g (0.05 mmol), 43f (0.3 mmol), Δ-RhS2 (4 mol%) and DABCO 

(20 mol%) in acetone (0.5 mL, 0.1 M) were stirred at r.t. for the indicated time under N2 

with the irradiation of different light source. 
b
Yields were determined by 

1
H NMR analysis 

of the reaction mixtures with an internal standard. 
c
Determined by 

1
H NMR analysis of the 

crude products. 
d
Determined by HPLC analysis on a chiral stationary phase; ee of major 

diastereomer is shown. 
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3) Comparison of Different Bases 

Reactions were performed in the presence of different Brønsted bases. As shown in Table 8, in the 

presence of DABCO, the CC formation product 45a was afforded smoothly (entry 1). However, in 

the absence of DABCO, the product formation was abolished completely (entry 2). Na2HPO4 (entry 3) 

and 2,6-lutidine (entry 4) enabled the transformation but with inferior results. The base DIEPA 

promoted this reaction with satisfactory yield of 86% and stereocontrol of 5.0:1 dr and 88% ee. 

Quinuclidine could promote this transformation more efficiently (92% yield and 93% ee).  

MacMillan’s group recently reported that quinuclidine can serve as a HAT reagent after oxidation 

to the amine radical cation.
13

 One therefore needs to consider that DABCO might serve as a HAT 

mediator in the here reported system. However, since other bases can also promote this transformation, 

a significant involvement of DABCO as a HAT mediator is unlikely.  

Table 8. Comparison of different bases
a
 

 

Entry Base Yield (%)
b
 dr

c
 ee (%)

d
 

1 DABCO 95 (16 h) 5.5:1 98 

2 none n.d. n.a. n.a. 

3 Na2HPO4 18 (40 h) 2.0:1 60 

4 2,6-Lutidine 52 (40 h) 4.2:1 37 

5 DIPEA 86 (24 h) 5.0:1 88 

6 Quinuclidine 92 (16 h) 5.2:1 93 

a
Reaction conditions: 42a (0.1 mmol), 43d (0.3 mmol), Δ-RhS1 (4 mol%) and bases (20 

mol%) in acetone (1 mL, 0.1 M) were stirred at r.t. for indicated time under N2 with the 

irradiation of 24 W blue LEDs. 
b
Yields were determined by 

1
H NMR analysis of the 

reaction mixtures with an internal standard; reaction time provided in brackets. 
c
Determined 

by 
1
H NMR analysis of the crude products. 

d
Determined by HPLC analysis on a chiral 

stationary phase; ee of major diastereomer is shown. n.d. = not detected. n.a. = not 

applicable. 
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4) Comparison of Different Solvents 

As shown in Table 9, solvents (DMSO, NMP, DMA and DMF with similar polarity) with 

viscosities higher than acetone favored radical-radical recombination product 8 (hetero-coupling) 

when using 9-fluorenone (2b) as substrate. The competition between homo- and hetero-coupling might 

be determined by the ability of the radical pair (Rh-III and -hydroxy radical) to reorient itself during 

random motions.
14

 As solvent viscosity increases, using for example DMSO, DMF, DMA, or NMP, 

the reorientational motions is reduced and thereby favoring heterocoupling over homocoupling. 

Instead, when the radical pair escapes the cage (e.g. due to faster diffusion and higher radical 

stabilities), homo-coupling can compete with the desired hetereo-coupling.  

 However, it is noteworthy that benzil (2c) does not afford any hetero-coupling regardless of the 

employed solvents. We speculate that benzil promotes two-electron oxidation of two molecules of 

Rh-enolate to deliver the homo-coupling product as well as benzoin.  

Table 9. Comparison of different viscous solvents
a
 

 

Entry Solvent Polarity Viscosity (cP) 
Yield (%)

b
 

ee (%)
d
 (50) 

44 50 

1 (CH2OH)2 6.9 25.7 0 0 n.a. 

2 DMSO 7.2 1.99 13 20 n.d. 

3 NMP 6.7 1.67 <5 63 n.d. 

4 DMA 6.5 0.95 12 45 n.d. 

5 DMF 6.4 0.80 <5 55
c
 94% 

6 acetone 5.4 0.32 40 0 n.a. 

a
Reaction conditions: 43a (0.1 mmol), 44b (0.3 mmol), Δ-RhS1 (4 mol%) and DABCO (20 mol%) in 

different solvents (1 mL, 0.1 M) were stirred at r.t. for 24 h under N2 with the irradiation of 24 W blue 

LEDs. 
b
Determined by 

1
H NMR of crude products. 

c
Isolated yield. 

d
Determined by HPLC analysis on 

a chiral stationary phase. n.a. = not applicable; n.d. = not determined. 
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5) Determination of Quantum Yield 

The quantum yield of the reaction 42g+43f45c was determined by a method and setups developed 

by Prof. Dr. Eberhard Riedle’s Group.
15

 As light source 400 nm LEDs were employed. A powermeter 

was used as detector. 

Step 1: The radiant power of light transmitted by the cuvette with a blank solution was measured as 

Pblank = 29.16 mW. 

Step 2: The reaction mixture of 1g (64.4 mg, 0.20 mmol), 2f (139.2 mg, 0.60 mmol), rac-RhS (7.0 mg, 

4.0 mol%) and DABCO (4.5 mg, 20 mol%) in acetone (2.0 mL, 0.1 M) was filled into a fluorescence 

cuvette with a stirring bar and septum and degassed by bubbling with nitrogen (5 min). Then, the 

cuvette was put into the setups and illuminated with the 400 nm LEDs. The transmitted radiant power 

Psample = 0.28 mW was noted. The transmitted radiant power was monitored during the irradiation 

and remained constant. 

Step 3: After illumination for 3 hours (t = 3  3600 s), the amount of the formed 45c was determined 

as 8.601  10 mol
-5

 (Nproduct) by 
1
H NMR. 

Step 4: The overall quantum yield can be calculated as following: 

 

A quantum yield of <1 is in agreement with the expected closed catalytic cycle, as outlined in the 

proposed mechanism, no chain process is possible whereas one photon is required for each CC bond 

formation event.
16
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6) Comparison of Redox Potentials 

As shown in Figure 74, published reduction potentials of 43a
17

, 43b
18

, 43c-d
19

 and 43l were 

converted to Normal Hydrogen Electrode (NHE) as reference. The oxidation potentials of Ir-enolate 

and Rh-enolate
20

 were also recalculated accordingly. The excited state reduction potential of 

Rh-enolate' was estimated as 1.48 V using the E
00

 energy of the homologous iridium complex.  

A comparison of the listed redox potential demonstrates that an electron transfer from the 

rhodium-enolate intermediate Rh-II to fluorenone, the used 1,2-diketones, and 1,2-ketoesters is 

thermodynamically feasible. However, a reduction of benzophenone is endergonic and consistent with 

our results that benzophenone did not engage in the photoreaction. 

 

Figure 74. Redox potentials vs Normal Hydrogen Electrode (NHE). 

3.5.6 Conclusions 

In conclusion, herein a new strategy for the catalytic, asymmetric β-C(sp
3
)H functionalization of 

the carbonyl substrates 2-acyl imidazoles and 2-acylpyridines was developed. According to the 

mechanistic study, visible light excitation of a rhodium enolate intermediate initiates a single electron 

transfer to a 1,2-dicarbonyl compound, followed by proton transfer, and subsequent stereocontrolled 

radical-radical recombination. This method should be of practical value for the asymmetric 

functionalization of β-C(sp
3
)H bonds. 
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Chapter 4: Summary and Outlook 

4.1 Summary 

In this thesis, the synthetic access to previously elusive single enantiomers of octahedral 

chiral-at-Rh Lewis acids has been accomplished through a chiral-auxiliary-mediated synthetic strategy. 

The obtained chiral Lewis acids Λ/Δ-RhS contain two cyclometalating 2-phenylbenzothiazole ligands 

and two liable acetonitrile ligands, in which the chirality originates exclusively form the stereogenic 

central metal. The benzothiazole-containing RhS is a superior chiral Lewis acid catalyst compared to 

its benzoxazole congener which can be rationalized with a higher steric congestion around the 

catalytic site. 

 

Figure 75. An overview for this thesis. Only the Δ-configuration is shown. MCR = multicomponent 

reaction. GABAs = γ-aminobutyric acids 

The excellent catalytic activity of the Lewis acid catalyst has been demonstrated through diverse 

visible-light-induced asymmetric photoredox reactions. Accordingly, the Lewis acid Λ-RhS 

cooperated with an external photoredox catalyst/mediator provides access to the enantioenriched 

1,2-aminoalcohols and fluoroalkyl-containing compounds. In particular, this unique chiral-at-rhodium 

Lewis acid catalysis system provides a practical avenue to pharmaceutically demanding 

enantioenriched -substituted -aminobutyric acids. Further investigations revealed that Δ-RhS or 
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related derivatives are capable of promoting the enantioselective -C(sp
3
)H functionalization of 

acceptor-substituted ketones through integrating the dual functions of asymmetric and photoredox 

catalyst.  

1) Synthesis of the New Lewis acid catalyst Λ/Δ-RhS 

 

Figure 76. Chiral Lewis acid catalyst Λ/Δ-RhS. 

 The synthesis of Lewis acid catalyst Λ/Δ-RhS was accomplished through a 

chiral-auxiliary-mediated strategy (Figure 77). Key aspect of this synthetic strategy is the employment 

of a fluorinated auxiliary (S)-8 which provides two diastereomers with distinct solubility and sufficient 

stability for purification using the standard silica gel chromatography. Upon the acid induced 

replacement of the coordinated auxiliary ligand with two acetonitriles, the diastereomers are converted 

into individual enantiomers Λ-RhS and Δ-RhS with perfect optical purities (>99:1 er). 

 

Figure 77. Synthetic route to chiral Lewis acid catalyst Λ/Δ-RhS. 
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2) Cooperative rhodium/ruthenium asymmetric photoredox catalysis to access chiral 

1,2-aminoalcohols 

Asymmetric cooperative Rh-based Lewis acid catalysis with Ru-based photoredox catalysis 

provides synthetic access to non-racemic 1,2-aminoalcohols in good yields (up to 88%) and with 

excellent enantioselectivities (up to 99% ee). The Ru-photocatalyst is proposed to constitute an 

electron shuttle, thereby triggering a single electron from the -silylamine (electron donor) to the 

Rh-chelated 2-acyl imidazole (electron acceptor). The following stereocontrolled radical–radical 

recombination affords the CC formation product (Figure 78). 

 

Figure 78. Cooperative rhodium/ruthenium photoredox catalysis to access chiral 1,2-aminoalcohols. 
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3) Synthesis of fluoroalkyl-containing compounds through enantioselective 

three-component photoredox reaction 

The cooperative strategy by using chiral-at-rhodium Lewis acid was further extended to a 

visible-light-induced asymmetric three-component fluoroalkylation reaction, in which the photoredox 

process was mediated by the inexpensive, commercially available organic photoredox mediator 

4,4′-difluorobenzil. This three-component fluoroalkylation scheme provided a range of complex 

fluoroalkyl-containing chiral compounds under dual CC bond formation with high 

enantioselectivities (up to 98% ee) and modest diastereoselectivities (up to 6:1 dr). Excellent 

diastereoselectivities (up to >38:1:1 dr) for natural chiral compound derivatives were observed. Broad 

substrate scope, excellent functional group tolerance, scalability of the reaction, along with the option 

to recover the chiral catalyst and photoredox mediator revealed the practicability of this methodology 

in organic synthesis for the rapid synthesis of fluorinated chiral molecules.  

 

Figure 79. Synthesis of fluoroalkyl-containing compounds through enantioselective three-component 

photoredox chemistry. dmp = 3,5-dimethylpyrazolyl. 
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4) Synthesis of -Substituted γ-Aminobutyric Acid Derivatives through 

Enantioselective Photoredox Reaction 

The Rh-based Lewis acid photocatalysis system was later recognized as a practical avenue to the 

pharmaceutically demanding -substituted γ-aminobutyric acids (GABAs) and their derivatives. The 

protocol is based on Rh-catalyzed radical conjugate addition of an acceptor-substituted alkene with an 

-aminoalkyl radical which was produced from simple glycine derivatives upon single electron 

reduction mediated by photoreductant Hantzsch ester. Diverse -substituted GABA analogs, including 

previously unaccessible derivatives containing fluorinated quaternary stereocenters, were accessed 

with high efficiency (good yields of 4289% and excellent enantioselectivities of 9097% ee). 

Synthetically valuable applications were demonstrated by providing straightforward synthetic access 

to the pharmaceuticals or related bioactive compounds (S)-pregabalin, (R)-baclofen, (R)-rolipram and 

(S)-nebracetam (Figure 80).  

 

Figure 80. Synthesis of -substituted GABA derivatives through enantioselective photoredox catalysis. 

Aux = 3-methyl pyrazolyl. 
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5) Asymmetric -CH functionalization of acceptor-substituted ketones through single 

Rh-based photoredox catalysis 

The enantioselective -C(sp
3
)H functionalization of acceptor-substituted ketones with 

1,2-dicarbonyl compound was accomplished by using a single chiral-at-rhodium Lewis acid Δ-RhS 

derivative as catalyst. The CC bond formation products were obtained in high yields (up to 99%) and 

with excellent stereoselectivities (up to >20:1 dr and up to >99% ee). Experimental and computational 

studies support a mechanism in which visible light excitation of a rhodium enolate intermediate 

initiates a single electron transfer to a 1,2-dicarbonyl compound, followed by proton transfer, and 

subsequent stereocontrolled radical-radical recombination. 

 

Figure 81. Single chiral-at-Rh Lewis acid catalyzed -C(sp
3
)H functionalization under photoredox 

conditions. 



Chapter 4. Summary and Outlook 

102 
 

4.2 Outlook 

Considering the unmet demand and the limited techniques, further experiments on the more 

profound investigations of the herein introduced chiral-at-rhodium Lewis acid catalysis system is 

desirable. Apparently in this thesis the unique catalytic system has been demonstrated as a versatile 

tool for organic synthesis, and therefore it should be of high value for further broad synthetic 

applications. 

1) Extend the herein developed -C(sp
3
)H alkylation protocol to carbonheteroatom bond 

construction: The strategy of enantioselective -C(sp
3
)H functionalization with asymmetric 

photoredox catalysi might be further extended beyond the herein disclosed -alkylation, but to a 

borylation or trifluoromethylthiolation through tuning reaction conditions and involved co-substrates. 

Accordingly, it’s supposed that the photoexcited rhodium enolate intermediate donates a single 

electron to an suitable electron shuttle (e.g. benzil) rather than a co-substrate to afford an allylic radical 

which might be trapped by a boronic ester
1
 or acid

2
 under the stereocontrolled formation of CB 

bond. Alternatively, a single electron might exchange between the photoexcited enolate intermediate 

(donor) and the electron-deficient Phth-SCF3
3
 substrate (acceptor) to afford the rhodium stabilized 

allylic radical and trifluoromethylthionyl radical. A following stereocontrolled radical-radical 

recombination reaction would deliver a CS formation product. Overall, the herein developed 

visible-light-activated enantioselective -C(sp
3
)H functionalization protocol should constitute high 

potential for applications in the valuable carbonheteroatom bond construction.  

2) Exploit new substrate acitivation mode in enantioselective photoredox catalysis: Despite the 

versatile catalytic activity of chiral-at-rhodium Lewis acid in asymmetric photoredox catalysis has 

been disclosed in this thesis, a current limitation is existed, namely the requirement of one substrate 

with bidentate N,O-based metal-binding site, such as 2-acyl imidazoles, 2-acyl pyridines, and N-acyl 

pyrazoles. Therefore, development of new substrate activation method in the rhodium catalyzed 

photoredox chemistry is of interest. The former group member Luo recently found a chiral-at-rhodium 

complex was capable of promoting enantioselective alkynylation of aromatic aldehydes, in which a 

rhodium acetylide intermediate might be formed.
4
 It’s supposed herein that this neutral rhodium 

acetylide intermediate, upon photoexcitation, could be highly reducing, thereby triggering single 

electron reduction of suitable co-substrate (e.g. N-(acyloxy)phthalimide) to deliver an alkyl radical. 
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And a photogenerated prochiral nucleophilic alkyl radical would then react with the rhodium acetylide 

in a stereocontrolled fashion.
5
 While in the precense of stoichiometric amounts of sacrificial oxidant, 

a photogenerated -aminoalkyl radical then undergoes a single electron oxidation event to provide an 

iminium ion which might be trapped by acetylide intermediate.
6
 Overall, the rhodium acetylide 

intermediate is potentially applicable in the enantioselective photoredox catalysis, thereby leading to 

broader synthetic applications. 
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Chapter 5: Experimental Part 

5.1 Materials and Methods 

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. The catalysis 

reactions were performed using standard Schlenk glassware techniques. 

 

Solvents and Reagents 

Solvents were distilled under nitrogen from calcium hydride (CHCl3, CH2Cl2, CH3CN and DMF), 

magnesium turnings/iodine (MeOH) or sodium/benzophenone (Et2O, THF and toluene). HPLC grade 

solvents, such as 2-methoxyethanol, ethanol and 1,4-dioxane used directly without further drying. All 

reagents were purchased from Acros, Alfa Aesar, Sigma Aldrich, TCI, ChemPur and Fluorochem and 

used without further purification. 

 

Chromatographic Methods 

The course of the reactions and the column chromatographic elution were monitored by thin layer 

chromatography (TLC) [Macherey-Nagel (ALUGRAM®Xtra Sil G/UV254)]. Flash column 

chromatography was performed with silica gel from Merck (particle size 0.040-0.063 mm). 

 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

1
H NMR, proton decoupled 

13
C NMR, and proton coupled 

19
F NMR spectra were recorded on Bruker 

Avance 300 system (
1
H NMR: 300 MHz, 

13
C NMR: 75 MHz, 

19
F NMR: 282 MHz) spectrometers at 

ambient temperature. Chemical shifts are given in ppm on the  scale, and were determined after 

calibration to the residual signals of the solvents, which were used as an internal standard. NMR 

standards were used are as follows: 
1
H NMR spectroscopy:  = 7.26 ppm (CDCl3),  = 5.32 ppm 

(CD2Cl2),  = 2.50 ppm (DMSO-d6),  = 3.31 ppm (CD3OD); 
13

C-NMR spectroscopy:  = 77.0 ppm 

(CDCl3),  = 53.8 ppm (CD2Cl2),  = 118.26, 1.32 ppm (CD3CN),  = 206.26,  = 39.52 ppm 

(DMSO-d6),  = 49.0 ppm (CD3OD). 
19

F NMR spectroscopy:  = 0 ppm (CFCl3). The characteristic 

signals were specified from the low field to high field with the chemical shifts (δ in ppm). 
1
H NMR 

spectra peak multiplicities indicated as singlet (s), doublet (d), doublet of doublet (dd), doublet of 

doublet of doublet (ddd), triplet (t), doublet of triplet (dt), quartet (q), multiplet (m). The coupling 



Chapter 5. Experimental Part 

105 
 

constant J indicated in hertz (Hz).  

 

High-Performance Liquid Chromatography (HPLC) 

Chiral HPLC was performed with an Agilent 1200 Series, Agilent 1260 Series HPLC System or 

Shimadzu Lc-2030c. All the HPLC conditions were detailed in the individual procedures. The type of 

the columns, mobile phase and the flow rate were specified in the individual procedures. 

 

Infrared Spectroscopy (IR) 

IR measurements were recorded on a Bruker Alpha-P FT-IR spectrometer. The absorption bands were 

indicated a wave numbers v (cm
1

). All substances were measured as films or solids. 

 

Mass Spectrometry (MS) 

High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument using 

ESI or APCI or FD technique. Ionic masses are given in units of m/z for the isotopes with the highest 

natural abundance. 

 

Circular Dichroism Spectroscopy (CD) 

CD spectra were recorded on a JASCO J-810 CD spectropolarimeter. The parameters we used as 

follows: from 600 nm to 200 nm; data pitch (0.5 nm); band with (1 nm); response (1 second); 

sensitivity (standard); scanning speed (50 nm/min); accumulation (5 times). The concentration of the 

compounds for the measurements was 0.2 mM. The formula for converting θ to ε is shown as below. 

 
)()/(32980

deg][

cmLLmolc

m





 

C = concentration of the sample; L = thickness of the measurement vessel 

 

Crystal Structure Analysis 

Crystal X-ray measurements and the crystal structure analysis were carried out by Dr. Klaus Harms 

(Chemistry Department, Philipps University of Marburg). X-ray data were collected with a Bruker 3 

circuit D8 Quest diffractometer with MoKa radiation (microfocus tube with multilayer optics) and 

Photon 100 CMOS detector. Scaling and absorption correction was performed by using the SADABS 
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software package of Bruker. Structures were solved using direct methods in SHELXS and refined 

using the full matrix least squares procedure in SHELXL-2013 or SHELXL-2014. The Flack 

parameter is a factor used to estimate the absolute configuration of the coumounds. The hydrogen 

atoms were placed in calculated positions and refined as riding on their respective C atom, and Uiso(H) 

was set at 1.2 Ueq(Csp
2
) and 1.5 Ueq(Csp

3
). Disorder of PF6 ions, solvent molecules or methylene 

groups was refined using restraints for both the geometry and the anisotropic displacement factors. 

 

UV/Vis Analysis Spectroscopy 

UV/Vis measurements were taken on a Spectra Max M5 microplate reader in a 10.0 mm quartz 

cuvette. 

 

Optical Rotation Polarimeter 

Optical rotations were measured on a Krüss P8000-T or Perkin-Elmer 241 polarimeter with []D
20

 or 

[]D
25

 values reported in degrees with concentrations reported in g/100 mL.  
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5.2 Synthesis of the New Chiral-at-Rh Lewis Acid Catalyst /-RhS 

5.2.1 Synthesis of Rhodium-Based Catalysts -RhS and -RhS 

1) Racemic Rhodium Catalyst: 

 

The racemic rhodium catalyst rac-RhS was synthesized according to a route reported by the 

Meggers group with some modifications.
1 

Accordingly, 5-(tert-butyl)-2-phenylbenzo[d]thiazole 6 

(2000 mg, 7.48 mmol) was added to RhCl3•xH2O (962 mg, 3.74 mmol) in a mixture of 

2-ethoxyethanol and water (v/v = 3:1, 75 mL). The reaction mixture was heated at 125 °C for 4 h 

under an atmosphere of nitrogen, then concentrated to obtain a brown solid. To the brown solid in 

CH3CN (10 mL) was added AgPF6 (1890 mg, 7.48 mmol) in one portion, then stirred at 60 °C 

overnight. After cooled to room temperature, the mixture was filtered. The filtrate was collected, 

evaporated to dryness and purified by column chromatograph on silica gel (100% CH2Cl2 to 

CH2Cl2/CH3CN = 20:1) to give rac-RhS (1.70 g, 53% yield for two steps) as a pale yellow solid.  

1
H NMR (300 MHz, CD2Cl2) δ 8.50 (d, J = 1.6 Hz, 2H), 8.05 (d, J = 8.6 Hz, 2H), 7.73 (dd, J = 8.6, 1.8 

Hz, 2H), 7.67 (dd, J = 7.6, 1.2 Hz, 2H), 7.03 (td, J = 7.4, 1.1 Hz, 2H), 6.83 (td, J = 7.7, 1.4 Hz, 2H), 

6.22 (d, J = 7.8 Hz, 2H), 2.18 (s, 6H), 1.47 (s, 18H). 

13
C NMR (75 MHz, CD2Cl2) δ 176.9, 176.8, 160.9, 160.5, 152.8 (2C), 150.0 (2C), 140.3 (2C), 133.3 

(2C), 131.2 (2C), 129.1 (2C), 126.2 (2C), 125.5 (2C), 124.5 (2C), 123.0 (2C), 122.1 (2C), 116.7 (2C), 

35.6 (2C), 31.6 (2C), 3.5 (2C). 

HRMS (ESI, m/z) calcd for C38H38N4Rh S2
+
 [M-PF6]

+
: 717.1587, found: 717.1596. 

IR (film): ν (cm
1

) 3118, 2961, 2868, 2282, 1579, 1556, 1477, 1441, 1416, 1364, 1318, 1296, 1281, 

1266, 1254, 994, 836, 784, 757, 730, 700, 668, 556, 460. 
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2) Intermediate Rhodium Auxiliary Complexes -(S)-9 and -(S)-9:  

 

To the racemic rhodium catalyst rac-RhS (863 mg, 1.0 mmol) and K2CO3 (414 mg, 3.0 mmol) in 

absolute ethanol (40.0 mL) was added (S)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol {(S)-8} 

(283 mg, 1.1 mmol) in one portion, and then heated at 60 °C for 6 h. Afterwards, the reaction mixture 

was cooled to room temperature. The diastereomer -(S)-9 has a lower solubility in ethanol than 

-(S)-9 and was precipitated selectively. The yellow solid was separated from the solution by 

centrifugation, and washed for another three times with EtOH (3 × 10 mL). The combined clear 

yellow solution was collected and concentrated, and then subjected to a flash chromatography on silica 

gel (n-hexane/EtOAc = 10:1 to 3:1) to give -(S)-9 (410 mg, 46% yield) as a yellow solid. On the 

other hand, the yellow solid obtained after centrifugation was subjected to a flash chromatography on 

silica gel (n-hexane/CH2Cl2 = 1:10 to 1:1) to provide -(S)-9 with >95% purity as judged by 
1
H NMR. 

The crude complex was recrystallized in n-hexane/CH2Cl2 = 10:1 to provide pure -(S)-9 (390 mg, 

44% yield) as a yellow solid. The assigned configurations were confirmed by the crystal structure of 

Δ-(S)-9 (see below). 

-(S)-9: 

1
H NMR (500 MHz, CD2Cl2) δ 8.90 (d, J = 1.6 Hz, 1H), 7.98 (d, J = 1.5 Hz, 1H), 7.80 (d, J = 5.1 Hz, 

1H), 7.62-7.59 (m, 2H), 7.53 (dd, J = 8.6, 1.8 Hz, 1H), 7.46 (dd, J = 8.6, 1.8 Hz, 1H), 7.40 (dd, J = 7.6, 

1.2 Hz, 1H), 6.98 (td, J = 7.3, 1.0 Hz, 1H), 6.92 (td, J = 7.4, 1.0 Hz, 1H), 6.86-6.70 (m, 6H), 6.36-6.15 

(m, 4H), 5.88 (d, J = 7.9 Hz, 1H), 5.81 (qd, J = 7.8, 1.1 Hz, 1H), 4.89-4.84 (m, 2H), 4.02-3.97 (m, 1H), 

1.45 (s, 9H), 1.28 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 177.3 (2C), 175.7 (2C), 175.1 (2C), 170.4, 170.1, 168.2, 168.0, 165.9 

(2C), 163.6 (d, J = 257.2 Hz), 151.5, 151.4, 151.3, 141.7, 141.4, 141.2, 135.3, 133.2, 132.9, 132.8, 
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129.9, 129.6, 129.4 (2C), 128.8 (2C), 127.9, 127.6, 125.9 (2C), 123.9, 123.0, 122.4, 122.3, 121.3, 

120.4 (2C), 119.6, 116.5, 101.2 (d, J = 6.3 Hz), 98.5 (d, J = 24.0 Hz), 75.7, 69.4, 35.3, 35.2, 31.7, 31.6.    

HRMS (ESI, m/z) calcd for C49H43FN3O2RhS2Na
+ 

[M+Na]
+
: 914.1728, found: 914.1731. 

IR (film): ν (cm
1

) 2956, 2927, 1617, 1591, 1578, 1526, 1474, 1458, 1438, 1414, 1391, 1376, 1292, 

1245, 1156, 1092, 1015, 988, 924, 814, 791, 752, 719, 689, 668, 462. 

CD {CH3OH/DCM (4:1)} for -(S)-9: λ, nm (Δε, M
-1

cm
-1

) 425 (+25), 380 (–10), 362 (–6), 339 (–21), 

318 (–2), 299 (+41), 278 (–21), 266 (–15), 254 (–29), 234 (+18), 221 (–30). 

-(S)-9: 

1
H NMR (500 MHz, CD2Cl2) δ 9.06 (d, J = 1.8 Hz, 1H), 8.37 (d, J = 1.6 Hz, 1H), 7.93 (d, J = 8.6 Hz, 

1H), 7.78 (d, J = 8.6 Hz, 1H), 7.61 (dd, J = 7.6, 1.1 Hz, 1H), 7.58 (dd, J = 8.6, 1.9 Hz, 1H), 7.51 (dd, J 

= 8.7, 1.9 Hz, 1H), 7.18 (dd, J = 7.6, 1.0 Hz, 1H), 6.95 (td, J = 7.4, 1.1 Hz, 1H), 6.92-6.80 (m, 5H), 

6.80-6.73 (m, 2H), 6.57 (td, J = 7.4, 1.0 Hz, 1H), 6.40 (td, J = 7.8, 1.4 Hz, 1H), 6.28 (d, J = 7.8 Hz, 

1H), 6.24 (d, J = 8.6 Hz, 1H), 6.14 (d, J = 7.8 Hz, 1H), 5.81 (dd, J = 11.5, 7.9 Hz, 1H), 4.30 (t, J = 9.3 

Hz, 1H), 4.03 (dd, J = 12.0, 9.4 Hz, 1H), 3.92 (dd, J = 12.0, 8.5 Hz, 1H), 1.37 (s, 9H), 1.23 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 176.5, 176.4 (2C), 174.9 (2C), 169.3, 169.1, 168.7, 168.5, 167.0, 

163.0 (d, J = 254.6 Hz), 152.5, 151.2, 151.0, 141.0, 140.5, 138.7, 135.2, 133.4, 132.8, 132.7, 130.1, 

129.5, 128.7, 128.5, 128.2, 127.6, 127.3, 125.9, 125.6, 124.5, 124.4, 123.0, 122.2, 122.0, 121.9, 119.3 

(2C), 118.8, 117.3, 103.7 (d, J = 8.1 Hz), 98.4 (d, J = 22.2 Hz), 74.9, 70.2, 35.5, 35.4, 31.5, 31.4. 

IR (film): ν (cm
1

) 2959, 2900, 1618, 1577, 1553, 1530, 1473, 1458, 1436, 1415, 1374, 1292, 1246, 

1156, 1092, 1028, 988, 930, 814, 788, 752, 719, 695, 668, 460. 

HRMS (ESI, m/z) calcd for C49H44FN3O2RhS2
+
[M+H]

+
: 892.1909, found: 892.1910. 

CD {CH3OH/DCM (4:1)} for for -(S)-9: λ, nm (Δε, M
-1

cm
-1

) 417 (–35), 379 (+33), 362 (+31), 344 

(+54), 299 (–58), 274 (+21), 263 (+6), 244 (+36), 233 (–5), 220 (+65). 

 

3) Enantiopure Rhodium Catalysts: 

To a suspension of Λ-(S)-9 (178 mg, 0.12 mmol) or Δ-(S)-9 (178 mg, 0.2 mmol) in CH3CN (5 mL) 

was added TFA (89 L, 1.2 mmol) in one portion, then stirred at room temperature for 0.5 h. The 

reaction mixture was evaporated to dryness, redissolved in CH3CN, followed by the addition of excess 

NH4PF6, then stirred at room temperature for another 0.5 h. Afterwards, the reaction mixture was 
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evaporated to dryness and subjected to a flash chromatography on silica gel. The product was purified 

as shown below: 

a) Silica gel flash column chromatography using 200 mL of CH2Cl2/CH3CN (99/1, vol/vol) with 0.1% 

of TFA (0.2 mL); then switched to 200 mL CH2Cl2/CH3CN (95/5, vol/vol) to wash out the residual 

TFA. 

b) After the solvent was almost completely used, changed the eluent to first 100 mL of CH2Cl2/CH3CN 

(95/5, vol/vol), and then 300 mL of CH2Cl2/CH3CN (90/10, vol/vol) to elute a purple band which has 

been characterized as the chiral auxiliary together with some coloured impurities. 

c) Afterwards, added 326 mg of NH4PF6 (2.0 mmol, 10 equiv.) atop the seasand. 

d) Used 200 mL CH2Cl2/CH3CN (50/50, vol/vol) to elute residual pale yellow band on the column. 

e) Collected the pale yellow band, then removed the solvent in vacuo to give a pale yellow solid 

containing desired Δ-RhS with a hexafluorophosphate counterion and additional salts. 

f) Subjected the obtained yellow solid to a thin pad (~1 cm) of silica gel to remove excess salts using 

50 mL of CH2Cl2/CH3CN (99/1, vol/vol) as eluent.  

g) Collected the filtrate, then removed the solvent in vacuo to obtain Δ-RhS in 90% yield (155 mg) as 

a pale yellow solid. Λ-RhS can also be obtained using the identical procedure in a 90% yield. 

 

CD (CH3OH) for -RhS: λ, nm (Δε, M
-1

cm
-1

) 408 (–45), 368 (+77), 357 (+66), 347 (+65), 300 (–99), 

265 (+36), 253 (+36), 240 (+60), 229 (–24), 217 (+83).  

CD (CH3OH) for Δ-RhS: λ, nm (Δε, M
-1

cm
-1

) 407 (+51), 367 (–79), 360 (–71), 348 (–67), 301 (–107), 

262 (–32), 253 (–35), 242 (–68), 231 (+22), 216 (–93). 
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All other spectroscopic data of -RhS and Δ-RhS were in agreement with the rac-RhS. 

5.2.2 Rhodium-Catalyzed Asymmetric Reactions 

Michael addition reaction: 

 

To a solution of catalyst -RhS (1.7 mg, 0.002 mmol, 1 mol%) in distilled, anhydrous THF (0.20 

mL, 1.0 M) was added the acylimidazole (30.2 mg, 0.20 mmol) in a Schlenk tube. After being stirred 

at room temperature for 20 min, the nucleophile (86.5 mg, 0.60 mmol) was added at room temperature. 

The reaction was stirred at room temperature for 16 h under nitrogen atmosphere. Afterwards, the 

mixture was concentrated under reduced pressure. The residue was purified by flash chromatography 

on silica gel (EtOAc/n-hexane = 1:2 to 2:1) to afford the product (58.0 mg, 99% yield, 93% e.e.). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, e.e. = 93% 

(HPLC: AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate = 0.8 mL/min, 40 C, tr (minor) = 

24.3 min, tr (major) = 26.1 min), []D
20

 = +4.1 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 7.13 (d, J = 0.9 Hz, 1H), 7.03 (s, 1H), 4.22-4.16 (m, 1H), 3.98 (s, 3H), 

3.56 (dd, J = 7.2, 5.0 Hz, 2H), 3.24-3.10 (m, 1H), 1.77 (d, J = 5.8 Hz, 6H), 1.21 (d, J = 7.0 Hz, 3H). 

All other spectroscopic data were in agreement with the literature.
1b

 

Photoredox reaction:  

 

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was added -RhS (3.5 

mg, 0.004 mmol, 2 mol%), 2-acyl imidazole (104.8 mg, 0.4 mmol, 2.0 equiv), and the nitrogen reagent 

(67.0 mg, 0.20 mmol, 1.0 equiv). The Schlenk tube was then degassed by alternative evacuation and 

back filling with nitrogen. DMSO (0.25 mL), CH3CN (0.75 mL), and 2,6-lutidine (36.4 mg, 40 µL, 

0.34 mmol, 1.7 equiv) were then added to the Schlenk tube via syringe addition. The resulting clear 

solution was degassed for 5 min by bubbling nitrogen through the reaction medium. The reaction 
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mixture was stirred at room temperature and positioned approximately 10 cm from 24 W blue LEDs. 2 

hours later, the reaction mixture was concentrated in vacuo. The resulting crude oil was purified by 

flash chromatography on silica gel (EtOAc/ n-hexane = 1:4 to 1:2) to provide the target product (2 

hours, 69.7 mg, 0.192 mmol, 96% yield). Enantiomeric excess established by HPLC analysis using a 

Chiralpak OD-H column, e.e. = 97% (HPLC: OD-H, 254 nm, n-hexane /isopropanol = 85:15, flow 

rate 1.0 mL/min, 25 
o
C), tr (major) = 7.9 min, tr (minor) = 13.0 min). 

1
H NMR (300 MHz, CDCl3) δ 7.46 -7.17 (m, 10H), 7.17-6.97 (m, 2H), 3.70 (s, 3H), 2.73 and 2.69 (s 

and s, 3H, contained the rotamer), 2.04 and 1.97 (s and s, 3H, contained the rotamer). 

All other spectroscopic data were in agreement with the literature.
2
 

5.2.3 Determination of Enantiomeric Purities of the Rhodium Catalysts 

The analysis was performed with a Daicel Chiralpak IB (250 × 4.6 mm) HPLC column on a 

Shimadzu Lc-2030c HPLC system. The column temperature was 25 °C and UV-absorption was 

measured at 254 nm. Solvent A = 0.1% TFA in H2O, solvent B = MeCN. 

 

Figure 82. HPLC trace for the racemic reference complexes Δ/Λ-RhS. (Daicel Chiralpak IB, with a 

linear gradient of 40% to 50% B in 180 min, flow rate = 0. 6 mL/min). 
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Figure 83. HPLC trace for the complex -RhS. Integration of peak areas > 99% ee. 

 

Figure 84. HPLC trace for the complex Λ-RhS. Integration of peak areas = 99.8% ee. 

 



Chapter 5. Experimental Part 

114 
 

5.2.4 Investigation of the Configurational Stability of the Rhodium Catalyst 

1) Catalyst Stability Investigated by 
1
H NMR 

The rhodium complex Λ-RhS (20.0 mg) was stored in a brown glass vial and kept on the bench at 

room temperature. 
1
H NMR spectras were recorded after 2, 4, 6, and 8 days. 

 

Figure 85. 
1
H NMR of Λ-RhS recorded in CD2Cl2 over 8 days. 

2) Catalyst Stability Investigated by HPLC on Chiral Stationary Phase 

Enantiopure rhodium complex -RhS (20.0 mg) was stored in a brown vial and kept on the bench 

at room temperature. The HPLC traces were collected after 2, 4, 6 and 8 days. HPLC conditions: 

Daicel Chiralpak IB (250 × 4.6 mm) column, the column temperature was 25 °C and UV-absorption 

was measured at 254 nm. Solvent A = 0.1% TFA, solvent B = MeCN with a linear gradient of 40% to 

50% B in 180 min with a flow rate = 0.6 mL/min. 
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Figure 86. HPLC trace for the racemic reference complexes Δ/Λ-RhS. (Daicel Chiralpak IB, with a 

linear gradient of 40% to 50% B in 180 min, flow rate = 0. 6 mL/min), (the retention time changed 

compared with former when the HPLC conditions were reproduced). 

 

Figure 87. HPLC trace of the freshly prepared Λ-RhS (99.9% ee). 
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Figure 88. HPLC trace of the Λ-RhS after 2 days (99.8% ee). 

 

Figure 89. HPLC trace of the Λ-RhS after 4 days (99.8% ee). 
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Figure 90. HPLC trace of the Λ-RhS after 6 days (99.8% ee). 

 

Figure 91. HPLC trace of the Λ-RhS after 8 days (99.8% ee). 
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5.2.5 Single Crystal X-Ray Diffraction Studies 

Crystals of Λ-(S)-9 and -RhS were obtained by slow diffusion from a solution ofthe compounds in 

CH2Cl2 layered with n-hexane at room temperature for several days.  

Crystal data and details of the structure determination are presented in Table 10. X-ray data were 

collected with a Bruker 3 circuit D8 Quest diffractometer with MoKa radiation (microfocus tube with 

multilayer optics) and Photon 100 CMOS detector at 115 K. Scaling and absorption correction was 

performed by using the SADABS
3 

software package of Bruker. Structures were solved using direct 

methods in SHELXS or SHELXT
4 

and refined using the full matrix least squares procedure in 

SHELXL-2014
5
. The hydrogen atoms were placed in calculated positions and refined as riding on their 

respective C atom, and Uiso(H) was set at 1.2 Ueq(Csp
2
) and 1.5 Ueq(Csp

3
). Disorder of PF6 ions, 

solvent molecules or phenyl and tert-butyl groups was refined using restraints for both the geometry 

and the anisotropic displacement factors.  

 

Figure 92. Crystal structure of Λ-(S)-9. ORTEP drawing with 50 % probability thermal ellipsoids. 
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Figure 93. Crystal structure of -RhS. The hexafluorophosphate counteranion and the solvent 

molecules are omitted for clarity. ORTEP drawing with 50 % probability thermal ellipsoids. 
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Table 10 Crystal data and details of the structure determination. 

 Λ-(S)-9 -RhS 

Empiric formula C49 H43 F N3 O2 Rh S2 C40 H42 Cl4 F6 N4 P Rh S2 

Formula weight 891.89 1032.57 

Crystal system, space group 

Monoclinic, 

P21 

Triclinic, 

P1 

a, b, c (Å) 

9.9533(7), 

13.4582(10), 

12.1722(7) 

12.3943(5), 

13.2600(6), 

14.1991(6) 

 (°) 90, 102.666(2), 90 102.772(2), 104.015(2), 90.825(2) 

V (Å
3
) 2068.3(3) 2202.41(16) 

Z 2 2 

(mm
-1

) 0.563 0.822 

Crystal size (mm) 0.15 x 0.13 x 0.06 0.43 x 0.18 x 0.03 

Tmin, Tmax 0.79, 0.97 0.77, 0.98 

No. of measured, independent and 

observed [I > 2(I)] reflections 

11397, 

7003, 

6335 

87967, 

15931, 

15144 

Rint 0.0335 0.0483 

Goodness-of-fit on F2 1.035 1.070 

R index (all data) wR2 = 0.0938 wR2 = 0.0915 

R index conventional [I>2sigma(I)] R1 = 0.0406 R1 = 0.0371 

No. of reflections 7003 15931 
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No. of parameters 529 1133 

No. of restraints 1 417 

max,min (e Å
-3

) 1.556, -0.668 2.017, -0.659 

Absolute structure parameter -0.02(2) 0.010(7) 

CCDC 1455732 1455731 
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5.3 Cooperative Rhodium/Ruthenium Asymmetric Photoredox Catalysis to Access 

Chiral 1,2-Aminoalcohols 

5.3.1 Synthesis of Substrates 

1) Synthesis of 2-acyl imidazoles 

Method A 

 

General procedure for the preparation of 16a-d with method A. To a mixture of imidazole (2.0 

mmol) in CH3CN (8 mL) was added benzoyl chloride (348 L, 3.0 mmol) dropwise at 0 °C, followed 

by the addition of Et3N (420 L, 3.0 mmol), then stirred at room temperature for 12h. Afterwards, the 

reaction mixture was poured into H2O (50 mL), extracted by EtOAc (3 × 20 mL). The organic layer 

was collected and dried over anhydrous Na2SO4, filtered, then concentrated under reduced pressure. 

The residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:3). 

1-Methyl-1H-imidazole was converted to 2-acyl imidazole 16a (316 mg, 1.70 mmol, 85% 

yield) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 8.23-8.21 (m, 2H), 7.50 (tt, J = 7.3, 2.3 Hz, 1H), 7.43-7.39 (m, 2H), 

7.15 (d, J = 0.6 Hz, 1H), 7.01 (s, 1H), 3.96 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 183.9, 142.9, 137.1, 132.4, 130.5, 129.0, 127.8, 126.6, 36.1.   

IR (film): ν (cm
1

) 3107, 3063, 2956, 1706, 1639, 1597, 1507, 1448, 1393, 1292, 1257, 1165, 1077, 

999, 935, 897, 770, 735, 681, 651, 618, 554. 

HRMS (ESI, m/z) calcd for C11H11N2O
+
 [M+H]

+
: 187.0866, found: 187.0866. 

1-Phenyl-1H-imidazole was converted to 2-acyl imidazole 16b (456 mg, 1.84 mmol, 92% 

yield) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 8.28-8.25 (m, 2H), 7.59 (tt, J = 7.3, 2.4 Hz, 1H), 7.51-7.45 (m, 5H), 

7.36 (d, J = 0.9 Hz, 1H), 7.35-7.32 (m, 2H), 7.28 (d, J = 0.9 Hz, 1H). 
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13
C NMR (75 MHz, CDCl3) δ 182.9, 143.2, 138.5, 136.8, 133.0, 130.8, 129.6, 129.1, 128.5, 128.1, 

126.3, 125.6. 

IR (film): ν (cm
1

) 3061, 1647, 1594, 1494, 1445, 1395, 1337, 1302, 1240, 1162, 1100, 1073, 1001, 

928, 893, 759, 687, 656, 576, 532. 

HRMS (ESI, m/z) calcd for C16H13N2O
+
 [M+H]

+
: 249.1022, found: 249.1023. 

1-(o-Tolyl)-1H-imidazole was converted to 2-acyl imidazole 16c (424 mg, 1.62 mmol, 

81% yield) as a colorless oil. 

1
H NMR (300 MHz, CDCl3) δ 8.32-8.28 (m, 2H), 7.57 (tt, J = 7.4, 2.4 Hz, 1H), 7.50-7.44 (m, 2H), 

7.40 (d, J = 1.0 Hz, 1H), 7.39-7.27 (m, 3H), 7.22 (dd, J = 7.6, 1.0 Hz, 1H), 7.17 (d, J = 1.0 Hz, 1H). 

13
C NMR (75 MHz, CDCl3) δ 182.6, 143.7, 138.2, 136.7, 134.5, 132.9, 130.9, 130.8, 129.9, 129.0, 

128.2, 126.6, 126.4, 126.1, 17.4. 

IR (film): ν (cm
1

) 3062, 2922, 1646, 1592, 1494, 1447, 1395, 1334, 1300, 1243, 1203, 1161, 1087, 

1038, 1002, 930, 894, 762, 688, 658, 551, 458. 

HRMS (ESI, m/z) calcd for C17H15N2O
+
 [M+H]

+
: 263.1179, found: 263.1180. 

1-([1,1'-Biphenyl]-2-yl)-1H-imidazole was converted to 2-acyl imidazole 16d (640 mg, 

1.98 mmol, 99% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.81-7.78 (m, 2H), 7.57-7.47 (m, 5H), 7.34 (t, J = 7.6 Hz, 2H), 7.24 (br, 

1H), 7.19 (br, 1H), 7.15-7.08 (m, 3H), 7.00-6.96 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 183.1, 144.1, 138.5, 137.8, 136.4, 136.3, 132.7, 130.9, 130.5, 129.5, 

129.0, 128.4, 128.3, 128.2, 127.8, 127.5, 126.4, 126.2. 

IR (film): ν (cm
1

) 3131, 3061, 1732, 1650, 1590, 1480, 1440, 1402, 1302, 1237, 1159, 1080, 1002, 

930, 893, 763, 690, 653, 574, 523, 465. 

HRMS (ESI, m/z) calcd for C22H16N2NaO
+
 [M+Na]

+
: 347.1155, found: 347.1156. 
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General procedure for the preparation of 16e-g with method A. To a mixture of imidazole (220 mg, 

1.0 mmol) in CH3CN (4 mL) was added acyl chloride (1.5 mmol) portionwise at 0 °C, followed by the 

addition of Et3N (210 L, 1.5 mmol), then stirred at room temperature for 12 h. Afterwards, the 

reaction mixture was poured into H2O (25 mL), extracted by EtOAc (3 × 20 mL). The organic layer 

was collected and dried over anhydrous Na2SO4, filtered, then concentrated under reduced pressure. 

The residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 3:1). 

4-Methylbenzoyl chloride was converted to 2-acyl imidazole 16e (275 mg, 0.82 

mmol, 82% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.77-7.73 (m, 2H), 7.56-7.40 (m, 4H), 7.22 (d, J = 1.1 Hz, 1H), 

7.18-7.08 (m, 6H), 7.02-7.00 (m, 2H), 2.38 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 182.7, 144.2, 143.4, 138.3, 137.8, 136.4, 133.7, 130.7, 130.6, 129.2, 

128.9, 128.4, 128.2 (2C), 128.1, 127.4, 126.4, 126.0, 21.6.  

IR (film): ν (cm
1

) 3131, 3076, 3028, 1650, 1605, 1570, 1503, 1482, 1455, 1434, 1411, 1334, 1304, 

1267, 1253, 1182, 1162, 1090, 994, 898, 832, 792, 778, 761, 735, 697, 658, 555, 482, 433. 

HRMS (ESI, m/z) calcd for C23H18N2NaO
+
 [M+Na]

+
: 361.1311, found: 361.1311. 

3-Methylbenzoyl chloride was converted to 2-acyl imidazole 16f (326 mg, 0.97 

mmol, 97% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.48 (d, J = 7.6 Hz, 1H), 7.43-7.36 (m, 3H), 7.35-7.30 (m, 2H), 7.19 (d, 

J = 8.0 Hz, 1H), 7.14-7.10 (m, 2H), 7.06 (d, J = 1.1 Hz, 1H), 7.04-6.96 (m, 3H), 6.89-6.85 (m, 2H), 

2.23 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 183.5, 144.3, 138.5, 137.9, 137.4, 136.4 (2C), 133.6, 131.0, 130.9, 
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129.4, 129.1, 128.4, 128.3 (2C), 127.8, 127.5, 126.5, 126.1, 21.3. 

IR (film): ν (cm
1

) 3129, 3113, 1646, 1582, 1481, 1456, 1443, 1304, 1271, 1261, 1204, 1151, 1134, 

1089, 1010, 942, 833, 778, 766, 736, 706, 698, 674, 584, 560, 536, 430. 

HRMS (ESI, m/z) calcd for C23H19N2O
+
 [M+H]

+
: 339.1492, found: 339.1491. 

4-Chlorobenzoyl chloride was converted to 2-acyl imidazole 16g (304 mg, 0.85 

mmol, 85% yield) as a pale yellow solid. 

1
H NMR (300 MHz, CDCl3) δ 7.76-7.72 (m, 2H), 7.57-7.50 (m, 2H), 7.48-7.42 (m, 2H), 7.31 (dt, J = 

8.8, 2.0 Hz, 2H), 7.24 (d, J = 1.1 Hz, 1H), 7.22 (d, J = 1.1 Hz, 1H), 7.15-7.07 (m, 3H), 7.00-6.93 (m, 

2H). 

13
C NMR (75 MHz, CDCl3) δ 181.6, 143.8, 139.2, 138.4, 137.8, 136.2, 134.6, 131.9, 130.9, 129.6, 

129.1, 128.4, 128.3, 128.2, 128.1, 127.5, 126.4, 126.3. 

IR (film): ν (cm
1

) 3094, 3059, 1656, 1584, 1504, 1482, 1448, 1434, 1409, 1393, 1235, 1168, 1143, 

1083, 1007, 926, 899, 870, 827, 795, 734, 697, 683, 655, 592, 538, 499, 477. 

HRMS (ESI, m/z) calcd for C22H15ClN2NaO
+
 [M+Na]

+
: 381.0765, found: 381.0766. 

Methyl 4-(chlorocarbonyl)benzoate was converted to 2-acyl imidazole 16h 

(305 mg, 0.80 mmol, 80% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 7.59-7.53 (m, 2H), 

7.51-7.45 (m, 2H), 7.28 (d, J = 2.4 Hz, 2H), 7.19-7.08 (m, 3H), 6.99-6.95 (m, 2H), 3.95 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 182.3, 166.4, 143.7, 139.8, 138.5, 137.8, 136.2, 133.3, 130.9, 130.3, 

129.8, 129.2, 128.9, 128.5, 128.4, 128.2, 127.6, 126.6, 126.3, 52.3. 

IR (film): ν (cm
1

) 3120, 3060, 2948, 1712, 1655, 1569, 1506, 1481, 1436, 1409, 1276, 1231, 1168, 

1101, 1007, 924, 895, 865, 820, 776, 743, 700, 647, 613, 534, 495, 462. 

HRMS (ESI, m/z) calcd for C24H18N2NaO3
 +

 [M+Na]
+
: 405.1210, found: 405.1212. 
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4-Methoxybenzoyl chloride was converted to 2-acyl imidazole 16i (258 mg, 0.73 

mmol, 73% yield) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 7.88 (d, J = 9.0 Hz, 2H), 7.54-7.40 (m, 4H), 7.20 (d, J = 0.8 Hz, 1H), 

7.14-7.06 (m, 4H), 7.00-6.97 (m, 2H), 6.84 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 181.7, 163.5, 144.4, 138.4, 137.9, 136.5, 133.0, 130.8, 129.2 (2C), 

129.0, 128.4, 128.3 (2C), 127.5, 126.5, 125.9, 113.2, 55.4 . 

IR (film): ν (cm
1

) 3061, 2906, 2935, 1643, 1595, 1507, 1481, 1444, 1399, 1306, 1249, 1154, 1026, 

923, 898, 843, 763, 730, 695, 652, 619, 579, 562, 517.  

HRMS (ESI, m/z) calcd for C23H18N2NaO2 
+
 [M+Na]

+
: 377.1260, found: 377.1262. 

4-(Chlorocarbonyl)phenyl acetate was converted to 2-acyl imidazole 16j (263 mg, 

0.70 mmol, 70% yield) as a pale yellow solid. 

1
H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 8.7 Hz, 2H), 7.55-7.40 (m, 4H), 7.20 (d, J = 10.7 Hz, 2H), 

7.13-7.07 (m, 5H), 6.97-6.94 (m, 2H), 2.29 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 181.6, 168.6, 154.2, 143.9, 138.4, 137.7, 136.3, 133.7, 132.2, 130.9, 

129.4, 129.0, 128.4, 128.3, 128.2, 127.6, 126.4, 126.3, 120.9, 21.1.. 

IR (film): ν (cm
1

) 3120, 3060, 2948, 1712,1655, 1506, 1481, 1436, 1276, 1231, 1168, 1101, 1007, 

924, 896, 866, 821, 777, 744, 700, 647, 613, 534, 495, 462. 

HRMS (ESI, m/z) calcd for C24H18N2NaO3
 +

 [M+Na]
+
: 405.1210, found: 405.1212. 

[1,1'-Biphenyl]-4-carbonyl chloride was converted to 2-acylimidazole 16k (293 mg, 

0.73 mmol, 73% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.91 (dt, J = 8.5, 1.8 Hz, 2H), 7.66-7.58 (m, 4H), 7.56-7.45 (m, 6H), 
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7.41 (dt, J = 6.1, 1.4 Hz, 1H), 7.27 (d, J = 1.1 Hz, 1H), 7.21 (d, J = 1.1 Hz, 1H), 7.18-7.10 (m, 3H), 

7.04-7.00 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 182.6, 145.3, 144.2, 140.2, 138.4, 137.8, 136.4, 135.1, 131.0, 130.8, 

129.4, 128.9, 128.8, 128.3 (2C), 128.2, 128.0, 127.5, 127.2, 126.5, 126.4, 126.2.  

IR (film): ν (cm
1

) 1648, 1598, 1480, 1443, 1402, 1305, 1238, 1166, 1143, 1002, 929, 897, 847, 751, 

727, 692, 655, 587, 558, 528, 490. 

HRMS (ESI, m/z) calcd for C28H21N2O
+
 [M+H]

+
: 401.1648, found: 401.1651. 

Method B 

 

Preparation of 16l with method B. To a solution of imidazole (220 mg, 1.0 mmol) in THF (4 mL) 

was added nBuLi (0.48 mL, 2.5 M in n-hexane, 1.2 mmol) at -78 °C dropwise. After stirred at this 

temperature for 1 h, 1-morpholinoethan-1-one (0.13 mL, 1.1 mmol) was added slowly. The reaction 

mixture was warmed to room temperature gradually, then stirred for another 15 h. Afterwards, the 

mixture was poured into saturated aqueous solution of NH4Cl and extracted with EtOAc (3  20 mL). 

The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under 

reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 

1:1) to give 16l (197 mg, 0.75 mmol, 75% yield) as a white solid. 

1
H NMR (300 MHz, CDCl3) δ 7.54-7.32 (m, 3H), 7.32-7.29 (m, 1H), 7.23-7.20 (m, 3H), 7.13 (d, J = 

0.9 Hz, 1H), 7.05 (d, J = 0.9 Hz, 1H), 7.00-6.94 (m, 2H), 2.31 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 188.8, 143.9, 138.6, 137.8, 136.2, 130.7, 129.3, 129.0, 128.1 (2C), 

127.4, 126.8, 126.4, 26.6.  

IR (film): ν (cm
1

) 3032, 2921, 2851, 1682, 1504, 1483, 1447, 1434, 1403, 1357, 1337, 1304, 1267, 

1224, 1158, 1145, 1128, 1101, 1085, 1017, 763, 714, 702, 680, 610 , 563, 430. 

HRMS (ESI, m/z) calcd for C17H15N2O
+
 [M+H]

+
: 263.1179, found: 263.1180. 
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Method C 

 

Preparation of 16i with method C. To a solution of imidazole (220 mg, 1.0 mmol) in THF (4 mL) 

was added nBuLi (0.48 mL, 2.5 M in n-hexane, 1.2 mmol) at -78 °C dropwise. After stirred at this 

temperature for 1 h, propionic anhydride (0.16 mL, 1.2 mmol) was added slowly. The reaction mixture 

was warmed to room temperature gradually, then stirred for another 15 h. Afterwards, the mixture was 

poured into saturated aqueous solution of Na2CO3 and extracted with EtOAc (3  20 mL). The 

combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under reduced 

pressure. The residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:1) to 

give 16m (180 mg, 0.66 mmol, 66% yield) as a colorless oil. 

1
H NMR (300 MHz, CDCl3) δ 7.54-7.42 (m, 3H), 7.34-7.30 (m, 1H), 7.23-7.18 (m, 3H), 7.13 (d, J = 

1.0 Hz, 1H), 7.07 (d, J = 1.1 Hz, 1H), 6.98-6.94 (m, 2H), 2.99-2.85 (m, 1H), 2.63-2.50 (m, 1H), 0.93 (t, 

J = 7.3 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 192.1, 143.7, 138.7, 138.0, 136.4, 130.7, 129.2, 129.0, 128.2 (2C), 

127.4, 126.5, 126.4, 32.0, 7.7.  

IR (film): ν (cm
1

) 2975, 2936, 1683, 1505, 1482, 1455, 1446, 1378, 1324, 1303, 1210, 1145, 1075, 

1021, 1009, 938, 909, 803, 763, 735, 699, 645, 611, 573, 554, 505. 

HRMS (ESI, m/z) calcd for C18H17N2O
+
 [M+H]

+
: 277.1335, found: 277.1335.  

2) Synthesis of Aniline Derivatives 

The anilines 2a
1
, 2d-g

1
, and 2h-i

2
 were prepared according to the published procedure. 

Preparation of 2b: 

 

Procedure for the preparation of (chloromethyl)dicyclopropyl(methyl)silane (A). To a stirred 

suspension of granular lithium (278 mg, 40 mmol) in diethyl ether (10 mL) at 0 °C was added a 

solution of bromocyclopropane (1.60 mL, 20 mmol) in diethyl ether (10 mL) dropwise within 10 min, 
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and the resulting mixture was stirred at 0 °C for another 60 min. Afterwards, a solution of 

dichloro(chloromethyl)methylsilane (1.31 mL, 10 mmol) in diethyl ether (5 mL) was added dropwise 

with 10 min at 0 °C. Subsequently, the reaction mixture was stirred at this temperature for another 45 

min, then poured into water (30 mL). The organic phase was separated and the aqueous layer was 

extracted with diethyl ether (3  20 mL). The combined organic extracts were dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure to furnish A (1.40 g, 8.0 mmol, 80% 

yield, > 95% purity judged by 
1
H NMR) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 2.83 (s, 2H), 0.63-0.57 (m, 4H), 0.35-0.30 (m, 4H), –0.11 (s, 3H), –0.39 

(tt, J = 9.8, 6.9 Hz, 2H). 

All spectroscopic data was in agreement with the literature.
3 

Procedure for the preparation of dicyclopropyl(iodomethyl)(methyl)silane (B). A suspension of A 

(1.40 g, 8.0 mmol) and NaI (6.01 g, 40 mmol) in acetone (15 mL) was heated at 65 °C for 6h. 

Afterwards, the reaction mixture was poured into water (100 mL), extracted with diethyl ether (3  30 

mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated 

under reduced pressure to furnish B (1.75 g, 6.56 mmol, 82% yield, >95% purity judged by 
1
H-NMR) 

as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 2.03 (s, 2H), 0.65-0.58 (m, 4H), 0.34-0.28 (m, 4H), –0.10 (s, 3H), –0.38 

(tt, J = 9.8, 6.9 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 1.3, 1.1, –7.3, –7.7, –15.2. 

IR (film): ν (cm
1

) 3070, 2997, 1287, 1252, 1186, 1099, 1078, 1053, 1032, 896, 822, 790, 773, 784, 

722, 690, 661, 516. 

Procedure for the preparation of N-((dicyclopropyl(methyl)silyl)methyl)-N-methylaniline (18c). 

To a stirred solution of N-methylaniline (0.43 mL, 4.0 mmol) in THF (10 mL) at 0 °C was added 

nBuLi (2.4 mL, 2.5 M in n-hexane, 6.0 mmol) dropwise. After stirred at 0 °C for 2 h, B (1.28 g, 4.80 

mmol) was added to the mixture slowly, and the resulting solution was stirred for another 15 h. The 

reaction was then quenched by slow addition of a saturated solution of NH4Cl (15 mL) and extracted 

with EtOAc (3  20 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, 

and concentrated under reduced pressure. The residue was subjected to a flash chromatography on 
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silica gel (EtOAc/n-hexane = 1:30) to give 18c (785 mg, 3.20 mmol, 80% yield) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 7.47-7.40 (m, 2H), 6.96-6.93 (m, 2H), 6.85 (tt, J = 7.3, 0.8 Hz, 1H), 

3.22 (s, 3H), 3.17 (s, 2H), 0.83-0.77 (m, 4H), 0.53-0.50 (m, 4H), 0.00 (s, 3H), –0.23 (tt, J = 9.8, 6.9 Hz, 

2H). 

13
C NMR (75 MHz, CDCl3) δ 150.7, 128.8, 115.0, 111.9, 42.2, 40.2, 1.4, 1.0, –7.1, –8.5. 

IR (film): ν (cm
1

) 3068, 2996, 2925, 2802, 1597, 1504, 1365, 1286, 1251, 1233, 1192, 1097, 1032, 

989, 897, 821, 799, 772, 743, 689, 631, 512, 400. 

HRMS (ESI, m/z) calcd for C15H24NSi
+
 [M+H]

+
: 246.1673, found: 246.1673. 

 

Procedure for the preparation of 3-chloro-N-methyl-N-((trimethylsilyl)methyl)aniline (18j). To a 

stirred solution of 3-Chloro-N-methylaniline (0.61 mL, 5.0 mmol) in THF (12 mL) at 0 °C was added 

nBuLi (2.4 mL, 2.5 M in n-hexane, 6.0 mmol) dropwise. After stirred at 0 °C for 2 h, 

(Iodomethyl)trimethylsilane (1.11 mL, 7.50 mmol) was added to the mixture slowly, and the resulting 

solution was stirred for another 15 h. The reaction was then quenched by slow addition of a saturated 

solution of NH4Cl (15 mL) and extracted with EtOAc (3  20 mL). The combined organic extracts 

were dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was 

subjected to a flash chromatography on silica gel (EtOAc/n-hexane = 1:30) to give 18j (830 mg, 3.64 

mmol, 73% yield) as a pale yellow oil. 

1
H NMR (300 MHz, CDCl3) δ 7.10 (t, J = 8.0 Hz, 2H), 6.60-6.48 (m, 3H), 2.94 (s, 3H), 2.87 (s, 2H), 

0.11 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 151.2, 134.9, 129.8, 114.8, 111.4, 109.8, 43.9, 40.1, –1.2. 

IR (film): ν (cm
1

) 2953, 2894, 2809, 1591, 1557, 1493, 1366, 1247, 1232, 1195, 1099, 986, 837, 753, 

680, 661, 443. 

HRMS (ESI, m/z) calcd for C11H19ClNSi
+
 [M+H]

+
: 228.0970, found: 228.0970. 
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5.3.2 Rhodium-Catalyzed Redox Coupling Reactions Activated by Visible Light 

General procedure for entries 1-6 of Table 2. A dried 10 mL Schlenk tube was charged with the 

catalyst Λ-RhO (4 mol%) (entries 1-5) or Λ-IrO (4 mol%) (entry 6), the photosensitizer 

[Ru(bpy)3](PF6)2 (0.86 mg, 0.001 mmol, 1 mol%) and the corresponding 2-acyl imidazoles (0.10 

mmol, 1.0 eq.). A solution of 2a (29.0 mg, 0.15 mmol, 1.5 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) 

was added in one portion. The reaction mixture was degassed via freeze-pump-thaw for three cycles. 

After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm 

from a 23 W compact fluorescent lamp. The reaction was stirred at room temperature for the indicated 

time (monitored by TLC) under nitrogen atmosphere. Afterwards, the mixture was concentrated under 

reduced pressure. The residue was redissolved in THF (2 mL), and then TBAF (0.5 mL, 1.0 M in THF, 

0.5 mmol) was added (except entry 1). The mixture was stirred at room temperature for another 0.5 h 

and quenched by the addition of saturated aqueous solution of NH4Cl, extracted by EtOAc (3  10 

mL). The combined organic layers were concentrated and subjected to a flash chromatography on 

silica gel (EtOAc/n-hexane = 1:7 to 1:4) to afford the products 17, 19a-d. Racemic samples were 

obtained by carrying out the reactions with rac-RhO. The enantiomeric excess was determined by 

chiral HPLC analysis.  

 As for entry 1, starting from 16a (18.6 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure without treating with TBAF to give 17 as a pale yellow oil (27.0 

mg, 0.68 mmol, 68% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak 

OD-H column, ee = 41% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 9.6 min, tr (major) = 11.2 min); []D
20

 = +38.0 (c 1.0, CH2Cl2) 

1
H NMR (300 MHz, CD2Cl2) δ 7.28-7.23 (m, 2H), 7.19-7.07 (m, 3H), 7.00 (d, J = 1.2 Hz, 1H), 

6.97-6.90 (m, 2H), 6.82 (d, J = 1.1 Hz, 1H), 6.50-6.44 (m, 3H), 4.76 (d, J = 15.1 Hz, 1H), 4.02 (d, J = 

15.1 Hz, 1H), 2.97 (s, 6H), 0.02 (s, 9H).  

13
C NMR (75 MHz, CD2Cl2) δ 151.0, 149.5, 144.0, 128.5, 127.9, 127.2, 126.7, 126.4, 123.3, 116.1, 

112.8, 79.7, 62.6, 39.4, 34.7.  

IR (film): ν (cm
1

) 3060, 3025, 2953, 2897, 1598, 1505, 1448, 1403, 1368, 1343, 1279, 1262, 1251, 
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1195, 1125, 1088, 1064, 1016, 992, 959, 883, 840, 744, 725, 690, 582, 462. 

HRMS (ESI, m/z) calcd for C22H30N3OSi
+
 [M+H]

+
: 380.2153, found: 380.2158. 

 As for entry 2, starting from 16a (18.6 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure to give 19a as a pale yellow oil (22.4 mg, 0.729 mmol, 73% yield). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 41% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 20.4 

min, tr (major) = 15.2 min); []D
20

 = +50.4 (c 1.0, CH2Cl2) 

1
H NMR (300 MHz, CDCl3) δ 7.40-7.32 (m, 4H), 7.30-7.19 (m, 3H), 7.01 (d, J = 1.2 Hz, 1H), 

6.94-6.90 (m, 2H), 6.83-6.78 (m, 2H), 4.82 (d, J = 14.9 Hz, 1H), 3.96 (br, 1H), 3.74 (d, J = 14.9 Hz, 

1H), 3.41 (s, 3H), 2.76 (s, 3H).  

13
C NMR (75 MHz, CDCl3) δ 152.0, 149.4, 144.3, 129.2, 128.7, 127.5, 126.0, 125.2, 123.1, 118.8, 

114.5, 74.7, 65.1, 39.8, 34.4. 

IR (film): ν (cm
1

) 3059, 2952, 2870, 2758, 1597, 1503, 1448, 1407, 1346, 1279, 1256, 1174, 1145, 

1123, 1092, 1064, 1031, 991, 966, 938, 900, 745, 730, 696, 645, 589, 562, 470. 

HRMS (ESI, m/z) calcd for C19H22N3O
+
 [M+H]

+
: 308.1757, found: 308.1753. 

 As for entry 3, starting from 16b (24.8 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure to give 19b as a white solid (27.0 mg, 0.740 mmol, 74% yield). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, ee = 82% 

(HPLC: AD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr (minor) = 14.0 

min, tr (major) = 9.9 min); []D
20

 = +56.6 (c 1.0, CH2Cl2) 

1
H NMR (300 MHz, CD2Cl2) δ 7.26-7.18 (m, 6H), 7.17-7.12 (m, 4H), 7.11 (d, J = 1.2 Hz, 1H), 6.97 (d, 

J = 1.3 Hz, 1H), 6.89-6.83 (m, 4H), 6.73 (tt, J = 7.3, 0.8 Hz, 1H)  4.78 (d, J = 14.9 Hz, 1H), 3.75 (d, J 

= 14.9 Hz, 1H), 3.54 (br, 1H), 2.70 (s, 3H).  

13
C NMR (75 MHz, CD2Cl2) δ 152.3, 150.4, 145.2, 139.2, 129.2, 128.5, 128.4, 128.2, 127.7, 127.3, 

126.7, 125.6, 124.4, 118.4, 114.4, 75.6, 65.5, 39.7. 

IR (film): ν (cm
1

) 3059, 3025, 2870, 2729, 1597, 1496, 1446, 1352, 1302, 1253, 1175, 1138, 1122, 
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1096, 1065, 1031, 990, 937, 897, 746, 727, 689, 595, 538, 514. 

HRMS (ESI, m/z) calcd for C24H23N3NaO
+
 [M+Na]

+
: 392.1733, found: 392.1732. 

 As for entry 4, starting from 16c (26.2 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure to give 19c as a white solid (28.0 mg, 0.73 mmol, 73% yield). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 88% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 12.3 

min, tr (major) = 13.7 min); []D
20

 = +70.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3, mixture of rotamers) δ 7.32-7.28 (m, 1H), 7.57 (tt, J = 7.3, 1.3 Hz, 0.8 H), 

7.47 (tt, J = 7.7, 1.4 Hz, 0.2 H, other rotamer ), 7.42-7.30 (m, 1H), 7.36-7.25 (m, 1H), 7.24-7.21 (m, 

2H), 7.20-7.18 (m, 3H), 7.17-7.15 (m, 2H), 7.15-7.12 (m, 1H), 6.92-6.83 (m, 2H), 6.82-6.74 (m, 2H), 

6.12 (d, J = 7.8 Hz, 0.8 H, other rotamer), 4.92 (d, J = 14.7 Hz, 0.8 H), 4.78 (d, J = 14.7 Hz, 0.2 H, 

other rotamer), 3.83 (d, J = 2.7 Hz, 0.8 H), 3.78 (d, J = 2.8 Hz, 0.2 H, other rotamer), 2.56 (br, 0.8 H), 

2.51 (br, 0.2 H, other rotamer), 2.72 (s, 2.4 H), 2.64 (s, 0.6 H, other rotamer), 2.08 (s, 2.4 H), 2.06 (s, 

0.6 H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2, mixture of rotamers) δ 152.4 (2C), 150.3, 150.2, 145.4, 144.3, 138.5, 

138.0, 136.5, 135.8, 130.5, 130.3, 129.9, 129.2, 128.8 (2C), 128.5, 128.2, 128.1, 127.5, 127.1, 126.9, 

126.7, 125.9, 125.7, 123.8, 123.6, 118.7, 118.5, 114.6, 115.5, 75.5, 75.2, 66.0, 65.4, 39.6, 17.6, 17.0.  

IR (film): ν (cm
1

) 3058, 3025, 2924, 2855, 1598, 1495, 1446, 1351, 1301, 1253, 1175, 1139, 1120, 

1093, 1064, 1032, 991, 938, 848, 747, 721, 693, 674, 645, 602, 547, 516, 456. 

HRMS (ESI, m/z) calcd for C25H26N3O
+
 [M+H]

+
: 384.2070, found: 384.2071. 

 As for entry 5, starting from 16d (32.4 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure to give 19d as a white solid (32.0 mg, 0.072 mmol, 72% yield). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 93% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 15.8 

min, tr (major) = 13.3 min). 
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1
H NMR (300 MHz, CDCl3) δ 7.46-7.26 (m, 9H), 7.24-7.16 (m, 3H), 7.12-6.98 (m, 3H), 6.87-6.74 (m, 

4H), 6.67 (d, J = 1.1 Hz, 1H), 6.39 (d, J = 7.8 Hz, 1H), 4.70 (d, J = 14.8 Hz, 1H), 3.72 (d, J = 14.8 Hz, 

1H), 3.50 (br, 1H), 2.66 (s, 3H).  

13
C NMR (75 MHz, CDCl3) δ 151.6, 149.8, 145.0, 138.8, 138.7, 137.1, 130.3, 128.9, 128.6, 128.3 

(2C), 128.2, 128.1, 127.3, 127.2, 127.1, 126.3, 125.0, 124.2, 118.4,114.2, 75.4, 65.2, 39.1.   

IR (film): ν (cm
1

) 3060, 3020, 1596, 1572, 1502, 1485, 1447, 1436, 1356, 1341, 1327, 1255, 1182, 

1097, 1068, 1031, 1008, 992, 958, 940, 909, 767, 751, 732, 699, 672, 547, 463. 

HRMS (ESI, m/z) calcd for C30H27N3NaO
+
 [M+Na]

+
: 468.2046, found: 468.2047. 

General procedure for entries 7 and 10 of Table 2. A dried 10 mL Schlenk tube was charged with 

the catalyst Λ-IrO (3.70 mg, 0.004 mmol, 4 mol%) (entry 7) or Λ-RhS (3.50 mg, 0.004 mmol, 4 mol%) 

(entry 10) and the 2-acyl imidazole 16d (32.4 mg, 0.10 mmol, 1.0 eq.). A solution of 18a (29.0 mg, 

0.15 mmol, 1.5 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) was added in one portion. The reaction 

mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was thoroughly 

degassed, the vial was sealed and positioned approximately 5 cm from a 23 W compact fluorescent 

lamp. The reaction was stirred at room temperature for 24 h or 20 h under nitrogen atmosphere. 

Afterwards, the mixture was concentrated under reduced pressure. The residue was redissolved in THF 

(2 mL), then TBAF (0.5 mL, 1.0 M in THF, 0.5 mmol) was added. The mixture was stirred at room 

temperature for another 0.5 h and quenched by the addition of saturated aqueous solution of NH4Cl, 

extracted by EtOAc (3  10 mL). The combined organic layers were concentrated. The conversion was 

determined by the crude 
1
H NMR analysis. 

As for entry 7, starting from 16d (32.4 mg, 0.10 mmol) and 18a (29.0 mg, 0.15 mmol) 

according to the general procedure to give 19d as a white solid (19.0 mg, 0.430 mmol, 43% yield). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 3% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 15.1 

min, tr (major) = 13.3 min). 

General procedure for entries 8-9 and 11 of Table 2. A dried 10 mL Schlenk tube was charged with 
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the catalyst Λ-RhS (3.50 mg, 0.004 mmol, 4 mol%), the photosensitizer [Ru(bpy)3](PF6)2 (0.86 mg, 

0.001 mmol, 1 mol%) and 2-acyl imidazole 16d (32.4 mg, 0.10 mmol, 1.0 eq.). A solution of 18a-b 

(0.15 mmol, 1.5 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) was added in one portion. The reaction 

mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was thoroughly 

degassed, the vial was sealed and positioned approximately 5 cm from a 23 W compact fluorescent 

lamp (the catalytic reaction of entry 8 was conducted in the dark). The reaction was stirred at room 

temperature for the indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the 

mixture was concentrated under reduced pressure. The residue was redissolved in THF (2 mL), then 

TBAF (0.5 mL, 1.0 M in THF, 0.5 mmol) was added. The mixture was stirred at room temperature for 

another 0.5 h and quenched by the addition of saturated aqueous solution of NH4Cl, extracted by 

EtOAc (3  10 mL). The combined organic layers were concentrated. The conversion was determined 

by the crude 
1
H NMR analysis. If the product was detected in the crude 

1
H NMR, the residue was 

subjected to a flash chromatography on silica gel (EtOAc/n-hexane = 1:7 to 1:4) to afford the products 

19d. The enantiomeric excess was determined by chiral HPLC analysis.  

As for entry 8, starting from 1d (32.4 mg, 0.10 mmol) and 2a (29.0 mg, 0.15 mmol) according to the 

general procedure to give 3d as a white solid (33.8 mg, 0.760 mmol, 76% yield). Enantiomeric excess 

established by HPLC analysis by using a Chiralpak OD-H column, ee = 95% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 15.1 min, tr (major) = 13.3 

min); []D
20

 = 6.6 (c 1.0, CH2Cl2). 
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General procedure for Figure 44. A dried 10 mL Schlenk tube was charged with the catalyst Λ-RhS 

(5.2 mg, 0.0060 mmol, 4 mol%), the photosensitizer [Ru(bpy)3](PF6)2 (1.30 mg, 0.0015 mmol, 1 

mol%) and 2-acyl imidazole 16d (48.6 mg, 0.150 mmol, 1.0 eq.). A solution of 18d (0.45 mmol, 3.0 

eq.) or 18e-i (0.225 mmol, 1.5 eq.) in MeCN/DMAC (v/v = 4:1, 1.5 mL) was added in one portion. 

The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was 

thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 23 W compact 

fluorescent lamp. The reaction was stirred at room temperature for the indicated time (monitored by 

TLC) under nitrogen atmosphere. Afterwards, the mixture was concentrated under reduced pressure. 

The residue was redissolved in THF (2 mL), then TBAF (1.0 mL, 1.0 M in THF, 1.0 mmol) was added. 

The mixture was stirred at room temperature for another 0.5 h and quenched by the addition of 

saturated aqueous solution of NH4Cl, extracted by EtOAc (3  10 mL). The combined organic layers 

were concentrated. The residue was subjected to a flash chromatography on silica gel 

(EtOAc/n-hexane = 1:7 to 1:4) to afford the products 19e-j. The enantiomeric excess was determined 

by chiral HPLC analysis.  

Starting from 16d (48.9 mg, 0.15 mmol) and 18d (93.2 mg, 0.45 mmol) with 

Ʌ-RhS for 5 h according to the general procedure to give 19e as a pale yellow oil (55.0 mg, 0.120 

mmol, 80% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H 

column, ee = 98% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 

25 C, tr (minor) = 9.9 min, tr (major) = 6.0 min); []D
20

 = 24.0 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 7.42-7.32 (m, 6H), 7.30-7.22 (m, 6H), 7.07 (td, J = 8.3, 2.3 Hz, 1H), 

6.98 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 0.8 Hz, 1H), 6.73 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 1.0 Hz, 1H), 

6.35 (d, J = 7.9 Hz, 1H), 4.63 (d, J = 14.7 Hz, 1H), 3.73 (br, 1H), 3.58 (d, J = 14.7 Hz, 1H), 2.62 (s, 

3H), 2.22 (s, 3H). 

13
C NMR (125 MHz, CD2Cl2) δ 150.2, 145.8, 139.2, 139.0, 137.5, 130.6, 129.7, 128.8, 128.7, 128.6, 

128.5 (2C), 128.2, 128.1, 127.6, 127.5, 126.4, 125.8, 125.4, 124.5, 114.9, 75.5, 66.4, 39.4, 20.3.  

IR (film): ν (cm
1

) 3059, 3028, 2924, 2860, 1615, 1599, 1517, 1483, 1446, 1352, 1303, 1252, 1177, 

1139, 1117, 1097, 1068, 806, 765, 739, 699, 526, 514, 450, 410, 391. 
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HRMS (ESI, m/z) calcd for C31H30N3O
+
 [M+H]

+
: 460.2383, found: 460.2385. 

Starting from 16d (48.9 mg, 0.15 mmol) and 28g (46.6 mg, 0.225 mmol) with 

Ʌ-RhS for 10 h according to the general procedure to give 19f as a pale yellow oil (56.0 mg, 0.122 

mmol, 81% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H 

column, ee = 97% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 

25 C, tr (minor) = 6.8 min, tr (major) = 6.0 min); []D
20

 = 30.4 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 7.41-7.33 (m, 6H), 7.31-7.23 (m, 6H), 7.08-7.06 (m, 1H), 7.04 (d, J = 

7.8 Hz, 1H), 6.92 (d, J = 1.0 Hz, 1H), 6.64-6.60 (m, 3H), 6.58 (d, J = 7.4 Hz, 1H), 6.33 (d, J = 7.7 Hz, 

1H), 4.65 (d, J = 14.7 Hz, 1H), 3.66 (d, J = 14.7 Hz, 1H), 3.56 (s, 1H), 2.64 (s, 3H), 2.25 (s, 3H). 

13
C NMR (125 MHz, CD2Cl2) δ 152.2, 150.1, 145.7, 139.1, 139.0, 138.9, 137.5, 130.6, 129.0, 128.8, 

128.7, 128.6, 128.5, 127.6, 127.5 (2C), 126.4, 125.4, 124.5, 119.6, 115.3, 111.7, 75.8, 65.8, 39.4, 21.9. 

IR (film): ν (cm
1

) 3058, 2922, 2859, 2811, 1601, 1581, 1494, 1482, 1352, 1303, 1257, 1172, 1139, 

1095, 1067, 1030, 1009, 995, 961, 945, 841, 764, 737, 698, 675, 610, 559, 446. 

HRMS (ESI, m/z) calcd for C31H30N3O
+
 [M+H]

+
: 460.2383, found: 460.2386. 

Starting from 16d (48.9 mg, 0.15 mmol) and 18f (60.6 mg, 0.225 mmol) with 

Ʌ-RhS for 10 h according to the general procedure to give 19g as a pale white solid (61.0 mg, 0.117 

mmol, 78% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H 

column, ee = 93% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 0.5 mL/min, 

25 C, tr (minor) = 11.2 min, tr (major) = 10.0 min); []D
20

 = 5.2 (c 1.0, CH2Cl2).  

1
H NMR (500 MHz, CD2Cl2) δ 7.44 (dd, J = 7.6, 1.6 Hz, 1H), 7.42 (dd, J = 7.3, 0.8 Hz, 1H), 7.38-7.36 

(m, 2H), 7.32-7.28 (m, 6H), 7.24-7.21 (m, 5H), 7.19-7.18 (m, 1H), 7.12 (t, J = 7.3 Hz, 2H), 7.07 (td, J 

= 7.9, 1.7 Hz, 1H), 7.01 (d, J = 7.2 Hz, 2H), 6.97 (s, 1H), 6.79 (d, J = 8.2 Hz, 2H), 6.67 (d, J = 1.0 Hz, 

1H), 6.35 (d, J = 7.7 Hz, 1H), 4.89 (d, J = 15.0 Hz, 1H), 4.47 (d, J = 17.3 Hz, 1H), 4.09 (d, J = 17.3 

Hz, 1H), 4.04 (d, J = 15.0 Hz, 1H), 3.31 (br, 1H).  

13
C NMR (125 MHz, CDCl3) δ 149.7 (2C), 144.9, 138.9, 138.6, 137.7, 136.8, 130.4, 128.9, 128.7, 
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128.4, 128.3 (2C), 128.1, 127.4, 127.3, 127.2, 126.7, 126.4, 126.3, 125.3, 125.1, 124.2, 118.1, 114.5, 

76.1, 62.3, 53.5.  

IR (film): ν (cm
1

) 3060, 3027, 2930, 1964, 1598, 1503, 1483, 1450, 1384, 1450, 1384, 1360, 1303, 

1265, 1231, 1197, 1138, 1070, 990, 767, 748, 728, 697, 675, 608, 557, 535, 512, 458. 

HRMS (ESI, m/z) calcd for C36H32N3O
+
 [M+H]

+
: 522.2540, found: 522.2545. 

Starting from 16d (48.9 mg, 0.15 mmol) and 18g (49.4 mg, 0.225 mmol) with 

Ʌ-RhS for 15 h according to the general procedure to give 19h as a pale yellow oil (49.0 mg, 0.105 

mmol, 70% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H 

column, ee = 95% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 0.5 mL/min, 

25 C, tr (minor) = 12.0 min, tr (major) = 8.8 min); []D
20

 = 17.4 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 7.43-7.33 (m, 6H), 7.32-7.23 (m, 6H), 7.04 (td, J = 7.8, 1.7 Hz, 1H), 

6.94-6.90 (m, 3H), 6.70 (d, J = 8.5 Hz, 1H), 6.66-6.60 (m, 2H), 6.27 (d, J = 7.9 Hz, 1H), 4.69 (d, J = 

14.8 Hz, 1H), 3.64 (d, J = 14.8 Hz, 1H), 3.59 (br, 1H), 3.19-3.14 (m, 1H), 3.00-2.82 (m, 1H), 

2.77-2.66 (m, 2H), 1.84-1.77 (m, 1H), 1.75-1.70 (m, 1H). 

13
C NMR (125 MHz, CD2Cl2) δ 149.9, 147.5, 145.6, 138.8, 138.5, 137.0, 130.3, 129.3, 128.5, 128.3 

(2C), 128.2, 128.1, 127.3, 127.2, 127.1, 126.7, 126.0, 125.0, 124.1 (2C), 117.8, 114.0, 75.2, 64.7, 51.1, 

28.0, 22.0.   

IR (film): ν (cm
1

) 3060, 3023, 2929, 2841, 1671, 1600, 1575, 1493, 1482, 1444, 1343, 1326, 1301, 

1191, 1171, 1137, 1097, 1063, 763, 739, 697, 675, 647,563, 440. 

HRMS (ESI, m/z) calcd for C32H30N3O
+
 [M+H]

+
: 472.2383, found: 472.2386. 

Starting from 16d (48.9 mg, 0.15 mmol) and 18h (63.9 mg, 0.225 mmol) with 

Ʌ-RhS for 5 h according to the general procedure to give 19i as a pale yellow solid (68.0 mg, 0.128 

mmol, 85% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H 

column, ee = 91% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 0.5 mL/min, 
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25 C, tr (minor) = 8.9 min, tr (major) = 8.4 min); []D
20

 = +11.6 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 7.40-7.34 (m, 2H), 7.31-7.24 (m, 5H), 7.23-7.19 (m, 5H), 7.00 (td, J = 

8.1, 2.0 Hz, 1H), 6.91 (d, J = 8.3 Hz, 4H), 6.77 (d, J = 0.9 Hz, 1H), 6.60 (d, J = 8.3 Hz, 4H), 6.57 (d, J 

= 0.8 Hz, 1H), 6.19 (d, J = 7.8 Hz, 1H), 4.98 (d, J = 15.2 Hz, 1H), 4.40 (d, J = 15.2 Hz, 1H), 3.39 (s, 

1H), 2.22 (s, 6H). 

13
C NMR (125 MHz, CD2Cl2) δ 149.3, 147.2, 144.6, 138.6, 138.5, 136.5, 131.2, 130.1, 129.3, 129.2, 

128.3, 128.1, 127.9, 127.7, 127.1, 126.8, 126.7, 125.7, 125.1, 123.6, 121.7, 76.1, 64.0, 20.0. 

IR (film): ν (cm
1

) 3057, 3026, 2977, 2858, 1687, 1507, 1482, 1439, 1341, 1302, 1264, 1172, 1137, 

1101, 1069, 1010, 880, 811, 764, 736, 697, 676, 581, 565, 530, 444. 

HRMS (ESI, m/z) calcd for C37H34N3O
+
 [M+H]

+
: 536.2696, found: 536.2699. 

Starting from 16d (48.9 mg, 0.15 mmol) and 18i (82.6 mg, 0.225 mmol) with 

Ʌ-RhS for 30 h according to the general procedure to give 19j as a white solid (64.0 mg, 0.104 mmol, 

69% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak IA column, ee = 

93% (HPLC: IA, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.3 mL/min, 25 C, tr (minor) = 

18.3 min, tr (major) = 20.3 min); []D
20

 = +24.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3, mixture of two rotamers) δ 7.45-7.35 (m, 2H), 7.33-7.24 (m, 4H), 

7.23-7.11 (m, 7H), 7.10 (br, 2H), 7.04-6.95 (m, 2H), 6.78 (d, J = 1.2 Hz, 1H), 6.75-6.66 (m, 4H), 6.58 

(br, 1H), 6.19 (d, J = 7.6 Hz, 1H), 5.02 (d, J = 15.4 Hz, 0.2 H), 4.92 (d, J = 15.1 Hz, 0.8 H, other 

rotamer), 4.47 (d, J = 15.1 Hz, 0.8 H), 4.15 (d, J = 14.8 Hz, 0.2 H, other rotamer), 3.44 (br, 0.8 H), 

3.27 (br, 0.2 H, other rotamer), 1.17 (s, 18H). 

13
C NMR (75 MHz, CDCl3) δ 149.6, 146.9, 144.7, 144.5, 138.9, 138.7, 136.7, 130.3, 128.6, 128.5, 

128.4, 128.1, 127.8, 127.7, 127.6, 127.3, 126.9 126.8, 126.5, 126.1, 126.0, 125.7, 125.4, 123.7, 121.5, 

75.9, 64.3, 34.0, 31.4.  

IR (film): ν (cm
1

) 3058, 2959, 2902, 2865, 1603, 1509, 1483, 1445, 1393, 1363, 1303, 1266, 1201, 

1172, 1138, 1100, 1068, 1011, 882, 826, 766, 736, 697, 677, 656, 609, 583, 571, 556. 

HRMS (ESI, m/z) calcd for C43H46N3O
+
 [M+H]

+
: 620.3635, found: 620.3643. 
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General procedure for Figure 45. A dried 10 mL Schlenk tube was charged with the catalyst Λ-RhS 

(5.20 mg, 0.0060 mmol, 4 mol%), the photosensitizer [Ru(bpy)3](PF6)2 (1.30 mg, 0.0015 mmol, 1 

mol%) and 2-acyl imidazole 16e-m (0.150 mmol, 1.0 eq.). A solution of 18a (87.0 mg, 0.450 mmol, 

3.0 eq.) or 18j (103 mg, 0.450 mmol, 3.0 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) was added in one 

portion. The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture 

was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 23 W 

compact fluorescent lamp. The reaction was stirred at room temperature for the indicated time 

(monitored by TLC) under nitrogen atmosphere. Afterwards, the mixture was concentrated under 

reduced pressure. The residue was redissolved in THF (2 mL), then TBAF (1.0 mL, 1.0 M in THF, 1.0 

mmol) was added. The mixture was stirred at room temperature for another 0.5 h and quenched by the 

addition of saturated aqueous solution of NH4Cl, extracted by EtOAc (3  10 mL). The combined 

organic layers were concentrated. The residue was subjected to a flash chromatography on silica gel 

(EtOAc/n-hexane = 1:7 to 1:4) to afford the products 19k-s. The enantiomeric excess was determined 

by chiral HPLC analysis. 

 Starting from 16e (50.7 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 5h according to the general procedure to give 19k as a white solid (51.6 mg, 0.113 mmol, 75% 

yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 

98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 

14.8 min, tr (major) = 10.6 min); []D
20

 = 40.0 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2, mixture of rotamers) δ 7.41-7.37 (m, 2H), 7.30-7.20 (m, 6H), 7.19-7.14 

(m, 4H), 7.10-7.07 (m, 1H), 6.92 (d, J = 1.0 Hz, 1H), 6.81 (d, J = 8.2 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 

6.64 (d, J = 0.9 Hz, 1H), 6.41 (d, J = 7.8 Hz, 1H), 4.63 (d, J = 14.7 Hz, 0.8 H), 4.46 (d, J = 14.7 Hz, 

0.2 H, other rotamer), 3.64 (d, J = 14.7 Hz, 1H), 3.42 (br, 0.8 H), 3.32 (br, 0.2 H, other rotamer), 2.66 

(s, 2.4 H), 2.56 (s, 0.6 H, other rotamer), 2.36 (s, 2.4 H), 2.28 (s, 0.6 H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2) δ 152.2, 150.2, 142.6, 139.1, 139.0, 137.6, 137.3, 130.6, 129.3, 129.1, 

128.8, 128.7, 128.6, 128.5, 127.6, 127.5, 126.4, 125.3, 124.5, 118.5, 114.4, 75.9, 65.7, 39.2, 21.1. 
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IR (film): ν (cm
1

) 3059, 3026, 2921, 2867, 2813, 1598, 1503, 1482, 1438, 1411, 1351, 1303, 1252, 

1172, 1139, 1113, 1088, 1034, 992, 952, 927, 915, 816, 765, 735, 695, 559, 469. 

HRMS (ESI, m/z) calcd for C31H30N3O
+
 [M+H]

+
: 460.2383, found: 460.2387. 

Starting from 16f (50.7 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with 

Ʌ-RhS for 5h according to the general procedure to give 19l as a white solid (55.0 mg, 0.12 mmol, 

80% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, 

ee = 97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 0.5 mL/min, 25 C, tr 

(minor) = 11.7 min, tr (major) = 10.3 min); []D
20

 = 18.2 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2, mixture of rotamers) δ 7.40-7.38 (m, 2H), 7.28-7.20 (m, 5H), 7.18-7.04 

(m, 6H), 6.92 (d, J = 0.7 Hz, 1H), 6.81 (d, J = 8.1 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 0.9 Hz, 

1H), 6.38 (d, J = 7.9 Hz, 1H), 4.65 (d, J = 14.8 Hz, 0.8 H), 4.52 (d, J = 14.3 Hz, 0.2 H, other rotamer), 

3.67 (d, J = 14.7 Hz, 1H), 3.46 (br, 0.8 H), 3.43 (br, 0.2 H, other rotamer), 2.66 (s, 2.4 H), 2.56 (s, 0.6 

H, other rotamer), 2.33 (s, 2.4 H), 2.21 (s, 0.6 H, other rotamer). 

13
C NMR (75 MHz, CD2Cl2) δ 152.2, 150.1, 145.5, 139.1, 139.0, 138.4, 137.5, 130.6, 129.1, 128.9, 

128.7, 128.6, 128.5 (2C),128.3, 128.1, 127.6, 127.4, 126.4, 126.0, 124.5, 122.5, 118.5, 114.4, 75.8, 

65.7, 39.3, 21.7.  

IR (film): ν (cm
1

) 3055, 3025, 2920, 2861, 1598, 1503, 1482, 1438, 1350, 1303, 1256, 1180, 1034, 

992, 942, 788, 747, 736, 695, 676, 649, 609, 556, 514, 438. 

HRMS (ESI, m/z) calcd for C31H30N3O
+
 [M+H]

+
: 460.2383, found: 460.2386. 

Starting from 16g (53.8 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 5h according to the general procedure to give 19m as a white solid (63.2 mg, 0.13 mmol, 88% 

yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 

93% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr (minor) 
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= 6.5 min, tr (major) = 5.0 min); []D
20

 = + 11.4 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 7.44-7.43 (m, 2H), 7.37-7.31 (m, 4H), 7.29-7.23 (m, 5H), 7.22-7.19 (m, 

3H), 7.17-7.12 (m, 1H), 7.01 (d, J = 1.2 Hz, 1H), 6.82-6.80 (m, 3H), 6.72 (d, J = 1.2 Hz, 1H), 6.45 (d, 

J = 7.8 Hz, 1H), 4.67 (d, J = 14.8 Hz, 1H), 3.63 (d, J = 14.8 Hz, 1H), 3.54 (s, 1H), 2.64 (s, 3H). 

13
C NMR (125 MHz, CDCl3) δ 151.5, 149.3, 143.5, 138.8, 138.6, 136.9, 133.1, 130.4, 129.0 (2C), 

128.8, 128.4, 128.3, 128.0, 127.4, 127.2, 126.5, 126.4, 124.4, 118.7, 114.3, 75.0, 65.2, 39.0. 

IR (film): ν (cm
1

) 3137, 2923, 2853, 1652, 1583, 1568, 1504, 1481, 1445, 1434, 1395, 1341, 1305, 

1280, 1256, 1233, 1165, 1141, 1084, 1011, 928, 872, 794, 755, 737, 721, 695, 653, 612, 593, 550, 497, 

427. 

HRMS (ESI, m/z) calcd for C30H27ClN3O
+
 [M+H]

+
: 480.1837, found: 480.1835. 

Starting from 16h (57.3 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with 

Ʌ-RhS for 5h according to the general procedure to give 19n as a white solid (59.1 mg, 0.118 mmol, 

79% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, 

ee = 54% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr 

(minor) = 6.1 min, tr (major) = 4.8 min); []D
20

 = -6 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2, mixture of rotamers) δ 8.00 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H, 

other rotamer ), 7.48 (d, J = 8.4 Hz, 2H), 7.43-7.38 (m, 2H), 7.37-7.31 (m, 1H), 7.23-7.20 (m, 3H), 

7.19-7.16 (m, 2H), 7.09-7.06 (m, 1H), 7.02 (br, 1H), 6.81 (t, J = 8.2 Hz, 1H), 6.82-6.76 (m, 3H), 6.70 

(br, 1H), 6.34 (d, J = 7.8 Hz, 1H), 4.71 (d, J = 15.0 Hz, 0.8 H), 4.51 (d, J = 14.8 Hz, 0.2 H, other 

rotamer), 3.93 (s, 3H), 3.65 (d, J = 14.6 Hz, 1H), 3.60 (br, 1H), 2.60 (s, 2.4 H), 2.57 (s, 0.6 H, other 

rotamer). 

13
C NMR (125 MHz, CDCl3) δ 167.0, 151.6, 149.2, 139.0, 138.7, 136.9, 130.5, 129.8, 129.3, 129.1, 

129.0, 128.4 (2C), 128.0, 127.5, 127.4, 126.5, 125.5, 125.2, 124.6, 118.9, 114.4, 75.3, 65.2, 52.2, 39.2.  

IR (film): ν (cm
1

) 2953, 2897, 2807, 1722, 1599, 1504, 1441, 1410, 1362, 1275, 1246, 1186, 1106, 

846, 743, 693, 516. 

HRMS (ESI, m/z) calcd for C32H29N3NaO3
+
 [M+Na]

+
: 526.2101, found: 526.2101. 
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Starting from 16i (53.1 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 15h according to the general procedure to give 19o as a white solid (50.5 mg, 0.106 mmol, 71% 

yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 

86% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr (minor) 

= 7.5 min, tr (major) = 5.8 min); []D
20

 = 33 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2, mixture of rotamers) δ 7.44-7.38 (m, 2H), 7.33-7.22 (m, 6H), 7.17 (dd, J 

= 7.3, 1.3 Hz, 2H ), 7.11-7.08 (m, 1H), 7.00-6.90 (m, 3H), 6.83-6.80 (m, 3H), 6.74 (t, J = 7.3 Hz, 1H), 

6.64 (d, J = 0.9 Hz, 1H), 6.41 (d, J = 7.9 Hz, 1H), 4.66 (d, J = 14.8 Hz, 0.8 H), 4.52 (d, J = 14.4 Hz, 

0.2 H, other rotamer), 3.76 (s, 2.4 H), 3.67 (d, J = 14.8 Hz, 1H), 3.65 (s, 0.6 H, other rotamer), 3.50 (br, 

1H), 2.66 (s, 2.4 H), 2.58 (s, 0.6 H, other rotamer). 

13
C NMR (125 MHz, CDCl3) δ 159.8, 151.8, 149.7, 146.9, 138.8, 137.1, 130.3, 129.3, 128.8, 128.5, 

128.3, 128.2, 127.3, 127.1, 126.1, 124.2, 118.3, 117.4, 114.1, 112.7, 110.5, 75.3, 65.3, 55.2, 38.9. 

IR (film): ν (cm
1

) 3059, 2925, 2862, 1599, 1503, 1445, 1413, 1352, 1301, 1246, 1172, 1085, 1031, 

951, 828, 737, 695, 559, 521, 470. 

HRMS (ESI, m/z) calcd for C31H29N3NaO2
+
 [M+Na]

+
: 498.2152, found: 498.2148. 

Starting from 16j (57.3 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 15h according to the general procedure to give 19p as a pale yellow oil (60.4 mg, 0.120 mmol, 

80% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, 

ee = 96% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr 

(minor) = 9.4 min, tr (major) = 7.2 min); []D
20

 = 40 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CDCl3, mixture of rotamers) 7.44-7.40 (m, 3H), 7.34-7.32 (m, 1H), 7.28-7.19 (m, 

6H), 7.16-7.10 (m, 1H), 7.09-7.06 (m, 2H), 7.00 (br, 1H), 6.88-6.74 (m, 4H), 6.70 (d, J = 1.1 Hz, 1H), 
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6.45 (d, J = 7.9 Hz, 1H), 4.70 (d, J = 14.7 Hz, 0.75 H), 4.45 (d, J = 14.1 Hz, 0.25 H, other rotamer), 

3.67 (d, J = 14.8 Hz, 1H), 3.57 (br, 1H), 2.66 (s, 2.25 H), 2.60 (s, 0.75 H, other rotamer), 2.34 (s, 2.25 

H), 2.31 (s, 0.75 H, other rotamer). 

13
C NMR (125 MHz, CDCl3) δ 169.4, 151.6, 149.9, 149.6, 138.8, 138.7, 130.3, 129.0 (2C), 128.8, 

128.3 (2C),128.2, 128.0, 127.4, 127.3, 126.5, 126.2, 124.4, 121.4, 118.7, 114.3, 75.1, 65.2, 39.0, 21.2.  

IR (film): ν (cm
1

) 3059, 2925, 2869, 1757, 1598, 1499, 1443, 1363, 1304, 1256, 1195, 1116, 1084, 

1012, 954, 909, 845, 737, 695, 554, 521. 

HRMS (ESI, m/z) calcd for C32H29N3NaO3
+
 [M+Na]

+
: 526.2101, found: 526.2098. 

Starting from 16k (60.0 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 15 h according to the general procedure to give 19q as a white solid (46.4 mg, 0.105 mmol, 70% 

yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 

96% (HPLC: OD-H, 254 nm, hexane/isopropanol = 90: 10, flow rate 0.5 mL/min, 25 C, tr (minor) = 

16.5 min, tr (major) = 11.5 min); []D
20

 = 26.2 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2, mixture of rotamers) δ 7.69 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 8.4, 2H), 

7.51-7.43 (m, 5H), 7.42-7.27 (m, 6H), 7.22 (t, J = 8.7 Hz, 2H), 7.16-7.12 (m, 1H), 7.00 (d, J =1.1 Hz, 

1H) 6.87 (d, J =8.4 Hz, 2H), 6.79 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 1.0, 1H), 6.51 (d, J = 8.0, 1H), 4.74 

(d, J = 14.8 Hz, 0.8 H), 4.51 (d, J = 14.8 Hz, 0.2 H, other rotamer), 3.74 (d, J = 14.7 Hz, 1H), 3.57 (br, 

0.8 H), 3.43 (br, 0.2 H, other rotamer), 2.72 (s, 2.4 H), 2.63 (s, 0.6 H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2) δ 152.2, 150.0, 144.6, 140.9, 140.2, 139.1 (2C), 137.5, 130.7, 129.2, 

129.1, 128.9, 128.7, 128.6 (2C), 127.7, 127.6, 127.3, 127.2, 126.6, 125.9, 124.6, 118.6, 114.5, 75.8, 

65.7, 39.3.   

IR (film): ν (cm
1

) 3383, 3060, 2967, 2878, 1597, 1494, 1446, 1366, 1303, 1268, 1193, 1161, 1132, 

1104, 1070, 951, 740, 696, 608, 533, 457. 

HRMS (ESI, m/z) calcd for C36H32N3O
+
 [M+H]

+
: 522.2540, found: 522.2543. 
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Starting from 16l (40.8 mg, 0.15 mmol) and 18a (87.4 mg, 0.45 mmol) with Ʌ-RhS 

for 5h according to the general procedure to give 19r as a white solid (52.4 mg, 0.132 mmol, 88% 

yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 

97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 25 C, tr (minor) = 

19.2 min, tr (major) = 15.9 min); []D
20

 = +19.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3, mixture of rotamers) δ 7.52-7.46 (m, 1H), 7.44-7.32 (m, 2H), 7.30-7.24 

(m, 2H), 7.23-7.18 (m, 2H), 7.17-7.11 (m, 4H), 7.09 (d, J = 1.1 Hz, 1H), 7.03 (d, J = 1.1 Hz, 1H, other 

rotamer), 6.95-6.91 (m, 1H), 6.70 (dd, J = 12.5, 6.9 Hz, 1H), 6.62 (d, J = 8.3 Hz, 1H), 6.51 (d, J = 8.3 

Hz, 1H), 3.64 (d, J = 14.8 Hz, 0.4 H), 3.55 (d, J = 14.9 Hz, 0.6 H, other rotamer), 3.47 (d, J = 14.8 Hz, 

0.4 H), 3.39 (d, J = 14.9 Hz, 0.6 H, other rotamer), 2.70 (br, 0.4 H), 2.62 (s, 1.8 H), 2.42 (s, 1.2 H, 

other rotamer), 2.26 (br, 0.6 H, other rotamer), 1.86-1.73 (m, 1.2 H), 1.58-1.48 (m, 0.8 H, other 

rotamer), 0.67 (t, J = 7.5 Hz, 1.2 H), 0.40 (t, J = 7.4 Hz, 1.8 H, other rotamer). 

13
C NMR (125 MHz, CDCl3, mixture of rotamers) δ 151.5, 150.8, 150.6, 150.3, 139.7 (2C), 138.6, 

138.5, 137.7, 137.4, 130.9, 130.6, 129.1, 129.0 (2C), 128.8, 128.7, 128.6, 128.5, 128.4, 127.9, 127.7, 

127.6, 127.5, 127.0, 126.7, 124.9, 124.6, 117.4, 117.2, 113.4, 112.8, 78.2, 64.5, 64.3, 39.8, 39.1, 33.7, 

31.3, 8.0, 6.8.    

IR (film): ν (cm
1

) 3060, 2965, 2932, 2874, 1598, 1504, 1481, 1439, 1371, 1330, 1303, 1277, 1256, 

1213, 1191, 1166, 1129, 1118, 1100, 1025, 989, 926, 879, 761, 700, 692, 610, 556, 526, 484. 

HRMS (ESI, m/z) calcd for C26H28N3O
+
 [M+H]

+
: 398.2227, found: 398.2226. 

Starting from 16m (39.3 mg, 0.15 mmol) and 18j (103 mg, 0.45 mmol) with 

Ʌ-RhS for 15h according to the general procedure to give 19s as a white solid (54.2 mg, 0.130 mmol, 

86% yield). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, 

ee = 99% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90: 10, flow rate 1.0 mL/min, 25 C, tr 

(minor) = 8.3 min, tr (major) = 7.4 min); []D
20

 = 8.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3, mixture of rotamers) δ 7.58-7.47 (m, 2H), 7.46-7.27 (m, 3H), 7.26-7.09 
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(m, 4H), 7.07-7.01 (m, 1H), 6.99 (dd, J = 8.0, 1.2 Hz, 1H), 6.92 (dd, J = 13.2, 1.2 Hz, 1H), 6.62 (dt, J 

= 7.8, 1.8 Hz, 1H), 6.56 (dt, J = 12.2, 2.4 Hz, 1H), 6.47 (qd, J = 17.7, 8.5, 2.4 Hz, 1H), 3.60-3.50 (m, 

1H), 3.48-3.28 (m, 1H), 3.00 (br, 0.6 H), 2.65 (s, 1.8 H), 2.60 (s, 1.2 H, other rotamer), 2.30 (br, 0.4 H, 

other rotamer), 1.23 (s, 1.2 H), 1.13 (s, 1.8 H, other rotamer). 

13
C NMR (75 MHz, CD2Cl2, mixture of rotamers) δ 152.4, 152.2, 151.7, 151.3, 140.1, 140.0, 138.8, 

138.7, 137.8, 137.6, 135.1, 134.9, 131.4, 131.0, 130.2, 130.1, 129.8, 129.6, 129.0, 128.8 (3C), 128.3 

(2C), 128.2, 128.1, 127.4, 126.8, 125.3, 124.8, 116.9, 116.7, 112.9, 112.8, 111.4, 111.3, 75.7, 74.8, 

64.8, 63.4, 40.0 (2C), 26.5, 26.3. 

IR (film): ν (cm
1

) 2971, 2918, 2849, 1594, 1558, 1497, 1481, 1373, 1339, 1308, 1263, 1195, 1179, 

1126, 1098, 1080, 1001, 988, 979, 948, 921, 819, 773, 762, 752, 732, 699, 675, 603, 572, 546, 499, 

442. 

HRMS (ESI, m/z) calcd for C25H25ClN3O
+
 [M+H]

+
: 418.1681, found: 418.1684. 
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5.3.3 Mechanistic Studies 

1) α-Aminoalkyl radical trapping experiments 

 

A dried 10 mL Schlenk tube was charged with the photosensitizer [Ru(bpy)3](PF6)2 (0.86 mg, 0.001 

mmol, 1 mol%) and the 2-acyl imidazole 16a (0.10 mmol, 1.0 eq.). A solution of 18a (58.0 mg, 0.30 

mmol, 3.0 eq.) or 18b (36.4 mg, 0.30 mmol, 3.0 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) was added in 

one portion. The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the 

mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 23 W 

compact fluorescent lamp. The reaction was stirred at room temperature for 15h under nitrogen 

atmosphere. Afterwards, the mixture was concentrated under reduced pressure. With 18a, the residue 

was subjected to a flash chromatography on silica gel (EtOAc/n-hexane = 1:20 to 1:10) to afford the 

product 17 (11.3 mg, 0.030 mmol, 30% yield). With 18b, no product was formed. 

 

A dried 10 mL Schlenk tube was charged with the photosensitizer [Ru(bpy)3](PF6)2 (0.86 mg, 0.001 

mmol, 1 mol%) and the 2-acyl imidazole 16a (0.10 mmol, 1.0 eq.). A solution of 18a (58.0 mg, 0.30 

mmol, 3.0 eq.) or 18b (36.4 mg, 0.30 mmol, 3.0 eq.) in MeCN/DMAC (v/v = 4:1, 1 mL) was added in 

one portion, followed by the addition of Diethyl 2-ethylidenemalonate (18 µL, 0.1 mmol, 1 eq.). The 

reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was 

thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 23 W compact 

fluorescent lamp. The reaction was stirred at room temperature for 15h under nitrogen atmosphere. 

Afterwards, the reaction was quenched by the addition of saturated aqoues NH4Cl solution, then 
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extracted by EtOAc (3 × 10 mL). The organic layer was collected and concentrated under reduced 

pressure. The residue was subjected to a flash chromatography on silica gel (EtOAc/n-hexane = 1:20 

to 1:10) to afford the product 20 (with 18a: 27.0 mg, 0.055 mmol, 55% yield; with 18b: 24.6 mg, 

0.050 mmol, 50% yield). 

1
H NMR (300 MHz, C6D6) δ 7.28-7.21 (m, 2H), 7.10-7.00 (m, 2H), 6.76-6.70 (m, 1H), 4.02-3.86 (m, 

8H), 3.81 (dd, J = 14.3, 5.1 Hz, 1H), 3.68 (dd, J = 14.6, 6.9 Hz, 1H), 3.43 (d, J = 6.5 Hz, 1H), 3.36 (d, 

J = 6.8 Hz, 1H,), 3.32 (dd, J = 14.6, 8.1 Hz, 1H), 3.13 (dd, J = 14.3, 9.2 Hz, 1H), 3.05-2.93 (m, 2H), 

1.021 (d, J = 7.0 Hz, 3H), 1.017 (d, J = 6.8 Hz, 3H), 0.94-0.87 (m, 12H). 

All spectroscopic data were in agreement with the literature.
4 

2) Synthesis of the intermediate complex 51  

 

The racemic complex 51 was obtained by reacting substrate 16a (13.0 mg, 0.049 mmol) with rac-RhS 

(40.0 mg, 0.043 mmol) at room temperature for 10 min in CH2Cl2 (1.0 mL). After the slow addition of 

n-hexane (5.0 mL), crystals were collected after several days (32.2 mg, yield: 68%). 

1
H NMR (500 MHz, CD2Cl2) δ 7.92 (dd, J = 8.5, 0.4 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.81 (dd, J = 

7.7, 0.2 Hz, 1H), 7.78 (dd, J = 7.7, 0.4 Hz, 1H), 7.72 (tt, J = 7.1, 1.5 Hz, 1H), 7.58-7.50 (m, 8H), 7.16 

(dd, J = 7.5, 1.0 Hz, 1H), 7.12 (dd, J = 7.5, 1.0 Hz, 1H), 7.09 (d, J = 1.1 Hz, 1H), 6.95-6.90 (m, 3H), 

6.47 (dt, J = 7.9, 0.9 Hz, 1H), 6.40 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H), 1.20 (s, 9H), 1.15 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) 190.0, 178.2 (2C), 174.9, 174.8, 163.3, 163.0, 159.5, 159.2, 152.5, 

152.3, 149.4, 149.1, 145.8, 141.2, 139.6, 135.9, 135.1, 134.6, 134.3, 132.5, 131.7, 131.4, 131.3, 130.0, 

129.6, 126.8, 126.5, 125.3, 124.8, 124.7, 124.5, 123.2, 123.1, 115.6, 115.4, 38.7, 35.2 (2C), 31.5, 31.4. 
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5.3.4 Single Crystal X-Ray Diffraction Studies 

Crystals of 19s and complex 51 were obtained by slow diffusion from a solution ofthe compounds in 

CH2Cl2 layered with n-hexane at room temperature for several days.  

Crystal data and details of the structure determination are presented in Table 11. X-ray data were 

collected with a Bruker 3 circuit D8 Quest diffractometer with MoKa radiation (microfocus tube with 

multilayer optics) and Photon 100 CMOS detector at 115 K. Scaling and absorption correction was 

performed by using the SADABS
5 

software package of Bruker. Structures were solved using direct 

methods in SHELXT
6 

and refined using the full matrix least squares procedure in SHELXL-2014
7
. 

The hydrogen atoms were placed in calculated positions and refined as riding on their respective C 

atom, and Uiso(H) was set at 1.2 Ueq(Csp
2
) and 1.5 Ueq(Csp

3
). Disorder of PF6 ions, solvent 

molecules or phenyl and tert-butyl groups was refined using restraints for both the geometry and the 

anisotropic displacement factors. 
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Figure 94. Crystal structure of 16s. ORTEP drawing with 50 % probability thermal ellipsoids. 

 

 

Figure 95. One of the two independent ions of complex 51 in the asymmetric unit. The 

hexafluorophosphate counteranion and the solvent molecules (n-hexane and CH2Cl2) are omitted for 

clarity. No disorder shown. ORTEP drawing with 50 % probability thermal ellipsoids. 
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Table 11. Crystal data and details of the structure determination. 

 16s  complex 51  

Empiric formula C25 H24 Cl N3 O C48.4 H49.6 Cl2 F6 N4 O P Rh S2 

Formula weight 417.92 1086.22 

Crystal system, space group 
Orthorhombic, 

P212121 

Triclinic, 

P-1 

a, b, c (Å) 

10.3206(4), 

11.6585(5), 

18.3971(8) 

17.1583(11), 

17.7095(11), 

18.8292(12) 

 (°) 90, 90, 90 66.918(2), 69.054(2), 76.796(2) 

V (Å
3
) 2213.59(16) 4889.7(5) 

Z 4 4 

(mm
-1

) 0.194 0.640 

Crystal size (mm) 0.43 x 0.09 x 0.04 0.37 x 0.37 x 0.03 

Tmin, Tmax 0.92, 0.99 0.98, 0.86 

No. of measured, independent and 

observed [I > 2(I)] reflections 

12569, 

4006, 

3552 

112817, 

17855, 

13904 

Rint 0.0336 0.0533 

R[F
2
 > 2(F

2
)], wR(F

2
), S 0.0352, 0.0736, 1.060 0.0565, 0.1437, 1.039 

No. of used reflections 4006 17855 

No. of parameters 277 1548 

No. of restraints 0 582 

max,min (e Å
-3

) 0.148, -0.212 1.691, -0.833 

Absolute structure parameter 0.08(3) - 

CCDC 1480694 1480695 
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5.4 Synthesis of Fluoroalkyl-Containing Compounds through Enantioselective 

Three-Component Photoredox Reaction 

5.4.1 Synthesis of Substrates 

,-Unsaturated 2-acyl pyrazoles 23a-j were synthesized according to our published procedures
1-2

. 

The experimental data of 23b-c, 23e, 23g are shown below. 

 

1
H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 15.6 Hz, 1H), 7.00 (dd, J = 15.6, 9.3 Hz, 1H), 5.97 (s, 1H), 

2.57 (s, 3H), 2.25 (s, 3H), 2.22-2.10 (m, 1H), 1.61-1.48 (m, 2H), 1.45-1.33 (m, 2H), 0.88 (t, J = 7.4 Hz, 

6H). 

13
C NMR (75 MHz, CDCl3) δ 165.3, 155.8, 151.8, 144.5, 121.1, 111.3, 46.4, 27.0, 14.7, 13.9, 11.7. 

IR (film): ν (cm
1

) 2959, 2926, 2869, 1705, 1636, 1580, 1452, 1411, 1370, 1339, 1290, 1257, 1177, 

1140, 1011, 987, 963, 858, 801, 770, 743, 707, 625, 585, 474, 403. 

HRMS (ESI, m/z) calcd for C13H21N2O
+
 [M+H]

+
: 221.1648, found: 221.1646. 

 

1
H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 15.6 Hz, 1H), 7.00 (dd, J = 15.5, 7.7 Hz, 1H), 5.95 (s, 1H), 

2.81-2.68 (m, 1H), 2.56 (s, 3H), 2.24 (s, 3H), 1.92-1.83 (m, 2H), 1.76-1.55 (m, 4H), 1.51-1.40 (m, 

2H). 

13
C NMR (75 MHz, CDCl3) δ 165.6, 155.9, 151.7, 144.4, 119.3, 111.2, 43.4, 32.7, 25.4, 14.7, 13.9. 

IR (film): ν (cm
1

) 2952, 2867, 1703, 1634, 1579, 1476, 1445, 1410, 1371, 1341, 1230, 1170, 1137, 

987, 961, 856, 801, 752, 707, 623, 588, 462, 413. 

HRMS (ESI, m/z) calcd for C13H18N2ONa
+
 [M+Na]

+
: 241.1311, found: 241.1307. 

 

1
H NMR (300 MHz, CDCl3) δ 7.20 (s, 2H), 5.95 (s, 1H), 2.56 (s, 3H), 2.25 (s, 3H), 1.15 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 165.9, 161.2, 151.8, 144.4, 116.6, 111.3, 34.4, 28.8, 14.7, 13.9. 
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IR (film): ν (cm
1

) 2958, 1706, 1633, 1579, 1474, 1411, 1372, 1341, 1301, 1236, 1176, 1014, 964, 926, 

836, 800, 764, 727, 624, 448, 414. 

HRMS (ESI, m/z) calcd for C12H18N2ONa
+
 [M+Na]

+
: 229.1311, found: 229.1308. 

 

1
H NMR (300 MHz, CDCl3) δ 7.30 (d, J = 15.7 Hz, 1H), 7.00 (dd, J = 15.8, 6.7 Hz, 1H), 5.97 (s, 1H), 

4.12 (br, 2H), 2.78 (t, J = 12.2 Hz, 2H), 2.56 (s, 3H), 2.48-2.34 (m, 1H), 2.24 (s, 3H), 1.80-1.77 (m, 

2H), 1.50-1.40 (m, 11H). 

13
C NMR (75 MHz, CDCl3) δ 165.3, 154.8, 153.7, 152.0, 144.5, 120.1, 111.5, 79.6, 43.5, 39.3, 30.8, 

28.5, 14.7, 13.9. 

IR (film): ν (cm
1

) 3390, 2965, 2929, 2858, 1679, 1637, 1587, 1428, 1372, 1340, 1278, 1236, 1168, 

1112, 1012, 958, 866, 834, 798, 760, 699, 605, 540. 

HRMS (ESI, m/z) calcd for C18H27N3O3Na
+
 [M+Na]

+
: 356.1945, found: 356.1939. 

Vinyl ethers 22a-22q were synthesized according to the published procedures.
3
 The experimental data 

of 22b-c, 22e-q are shown below. 

 

1
H NMR (300 MHz, CDCl3) δ 7.98-7.14 (m, 2H), 7.61-7.53 (m, 1H), 7.49-7.43 (m, 2H), 6.45 (dd, J = 

14.3, 6.8 Hz, 1H ), 4.17 (dd, J = 14.4, 1.9 Hz, 1H), 3.98 (dd, J = 6.8, 1.9 Hz, 1H), 3.73 (t, J = 6.2 Hz, 

2H), 3.02 (t, J = 6.9 Hz, 2H), 1.91-1.71 (m, 4H). 

13
C NMR (75 MHz, CDCl3) δ 200.0, 151.9, 137.1, 133.0, 128.7, 128.1, 86.5, 67.8, 38.2, 28.7, 21.0. 

IR (film): ν (cm
1

) 3055, 2995, 2942, 2872, 1682, 1611, 1447, 1409, 1360, 1318, 1234, 1196, 1076, 

972, 928, 886, 816, 748, 690, 654, 568. 

HRMS (ESI, m/z) calcd for C13H16O2Na
+
 [M+Na]

+
: 227.1043, found: 227.1039. 

 

1
H NMR (300 MHz, CD2Cl2) δ 7.98 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.55 (dd, J = 14.3, 
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6.8 Hz, 1H ), 4.55-4.53 (m, 2H), 4.28 (dd, J = 14.3, 2.2 Hz, 1H), 4.10-4.03 (m, 3H), 2.74 (q, J = 7.6 

Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 166.4, 151.8, 150.2, 129.7, 128.0, 127.6, 86.9, 66.3, 63.1, 29.0, 15.1. 

IR (film): ν (cm
1

) 3055, 2995, 2942, 2872, 1682, 1611, 1447, 1409, 1360, 1318, 1234, 1196, 1076, 

972, 928, 886, 816, 748, 690, 654, 568. 

HRMS (ESI, m/z) calcd for C13H16O3Na
+
 [M+Na]

+
: 243.0992, found: 243.0995. 

 

1
H NMR (300 MHz, CDCl3) δ 7.91-7.88 (m, 2H), 7.49-7.45 (m, 2H), 6.46 (dd, J = 14.3, 6.8 Hz, 1H), 

4.17 (dd, J = 14.3, 1.9 Hz, 1H), 3.98 (dd, J = 6.8, 2.0 Hz, 1H), 3.72 (t, J = 6.2 Hz, 2H), 3.00 (t, J = 6.9 

Hz, 2H), 1.91-1.70 (m, 4H), 1.34 (s, 9H).
 

13
C NMR (75 MHz, CDCl3) δ 199.7, 156.8, 152.0, 134.6, 128.1, 125.6, 86.5, 67.9, 38.1, 35.2, 31.2, 

28.8, 21.1.  

IR (film): ν (cm
1

) 3002, 2947 2868, 1679, 1606, 1402, 1355, 1321, 1236, 1194, 977, 919, 837, 737, 

578, 535, 458. 

HRMS (ESI, m/z) calcd for C17H24O2Na [M+Na]
+
: 283.1669, found: 283.1664. 

 

1
H NMR (300 MHz, CDCl3) δ 6.44 (dd, J = 14.4, 6.9 Hz, 1H), 4.16 (dd, J = 14.4, 2.0 Hz, 1H), 3.97 

(dd, J = 6.8, 2.0 Hz, 1H), 3.68 (t, J = 6.0 Hz, 2H), 2.61 (t, J = 7.1 Hz, 2H), 1.96-1.87 (m, 2H), 1.14 (s, 

9H). 

13
C NMR (75 MHz, CDCl3) δ 215.4, 151.8, 86.6, 67.2, 44.2, 32.8, 26.5, 23.4. 

IR (film): ν (cm
1

) 2999, 2946, 1704, 1615, 1476, 1402, 1358, 1321, 1195, 1056, 979, 920, 831, 567, 

510, 462. 

HRMS (ESI, m/z) calcd for C10H18O2Na [M+Na]
+
: 193.1199, found: 193.1196. 

 

1
H NMR (300 MHz, CDCl3) δ 6.43 (dd, J = 14.4, 6.8 Hz, 1H), 4.15 (dd, J = 14.3, 1.8 Hz, 1H), 3.95 

(dd, J = 6.8, 1.9 Hz, 1H), 3.66 (t, J = 6.4 Hz, 2H), 2.43 (t, J = 7.3 Hz, 2H), 2.12 (s, 3H), 1.70-1.55 (m, 
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4H), 1.43-1.32 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 208.9, 152.0, 86.4, 67.8, 43.6, 29.9, 28.9, 25.7, 23.6. 

IR (film): ν (cm
1

) 2938, 2868, 1712, 1613, 1463, 1414, 1361, 1318, 1196, 1162, 1074, 964, 814, 718, 

594, 526. 

HRMS (ESI, m/z) calcd for C9H16O2Na [M+Na]
+
: 179.1043, found: 179.1040. 

 

1
H NMR (300 MHz, CDCl3) δ 6.49 (dd, J = 14.3, 6.8 Hz, 1H), 4.25 (dd, J = 14.4, 2.1 Hz, 1H), 4.06 

(dd, J = 6.8, 2.0 Hz, 1H), 3.92 (t, J = 6.3 Hz, 2H), 2.43 (t, J = 7.3 Hz, 2H), 2.15 (br, 1H), 1.30 (s, 6H). 

13
C NMR (75 MHz, CDCl3) δ 151.4, 86.9, 63.0, 31.7, 29.4, 21.6 (2C). 

IR (film): ν (cm
1

) 3363, 2969, 2932, 1727, 1672, 1465, 1371, 1138, 1096, 1066, 1027, 979, 915, 879, 

539, 463. 

 

1
H NMR (300 MHz, CDCl3) δ 7.38-7.27 (m, 10H), 6.44 (dd, J = 14.3, 6.8 Hz, 1H), 5.45 (br, 1H), 

5.15-4.95 (m, 3H), 4.19 (dd, J = 14.3, 2.3 Hz, 1H), 4.04 (dd, J = 6.8, 2.3 Hz, 1H), 4.00-3.86 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 155.9, 151.3, 139.4, 136.4, 128.7, 128.6, 128.2, 127.9, 126.8, 87.4, 70.3, 

67.1. 

IR (film): ν (cm
1

) 3333, 3059, 3035, 2922, 2871, 1679, 1613, 1531, 1458, 1381, 1351, 1322, 1283, 

1255, 1195, 1147, 1054, 1001, 961, 913, 813, 755, 727, 694, 636, 609, 596, 526, 486. 

HRMS (ESI, m/z) calcd for C18H19NO3Na [M+Na]
+
: 320.1257, found: 320.1252. 

 

1
H NMR (300 MHz, CDCl3) δ 7.72-7.66 (m, 4H), 7.46-7.35 (m, 6H), 6.35 (dd, J = 14.4, 6.8 Hz, 1H), 

4.07 (dd, J = 14.4, 2.0 Hz, 1H), 3.89 (dd, J = 6.8, 2.0 Hz, 1H), 3.65 (t, J = 5.9 Hz, 2H), 2.37-2.28 (m, 

2H), 1.98-1.86 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 151.3, 131.6, 130.6, 130.5, 128.6, 86.7, 67.6, 26.7, 21.4. 

IR (film): ν (cm
1

) 3453, 3059, 2915, 1619, 1479, 1436, 1400, 1318, 1169, 1115, 1064, 966, 845, 749, 

697, 539, 507, 398. 

HRMS (ESI, m/z) calcd for C17H19O2PNa [M+Na]
+
: 309.1015, found: 309.1011. 
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1
H NMR (300 MHz, CDCl3) δ 7.37-7.29 (m, 5H), 6.45 (dd, J = 14.3, 6.7 Hz, 1H), 5.06 (s, 2H), 4.90 

(br, 1H), 4.20 (dd, J = 14.3, 2.1 Hz, 1H), 3.99 (dd, J = 6.8, 2.1 Hz, 1H), 3.68 (s, 2H), 1.36 (s, 6H). 

13
C NMR (75 MHz, CDCl3) δ 168.7, 151.8, 136.7, 128.6, 128.1, 87.0, 73.6, 66.3, 52.8, 24.3. 

IR (film): ν (cm
1

) 2995, 2944, 1710, 1617, 1507, 1454, 1395, 1357, 1323, 1263, 1196, 1075, 1010, 

973, 926, 830, 776, 740, 697, 579, 507, 464. 

HRMS (ESI, m/z) calcd for C15H21NO3Na [M+Na]
+
: 286.1412, found: 286.1412. 

 

1
H NMR (300 MHz, CDCl3) δ 6.45 (dd, J = 14.3, 6.8 Hz, 1H), 4.18-4.04 (m, 3H), 3.98 (dd, J = 6.8, 

2.0 Hz, 1H), 3.51 (d, J = 6.3 Hz, 2H), 2.70 (t, J = 12.2 Hz, 2H), 1.89-1.66 (m, 3H), 1.45 (s, 9H), 

1.25-1.11(m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 154.9, 152.0, 86.5, 79.4, 72.5, 43.7, 36.1, 28.9, 28.6. 

IR (film): ν (cm
1

) 2927, 2856, 1688, 1614, 1415, 1364, 1319, 1242, 1174, 1071, 1003, 916, 863, 815, 

766, 527, 460. 

HRMS (ESI, m/z) calcd for C13H23NO3Na [M+Na]
+
: 264.1570, found: 264.1566. 

 

1
H NMR (300 MHz, CDCl3) δ 6.32 (dd, J = 14.1, 6.5 Hz, 1H), 4.28 (dd, J = 14.1, 1.4 Hz, 1H), 3.94 

(dd, J = 6.5, 1.4 Hz, 1H), 3.57-3.48 (m, 1H), 2.16-2.02 (m, 2H), 1.70-1.63 (m, 2H), 1.45-1.22 (m, 3H), 

1.04-0.98 (m, 1H), 0.94-0.90 (m, 5H), 0.89-0.87 (m, 2H), 0.77 (d, J = 6.9 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 151.4, 87.6, 79.9, 47.9, 41.0, 34.5, 31.6, 25.9, 23.6, 22.2, 20.8, 16.4. 

IR (film): ν (cm
1

) 2920, 2864, 1729, 1651, 1453, 1373, 1328, 1239, 1177, 1125, 1082, 1027, 907, 

840,503, 572, 447. 

 

1
H NMR (300 MHz, CDCl3) δ 6.38 (dd, J = 14.3, 6.7 Hz, 1H), 5.88 (d, J = 6.8 Hz, 1H), 4.58 (d, J = 
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3.8 Hz, 1H), 4.39 (dd, J = 14.3, 2.4 Hz, 1H), 4.35-4.28 (m, 2H), 4.21-4.14 (m, 2H), 4.12-4.00 (m, 2H), 

1.51 (s, 3H), 1.43 (s, 3H), 1.34 (s, 3H), 1.31(s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 150.1, 112.1, 109.3, 105.3, 89.6, 82.2, 80.6, 80.5, 72.2, 67.2, 27.0, 26.8, 

26.3, 25.4. 

IR (film): ν (cm
1

) 2986, 2939, 2892, 1623, 1456, 1375, 1326, 1254, 1188, 1163, 1070, 1016, 959, 884, 

842, 702, 637, 512, 412. 

HRMS (ESI, m/z) calcd for C14H22O6Na
+
 [M+Na]

+
: 309.1309, found: 309.1304. 

 

1
H NMR (300 MHz, CDCl3) δ 6.48 (dd, J = 14.4, 6.8 Hz, 1H), 4.19 (dd, J = 14.3, 1.8 Hz, 1H), 3.99 

(dd, J = 6.8, 1.8 Hz, 1H), 3.69 (t, J = 6.6 Hz, 2H), 1.72-1.63 (m, 2H), 1.36-1.24 (m, 22H), 0.91 (t, J = 

6.9 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 152.1, 86.3, 68.3, 32.0, 29.8, 29.7 (2C), 29.5, 29.2, 26.1, 22.8, 14.2. 

IR (film): ν (cm
1

) 2920, 2853, 1641, 1607, 1460, 1374, 1317, 1198, 1074, 968, 810, 721. 

 

1
H NMR (300 MHz, CDCl3) δ 6.47 (dd, J = 14.4, 6.9 Hz, 1H), 4.19 (dd, J = 14.4, 1.8 Hz, 1H), 3.99 

(dd, J = 6.8, 1.8 Hz, 1H), 3.76 (t, J = 7.3 Hz, 2H), 1.96 (br, 3H), 1.71-1.67 (m, 4H), 1.55-1.54 (m, 6H), 

1.48 (t, J = 7.4 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 152.1, 86.3, 64.2, 42.9, 42.8, 37.2, 31.9, 28.8. 

IR (film): ν (cm
1

) 2897, 2845, 1639, 1605, 1447, 1316, 1197, 1101, 1070, 991, 960, 809. 

 

1
H NMR (300 MHz, CDCl3) δ 6.48 (dd, J = 14.3, 6.8 Hz, 1H), 5.15-5.09 (m, 1H), 4.19 (dd, J = 14.4, 

1.8 Hz, 1H), 3.99 (dd, J = 6.8, 1.8 Hz, 1H), 3.76-3.70 (m, 2H), 2.08-1.92 (m, 2H), 1.78-1.68 (m, 4H), 

1.66-1.57 (m, 4H), 1.54-1.47 (m, 1H), 1.43-1.32 (m, 1H), 1.27-1.13 (m, 1H), 0.93 (d, J = 6.5 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 152.1, 131.3, 124.8, 86.3, 66.5, 37.2, 36.1, 29.6, 25.8, 25.5, 19.6, 17.7. 

IR (film): ν (cm
1

) 2919, 2870, 1609, 1452, 1376, 1317, 1197, 1071, 967, 813. 
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5.4.2 Optimization of Conditions 

 

Table 12. Effect of NH4PF6
a
. 

 

 
additive yield (%)

b
 dr

c
 ee (%)

d
 

1 NH4PF6 (10 equiv.) 64% (28 h) 2:1 96/96 

2 NH4PF6 (5 equiv.) 27% (48 h) 2:1 85/85 

3 none 21% (48 h) 2:1 70/77 

a
Reaction conditions: 21a (0.60 mmol), 22a (0.30 mmol) and 23a (0.10 mmol), Ʌ-RhS (5.2 mg, 6 

mol%), 4,4'-difluorobenzil (9.8 mg, 0.04 mmol, 40 mol%), and the corresponding amount of 

NH4PF6 in acetone/H2O (9:1, 0.1 M) were stirred at 5-7 
o
C under irradiation with 24 W blue LEDs 

for the indicated time. 
b
Isolated yield. 

c
Determined by 

19
F NMR analysis of the crude product. 

d
Determined by HPLC on chiral stationary phase. The ee values of both diastereomers are shown. 

 

Table 13. Effect of H2O
a
 

 

 
solvent yield (%)

b
 dr

c
 ee (%)

d
 

1 acetone/H2O (0.8 mL: 0.2 mL) 27% (48 h) 2:1 50/50 

2 acetone/H2O (0.9 mL: 0.1 mL) 64% (28 h) 2:1 96/96 

3 acetone/H2O (0.95 mL: 0.05 mL) 31% (48 h) 2:1 64/64 

4 only acetone (1 mL) 35% (48 h) 2:1 60/60 

a
Reaction conditions: 21a (0.60 mmol), 22a (0.30 mmol) and 23a (0.10 mmol), Ʌ-RhS (5.2 mg, 6 

mol%), 4,4'-difluorobenzil (9.8 mg, 0.04 mmol, 40 mol%), NH4PF6 (163 mg, 1.0 mmol) in the 

indicated solvent mixture acetone/H2O (0.1 M) were stirred at 5-7 
o
C under irradiation with 24 W 

blue LEDs for the indicated time. 
b
Isolated yield. 

c
Determined by 

19
F NMR analysis of the crude 

product. 
d
Determined by HPLC on chiral stationary phase. The ee values of both diastereomers are 

shown.  
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Table 14. Comparison of different photoredox mediators
a
. 

 

 
photoredox mediator  yield (%)

b
 dr

c
 ee (%)

d
 

1 4,4'-difluorobenzil (40 mol%) 64 (28h) 2:1 96/96 

2 none 0 (48h) n.a. n.a. 

3 benzil (40 mol%) 35 (48h) 2:1 82/82 

4 anthraquinone 
 
(40 mol%) 0 (48h) n.a. n.a. 

5 9-fluorenone  (40 mol%) 0 (48h) n.a. n.a. 

6 acetophenone (40 mol%) 0 (48h) n.a. n.a. 

7 [Acr-Mes]ClO4
 
(2 mol%) 30 (28h) 2:1 91/91 

8 [Ru(bpy)3](PF6)2 (2 mol%) <5% (48h) n.d. n.d. 

9 Ir[dF(CF3)ppy]2(bpy)PF6 (2 mol%) 66% (28h) 2:1 81/81 

a
Reaction conditions: 21a (0.60 mmol), 22a (0.30 mmol) and 23a (0.10 mmol), Ʌ-RhS (5.2 mg, 

6 mol%), the corresponding photoredox mediator, NH4PF6 (163 mg, 1.0 mmol) in acetone/H2O 

(9:1, 0.1 M) were stirred at 5-7 
o
C under irradiation with 24 W blue LEDs for the indicated time. 

b
Isolated yield. 

c
Determined by 

19
F NMR analysis of the crude product. 

d
Determined by HPLC 

on chiral stationary phase. The ee values of both diastereomers are shown. n.a. = not applicable; 

n.d. = not determined. 
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Table 15. Comparison of different light sources
a
. 

 

 
light source yield (%)

b
 dr

c
 ee (%)

d
 

1 24W blue LEDs 64 (28h) 2:1 96/96 

2 21W CFL <5 (48h) n.d. n.d. 

3 6W blue LEDs 50% (38h) 2:1 95/95 

4 
12W blue LEDs 

(reaction temperature 8-11 
o
C) 

64% (28h) 2:1 91/91 

a
Reaction conditions: 21a (0.60 mmol), 22a (0.30 mmol) and 23a (0.10 mmol), Ʌ-RhS (5.2 mg, 6 

mol%), 4,4'-difluorobenzil (9.8 mg, 0.04 mmol, 40 mol%), NH4PF6 (163 mg, 1.0 mmol) in 

acetone/H2O (9:1, 0.1 M) were stirred at 5-7 
o
C under irradiation with the indicated light source for 

the indicated time. 
b
Isolated yield. 

c
Determined by 

19
F NMR analysis of the crude product. 

d
Determined by HPLC on chiral stationary phase. The ee values of both diastereomers are shown. 

n.d. = not determined. 

 

Table 16. Control experiments with triplet quencher
a
. 

 

 
quencher yield (%)

b
 dr

c
 ee (%)

d
 

1 none 64 (28h) 2:1 96/96 

2 2,5-dimethylhexa-2,4-diene (40 mol%) <5 (48h) n.d. n.d. 

3 pyridazine (40 mol%) <5 (48h) n.d. n.d. 

a
Reaction conditions: 21a (0.60 mmol), 22a (0.30 mmol) and 23a (0.10 mmol), Ʌ-RhS (5.2 mg, 6 

mol%), 4,4'-difluorobenzil (9.8 mg, 0.04 mmol, 40 mol%), NH4PF6 (163 mg, 1.0 mmol) in 

acetone/H2O (9:1, 0.1 M), and in the presence of the indicated quenchers, were stirred at 5-7 
o
C 

under irradiation with 24 W blue LEDs for the indicated time. 
b
Isolated yield. 

c
Determined by 

19
F 

NMR analysis of the crude product. 
d
Determined by HPLC on chiral stationary phase. The ee values 

of both diastereomers are shown. n.d. = not determined. 
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5.4.3 Rhodium-Catalyzed Asymmetric Three-Component Photoredox Reactions 

1) General Procedure for Table 4:  

A dried 10 mL Schlenk tube was charged with the catalyst Λ or Δ-RhS (48 mol% as indicated), 

4,4'-difluorobenzil (9.80 mg, 0.04 mmol, 40 mol%), sodium perfluoroalkyl sulfinates 211a-c (0.6 

mmol), vinyl ethers 22a-c (0.3 mmol) and N-acylpyrazoles 23a-g (0.1 mmol) in acetone/H2O (v/v = 

9:1, 1.0 mL). The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the 

mixture was thoroughly degassed, the vial was sealed and positioned approximately 10 cm from 24 W 

blue LEDs. The reaction was stirred at 5-7 ℃ for the indicated time (1466 h) (monitored by TLC) 

under nitrogen atmosphere. Afterwards, the mixture was concentrated under reduced pressure. The 

residue was subjected to a flash chromatography on silica gel to afford the products 24b-j. The dr 

value was determined by 
19

F NMR analysis after purification. The enantiomeric excess was 

determined by chiral HPLC analysis. 

Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (4 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 h 

according to the general procedure to give 24b as a pale yellow oil (32.5 mg, 0.070 mmol, 70% yield, 

dr = 2.1:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 92% / 93%. []D
20

 = 3.0 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24b after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 

25 C, tr (minor) = 16.8 min, tr (major) = 20.6 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 

25 C, tr (minor) = 15.5 min, tr (major) = 16.3 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 7.95-7.92 (m, 2H), 7.58-7.52 (m, 1H), 7.48-7.43 

(m, 2H), 5.91 (s, 1H), 3.62-3.58 (m, 1H), 3.54-3.38 (m, 2H), 3.25 (dd, J = 17.2, 7.2 Hz, 1H), 2.94-2.86 

(m, 3H), 2.51 (s, 3H), 2.48-2.22 (m, 3H), 2.21 (s, 3H), 1.88-1.78 (m, 1H), 1.72-1.62 (m, 2H), 

1.48-1.38 (m, 2H), 1.0 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 200.2, 174.0, 151.7, 144.1, 137.1, 133.0, 128.7, 

128.1, 126.6 (q, J = 277.1 Hz), 111.1, 75.2, 70.3, 45.6, 38.3, 37.9 (q, J = 26.9 Hz), 32.6, 29.4, 28.8, 
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21.2, 21.0, 19.3, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.5 (s, 3F). 

IR (film): ν (cm
1

) 3001, 2941, 1723, 1683, 1585, 1443, 1381, 1338, 1250, 1138, 1079, 974, 915, 845, 

795, 744, 690, 571. 

HRMS (ESI, m/z) calcd for C25H33F3N2O3Na
+
 [M+Na]

+
: 489.2335, found: 489.2334. 

Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23b (22.0 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 48 h 

according to the general procedure to give 24c as a pale yellow oil (28.0 mg, 0.057 mmol, 57% yield, 

dr = 1.7:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, ee 

= 95% / 95%. []D
20

 = 5.2 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24c after 

purified by flash chromatography. 

HPLC for major diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 16.5 min, tr (major) = 17.5 min. 

HPLC for minor diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 95: 5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 14.1 min, tr (major) = 13.2 min. 

1
H NMR (500 MHz, CDCl3, minor diastereoisomer) δ 7.94-7.91 (m, 2H), 7.58-7.50 (m, 1H), 7.47-7.42 

(m, 2H), 5.91 (s, 1H), 3.80-3.72 (m, 1H), 3.55-3.48 (m, 1H), 3.37-3.29 (m, 1H), 3.13 (dd, J = 16.2, 7.5 

Hz, 1H), 2.98 (dd, J = 16.3, 5.2 Hz, 1H), 2.91 (t, J = 7.4 Hz, 2H), 2.71-2.65 (m, 1H), 2.50 (s, 3H), 

2.49-2.35 (m, 1H), 2.30-2.10 (m, 4H), 1.72-1.62 (m, 2H), 1.50-1.32 (m, 5H), 1.28-1.20 (m, 2H), 

0.91-0.86 (m, 6H),. 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 200.3, 173.8, 151.8, 144.1, 137.1, 133.0, 128.6, 

128.1, 126.7 (q, J = 275.8 Hz), 111.2, 76.1, 70.3, 43.8, 42.1, 38.3, 37.7, 37.4 (q, J = 27.2 Hz), 34.6, 

31.6, 30.8, 29.6, 25.2, 24.7, 21.0, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3) δ -64.3 (s, 3F, minor). 

IR (film): ν (cm
1

) 3060, 2933, 2874, 1723, 1684, 1585, 1451, 1376, 1333, 1250, 1135, 1095, 1017, 

963, 843, 804, 743, 689, 574. 

HRMS (ESI, m/z) calcd for C27H37F3N2O3Na
+
 [M+Na]

+
: 517.2648, found: 517.2661. 
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Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23c (21.8 mg, 0.10 mmol) with Ʌ-RhS (8 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 h 

according to the general procedure to give 24d as a pale yellow oil (26.0 mg, 0.0530 mmol, 53% yield, 

dr = 1.9:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 97% / 94%. []D
20

 = 1.6 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24d after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.2 mL/min, 

25 C, tr (minor) = 41.4 min, tr (major) = 48.5 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.2 mL/min, 

25 C, tr (minor) = 37.2 min, tr (major) = 38.9 min. 

1
H NMR (500 MHz, CDCl3, mixture of diastereoisomers) δ 8.00-7.92 (m, 2H), 7.58-7.52 (m, 1H), 

7.48-7.43 (m, 2H), 5.93 (s, 1H), 3.73-3.65 (m, 1H), 3.56-3.47 (m, 2H), 3.20-3.13 (m, 1H), 3.07 (d, J = 

17.4, 4.9 Hz, 1H), 2.98-2.93 (m, 2H), 2.52 (s, 3H), 2.47-2.22 (m, 3H), 2.22 (s, 3H), 2.00-1.70 (m, 4H), 

1.70-1.57 (m, 4H), 1.55-1.46 (m, 3H), 1.29-1.22 (m, 1H), 1.20-1.10 (m, 1H). 

13
C NMR (125 MHz, CDCl3, mixture of diastereoisomers) δ 200.3, 173.8, 151.8, 144.1, 137.1, 133.0, 

128.6, 128.1, 126.7 (q, J = 275.9 Hz), 111.2, 76.1, 70.3, 43.8, 42.1, 38.3, 37.7, 37.5 (q, J = 27.2 Hz), 

34.6, 31.6, 30.8, 29.6, 25.2, 24.7, 21.0, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.9 (s, 3F). 

IR (film): ν (cm
1

) 2947, 2866, 1722, 1684, 1585, 1477, 1444, 1408, 1377, 1331, 1252, 1204, 1141, 

1089, 1029, 1004, 961, 842, 804, 749, 689, 568, 414. 

HRMS (ESI, m/z) calcd for C27H35F3N2O3Na
+
[M+Na]

+
: 515.2492, found: 515.2492. 

Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23d (23.2 mg, 0.10 mmol) with Ʌ-RhS (8 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 h 

according to the general procedure to give 24e as a pale yellow oil (33.0 mg, 0.0652 mmol, 65% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 
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= 96% / 90%. []D
20

 = 13.6 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24e after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 10.8 min, tr (major) = 14.1 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 12.8 min, tr (major) = 10.0 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 7.95-7.93 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.44 

(m, 2H), 5.91 (s, 1H), 3.63-3.61 (m, 1H), 3.51-3.47 (m, 1H), 3.43-3.39 (m, 1H), 3.24 (dd, J = 17.3, 7.3 

Hz, 1H), 2.95-2.88 (m, 3H), 2.51 (s, 3H), 2.43-2.33 (m, 2H), 2.26-2.22 (m, 1H), 2.21 (s, 3H), 

1.78-1.72 (m, 3H), 1.68-1.62 (m, 4H), 1.45-1.40 (m, 2H), 1.28-1.15 (m, 3H), 1.13-1.00 (m, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 200.2, 174.0, 151.7, 144.1, 137.1, 133.0, 128.6, 

128.1, 126.6 (q, J = 276.6 Hz), 111.1, 74.9, 70.2, 45.0, 39.2, 38.3, 38.2 (q, J = 27.0 Hz), 33.0, 31.6, 

29.9, 29.4, 26.7 (2C), 26.6, 21.0, 14.7, 13.8. 

1
H NMR (500 MHz, CDCl3, minor diastereoisomer) δ 7.94-7.91 (m, 2H), 7.56-7.52 (m, 1H), 7.46-7.41 

(m, 2H), 5.91 (s, 1H), 3.84-3.80 (m, 1H), 3.56-3.46 (m, 2H), 3.34-3.27 (m, 1H), 3.08 (t, J = 5.1 Hz, 

2H), 2.91 (t, J = 7.4 Hz, 2H), 2.56-2.43 (m, 4H), 2.43-2.33 (m, 1H), 2.26-2.22 (m, 4H), 1.76-1.66 (m, 

7H), 1.26-0.95 (m, 7H). 

19
F NMR (282 MHz, CDCl3) δ -64.37 (s, 3F, major), -64.41 (s, 3F, minor). 

IR (film): ν (cm
1

) 2925, 2854, 1723, 1684, 1585, 1445, 1408, 1378, 1332, 1251, 1204, 1138, 1096, 

1022, 961, 841, 804, 748, 689, 571, 406. 

HRMS (ESI, m/z) calcd for C28H37F3N2O3Na 
+
 [M+Na]

+
: 529.2659, found: 529.2648. 

Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23e (20.6 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 66 h 

according to the general procedure to give 24f as a pale yellow oil (22.7 mg, 0.471 mmol, 47% yield, 

dr = 6:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 96%. []D
20

 = 18.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR of 24f after purified 

by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 
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25 C, tr (minor) = 12.7 min, tr (major) = 16.5 min. 

1
H NMR (500 MHz, CDCl3) δ 7.94-7.93 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.44 (m, 2H), 5.90 (s, 1H), 

3.70-3.68 (m, 1H ), 3.50-3.39 (m, 2H), 3.25 (dd, J = 18.0, 7.4 Hz, 1H), 3.05 (dd, J = 18.0, 5.0 Hz, 1H), 

2.88 (t, J = 7.3 Hz, 2H ), 2.50 (s, 3H), 2.48-2.30 (m, 2H), 2.28-2.15 (m, 4H), 1.72-1.62 (m, 2H), 

1.48-1.39 (m, 2H), 0.95 (s, 9H). 

13
C NMR (125 MHz, CDCl3) δ 200.2, 174.7, 151.6, 144.1, 137.1, 133.0, 128.6, 128.1, 126.5 (q, J = 

277.0 Hz), 111.1, 73.3, 70.2, 49.8, 40.4 (q, J = 26.4 Hz) , 38.3, 33.4, 31.4, 29.4, 28.1, 21.0, 14.7, 13.9. 

19
F NMR (282 MHz, CDCl3) δ -64.6 (s, 3F). 

IR (film): ν (cm
1

)  2954, 2873, 1723, 1684, 1586, 1449, 1375, 1323, 1247, 1139, 1090, 963, 840, 

804, 737, 690, 572, 479. 

HRMS (ESI, m/z) calcd for C26H35F3N2O3Na
+
[M+Na]

+
: 503.2492, found: 503.2491. 

Starting from 21a (94.0 mg, 0.60 mmol), 

22c (62.0 mg, 0.30 mmol) and 23f (17.8 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 

4,4'-difluorobenzil (40 mol%) for 14 h according to the general procedure to give 24g as a pale yellow 

oil (11.80 mg, 0.0260 mmol, 26% yield, dr = 1.7:1), and 24g' as a white solid (6.85 mg, 0.025 mmol, 

50% yield). Enantiomeric excess of 24g was established by HPLC analysis using a Chiralpak OD-H 

column, ee = 70% / 78%. []D
20

 = 19.6 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR of 

24g after purified by flash chromatography. 

24g: 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 

25 C, tr (minor) = 10.7 min, tr (major) = 14.2 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 

25 C, tr (minor) = 12.7 min, tr (major) = 11.5 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 7.35-7.32 (m, 5H), 5.95 (s, 1H), 4.49 (s, 2H), 

3.63-3.60 (m, 1H), 3.50-3.48 (m, 2H), 3.12 (dd, J = 17.0, 6.7 Hz, 1H), 2.99 (dd, J = 17.0, 6.1 Hz, 1H), 

2.53 (s, 3H), 2.40-2.34 (m, 1H), 2.22 (s, 3H), 1.67-1.58 (m, 7H), 1.44-1.37 (m, 1H), 1.35-1.27 (m, 2H), 

0.95 (t, J = 7.5 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.4, 152.0, 144.1, 138.7, 128.4, 127.7, 127.6, 
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127.5, 126.8 (q, J = 276.8 Hz), 111.2, 75.4, 72.9, 70.2, 40.2, 36.5 (q, J = 27.2 Hz), 35.4, 34.9, 26.8, 

26.5, 23.1, 14.7, 13.9, 12.0. 

19
F NMR (282 MHz, CDCl3) δ -63.6 (s, 3F, major), -63.8 (s, 3F, minor). 

IR (film): ν (cm
1

) 2930, 2868, 1719, 1584, 1452, 1379, 1341, 1260, 1097, 1023, 960, 842, 801, 709, 

600, 470. 

HRMS (ESI, m/z) calcd for C24H33F3N2O3Na
+
 [M+H]

+
: 477.2335, found: 477.2336. 

24g': 

1
H NMR (500 MHz, CDCl3) δ 5.95 (s, 1H), 5.76 (s, 1H), 4.62-4.56 (m, 1H), 4.01 (dd, J = 18.1, 8.5 Hz, 

1H), 3.52 (dd, J = 17.7, 4.3 Hz, 1H), 2.48 (s, 3H), 2.33 (s, 3H), 2.25 (s, 3H), 2.24 (s, 3H), 1.92-1.84 (m, 

2H), 0.77 (t, J = 7.3 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 171.5, 152.1, 147.4, 143.8, 111.1, 105.2, 104.3, 55.2, 41.0, 28.6, 14.4, 

13.8, 11.2, 10.7. 

IR (film): ν (cm
1

) 2933, 2877, 1590, 1458, 1341, 1260, 1097, 965, 801,, 600, 470. 

HRMS (ESI, m/z) calcd for C15H23N4O [M+H]
+
: 275.1866, found: 275.1867. 

Starting from 21a (94.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) 

and 23g (33.3 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 28 h 

according to the general procedure to give 24h as a pale yellow oil (52.0 mg, 0.86 mmol, 86% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, ee = 

94% / 92%. []D
20

 = +15.8 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24h after 

purified by flash chromatography. 

HPLC for major diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 

25 C, tr (minor) = 16.2 min, tr (major) = 6.9 min. 

HPLC for minor diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 

25 C, tr (minor) = 10.1 min, tr (major) = 8.3 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 7.96-7.92 (m, 2H), 7.57-7.53 (m, 1H), 7.47-7.43 

(m, 2H), 5.93 (s, 1H), 4.11 (br, 2H), 3.66 (dd, J = 5.2, 4.4 Hz, 1H ), 3.53-3.48 (m, 1H), 3.41 (td, J = 

6.2, 3.7, 2.5 Hz, 1H ), 3.18 (dd, J = 11.3, 6.2 Hz, 1H), 3.03 (dd, J = 17.3, 5.9 Hz, 1H ), 2.94-2.91 (m, 
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2H), 2.63 (br, 2H), 2.51 (s, 3H), 2.47-2.22 (m, 3H), 2.21 (s, 3H), 1.77-1.62 (m, 4H), 1.57-1.48 (m, 3H), 

1.44 (s, 9H), 1.28-1.20 (m, 2H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 200.0, 173.5, 154.8, 151.9, 144.2, 137.0, 133.0, 

128.7, 128.1, 126.5 (q, J = 278 Hz, 1C), 111.3, 79.5, 74.4, 70.0, 44.0, 41.3, 38.3, 37.9, 37.6, 35.4 (q, J 

= 28 Hz), 32.9, 29.5, 28.5. 21.0, 17.4, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -64.6 (s, 3F). 

IR (film): ν (cm
1

) 2928, 2861, 1723, 1685, 1586, 1417, 1375, 1333, 1249, 1139, 1091, 1023, 964, 860, 

804, 752, 690, 570, 534, 471, 412. 

HRMS (ESI, m/z) calcd for C32H44F3N3O5Na
+
 [M+Na]

+
: 630.3125, found: 630.3127. 

Starting from 21b (183.0 mg, 0.60 mmol), 22b (61.0 mg, 0.30 mmol) and 

23a (19.2 mg, 0.10 mmol) with Δ-RhS (4 mol%) and 4,4'-difluorobenzil (25 mol%) for 38 h according 

to the general procedure to give 24i as a pale yellow oil (31.4 mg, 0.0510 mmol, 51% yield, dr = 2.7:1). 

Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee = 91% / 

91%. []D
20

 = 8.2 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24i after purified by 

flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 9.5 min, tr (major) = 8.9 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.3 mL/min, 

25 C, tr (minor) = 18.4 min, tr (major) = 17.0 min. 

1
H NMR (500 MHz, CD2Cl2, major diastereoisomer) δ 7.93-7.91 (m, 2H), 7.56 (tt, J = 6.8, 1.3 Hz, 

1H), 7.48-7.45 (m, 2H), 5.91 (s, 1H), 3.77 (q, J = 4.7 Hz, 1H), 3.53-3.48 (m, 1H), 3.43-3.38 (m, 1H), 

3.26 (dd, J = 17.0, 6.8 Hz, 1H), 2.94-2.88 (m, 3H), 2.49 (s, 3H), 2.45-2.31 (m, 2H), 2.26-2.21 (m, 1H), 

2.18 (s, 3H), 1.86-1.79 (m, 1H), 1.67-1.61 (m, 2H), 1.48-1.38 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H), 0.91 

(d, J = 6.8 Hz, 3H). 

1
H NMR (500 MHz, CDCl3, minor diastereoisomer) δ 7.93-7.90 (m, 2H), 7.60-7.51 (m, 1H), 7.46-7.41 

(m, 2H), 5.94 (s, 1H), 3.94-3.91 (m, 1H), 3.58-3.50 (m, 2H), 3.36-3.29 (m, 1H), 3.19 (dd, J = 16.0, 7.0 

Hz, 1H), 2.99 (dd, J = 16.0, 5.6 Hz, 1H), 2.90 (t, J = 7.2 Hz, 2H), 2.50-2.38 (m, 5H), 2.25-2.13 (m, 

4H), 1.73-1.64 (m, 2H), 1.48-1.42 (m, 2H), 0.98 (d, J = 3.4 Hz, 3H), 0.96 (d, J = 3.4 Hz, 3H). 
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13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 200.1, 174.1, 151.8, 144.3, 137.5, 133.1, 128.8, 

128.2, 111.2, 74.2, 70.3, 46.5, 38.5, 35.1 (t, J = 21.0 Hz), 32.7, 29.7, 29.3, 21.1, 21.0, 19.5, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ 81.51 to 81.59 (m, 3F), 113.07 to 113.23 

(m, 2F), 124.65 to 124.75 (m, 2F), 126.17 to 126.27 (m, 2F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ83.95 to 84.03 (m, 3F), 116.07 to 116.43 

(m, 2F), 127.28 to 127.35 (m, 2F), 128.71 to 128.80 (m, 2F). 

IR (film): ν (cm
1

) 2960, 2931, 2874, 1725, 1686, 1584, 1450, 1412, 1380, 1347, 1224, 1129, 1021, 

962, 878, 803, 740, 692, 653, 596, 528. 

HRMS (ESI, m/z) calcd for C28H33F9N2O3Na
+
 [M+Na]

+
: 639.2240, found: 639.2241. 

Starting from 21c (243.0 mg, 0.60 mmol), 22a (66.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Δ-RhS (4 mol%) and 4,4'-difluorobenzil (25 mol%) for 30 h 

according to the general procedure to give 24j as a pale yellow oil (30.6 mg, 0.0418 mmol, 42% yield, 

dr = 2.6:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, ee 

= 90% / 87%. []D
20

 = 9.6 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24j after 

purified by flash chromatography. 

HPLC for major diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.5 mL/min, 

25 C, tr (minor) = 8.7 min, tr (major) = 9.2 min. 

HPLC for minor diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.3 mL/min, 

25 C, tr (minor) = 14.5 min, tr (major) = 17.3 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 8.06-8.03 (m, 2H), 7.56 (tt, J = 7.4, 1.4 Hz, 1H), 

7.48-7.43 (m, 2H), 5.94 (s, 1H), 4.25 (t, J = 6.5 Hz, 2H), 3.79 (q, J = 5.4 Hz, 1H), 3.58-3.43 (m, 2H), 

3.33 (dd, J = 17.0, 7.3 Hz, 1H), 2.93 (dd, J = 17.0, 5.0 Hz, 1H), 2.53 (s, 3H), 2.45-2.26 (m, 3H), 2.23 

(s, 3H), 1.92-1.79 (m, 1H), 1.75-1.66 (m, 2H), 1.55-1.46 (m, 2H), 1.04 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 

6.8 Hz, 3H). 

1
H NMR (500 MHz, CD2Cl2, minor diastereoisomer) δ 8.01-7.98 (m, 2H), 7.59-7.54 (m, 1H), 

7.46-7.41 (m, 2H), 5.94 (s, 1H), 4.22 (td, J = 6.5, 1.5 Hz, 2H), 3.97-3.93 (m, 1H), 3.58-3.51 (m, 1H), 

3.37-3.30 (m, 1H), 3.21 (dd, J = 16.0, 7.6 Hz, 1H), 2.98 (dd, J = 15.9, 5.4 Hz, 1H), 2.62-2.40 (m, 5H), 

2.30-2.11 (m, 4H), 1.75-1.63 (m, 2H), 1.1.62-1.53 (m, 3H), 1.02-0.94 (m, 6H). 
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13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.9, 166.6, 151.6, 144.0, 132.8, 130.4, 129.5, 

128.3, 111.1, 74.1, 69.8, 64.8, 46.3, 35.2 (t, J = 21.3 Hz), 32.4, 28.8, 26.4, 25.4, 21.0, 19.3, 14.6, 13.7. 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ 80.94 to 81.01 (m, 3F), 113.03 to 116.45 

(m, 2F), 121.85 to 121.96 (m, 2F), 122.96 to 123.08 (m, 2F), 123.66 to 123.60 (m, 2F), 

126.24 to 126.32 (m, 2F). 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ 80.75 (t, J = 9.5 Hz, 3F), 112.50 to 112.69 

(m, 2F), 121.62 to 121.74 (m, 2F), 122.74 to 122.84 (m, 2F), 123.28 to 123.38 (m, 2F), 

126.00 to 126.10 (m, 2F). 

IR (film): ν (cm
1

) 2960, 2931, 2874, 1725, 1686, 1584, 1450, 1412, 1380, 1347, 1224, 1129, 1021, 

962, 878, 803, 740, 692, 653, 596, 528. 

HRMS (ESI, m/z) calcd for C30H33F13N2O4Na
+
 [M+Na]

+
: 755.2125, found: 755.2133. 

2) General Procedure for Figure 51: 

A dried 10 mL Schlenk tube was charged with the catalyst Λ or Δ-RhS (6 mol%) as indicated, 

4,4'-difluorobenzil (9.80 mg, 0.04 mmol, 40 mol%), Langlois reagent 21a (94.0 mg, 0.6 mmol), vinyl 

ethers 22a, 22c-q (0.3 mmol) and N-acylpyrazoles 23a, 23g (0.1 mmol) in acetone/H2O (v/v = 9:1, 1.0 

mL). The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was 

thoroughly degassed, the vial was sealed and positioned approximately 10 cm from 24 W blue LEDs. 

The reaction was stirred at 5-7 ℃ for the indicated time (2448 h) (monitored by TLC) under nitrogen 

atmosphere. Afterwards, the mixture was concentrated under reduced pressure. The residue was 

subjected to a flash chromatography on silica gel to afford the products 24a, 24k-y. The dr value was 

determined by 
19

F NMR analysis after purification, except that 24q, 24u and 24v were determined by 

the crude 
19

F NMR. The dr value of 24y was determined by 
19

F NMR and chiral HPLC analysis. The 

enantiomeric excess was determined by chiral HPLC analysis. 

Starting from 21a (94.0 mg, 0.60 mmol), 22a (66.0 mg, 0.30 mmol) and 

23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 32 h 

according to the general procedure to give 24a as a pale yellow oil (31.0 mg, 0.0643 mmol, 64% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 
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= 96% / 96% (major/minor). []D
20

 = +1.4 (c 1.0, CH2Cl2). The dr value was determined by crude 
19

F 

NMR of 24a. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99: 1, flow rate 0.4 mL/min, 

25 C, tr (minor) = 19.4 min, tr (major) = 29.2 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99: 1, flow rate 0.4 mL/min, 

25 C, tr (minor) = 23.2 min, tr (major) = 21.1 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 8.06-8.03 (m, 2H), 7.58 (tt, J = 7.4, 2.1 Hz, 1H), 

7.48-7.43 (m, 2H), 5.93 (s, 1H), 4.25 (t, J = 6.6 Hz, 2H), 3.62-3.58 (m, 1H), 3.56-3.46 (m, 2H), 3.31 

(dd, J = 17.1, 7.4 Hz, 1H), 2.91 (dd, J = 17.1, 4.7 Hz, 1H), 2.53 (s, 3H), 2.50-2.35 (m, 2H), 2.34-2.26 

(m, 1H), 2.24 (s, 3H), 1.92-1.80 (m, 1H), 1.76-1.65 (m, 2H), 1.54-1.48 (m, 2H), 1.03 (d, J = 6.8 Hz, 

3H), 0.94 (d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 8.03-8.00 (m, 2H), 7.55 (tt, J = 7.4, 2.1 Hz, 1H), 

7.45-7.40 (m, 2H), 5.92 (s, 1H), 4.25 (td, J = 6.5, 1.7 Hz, 2H), 3.84-3.78 (m, 1H), 3.60-3.53 (m, 1H), 

3.38-3.30 (m, 1H), 3.15 (dd, J = 16.4, 6.8 Hz, 1H), 3.03 (dd, J = 16.3, 5.7 Hz, 1H), 2.50 (s, 3H), 

2.48-2.35 (m, 2H), 2.30-2.15 (m, 4H), 1.80-1.66 (m, 2H), 1.64-1.56 (m, 3H), 0.98 (d, J = 4.6 Hz, 3H), 

0.96 (d, J = 4.5 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 174.0, 166.7, 151.7, 144.1, 132.9, 133.5, 129.6, 

128.4, 126.6 (q, J = 278.2 Hz), 111.1, 75.3, 70.1, 64.9, 45.6, 38.3 (q, J = 27.2 Hz), 32.5, 28.7, 26.4, 

25.4, 21.2, 19.1, 14.7, 13.9.. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.48 (s, 3F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.67 (s, 3F). 

IR (film): ν (cm
1

) 2958, 2875, 1718, 1583, 1453, 1379, 1338, 1265, 1133, 1102, 1028, 961, 842, 804, 

746, 711, 675, 587, 474. 

HRMS (ESI, m/z) calcd for C25H33F3N2O4Na
+
 [M+Na]

+
: 505.2285, found: 505.2293. 

Starting from 21a (94.0 mg, 0.60 mmol), 22c (66.0 mg, 0.30 

mmol) and 23a (19.2 mg, 0.10 mmol) with Δ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 

h according to the general procedure to give 24k as a pale yellow oil (31.8 mg, 0.0660 mmol, 66% 

yield, dr = 2.1:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H 
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column, ee = 98% / 96. []D
20

 = 13.4 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 

24k after purified by flash chromatography. 

HPLC for major diastereomer: OD-H, Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol 

= 99:1, flow rate 0.3 mL/min, 25 C, tr (minor) = 37.2 min, tr (major) = 33.1 min. 

HPLC for minor diastereomer: OD-H, Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol 

= 99:1, flow rate 0.3 mL/min, 25 C, tr (minor) = 26.9 min, tr (major) = 35.6 min. 

1
H NMR (300 MHz, CD2Cl2) δ 7.93 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.98 (s, 1H), 

4.33-4.18 (m, 2H), 3.90-3.75 (m, 3H), 3.26 (dd, J = 17.2, 6.6 Hz, 1H), 3.02 (dd, , J = 17.4, 5.6 Hz, 1H), 

2.73 (q, J = 7.6 Hz, 2H) 2.58-2.43 (m, 5H), 2.33-2.25 (m, 1H), 2.21 (s, 3H), 1.94-1.80 (m, 1H), 1.28 (t, 

J = 7.5 Hz, 3H), 1.20 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 173.6, 166.3, 151.6, 149.8, 143.9, 129.6, 127.8, 127.7, 128.4, 126.6 (q, J 

= 276.9 Hz), 111.9, 75.5 (d, J = 2.5 Hz), 68.3, 63.8, 45.1, 37.6 (q, J = 26.8 Hz), 32.5, 28.9 (2C), 20.8, 

19.2, 14.9, 14.2, 13.4. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ 63.7 (s, 3F). 

19
F NMR (282 MHz, CDCl3, major diastereoisomer, under proton irradiation) δ 63.7 (t, J = 11.2 Hz , 

3F). 

IR (film): ν (cm
1

) 2952, 2874, 1718, 1582, 1453, 1379, 1340, 1265, 1133, 1105, 1029, 960, 832, 802, 

746, 711, 675, 587, 474. 

HRMS (ESI, m/z) calcd for C25H33F3N2O4Na
+
 [M+Na]

+
: 505.2285, found: 505.2279. 

Starting from 21a (94.0 mg, 0.60 mmol), 22d (62.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 32 h 

according to the general procedure to give 24l as a pale yellow oil (26.6 mg, 0.0568 mmol, 57% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 96% / 96%. []D
20

 = +2.8 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24l after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99: 1, flow rate 0.5 mL/min, 

25 C, tr (minor) = 16.4 min, tr (major) = 18.3 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99: 1, flow rate 0.5 mL/min, 
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25 C, tr (minor) = 13.3min, tr (major) = 12.5 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 7.35-7.28 (m, 5H), 5.92 (s, 1H), 4.47 (s, 2H), 

3.60-3.57 (m, 1H), 3.49-3.43 (m, 1H), 3.40-3.36 (m, 3H), 3.24 (dd, J = 17.2, 7.1 Hz, 1H), 3.24 (dd, J = 

17.2, 5.1 Hz, 1H), 2.52 (s, 3H), 2.44-2.31 (m, 2H), 2.22 (s, 3H), 1.85-1.79 (m, 1H), 1.59-1.55 (m, 3H), 

1.44-1.38 (m, 2H), 0.99 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 174.0, 151.7, 144.1, 138.7, 128.4, 127.7, 127.6, 

111.1, 75.0, 72.9, 70.2 (2C), 45.5, 38.1(q, J = 26.5 Hz), 32.5, 28.8, 26.6, 26.4, 21.1, 19.3, 14.7, 13.9.  

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.54 (s, 3F). 

IR (film): ν (cm
1

) 2999, 2945, 2864, 1722, 1583, 1484, 1444, 1384, 1341, 1259, 1138, 1088, 1027, 

971, 899, 844, 798, 740, 707, 594, 463, 407. 

HRMS (ESI, m/z) calcd for C25H35F3N2O3Na
+
 [M+Na]

+
: 491.2492, found: 491.2494. 

Starting from 21a (94.0 mg, 0.60 mmol), 22e (78.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 h 

according to the general procedure to give 24m as a pale yellow oil (34.4 mg, 0.0670 mmol, 67% yield, 

dr = 2.2:1). Enantiomeric excess established by HPLC analysis by using Chiralpak OD-H / AD-H 

columns, ee = 93% / 93%. []D
20

 = 2.6 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 

24m after purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.3 mL/min, 

25 C, tr (minor) = 19.6 min, tr (major) = 21.6 min. 

HPLC for minor diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 10.4min, tr (major) = 11.0 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 7.91-7.88 (m, 2H), 7.50-7.47 (m, 2H), 5.93 (s, 

1H), 3.62 (q, J = 5.0 Hz, 1H), 3.55-3.40 (m, 2H), 3.27 (dd, J = 17.1, 7.1 Hz, 1H), 2.96-2.85 (m, 3H), 

2.53 (s, 3H), 2.49-2.32 (m, 2H), 2.30-2.16 (m, 4H), 1.90-1.80 (m, 1H), 1.74-1.64 (m, 2H), 1.50-1.40 

(m, 2H), 1.36 (s, 9H), 1.01 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 199.9, 174.0, 156.7, 151.7, 144.1, 134.5, 128.1, 

126.6 (q, J = 276.9 Hz), 125.6, 111.1, 75.2, 70.3, 64.9, 45.6, 38.19, 38.16 (q, J = 26.8 Hz), 35.2, 32.5, 

31.2, 29.5, 28.8, 21.2, 19.2, 14.7, 13.9. 
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19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.54 (s, 3F). 

IR (film): ν (cm
1

) 2961, 2873, 1725, 1682, 1604, 1468, 1379, 1341, 1255, 1138, 1099, 1026, 962, 842, 

809, 740, 669, 580, 543, 488, 409. 

HRMS (ESI, m/z) calcd for C29H41F3N2O3Na 
+
 [M+Na]

+
: 545.2961, found: 545.2964. 

Starting from 21a (94.0 mg, 0.60 mmol), 22f (51.0 mg, 0.30 mmol) and 

23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 30 h 

according to the general procedure to give 24n as a pale yellow oil (30.2 mg, 0.0699 mmol, 70% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OJ-H / OD-H 

column, ee = 98% / 93%. []D
20

 = 10.0 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR 

of 24n after purified by flash chromatography. 

HPLC for major diastereomer: OJ-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.1 mL/min, 

15 C, tr (minor) = 47.7 min, tr (major) = 51.0 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.2 mL/min, 

25 C, tr (minor) = 20.3 min, tr (major) = 21.8 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 3.63-3.57 (m, 1H), 3.46-3.41 (m, 

2H), 3.23 (dd, J = 17.3, 7.1 Hz, 1H), 2.94 (dd, J = 17.3, 5.2 Hz, 1H), 2.53 (s, 3H), 2.50-2.32 (m, 4H), 

2.28-2.16 (m, 4H), 1.88-1.78 (m, 1H), 1.65-1.56 (m, 2H), 1.11 (s, 9H), 1.00 (d, J = 6.8 Hz, 3H), 0.92 

(d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 5.95 (s, 1H), 3.82-3.75 (m, 1H), 3.56-3.46 (m, 

1H), 3.30-3.20 (m, 1H), 3.14 (dd, J = 16.4, 6.6 Hz, 1H), 3.02 (dd, J = 16.5, 5.9 Hz, 1H), 2.52 (s, 3H), 

2.50-2.38 (m, 4H), 2.23 (s, 3H), 2.20-2.10 (m, 1H), 1.76-1.58 (m, 2H), 1.53-1.48 (m, 1H), 1.10 (s, 9H), 

0.97 (d, J = 5.0 Hz, 3H), 0.95 (d, J = 4.9 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 215.7, 173.9, 151.7, 144.0, 126.5 (q, J = 276.5 

Hz), 111.1, 75.0, 69.5, 45.2, 44.0, 37.9 (q, J = 26.9 Hz), 33.0, 32.5, 28.8, 26.5, 24.0, 21.1, 19.4, 14.7, 

13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.41 (s, 3F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.50 (s, 3F). 

IR (film): ν (cm
1

) 2963, 2875, 1715, 1586, 1471, 1377, 1339, 1253, 1138, 1093, 1055, 961, 842, 804, 
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742, 669, 586. 

HRMS (ESI, m/z) calcd for C22H35F3N2O3Na
+
 [M+Na]

+
: 455.2492, found: 455.2490. 

Starting from 21a (94.0 mg, 0.60 mmol), 22g (47.0 mg, 0.30 mmol) and 

23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 40 h 

according to the general procedure to give 24o as a pale yellow oil (28.4 mg, 0.0679 mmol, 68% yield, 

dr = 2.7:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 95% / 93%. []D
20

 = +14.4 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24o after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 

25 C, tr (minor) = 11.4 min, tr (major) = 12.0 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 

25 C, tr (minor) = 11.6 min, tr (major) = 11.1 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 3.60-3.54 (m, 1H), 3.48-3.32 (m, 

2H), 3.25 (dd, J = 17.1, 7.3 Hz, 1H), 2.89 (dd, J = 17.2, 5.0 Hz, 1H), 2.53 (s, 3H), 2.48-2.32 (m, 4H), 

2.23 (s, 3H), 2.12 (s, 3H), 1.90-1.78 (m, 1H), 1.51-1.46 (m, 2H), 1.38-1.18 (m, 5H), 1.00 (d, J = 6.8 

Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 5.95 (s, 1H), 3.81-3.74 (m, 1H), 3.52-3.42 (m, 

1H), 3.30-3.22 (m, 1H), 3.13 (dd, J = 16.6, 6.7 Hz, 1H), 3.03 (dd, J = 16.4, 6.0 Hz, 1H), 2.52 (s, 3H), 

2.48-2.32 (m, 4H), 2.23 (s, 3H), 2.20-2.08 (m, 4H), 1.52-1.32 (m, 4H), 1.30-1.20 (m, 3H), 0.98-.094 

(m, 6H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 209.2, 174.0, 151.6, 144.1, 126.6 (q, J = 276.8 

Hz), 111.1, 75.2, 70.4, 45.5, 43.7, 38.2 (q, J = 26.8 Hz), 32.5, 30.0, 29.6, 28.7, 25.6, 23.7, 21.2, 19.2, 

14.8, 13.9. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.50 (s, 3F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.65 (s, 3F). 

IR (film): ν (cm
1

) 2935, 2872, 1719, 1585, 1465, 1377, 1342, 1254, 1138, 1095, 961, 841, 804, 740, 

670, 591, 524, 477, 414. 

HRMS (ESI, m/z) calcd for C21H33F3N2O3Na 
+
 [M+ Na]

+
: 441.2335, found: 441.2335. 
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Starting from 21a (94.0 mg, 0.60 mmol), 22h (39.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 28 h 

according to the general procedure to give 24p as a pale yellow oil (20.2 mg, 0.0515 mmol, 52% yield, 

dr = 2:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak AD-H column, ee = 

94% / 95%. []D
20

 = +24.4 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24p after 

purified by flash chromatography. 

HPLC for major diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 0.5 mL/min, 

25 C, tr (minor) = 7.9 min, tr (major) = 8.2 min. 

HPLC for minor diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 

25 C, tr (minor) = 19.3 min, tr (major) = 17.3 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 3.79-3.70 (m, 1H), 3.66-3.58 (m, 

2H), 3.24 (dd, J = 17.3, 7.6 Hz, 1H), 2.91 (dd, J = 17.3, 4.8 Hz, 1H), 2.57-2.35 (m, 6H), 2.32-2.26 (m, 

1H), 2.23 (s, 3H), 1.90-1.78 (m, 1H), 1.53-1.47 (m, 2H), 1.18 (s, 3H), 1.14 (s, 3H), 1.02 (d, J = 6.8 Hz, 

3H), 0.92 (d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 5.96 (s, 1H), 3.86-3.74 (m, 2H), 3.59-3.50 (m, 

1H), 3.09 (dd, J = 6.5, 3.5 Hz, 2H), 2.53-2.38 (m, 6H), 2.30-2.16 (m, 5H), 1.67-1.64 (m, 2H), 1.18 (s, 

3H), 1.15 (s, 3H), 1.00-0.96 (m, 6H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.7, 151.9, 144.4, 126.5 (q, J = 276.6 Hz), 

111.2, 76.1, 70.1, 67.9, 45.1, 41.9, 38.1 (q, J = 27.1 Hz), 32.5, 29.6, 29.1, 28.7, 21.3, 19.3, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.53 (s, 3F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.64 (s, 3F). 

IR (film): ν (cm
1

) 2966, 2930, 2879, 1724, 1583, 1469, 1380, 1341, 1254, 1136, 1086, 1031, 989, 961, 

888, 841, 804, 741, 669, 587, 463, 415. 

HRMS (ESI, m/z) calcd for C19H31F3N2O3Na
+
 [M+ Na]

+
: 415.2179, found: 415.2177. 

Starting from 21a (94.0 mg, 0.60 mmol), 22i (89.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 26 h 
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according to the general procedure to give 24q as a pale yellow oil (32.1 mg, 0.0574 mmol, 57% yield, 

dr > 28:5:1). []D
20

 = +10.0 (c 1.0, CH2Cl2). The dr value was determined by crude 
19

F NMR of 24q. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 7.40-7.28 (m, 5H), 7.25-7.19 (m, 3H), 7.16-7.12 

(m, 2H), 5.90 (s, 1H), 5.67 (br, 1H), 5.07 (s, 2H), 4.62 (br, 1H), 3.70-3.58 (m, 3H), 3.33 (dd, J = 17.0, 

8.1 Hz, 1H), 2.82 (dd, J = 17.0, 4.5 Hz, 1H), 2.48 (s, 3H), 2.42-2.22 (m, 3H), 2.20 (s, 3H), 1.84-1.72 

(m, 1H), 0.96 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.7, 155.9, 152.0, 144.3, 128.4, 128.3, 128.1, 

128.0, 127.4, 126.6, 111.3, 75.3, 72.7, 66.6, 54.9, 45.5, 38.1 (q, J = 27.0 Hz), 32.3, 28.8, 21.0, 18.9, 

14.6, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.32 (s, 3F). 

IR (film): ν (cm
1

) 2961, 2930, 2875, 1718, 1585, 1504, 1461, 1381, 1338, 1252, 1138, 1054, 992, 963, 

914, 843, 806, 744, 698, 585, 535, 479, 412. 

HRMS (ESI, m/z) calcd for C30H36F3N3O4Na
+
 [M+H]

+
: 582.2550, found: 582.2556. 

Starting from 21a (94.0 mg, 0.60 mmol), 22j (87.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 26 h 

according to the general procedure to give 24r as a pale yellow oil (45.0 mg, 0.0821 mmol, 82% yield, 

dr = 1.7:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 92% / 93%. []D
20

 = 3.8 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24r after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 45.9 min, tr (major) = 56.7 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 35.6 min, tr (major) = 38.9 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 7.75-7.68 (m, 4H), 7.56-7.40 (m, 6H), 5.89 (s, 

1H), 3.65-3.58 (m, 1H), 3.57-3.45 (m, 2H), 3.25 (dd, J = 17.3, 6.9 Hz, 1H), 2.96 (dd, J = 17.3, 5.3 Hz, 

1H), 2.46 (s, 3H), 2.42-2.35 (m, 2H), 2.30-2.24 (m, 2H), 2.20 (s, 3H), 1.86-1.80 (m, 4H), 0.98 (d, J = 

6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.8, 151.8, 144.0, 131.9, 130.94, 130.91, 
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130.87, 130.83, 128.8, 128.7, 126.5 (q, J = 277.2 Hz), 111.3, 75.3, 70.3, 45.2, 37.9 (q, J = 27.1 Hz), 

32.6, 32.5, 29.0, 22.3, 21.1, 19.4, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3) δ -63.35 (s, 3F, major diastereoisomer), -63.42 (s, 3F, minor 

diastereoisomer). 

IR (film): ν (cm
1

) 3000, 2942, 1717, 1429, 1343, 1251, 1181, 1137, 984, 915, 843, 713, 545, 476. 

HRMS (ESI, m/z) calcd for C29H36F3N2O3PNa 
+
 [M+Na]

+
: 571.2308, found: 571.2304. 

Starting from 21a (94.0 mg, 0.60 mmol), 22k (75.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 38 h 

according to the general procedure to give 24s as a pale yellow oil (26.0 mg, 0.0508 mmol, 51% yield, 

dr = 1.8:1). Enantiomeric excess established by HPLC analysis by using a Chiralpak OD-H column, ee 

= 90% / 90%. []D
20

 = +3.2 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 24s after 

purified by flash chromatography. 

HPLC for major diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.2 mL/min, 

25 C, tr (minor) = 24.0 min, tr (major) = 24.7 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.4 mL/min, 

25 C, tr (minor) = 12.7 min, tr (major) = 12.0 min. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 7.35-7.30 (m, 5H), 5.93 (s, 1H), 5.00-4.95 (m, 

3H), 3.70-3.64 (m, 1H), 3.48-3.40 (m, 2H), 3.21 (dd, J = 17.3, 6.9 Hz, 1H), 2.99 (dd, J = 17.3, 5.4 Hz, 

1H), 2.51 (s, 3H), 2.47-2.36 (m, 2H), 2.30-2.24 (m, 1H), 2.21 (s, 3H), 1.89-1.76 (m, 1H), 1.23 (s, 3H), 

1.21 (s, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 7.36-7.29 (m, 5H), 5.91 (s, 1H), 5.05-5.00 (m, 

3H), 3.90-3.83 (m, 1H), 3.67-3.40 (m, 2H), 3.33 (d, J = 8.8 Hz, 1H), 3.17 (dd, J = 16.7, 5.9 Hz, 1H), 

3.04 (dd, J = 16.8, 6.2 Hz, 1H), 2.54-2.32 (m, 5H), 2.30-2.14 (m, 4H), 1.27 (s, 3H), 1.20 (s, 3H), 0.97 

(d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.8, 152.0, 144.2, 136.9, 128.5, 128.1, 128.0, 

127.9, 126.5 (q, J = 277.0 Hz), 111.3, 75.5, 75.1, 66.1, 53.0, 44.6, 37.4 (q, J = 27.1 Hz), 32.9, 29.0, 

24.2, 24.1, 21.1, 19.9, 14.7, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.29 (s, 3F). 
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IR (film): ν (cm
1

) 2999, 2945, 1721, 1509, 1385, 1342, 1254, 1140, 1074, 973, 918, 848, 739, 580, 

529, 456. 

HRMS (ESI, m/z) calcd for C26H36F3N3O4Na
+
 [M+ Na]

+
: 534.2556, found: 534.2550. 

Starting from 21a (94.0 mg, 0.60 mmol), 22l (72.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 38 h 

according to the general procedure to give 24t as a pale yellow oil (23.0 mg, 0.0457 mmol, 46% yield, 

dr = 1.3:1). Enantiomeric excess established by HPLC analysis by using Chiralpak OD-H / OJ-H 

columns, ee = 91% / 93%. []D
20

 = +1.4 (c 1.0, CH2Cl2). The dr value was determined by 
19

F NMR of 

24t after purified by flash chromatography. 

HPLC for major diastereomer: OJ-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.2 mL/min, 

25 C, tr (minor) = 19.8 min, tr (major) = 21.9 min. 

HPLC for minor diastereomer: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.3 mL/min, 

25 C, tr (minor) = 21.9 min, tr (major) = 19.9 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 4.03 (br, 2H), 3.78-3.75 (m, 1H), 

3.36 (dd, J = 8.4, 5.7 Hz, 1H), 3.15-3.08 (m, 2H), 3.02 (dd, J = 16.4, 5.9 Hz, 1H), 2.65-2.55 (m, 2H), 

2.52 (s, 3H), 2.46-2.37 (m, 2H), 2.23 (s, 3H), 2.22-2.16 (m, 1H), 1.62-1.60 (m, 1H), 1.56-1.48 (m, 3H), 

1.44 (s, 9H), 1.09-1.01 (m, 2H), 0.97 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 5.98 (s, 1H), 4.05 (br, m, 2H), 3.82-3.75 (m, 

1H), 3.39 (dd, J = 8.5, 5.7 Hz, 1H), 3.20-3.00 (m, 3H), 2.70-2.54 (m, 2H), 2.54 (s, 3H), 2.50-2.34 (m, 

2H), 2.30-2.12 (m, 4H), 1.68-1.60 (m, 1H), 1.55-21.50 (m, 4H), 1.46 (s, 9H), 1.12-1.05 (m, 1H), 

1.00-0.96 (m, 6H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.8, 154.9, 151.8, 144.0, 127.0 (q, J = 277.0 

Hz ), 111.2, 79.3, 74.9, 74.2, 43.1, 36.7, 35.1 (q, J = 27.5 Hz), 33.0, 29.4, 28.9, 28.8, 28.5, 21.2, 20.9, 

14.7, 13.9. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.40 (s, 3F). 

19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.58 (s, 3F). 

IR (film): ν (cm
1

) 2966, 2926, 2863, 1725, 1690, 1584, 1471, 1417, 1375, 1342, 1316, 1250, 1138, 

1095, 962, 922, 861, 803, 765, 743, 670, 589, 539. 
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HRMS (ESI, m/z) calcd for C25H40F3N3O4Na
+
 [M+ Na]

+
: 526.2863, found: 526.2862. 

Starting from 21a (94.0 mg, 0.60 mmol), 22m (54.6 mg, 0.30 mmol) and 

23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 24 h 

according to the general procedure to give 24u as a pale yellow oil (33.3 mg, 0.0748 mmol, 75% yield, 

dr > 38:1:1). []D
20

 = 54.2 (c 1.0, CH2Cl2). The dr value was determined by crude 
19

F NMR of 24u. 

1
H NMR (300 MHz, CDCl3, major diastereoisomer) δ 5.97 (s, 1H), 3.88-3.81 (m, 1H), 3.35 (dd, J = 

16.5, 7.6 Hz, 1H), 3.14-3.11 (m, 1H), 2.74 (dd, J = 16.3, 4.3 Hz, 1H), 2.60-2.50 (m, 4H), 2.35-2.21 (m, 

5H), 2.10-1.95 (m, 2H), 1.92-1.82 (m, 1H), 1.54-1.48 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H), 0.95-0.92 (m, 

7H), 0.81-0.76 (m, 4H), 0.75-0.60 (m, 7H). 

13
C NMR (75 MHz, CDCl3, major diastereoisomer) δ 174.5, 151.2, 144.1, 111.0, 74.7, 68.9, 48.2, 47.1, 

39.0, 38.7 (q, J = 26.5 Hz), 34.6, 32.3, 31.4, 28.3, 24.6, 22.9, 22.6, 21.6, 21.3, 18.6, 15.8, 14.8, 13.8. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.6 (s, 3F). 

IR (film): ν (cm
1

) 2999, 2944, 1726, 1589, 1447, 1385, 1333, 1249, 1183, 1139, 1043, 973, 920, 843, 

795, 745, 510, 461. 

HRMS (ESI, m/z) calcd for C24H39F3N2O2Na 
+
 [M+Na]

+
: 467.2856, found: 467.2854. 

Starting from 21a (94.0 mg, 0.60 mmol), 22n (86.0 mg, 0.30 mmol) 

and 23a (19.2 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 36 h 

according to the general procedure to give 24v as a pale yellow oil (20.0 mg, 0.0365 mmol, 36% yield, 

dr > 19:1). []D
20

 = 7.8 (c 1.0, CH2Cl2). The dr value was determined by crude 
1
H NMR of 24v. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 5.78 (d, J = 3.7 Hz, 1H), 4.50 (d, J 

= 3.7 Hz, 1H), 4.23-4.19 (m, 1H), 4.14 (d, J = 3.3 Hz, 1H), 4.11-4.08 (m, 2H), 3.94 (d, J = 5.6 Hz, 2H), 

3.20-3.11 (m, 2H), 2.61-2.56 (m, 1H), 2.53 (s, 3H), 2.35-2.29 (m, 2H), 2.23 (s, 3H), 1.52-1.47 (m, 4H), 

1.33 (s, 3H), 1.30 (s, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.97 (s, 3H), 0.92 (d, J = 6.7 Hz, 3H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.2, 151.8, 144.0, 126.9 (q, J = 277.9 Hz ), 

120.0, 111.2, 108.9, 105.4, 81.9, 81.2, 78.9, 72.5, 71.8, 67.2, 40.5, 35.1 (q, J = 27.3 Hz), 32.8, 30.2, 
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27.0, 26.7, 26.4, 24.4, 21.5, 20.6, 14.8, 13.9. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.37 (s, 3F). 

IR (film): ν (cm
1

) 2979, 2935, 2885, 1728, 1585, 1465, 1378, 1337, 1252, 1216, 1139, 1071, 1018, 

960, 846, 802, 750, 636, 512, 416. 

HRMS (ESI, m/z) calcd for C26H39F3N2O7Na
+
 [M+Na]

+
: 571.2602, found: 571.2603. 

Starting from 21a (94.0 mg, 0.60 mmol), 22o (72.0 mg, 0.30 mmol) and 

23g (33.3 mg, 0.10 mmol) with Δ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 48 h according 

to the general procedure to give 24w as a pale yellow oil (45.0 mg, 0.070 mmol, 70% yield, dr = 2:1). 

Enantiomeric excess established by HPLC analysis by using Chiralpak AD-H / IC columns, ee = 97% 

/ 95%. []D
20

 = 10.0 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR of 24w after purified 

by flash chromatography. 

HPLC for major diastereomer: AD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 

25 C, tr (minor) = 6.7 min, tr (major) = 9.9 min. 

HPLC for minor diastereomer: IC, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 25 C, 

tr (minor) = 11.9 min, tr (major) = 17.5 min. 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 4.14 (br, 2H), 3.65-3.62 (m, 4H), 

3.46-3.42 (m, 1H), 3.35-3.31 (m, 1H), 3.19 (dd, J = 17.3, 6.2 Hz, 1H), 3.01 (dd, J = 17.4, 5.9 Hz, 1H), 

2.68-2.60 (m, 2H), 2.53 (s, 3H), 2.50-2.32 (m, 2H), 2.31-2.26 (m, 1H), 2.23 (s, 3H), 1.77-1.74 (m, 1H), 

1.59-1.53 (m, 4H), 1.45 (s, 9H), 1.35-1.28 (m, 11H), 1.24-1.18 (m, 6H), 0.89-0.86 (m, 7H). 

1
H NMR (300 MHz, CDCl3, minor diastereoisomer) δ 5.95 (s, 1H), 4.11 (br, 2H), 3.80-3.77 (m, 1H), 

3.64 (t, J = 6.6 Hz, 1H), 3.50-3.40 (m, 3H), 3.18-3.03 (m, 2H), 2.67-2.58 (m, 2H), 2.52-2.35 (m, 5H), 

2.22-2.12 (m, 4H), 1.68-1.62 (m, 2H), 1.45 (s, 9H), 1.42-1.28 (m, 9H), 1.24-1.16 (m, 14H), 0.90-0.86 

(m, 5H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.6, 154.8, 151.9, 144.2, 126.5 (q, J = 277.1 

Hz ), 111.3, 79.5, 74.3, 70.4, 63.2, 44.0, 37.9, 37.7 (q, J = 26.2 Hz), 32.9, 32.0, 29.86, 29.79, 29.77, 

29.76, 29.75, 29.72, 29.71, 29.69, 29.67, 29.56, 29.52, 29.45, 28.5, 26.1, 25.8, 22.8, 14.7, 14.2, 13.9. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -64.48 (s, 3F). 
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19
F NMR (282 MHz, CDCl3, minor diastereoisomer) δ -63.68 (s, 3F). 

IR (film): ν (cm
1

) 3000, 2923, 2853, 1692, 1582, 1422, 1336, 1247, 1173, 1145, 976, 919, 866, 793, 

523, 458. 

HRMS (ESI, m/z) calcd for C35H60F3N3O4Na
+
 [M+ Na]

+
: 666.4428, found: 666.4431. 

Starting from 21a (94.0 mg, 0.60 mmol), 22p (57.6 mg, 0.30 mmol) 

and 23g (33.3 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 48 h 

according to the general procedure to give 24x as a pale yellow oil (42.2 mg, 0.0696 mmol, 70% yield, 

dr = 1.9:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, 

ee = 91%. []D
20

 = 5.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR of 24x after 

purified by flash chromatography. 

HPLC for major diastereomer: IC, 254 nm, n-hexane/isopropanol = 97:3, flow rate 0.5 mL/min, 25 C, 

tr (minor) = 18.3 min, tr (major) = 19.9 min. 

1
H NMR (500 MHz, CD2Cl2, major diastereoisomer) δ 6.02 (s, 1H), 4.15 (br, 2H), 3.71-3.65 (m, 2H), 

3.59-3.54 (m, 1H), 3.43-3.38 (m, 1H), 3.22 (dd, J = 17.4, 6.2 Hz, 1H), 3.01 (dd, J = 17.4, 5.9 Hz, 1H), 

2.67 (br, 2H), 2.55 (s, 3H), 2.52-2.37 (m, 2H), 2.31-2.27 (m, 1H), 2.24 (s, 3H), 1.96-1.92 (m, 2H), 

1.76-1.74 (m, 2H), 1.56 (d, J = 2.3 Hz, 2H), 1.48 (d, J = 2.1 Hz, 6H), 1.46 (s, 9H), 1.38 (t, J = 7.6 Hz, 

6H), 1.30-1.22 (m, 2H), 1.17-1.11 (m, 1H). 

13
C NMR (125 MHz, CD2Cl2, major diastereoisomer) δ 173.4, 154.5, 151.6, 144.0, 127.7 (q, J = 277.6 

Hz ), 111.0, 79.0, 74.4, 66.2, 58.5, 47.4, 44.0, 43.7, 42.7, 42.6, 38.0, 37.5 (q, J = 27.0 Hz), 37.1, 32.8, 

31.5, 28.9, 28.2, 14.4, 13.6. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.86 (s, 3F). 

IR (film): ν (cm
1

) 2901, 2848, 1725, 1690, 1584, 1419, 1378, 1330, 1250, 1143, 1091, 1024, 965, 860, 

803, 757, 674, 531. 

HRMS (ESI, m/z) calcd for C33H50F3N3O4Na
+
 [M+Na]

+
: 632.3646, found: 632.3643. 
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Starting from 21a (94.0 mg, 0.60 mmol), 22q (54.6 mg, 0.30 

mmol) and 23a (33.3 mg, 0.10 mmol) with Ʌ-RhS (6 mol%) and 4,4'-difluorobenzil (40 mol%) for 48 

h according to the general procedure to give 24y as a pale yellow oil (38.1 mg, 0.0650 mmol, 65% 

yield, dr > 43:21:1). The dr value was determined by 
19

F NMR and HPLC analysis of 24y after 

purified by flash chromatography. 

HPLC for major spot: IC, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 25 C, tr 

(minor) = 12.7 min, tr (major) = 11.4 min. Dr > 99:1. 

HPLC for minor spot: IC, 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.5 mL/min, 25 C, tr 

(minor) = 13.2 min, tr (major) = 14.0 min. Dr = 40:1.  

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 5.96 (s, 1H), 5.07 (t, J = 6.1 Hz, 1H) 4.13 (br, 

2H), 3.65-3.62 (m, 1H), 3.52-3.44 (m, 1H), 3.39-3.34 (m, 1H), 3.22-3.17 (m, 1H), 3.01 (dt, J = 17.4, 

5.7 Hz, 1H), 2.63 (br, 2H), 2.53 (s, 3H), 2.49-2.32 (m, 2H), 2.29-2.27 (m, 1H), 2.22 (s, 3H), 1.99-1.85 

(m, 2H), 1.79-1.71 (m, 1H), 1.67 (s, 3H), 1.65-1.58 (m, 5H), 1.45 (s, 9H), 1.40-1.36 (m, 1H), 

1.34-1.04 (m, 6H), 0.81(d, J = 6.6 Hz, 3H) . 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 173.6, 154.8, 151.9, 144.2, 131.3, 126.5 (q, J = 

273.8 Hz ), 124.8, 111.3, 79.5, 74.4, 68.6, 44.0, 37.9, 37.3, 37.2, 36.8, 36.7, 32.9, 29.4, 28.5, 25.8, 25.5 

(2C), 19.6, 19.5, 17.7, 14.7, 13.9,. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ -63.57 (s, 3F). 

IR (film): ν (cm
1

) 3274, 3226, 3109, 2992, 2927, 2862, 2771, 2729, 2680, 2637, 2617, 2555, 2513, 

2480, 2446, 2360, 2267, 2198. 

HRMS (ESI, m/z) calcd for C31H50F3N3O4Na 
+
 [M+Na]

+
: 608.3646, found: 608.3643. 
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5.4.4 Mechanistic Experiments 

1) Side Products Isolation and Key Intermediates Trapping 

 

As shown herein, without the addition of substrate 22, a side product 26 was isolated with 20% yield 

{2.5 mg, refer to 4,4'-difluorobenzil (0.04 mmol)} under the standard conditions, or a higher yield of 

42% {13.2 mg refer to 4,4'-difluorobenzil (0.1 mmol)} obtained by combining 21a and 

4,4'-difluorobenzil under visible light irradiation.  

Analytic data of 26 is shown below: 

1
H NMR (500 MHz, CDCl3) δ 7.81-7.78 (m, 2H), 7.55-7.52 (m, 2H), 7.16-7.11 (m, 2H), 7.03-6.99 (m, 

2H), 4.65 (br, 1H). 

13
C NMR (125 MHz, CDCl3) δ 191.8, 167.0, 165.0, 164.3, 162.3, 133.9, 133.8, 128.8, 128.7, 116.4, 

116.2, 115.8, 115.6. 

19
F NMR (282 MHz, CDCl3) δ 73.76 (s, 3F), 102.26 (s, F), 110.87 (s, F). 
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A side product 27 was isolated with 9% yield {1.9 mg, refer to 4,4'-difluorobenzil (0.4 mmol)} and 

1.2:1 dr under the standard conditions. Compound 27 was proposed to be formed by the radical-radical 

recombination between two key intermediates I and II.  

Analytic data of 27 is shown below: 

1
H NMR (500 MHz, CDCl3, major diastereoisomer) δ 8.07-8.03 (m, 2H), 7.98-7.94 (m, 2H), 7.59 (tt, J 

= 6.8, 1.3 Hz, 1H), 7.51-7.42 (m, 4H), 7.10-7.05 (m, 4H), 5.81 (br, 1H), 4.94 (t, J = 5.3 Hz, 1H), 

3.58-3.40 (m, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.63-2.46 (m, 3H), 2.32-2.22 (m, 1H), 1.83-1.75 (m, 2H). 

13
C NMR (125 MHz, CDCl3, major diastereoisomer) δ 199.8, 194.4, 166.7, 164.7, 163.8, 161.9, 136.9, 

133.1, 132.2, 132.1, 131.93, 131.85, 131.06, 131.04, 130.9, 129.0, 128.9, 128.6, 128.0, 116.1, 116.0, 

115.8, 115.6, 80.5, 66.7, 38.8 (q, J = 27.9 Hz), 37.9, 29.0, 20.7. 

19
F NMR (282 MHz, CDCl3, mixture of diastereoisomers) δ 63.05 (s, 3F), 63.27 (s, F), 111.08 (s, 

F), 111.19 (s, F), 111.31 (s, F), 111.42 (s, F). 

2) Stern-Volmer Quenching Experiments 

The solution of 4,4'-difluorobenzil in acetone/H2O (9:1, 4 mM) was excited at  = 400 nm and the 

emission was measured at 500 nm (emission maximum). For each quenching experiment, after 

degassing with a nitrogen stream for 5 minutes, the emission intensity of the solution (1 mL) of 

4,4'-difluorobenzil with different concentrations of quencher (0, 0.1, 0.2, 0.3, 0.4, 0.5 mM) in a 

screw-top 10.0 mm quartz cuvette was collected. 
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3) Kinetic Profile for 4,4'-Difluorobenzil 

 

The catalytical reactions were conducted under the standard conditions except that with different 

loading of 4,4'-difluorobenzil (0, 20 mol%, 40 mol%, 60 mol%, 80 mol%, 100 mol%), respectively. 

All of the reactions were quenched after 6 h, and yields were determined by the crude 
19

F NMR 

analysis with PhCF3 as internal standard. See Figure 96 for the results. 

 

Figure 96. Kinetic profile of the visible-light-induced three-component reaction catalyzed by individual 

amounts of 4,4'-diflurobenzil. 

4) Determination of Extinction Coeffient of 4,4'-Difluorobenzil and RhS-3a  

The absorbance values of 4,4'-difluorobenzil and RhS-23a comoplex were collected at different 

concentrations at 420 nm in acetone using 1.0 cm quartz cuvette and the extinction coeffients 

determined according to the Lambert-Beer law. As a result, the extinction coefficient of 

4,4'-difluorobenzil was calculaed as: ε420 = 22.8 M
-1

cm
-1

 and the extinction coefficient of RhS-23a as: 

ε420 = 2338 M
-1

cm
-1

. 
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a) 4,4'-difluorobenzil  

b) RhS+23a 
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5.4.5 Gram Scale Reaction and Catalyst Recovery 

   

A solution of 21a (2.80 g, 18.0 mmol), 22o (2.16 g, 9.0 mmol) and 23g (1.0 g, 3.0 mmol), Δ-RhS 

(156.0 mg, 0.18 mmol, 6 mol%), 4,4’-difluorobenzil (295.0 mg, 1.20 mmol, 40 mol%), NH4PF6 (4.89 

g, 30.0 mmol) in acetone/H2O (9:1, v/v, 30 mL, 0.1 M) were stirred at 5-7 
o
C under an atmosphere of 

nitrogen and an irradiation with 24 W blue LEDs for 48 h. Upon completion, K2CO3 (4.14 g, 30.0 

mmol), Hünig base (36 L, 0.216 mmol, 7.2 mol%), and the chiral auxiliary 25 (55.5 mg, 0.216 mmol, 

7.2 mol%) were added stepwise, then stirred for another 2 h at r.t. Afterwards, the solvent was 

concentrated to dryness, and the residue was filtered by a thin pad of silica gel to remove the inorganic 

salts. The organic filtrate was concentrated to around 3 mL. After the addition of n-hexane/Et2O (1:1, 

10 mL), yellow solid was precipitated immediately. The precipitation was washed by n-hexane/Et2O 
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(1:1, v/v, 3  10 mL) to give Δ-(R)-aux-RhS (111 mg, 70%, > 99:1 dr from the 
19

F NMR analysis) as a 

yellow solid
6
. Additionally, all the organic phase was concentrated and purified by flash column 

chromatography to give 4,4’-difluorobenzil as a pale yellow solid (249 mg, 84% recovery yield), the 

minor diastereomer of 24w as a pale oil (297 mg, 15% yield, 94% ee), and the major diastereomer of 

24w as a pale oil (704 mg, 37% yield, 97% ee). 

HPLC for minor diastereomer: IG Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol = 

98:2, flow rate 1 mL/min, 25 C, tr (minor) = 5.9 min, tr (major) = 6.4 min. Area integration = 96.9:3.1 

(93.8% ee).  

HPLC for major diastereomer: IC Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol = 95: 

5, flow rate 0.3 mL/min, 25 C, tr (minor) = 21.5 min, tr (major) = 20.4 min. Area integration = 

98.7:1.3 (97.4% ee). 

5.4.6 Assigment of Absolute and Relative Configurations 

1) Assignment of the Absoluste Configuration  

 

As shown herein, compound 52 was synthesized according to a recently published method.
2
 The 

product 53 (mixture of two diastereomers) was isolated with 56% yield, 94% / 92% ee for two isomers 

and 2.8:1 dr by column chromatography. The absolute configuration was assigned as 3S in following 

previous report.
2
 

Starting from 53, compound 24k-A was obtained by one-step transformation with an unchanged 

enantiomeric excess (94% / 92% ee for two isomers) in which the absolute configuration was assigned 
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to be 3S consistent with the starting material. []D
20

 = 12.0 (c 1.0, CH2Cl2). Enantiomeric excess 

was established by HPLC analysis by using a Daicel Chiralpak OD-H column, ee = 94% / 92%.  

HPLC for diastereomer 1: OD-H, Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol = 

99:1, flow rate 0.3 mL/min, 25 C, tr (minor) = 26.2 min, tr (major) = 35.2 min. 

HPLC for diastereomer 2: OD-H, Daicel column (250 x 4.6 mm), 254 nm, n-hexane/isopropanol = 

99:1, flow rate 0.3 mL/min, 25 C, tr (minor) = 36.4 min, tr (major) = 33.0 min. 

As for the hereby described asymmetric three-component fluoroalkylation reaction, 24k-B was 

synthesized under the developed standard conditions with Δ-RhS. The two diastereomers were 

isolated. []D
20

 = 13.4 (c 1.0, CH2Cl2). Enantiomeric excess was established by HPLC analysis by 

using a Chiralpak OD-H column, ee = 98% / 96% {OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow 

rate 0.3 mL/min, 25 C}. 

After comparing the HPLC traces and optical rotation of 24k-A and 24k-B synthesized by individual 

methods, the absolute configuration of 24k-B obtained from asymmetric three-component 

fluoroalkylation reaction was assigned as 3S. See the HPLC traces of 24k-A and 24k-B below: 

Compound 52: 

1
H NMR (500 MHz, CDCl3) δ 5.97 (s, 1H), 3.89-3.86 (m, 1H), 3.61-3.46 (m, 4H), 3.25 (dd, , J = 16.1, 

7.5 Hz, 1H), 2.97 (dd, , J = 16.1, 5.3 Hz, 1H), 2.52 (s, 3H), 2.50-2.41 (m, 2H), 2.33 (br, 1H), 2.29-2.16 

(m, 4H), 1.55-1.48 (m, 1H), 0.99 (d, J = 6.6 Hz, 6H). 

13
C NMR (125 MHz, CDCl3) δ 174.3, 152.1, 144.2, 127.0 (q, J = 277 Hz), 111.5, 75.5, 71.6, 61.9, 44.0, 

34.8 (q, J = 27.3 Hz), 32.9, 29.5, 21.4, 20.8, 14.8, 13.9. 

19
F NMR (282 MHz, CDCl3, major diastereoisomer) δ 64.5 (s, 3F). 

HRMS (ESI, m/z) calcd for C16H25F3N2O3Na
+
 [M+Na]

+
: 373.1709, found: 373.1709. 
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Diastereomer 1 

Diastereomer 2 

Diastereomer 1 

Diastereomer 2 

Diastereomer 1 

Diastereomer 2 
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2) Assigment of the Relative Configuration by NOE Analysis 

This part of work was conducted by Dr. Xiulan Xie in the NMR-Abteilung. 

Product 24k-B was obtained under asymmetric three-component fluoroalkylation conditions catalyzed 

by Δ-RhS to provide absolute configuration as 3S. Whereas, 24s was obtained under the identical 

conditions except employing Λ-RhS, thus, with the absolute configuration of 3R. 

Configuration and conformation of the two neighboring chiral centers of 24s was determined by NMR 

spectroscopy. 

Experimental: 

Sample for NMR measurements was about 16 mg of substance dissolved in 0.6 mL of CDCl3. 

Experiments were performed on a Bruker AVHD 500 MHz spectrometer equipped with a 5 mm TXI 

probe with z-gradient. NOESY experiments were performed with mixing times of 0.5, 0.8, and 1.5 s, 

while ROESY spectrum with mixing time 0.2 and 0.3 s was recorded in order to confirm the NOESY 

results. 

Results and Discussion: 

The 
1
H signals of hydrogen atoms attached to positions 2 – 15 appear in chemical shift region 0.5 – 4.0 

ppm, well resolved with coupling patterns from doublet to multiplet. Signal assignment was fulfilled 

by using 1D experiments 
1
H and 

13
C, as well as the 2D experiments 

1
H, 

1
H DQF-COSY and 

1
H, 

13
C 

HSQC experiments. Signals for the two diasterotopic hydrogen atoms on C-2 are separated for more 

than 0.2 ppm, which allowed us for an unambiguous stereospecific assignment of them.  

Figure 97 shows section of the NOESY spectrum in the range of 0.5 – 4.0 ppm. Numerous cross peaks 

were observed. These were correlations (in the order of chemical shift from low to high field) H-4/H13, 

H-4/H13’, H-4/H-12, H-4/H-3, H-4/H-6; H-6/H-15, H-6/H-15’, H-6/H-3; H-2
proS

/H-14, H-2
proS

/H-2
proR

, 

H-2
proS

/H-6, H-2
proR

/H-13, H-2
proR

/H-13’, H-2
proR

/H-12, H-2
proR

/H-3; H-14/H-12; H-3/H-13, H-3/H-13’, 

H-3/H-12; H-12/H-13, H-12/H-13’.  

Given the known absolute configuration of C-3 (3R), observation of NOE contact between H-3 and 

H-4 is expected to reveal a cis- (with NOE contact) or a trans- (without NOE contact) configuration of 

them. Nevertheless, a closer consideration of the observed NOE contacts among the neighboring 

groups revealed that neither a cis- nor a trans-configuration between H-3 and H-4 could fulfill those 

NOE contacts. Since the backbone of this molecule consists of 12 chemical bonds, and the two chiral 
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centers are built in the middle of the molecule, no free rotation along the bond between C-3 and C-4 is 

possible and this restriction in conformation came into play for the structural property of the molecule 

and resulted in the observed NOE contacts. 

The possible conformation between H-3 and H-4 are trans, gauche (+), and gauche (-). The 

characteristic NOE contacts H-4/H-3, H-4/H-12; H-6/H-3, H-6/H-2
proS

, H-2
proS

/H-14; and H-14/H-12  

provided us a unique gauche (+) conformation, as shown in Figure 97, which led further to an absolute 

configuration of (3R, 4S) of this molecule (24s). 

The only unequivocally determined vicinal coupling constants were those between H-2 and H-3. Thus 

6.8 Hz and 5.5 Hz were measured for 
3
JH2proSH3 and 

3
JH2proRH3, respectively. These measured vicinal 

coupling constants were apparent averaged values, which confirmed that restrict rotations still exist 

within the preferred conformation. See Figures 97 and 98. 

Taken together, the absolute and relative configuration of compound 24k-B was determined as (3S, 

4R), and all other compounds were assigned accordingly based on the employed Λ-RhS or Δ-RhS. 

 



Chapter 5. Experimental Part 

194 
 

 

Figure 97. Section of NOESY spectrum of 24s in CDCl3 at 300 K, mixing time 1.5 s. 

 

Figure 98. Structural scheme of 24s, with partial conformation sketch. 
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5.5 Synthesis of -Substituted γ-Aminobutyric Acid Derivatives via Enantioselective 

Photoredox Catalysis 

5.5.1 Synthesis of Substrates 

N-(Acyloxy)phthalimides 28a-g were synthesized according to a published procedure with some 

modifications.
3
 Analytical data of 28b and 28g were consistent with the report.

3
 The experimental data 

of 1a, 1c-f are shown below. 

 

1
H NMR (300 MHz, CDCl3, two rotamers) δ 8.007.87 (m, 2H), 7.807.70 (m, 2H), 4.44 (s, 2H), 4.29 

(s, 2H, other rotamer), 3.02 (s, 3H), 2.98 (s, 3H, other rotamer), 1.49 (s, 9H). 

13
C NMR (75 MHz, CDCl3, two rotamers) δ 166.6, 161.6, 155.1, 134.9, 128.9, 124.1, 81.3, 80.8 (other 

rotamer), 49.0, 48.1 (other rotamer), 35.7, 35.3 (other rotamer), 28.3, 28.1 (other rotamer).  

IR (film): ν (cm
1

) 2978, 2934, 1831, 1789, 1736, 1712, 1475, 1367, 1294, 1241, 1155, 1053, 966, 874, 

781, 696, 597, 556, 513. 

HRMS (ESI, m/z) calcd for C27H25N2O4 [M+H]
+
: 357.1057, found: 357.1074. 

 

1
H NMR (300 MHz, CDCl3) δ 7.917.88 (m, 2H), 7.817.78 (m, 2H), 5.06 (br, 1H), 1.73 (s, 6H), 1.53 

(s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 171.2, 161.7, 154.3, 134.7, 129.1, 123.9, 81.0, 55.9, 34.0, 28.2.  

IR (film): ν (cm
1

) 3265, 2977, 1815, 1786, 1733, 1709, 1618, 1468, 1364, 1259, 1169, 1133, 1082, 

1048, 968, 872, 824, 781, 694, 639, 590, 515, 459. 

HRMS (ESI, m/z) calcd for C17H20N2O6Na [M+ Na]
+
: 371.1214, found: 371.1225. 
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1
H NMR (300 MHz, CDCl3, two rotamers) δ 7.917.87 (m, 2H), 7.817.78 (m, 2H), 7.407.20 (m, 

5H), 4.69 (s, 2H), 1.52 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 166.8, 161.6, 153.9, 142.2, 134.9, 129.1, 129.0, 126.8, 126.4, 124.1, 

82.3, 50.2, 28.1. 

IR (film): ν (cm
1

) 2978, 1828, 1789, 1739, 1710, 1600, 1467, 1365, 1283, 1238, 1151, 1078, 1050, 

965, 872, 776, 693, 590, 556, 513, 411. 

HRMS (ESI, m/z) calcd for C21H20N2O6Na [M+Na]
+
: 419.1214, found: 419.1226. 

 

1
H NMR (300 MHz, CDCl3, two rotamers) δ 7.917.89 (m, 2H), 7.827.79 (m, 2H), 7.507.25 (m, 

10H), 5.31 (s, 2H), 5.30 (s, 2H, other rotamer), 4.72 (s, 2H), 4.70 (s, 2H, other rotamer), 4.44 (s, 2H), 

4.32 (s, 2H, other rotamer). 

13
C NMR (75 MHz, CDCl3, two rotamers) δ 166.2, 161.4, 156.2, 155.9, 136.1, 136.0, 134.8, 128.8, 

128.7, 128.5, 128.3, 128.1, 128.0, 127.9, 123.9, 68.1, 51.4, 50.9 (other rotamer), 45.5, 45.3 (other 

rotamer).  

IR (film): ν (cm
1

) 3064, 3031, 2945, 1827, 1790, 1741, 1706, 1607, 1586, 1496, 1466, 1453, 1425, 

1402, 1365, 1314, 1233, 1186, 1124, 1079, 1029, 1014, 971, 911, 875, 821, 770, 734, 694, 634, 597, 

567, 542, 517, 471, 403. 

HRMS (ESI, m/z) calcd for C25H20N2O6Na [M+ Na]
+
: 467.1214, found: 467.1228. 

 
1
H NMR (300 MHz, CDCl3, two rotamers) δ 7.937.90 (m, 2H), 7.837.75 (m, 4H), 7.61 (d, J = 7.4 

Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 5.41 (m, 1H), 4.604.20 (m, 5H).   

13
C NMR (75 MHz, CDCl3) δ 167.0, 161.5, 156.1, 143.7, 141.3, 135.0, 128.8, 127.8, 127.2, 125.1, 

124.2, 120.0, 67.6, 47.1, 40.7.  

IR (film): ν (cm
1

) 3369, 1827, 1789, 1736, 1520, 1451, 1363, 1247, 1176, 1131, 1078, 1001, 965, 876, 

732, 694, 517, 418. 

HRMS (ESI, m/z) calcd for C25H18N2O6Na [M+Na]
+
: 465.1057, found: 465.1069. 
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α,β-Unsaturated N-acylpyrazoles 29a-y were synthesized according to our recent published procedure. 

Analytical data of 29a
4
, 29b-c

5
, 29f-g

4
 were consistent with the report. The experimental data of 29d-f, 

2i-y are shown below. 

 

1
H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 2.7 Hz, 1H), 7.617.59 (m, 2H), 7.547.52 (m, 1H), 

7.457.38 (m, 3H), 6.26 (d, J = 2.7 Hz, 1H), 2.71 (d, J = 1.2 Hz, 3H), 2.34 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 163.2, 159.7, 153.3, 142.5, 129.6, 129.2, 128.6, 126.8, 115.3, 110.2, 

19.0, 14.0. 

IR (film): ν (cm
1

) 2924, 1687, 1605, 1545, 1438, 1395, 1352, 1318, 1267, 1197, 1073, 1036, 967, 918, 

873, 830, 753, 684, 566, 516, 475, 404. 

HRMS (ESI, m/z) calcd for C14H14N2ONa [M+Na]
+
: 249.0998, found: 249.1004. 

 

1
H NMR (300 MHz, CDCl3) δ 8.29 (d, J = 2.7 Hz, 1H), 7.877.83 (m, 2H), 7.607.48 (m, 3H), 7.34 

(d, J = 29.3 Hz, 1H), 6.31 (d, J = 2.8 Hz, 1H), 2.38 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 168.9 (d, J = 284.1 Hz, 1C), 160.2, 153.6, 132.2, 130.8 (d, J = 25.5 Hz, 

1C), 129.1, 128.8 (d, J = 2.0 Hz, 1C), 126.3 (d, J = 8.4 Hz, 1C), 110.7, 95.1 (d, J = 1.8 Hz, 1C), 14.0. 

19
F NMR (282 MHz, CDCl3) δ 92.5. 

IR (film): ν (cm
1

) 2924, 2856, 1701, 1631, 1547, 1493, 1403, 1351, 1321, 1287, 1196, 1051, 936, 883, 

832, 762, 676, 607, 515, 440. 

HRMS (ESI, m/z) calcd for C13H11FN2ONa [M+Na]
+
: 253.0748, found: 253.0758. 

 

1
H NMR (300 MHz, CDCl3) δ 7.357.18 (m, 2H), 6.00 (s, 1H), 2.61 (s, 3H), 2.292.24 (m, 5H), 1.86 

(m, 1H), 0.99 (d, J = 6.7 Hz, 6H). 

13
C NMR (75 MHz, CDCl3) δ 165.3, 151.8, 150.7, 144.5, 122.2, 111.3, 42.0, 28.1, 22.5, 14.7, 13.9. 

IR (film): ν (cm
1

) 2958, 2927, 2873, 1706, 1638, 1580, 1467, 1439, 1410, 1376, 1343, 1296, 1267, 
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1243, 1170, 1138, 989, 961, 892, 850, 803, 752, 695, 623, 483. 

HRMS (ESI, m/z) calcd for C12H18N2ONa [M+Na]
+
: 229.1318, found: 229.1318. 

 

1
H NMR (300 MHz, CDCl3) δ 8.20 (d, J = 2.6 Hz, 1H), 7.88 (d, J = 12.6 Hz, 1H), 6.59 (d, J = 12.6 Hz, 

1H), 6.23 (d, J = 2.7 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 2.32 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 165.2, 164.6, 153.2, 129.0, 109.9, 95.2, 67.5, 14.4, 14.0. 

IR (film): ν (cm
1

) 2984, 1697, 1602, 1547, 1447, 1350, 1299, 1233, 1187, 1044, 959, 894, 831, 773, 

727, 685, 518, 410. 

HRMS (ESI, m/z) calcd for C9H12N2O2Na [M+ Na]
+
: 203.0796, found: 203.0796. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.6 Hz, 1H), 7.98 (d, J = 16.0 Hz, 1H), 7.82 (d, J = 16.0 Hz, 

1H), 7.59 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.29 (d, J = 2.8 Hz, 1H), 2.39 (s, 3H), 2.38 (s, 

3H). 

13
C NMR (75 MHz, CDCl3) δ 163.6, 153.7, 147.5, 141.5, 132.0, 129.7, 129.5, 128.9, 115.0, 110.6, 

21.6, 14.1. 

IR (film): ν (cm
1

) 2858, 1694, 1612, 1546, 1407, 1377, 1343, 1202, 1054, 946, 884, 803, 769, 728, 

680, 543, 516, 487, 446, 402. 

HRMS (ESI, m/z) calcd for C14H14N2ONa [M+Na]
+
: 249.0998, found: 249.1005. 

 

1
H NMR (300 MHz, CDCl3) δ 7.91 (d, J = 15.9 Hz, 1H), 7.83 (d, J = 15.9 Hz, 1H), 7.657.60 (m, 3H), 

6.92 (d, J = 8.8 Hz, 2H), 6.19 (m, 1H), 3.85 (s, 3H), 2.67 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 166.1, 161.9, 146.6, 143.7, 142.1, 130.6, 127.6, 115.1, 114.5, 110.4, 

55.5, 14.8. 

IR (film): ν (cm
1

) 2860, 1697, 1614, 1571, 1509, 1422, 1351, 1307, 1290, 1249, 1227, 1204, 1187, 

1152, 1116, 1010, 983, 950, 904, 888, 808, 776, 731, 674, 636, 556, 518, 450, 394. 
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HRMS (ESI, m/z) calcd for C14H14N2O2Na [M+Na]
+
: 265.0947, found: 265.0953. 

 

1
H NMR (300 MHz, CDCl3) δ 8.29 (d, J = 2.7 Hz, 1H), 7.97 (d, J = 16.0 Hz, 1H), 7.80 (d, J = 16.1 Hz, 

1H), 7.737.68 (m, 2H), 7.167.10 (m, 2H), 6.32 (d, J = 2.8 Hz, 1H), 2.39 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 164.4 (d, J = 253.1 Hz, 1C), 163.3, 153.9, 145.9, 131.0, 130.9, 130.7, 

129.5, 116.2 (d, J = 22.2 Hz, 1C), 110.7, 14.0. 

IR (film): ν (cm
1

) 3156, 1695, 1624, 1593, 1550, 1503, 1412, 1349, 1287, 1202, 1154, 1096, 1055, 

978, 944, 887, 821, 772, 734, 680, 600, 545, 505, 451, 404. 

HRMS (ESI, m/z) calcd for C13H11FN2ONa [M+ Na]
+
: 253.0748, found: 253.0754. 

 

1
H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 2.8 Hz, 1H), 7.93 (d, J = 16.0 Hz, 1H), 7.83 (d, J = 16.0 Hz, 

1H), 7.62 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 6.30 (d, J = 2.8 Hz, 1H), 2.37 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 163.2, 154.0, 145.7, 136.9, 133.2, 130.0, 129.5, 129.3, 116.8, 110.8, 

14.0. 

IR (film): ν (cm
1

) 3074, 1684, 1599, 1548, 1508, 1403, 1376, 1338, 1275, 1205, 1063, 1039, 971, 939, 

856, 827, 772, 742, 708, 588, 530, 480, 437. 

HRMS (ESI, m/z) calcd for C13H11ClN2ONa [M+Na]
+
: 269.0452, found: 269.0461. 

 

1
H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 2.7 Hz, 1H), 8.238.20 (m, 1H), 8.16 (d, J = 16.1 Hz, 1H), 

8.03 (s, 1H), 8.017.98 (m, 1H), 7.93 (d, J = 16.1 Hz, 1H), 7.457.36 (m, 2H), 6.31 (d, J = 2.8 Hz, 

1H), 2.40 (s, 3H), 1.70 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 163.8, 153.8, 149.2, 138.9, 136.4, 129.8, 129.5, 128.0, 125.5, 123.9, 

120.6, 117.4, 115.7, 115.1, 110.5, 84.9, 28.3, 14.1. 

IR (film): ν (cm
1

) 2978, 2930, 1733, 1697, 1615, 1548, 1451, 1411, 1351, 1303, 1243, 1200, 1150, 

1093, 1065, 1043,978, 947, 846, 811, 759, 736, 634, 552, 509, 451, 416. 
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HRMS (ESI, m/z) calcd for C20H22N3O3 [M+H]
+
: 352.1656, found: 352.1667. 

 
1
H NMR (300 MHz, CDCl3) δ 8.26 (d, J = 2.8 Hz, 1H), 8.09 (d, J = 15.6 Hz, 1H), 7.63 (d, J = 15.6 Hz, 

1H), 7.46 (d, J = 5.1 Hz, 1H), 7.41 (d, J = 3.6 Hz, 1H), 7.10 (dd, J = 5.0, 3.7 Hz, 1H), 6.29 (d, J = 2.8 

Hz, 1H), 2.38 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 163.4, 153.9, 140.2, 139.5, 132.2, 129.7, 129.4, 128.3, 114.9, 110.7, 

14.1. 

IR (film): ν (cm
1

) 2921, 1693, 1612, 1545, 1508, 1407, 1378, 1342, 1201, 1112, 1052, 945, 883, 803, 

768, 727, 679, 599, 542, 515, 486, 444. 

HRMS (ESI, m/z) calcd for C11H10N2OSNa [M+Na]
+
: 241.0406, found: 241.0412. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.94 (d, J = 15.9 Hz, 1H), 7.80 (d, J = 15.9 Hz, 

1H), 7.2937.26 (m, 1H), 7.20 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 2.7 Hz, 1H), 

4.86 (m, 1H), 3.89 (s, 3H), 2.38 (s, 3H), 2.221.80 (m, 6H), 1.701.58 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 163.7, 153.7, 153.0, 148.0, 147.8, 129.5, 127.7, 123.3, 114.7, 113.4, 

111.7, 110.4, 80.8, 56.1, 32.9, 24.2, 14.0. 

IR (film): ν (cm
1

) 2950, 2950, 1697, 1597, 1504, 1433, 1408, 1348, 1265, 1195, 1162, 1134, 1066, 

1041, 990, 952, 848, 804, 764, 509, 450, 417. 

HRMS (ESI, m/z) calcd for C19H22N2O3Na [M+Na]
+
: 349.1523, found: 349.1533. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.96 (d, J = 15.9 Hz, 1H), 7.80 (d, J = 15.9 Hz, 

1H), 7.48 (d, J = 8.1 Hz, 1H), 7.44 (s, 1H), 7.35 (d, J = 8.0 Hz, 1H), 6.30 (d, J = 2.7 Hz, 1H), 

2.992.96 (m, 2H), 2.562.30 (m, 6H), 2.191.97 (m, 4H), 1.701.40 (m, 6H), 0.92 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 220.7, 163.6, 153.8, 147.4, 143.4, 137.3, 132.3, 129.5, 126.5, 126.0, 

115.2, 110.6, 50.7, 48.0, 44.8, 38.1, 35.9, 31.7, 29.3, 26.4, 25.7, 21.7, 14.1, 13.9. 
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IR (film): ν (cm
1

) 2923, 2863, 1732, 1693, 1618, 1550, 1409, 1345, 1209, 1062, 1002, 949, 821, 781, 

730, 587, 563, 440. 

HRMS (ESI, m/z) calcd for C25H29N2O2 [M+H]
+
: 389.2224, found: 389.2232. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 33.7 Hz, 

1H), 7.29 (d, J = 7.2 Hz, 2H), 6.29 (d, J = 2.7 Hz, 1H), 2.44 (s, 3H), 2.37 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 169.3 (d, J = 284.1 Hz, 1C), 160.3 (d, J = 2.2 Hz, 1C), 153.5, 143.0, 

129.7 (d, J = 2.0 Hz, 1C), 129.1, 128.0 (d, J = 25.0 Hz, 1C), 126.3 (d, J = 8.4 Hz, 1C), 110.6, 94.1 (d, 

J = 1.8 Hz, 1C), 21.7, 14.0. 

19
F NMR (282 MHz, CDCl3) δ 92.5. 

IR (film): ν (cm
1

) 3114, 2924, 1700, 1633, 1545, 1511, 1443, 1404 ,1347, 1319, 1286, 1191, 1128, 

1075, 1041, 940, 886, 815, 779, 717, 680, 635, 597, 561, 511, 464. 

HRMS (ESI, m/z) calcd for C14H13FN2ONa [M+Na]
+
: 267.0904, found: 267.0911. 

 

1
H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 2.7 Hz, 1H), 7.697.64 (m, 2H), 7.477.30 (m, 3H), 6.32 

(d, J = 2.7 Hz, 1H), 2.46 (s, 3H), 2.39 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 169.2 (d, J = 284.8 Hz, 1C), 160.2 (d, J = 2.2 Hz, 1C), 153.5, 138.7 (d, J 

= 2.0 Hz, 1C), 133.0, 130.6 (d, J = 25.2 Hz, 1C), 129.0, 128.8 (d, J = 1.9 Hz, 1C), 126.6 (d, J = 8.3 Hz, 

1C), 123.5 (d, J = 8.4 Hz, 1C), 110.6, 94.7 (d, J = 1.8 Hz, 1C), 21.4, 13.9. 

IR (film): ν (cm
1

) 2956, 1709, 1632, 1545, 1445, 1405, 1347, 1317, 1202, 1049, 947, 893, 856, 830, 

775, 719, 683, 648, 538, 511, 467, 424. 

HRMS (ESI, m/z) calcd for C14H13FN2ONa [M+Na]
+
: 267.0904, found: 267.0914. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.40 (m, 1H), 

7.307.22 (m, 2H), 7.11 (d, J = 32.3 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 2.53 (d, J = 3.8 Hz, 3H), 2.33 
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(s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 171.2 (d, J = 290.0 Hz, 1C), 160.0 (d, J = 2.6 Hz, 1C), 153.6, 137.6, 

131.4, 131.1 (d, J = 22.5 Hz, 1C), 129.3 (d, J = 6.2 Hz, 1C), 129.0, 126.1, 110.7, 99.4 (d, J = 2.8 Hz, 

1C), 20.8 (d, J = 4.4 Hz, 1C), 13.9. 

19
F NMR (282 MHz, CDCl3) δ 75.3. 

IR (film): ν (cm
1

) 3108, 2927, 1733, 1696, 1632, 1547, 1484, 1447, 1407, 1386, 1345, 1306, 1263, 

1202, 1119, 1058, 1020, 938, 883, 845, 811, 765, 720, 655, 617, 512, 453, 406. 

HRMS (ESI, m/z) calcd for C14H13FN2ONa [M+Na]
+
: 267.0904, found: 267.0910. 

 

1
H NMR (300 MHz, CDCl3) δ 8.17 (d, J = 2.7 Hz, 1H), 7.68 (d, J = 9.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 

1H), 6.88 (d, J = 8.7 Hz, 2H), 6.18 (d, J = 2.7 Hz, 1H), 3.79 (s, 3H), 2.26 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 169.3 (d, J = 282.8 Hz, 1C), 160.4 (d, J = 2.3 Hz, 1C), 162.9, 153.4, 

129.1, 128.2 (d, J = 8.9 Hz, 1C), 123.1 (d, J = 25.3 Hz, 1C), 114.4 (d, J = 2.0 Hz, 1C), 110.5, 92.5 (d, J 

= 1.9 Hz, 1C), 55.6, 14.0. 

19
F NMR (282 MHz, CDCl3) δ 92.3. 

IR (film): ν (cm
1

) 3153, 3005, 2932, 2845, 1705, 1637, 1602, 1549, 1510, 1461, 1409, 1349, 1263, 

1194, 1045, 1014, 943, 883, 825, 769, 719, 685, 633, 579, 508, 446. 

HRMS (ESI, m/z) calcd for C14H13FN2O2Na [M+ Na]
+
: 283.0853, found: 283.0863. 

 

1
H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.40 (m, 1H), 

7.307.22 (m, 2H), 7.11 (d, J = 32.3 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 2.53 (d, J = 3.8 Hz, 3H), 2.33 

(s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 168.7 (d, J = 283.0 Hz, 1C), 160.1 (d, J = 2.1 Hz, 1C), 153.4, 144.9, 

128.9, 126.7 (d, J = 25.8 Hz, 1C), 126.4 (d, J = 8.5 Hz, 1C), 125.5 (d, J = 2.0 Hz, 1C), 110.5, 93.8 (d, 

J = 1.8 Hz, 1C), 14.8, 13.9. 

19
F NMR (282 MHz, CDCl3) δ 93.7 (t, J = 15.9 Hz). 
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IR (film): ν (cm
1

) 3122, 2923, 1702, 1628, 1591, 1544, 1487, 1441, 1402, 1341, 1196, 1096, 1051, 

939, 885, 849, 818, 767, 721, 658, 590, 471, 416. 

HRMS (ESI, m/z) calcd for C14H13FN2OSNa [M+ Na]
+
: 299.0625, found: 299.0632. 

 

1
H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 2.7 Hz, 1H), 7.76 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 

2H), 7.37 (d, J = 33.8 Hz, 1H), 6.28 (d, J = 2.7 Hz, 1H), 2.35 (s, 3H), 1.35 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 169.3 (d, J = 282.9 Hz, 1C), 160.4 (d, J = 2.2 Hz, 1C), 156.1, 153.5, 

129.1, 128.0 (d, J = 25.4 Hz, 1C), 126.2 (d, J = 8.4 Hz, 1C), 126.0 (d, J = 2.0 Hz, 1C), 110.6, 94.2 (d, 

J = 1.7 Hz, 1C), 35.2, 31.2, 14.0. 

19
F NMR (282 MHz, CDCl3) δ 92.5. 

IR (film): ν (cm
1

) 2952, 2903, 2866, 1702, 1628, 1551, 1513, 1451, 1403, 1343, 1267, 1193, 1115, 

1045, 939, 884, 830, 763, 725, 671, 643, 596, 513. 

HRMS (ESI, m/z) calcd for C17H20FN2O [M+H]
+
: 287.1554, found: 287.1562. 

 

1
H NMR (300 MHz, CDCl3) δ 8.25 (d, J = 2.7 Hz, 1H), 7.767.73 (m, 2H), 7.467.32 (m, 3H), 6.28 

(d, J = 2.7 Hz, 1H), 2.35 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 167.7 (d, J = 283.6 Hz, 1C), 160.0 (d, J = 2.4 Hz, 1C), 153.7, 138.5, 

129.4, 129.3 (d, J = 2.0 Hz, 1C), 129.1, 127.5 (d, J = 8.3 Hz, 1C), 110.9, 95.5 (d, J = 1.9 Hz, 1C), 

14.0. 

19
F NMR (282 MHz, CDCl3) δ 94.7. 

IR (film): ν (cm
1

) 3108, 2922, 2856, 1699, 1634, 1550, 1485, 1408, 1350, 1319, 1275, 1197, 936, 880, 

821, 769, 720, 664, 635, 594, 503, 467, 419. 

HRMS (ESI, m/z) calcd for C13H10ClFN2ONa [M+Na]
+
: 287.0358, found: 287.0365. 
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1
H NMR (300 MHz, CDCl3) δ 8.438.34 (m, 3H), 8.29 (d, J = 2.7 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 

7.94 (dd, J = 8.9, 1.8 Hz, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.607.40 (m, 3H), 7.15 (d, J = 8.1 Hz, 2H), 

6.31 (d, J = 2.7 Hz, 1H), 2.39 (s, 3H), 2.29 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 168.9 (d, J = 282.7 Hz, 1C), 160.1 (d, J = 2.0 Hz, 1C), 153.6, 145.5, 

140.5, 139.0, 134.8, 129.9, 129.1, 128.4, 126.8 (d, J = 1.6 Hz, 1C), 126.6, 126.3 (d, J = 25.5 Hz, 1C), 

125.5, 125.4 (d, J = 8.4 Hz, 1C), 124.4, 120.5, 118.3 (d, J = 8.8 Hz, 1C), 115.4 (d, J = 1.8 Hz, 1C), 

115.2, 110.7, 94.6 (d, J = 1.6 Hz, 1C), 21.6, 14.0.  

19
F NMR (282 MHz, CDCl3) δ 91.9. 

IR (film): ν (cm
1

) 1699, 1621, 1546, 1483, 1441, 1406, 1363, 1335, 1299, 1264, 1234, 1191, 1175, 

1146, 1081, 1047, 976, 945, 885, 809, 770, 741, 684, 660, 634, 586, 563, 536, 514, 465, 416. 

HRMS (ESI, m/z) calcd for C26H20FN3O3SNa [M+Na]
+
: 496.1102, found: 496.1115. 

5.5.2 Rhodium-Catalyzed Giese-Type Reaction Activated by Visible Light 

A dried 10 mL Schlenk tube was charged with N-hydroxyphthalimide esters 28a-f (1.5 equiv.), 

N-acyl pyrazoles 29a-y (1.0 equiv.), Λ-RhS (8 mol%) or Δ-RhS (8 mol%), and Hantzsch ester (2.0 

equiv.) in acetone (0.1 M or 0.2 M). The reaction mixture was degassed via freeze-pump-thaw for two 

cycles. After the mixture was thoroughly degassed, the Schlenk tube was sealed tightly with a Teflon 

septum and positioned close to 23 W CFL. The reaction was stirred at room temperature for the 

indicated time (monitored by TLC) under an atmosphere of nitrogen. Afterwards, the mixture was 

diluted with CH2Cl2. The organic solutions were concentrated under reduced pressure. The crude 

material was purified by flash chromatography on silica gel (n-hexane/EtOAc or n-hexane/Et2O) to 

afford the CC formation products 30a-c, 30e-30ad. Racemic samples were obtained by carrying out 

the reactions with rac-RhS. The enantiomeric excess was determined by chiral HPLC analysis. 

Remark: In case of the synthesis of 30l, 30u and 30z, the CC formation products showed the similar 

Rf values with the unconsumed Hantzsch ester (HE), thus couldn’t be separated completely from HE 

on silica gel chromatography column. Therefore, the Hantzsch ester could be consumed through in situ 

oxidation to the corresponding pyridine derivative by opening the Schlenk tube to the air and stirring 

for another 23 hours under the irradiation of 23 W CFL. 
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According to the general procedure, a mixture of 28a (100.2 mg, 0.30 mmol, 

1.5 equiv.), 29a (32.8 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.40 mmol, 2.0 equiv.) in acetone (1.0 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30a as a colorless oil (53.0 mg, 86% 

yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.7 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

94% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.3 mL/min, 25 C, tr (major) = 32.8 

min, tr (minor) = 37.4 min). []D
22

 = 6.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 5.96 (s, 1H), 3.24 (dd, J = 13.9, 7.7 Hz, 1H), 3.143.05 (m, 2H), 

2.902.80 (m, 4H), 2.51 (s, 3H), 2.482.38 (m, 1H), 2.19 (s, 3H), 1.42 (s, 9H), 0.96 (d, J = 6.7 Hz, 

3H). 

13
C NMR (125 MHz, CD2Cl2) δ 173.3, 156.0, 151.9, 144.1, 111.1, 79.4, 54.9, 40.2, 34.7, 29.2, 28.4, 

17.8, 14.6, 13.8. 

IR (film): ν (cm
1

) 2968, 2927, 1726, 1693, 1583, 1456, 1384, 1335, 1247, 1216, 1086, 1044, 995, 962, 

877, 801, 770, 745, 713, 641, 527. 

HRMS (ESI, m/z) calcd for C16H27N3O3Na [M+Na]
+
: 332.1945, found: 332.1952. 

According to the general procedure, a mixture of 28a (100.2 mg, 0.30 mmol, 

1.5 equiv.), 29b (45.2 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.40 mmol, 2.0 equiv.) was stirred under nitrogen atmosphere for 16 hours under irradiation with 23 W 

CFL at room temperature to afford 30b as a colorless oil (40.3 mg, 54% yield, 90% ee). Purification 

conditions: n-hexane/Et2O = 20:1 to 10:1, Rf = 0.4 in n-hexane/EtOAc (5:1). Enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 90% (HPLC: 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 C, tr (major) = 11.0 min, tr (minor) = 11.8 

min). []D
22

 = 70.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.387.20 (m, 5H), 5.97 (s, 1H), 3.703.25 (m, 5H), 2.75 (s, 3H), 2.45 

(s, 3H), 2.24 (s, 3H), 1.40 (s, 9H). 
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13
C NMR (125 MHz, CD2Cl2) δ 172.4, 155.6, 152.1, 144.2, 142.5, 128.7, 128.3, 127.1, 111.2, 79.5, 

55.1, 40.5, 38.9, 34.7, 28.3, 14.5, 13.8. 

IR (film): ν (cm
1

) 2971, 2926, 1694, 1457, 1384, 1340, 1229, 1165, 963, 880, 762, 700, 654, 520, 

422. 

HRMS (ESI, m/z) calcd for C21H29N3O3Na [M+Na]
+
: 394.2101, found: 394.2106. 

According to the general procedure, a mixture of 28a (100.2 mg, 0.30 mmol, 

1.5 equiv.) and 29c (42.4 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.40 mmol, 2.0 equiv.) was stirred under nitrogen atmosphere for 16 hours under irradiation with 23 W 

CFL at room temperature to afford 30c as a colorless oil (59.9 mg, 84% yield, 95% ee). Purification 

conditions: n-hexane/Et2O = 20:1 to 10:1, Rf = 0.4 in n-hexane/EtOAc (5:1).  Enantiomeric excess 

was established by HPLC analysis using a Chiralpak IG column, ee = 95% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 C, tr (major) = 15.4 min, tr (minor) = 23.6 

min). []D
22

 = 89.8 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.06 (d, J = 2.7 Hz, 1H), 7.407.20 (m, 5H), 6.25 (d, J = 2.8 Hz, 1H), 

3.803.25 (m, 5H), 2.75 (s, 3H), 2.32 (s, 3H), 1.40 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.1, 153.8, 141.9, 128.7, 128.6, 128.5, 127.9, 126.9, 110.2, 79.3, 

54.8, 40.3, 37.3, 34.4, 28.0, 13.7. 

IR (film): ν (cm
1

) 2960, 2925, 1708, 1552, 1481, 1454, 1414, 1372, 1268, 1212, 1142, 1060, 875, 775, 

699, 525. 

HRMS (ESI, m/z) calcd for C20H27N3O3Na [M+Na]
+
: 380.1945, found: 380.1954. 

According to the general procedure, a mixture of 28b (96.0 mg, 0.30 mmol, 

1.5 equiv.), 29a (32.8 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.40 mmol, 2.0 equiv.) in acetone (1.0 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30f as a colorless oil (52.0 mg, 88% 

yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 



Chapter 5. Experimental Part 

208 
 

94% (HPLC: 254 nm, n-hexane/isopropanol = 97:3, flow rate 0.5 mL/min, 25 C, tr (major) = 25.2 

min, tr (minor) = 28.0 min). []D
22

 = 11.8 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 5.98 (s, 1H), 5.02 (br, 1H), 3.13 (dd, J = 15.7, 6.5 Hz, 1H), 3.06 (t, J = 

6.3 Hz, 2H), 2.86 (d, J = 15.7, 7.1 Hz, 1H), 2.51 (s, 3H), 2.282.16 (m, 4H), 1.40 (s, 9H), 1.00 (d, J = 

6.8 Hz, 3H). 

13
C NMR (75 MHz, CD2Cl2) δ 173.4, 156.3, 152.1, 144.3, 111.2, 78.9, 46.2, 40.0, 31.4, 28.4, 18.1, 

14.7, 13.8. 

IR (film): ν (cm
1

) 3341, 2977, 2928, 1723, 1684, 1535, 1476, 1453, 1438, 1412, 1382, 1372, 1364, 

1338, 1309, 1278, 1252, 1169, 1123, 1036, 982, 932, 886, 841, 766, 749, 657, 550, 461, 390. 

HRMS (ESI, m/z) calcd for C15H25N3O3Na [M+Na]
+
: 318.1788, found: 318.1798. 

According to the general procedure, a mixture of 28b (96.0 mg, 0.30 mmol, 

1.5 equiv.), 29f (41.2 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.40 mmol, 2.0 equiv.) in acetone (1.0 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30g as a colorless oil (58.6 mg, 87% 

yield, 92% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

92% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 0.4 mL/min, 25 C, tr (major) = 17.6 

min, tr (minor) = 14.6 min). []D
22

 = 24.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 5.89 (s, 1H), 5.16 (br, 1H), 3.132.90 (m, 3H), 2.85 (dd, J = 15.4, 5.2 

Hz, 1H), 2.47 (s, 3H), 2.282.12 (m, 4H), 1.66 (s, 1H), 1.34 (s, 9H), 1.17 (t, J = 6.9 Hz, 2H), 0.85 (d, J 

= 3.7 Hz, 3H), 0.82 (d, J = 3.7 Hz, 3H). 

13
C NMR (125 MHz, CD2Cl2) δ 173.6, 156.2, 152.1, 144.2, 111.2, 78.9, 44.0, 41.9, 38.2, 33.9, 28.5, 

25.2, 22.8, 22.7, 14.7, 13.8. 

IR (film): ν (cm
1

) 3368, 2959, 2928, 2872, 1714, 1584, 1513, 1448, 1375, 1336, 1245, 1168, 1105, 

1038, 962, 861, 804, 775, 747, 649, 586. 

HRMS (ESI, m/z) calcd for C18H31N3O3Na [M+ Na]
+
: 360.2258, found: 360.2267. 
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According to the general procedure, a mixture of 28b (72.0 mg, 0.225 mmol, 

1.5 equiv.), 29g (28.8 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 

0.30 mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30h as a colorless oil (41.3 mg, 

85% yield, 92% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.7 in 

n-hexane/EtOAc (5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG 

column, ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 97:3, flow rate 1.0 mL/min, 25 C, tr 

(major) = 16.0 min, tr (minor) = 17.3 min). []D
22

 = 18.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 6.00 (s, 1H), 5.20 (br, 1H), 3.203.02 (m, 3H), 2.94 (dd, J = 15.6, 5.7 

Hz, 1H), 2.54 (d, J = 0.8 Hz, 3H), 2.302.15 (m, 4H), 1.481.34 (m, 13H), 0.94 (t, J = 6.8 Hz, 3H). 

13
C NMR (125 MHz, CD2Cl2) δ 173.4, 156.0, 151.9, 144.1, 111.0, 78.5, 43.8, 37.9, 35.8, 34.7, 28.1, 

20.0, 14.4, 14.0, 13.5. 

IR (film): ν (cm
1

) 3366, 2962, 2927, 2868, 1712, 1582, 1513, 1454, 1376, 1336, 1245, 1168, 1035, 

962, 859, 800, 743, 643, 588, 525. 

HRMS (ESI, m/z) calcd for C17H29N3O3Na [M+ Na]
+
: 346.2101, found: 346.2115. 

According to the general procedure, a mixture of 28b (72.0 mg, 0.225 mmol, 

1.5 equiv.), 29h (33.0 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 

0.30 mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30i as a colorless oil (42.7 mg, 

81% yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.7 in 

n-hexane/EtOAc (5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.5 mL/min, 25 C, 

tr (major) = 20.5 min, tr (minor) = 18.3 min). []D
22

 = 31.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 6.00 (s, 1H), 5.20 (br, 1H), 3.213.02 (m, 3H), 2.94 (dd, J = 15.6, 5.6 

Hz, 1H), 2.54 (d, J = 0.8 Hz, 3H), 2.302.10 (m, 4H), 1.451.36 (m, 13H), 1.351.25 (m, 4H), 0.91 (t, 

J = 6.6 Hz, 3H). 
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13
C NMR (125 MHz, CD2Cl2) δ 173.5, 156.0, 151.8, 144.1, 111.0, 78.5, 43.8, 37.9, 36.0, 32.4, 32.0, 

28.1, 26.5, 22.6, 14.4, 13.9, 13.5. 

IR (film): ν (cm
1

) 3363, 2957, 2927, 2858, 1716, 1583, 1511, 1455, 1411, 1378, 1364, 1340, 1245, 

1168, 983, 962, 801, 746. 

HRMS (ESI, m/z) calcd for C19H33N3O3Na [M+Na]
+
: 374.2414, found: 374.2423. 

According to the general procedure, a mixture of 28b (72.0 mg, 0.225 mmol, 

1.5 equiv.), 29i (27.0 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.30 

mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 20 hours 

under irradiation with 23 W CFL at room temperature to afford 30j as a colorless oil (41.6 mg, 89% 

yield, 97% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in n-hexane/EtOAc 

(10:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

97% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr (major) = 7.0 

min, tr (minor) = 8.6 min). []D
22

 = 11.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 2.8 Hz, 1H), 6.17 (d, J = 2.7 Hz, 1H), 4.87 (br, 1H), 3.98 

(m, 1H), 3.593.44 (m, 2H), 3.353.20 (m, 3H), 3.13 (dd, J = 16.2, 5.7 Hz, 1H), 2.24 (s, 3H), 1.37 (s, 

9H), 1.08 (t, J = 6.9 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 169.5, 156.1, 154.0, 129.0, 110.7, 79.4, 74.4, 65.3, 43.4, 37.1, 28.5, 

15.5, 14.0. 

IR (film): ν (cm
1

) 3359, 2975, 2930, 1717, 1548, 1513, 1413, 1388, 1342, 1249, 1169, 1101, 1048, 

937, 774. 

HRMS (ESI, m/z) calcd for C15H25N3O4Na [M+Na]
+
: 334.1737, found: 334.1752. 

According to the general procedure, a mixture of 28b (72.0 mg, 0.225 mmol, 

1.5 equiv.), 29j (33.9 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 

0.30 mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30k as a colorless oil (45.5 mg, 
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85% yield, 95% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.5 in 

n-hexane/EtOAc (10:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

OD-H column, ee = 95% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 C, 

tr (major) = 11.4 min, tr (minor) = 15.8 min). []D
22

 = 54.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.07 (d, J = 2.7 Hz, 1H), 7.14 (dd, J = 15.0, 8.1 Hz, 4H), 6.20 (d, J = 

2.7 Hz, 1H), 4.57 (br, 1H), 3.563.40 (m, 4H), 3.33 (m, 1H), 2.31 (m, 6H), 1.39 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.2, 155.9, 153.9, 138.4, 136.7, 129.5, 129.1, 127.7, 110.4, 79.3, 

45.9, 41.3, 37.8, 28.4, 21.1, 14.0. 

IR (film): ν (cm
1

) 3391, 3192, 2974, 2925, 1720, 1689, 1599, 1551, 1509, 1459, 1412, 1364, 1339, 

1303, 1243, 1164, 1085, 1046, 938, 862, 814, 778, 742, 712, 642, 605, 526, 470, 428. 

HRMS (ESI, m/z) calcd for C20H27N3O3Na [M+Na]
+
: 380.1954, found: 380.1954. 

According to the general procedure, a mixture of 28b (48.0 mg, 0.15 mmol, 

1.5 equiv.), 29k (24.2 mg, 0.10 mmol), Λ-RhS (7.0 mg, 0.008 mmol, 8 mol%), and HE (50.4 mg, 0.2 

mmol, 2.0 equiv.) in acetone (0.5 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30l as a colorless oil (30.0 mg, 80% 

yield, 97% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 6:1, Rf = 0.4 in n-hexane/EtOAc 

(4:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

97% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr (major) = 23.8 

min, tr (minor) = 14.0 min). []D
22

 = 32.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.54 (d, J = 0.9 Hz, 1H), 7.21 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 

2H), 6.16 (m, 1H), 4.61 (br, 1H), 3.80 (s, 3H), 3.49 (m, 4H), 3.343.22 (m, 1H), 2.53 (s, 3H), 1.40 (s, 

9H). 

13
C NMR (125 MHz, CD2Cl2) δ 172.7, 158.8, 155.7, 143.4, 142.3, 133.8, 128.8, 114.1, 110.2, 79.0, 

55.3, 46.1, 41.0, 39.3, 28.1, 14.2.  

IR (film): ν (cm
1

) 3381, 2930, 1730, 1689, 1611, 1509, 1462, 1376, 1337, 1303, 1239, 1208, 1157, 

1083, 1036, 981, 944, 903, 864, 819, 787, 747, 640, 595, 563, 523, 455. 

HRMS (ESI, m/z) calcd for C20H27N3O4Na [M+Na]
+
: 396.1894, found: 396.1903. 
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According to the general procedure, a mixture of 28b (72.0 mg, 0.225 mmol, 

1.5 equiv.), 29l (34.5 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30m as a pale yellow oil (31.3 mg, 

58% yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 6:1, Rf = 0.4 in 

n-hexane/EtOAc (4:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

OD-H column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, 

tr (major) = 6.9 min, tr (minor) = 7.9 min). []D
22

 = 33.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.06 (d, J = 2.8 Hz, 1H), 7.287.22 (m, 2H), 7.036.97 (m, 2H), 6.24 

(d, J = 2.8 Hz, 1H), 4.67 (br, 1H), 3.543.40 (m, 4H), 3.333.24 (m, 1H), 2.29 (s, 3H), 1.37 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.3, 162.2 (d, J = 244.6 Hz, 1C), 154.3, 137.8, 129.8, 129.7, 129.1, 

115.6 (d, J = 21.4 Hz, 1C), 110.7, 79.3, 46.0, 41.4, 37.9, 28.4, 14.0.  

19
F NMR (282 MHz) δ 116.8. 

IR (film): ν (cm
1

) 3397, 2924, 2857, 1721, 1689, 1604, 1553, 1514, 1453, 1416, 1389, 1334, 1290, 

1221, 1164, 1056, 933, 829, 781, 741, 692, 584, 545, 478, 435. 

HRMS (ESI, m/z) calcd for C19H24FN3O3Na [M+Na]
+
: 384.1694, found: 384.1704. 

According to the general procedure, a mixture of 28b (96.0 mg, 0.3 mmol, 1.5 

equiv.), 29m (49.3 mg, 0.20 mmol), Λ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101 mg, 0.2 

mmol, 2.0 equiv.) in acetone (1.0 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30n as a pale yellow solid (61.8 mg, 

82% yield, 90% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 6:1, Rf = 0.4 in 

n-hexane/EtOAc (4:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AS-H column, ee = 90% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, 

tr (major) = 10.3 min, tr (minor) = 8.9 min). []D
22

 = 16.8 (c 1.0, CH2Cl2). 
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1
H NMR (300 MHz, CD2Cl2) δ 8.07 (d, J = 2.8 Hz, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.6 Hz, 

2H), 6.27 (d, J = 2.8 Hz, 1H), 4.68 (br, 1H), 3.602.26 (m, 5H), 2.32 (s, 3H), 1.40 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.2, 156.0, 154.3, 140.6, 132.9, 129.6, 129.1, 129.0, 110.7, 79.4, 

45.9, 41.6, 37.7, 28.3, 14.0. 

IR (film): ν (cm
1

) 3398, 2974, 2927, 1719, 1688, 1517, 1414, 1391, 1332, 1245, 1219, 1163, 931, 826, 

775, 581, 535, 494, 462, 401. 

HRMS (ESI, m/z) calcd for C19H24ClN3O3Na [M+Na]
+
: 400.1398, found: 400.1410. 

According to the general procedure, a mixture of 28b (32.2 mg, 0.1 mmol, 1.0 

equiv.), 29n (42.2 mg, 0.12 mmol, 1.2 equiv.), Λ-RhS (6.5 mg, 0.008 mmol, 8 mol%), and HE (37.8 

mg, 0.15 mmol, 1.5 equiv.) in acetone (0.5 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30o as a pale yellow solid (33.8 

mg, 70% yield, 90% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 5:1, Rf = 0.3 in 

n-hexane/EtOAc (4:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 90% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 C, 

tr (major) = 17.1 min, tr (minor) = 19.3 min). []D
22

 = 17.8 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.138.10 (m, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.49 (s, 1H), 7.357.28 

(m, 1H), 7.257.21 (m, 1H), 6.23 (d, J = 2.7 Hz, 1H), 4.71 (br, 1H), 3.88 (m, 1H), 3.603.50 (m, 4H), 

2.32 (s, 3H), 1.66 (s, 9H), 1.38 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.5, 156.1, 154.3, 149.9, 136.0, 130.0, 129.2, 124.8, 123.2, 122.7, 

121.2, 119.6, 115.6, 110.8, 84.0, 79.3, 44.7, 37.0, 33.4, 28.4, 28.3, 14.0.  

IR (film): ν (cm
1

) 2922, 2853, 1722, 1512, 1453, 1411, 1366, 1308, 1250, 1218, 1153, 1101, 1068, 

1048, 1018, 934, 855, 764, 745, 465, 446, 418, 383. 

HRMS (ESI, m/z) calcd for C26H34N4O5Na [M+Na]
+
: 505.2421, found: 505.2434. 

According to the general procedure, a mixture of 28b (32.2 mg, 0.1 mmol, 1.0 

equiv.), 29o (32.7 mg, 0.15 mmol, 1.5 equiv.), Λ-RhS (6.5 mg, 0.008 mmol, 8 mol%), and HE (50.4 
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mg, 0.2 mmol, 2.0 equiv.) in acetone (0.5 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30p as a pale yellow solid (15.0 

mg, 42% yield, 91% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 5:1, Rf = 0.3 in 

n-hexane/EtOAc (4:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 91% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, 

tr (major) = 12.1 min, tr (minor) = 14.5 min). []D
22

 = 11.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.10 (d, J = 2.8 Hz, 1H), 7.187.16 (m, 1H), 6.956.91 (m, 2H), 6.23 

(d, J = 2.8 Hz, 1H), 4.73 (br, 1H), 3.89 (m, 1H), 3.563.36 (m, 4H), 2.31 (s, 3H), 1.40 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 169.6, 155.8, 154.0, 144.8, 129.1, 126.9, 124.8, 124.0, 110.6, 79.5, 

46.2, 38.5, 37.2, 28.3, 14.0.  

IR (film): ν (cm
1

) 2921, 2854, 1719, 1550, 1510, 1458, 1412, 1364, 1249, 1167, 1045, 936, 773, 697. 

HRMS (ESI, m/z) calcd for C17H23N3O3SNa [M+Na]
+
: 372.1352, found: 372.1361. 

According to the general procedure, a mixture of 28c (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29c (31.8 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30q as a pale yellow oil (30.6 mg, 55% 

yield, 93% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.5 in n-hexane/EtOAc 

(6:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 93% 

(HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 40 C, tr (major) = 12.6 min, tr 

(minor) = 8.9 min). []D
22

 = 75.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.03 (d, J = 2.8 Hz, 1H), 7.347.24 (m, 5H), 6.26 (d, J = 2.7 Hz, 1H), 

4.80 (br, 1H), 4.01 (dd, J = 10.6, 4.0 Hz, 1H), 3.72 (dd, J = 10.6, 16.3 Hz, 1H), 3.56 (dd, J = 16.4, 4.1 

Hz, 1H), 2.37 (s, 3H), 1.48 (s, 9H), 1.40 (s, 3H), 1.25 (s, 3H). 

13
C NMR (75 MHz, CD2Cl2) δ 170.6, 153.8, 140.5, 129.7, 128.9, 127.9, 126.9, 110.2, 55.4, 48.8, 35.0, 

28.3, 13.8. 

IR (film): ν (cm
1

) 2972, 2928, 1719, 1550, 1499, 1453, 1408, 1386, 1354, 1245, 1164, 1068, 935, 772, 

707, 566, 511, 460. 

HRMS (ESI, m/z) calcd for C21H30N3O3 [M+H]
+
: 372.2282, found: 372.2293. 
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According to the general procedure, a mixture of 28d (90.0 mg, 0.225 mmol, 

1.5 equiv.), 29c (31.8 mg, 0.15 mmol), Λ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (0.75 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30r as a pale yellow solid (45.4 mg, 

72% yield, 95% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in 

n-hexane/EtOAc (5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG 

column, ee = 95% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr 

(major) = 8.9 min, tr (minor) = 10.7 min). []D
22

 = 29.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.00 (d, J = 2.8 Hz, 1H), 7.327.15 (m, 8H), 7.077.04 (m, 2H), 6.20 

(d, J = 2.8 Hz, 1H), 4.07 (dd, J = 14.0, 7.6 Hz, 1H), 3.85 (dd, J = 13.9, 7.3 Hz, 1H), 3.643.52 (m, 1H), 

3.46 (dd, J = 7.9, 6.7 Hz, 2H), 2.28 (s, 3H), 1.37 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2) δ 170.0, 154.5, 153.8, 142.4, 141.5, 128.7, 128.6, 128.4, 128.2, 127.4, 

126.9, 126.0, 110.2, 80.2, 54.8, 40.5, 37.7, 27.9, 13.7. 

IR (film): ν (cm
1

) 2975, 2928, 1724, 1694, 1596, 1552, 1495, 1454, 1386, 1365, 1345, 1328, 1298, 

1281, 1251, 1226, 1207, 1163, 1103, 1070, 1047, 1008, 935, 860, 758, 697, 646, 561, 549, 533. 

HRMS (ESI, m/z) calcd for C25H29N3O3Na [M+Na]
+
: 442.2109, found: 442.2109. 

According to the general procedure, a mixture of 28e (66.7 mg, 0.15 mmol, 

1.5 equiv.), 29c (21.2 mg, 0.10 mmol), Λ-RhS (7.0 mg, 0.008 mmol, 8 mol%), and HE (50.4 mg, 0.2 

mmol, 2.0 equiv.) in acetone (0.5 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30s as a colorless oil (37.6 mg, 80% 

yield, 96% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 6:1, Rf = 0.5 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AS-H column, ee = 

96% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr (major) = 9.5 

min, tr (minor) = 12.2 min). []D
22

 = 51.4 (c 1.0, CH2Cl2).  

1
H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 2.8 Hz, 1H), 7.457.30 (m, 6H), 7.297.06 (m, 9H), 6.22 

(d, J = 2.4 Hz, 1H), 5.265.00 (m, 2H), 4.57 (d, J = 15.6 Hz, 1H), 4.144.06 (m, 1H), 3.903.34 (m, 
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5H), 2.33 (s, 3H). 

13
C NMR (125 MHz, CDCl3, two rotamers) δ 170.1, 169.9, 156.7, 156.5, 153.9, 153.8, 141.5, 141.4, 

137.5, 136.7, 134.4, 129.0, 128.7, 128.6 (2C), 128.5, 128.2, 128.1, 128.0, 127.9, 127.8, 127.5, 127.4, 

127.1, 110.5, 110.4, 67.5, 67.3, 52.1, 51.4, 50.4, 50.3, 40.2, 39.8, 37.5, 37.4, 14.1. 

IR (film): ν (cm
1

) 2923, 1693, 1487, 1443, 1366, 1207, 1169, 1087, 974, 811, 742, 708, 661, 632, 575, 

537, 492, 407. 

HRMS (ESI, m/z) calcd for C29H29N3O3Na [M+ Na]
+
: 490.2101, found: 490.2116. 

According to the general procedure, a mixture of 28f (66.3 mg, 0.15 mmol, 

1.5 equiv.), 29f (20.6 mg, 0.10 mmol), Δ-RhS (7.0 mg, 0.008 mmol, 8 mol%), and HE (50.4 mg, 0.2 

mmol, 2.0 equiv.) in acetone (0.5 mL, 0.2 M) was stirred under nitrogen atmosphere for 24 hours 

under irradiation with 23 W CFL at room temperature to afford 30t as a colorless oil (40.0 mg, 87% 

yield, 91% ee). Purification conditions: n-hexane/Et2O = 10:1 to 3:1, Rf = 0.6 in n-hexane/ Et2O (30:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee = 91% 

(HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr (major) = 21.8 min, tr 

(minor) = 23.5 min). []D
22

 = 14.0 (c 1.0, CH2Cl2).  

1
H NMR (300 MHz, CDCl3) δ 7.80 (d, J = 7.4 Hz, 2H), 7.80 (d, J = 7.5 Hz, 2H), 7.43 (t, J = 7.4 Hz, 

2H), 7.43 (td, J = 7.4, 1.1 Hz, 2H), 6.00 (s, 1H), 5.60 (br, 1H), 4.38 (m, 2H), 4.23 (t, J = 6.8 Hz, 1H), 

3.303.10 (m, 3H), 2.97 (dd, J = 15.4, 5.3 Hz, 1H), 2.54 (s, 3H), 2.382.16 (m, 4H), 1.77 (m, 1H), 

1.28 (t, J = 7.2 Hz, 2H), 0.95 (d, J = 4.3 Hz, 3H), 0.93 (d, J = 4.3 Hz, 3H). 

13
C NMR (125 MHz, CDCl3) δ 173.4, 156.5, 152.1, 144.3, 144.2, 141.4, 127.7, 127.1, 125.1, 120.0, 

111.1, 66.4, 47.5, 44.5, 41.8, 38.1, 34.1, 25.3, 22.6, 22.5, 14.4, 13.6. 

IR (film): ν (cm
1

) 3343, 2953, 2924, 1716, 1582, 1524, 1448, 1378, 1330, 1239, 1137, 996, 961, 806, 

738, 646, 585, 539, 421. 

HRMS (ESI, m/z) calcd for C28H33N3O3Na [M+Na]
+
: 482.2414, found: 482.2426. 
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According to the general procedure, a mixture of 28b (48.0 mg, 0.15 mmol, 

1.5 equiv.), 29p (32.6 mg, 0.10 mmol), Λ-RhS (7.0 mg, 0.008 mmol, 8 mol%), and HE (50.4 mg, 0.2 

mmol, 2.0 equiv.) in acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30u as a colorless solid (38.9 mg, 85% 

yield, 95% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 6:1, Rf = 0.3 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 95% 

(HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr (major) = 27.0 min, tr 

(minor) = 25.5 min). []D
22

 =32.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 8.09 (d, J = 2.7 Hz, 1H), 6.856.75 (m, 3H), 6.26 (d, J = 2.8 Hz, 1H), 

4.804.60 (m, 2H), 3.81 (s, 3H), 3.563.30 (m, 5H), 2.32 (s, 3H), 1.951.72 (m, 6H), 1.681.60 (m, 

2H), 1.41 (s, 9H). 

13
C NMR (125 MHz, CDCl3) δ 170.2, 155.6, 153.8, 149.0, 147.6, 133.8, 128.7, 119.6, 114.5, 112.1, 

110.3, 80.1, 78.9, 55.9, 45.8, 41.4, 37.5, 32.72, 32.69, 28.04, 24.0, 13.6. 

IR (film): ν (cm
1

) 3385, 2955, 2927, 2867, 1722, 1688, 1553, 1511, 1413, 1362, 1334, 1253, 1215, 

1164, 1138, 1049, 1021, 992, 936, 902, 863, 804, 771, 735, 638, 604, 535, 443. 

HRMS (ESI, m/z) calcd for C25H35N3O5Na [M+Na]
+
: 480.2469, found: 480.2481. 

According to the general procedure, a mixture of 28c (52.0 mg, 0.15 

mmol, 1.5 equiv.), 29q (38.8 mg, 0.10 mmol), Λ-RhS (7.0 mg, 0.008 mmol, 8 mol%), and HE (50.4 

mg, 0.2 mmol, 2.0 equiv.) in acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30v as a colorless oil (46.4 mg, 

85% yield, 92% de). Purification conditions: n-hexane/EtOAc = 10:1 to 2:1, Rf = 0.3 in 

n-hexane/EtOAc (3:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AD-H column, de = 92% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 40 C, 

tr (major) = 6.5 min, tr (minor) = 9.8 min). []D
22

 = 94.2 (c 1.0, CH2Cl2). 
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1
H NMR (300 MHz, CD2Cl2) δ 7.92 (d, J = 2.7 Hz, 1H), 7.197.08 (m, 2H), 6.946.87 (m, 2H), 6.13 

(d, J = 2.7 Hz, 1H), 4.73 (br, 1H), 3.76 (dd, J = 10.6, 3.8 Hz, 1H), 3.55 (dd, J = 10.6, 16.3 Hz, 1H), 

3.39 (dd, J = 16.3, 3.7 Hz, 1H), 2.862.74 (m, 2H), 2.402.14 (m, 6H), 2.081.78 (m, 5H), 1.581.46 

(m, 3H), 1.401.30 (m, 11H), 1.27 (s, 3H), 1.11 (s, 3H), 0.88 (s, 3H).  

13
C NMR (125 MHz, CD2Cl2) δ 220.4, 170.3, 155.3, 153.7, 139.1, 138.6, 136.7, 128.7, 128.4, 125.4, 

125.1, 110.2, 79.2, 54.8, 50.5, 47.9, 44.4, 39.6, 38.2, 37.2, 35.8, 34.4, 31.7, 29.5, 28.0, 26.5, 25.8, 21.5, 

13.7. 

IR (film): ν (cm
1

) 2926, 2864, 1727, 1501, 1457, 1407, 1361, 1340, 1290, 1250, 1212,1162, 1072, 

1008, 934, 775, 730, 585, 455. 

HRMS (ESI, m/z) calcd for C33H45N3O4Na [M+Na]
+
: 570.3302, found: 570.3320. 

According to the general procedure, a mixture of 28a (50.1 mg, 0.30 mmol, 

1.5 equiv.), 29e (23.0 mg, 0.20 mmol), Δ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 

0.4 mmol, 2.0 equiv.) in acetone (2.0 mL, 0.2 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30e as a pale yellow oil (52.0 mg, 70% 

yield, 93% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 93% 

(HPLC: 254 nm, n-hexane/isopropanol = 97:3, flow rate 1.0 mL/min, 25 C, tr (major) = 20.6 min, tr 

(minor) = 17.7 min). []D
22

 = 10.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.02 (d, J = 2.7 Hz, 1H), 7.497.29 (m, 5H), 6.24 (m, 1H), 4.303.50 

(m, 4H), 2.93 (d, J = 1.5 Hz, 3H), 2.31 (s, 3H), 1.49 (s, 9H), 1.44 (s, 9H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.8, 155.2, 153.8 (d, J = 15.3 Hz, 1C), 140.2 (d, J = 

20.8 Hz, 1C), 128.5, 128.3, 128.1, 127.8 (2C), 124.6 (d, J = 9.4 Hz, 1C), 110.5, 99.5 (d, J = 184.1 Hz, 

1C), 80.1, 58.4 (d, J = 22.6 Hz, 1C), 40.0 (d, J = 21.6 Hz, 1C), 36.0, 27.9, 13.6.  

IR (film): ν (cm
1

) 2972, 2927, 1735, 1694, 1552, 1450, 1396, 1362, 1325, 1213, 1152, 1104, 1045, 

939, 879, 769, 699, 609, 568. 

19
F NMR (282 MHz) δ 157.1, 158.2 (other rotamer). 

HRMS (ESI, m/z) calcd for C20H26FN3O3Na [M+Na]
+
: 398.1858, found: 398.1858. 
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According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29r (36.6 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30w as a pale yellow solid (41.5 mg, 

74% yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in 

n-hexane/EtOAc (5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG 

column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr 

(major) = 14.3 min, tr (minor) = 10.5 min). []D
22

 = 21.8 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.02 (d, J = 2.7 Hz, 1H), 7.407.26 (m, 2H), 7.207.17 (m, 2H), 6.25 

(m, 1H), 4.303.70 (m, 3H), 3.53 (dd, J = 18.4, 15.8 Hz, 1H), 2.93 (s, 3H), 2.35 (s, 3H), 2.31 (s, 3H), 

1.49 (s, 9H), 1.44 (s, 9H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.9, 156.2, 155.2 (other rotamer), 153.7 (d, J = 16.4 

Hz, 1C), 137.7, 137.2 (d, J = 21.4 Hz, 1C), 128.9, 128.7, 128.5, 124.6 (d, J = 9.6 Hz, 1C), 124.4 (other 

rotamer, d, J = 9.3 Hz, 1C), 110.5, 110.4 (other rotamer), 99.1 (d, J = 181.6 Hz, 1C), 98.5 (other 

rotamer, d, J = 183.2 Hz, 1C), 80.0, 79.6 (other rotamer), 58.4 (d, J = 22.4 Hz, 1C), 57.1 (other 

rotamer, d, J = 22.4 Hz, 1C), 39.9 (d, J = 22.3 Hz, 1C), 36.2, 36.0 (other rotamer), 28.0, 27.9 (other 

rotamer), 20.8, 13.6. 

19
F NMR (282 MHz) δ 156.7, 157.8 (other rotamer).  

IR (film): ν (cm
1

) 2973, 2927, 1740, 1693, 1553, 1480, 1452, 1409, 1388, 1364, 1327, 1311, 1247, 

1212, 1150, 1084, 1043, 1001, 939, 903, 881, 814, 769, 725, 682, 669, 612, 569. 

HRMS (ESI, m/z) calcd for C21H28FN3O3Na [M+ Na]
+
: 412.2017, found: 412.2017. 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29s (36.6 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under 

irradiation with 23 W CFL at room temperature to afford 30x as a pale yellow solid (43.4 mg, 74% 
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yield, 94% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.6 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee = 94% 

(HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 1.0 mL/min, 25 C, tr (major) = 17.6 min, tr 

(minor) = 13.0 min). []D
22

 = 16.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.91 (d, J = 2.7 Hz, 1H), 7.207.00 (m, 4H), 6.13 (m, 1H), 4.203.59 

(m, 3H), 3.41 (dd, J = 19.1, 15.3 Hz, 1H), 2.82 (d, J = 1.5 Hz, 3H), 2.25 (s, 3H), 2.20 (s, 3H), 1.38 (s, 

9H), 1.36 (s, 9H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2) δ 166.9, 156.3, 155.2 (other rotamer), 153.7 (d, J = 16.4 Hz, 1C), 140.2 

(d, J = 20.8 Hz, 1C), 138.1, 137.9 (other rotamer), 128.5, 128.2, 128.0, 125.4 (d, J = 9.3 Hz, 1C), 

125.2 (other rotamer, d, J = 9.1 Hz, 1C), 121.7 (d, J = 9.8 Hz, 1C), 121.5 (other rotamer, d, J = 9.5 

Hz, 1C), 110.5, 110.4 (other rotamer), 99.1 (d, J = 181.6 Hz, 1C), 98.5 (other rotamer, d, J = 183.3 

Hz, 1C), 80.0, 79.7 (other rotamer), 58.4 (d, J = 22.2 Hz, 1C), 57.2 (other rotamer, d, J = 22.4 Hz, 

1C), 39.9 (d, J = 22.1 Hz, 1C), 36.1, 36.0 (other rotamer), 29.7, 28.1, 27.9 (other rotamer), 13.6. 

19
F NMR (282 MHz) δ 157.1, 158.0 (other rotamer). 

IR (film): ν (cm
1

) 2965, 2926, 2855, 1738, 1694, 1553, 1481, 1452, 1409, 1389, 1364, 1328, 1310, 

1247, 1212, 1150, 1076, 1043 ,940,907, 876, 829, 770, 704, 684. 

HRMS (ESI, m/z) calcd for C21H28FN3O3Na [M+Na]
+
: 412.2016, found: 412.2016. 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29t (36.6 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30y as a pale yellow solid (39.6 mg, 

68% yield, 96% ee). Purification conditions: n-hexane/EtOAc = 20:1 to 10:1, Rf = 0.7 in 

n-hexane/EtOAc (5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IA 

column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 0.7 mL/min, 25 C, tr 

(major) = 21.4 min, tr (minor) = 14.9 min). []D
22

 = 71.4 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 8.02 (d, J = 2.7 Hz, 1H), 7.39 (dd, J = 16.3, 6.5 Hz, 1H), 7.257.15 (m, 

3H), 6.25 (m, 1H), 4.524.09 (m, 2H), 3.39 (dt, J = 53.9, 16.7 Hz, 1H), 3.503.38 (m, 1H), 2.98 (d, J 
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= 1.4 Hz, 3H), 2.54 (s, 3H), 2.50 (s, 3H, other rotamer), 2.31 (s, 3H), 2.30 (s, 3H, other rotamer), 1.55 

(s, 9H), 1.48 (s, 9H, other rotamer). 

13
C NMR (125 MHz, CD2Cl2) δ 167.0, 156.5, 155.4 (other rotamer), 153.7 (d, J = 15.6 Hz, 1C), 138.0 

(d, J = 18.8 Hz, 1C), 134.6, 134.2 (other rotamer), 132.4, 132.3 (other rotamer), 128.5, 127.9, 127.8, 

125.9, 125.8, 125.6, 110.4, 100.4 (d, J = 181.6 Hz, 1C), 99.9 (other rotamer, d, J = 182.5 Hz, 1C), 

80.4, 79.8 (other rotamer), 56.9 (d, J = 21.7 Hz, 1C), 56.2 (other rotamer, d, J = 21.3 Hz, 1C), 39.6 (d, 

J = 22.9 Hz, 1C), 39.6 (other rotamer, d, J = 23.1 Hz, 1C), 36.43, 36.41 (other rotamer), 28.1, 21.8 (d, 

J = 6.0 Hz, 1C), 13.6. 

19
F NMR (282 MHz) δ 149.9, 151.2 (other rotamer). 

IR (film): ν (cm
1

) 2966, 2928, 2856, 1738, 1694, 1481, 1452, 1409, 1389, 1364, 1328, 1310, 1247, 

1212, 1150, 1077, 1043 ,940, 906, 876, 829, 771, 704, 684. 

HRMS (ESI, m/z) calcd for C21H28FN3O3Na [M+Na]
+
: 412.2007, found: 412.2017. 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29u (39.0 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30z as a pale yellow solid (48.5 mg, 

80% yield, 94% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak IB 

column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 0.7 mL/min, 25 C, tr 

(major) = 8.1 min, tr (minor) = 7.5 min). []D
22

 = 20.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.03 (d, J = 2.7 Hz, 1H), 7.33 (m, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.25 

(d, J = 1.8 Hz, 1H), 4.253.86 (m, 2H), 3.803.50 (m, 5H), 2.93 (d, J = 1.5 Hz, 3H), 2.31 (s, 3H), 1.49 

(s, 9H), 1.44 (s, 9H, other rotamer). 

19
F NMR (282 MHz) δ 155.1, 156.4 (other rotamer). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.9, 159.3, 156.2, 155.2 (other rotamer), 153.7 (d, J = 

16.4 Hz, 1C), 132.1 (d, J = 22.2 Hz, 1C), 128.5, 126.1 (d, J = 9.3 Hz, 1C), 125.8 (other rotamer, d, J = 

9.2 Hz, 1C), 113.6, 113.4 (other rotamer), 110.5, 110.4 (other rotamer), 99.0 (d, J = 180.1 Hz, 1C), 

98.4 (other rotamer, d, J = 182.8 Hz, 1C), 80.0, 79.6 (other rotamer), 58.3 (d, J = 22.4 Hz, 1C), 56.9 
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(other rotamer, d, J = 21.6 Hz, 1C), 55.2, 40.0 (d, J = 21.7 Hz, 1C), 36.1, 36.0 (other rotamer), 28.0, 

27.9 (other rotamer), 20.8, 13.6. 

IR (film): ν (cm
1

) 2968, 2928, 1736, 1693, 1613, 1553, 1514, 1453, 1392, 1360, 1323, 1248, 1213, 

1151, 1080, 1038, 938, 879, 830, 773, 735, 569. 

HRMS (ESI, m/z) calcd for C21H28FN3O4Na [M+Na]
+
: 428.1956, found: 428.1761. 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29v (41.4 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30aa as a pale yellow oil (36.1 mg, 

57% yield, 95% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak IA 

column, ee = 95% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 0.5 mL/min, 25 C, tr 

(major) = 21.6 min, tr (minor) = 16.8 min). []D
22

 = 20.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.02 (d, J = 2.8 Hz, 1H), 7.407.20 (m, 4H), 6.25 (m, 1H), 4.353.50 

(m, 4H), 2.93 (d, J = 1.5 Hz, 3H), 2.49 (s, 3H), 2.31 (s, 3H), 1.48 (s, 9H), 1.44 (s, 9H, other rotamer). 

19
F NMR (282 MHz) δ 156.5, 157.6 (other rotamer). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.8, 156.2, 155.2 (other rotamer), 153.7 (d, J = 16.0 

Hz, 1C), 138.5, 138.4 (other rotamer), 136.8 (d, J = 22.1 Hz, 1C), 125.9, 125.8 (other rotamer), 125.3 

(d, J = 9.5 Hz, 1C), 125.1 (other rotamer, d, J = 9.2 Hz, 1C), 110.6, 110.5 (other rotamer), 99.0 (d, J = 

183.6 Hz, 1C), 98.3 (other rotamer, d, J = 182.7 Hz, 1C), 80.1, 79.7 (other rotamer), 58.2 (d, J = 22.5 

Hz, 1C), 56.9 (other rotamer, d, J = 21.3 Hz, 1C), 40.0 (d, J = 22.5 Hz, 1C), 39.9 (other rotamer, d, J = 

21.8 Hz, 1C), 36.13, 36.07 (other rotamer), 29.7, 28.02, 27.95 (other rotamer), 15.3, 13.6. 

IR (film): ν (cm
1

) 2962, 2924, 2857, 1730, 1692, 1553, 1483, 1449, 1390, 1363, 1326, 1211, 1149, 

1088, 1044, 973, 937, 878, 816, 770, 736, 668, 634, 574, 539. 

HRMS (ESI, m/z) calcd for C21H28FN3O3SNa [M+Na]
+
: 444.1728, found: 444.1737. 



Chapter 5. Experimental Part 

223 
 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29w (42.9 mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30ab as a pale yellow oil (51.7 mg, 

80% yield, 92% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG 

column, ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 C, tr 

(major) = 10.5 min, tr (minor) = 8.8 min). []D
22

 = 18.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.04 (d, J = 2.8 Hz, 1H), 7.427.30 (m, 4H), 6.25 (m, 1H), 4.303.50 

(m, 4H), 2.94 (d, J = 1.6 Hz, 3H), 2.31 (s, 3H), 1.46 (m, 9H), 1.33 (s, 9H). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.9, 156.2, 155.2 (other rotamer), 153.7 (d, J = 19.0 

Hz, 1C), 150.8, 137.2 (d, J = 22.1 Hz, 1C), 128.5, 125.2, 125.0 (other rotamer), 124.4 (d, J = 9.2 Hz, 

1C), 124.3 (other rotamer, d, J = 9.0 Hz, 1C), 110.5, 110.4 (other rotamer), 99.1 (d, J = 182.3 Hz, 1C), 

98.5 (other rotamer, d, J = 182.3 Hz, 1C), 80.0, 79.6 (other rotamer), 58.2 (d, J = 22.4 Hz, 1C), 56.9 

(other rotamer, d, J = 21.0 Hz, 1C), 40.1 (d, J = 23.5 Hz, 1C), 40.0 (other rotamer, d, J = 21.3 Hz, 1C), 

36.15, 36.05 (other rotamer), 34.4, 31.1, 28.0, 27.9 (other rotamer), 13.6. 

19
F NMR (282 MHz) δ 156.6, 157.7 (other rotamer). 

IR (film): ν (cm
1

) 2961, 2927, 2864, 1736, 1696, 1553, 1454, 1393, 1360, 1325, 1267, 1153, 1080, 

1045, 938, 880, 832, 770, 612, 582. 

HRMS (ESI, m/z) calcd for C24H34FN3O3Na [M+ Na]
+
: 454.2476, found: 454.2487. 

According to the general procedure, a mixture of 28a (78.3 mg, 0.225 mmol, 

1.5 equiv.), 29x (39.6mg, 0.15 mmol), Δ-RhS (10.3 mg, 0.012 mmol, 8 mol%), and HE (76.0 mg, 0.3 

mmol, 2.0 equiv.) in acetone (1.5 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours 

under irradiation with 23 W CFL at room temperature to afford 30ac as a pale yellow oil (32.6 mg, 

53% yield, 93% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H 
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column, ee = 93% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 C, tr 

(major) = 10.3 min, tr (minor) = 8.8 min). []D
22

 = 25.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.02 (d, J = 2.6 Hz, 1H), 7.36 (m, 4H), 6.26 (d, J = 1.5 Hz, 1H), 

4.233.52 (m, 4H), 2.93 (d, J = 1.2 Hz, 3H), 2.31 (s, 3H), 1.49 (s, 9H), 1.43 (s, 9H, other rotamer). 

19
F NMR (282 MHz) δ 155.8, 156.9 (other rotamer). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 166.6, 156.2, 155.1 (other rotamer), 153.9 (d, J = 14.7 

Hz, 1C), 138.9 (d, J = 24.0 Hz, 1C), 133.7 (d, J = 13.2 Hz, 1C), 128.6, 128.4, 128.2 (other rotamer), 

126.5 (d, J = 9.5 Hz, 1C), 126.2 (other rotamer, d, J = 9.0 Hz, 1C), 110.5, 98.9 (d, J = 185.5 Hz, 1C), 

98.2 (other rotamer, d, J = 185.0 Hz, 1C), 80.2, 79.8 (other rotamer), 58.1 (d, J = 21.7 Hz, 1C), 56.7 

(other rotamer, d, J = 21.4 Hz, 1C), 40.2 (d, J = 21.8 Hz, 1C), 40.0 (other rotamer, d, J = 21.4 Hz, 1C), 

36.1, 28.0, 13.6. 

IR (film): ν (cm
1

) 2974, 2929, 1733, 1693, 1554, 1491, 1453, 1410, 1388, 1365, 1327, 1310, 1246, 

1214, 1151, 1091, 1045, 1013, 1000, 938, 904, 882, 826, 770, 723, 608, 565, 548. 

HRMS (ESI, m/z) calcd for C20H25ClFN3O3Na [M+Na]
+
: 432.1461, found: 432.1469. 

According to the general procedure, a mixture of 28a (96.0 mg, 0.30 

mmol, 1.5 equiv.), 29y (94.6 mg, 0.20 mmol), Δ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 

mg, 0.40 mmol, 2.0 equiv.) in acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 

hours under irradiation with 23 W CFL at room temperature to afford 30ad as pale yellow solid (76.0 

mg, 62% yield, 93% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak IG 

column, ee = 93% (HPLC: 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 25 C, tr 

(major) = 23.2 min, tr (minor) = 29.1 min). []D
22

 = 22.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 8.18 (dd, J = 11.5, 8.4 Hz, 2H), 8.007.80 (m, 3H), 7.62 (d, J = 8.2 Hz, 

2H), 7.507.35 (m, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 8.2 Hz, 2H), 6.08 (m, 1H), 4.303.90 (m, 

2H), 3.783.40 (m, 2H), 2.83 (d, J = 1.3 Hz, 3H), 2.20 (m, 6H), 1.34 (s, 9H), 1.26 (s, 9H, other 

rotamer). 

19
F NMR (282 MHz) δ 154.5, 155.4 (other rotamer). 

13
C NMR (125 MHz, two rotamers) δ 166.8, 156.2, 155.2 (other rotamer), 153.8 (d, J = 16.0 Hz, 1C), 
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145.5, 138.6, 137.7, 136.0 (d, J = 22.3 Hz, 1C), 134.8, 129.8, 128.5, 127.7, 127.6 (other rotamer), 

126.5, 126.1, 126.0 (other rotamer), 124.0 (2C), 120.2, 116.8 (d, J = 24.4 Hz, 1C), 116.7 (other 

rotamer, d, J = 25.3 Hz, 1C), 114.9, 114.6, 114.4 (other rotamer), 110.6, 110.5 (other rotamer), 99.3 (d, 

J = 182.1 Hz, 1C), 98.7 (other rotamer, d, J = 183.3 Hz, 1C), 80.1, 79.7 (other rotamer), 58.5 (d, J = 

21.3 Hz, 1C), 57.2 (other rotamer, d, J = 20.5 Hz, 1C), 40.4 (d, J = 19.1 Hz, 1C), 40.2 (other rotamer, 

d, J = 20.9 Hz, 1C), 36.2, 36.1 (other rotamer), 27.9, 21.3, 13.6. 

IR (film): ν (cm
1

) 2923, 2169, 2054, 1691, 1597, 1553, 1481, 1444, 1414, 1367, 1208, 1170, 1143,  

1089, 1036, 974, 905, 876, 814, 747, 702, 665, 576, 539, 463, 421. 

HRMS (ESI, m/z) calcd for C33H35FN4O5SNa [M+Na]
+
: 641.2222, found: 641.2222. 
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5.5.3 Synthetic Applications 

1) Synthesis of Boc-(R)-Baclofen (4) and Boc-(S)-Pregabalin (5) 

 

To 30n (50.0 mg, 0.132 mmol, 1.0 equiv.) in THF/H2O (2:1, 1 mL) was added LiOH•H2O (11.1 mg, 2 

equiv.) in one portion. The reaction mixture was stirred for 16 h at room temperature. Afterwards, the 

reaction was quenched by the addition of two drops of acetic acid. The volatiles were removed by 

evaporation and the resulted material was purified by flash chromatography column. Purification 

conditions: n-hexane/EtOAc = 10:1 to 3:1 containing 1% acetic acid, Rf = 0.3 in EtOAc. 

Boc-(R)-baclofen (31) was obtained as a white solid (37.5 mg, 0.120 mmol, 90% yield, 90% ee). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 90% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 6.8 min, tr 

(minor) = 5.6 min). []D
22

 = 14.0 (c 0.1, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 7.22 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 5.95 (br, 1H), 4.45 

(br, 1H, other rotamer), 3.383.21 (m, 3H), 2.64 (dd, J = 16.3, 5.7 Hz, 1H), 2.53 (dd, J = 15.9, 7.1 Hz, 

1H), 1.33 (s, 9H). 

13
C NMR (125 MHz, CDCl3, two rotamers) δ 176.5, 157.3, 156.1, 140.1, 139.6, 132.9, 129.0, 128.9, 

128.8, 81.1, 79.8, 47.5, 45.4, 41.5, 38.1, 37.9, 29.7, 28.3. 

IR (film): ν (cm
1

) 3372, 2976, 2926, 2610, 1684, 1523, 1406, 1358, 1325, 1275, 1246, 1216, 1164, 

1089, 1061, 1008, 928, 879, 822, 780, 737, 690, 635, 585, 457. 

HRMS (ESI, m/z) calcd for C15H20ClNO4Na [M+ Na]
+
: 336.0982, found: 336.0982. 

 

 

To 30g (58.6 mg, 0.174 mmol, 1.0 equiv.) in THF/H2O (2:1, 1 mL) was added LiOH•H2O (15.0 mg, 2 

equiv.) in one portion. The reaction mixture was stirred for 16 h at room temperature. Afterwards, the 

reaction was quenched by the addition of two drops of acetic acid. The volatiles were removed by 

evaporation and the resulted material was purified by flash chromatography column. Purification 
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conditions: n-hexane/EtOAc = 10:1 to 3:1 containing 1% acetic acid, Rf = 0.3 in EtOAc. 

Boc-(S)-pregabalin (32) was obtained as a white solid (41.9 mg, 0.161 mmol, 93% yield). []D
22

 = 

23.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 10.13 (br, 1H), 6.13 (br, 1H), 4.80 (br, 1H, other rotamer), 3.283.18 

(m, 1H), 3.112.80 (m, 1H), 2.362.02 (m, 3H), 1.65 (m, 1H), 1.44 (s, 9H), 1.17 (m, 2H), 0.90 (m. 

6H). 

13
C NMR (125 MHz, CDCl3, two rotamers) δ 177.9, 157.8, 156.6, 80.7, 79.6, 46.0, 43.8, 41.8, 41.3, 

38.0, 37.1, 33.7, 33.6, 28.4, 25.1, 22.7, 22.6. 

IR (film): ν (cm
1

) 3309, 3247, 3094, 2986, 2958, 2929, 2868, 2207, 2185, 1650, 1469, 1416, 1366, 

1321, 1309, 1278, 1263, 1228, 1113, 1081, 1063, 1007, 965, 728, 664, 576, 442, 411, 396, 379. 

HRMS (ESI, m/z) calcd for C13H25NO4Na [M+ Na]
+
: 282.1683, found: 282.1683. 

 

2) Synthesis of a Dipeptide (33) 

 

To a mixture of 30v (45 mg, 0.0823 mmol, 1.0 equiv.), D-phenylglycine methyl ester hydrochloride 

(27.0 mg, 1.5 equiv.), 1-hydroxybenzotriazole (17.1 mg, 1.5 equiv.) in PhMe (1 mL) was added Et3N 

(18 μL, 1.5 equiv.). The reaction mixture was stirred for 16 h at 50 ℃. Afterwards, the volatiles were 

removed by evaporation and the resulted material was purified by flash chromatography column. 

Purification conditions: n-hexane/EtOAc = 8:1 to 1:1, Rf = 0.2 in n-hexane/EtOAc (1:1). Compund 33 

was obtained as a white solid (42.7 mg, 0.0677 mmol, 83% yield, > 20:1 dr). []D
22

 = 185.8 (c 0.1, 

CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.327.20 (m, 4H), 7.156.90 (m, 4H), 6.38 (br, 1H), 5.83 (br, 1H, 

other rotamer), 4.78 (br, 1H), 3.68 (s, 3H), 3.633.20 (m, 3H), 3.102.82 (m, 4H), 2.74 (m, 3H),   

2.582.24 (m, 5H), 2.182.00 (m, 3H), 1.951.88 (m, 1H), 1.661.30 (m, 17H), 0.87 (s, 3H). 

13
C NMR (125 MHz, CD2Cl2, two rotamers) δ 220.4, 171.8, 170.8, 170.3, 156.2, 155.2, 139.1, 138.7, 

138.5, 136.7, 136.3, 136.0, 129.3, 128.5, 128.4, 126.9, 125.4, 125.2, 79.2, 79.0, 52.1, 50.5, 47.8, 44.3, 

40.7, 40.6, 40.4, 40.2, 38.2, 37.8, 35.8, 34.6, 31.6, 29.4, 28.1, 26.6, 25.7, 21.5, 13.6. 
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IR (film): ν (cm
1

) 3309, 2923, 2855, 1737, 1687, 1662, 1532, 1497, 1453, 1392, 1364, 1257, 1214, 

1165, 1139, 1082, 1051, 1030, 1007, 876, 821, 765, 733, 700, 580, 491, 446. 

HRMS (ESI, m/z) calcd for C38H50N2O6Na [M+ Na]
+
: 653.3561, found: 653.3571. 

 

3) Synthesis of a δ-Amino Alcohol (34) 

 

To 30ad (45 mg, 0.0727 mmol, 1.0 equiv.) in THF/H2O (4:1, 1 mL) was added NaBH4 (14.0 mg, 5 

equiv.) in one portion. The reaction mixture was stirred for 16 h at room temperature. Afterwards, the 

volatiles were removed by evaporation and the resulted material was purified by flash chromatography 

column. Purification conditions: n-hexane/EtOAc = 5:1 to 1:1, Rf = 0.3 in n-hexane/EtOAc (1:1). 

Compund 34 was obtained as a white solid (36.1 mg, 0.0669 mmol, 92% yield, 93 % ee). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee = 93% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 10.5 min, tr 

(minor) = 9.1 min). []D
22

 = 9.6 (c 1.0, CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 8.35 (d, J = 8.4 Hz, 2H), 8.027.95 (m, 2H), 7.76 (d, J = 8.2 Hz, 2H), 

7.587.41 (m, 3H), 7.19 (d, J = 8.2 Hz, 2H), 4.143.86 (m, 1H), 3.753.42 (m, 3H), 2.91 (s, 3H), 

2.482.30 (m, 5H), 2.16 (s, 1H), 1.37 (s, 9H), 1.34 (s, 9H, other rotamer). 

19
F NMR (282 MHz) δ 154.8, 159.2 (other rotamer). 

13
C NMR (125 MHz, two rotamers) δ 156.5, 155.2 (other rotamer), 153.8 (d, J = 16.0 Hz, 1C), 145.5, 

138.6, 137.7, 136.3 (d, J = 21.9 Hz, 1C), 134.8, 129.8, 127.8, 127.7 (other rotamer), 126.5, 126.3, 

126.2 (other rotamer), 124.2, 124.0, 120.2, 116.6 (m, 1C), 115.0, 114.9, 114.7 (other rotamer), 101.6 (d, 

J = 176.6 Hz, 1C), 101.2 (other rotamer, d, J = 178.8 Hz, 1C), 79.7, 79.6 (other rotamer), 58.0 (m, 2C, 

containing one rotamer), 57.0 (d, J = 21.2 Hz, 1C), 39.8 (d, J = 21.2 Hz, 1C), 39.5 (other rotamer, d, J 

= 22.2 Hz, 1C), 36.3, 35.9 (other rotamer), 27.9, 21.3. 

IR (film): ν (cm
1

) 2923, 2169, 2054, 1691, 1597, 1553, 1481, 1444, 1414, 1367, 1208, 1170, 1143,  

1089, 1036, 974, 905, 876, 814, 747, 702, 665, 576, 539, 463, 421. 

HRMS (ESI, m/z) calcd for C29H33FN2O5SNa [M+Na]
+
: 563.1986, found: 563.1997. 
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4) Synthesis of a γ-Lactam (35) 

 

According to the general procedure, a mixture of 28g (110.5 mg, 0.30 mmol, 1.5 equiv.), 29y (94.6 mg, 

0.20 mmol), Δ-RhS (13.8 mg, 0.016 mmol, 8 mol%), and HE (101.0 mg, 0.40 mmol, 2.0 equiv.) in 

acetone (2.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 23 

W CFL at room temperature. The CC formation product was obtained by flash chromatography on 

silica gel. The obtained compound was dissolved in EtOAc (2 mL) and treated with Pd/C (10% Pd, 50 

mg), then stirred under an atmosphere of H2 (1 atm, with a ballon) at room temperature for 14 h. 

Afterwards, the insoluble solid was filtered off and washed by DCM (10 mL). The combined organic 

solution was concentrated in vacuo. The resulting residue was purified by column chromatography to 

afford 35 as a white solid (52.0 mg, 0.119 mmol, 60% yield for two steps). Purification conditions: 

n-hexane/EtOAc = 3:1 to 1:2, Rf = 0.2 in n-hexane/EtOAc (1:3). Enantiomeric excess was established 

by HPLC analysis using a Chiralpak OD-H column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol 

= 50:50, flow rate 1 mL/min, 40 C, tr (major) = 12.8 min, tr (minor) = 18.1 min). []D
22

 = 3.8 (c 1.0, 

CH2Cl2). 

1
H NMR (500 MHz, CD2Cl2) δ 8.39 (d, J = 8.7 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 8.04 (m, 1H), 

8.017.99 (m, 1H), 7.757.74 (m, 2H), 7.607.55 (m, 2H), 7.457.42 (m, 1H), 7.18 (d, J = 8.0 Hz, 

2H), 3.953.90 (m, 2H), 3.152.96 (m, 5H), 2.3 (s, 3H). 

13
C NMR (125 MHz) δ 170.5, 145.6, 138.9, 138.3, 135.0 (d, J = 23.1 Hz, 1C), 134.8, 129.9, 128.1, 

126.6, 126.5, 125.9, 124.2, 123.9 (d, J = 7.3 Hz, 1C), 120.3, 116.5 (d, J = 8.9 Hz, 1C), 115.2 (d, J = 

19.8 Hz, 1C), 96.9 (d, J = 179.4 Hz, 1C), 61.9 (d, J = 28.3 Hz, 1C), 45.0 (d, J = 27.1 Hz, 1C), 29.2, 

21.3. 

19
F NMR (282 MHz) δ 138.9. 

IR (film): ν (cm
1

) 2923, 1693, 1487, 1443, 1366, 1207, 1169, 1087, 974, 811, 742, 708, 661, 632, 575, 

537, 492, 407. 

HRMS (ESI, m/z) calcd for C24H21FN2O3SNa [M+ Na]
+
: 459.1149, found: 459.1162. 
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5) Synthesis of (R)-Rolipram (36) 

 

To a solution of 30u (92.0 mg, 0.201 mmol, 1.0 equiv.) in MeOH (3 mL) was added LiCl (21.2 mg, 

2.5 equiv.) in one portion, followed by Et3N (70 μL, 2.5 equiv.). The reaction mixture was stirred for 

16 h at room temperature. Afterwards, the volatiles were removed by evaporation and the resulted 

material was purified by flash chromatography column to afford the corresponding ester. To the ester 

in CH2Cl2 (2 mL) was added TFA (75 μL, 5 equiv.), then stirred at room temperature for 2 h. Upon the 

starting material consumed, the volatiles were removed by evaporation thoroughly. The mixture was 

redissolved in MeCN and treated with Et3N (140 μL, 5 equiv.), then stirred at room temperature for 24 

h. After concentration, the resulted material was purified by flash chromatography column to afford 36 

as a white solid (51.0 mg, 0.185 mmol, 92% yield, 95 % ee). Enantiomeric excess was established by 

HPLC analysis using a Chiralpak IG column, ee = 95% (HPLC: 254 nm, n-hexane/isopropanol = 

90:10, flow rate 1 mL/min, 25 C, tr (major) = 23.8 min, tr (minor) = 27.6 min). []D
22

 = 25.2 (c 1.0, 

MeOH). [Compound 9 with >99% ee shown optical rotation as []D
25

 = 33.9 (c 1.09, MeOH) in a 

previous report, see: J. Am. Chem. Soc. 2002, 124, 1339413395]. 

1
H NMR (300 MHz, CDCl3) δ 6.846.76 (m, 3H), 6.05 (br, 1H), 4.76 (m, 1H), 3.79 (s, 3H), 3.753.55 

(m, 2H), 3.34 (dd, J = 8.8, 7.2 Hz, 1H), 2.63 (dd, J = 16.9, 8.8 Hz, 1H), 2.40 (dd, J = 16.8, 9.0 Hz, 1H), 

1.941.73 (m, 6H), 1.62 (m, 2H). 

13
C NMR (125 MHz, CDCl3) δ 177.5, 149.6, 148.3, 135.3, 119.2, 114.3, 112.8, 80.8, 56.4, 49.9, 40.4, 

38.3, 33.2, 24.4. 

IR (film): ν (cm
1

) 3191, 3088, 2955, 2868, 1685, 1583, 1510, 1452, 1413, 1348, 1235, 1162, 1136, 

1027, 998, 967, 852, 809, 773, 682, 609, 576, 521. 

HRMS (ESI, m/z) calcd for C16H21NO3Na [M+Na]
+
: 298.1414, found: 298.1421. 
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6) Synthesis of Boc-(S)-Nebracetam (14) 

 

 

 

Synthesis of compound 38: to a solution of compound A (2.02 g, 10.0 mmol, 1.0 equiv.) in CH3CN 

(20 ml) was added N-benzylglycine hydrochloride (compound 37, 2.49 g, 10.0 mmol, 1.0 equiv.), 

followed by K2CO3 (2.76 g, 20.0 mmol, 2.0 equiv.) in H2O (15 ml). The reaction mixture was stirred 

vigorously for 4 hours. Afterwards, the mixture was poured into H2O (100 mL) ml and the aqueous 

layer was washed with Et2O (2 x 20 ml). Then, the aqueous layer was acidified to about pH = 1 by 

careful addition of concentrated HCl and the product was extracted with EtOAc (3 x 40 ml). The 

organic layers were combined and dried over Na2SO4, filtered and concentrated under reduced 

pressure to afford a colorless oil as compound 38 (2.87 g, 96% yield). 

1
H NMR (300 MHz, CDCl3) δ 7.357.22 (m, 10H), 5.10 (s, 2H), 4.49 (m, 2H), 3.90 (s, 2H). 

All other analytical data were consistent with the report.
6 

 

 

Synthesis of compound 28e: to a solution of 38 (1.50 g, 5.0 mmol, 1.0 equiv.) and NHPI (1.06 g, 6.5 

mmol, 1.3 equiv.) in CH2Cl2 (20 mL) was added DCC (1.34 g, 6.5 mmol, 1.3 equiv.), followed by 

DMAP (0.61 g, 5.0 mmol, 1.0 equiv.). Then the reaction mixture was stirred for 16 h at room 

temperature. Afterwards, the insoluble solid was filtered off and washed by DCM (20 mL). The 
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combined organic solution was concentrated in vacuo. The resulting residue was purified by column 

chromatography to afford 28e as a colorless oil (1.80 g, 4.06 mmol, 81% yield). Purification 

conditions: DCM/EtOAc = 50:1 to 20:1, Rf = 0.6 in DCM/EtOAc (20:1). 

1
H NMR (300 MHz, CDCl3, two rotamers) δ 7.917.89 (m, 2H), 7.827.79 (m, 2H), 7.507.25 (m, 

10H), 5.31 (s, 2H), 5.30 (s, 2H, other rotamer), 4.72 (s, 2H), 4.70 (s, 2H, other rotamer), 4.44 (s, 2H), 

4.32 (s, 2H, other rotamer). 

13
C NMR (75 MHz, CDCl3, two rotamers) δ 166.2, 161.4, 156.2, 155.9, 136.1, 136.0, 134.8, 128.8, 

128.7, 128.5, 128.3, 128.1, 128.0, 127.9, 123.9, 68.1, 51.4, 50.9 (other rotamer), 45.5, 45.3 (other 

rotamer).  

IR (film): ν (cm
1

) 3064, 3031, 2945, 1827, 1790, 1741, 1706, 1607, 1586, 1496, 1466, 1453, 1425, 

1402, 1365, 1314, 1233, 1186, 1124, 1079, 1029, 1014, 971, 911, 875, 821, 770, 734, 694, 634, 597, 

567, 542, 517, 471, 403. 

HRMS (ESI, m/z) calcd for C25H20N2O6Na [M+ Na]
+
: 467.1214, found: 467.1228. 

 

 

Synthesis of compound 40: to a solution of B (1.29 g, 6.59 mmol, 1.05 equiv.) in THF (20 mL) 

cooled to 0 ℃ was added a solution of LHMDS (13.2 mL, 13.2 mmol, 1.0 M in THF, 2.10 equiv.) 

dropwise and the mixture was stirred for 1 h at this temperature. Compound 39 (1.00 g, 6.28 mmol, 

1.0 equiv) in THF (10 mL) was subsequently added at 20 ℃ and the reaction was left to stir for 2 h at 

20 ℃, after which time the cooling was removed and the reaction was stirred at room temperature for 

a further 18 h. The reaction was then quenched by the addition of acetic acid (2 ml), and then poured 

onto cool water (40 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined 

organic extracts were dried (Na2SO4) and concentrated in vacuo. The resulting residue was purified by 

column chromatography to afford 40 as a pale yellow solid (1.13 g, 5.62 mmol, 89% yield, E/Z 

= >20:1). Purification conditions: n-hexane/EtOAc = 5:1 to 1:1 with 0.1% AcOH, Rf = 0.1 in 

n-hexane/EtOAc (1:1). 

1
H NMR (300 MHz, CDCl3) δ 6.93 (dt, J = 15.7, 4.8 Hz, 1H), 6.35 (br, 1H), 5.93 (dt, J = 15.7, 1.7 Hz, 
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1H), 3.90 (m, 2H), 1.44 (s, 9H). 

All other analytical data were consistent with the report.
7 

 

 

Synthesis of compound 1y: to a solution of 3,5-dimethylpyrazole (150 mg, 1.53 mmol, 1.0 equiv.) 

and 40 (370 mg, 1.84 mmol, 1.2 equiv.) in CH2Cl2 (10 mL) at room temperature was added 

1-propanephosphonic acid cyclic anhydride (T3P, 1.5 g, 1.84 mmol, 50% solution in EtOAc, 1.2 equiv.) 

dropwise. After stirring for 15 min at room temperature, Et3N (430 μL, 3.07 mmol, 2.0 equiv) was 

added dropwise. Then the reaction mixture was stirred for 16 h at room temperature. Afterwards, the 

mixture was poured into saturated NH4Cl solution (aqueous, 30 mL) and extracted with EtOAc (3 x 30 

mL). The combined organic extracts were dried (Na2SO4) and concentrated in vacuo. The resulting 

residue was purified by column chromatography to afford 29z as a pale yellow solid (320 mg, 1.15 

mmol, 75% yield, single E isomer). Purification conditions: n-hexane/EtOAc = 10:1 to 4:1, Rf = 0.3 in 

n-hexane/EtOAc (4:1). 

1
H NMR (300 MHz, CDCl3) δ 7.39 (dt, J = 15.7, 1.7 Hz, 1H), 7.10 (dt, J = 15.7, 4.9 Hz, 1H), 5.96 (s, 

1H), 4.81 (br, 1H), 4.02 (m, 2H), 2.55 (m, 3H), 2.23 (s, 3H), 1.46 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 164.7, 155.7, 152.1, 146.4, 144.5, 121.4, 111.5, 79.9, 42.0, 28.4, 14.6, 

13.8. 

IR (film): ν (cm
1

) 3355, 2981, 2922, 1706, 1682, 1648, 1523, 1436, 1407, 1340, 1274, 1243, 1163, 

1096, 1039, 1004, 960, 929, 864, 840, 803, 749, 694, 644, 586, 458, 434, 404. 

HRMS (ESI, m/z) calcd for C14H21N3O3Na [M+Na]
+
: 302.1475, found: 302.1484. 
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Synthesis of Boc-(R)-Nberacetam (41): a dried 50 mL Schlenk tube was charged with 

N-(acyloxy)phthalimide 28e (200.0 mg, 0.45 mmol, 1.5 equiv.), N-acyl pyrazole 29z (83.8 mg, 0.3 

mmol, 1.0 equiv.), Δ-RhS (21.0 mg, 0.024 mmol, 8 mol%), and Hantzsch ester (151 mg, 0.6 mmol, 

2.0 equiv.) in CH2Cl2 (6 mL, 0.1 M). The reaction mixture was degassed via freeze-pump-thaw for two 

cycles. After the mixture was thoroughly degassed, the Schlenk tube was sealed tightly with a Teflon 

septum and immersed into a preheated oil bath (40 ℃). The reaction was stirred at 40 ℃ under the 

irradiation of 23 W CFL for 24 h. Afterwards, the mixture was diluted with CH2Cl2. The organic 

solutions were concentrated under reduced pressure. The crude material was purified by flash 

chromatography on silica gel to afford the CC formation product. The obtained compound was 

dissolved in EtOAc (2 mL) and treated with Pd/C (10% Pd, 50 mg), then stirred under an atmosphere 

of H2 (1 atm, with a ballon) at room temperature for 14 h. Afterwards, the insoluble solid was filtered 

off and washed by DCM (10 mL). The combined organic solution was concentrated in vacuo. The 

resulting residue was purified by column chromatography to afford 41 as a colorless solid (50.0 mg, 

0.165 mmol, 55% yield for two steps). Purification conditions: n-hexane/EtOAc = 5:1 to 1:2, Rf = 0.2 

in n-hexane/EtOAc (1:2). Enantiomeric excess was established by HPLC analysis using a Chiralpak 

AS-H column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 25 C, tr 

(major) = 13.5 min, tr (minor) = 7.8 min). []D
22

 = 17.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 7.357.31 (m, 2H), 7.307.27 (m, 1H), 7.237.21 (m, 2H), 4.60 (br, 

1H), 4.43 (dd, J = 33.0, 14.6 Hz, 2H), 3.34 (dd, J = 9.9, 7.9 Hz, 1H), 3.13 (t, J = 5.9 Hz, 2H), 2.97 (dd, 

J = 10.1, 5.4 Hz, 1H), 2.602.50 (m, 2H), 2.20 (dd, J = 16.0, 5.4 Hz, 1H), 1.42 (s, 9H). 

13
C NMR (125 MHz, CDCl3) δ 173.6, 156.0, 136.4, 128.8, 128.2, 127.8, 79.8, 50.0, 46.6, 44.0, 35.2, 

31.9, 28.4. 

IR (film): ν (cm
1

) 3372, 2958, 2925, 2862, 1716, 1681, 1519, 1448, 1367, 1255, 1166, 1072, 981, 860, 

781, 746, 700, 657, 506. 

HRMS (ESI, m/z) calcd for C17H24N2O3Na [M+Na]
+
: 327.1679, found: 327.1687. 
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5.5.4 Assignment of Absolute Configuration 

The absolute configuration of (R)-rolipram (36) was assigned by comparing the optical rotation value 

with a previous report.
8
 And the absolute configuration of radical conjugate addition products 30a, 30c, 

30f-v were assigned accordingly. The optical rotation value of compound 36 was shown as following: 

 

The absolute configuration of 30d was assigned as R by the crystal structure of the corresponding 

derivative 30d′. And the absolute configuration of radical conjugate addition products 30w-ad were 

assigned accordingly. Synthesis and characterization of compound 30d′ was shown as following:  

 

To a solution of 30d (20 mg, 0.0533 mmol, 1.0 equiv.) and C (52.0 mg, 0.267 mmol, 5 equiv) in THF 

(1 mL) at room temperature was added LiCl (11.5 mg, 0.267 mmol, 5 equiv) in one portion. The 

reaction mixture was stirred for 24 h at 60 ℃. Afterwards, the mixture was concentrated in vacuo. The 

resulting residue was purified by column chromatography to afford 30d′ as a pale brown solid (12 mg, 

0.0245 mmol, 46% yield). Purification conditions: n-hexane/EtOAc = 5:1 to 2:1, Rf = 0.4 in 

n-hexane/EtOAc (2:1). The product was washed by n-hexane to deliver a white solid with 97% ee. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee = 97% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 19.2 min, tr 

(minor) = 13.2 min). []D
22

 = 11.2 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CDCl3) δ 10.5 (br, 1H), 7.557.52 (m, 1H), 7.357.20 (m, 5H), 7.15 (d, J = 2.4 

Hz, 1H), 6.90 (dd, J = 8.8, 2.54 Hz, 1H), 4.203.92 (m, 3H), 3.503.42 (m, 1H), 3.243.00 (m, 2H), 

2.80 (s, 3H), 1.421.30 (m, 12H). 

13
C NMR (125 MHz, CDCl3) δ 166.6, 157.4, 156.2, 155.4, 142.8, 139.2 (d, J = 20.5 Hz, 1C), 133.5, 

128.6, 124.4, 124.3, 121.5, 104.8, 98.7 (d, J = 181.3 Hz, 1C), 80.9, 64.2, 56.3 (d, J = 22.8 Hz, 1C), 



Chapter 5. Experimental Part 

236 
 

44.7 (d, J = 24.9 Hz, 1C), 36.9, 28.1, 14.7. 

19
F NMR (282 MHz) δ 151.5, 155.3 (other rotamer). 

IR (film): ν (cm
1

) 3175, 2977, 2926, 1700, 1653, 1604, 1554, 1456, 1396, 1364, 1338, 1310, 1256, 

1224, 1152, 1056, 941, 876, 822, 796, 764, 735, 701, 582, 536, 432, 393. 

HRMS (ESI, m/z) calcd for C25H30FN3O4SNa [M+Na]
+
: 510.1833, found: 510.1841. 

 

 

 

HPLC traces of rac-30d′ (reference) and 30d′. (IA, 254 nm, n-hexane/isopropanol = 80:20, flow rate 

1.0 mL/min, 40 C). 
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Table 17. Crystal data and structure refinement for 30d′. 

 

Crystal data  

 

Identification code  30d′ 

Habitus, colour  plate, colourless 

Crystal size 0.230 x 0.080 x 0.030 mm3 

Crystal system  Orthorhombic 

Space group  P212121 Z = 4 

Unit cell dimensions a = 9.4377(2) Å = 90°. 

 b = 9.7762(2) Å = 90°. 

 c = 27.1593(7) Å  = 90°. 

Volume 2505.85(10) Å3 

Cell determination  17168 peaks with Theta 4.8 to 75.8°. 

Empirical formula  C25 H30 F N3 O4 S 

Moiety formula  C25 H30 F N3 O4 S 

Formula weight  487.58 

Density (calculated) 1.292 Mg/m3 

Absorption coefficient 1.512 mm-1 

F(000) 1032 

 

Data collection:  

 

Diffractometer type  STOE STADIVARI 
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Wavelength  1.54178 Å 

Temperature  100(2) K 

Theta range for data collection 4.807 to 75.551°. 

Index ranges -11<=h<=11, -5<=k<=11, -33<=l<=34 

Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)
9
 

Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)
10

  

Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)
11

  

 X-Area LANA 1.68.2.0 (STOE, 2016)
12

  

 

Solution and refinement: 

 

Reflections collected 21841 

Independent reflections 5031 [R(int) = 0.0518] 

Completeness to theta = 67.679° 99.3 %  

Observed reflections  3996[I > 2σ(I)]  

Reflections used for refinement  5031 

Absorption correction Semi-empirical from equivalents
13

 

Max. and min. transmission 0.8574 and 0.2002 

Flack parameter (absolute struct.)   0.010(9)
14

  

Largest diff. peak and hole 0.220 and -0.215 e.Å-3 

Solution  intrinsic phases
15

 

Refinement  Full-matrix least-squares on F2 

Treatment of hydrogen atoms  CH calculated pos., constr., NH located, isotr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)
14

  

 SHELXL-2018/1 (Sheldrick, 2018)
15

 

 DIAMOND (Crystal Impact)
16

  

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)
17

  

Data / restraints / parameters 5031 / 0 / 316 

Goodness-of-fit on F2 0.869 

R index (all data) wR2 = 0.0629 

R index conventional  [I>2sigma(I)] R1 = 0.0330 
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5.6 Asymmetric -CH Functionalization of Acceptor-Substituted Ketones through 

Single Rh-based Photoredox Catalysis 

5.6.1 Synthesis of a Derived Chiral-at-Rhodium Lewis Acid Catalyst 

Chiral-at-rhodium catalyst Δ-RhS2 was synthesized according to the methodology published 

recently by our group
 

with some modifications.
1,3

 Accordingly, bromine-substituted racemic 

rhodium(III) complex rac-55 was first synthesized, and then converted into the corresponding 

diastereomeric complexes by reacting with a monofluorinated salicyloxazoline as chiral auxiliary. The 

two diastereomers Λ-(S)-56 and Δ-(S)-56 were resolved relying on their different solubilities in EtOH 

and by silica gel chromatography. Afterwards, diastereomeric complex Δ-(S)-56 was subjected to 

Suzuki cross-coupling to provide Δ-(S)-57. Notably, the post-complexation cross-coupling proceeded 

smoothly without affecting the optical purity of the rhodium(III) complex. Finally, stereospecific 

replacement of the auxiliary ligand with acetonitriles induced by trifluoroacetic acid (TFA), followed 

by anion exchange provided the Δ-RhS2. 

 

Synthesis of racemic rhodium complex rac-55: 

The racemic rhodium(III) complex rac-55 was synthesized according to the route reported by Meggers 

and co-workers recently.
1 

Accordingly, 54 (346 mg, 0.90 mmol, 2.0 equiv., prepared according to a 

previous report
4a

) was added to RhCl3•xH2O (118 mg, 0.45 mmol, 1.0 equiv.) in a mixture of 

2-ethoxyethanol and water (v/v = 3:1, 9.0 mL). The reaction mixture was heated at 125 °C for 4 h 
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under an atmosphere of nitrogen. Then, the solvent was removed in vacuo on a rotary evaporator. The 

flask was kept on the rotary evaporator under vacuum for another 30 min to get rid of the residual 

water thoroughly to obtain a brown solid. To the brown solid in CH3CN (5 mL) was added AgPF6 (230 

mg, 0.90 mmol, 2.0 equiv.) in one portion and then stirred at 60 °C. After 15 h, the reaction mixture 

was allowed to be cooled to room temperature. The solid was filtered off and the filtrate was collected, 

evaporated to dryness and purified by column chromatograph on silica gel (100% CH2Cl2 to 

CH2Cl2/CH3CN = 20:1) to give rac-55 (312 mg, 0.306 mmol, 68% yield over two steps) as a pale 

yellow solid.  

Remark: 

1) Weigh out RhCl3•xH2O based on the content of metal as 40% which is an average amount 

calculated from 3742% (provided by the supplier, Precious Metals Online, website: 

http://www.precmet.com.au ). 

2) The reaction time is critical (4 h). 

 

Synthesis of rhodium(III) complexes Δ-(S)-56 and Λ-(S)-56: 

To the racemic rhodium(III) complex rac-55 (312 mg, 0.306 mmol) and K2CO3 (127 mg, 0.919 mmol, 

3.0 equiv.) in absolute ethanol (6.0 mL) was added the chiral auxiliary 

(S)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol (94 mg, 0.367 mmol, 1.2 equiv., prepared 

according to a previous report
4b

) in one portion. The mixture was heated at 70 °C for 6 h. Afterwards, 

the reaction mixture was cooled to room temperature. The diastereomer -(S)-56 has a lower 

solubility in ethanol than -(S)-56 and was precipitated selectively. The yellow solid was separated 

from the solution by centrifugation, and washed for another three times with EtOH (3 × 10 mL). The 

combined clear yellow solution was collected and concentrated, and then subjected to a flash 

chromatography on silica gel (n-hexane/EtOAc = 10:1 to 3:1) to give -(S)-56 (138 mg, 0.131 mmol, 

43% yield) as a yellow solid. On the other hand, the yellow solid obtained after centrifugation was 

subjected to a flash chromatography on silica gel (n-hexane/CH2Cl2 = 1:10 to 1:1) to provide -(S)-56 

with >95% purity as judged by 
1
H NMR. The crude complex was recrystallized in n-hexane/CH2Cl2 = 

10:1 to provide pure -(S)-56 (128 mg, 0.122 mmol, 40% yield) as a yellow solid. The assigned 

configurations were confirmed by the crystal structure of Δ-(S)-56 (see below).  
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Remark: 

1) It is recommended to wash the solid until the organic solution becomes colorless after 

centrifugation to obtain a nearly complete separation of diastereomeric isomers -(S)-56 and -(S)-56. 

2) The complexes -(S)-56 and -(S)-56 are acid sensitive. It is therefore recommended to use silica 

gel of high quality. 

 

Synthesis of rhodium complex Δ-(S)-57:  

To a mixture of rhodium(III) complex Δ-(S)-56 (118.0 mg, 0.1126 mmol), phenylboronic acid (60.0 

mg, 0.4903 mmol, 4.0 equiv.), and powdered K3PO4 (104.0 mg, 0.4904 mmol, 4.00 equiv.) was added 

Pd(dba)2 (7.1 mg, 0.01226 mmol, 10 mol%) and SPhos (10.0 mg, 0.02452 mol, 20 mol%). The 

mixture was evacuated and backfilled with nitrogen for three times. Afterwards, toluene (4.0 mL) was 

added, and the reaction mixture was heated at 100 ℃ for 14 h. The reaction was allowed to be cooled 

to room temperature and the insoluble solid was filtered off. The filtrate was collected and 

concentrated, and then subjected to a flash chromatography on silica gel (n-hexane/EtOAc = 10:1 to 

3:1) to give Δ-(S)-57 (96 mg, 0.09233 mmol, 82% yield) as a yellow solid. 

Remark: 

The complex -(S)-57 is acid sensitive. It is therefore recommend use silica gel of high quality. 

 

Synthesis of chiral-at-rhodium catalyst Δ-RhS2: 

To a solution of -(S)-57 (94 mg, 0.09 mmol) in CH3CN (2 mL) was added TFA (40 L, 0.54 mmol, 6 

equiv.) in one portion. The clear yellow solution turned to pale yellow within 1 min. The solution was 

stirred at room temperature for another 30 min. Afterwards, the reaction mixture was evaporated to 

dryness and subjected to a flash chromatography on silica gel. The product was purified as shown 

below: 

a) Silica gel flash column chromatography using 200 mL of CH2Cl2/CH3CN (99/1, vol/vol) with 0.1% 

of TFA (0.2 mL); then switched to 200 mL CH2Cl2/CH3CN (95/5, vol/vol) to wash out the residual 

TFA. 

b) After the solvent was almost completely used, changed the eluent to first 100 mL of CH2Cl2/CH3CN 

(95/5, vol/vol), and then 300 mL of CH2Cl2/CH3CN (90/10, vol/vol) to elute a purple band which has 
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been characterized as the chiral auxiliary together with some coloured impurities. 

c) Afterwards, added 150 mg of NH4PF6 (0.90 mmol, 10 equiv.) atop the seasand. 

d) Used 200 mL CH2Cl2/CH3CN (50/50, vol/vol) to elute residual pale yellow band on the column. 

e) Collected the pale yellow band, then removed the solvent in vacuo to give a pale yellow solid 

containing desired Δ-RhS2 with a hexafluorophosphate counterion and additional salts. 

f) Subjected the obtained yellow solid to a thin pad (~1 cm) of silica gel to remove excess salts using 

50 mL of CH2Cl2/CH3CN (99/1, vol/vol) as eluent.  

g). Collected the filtrate, then removed the solvent in vacuo to obtain Δ-RhS2 in 91% yield (83 mg, 

0.0819 mmol) as a pale yellow solid. 

Remark: 

1) Adding TFA (0.1%) in the eluent is crucial to prevent the auxiliary to re-coordinate to the 

rhodium(III) center, and leads to a separation of the auxiliary and the product band on silica gel 

choromatagraphy. 

2) According to experience of the Meggers lab, the quality of the silica gel is important for obtaining 

reproducible isolated yields of Δ-RhS2. 

Analytical data: 

54:
  

1
H NMR (300 MHz, CDCl3) δ 8.238.14 (m, 2H), 7.87 (d, J = 8.5 Hz, 1H), 7.567.51 (m, 2H), 

7.447.38 (m, 2H), 1.43 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 164.3, 152.8, 150.1, 133.1, 132.7, 132.4, 131.7, 131.0, 130.8, 127.1, 

123.8, 120.8, 119.8, 35.0, 31.5. 

IR (film): ν (cm
1

) 3059, 2957, 2865, 1599, 1524, 1431, 1351, 1264, 1063, 1020, 961, 923, 874, 815, 

756, 656, 453. 

HRMS (ESI, m/z) calcd for C17H17BrNS [M+H]
+
: 348.0240, found: 348.0245. 

Rf = 0.6 in n-hexane/EtOAc = 10:1. 

rac-55: 

1
H NMR (300 MHz, CD2Cl2) δ 8.60 (d, J = 1.5 Hz, 2H), 8.12 (d, J = 8.6 Hz, 2H), 7.81 (dd, J = 8.6, 1.8 

Hz, 2H), 7.31 (dd, J = 7.9, 0.7 Hz, 2H), 6.70 (t, J = 7.9 Hz, 2H), 6.12 (d, J = 7.8 Hz, 2H), 2.19 (s, 6H), 

1.50 (s, 18H). 
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13
C NMR (75 MHz, CD2Cl2) δ 174.9, 163.5, 153.1, 148.6, 139.4, 132.3, 131.3, 129.8, 129.2, 125.9, 

122.5, 120.4, 116.8, 35.7, 31.6. 

IR (film): ν (cm
1

) 3060, 2956, 2924, 2861, 2281, 1730, 1600, 1557, 1453, 1403, 1277, 1192, 1132, 

1058, 986, 934, 839, 769, 718, 667, 599, 555, 492, 444, 406. 

Rf = 0.4 in CH2Cl2/CH3CN (20:1). 

-(S)-56: 

1
H NMR (500 MHz, CD2Cl2) δ 9.25 (dd, J = 1.9, 0.5 Hz, 1H), 8.55 (dd, J = 1.8 Hz, 0.4, 1H), 8.00 (dd, 

J = 8.6, 0.4 Hz, 1H), 7.84 (dd, J = 8.6, 0.3 Hz, 1H), 7.64 (dd, J = 8.5, 1.9 Hz, 1H), 7.56 (dd, J = 8.6, 

1.8 Hz, 1H), 7.21 (dd, J = 7.9, 1.0 Hz, 1H), 6.946.88 (m, 5H), 6.74 (dd, J = 7.7, 1.1 Hz, 1H), 

6.716.67 (m, 1H), 6.60 (t, J = 7.7 Hz, 1H), 6.27 (t, J = 7.6 Hz, 1H), 6.21 (dt, J = 7.7, 1.1 Hz, 1H), 

6.156.13 (m, 2H), 5.755.71 (m, 1H), 4.414.34 (m, 1H), 3.903.82 (m, 2H), 1.42 (s, 9H), 1.23 (s, 

9H). 

13
C NMR (125 MHz, CD2Cl2) δ 175.0, 174.9, 174.9, 174.8, 174.5, 174.4, 172.9, 172.7, 172.6, 172.3, 

167.4, 162.8 (J = 255.1 Hz), 152.7, 151.4, 149.8, 149.7, 139.8, 139.4, 137.3, 134.0, 133.1, 133.0, 

132.1, 130.2, 129.6 (2C), 128.9, 128.7, 128.5, 128.1, 128.0, 127.3, 126.9, 125.0, 124.9, 121.6, 121.5, 

120.3, 120.3, 120.0 (2C), 118.9, 118.8, 118.6, 116.9, 104.1 (J = 8.0 Hz), 98.7 (J = 22.2 Hz), 74.9, 70.7, 

35.7, 35.4, 31.6, 32.0. 

19
F NMR (282 MHz) δ 107.6. 

IR (film): ν (cm
1

) 3056, 2955, 2900, 1617, 1567, 1530, 1443, 1395, 1270, 1220, 1190, 1151, 1093, 

1028, 979, 925, 843, 749, 693, 617, 582, 527, 487, 446, 403. 

HRMS (APCI, m/z) calcd for C49H42Br2FN3O2RhS2 [M+H]
+
: 1050.0103, found: 1050.0107. 

CD {CH3OH/CH2Cl2 (3:2)} for -(S)-56: λ, nm (Δε, M
-1

 cm
-1

) 423 (+58), 368 (+6), 356 (1), 339 (+9), 

290 (+18). 

Rf = 0.4 in n-hexane/EtOAc (1:1). 

-(S)-56: 

1
H NMR (500 MHz, CD2Cl2) δ 9.07 (d, J = 1.6 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 8.6 Hz, 

1H), 7.70 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.7, 1.7 Hz, 1H), 7.55 (dd, J = 8.6, 1.9 Hz, 1H), 7.26 (dd, J 

= 7.8, 1.0 Hz, 1H), 7.21 (dd, J = 7.8, 0.9 Hz, 1H), 7.03 (br, 1H), 6.876.80 (m, 3H), 6.70 (t, J = 7.8 Hz, 

1H), 6.56 (t, J = 7.9 Hz, 1H), 6.346.31 (m, 3H), 6.22 (br, 1H), 5.805.76 (m, 1H), 5.75 (dt, J = 7.9, 

0.9 Hz, 1H), 4.954.89 (m, 2H), 4.054.00 (m, 1H), 1.49 (s, 9H), 1.29 (s, 9H). 
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13
C NMR (125 MHz, CD2Cl2) δ 175.0, 174.9, 174.5, 174.4, 174.2, 174.0, 173.7 (2C), 172.0, 171.8, 

165.9 (2C), 163.0 (J = 257.0 Hz), 151.3, 151.1, 149.9, 149.3, 140.6, 140.2, 139.9, 134.4, 132.7, 132.6, 

131.6, 129.5, 129.4 (3C), 129.3 (2C), 128.4 (2C), 128.2, 127.8, 127.5, 127.3, 124.1, 124.0, 121.7, 

120.6, 119.9 (2C), 119.8 (2C), 119.4, 115.9, 101.3 (J = 6.5 Hz), 98.5 (J = 23.6 Hz), 75.7, 69.3, 35.1, 

35.0, 31.4, 31.3. 

CD {CH3OH/CH2Cl2 (3:2)} for Λ-(S)-56: λ, nm (Δε, M
-1

 cm
-1

) 432 (48), 375 (+20). 

Rf = 0.3 in n-hexane/CH2Cl2 (1:2). 

-(S)-57: 

1
H NMR (300 MHz, CD2Cl2) δ 9.24 (d, J = 1.8 Hz, 1H), 8.54 (d, J = 1.7 Hz, 1H), 7.72 (d, J = 8.6 Hz, 

1H), 7.607.50 (m, 8H), 7.497.45 (m, 2H), 7.427.39 (m, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.19 (dt, J = 

7.4, 1.3 Hz, 1H), 7.09 (tt, J = 6.7, 1.3 Hz, 1H), 6.996.96 (m, 2H), 6.946.92 (m, 4H), 6.76 (dd, J = 

16.0, 7.7 Hz, 1H), 6.566.53 (m, 2H), 6.46 (dd, J = 7.3, 1.1 Hz, 1H), 6.35 (dt, J = 7.7, 0.9 Hz, 1H), 

6.31 (d, J = 8.3 Hz, 1H), 5.785.75(m, 1H), 4.32 (m, 1H), 3.923.85 (m, 2H), 1.40 (s, 9H), 1.27 (s, 

9H). 

13
C NMR (75 MHz, CD2Cl2) δ 175.2, 175.1, 175.0 (2C), 174.8 (2C), 171.1, 170.9, 170.7, 170.4, 170.0, 

162.6 (d, J = 254.4 Hz), 161.6, 151.8, 150.6, 149.6, 149.4, 141.7, 141.5, 140.5, 138.9, 138.3, 137.7, 

134.2, 132.6, 132.4, 131.9, 130.4, 130.3, 129.4, 129.2 (2C), 129.1 (2C), 129.0, 128.9, 128.8, 128.6, 

128.5, 128.3, 128.1, 127.8, 127.3, 126.8, 125.0, 124.0, 123.9, 123.7, 121.0 (2C), 118.6 (2C), 118.1, 

116.6, 104.2 (d, J = 7.9 Hz), 98.1 (d, J = 22.3 Hz), 74.5, 69.8, 35.3, 35.1, 31.3, 31.1. 

IR (film): ν (cm
1

) 12955, 2143, 1984, 1618, 1544, 1448, 1376, 1269, 1220, 1177, 1097, 1035, 988, 

924, 792, 754, 697, 620, 585, 535, 454, 408. 

19
F NMR (282 MHz) δ 108.8. 

HRMS (FD, m/z) calcd for C61H51FN3O2RhS2 [M]: 1044.2493, found: 1044.2511. 

CD {CH3OH/CH2Cl2 (3:2)} for -(S)-57: λ, nm (Δε, M
-1

 cm
-1

) 442 (+3), 421 (+2), 375 (+23). 

Rf = 0.4 in n-hexane/EtOAc (1:1). 

-RhS2: 

1
H NMR (500 MHz, CD2Cl2) δ 8.58 (br, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.7, 1.8 Hz, 2H), 

7.637.57 (m, 6H), 7.467.43 (m, 2H), 7.457.39 (m, 2H), 6.936.87 (m, 4H), 6.24 (dt, J = 7.5, 1.2 

Hz, 2H), 2.20 (s, 6H), 1.46 (s, 18H). 

13
C NMR (125 MHz, CD2Cl2) δ 175.3, 152.1, 148.4, 142.3, 139.6, 138.3, 132.1, 129.7, 129.6 (2C), 
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129.4, 129.3, 129.2 (2C), 129.1, 126.1, 124.9, 121.8, 116.4, 35.2, 31.3. 

IR (film): ν (cm
1

) 2957, 1995, 1550, 1456, 1413, 1318, 1275, 1035, 991, 930, 834, 758, 699, 669, 553, 

444, 409. 

CD {CH3OH/CH2Cl2 (3:2)} for -RhS2: λ, nm (Δε, M
-1

 cm
-1

) 410 (97), 369 (+183), 353 (+155), 300 

(281), 247 (+165). 

Rf = 0.4 in CH2Cl2/CH3CN (20:1). 

5.6.2 Synthesis of Substrates 

2-Acyl imidazoles 42a-m were synthesized according to our recently published procedures.
5a

 

Analytical data of 42n were consistent with the report.
5a

 The experimental data of 42a-m are shown 

below. 

 

1
H NMR (300 MHz, CDCl3) δ 7.517.47 (m, 3H), 7.317.29 (m, 4H), 7.257.25 (m, 4H), 7.20 (d, J = 

1.0 Hz, 1H), 3.53 (t, J = 7.5 Hz, 2H), 3.02 (t, J = 8.0 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.6, 143.0, 141.1, 138.5, 129.6, 129.0, 128.8, 128.6, 128.5, 127.1, 

126.1, 126.0, 40.7, 29.9. 

IR (film): ν (cm
1

) 3106, 3060, 3028, 3028, 2926, 1682, 1595, 1494, 1445, 1401, 1303, 1146, 1053, 

956, 908, 757, 691, 559, 512. 

HRMS (ESI, m/z) calcd for C18H17N2O [M+H]
+
: 277.1335, found: 277.1331. 

Rf = 0.5 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.507.47 (m, 3H), 7.317.25 (m, 3H), 7.20 (d, J = 0.9 Hz, 1H), 

7.177.10 (m, 4H), 3.51 (t, J = 7.5 Hz, 2H), 3.00 (t, J = 7.9 Hz, 2H), 1.38 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 190.7, 143.1, 138.5, 138.0, 135.5, 129.6, 129.1, 129.0, 128.8, 128.4, 

127.0, 126.0, 40.8, 29.5, 21.0. 

IR (film): ν (cm
1

) 2932, 1684, 1595, 1492, 1443, 1402, 1340, 1296, 1254, 1207, 1172, 1050, 1008, 

955, 909, 868, 805, 763, 690, 540, 497, 434. 



Chapter 5. Experimental Part 

247 
 

HRMS (ESI, m/z) calcd for C19H19N2O [M+H]
+
: 291.1492, found: 291.1487. 

Rf = 0.5 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.527.46 (m, 3H), 7.347.26 (m, 5H), 7.217.19 (m, 3H), 3.53 (t, J = 

7.5 Hz, 2H), 3.00 (t, J = 8.0 Hz, 2H), 1.34 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 190.7, 148.9, 143.1, 138.5, 138.0, 129.6, 129.0, 128.8, 128.2, 127.0, 

126.0, 125.3, 40.7, 34.4, 31.5, 29.4. 

IR (film): ν (cm
1

) 2947, 2863, 1685, 1595, 1493, 1446, 1403, 1337, 1302, 1258, 1207, 1149, 1058, 

1011, 959, 909, 819, 763, 690, 642, 557, 508, 433. 

HRMS (FD, m/z) calcd for C22H24N2O [M]: 332.1889, found: 332.1883. 

Rf = 0.6 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.507.45 (m, 3H), 7.337.31 (m, 2H), 7.26 (m, 1H), 7.20 (d, J = 1.0 

Hz, 1H), 6.886.83 (m, 2H), 6.446.38 (m,1H), 6.14 (dt, J = 15.8, 6.8 Hz, 1H), 3.83 (s, 3H), 3.36 (t, J 

= 7.3 Hz, 2H), 2.59 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.8, 158.9, 143,1, 138.5, 130.6, 129.6, 129.0, 128.8, 127.2, 127.0, 

126.0, 114.0, 55.4, 39.0, 27.4. 

IR (film): ν (cm
1

) 3104, 2972, 2924, 2895, 2837, 1686, 1599, 1499, 1444, 1403, 1299, 1235, 1172, 

1101, 1059, 1019, 956, 908, 843, 763, 693, 558, 505, 453, 418. 

Rf = 0.4 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.517.46 (m, 3H), 7.317.26 (m, 3H), 7.247.19 (m, 2H), 6.85 (d, J = 

7.6 Hz, 1H), 6.81 (m, 1H), 6.76 (dd, J = 8.1, 2.3 Hz, 1H), 3.81 (s, 3H), 3.53 (t, J = 7.5 Hz, 2H), 2.00 (t, 

J = 7.9 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.5, 159.7, 143.0, 142.7, 138.5, 129.6, 129.4, 129.0, 128.8, 127.1, 
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125.9, 120.9, 114.1, 111.6, 55.2, 40.6, 30.0. 

IR (film): ν (cm
1

) 3111, 2938, 2835, 2774, 1683, 1594, 1492, 1445, 1402, 1303, 1255, 1151, 1045, 

956, 909, 868, 763, 690, 557, 510, 455. 

HRMS (FD, m/z) calcd for C19H18N2O2 [M]: 306.1368, found: 306.1374. 

Rf = 0.4 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.307.26 (m, 3H), 7.107.05 (m, 3H), 6.99 (d, J = 1.0 Hz, 1H), 

6.916.87 (m, 2H), 6.586.54 (m, 2H), 3.28 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 0.80 (s, 9H), 

0.00 (s, 6H). 

13
C NMR (75 MHz, CDCl3) δ 190.7, 153.9, 143.1, 138.5, 133.8, 129.6, 129.4, 129.0, 128.8, 127.0, 

126.0, 120.0, 41.0, 29.2, 25.8, 18.3, 4.3. 

IR (film): ν (cm
1

) 2938, 2858, 1685, 1602, 1503, 1448, 1403, 1251, 1166, 1059, 1013, 956, 910, 833, 

765, 689, 638, 524. 

HRMS (ESI, m/z) calcd for C24H31N2O2Si [M+H]
+
: 407.2149, found: 407.2143. 

Rf = 0.5 in n-hexane/EtOAc (7:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.527.47 (m, 3H), 7.297.25 (m, 3H), 7.237.17 (m, 5H), 3.50 (t, J = 

7.4 Hz, 2H), 2.98 (t, J = 7.9 Hz, 2H), 2.49 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 190.4, 143.0, 138.4, 138.3, 135.6, 129.6, 129.1, 129.0, 128.8, 127.3, 

127.1, 126.0, 40.6, 29.4, 16.4. 

IR (film): ν (cm
1

) 2921, 2854, 1731, 1686, 1594, 1491, 1443, 1405, 1336, 1297, 1252, 1206, 1050, 

1003, 954, 908, 868, 806, 761, 689, 621, 553, 504, 454. 

HRMS (ESI, m/z) calcd for C19H19N2OS [M+H]
+
: 323.1213, found: 323.1205. 

Rf = 0.5 in n-hexane/EtOAc (4:1). 
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42h was synthesized from 42f with a TBAF-mediated deprotection of TBS moiety. 

1
H NMR (300 MHz, CDCl3) δ 7.527.48 (m, 4H), 7.32 (d, J = 0.9 Hz, 1H), 7.317.28 (m, 2H), 7.22 

(d, J = 1.0 Hz, 1H), 7.037.00 (m, 2H), 6.766.72 (m, 2H), 3.48 (t, J = 7.4 Hz, 2H), 2.91 (t, J = 8.0 Hz, 

2H). 

13
C NMR (75 MHz, CDCl3) δ 190.5, 154.5, 142.8, 138.3, 132.5, 129.5, 129.4, 129.1, 129.0, 127.1, 

126.0, 115.4, 41.3, 28.9. 

IR (film): ν (cm
1

) 3005, 2908, 2853, 2162, 1983, 1730, 1676, 1593, 1513, 1449, 1331, 1283, 1203, 

1062, 989, 918, 854, 795, 755, 683, 577. 

HRMS (ESI, m/z) calcd for C18H16N2O2 [M+H]
+
: 293.1285, found: 293.1280. 

 

1
H NMR (300 MHz, CDCl3) δ 7.527.48 (m, 3H), 7.41 (m, 1H), 7.43 (dt, J = 7.0, 2.0 Hz, 1H), 

7.317.25 (m, 3H), 7.21 (d, J = 1.0 Hz, 1H), 7.187.13 (m, 2H), 3.52 (t, J = 7.4 Hz, 2H), 3.00 (t, J = 

7.8 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.0, 143.5, 142.9, 138.4, 131.6, 130.0, 129.7, 129.2, 129.1, 128.9, 

127.2 (2C), 126.0, 122.5, 40.3, 29.5. 

IR (film): ν (cm
1

) 1685, 1597, 1497, 1442, 1402, 1295, 1237, 1173, 1064, 1022, 954, 909, 845, 763, 

691, 561, 511, 435. 

HRMS (ESI, m/z) calcd for C18H16BrN2O [M+H]
+
: 357.0422, found: 357.0413. 

Rf = 0.5 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.507.48 (m, 3H), 7.297.26 (m, 3H), 7.217.19 (m, 3H), 7.006.94 

(m, 2H), 3.51 (t, J = 7.5 Hz, 2H), 2.99 (t, J = 7.7 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.2, 161.4 (d, J = 243.0 Hz, 1C), 142.9, 138.4, 136.7 (d, J = 3.1 Hz, 

1C), 129.9 (d, J = 7.8 Hz, 1C), 129.6, 129.0, 128.8, 127.1, 125.9, 115.1 (d, J = 21.1 Hz, 1C), 40.7, 

29.0. 

19
F NMR (282 MHz) δ 117.4. 
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IR (film): ν (cm
1

) 3049, 2924, 1682, 1597, 1501, 1444, 1403, 1304, 1219, 1152, 1096, 1058, 1010, 

958, 909, 824, 763, 691, 532, 426. 

HRMS (ESI, m/z) calcd for C18H16FN2O [M+H]
+
: 295.1241, found: 295.1242. 

Rf = 0.5 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.51 (dt, J = 8.2 Hz, 2H), 7.487.45 (m, 3H), 7.33 (d, J = 8.1 Hz, 2H), 

7.277.22 (m, 3H), 7.18 (d, J = 0.9 Hz, 1H), 3.52 (t, J = 7.4 Hz, 2H), 3.04 (t, J = 7.6 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 189.9, 145.3, 142.9, 138.4, 129.7, 129.1, 128.9 (2C), 127.3, 126.0, 

125.4 (q, J = 3.8 Hz), 124.4 (q, J = 271.7 Hz), 40.2, 29.6. 

19
F NMR (282 MHz) δ 62.3. 

IR (film): ν (cm
1

) 3001, 2943, 2844, 1687, 1493, 1409, 1318, 1213, 1174, 1108, 1057, 1010, 973, 907, 

830, 762, 690, 605, 509, 461. 

HRMS (ESI, m/z) calcd for C19H16F3N2O [M+H]
+
: 345.1209, found: 345.1211. 

Rf = 0.6 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.547.48 (m, 3H), 7.43 (d, J = 2.1 Hz, 1H), 7.317.25 (m, 3H), 7.20 

(d, J = 0.9 Hz, 1H), 7.15 (dd, J = 8.4, 2.2 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H), 3.48 (t, J = 

7.4 Hz, 2H), 2.94 (t, J = 7.7 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.2, 154.3, 142.9, 138.4, 134.8, 133.3, 129.7, 129.1, 128.8, 128.4, 

127.2, 125.9, 112.0, 111.5, 56.3, 40.6, 28.7. 

IR (film): ν (cm
1

) 2908, 2855, 1728, 1681, 1595, 1493, 1447, 1402, 1335, 1296, 1251, 1205, 1172, 

1050, 995, 956, 913, 868, 802, 762, 687, 544, 491, 421. 

HRMS (ESI, m/z) calcd for C19H18BrN2O2 [M+H]
+
: 386.0578, found: 386.0574. 

Rf = 0.4 in n-hexane/EtOAc (5:1). 
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1
H NMR (300 MHz, CDCl3) δ 7.487.41 (m, 3H), 7.337.30 (m, 2H), 7.257.22 (m, 3H), 7.207.16 

(m, 3H), 6.68 (dd, J = 17.6, 11.0 Hz, 1H), 5.69 (dd, J = 17.6, 0.9 Hz, 1H), 5.19 (dd, J = 10.9, 0.8 Hz, 

1H), 3.49 (t, J = 7.4 Hz, 2H), 2.98 (t, J = 7.9 Hz, 2H). 

13
C NMR (75 MHz, CDCl3) δ 190.5, 143.0, 140.9, 138.5, 136.7, 135.5, 129.6, 129.0, 128.8, 128.7, 

127.1, 126.3, 126.0, 113.1, 40.6, 29.6. 

IR (film): ν (cm
1

) 3113, 3049, 2926, 1688, 1595, 1494, 1407, 1298, 1213, 1055, 1004, 956, 910, 826, 

762, 691, 548, 502, 441. 

HRMS (ESI, m/z) calcd for C20H19N2O [M+H]
+
: 303.1492, found: 303.1486. 

Rf = 0.6 in n-hexane/EtOAc (5:1). 

 

1
H NMR (300 MHz, CDCl3) δ 8.16 (d, J = 8.0 Hz, 1H), 7.597.56 (m, 1H), 7.527.45 (m, 4H), 

7.367.22 (m, 5H), 7.22 (d, J = 1.0 Hz, 1H), 3.62 (t, J = 7.4 Hz, 2H), 3.10 (t, J = 7.8 Hz, 2H), 1.70 (s, 

9H). 

13
C NMR (75 MHz, CDCl3) δ 190.5, 149.8, 143.0, 138.4, 135.6, 130.6, 129.7, 129.2, 128.8, 127.1, 

126.0, 124.4, 122.6, 122.4, 119.9, 119.0, 115.2, 83.3, 38.6, 28.3, 19.3. 

IR (film): ν (cm
1

) 2984, 2924, 1689, 1598, 1495, 1448, 1405, 1374, 1306, 1246, 1210, 1152, 1051, 

1020, 959, 909, 843, 760, 691, 554, 508. 

HRMS (ESI, m/z) calcd for C25H25N3O3Na [M+Na]
+
: 438.1788, found: 438.1781. 

Rf = 0.4 in n-hexane/EtOAc (5:1). 

 

2-Acyl pyridines 42p-r were synthesized according to our recently published procedures.
5b

 Analytical 

data of 42p
5c

 and 42r
5d

 were consistent with the report. The experimental data of 42q are shown 

below. 

 

1
H NMR (300 MHz, CDCl3) δ 8.66 (d, J = 4.4 Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.5 

Hz, 1H), 7.487.43 (m, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 3.55 (t, J = 7.5 Hz, 2H), 
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3.03 (t, J = 7.7 Hz, 2H), 2.3 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 201.2, 153.5, 149.0, 138.4, 136.9, 135.5, 129.1, 128.4, 127.1, 121.9, 

39.6, 29.5, 21.1. 

IR (film): ν (cm
1

) 3051, 3010, 2923, 1695, 1579, 1514, 1439, 1401, 1360, 1304, 1216, 1096, 1044, 

985, 780, 739, 667, 613, 573, 533, 475, 405. 

HRMS (ESI, m/z) calcd for C15H16NO [M+H]
+
: 226.1226, found: 226.1230. 

Rf = 0.6 in n-hexane/EtOAc (7:1). 

 

-Ketoesters 43g-j were synthesized from acetophenones according to a methodology reported by 

Jiao.
6
 Analytical data of 43i were consistent with the report.

6
 The experimental data of 43g, 43h, 43j 

are shown below. 

 
1
H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.09 (m, 1H), 2.44 (s, 

3H), 2.031.97 (m, 2H), 1.841.75 (m, 2H), 1.661.54 (m, 3H), 1.491.24 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ 186.6, 164.0, 146.1, 130.3, 130.2, 129.7, 75.4, 31.5, 25.3, 23.7, 22.0. 

IR (film): ν (cm
1

) 2936, 2859, 1727, 1680, 1603, 1571, 1448, 1296, 1203, 1169, 1117, 989, 900, 834, 

794, 732, 619, 478. 

Rf = 0.6 in n-hexane/EtOAc (10:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.867.76 (m, 2H), 7.497.34 (m, 2H), 5.10 (m, 1H), 2.42 (s, 3H), 

2.031.96 (m, 2H), 1.821.76 (m, 2H), 1.641.55 (m, 3H), 1.501.28 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ 187.1, 163.9, 138.9, 135.7, 132.7, 130.3, 128.8, 127.4, 75.4, 31.5, 25.3, 

23.7, 21.4. 

IR (film): ν (cm
1

) 2961, 1729, 1686, 1407, 1256, 1079, 1013, 866, 792, 687. 

HRMS (ESI, m/z) calcd for C15H18O3Na [M+Na]
+
: 269.1148, found: 269.1144. 

Rf = 0.6 in n-hexane/EtOAc (10:1). 
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1
H NMR (300 MHz, CDCl3) δ 7.56 (dt, J = 7.7, 1.5 Hz, 1H), 7.537.51 (m, 1H), 7.41 (t, J = 8.0 Hz, 

1H), 7.227.17 (m, 1H), 5.10 (m, 1H), 3.86 (s, 3H), 2.051.96 (m, 2H), 1.841.74 (m, 2H), 1.671.53 

(m, 3H), 1.501.23 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ 186.8, 163.8, 160.1, 133.9, 130.0, 123.1, 121.8, 113.3, 75.5, 55.6, 31.5, 

25.3, 23.7. 

IR (film): ν (cm
1

) 2936, 2859, 1728, 1685, 1588, 1483, 1452, 1293, 1245, 1186, 1158, 1119, 1002, 

897, 791, 753, 724, 676, 556, 483, 440. 

Rf = 0.6 in n-hexane/EtOAc (10:1). 

 

-Ketoester 43d was commercially available, and 43e-f, 43k-m were synthesized from glyoxylic acid 

according to published method.
7
 Analytical data of 43e-f were consistent with the reported data.

7,8
 The 

experimental data of 43k-m are shown below. 

 

1
H NMR (300 MHz, CDCl3) δ 8.007.96 (m, 2H), 7.63 (m, 1H), 7.537.47 (m, 2H), 2.29 (m, 6H), 

2.25 (m, 3H), 1.72 (m, 6H). 

13
C NMR (75 MHz, CDCl3) δ 186.8, 163.5, 134.6, 132.7, 130.0, 128.9, 85.1, 41.5, 36.1, 31.1. 

IR (film): ν (cm
1

) 2910, 2858, 1718, 1682, 1592, 1450, 1341, 1295, 1201, 1173, 1102, 1040, 988, 934, 

873, 838, 758, 725, 688, 541, 441, 397. 

HRMS (ESI, m/z) calcd for C18H20O3Na [M+Na]
+
: 307.1305, found: 307.1300. 

Rf = 0.5 in n-hexane/EtOAc (15:1). 

 

1
H NMR (300 MHz, CDCl3) δ 7.857.82 (m, 2H), 7.63 (m, 1H), 7.487.42 (m, 2H), 7.387.32 (m, 

5H), 5.154.93 (m, 2H), 4.714.58 (m, 2H), 1.41 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 185.9, 163.5, 155.1, 135.0, 130.2, 129.0, 129.0, 129.9, 128.2, 126.8, 
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126.6, 80.3, 67.8, 66.0, 28.4. 

IR (film): ν (cm
1

) 3377, 2909, 2975, 2859, 1724, 1680, 1516, 1452, 1365, 1289, 1246, 1198, 1165, 

1052, 991, 857, 753, 692, 551, 438. 

HRMS (ESI, m/z) calcd for C21H23NO5Na [M+Na]
+
: 392.1468, found: 392.1463. 

Rf = 0.4 in n-hexane/EtOAc (10:1). 

 
1
H NMR (300 MHz, CDCl3) δ 8.027.97 (m, 2H), 7.64 (m, 1H), 7.537.48 (m, 2H), 5.02 (m, 1H), 

2.001.95 (m, 2H), 2.001.95 (m, 2H), 1.831.50 (m, 11H), 1.391.22 (m, 9H), 1.161.07 (m, 5H), 

1.000.97 (m, 2H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 1.1 Hz, 3H), 0.86 (d, J = 1.0 Hz, 3H), 0.84 (s, 

3H), 0.65 (s, 3H). 

13
C NMR (75 MHz, CDCl3) δ 186.8, 163.8, 134.8, 132.7, 130.0, 128.9, 73.8, 56.5, 56.4, 54.3, 44.9, 

42.7, 40.0, 39.6, 36.8, 36.3, 35.9, 35.6, 35.5, 33.9, 32.1, 28.7, 28.3, 28.1, 27.5, 24.3, 23.9, 22.9, 22.6, 

21.3, 18.8, 12.3, 12.2. 

IR (film): ν (cm
1

) 2910, 2856, 1728, 1680, 1516, 1452, 1331, 1291, 1203, 1171, 1040, 991, 922, 855, 

754, 686. 

HRMS (ESI, m/z) calcd for C35H52O3Na [M+Na]
+
: 543.3809, found: 543.3800. 

Rf = 0.5 in n-hexane/EtOAc (10:1). 
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5.6.3 Rhodium-Catalyzed -(sp
3
)-CH Functionalization Activated by Visible Light 

A dried 10 mL Schlenk tube was charged with 2-acyl imidazoles 42a-o (0.10 mmol), Δ-RhS1 (3.4 

mg, 4 mol%) or Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%). Acetone (1.0 mL, 0.1 M) 

was added via syringe, followed by 1,2-dicarbonyl compounds 43d-n (0.3 mmol, 3 equiv.). While 

turning to the scope with 2-acyl pyridines, 42p-r (0.3 mmol, 3 equiv.) and 43d (0.1 mmol) were 

employed. The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the 

mixture was thoroughly degassed, the Schlenk tube was sealed tightly with a Teflon septum and 

immersed into a water bath which was positioned close to 24 W blue LEDs. The reaction was stirred at 

room temperature for the indicated time (monitored by TLC) under an atmosphere of nitrogen. 

Afterwards, the mixture was diluted with CH2Cl2. The combined organic solutions were concentrated 

under reduced pressure and then subjected to 
1
H NMR analysis to determine the dr value of the crude 

products except otherwise noted. Afterwards, the crude material was purified by flash chromatography 

on silica gel (n-hexane/EtOAc) to afford the hetero-coupling products 45a-z. Racemic samples were 

obtained by carrying out the reactions with rac-RhS1. The enantiomeric excess was determined by 

chiral HPLC analysis. 

 

Figure 99 a) Setup of the reported photoreactions; b) emission spectrum of the employed 24 W blue 

LEDs. 
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According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43d 

(49.0 mg, 3.0 equiv.), Δ-RhS1 (3.4 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45a as a pale yellow solid (39.1 mg, 89% yield, 5.5:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 4:1, Rf = 0.4 in n-hexane/EtOAc (4:1). 

The NMR yield of 95% was observed before purification. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak IG column, ee = 98% (HPLC: 254 nm, n-hexane/isopropanol = 

70:30, flow rate 1 mL/min, 40 C, tr (major) = 12.1 min, tr (minor) = 16.1 min). []D
22

 = 47.6 (c 1.0, 

CH2Cl2). The dr value was determined by 
1
H NMR analysis of the crude product as shown below: 

 
1
H NMR (300 MHz, CD2Cl2) δ 7.807.77 (m, 2H), 7.417.38 (m, 2H), 7.327.20 (m, 6H), 7.187.12 

(m, 3H), 7.10 (d, J = 0.9 Hz, 1H), 6.93 (d, J = 0.9 Hz, 1H), 6.776.74 (m, 2H), 4.34 (dd, J = 11.1, 3.6 

Hz, 1H), 3.95 (dd, J = 17.2, 11.1 Hz, 1H), 3.80 (br, 1H), 3.47 (s, 3H), 2.83 (dd, J = 17.2, 3.6 Hz, 1H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.9, 174.9, 143.5, 140.3, 139.5, 138.7, 130.2, 129.7, 129.0, 128.7 

(2C), 128.3 (2C), 127.6, 127.1, 127.0, 126.0, 81.4, 49.1, 41.5, 39.6. 

IR (film): ν (cm
1

) 3501, 3062, 3030, 2953, 2919, 1731, 1686, 1597, 1494, 1447, 1406, 1303, 1241, 

1177, 1121, 1072, 1033, 967, 917, 859, 759, 698, 653, 597, 523. 

HRMS (EI, m/z) calcd for C27H25N2O4 [M+H]
+
: 441.1809, found: 441.1802. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 

43e (61.8 mg, 3.0 equiv.), Δ-RhS1 (3.4 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue 
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LEDs at room temperature (in a water bath) to afford 45b as a pale yellow solid (43.9 mg, 91% yield, 

5.9:1 dr, 98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc 

(4:1). The NMR yield of 95% was observed before purification. Enantiomeric excess was established 

by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: 254 nm, n-hexane/isopropanol 

= 80:20, flow rate 1 mL/min, 25 C, tr (major) = 13.9 min, tr (minor) = 18.3 min). []D
22

 = 32.2 (c 

1.0, CH2Cl2). The dr value was determined by 
1
H NMR analysis of the crude product as shown below: 

 

1
H NMR (300 MHz, CD2Cl2) δ 7.967.86 (m, 2H), 7.587.55 (m, 2H), 7.437.30 (m, 6H), 7.277.22 

(m, 3H), 7.14 (d, J = 0.8 Hz, 1H), 7.04 (d, J = 0.9 Hz, 1H), 6.936.89 (m, 2H), 4.25 (dd, J = 13.4, 3.1 

Hz, 1H), 4.12 (br, 1H), 3.95 (dd, J = 17.3, 11.3 Hz, 1H), 2.84 (dd, J = 17.4, 3.2 Hz, 1H), 1.23(s, 9H). 

13
C NMR (75 MHz, CD2Cl2) δ 190.1, 173.5, 143.5, 141.4, 140.2, 138.8, 130.8, 129.7, 129.1, 128.7, 

128.5, 128.1, 127.4, 127.1, 126.8, 126.1, 84.0, 81.1, 48.7, 40.4, 27.7. 

IR (film): ν (cm
1

) 3244, 2979, 2929, 1723, 1686, 1595, 1492, 1451, 1406, 1364, 1252, 1160, 1120, 

1074, 1032, 960, 918, 843, 755, 695, 635, 594, 536, 425. 

HRMS (EI, m/z) calcd for C30H31N2O4 [M+H]
+
: 483.2278, found: 483.2271. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45c as a pale yellow solid (46.2 mg, 91% yield, 10.0:1 

dr, >99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

The NMR yield of 98% was observed before purification. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak AD-H column, ee = >99% (HPLC: 254 nm, n-hexane/isopropanol = 

80:20, flow rate 1 mL/min, 25 C, tr (major) = 10.6 min, tr (minor) = 14.1 min). []D
22

 = 38.4 (c 1.0, 
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CH2Cl2). The dr value was determined by 
1
H NMR analysis of the crude product as shown below: 

 

1
H NMR (300 MHz, CDCl3) δ 7.887.85 (m, 2H), 7.557.51 (m, 2H), 7.377.27 (m, 6H), 7.257.18 

(m, 3H), 7.16 (d, J = 0.9 Hz, 1H), 7.00 (d, J = 0.9 Hz, 1H), 6.876.83 (m, 2H), 4.51 (m, 1H), 4.35 (dd, 

J = 11.0, 3.4 Hz, 1H), 4.04 (dd, J = 17.2, 11.0 Hz, 1H), 3.95 (s, 1H), 2.88 (dd, J = 17.3, 3.4 Hz, 1H), 

1.701.60(m, 2H), 1.551.42 (m, 3H), 1.401.28 (m, 2H), 1.241.12 (m, 3H). 

13
C NMR (75 MHz, CDCl3) δ 189.7, 173.6, 143.2, 140.7, 139.4, 138.5, 130.3, 129.4, 128.7, 128.4, 

128.2, 127.9, 127.8, 127.2, 126.8, 126.6, 125.8, 80.8, 75.7, 48.4, 39.8, 31.3, 31.0, 25.3, 23.6, 23.4. 

IR (film): ν (cm
1

) 2932, 2857, 1729, 1683, 1492, 1448, 1408, 1333, 1301, 1227, 1162, 1120, 1071, 

1032, 1007, 965, 917, 758, 725, 692, 603, 533, 412. 

HRMS (EI, m/z) calcd for C32H33N2O4 [M+H]
+
: 509.2435, found: 509.2484. 

According to the general procedure, a mixture of 42b (29.0 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 18 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45d as a pale yellow solid (49.9 mg, 89% yield, >20:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 4:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 11.9 min, tr 

(minor) = 9.3 min). []D
22

 = +30.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR analysis 

of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.907.86 (m, 2H), 7.427.28 (m, 8H), 7.14 (d, J = 1.0 Hz, 1H), 

7.097.04 (m, 3H), 6.906.86 (m, 2H), 4.53 (m, 1H), 4.27 (dd, J = 11.4, 3.3 Hz, 1H), 4.04 (dd, J = 

11.0, 17.2 Hz, 1H), 3.97 (s, 1H), 3.91 (dd, J = 17.3, 11.5 Hz, 1H), 2.82 (dd, J = 17.2, 3.3 Hz, 1H), 2.30 

(s, 3H), 1.801.66 (m, 2H), 1.551.42 (m, 4H), 1.411.10 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 191.9, 175.7, 145.3, 142.7, 140.5, 138.9, 138.2, 132.1, 131.4, 130.7, 

130.5, 130.4, 130.2, 129.8, 128.8, 128.7, 127.8, 82.9, 77.6, 50.0, 41.8, 33.3, 33.0, 27.3, 25.6, 25.4, 

22.8. 

IR (film): ν (cm
1

) 2933, 2857, 1728, 1680, 1594, 1494, 1446, 1406, 1334, 1305, 1229, 1161, 1121, 

1070, 1031, 967, 915, 810, 762, 729, 691, 600, 536, 459. 

HRMS (ESI, m/z) calcd for C33H35N2O4 [M+H]
+
: 523.2591, found: 523.2584. 

According to the general procedure, a mixture of 42c (33.2 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 18 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45e as a pale yellow oil (49.7 mg, 88% yield, 14:1 dr, 

99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (6:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 99% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 8.3 min, tr 

(minor) = 6.7 min). []D
22

 = +30.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR analysis 

of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.907.87 (m, 2H), 7.427.25 (m, 10H), 7.15 (d, J = 0.9 Hz, 1H), 7.04 

(d, J = 0.9 Hz, 1H), 6.876.83 (m, 2H), 4.50 (m, 1H), 4.28 (dd, J = 11.3, 3.2 Hz, 1H), 3.953.85 (m, 

2H), 2.82 (dd, J = 17.2, 3.4 Hz, 1H), 1.761.40 (m, 6H), 1.391.50 (m, 13H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.9, 173.5, 150.1, 143.3, 140.8, 138.5, 136.3, 129.9, 129.4, 128.7, 

128.4, 128.2, 127.8, 126.7, 126.6, 125.7, 124.7. 

IR (film): ν (cm
1

) 3348, 2937, 2859, 2178, 2142, 2079, 2031, 1973, 1922, 1730, 1682, 1494, 1446, 

1406, 1328, 1230, 1165, 1121, 1073, 1027, 960, 919, 875, 764, 694, 561, 520, 470, 424. 

HRMS (EI, m/z) calcd for C36H41N2O4 [M+H]
+
: 565.3061, found: 565.3117. 

According to the general procedure, a mixture of 42d (30.6 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45f as a pale yellow solid (53.0 mg, 99% yield, 18:1 dr, 

97% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (4:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 97% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 23.7 min, tr 

(minor) = 16.9 min). []D
22

 = +22.6 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.897.86 (m, 2H), 7.487.27 (m, 8H), 7.14 (d, J = 1.0 Hz, 1H), 7.00 

(d, J = 1.0 Hz, 1H), 6.926.88 (m, 2H), 6.806.75 (m, 2H), 4.53 (m, 1H), 4.25 (dd, J = 11.4, 3.1 Hz, 

1H), 3.97 (s, 1H), 3.89 (dd, J = 17.2, 11.4 Hz, 1H), 3.75 (s, 3H), 2.79 (dd, J = 17.2, 3.3 Hz, 1H), 

1.801.62(m, 2H), 1.541.39 (m, 4H), 1.381.10 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.9, 173.7, 158.9, 143.3, 140.7, 138.5, 131.3, 129.4, 128.7, 128.4, 

128.2, 127.8, 126.8, 126.6, 125.8, 113.1, 81.0, 75.6, 55.2, 47.6, 39.9, 31.4, 31.0, 25.3, 23.6, 23.4. 

IR (film): ν (cm
1

) 3121, 3004, 2936, 2855, 1729, 1681, 1602, 1503, 1446, 1406, 1334, 1299, 1233, 

1176, 1119, 1073, 1029, 971, 917, 829, 764, 732, 692, 601, 537. 

HRMS (EI, m/z) calcd for C33H35N2O5 [M+H]
+
: 539.2540, found: 539.2622. 

According to the general procedure, a mixture of 42e (30.6 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45g as a pale yellow solid (45.2 mg, 84% yield, >20:1 

dr, >99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (4:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = >99% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 9.1 min, tr 

(minor) = 11.2 min). []D
22

 = 35.8 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.807.77 (m, 2H), 7.307.17 (m, 6H), 7.09 (d, J = 0.7 Hz, 1H), 

7.067.00 (m, 3H), 6.93 (d, J = 0.7 Hz, 1H), 6.816.78 (m, 2H), 6.93 (dt, J = 7.0, 2.2 Hz, 1H), 4.46 (m, 

1H), 4.26 (dd, J = 10.9, 3.4 Hz, 1H), 3.95 (dd, J = 17.2, 10.9 Hz, 1H), 3.88 (br, 1H), 3.68 (s, 3H), 2.78 

(dd, J = 17.2, 3.4 Hz, 1H), 1.661.32(m, 5H), 1.251.02 (m, 5H). 

13
C NMR (75 MHz, CDCl3) δ 189.9, 173.6, 159.2, 143.3, 140.9, 140.5, 138.3, 129.5, 128.8, 128.7, 

128.5, 128.2, 127.8, 126.7 (2C), 125.7, 122.8, 115.6, 113.0, 80.7, 75.5, 55.3, 48.4, 39.8, 31.3, 31.0, 

25.3, 23.6, 23.4. 

IR (film): ν (cm
1

) 3384, 3284, 2933, 2852, 1724, 1682, 1593, 1489, 1445, 1402, 1327, 1228, 1160, 

1114, 1033, 959, 908, 829, 761, 692, 641, 518, 477, 409. 

HRMS (ESI, m/z) calcd for C33H35N2O5 [M+H]
+
: 539.2540, found: 539.2534. 

According to the general procedure, a mixture of 42f (40.6 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45h as a pale yellow solid (50.8 mg, 79% yield, 17:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (6:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 14.1 min, tr 

(minor) = 17.5 min). []D
22

 = 30.0 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.907.82 (m, 2H), 7.427.22 (m, 8H), 7.13 (d, J = 0.9 Hz, 1H), 7.04 

(d, J = 0.9 Hz, 1H), 6.936.88 (m, 2H), 6.746.68 (m, 2H), 4.50 (m, 1H), 4.21 (dd, J = 11.3, 3.2 Hz, 

1H), 3.99 (s, 1H), 3.90 (dd, J = 17.1, 11.3 Hz, 1H), 2.75 (dd, J = 17.0, 3.2 Hz, 1H), 1.781.60 (m, 2H), 

1.581.40 (m, 4H), 1.341.11 (m, 4H), 0.96 (s, 9H), 0.16 (s, 6H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.9, 173.6, 154.9, 143.3, 140.8, 138.5, 132.1, 131.3, 129.4, 128.7, 

128.4, 128.2, 127.8, 126.8, 126.6, 125.8, 119.3, 81.0, 75.6, 47.9, 39.9, 31.4, 31.1, 25.5, 25.3, 23.3, 18.2, 

4.62, 4.66. 

IR (film): ν (cm
1

) 2930, 2856, 1728, 1683, 1602, 1504, 1449, 1403, 1256, 1233, 1173, 1120, 1021, 

915, 812, 765, 724, 690, 600, 541, 516, 473. 

HRMS (ESI, m/z) calcd for C38H47N2O5Si [M+H]
+
: 639.3249, found: 639.3248. 

According to the general procedure, a mixture of 42g (32.2 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45i as a pale yellow solid (53.5 mg, 97% yield, >20:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.4 in n-hexane/EtOAc (4:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 11.8 min, tr 

(minor) = 16.6 min). []D
22

 = +35.0 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.887.85 (m, 2H), 7.457.29 (m, 8H), 7.167.10 (m, 3H), 7.05 (d, J = 

1.0 Hz, 1H), 6.946.86 (m, 2H), 4.55 (m, 1H), 4.35 (dd, J = 11.4, 3.3 Hz, 1H), 4.04 (s, 1H), 3.93 (dd, J 

= 11.4, 17.3 Hz, 1H), 2.82 (dd, J = 17.4, 3.3 Hz, 1H), 2.45 (s, 3H), 1.801.64(m, 2H), 1.581.42 (m, 

4H), 1.391.11 (m, 4H). 

13
C NMR (75 MHz, CDCl3) δ 189.7, 173.6, 143.2, 140.6, 138.4, 137.4, 136.2, 130.8, 129.4, 128.8, 

128.4, 128.3, 127.9, 126.9, 126.6, 125.8 (2C), 80.8, 75.7, 47.9, 39.8, 31.4, 31.0, 25.3, 23.6, 23.3, 15.5. 

IR (film): ν (cm
1

) 2930, 2857, 1729, 1681, 1595, 1491, 1445, 1407, 1333, 1295, 1229, 1162, 1121, 

1071, 1031, 964, 917, 838, 761, 729, 692, 591, 540, 424, 3340. 

HRMS (ESI, m/z) calcd for C33H35N2O4S [M+H]
+
: 555.2312, found: 555.2311. 

According to the general procedure, a mixture of 42h (29.2 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45j as a pale yellow oil (27.2 mg, 52% yield, 7.1:1 dr, 

97% ee). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee 

= 97% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 60:40, flow rate 0.5 mL/min, 40 C, tr (major) 

= 10.5 min, tr (minor) = 12.0 min). []D
22

 = 27.2 (c 1.0, CH2Cl2). The dr value was determined by 

1
H NMR analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.887.84 (m, 2H), 7.417.30 (m, 8H), 7.15 (d, J = 1.0 Hz, 1H), 7.06 

(d, J = 1.0 Hz, 1H), 6.986.90 (m, 3H), 6.63 (dt, J = 9.6, 2.3 Hz, 1H), 5.70 (br, 1H), 4.53 (m, 1H), 4.24 

(dd, J = 11.4, 3.1 Hz, 1H), 3.973.87 (m, 2H), 2.76 (dd, J = 17.2, 3.2 Hz, 1H), 1.751.60(m, 2H), 

1.551.45 (m, 4H), 1.301.21 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.8, 173.7, 155.2, 143.1, 140.6, 138.3, 131.3, 130.9, 129.2, 128.7, 

128.4, 128.1, 127.7, 126.8, 126.5, 125.7, 114.6, 80.9, 75.6, 47.5, 39.8, 31.3, 30.9, 25.2, 23.5, 23.3. 

IR (film): ν (cm
1

) 2927, 2857, 1719, 1684, 1593, 1505, 1446, 1404, 1233, 1172, 1119, 1068, 1034, 

966, 914, 824, 761, 731, 692, 608, 516, 464. 

HRMS (ESI, m/z) calcd for C32H33N2O5 [M+H]
+
: 525.2384, found: 525.2384. 

According to the general procedure, a mixture of 42i (35.6 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45k as a pale yellow solid (42.8 mg, 73% yield, 5.0:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 0.5 mL/min, 25 C, tr (major) = 21.4 min, tr 

(minor) = 14.9 min). []D
22

 = +38.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.877.82 (m, 2H), 7.64 (t, J = 1.7 Hz, 1H), 7.50 (dt, J = 1.3, 7.8 Hz, 

1H), 7.437.28 (m, 6H), 7.167.11 (m, 2H), 7.06 (d, J = 1.0 Hz, 1H), 7.00 (d, J = 0.9 Hz, 1H), 

6.976.92 (m, 2H), 4.54 (m, 1H), 4.35 (dd, J = 11.3, 3.1 Hz, 1H), 4.03 (s, 1H), 3.92 (dd, J = 11.2, 17.4 

Hz, 1H), 2.83 (dd, J = 17.5, 3.2 Hz, 1H), 1.741.65(m, 2H), 1.601.54 (m, 1H), 1.521.36 (m, 3H), 

1.351.16 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.3, 173.4, 143.1, 142.1, 140.4, 138.4, 133.5, 130.2, 129.5, 128.8, 

128.5, 128.3, 128.0, 127.0, 126.5, 125.8, 121.7, 125.8, 80.6, 76.0, 48.0, 39.7, 31.4, 31.1, 25.3, 23.7, 

23.5. 

IR (film): ν (cm
1

) 3020, 2937, 2856, 1723, 1683, 1594, 1566, 1491, 1445, 1404, 1335, 1302, 1233, 

1172, 1121, 1071, 1035, 1005, 967, 919, 818, 761, 693, 609, 541, 514, 452. 

HRMS (ESI, m/z) calcd for C32H32BrN2O4 [M+H]
+
: 587.1540, found: 587.1539. 

According to the general procedure, a mixture of 42j (29.4 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45l as a pale yellow solid (29.8 mg, 57% yield, 6.3:1 dr, 

97% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 97% 

(HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 6.8 min, tr 

(minor) = 8.0 min). []D
22

 = 40.8 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR analysis 

of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.877.85 (m, 2H), 7.527.49 (m, 2H), 7.417.30 (m, 6H), 7.14 (d, J = 

0.9 Hz, 1H), 7.06 (d, J = 0.8 Hz, 1H), 6.966.93 (m, 4H), 4.52 (m, 1H), 4.35 (dd, J = 11.4, 3.1 Hz, 1H), 

4.04 (s, 1H), 3.93 (dd, J = 17.5, 11.4 Hz, 1H), 2.81 (dd, J = 17.6, 3.2 Hz, 1H), 1.721.63 (m, 2H), 

1.521.38 (m, 4H), 1.311.21 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.7, 173.8, 162.3 (J = 245.1 Hz, 1C), 143.3, 140.8, 138.7, 135.6 (J = 

3.4 Hz, 1C), 132.2 (J = 7.6 Hz, 1C), 129.7, 129.0, 128.7, 128.5, 128.2, 127.3, 126.8, 126.0, 114.7 (J = 

21.0 Hz, 1C), 81.0, 76.1, 47.8, 40.1, 31.6, 31.3, 25.5, 23.9, 23.7. 

19
F NMR (282 MHz) δ 117.1. 

IR (film): ν (cm
1

) 2932, 2858, 1724, 1685, 1598, 1503, 1447, 1406, 1304, 1232, 1161, 1121, 1071, 

1034, 963, 915, 826, 764, 731, 694, 536. 

HRMS (ESI, m/z) calcd for C32H32FN2O4 [M+H]
+
: 527.2341, found: 527.2342. 

According to the general procedure, a mixture of 42k (34.4 mg, 0.10 mmol), 

43f (69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 26 hours under irradiation with 24 W blue 

LEDs at 50 ℃ to afford 45m as a pale yellow solid (24.6 mg, 43% yield, >20:1 dr, 98% ee). 

Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 C, tr (major) = 7.7 
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min, tr (minor) = 9.3 min). []D
22

 = 55.6 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the pure product. 

1
H NMR (300 MHz, CDCl3) δ 7.867.83 (m, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 

7.387.28 (m, 6H), 7.17 (d, J = 0.9 Hz, 1H), 7.02 (d, J = 0.9 Hz, 1H), 6.926.87 (m, 2H), 4.53 (m, 1H), 

4.39 (dd, J = 11.1, 3.2 Hz, 1H), 4.103.89 (m, 2H), 2.90 (dd, J = 17.7, 3.3 Hz, 1H), 1.701.48 (m, 4H), 

1.391.12 (m, 6H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.3, 173.3, 143.8, 143.0, 140.2, 138.2, 130.7, 129.6 (2C), 128.9, 

128.7, 128.4, 128.1, 127.0, 126.5, 125.7, 124.7 (q, J = 3.7 Hz), 80.6, 75.8, 47.9, 39.9, 31.3, 31.0, 25.2, 

23.6, 23.4. 

19
F NMR (282 MHz) δ 62.4. 

IR (film): ν (cm
1

) 3106, 3031, 2945, 2847, 1665, 1492, 1445, 1402, 1343, 1254, 1202, 1145, 1051, 

974, 919, 737, 693, 613, 522. 

HRMS (ESI, m/z) calcd for C33H31F3N2O4Na [M+ Na]
+
: 599.2128, found: 599.2130. 

According to the general procedure, a mixture of 42l (38.4 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45n as a pale yellow oil (55.3 mg, 90% yield, 4.8:1 dr, 

96% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.4 in n-hexane/EtOAc (4:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 96% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 18.5 min, tr 

(minor) = 13.5 min). []D
22

 = +27.0 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.917.87 (m, 2H), 7.69 (d, J = 2.1 Hz, 1H), 7.53 (dd, J = 8.6, 2.2 Hz, 

1H), 7.467.33 (m, 7H), 7.19 (d, J = 1.0 Hz, 1H), 7.11 (d, J = 1.0 Hz, 1H), 7.036.97 (m, 2H), 6.86 (d, 

J = 8.6 Hz, 1H), 4.60 (m, 1H), 4.25 (dd, J = 11.5, 3.2 Hz, 1H), 4.08 (s, 1H), 3.95 (dd, J = 17.4, 11.4 Hz, 

1H), 3.88 (s, 3H), 2.83 (dd, J = 17.4, 3.1 Hz, 1H), 1.801.73(m, 2H), 1.571.46 (m, 4H), 1.431.20 

(m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.5, 173.5, 155.1, 143.2, 140.5, 138.4, 135.2, 133.1, 130.1, 129.5, 

128.8, 128.5, 128.3, 127.9, 127.0, 126.5, 125.8, 111.3, 110.6, 80.1, 75.9, 56.2, 47.3, 39.7, 31.5, 31.1, 

25.3, 23.7, 23.5. 

IR (film): ν (cm
1

) 3055, 2935, 2854, 1726, 1679, 1597, 1493, 1447, 1402, 1341, 1234, 1179, 1119, 

1024, 971, 916, 762, 728, 691, 606, 518, 446. 

HRMS (ESI, m/z) calcd for C33H34BrN2O5 [M+H]
+
: 618.1678, found: 618.1673. 

According to the general procedure, a mixture of 42m (30.2 mg, 0.10 mmol), 

43f (69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue 

LEDs at room temperature (in a water bath) to afford 45o as a pale yellow oil (36.2 mg, 68% yield, 

5.0:1 dr, 98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

98% (HPLC: 254 nm, n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 12.1 min, 

tr (minor) = 18.2 min). []D
22

 = 31.8 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 
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analysis of the crude product as shown below: 

 

1
H NMR (300 MHz, CD2Cl2) δ 7.907.86 (m, 2H), 7.477.45 (m, 2H), 7.427.29 (m, 8H), 7.14 (d, J = 

1.0 Hz, 1H), 7.05 (d, J = 1.0 Hz, 1H), 6.916.87 (m, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (dd, J 

= 17.6, 0.9 Hz, 1H), 5.21 (dd, J = 10.9, 0.9 Hz, 1H), 4.54 (m, 1H), 4.30 (dd, J = 11.4, 3.2 Hz, 1H), 

4.02 (br, 1H), 3.94 (dd, J = 17.3, 11.4 Hz, 1H), 2.82 (dd, J = 17.3, 3.3 Hz, 1H), 1.801.62 (m, 2H), 

1.551.41 (m, 4H), 1.361.15 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.7, 173.6, 143.2, 140.6, 139.1, 138.4, 136.7, 136.6, 130.5, 129.4, 

128.7, 128.4, 128.3, 127.9, 126.9, 126.6, 125.8, 125.6, 113.4, 80.8, 75.7, 48.2, 39.8, 31.4, 31.0, 25.3, 

23.6, 23.4. 

IR (film): ν (cm
1

) 3374, 2932, 2857, 1729, 1679, 1632, 1595, 1496, 1448, 1405, 1301, 1230, 1162, 

1121, 1071, 1027, 968, 910, 834, 762, 731, 691, 645, 597, 527, 420. 

HRMS (ESI, m/z) calcd for C34H35N2O4 [M+H]
+
: 535.2591, found: 535.2590. 

According to the general procedure, a mixture of 42n (41.0 mg, 0.10 mmol), 43f 

(69.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 18 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45p as a pale yellow oil (51.0 mg, 78% yield, 12:1 

dr, >99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.4 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = >99% 

(HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 15.6 min, tr 

(minor) = 14.4 min). []D
22

 = +18.4 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 
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analysis of the crude product as shown below: 

 
1
H NMR (300 MHz, CD2Cl2) δ 8.14 (d, J = 7.9 Hz, 1H), 7.957.92 (m, 2H), 7.827.80 (m, 2H), 

7.427.27 (m, 7H), 7.247.19 (m, 2H), 7.00 (m, 1H), 6.766.72 (m, 2H), 4.78 (dd, J = 10.2, 3.7 Hz, 

1H), 4.45 (m, 1H), 4.21 (s, 1H), 3.88 (dd, J = 16.6, 10.4 Hz, 1H), 3.09 (dd, J = 16.6, 3.7 Hz, 1H), 1.69 

(s, 9H), 1.601.30(m, 6H), 1.281.08 (m, 3H), 1.000.90 (m, 1H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.7, 173.9, 149.7, 143.1, 140.3, 138.2, 135.1, 130.6, 129.5, 128.7, 

128.5, 128.3, 127.9, 126.7 (2C), 125.6, 125.5, 124.1, 122.2, 120.9, 119.3, 114.8, 83.5, 81.0, 75.6, 40.7, 

39.4, 30.9, 30.8, 28.3, 25.2, 23.5, 23.4. 

IR (film): ν (cm
1

) 2936, 2856, 2189, 2072, 2026, 1945, 1725, 1684, 1596, 1492, 1448, 1404, 1366, 

1306, 1236, 1154, 1123, 1073, 1026, 962, 916, 850, 758, 693, 580, 519, 468, 412. 

HRMS (ESI, m/z) calcd for C39H42N3O6 [M+H]
+
: 648.3068, found: 648.3070. 

According to the general procedure, a mixture of 42p (63.3 mg, 0.30 mmol, 3.0 

equiv.), 43f (23.2 mg, 0.30 mmol), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in 

acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 24 

W blue LEDs at room temperature (in a water bath) to afford 45ra as a pale yellow oil (32.8 mg, 75% 

yield, >20:1 dr, 97% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 6:1, Rf = 0.5 in 

n-hexane/EtOAc (6:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IC 

column, ee = 97% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr 

(major) = 8.4 min, tr (minor) = 16.5 min). []D
22

 = 117.4 (c 1.0, CH2Cl2). The dr value was 

determined by 
1
HNMR analysis of the product after purification. 

1
H NMR (300 MHz, CD2Cl2) δ 8.58 (dt, J = 4.8, 1.2 Hz, 1H), 7.917.88 (m, 2H), 7.757.66 (m, 2H), 
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7.577.53 (m, 2H), 7.417.35 (m, 3H), 7.327.16 (m, 4H), 4.53 (m, 1H), 4.40 (dd, J = 11.3, 2.8 Hz, 

1H), 4.10 (dd, J = 18.4, 11.2 Hz, 1H), 4.02 (s, 1H), 2.93 (dd, J = 18.4, 2.8 Hz, 1H), 1.801.64(m, 2H), 

1.531.41(m, 4H), 1.341.20 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 200.0, 173.7, 153.4, 148.9, 140.8, 139.9, 136.7, 130.2, 128.2, 127.9, 

127.8, 127.1, 127.0, 126.6, 121.3, 81.0, 75.7, 48.2, 38.5, 31.3, 31.0, 25.3, 23.7, 23.4. 

IR (film): ν (cm
1

) 2929, 2857, 1699, 1449, 1355, 1306, 1237, 1119, 1073, 1005, 924, 771, 727, 696, 

664, 598, 541. 

HRMS (ESI, m/z) calcd for C28H29NO4Na [M+Na]
+
: 466.1989, found: 466.1994. 

According to the general procedure, a mixture of 42q (67.6mg, 0.30 mmol, 3.0 

equiv.), 43f (23.2 mg, 0.30 mmol), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in 

acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 20 hours under irradiation with 24 

W blue LEDs at room temperature (in a water bath) to afford 45rb as a pale yellow oil (33.2 mg, 73% 

yield, >20:1 dr, 99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 6:1, Rf = 0.5 in 

n-hexane/EtOAc (6:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IA 

column, ee = 99% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) 

= 21.2 min, tr (minor) = 24.9 min). []D
22

 = 102.2 (c 1.0, CH2Cl2). The dr value was determined by 

1
HNMR analysis of the product after purification. 

1
H NMR (300 MHz, CD2Cl2) δ 8.58 (dt, J = 4.7, 1.4 Hz, 1H), 7.917.87 (m, 2H), 7.757.66 (m, 2H), 

7.437.36 (m, 5H), 7.317.26 (m, 1H), 7.06 (d, J = 7.9 Hz, 2H), 4.55 (m, 1H), 4.37 (dd, J = 11.3, 2.7 

Hz, 1H), 4.08 (dd, J = 18.2, 11.4 Hz, 1H), 3.98 (s, 1H), 2.90 (dd, J = 18.3, 2.8 Hz, 1H), 2.28 (s, 3H), 

1.851.67 (m, 2H), 1.551.45 (m, 4H), 1.351.12 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 200.0, 173.8, 153.4, 148.9, 140.8, 136.8, 136.7, 136.6, 129.9, 128.5, 

128.2, 127.8, 127.0, 126.7, 121.3, 81.0, 75.6, 47.8, 38.5, 31.4, 31.0, 25.3, 23.7, 23.4, 20.8. 

IR (film): ν (cm
1

) 2934, 2859, 1700, 1581, 1511, 1446, 1355, 1239, 1176, 1119.7058, 1010, 911, 813, 

774, 732, 698, 668, 617, 556, 519. 

HRMS (ESI, m/z) calcd for C29H31NO4Na [M+Na]
+
: 480.2145, found: 480.2151. 
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According to the general procedure, a mixture of 42r (72.3 mg, 0.30 mmol, 3.0 

equiv.), 43f (23.2 mg, 0.30 mmol), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in 

acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 20 hours under irradiation with 24 

W blue LEDs at room temperature (in a water bath) to afford 45rc as a pale yellow oil (39.0 mg, 82% 

yield, >20:1 dr, 99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 6:1, Rf = 0.5 in 

n-hexane/EtOAc (6:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak IA 

column, ee = 99% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 35 C, tr 

(major) = 11.7 min, tr (minor) = 15.2 min). []D
22

 = 86.6 (c 1.0, CH2Cl2). The dr value was 

determined by 
1
HNMR analysis of the product after purification. 

1
H NMR (300 MHz, CD2Cl2) δ 8.58 (d, J = 4.1 Hz, 1H), 7.907.87 (m, 2H), 7.76 (d, J = 7.8 Hz, 1H), 

7.66 (td, J = 7.6, 1.7 Hz, 1H), 7.49 (dt, J = 8.7, 1.9 Hz, 2H), 7.377.32 (m, 3H), 7.277.22 (m, 1H), 

6.76 (dt, J = 8.8, 2.0 Hz, 2H), 4.56 (m, 1H), 4.41 (dd, J = 11.1, 2.7 Hz, 1H), 4.13 (dd, J = 18.3, 11.1 

Hz, 1H), 3.99 (s, 1H), 3.74 (s, 3H), 2.94 (dd, J = 18.3, 2.8 Hz, 1H), 1.801.65 (m, 2H), 1.551.40 (m, 

4H), 1.341.15 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 200.1, 173.8, 158.8, 153.4, 148.9, 140.8, 136.7, 131.7, 131.1, 128.2, 

127.8, 127.0, 126.6, 121.3, 113.1, 81.1, 75.7, 55.1, 47.4, 38.6, 31.4, 31.1, 25.3, 23.7, 23.4. 

IR (film): ν (cm
1

) 2934, 2857, 1699, 1609, 1581, 1510, 1447, 1354, 1241, 1176, 1119, 1070, 1029, 

910, 824, 773, 732, 699, 668, 593, 556. 

HRMS (ESI, m/z) calcd for C29H31NO5Na [M+Na]
+
: 496.2094, found: 496.2100. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43g 

(74.0 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45s as a pale yellow solid (48.8 mg, 87% yield, 7.7:1 dr, 

99% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 
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Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 99% 

(HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 8.5 min, tr 

(minor) = 14.6 min). []D
22

 = 54.8 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 

 
1
H NMR (300 MHz, CD2Cl2) δ 7.74 (dt, J = 8.3, 1.7 Hz, 2H), 7.507.46 (m, 2H), 7.417.28 (m, 3H), 

7.277.17 (m, 5H), 7.14 (d, J = 1.0 Hz, 1H), 7.04 (d, J = 1.0 Hz, 1H), 6.916.86 (m, 2H), 4.49 (m, 1H), 

4.26 (dd, J = 11.3, 3.3 Hz, 1H), 3.963.90 (m, 2H), 2.84 (dd, J = 17.3, 3.3 Hz, 1H), 2.35 (s, 3H), 

1.801.59 (m, 2H), 1.531.31 (m, 4H), 1.301.10 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.8, 173.7, 143.2, 139.5, 138.5, 137.7, 130.3, 129.3, 128.9, 128.7, 

128.4, 127.8, 127.1, 126.8, 126.5, 125.8, 80.7, 75.6, 48.4, 39.8, 31.3, 31.0, 25.3, 23.6, 23.4, 20.8. 

IR (film): ν (cm
1

) 3030, 2934, 2858, 1724, 1686, 1598, 1498, 1448, 1406, 1335, 1307, 1238, 1170, 

1108, 1033, 962, 915, 818, 761, 732, 699, 608, 523. 

HRMS (ESI, m/z) calcd for C33H35N2O4 [M+H]
+
: 523.2591, found: 523.2584. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 

43h (74.0 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue 

LEDs at room temperature (in a water bath) to afford 45t as a pale yellow solid (50.5 mg, 97% yield, 

19:1 dr, 98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

98% (HPLC: 254 nm, n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 12.1 min, 

tr (minor) = 18.2 min). []D
22

 = 44.0 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 
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analysis of the crude product as shown below: 

 

1
H NMR (300 MHz, CD2Cl2) δ 7.707.65 (m, 2H), 7.517.47 (m, 2H), 7.387.30 (m, 3H), 7.287.18 

(m, 4H), 7.147.10 (m, 2H), 7.05 (d, J = 1.0 Hz, 1H), 6.926.86 (m, 2H), 4.51 (m, 1H), 4.27 (dd, J = 

11.3, 3.3 Hz, 1H), 3.983.89 (m, 2H), 2.85 (dd, J = 17.3, 3.3 Hz, 1H), 2.38 (s, 3H), 1.801.59 (m, 2H), 

1.541.40 (m, 4H), 1.391.12 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.8, 173.7, 143.2, 140.6, 139.6, 138.5, 137.9, 130.3, 129.4, 128.7, 

128.6, 128.4, 128.1, 127.8, 127.3, 127.1, 126.8, 125.8, 123.7, 80.8, 75.5, 48.4, 39.8, 31.3, 31.0, 25.3, 

23.5, 23.3, 21.4. 

IR (film): ν (cm
1

) 2856, 1731, 1679, 1596, 1492, 1448, 1405, 1333, 1299, 1226, 1123, 1030, 961, 917, 

762, 693, 648, 586, 535, 440. 

HRMS (ESI, m/z) calcd for C33H35N2O4+ [M+H]
+
: 523.2591, found: 523.2640. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43i 

(74.4 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 14 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45u as a pale yellow solid (46.2 mg, 88% yield, 15:1 dr, 

98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc (5:1). 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% 

(HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 12.1 min, tr 

(minor) = 16.4 min). []D
22

 = 51.6 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 



Chapter 5. Experimental Part 

276 
 

 

1
H NMR (300 MHz, CD2Cl2) δ 7.887.84 (m, 2H), 7.497.45 (m, 2H), 7.427.30 (m, 3H), 7.287.20 

(m, 3H), 7.15 (d, J = 1.0 Hz, 1H), 7.107.03 (m, 3H), 6.926.86 (m, 2H), 4.51 (m, 1H), 4.03 (br, 1H), 

4.26 (dd, J = 11.0, 3.4 Hz, 1H), 3.90 (dd, J = 11.1, 17.3 Hz, 1H), 2.88 (dd, J = 17.3, 3.5 Hz, 1H), 

1.761.61 (m, 2H), 1.541.41 (m, 4H), 1.401.10 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.6, 173.4, 162.6 (d, J = 245.3 Hz, 1C), 143.2, 139.3, 138.4, 136.4 (d, 

J = 3.0 Hz, 1C), 130.2, 129.4, 128.7 (2C), 128.5 (d, J = 14.3 Hz, 1C), 127.9, 127.3, 126.9, 125.8, 114.9 

(d, J = 21.3 Hz, 1C), 80.5, 75.8, 48.5, 39.7, 31.3, 31.0, 25.2, 23.6, 23.4. 

19
F NMR (282 MHz) δ 115.2. 

IR (film): ν (cm
1

) 3336, 2934, 2858, 1730, 1683, 1598, 1499, 1449, 1408, 1335, 1302, 1226, 1159, 

1121, 1092, 1033, 1010, 964, 918, 839, 761, 695, 603, 525, 434. 

HRMS (EI, m/z) calcd for C32H32FN2O4 [M+H]
+
: 527.2341, found: 527.2374. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 

43j (78.6 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue 

LEDs at room temperature (in a water bath) to afford 45v as a pale yellow solid (49.5 mg, 92% yield, 

9.1:1 dr, 98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.4 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

98% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 17.9 min, 

tr (minor) = 23.9 min). []D
22

 = 36.6 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.707.44 (m, 4H), 7.387.30 (m, 4H), 7.277.20 (m, 3H), 7.14 (d, J = 

0.9 Hz, 1H), 7.05 (d, J = 0.9 Hz, 1H), 6.946.82 (m, 3H), 4.52 (m, 1H), 4.28 (dd, J = 11.3, 3.3 Hz, 1H), 

4.00 (s, 1H), 3.91 (dd, J = 17.3, 11.3 Hz, 1H), 3.83 (s, 3H), 2.88 (dd, J = 17.2, 3.3 Hz, 1H), 1.761.61 

(m, 2H), 1.551.40 (m, 4H), 1.391.10 (m, 4H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.7, 173.5, 159.8, 143.2, 142.4, 139.4, 138.5, 130.3, 129.4, 129.2, 

128.7, 128.4, 127.8, 127.2, 126.8, 125.8, 119.0, 113.6, 112.2, 75.7, 55.3, 48.5, 39.9, 31.3, 31.1, 25.3, 

23.6, 23.4. 

IR (film): ν (cm
1

) 2934, 2855, 1729, 1681, 1592, 1490, 1448, 1406, 1333, 1299, 1235, 1122, 1038, 

960, 916, 878, 761, 726, 693, 587, 534. 

HRMS (ESI, m/z) calcd for C33H35N2O5 [M+H]
+
: 539.2540, found: 539.2534. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 

43k (83.2 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 

mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 W blue 

LEDs at room temperature (in a water bath) to afford 45w as a pale yellow solid (49.1 mg, 88% yield, 

11:1 dr, 98% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 5:1, Rf = 0.5 in n-hexane/EtOAc 

(5:1). Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 

98% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 9.1 min, 

tr (minor) = 11.1 min). []D
22

 = 32.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
H NMR 

analysis of the crude product as shown below: 
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1
H NMR (300 MHz, CD2Cl2) δ 7.887.84 (m, 2H), 7.557.51 (m, 2H), 7.427.29 (m, 6H), 7.287.20 

(m, 3H), 7.13 (d, J = 0.9 Hz, 1H), 7.04 (d, J = 0.9 Hz, 1H), 6.916.87 (m, 2H), 4.21 (dd, J = 11.4, 3.2 

Hz, 1H), 4.00 (s, 1H), 3.93 (dd, J = 17.3, 13.4 Hz, 1H), 2.80 (dd, J = 17.3, 3.2 Hz, 1H), 2.05 (m, 3H), 

1.84 (d, J = 2.9 Hz, 6H), 1.57 (m, 6H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.8, 172.9, 143.2, 141.2, 139.8, 138.5, 130.5, 129.4, 128.7, 128.4, 

128.2, 127.7, 127.1, 126.8, 126.5, 125.8, 83.8, 80.8, 48.4, 40.8, 39.9, 36.0, 31.0. 

IR (film): ν (cm
1

) 2913, 2855, 1728, 1681, 1593, 1491, 1447, 1406, 1333, 1300, 1231, 1163, 1122, 

1038, 961, 918, 885, 791, 758, 725, 692, 644, 609, 579, 531, 422. 

HRMS (ESI, m/z) calcd for C36H37N2O4 [M+Na]
+
: 561.2748, found: 561.2748. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43l 

(36 μL, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in acetone (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 45x as a pale yellow oil (33.2 mg, 85% yield, 1.8:1 dr, 

95%/95% ee). Purification conditions: n-hexane/EtOAc = 10:1 to 3:1, Rf = 0.4 in n-hexane/EtOAc (3:1) 

for the major diastereomer, Rf = 0.3 in n-hexane/EtOAc (3:1) for the minor diastereomer. Enantiomeric 

excess was established by HPLC analysis using a Chiralpak AS-H/IG column, ee = 95%/95% []D
22

 = 

+42.2 (c 1.0, CH2Cl2). The dr value was determined by 
1
HNMR analysis of the crude product. 

HPLC conditions for major diastereomer: IG, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1.0 

mL/min, 40 C, tr (major) = 16.6 min, tr (minor) = 24.1 min). 

HPLC conditions for minor diastereomer: AS-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 
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mL/min, 40 C, tr (major) = 7.5 min, tr (minor) = 11.4 min). 

1
H NMR (300 MHz, CD2Cl2, major diastereomer) δ 7.357.12 (m, 8H), 7.11 (d, J = 0.9 Hz, 1H), 7.02 

(d, J = 0.9 Hz, 1H), 6.826.78 (m, 2H), 4.05 (s, 1H), 3.673.52 (m, 2H), 2.852.71 (m, 2H), 

2.602.47 (m, 1H), 1.611.50 (m, 1H), 1.181.10 (m, 1H), 1.04 (t, J = 7.1 Hz, 3H), 0.49 (t, J = 7.3 Hz, 

3H). 

13
C NMR (75 MHz, CD2Cl2, major diastereomer) δ 215.1, 189.3, 143.1, 139.6, 138.4, 130.2, 129.5, 

128.8, 128.4, 128.0, 127.0, 126.9, 125.7, 84.0, 48.1, 41.0, 30.5, 29.7, 7.5, 7.3. 

1
H NMR (300 MHz, CD2Cl2, minor diastereomer) δ 7.437.32 (m, 3H), 7.247.15 (m, 6H), 7.12 (d, J 

= 0.9 Hz, 1H), 6.976.93 (m, 2H), 4.00 (s, 1H), 3.783.60 (m, 3H), 2.602.47 (m, 1H), 2.402.22 (m, 

1H), 2.051.80 (m, 2H), 0.790.80 (m, 6H). 

13
C NMR (75 MHz, CD2Cl2, minor diastereomer) δ 213.4, 190.0, 143.3, 140.3, 138.5, 129.5, 129.2, 

128.8, 128.5, 128.1, 127.1, 127.0, 125.7, 84.4, 47.7, 40.9, 30.3, 29.7, 7.6, 7.1. 

IR (film): ν (cm
1

) 3460, 2970, 2933, 1688, 1597, 1495, 1449, 1403, 1338, 1306, 1179, 1125, 1055, 

963, 912, 760, 695, 592, 525, 444. 

HRMS (ESI, m/z) calcd for C24H27N2O3 [M+H]
+
: 391.2016, found: 391.2008. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 

mmol), 43m (110.7 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in 

acetone (1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 16 hours under irradiation with 24 

W blue LEDs at room temperature (in a water bath) to afford 45y as a pale yellow solid (57.0 mg, 88% 

yield, 99:1:1:1 dr). Purification conditions: n-hexane/EtOAc = 10:1 to 3:1, Rf = 0.5 in n-hexane/EtOAc 

(3:1). The dr value of pure product was established by HPLC analysis using a Chiralpak OD-H column, 

dr = 99:1:1:1 (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 

20.1 min, tr (minor) = 34.5 min). []D
22

 = +69.0 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.747.70 (m, 2H), 7.427.28 (m, 11H), 7.267.15 (m, 6H), 7.05 (d, J 

= 1.0 Hz, 1H), 6.916.85 (m, 2H), 5.044.80 (m, 2H), 4.22 (dd, J = 11.3, 3.3 Hz, 1H), 4.14 (dd, J = 

11.2, 6.1 Hz, 1H), 4.003.95 (m, 2H), 3.89 (dd, J = 17.1, 11.4 Hz, 1H), 2.86 (dd, J = 17.1, 3.4 Hz, 1H), 

1.43 (s, 9H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.5, 174.0, 154.9, 154.7, 144.5, 143.1, 139.9, 139.4, 138.9, 138.4, 
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129.8, 129.4, 128.8, 128.8, 128.4 (2C), 128.2, 128.1, 127.9, 127.4, 126.9, 126.7, 126.5, 125.7, 81.2, 

79.9, 68.7, 48.7, 39.6, 28.6, 28.2. 

IR (film): ν (cm
1

) 2931, 2857, 1717, 1686, 1596, 1494, 1448, 1403, 1364, 1302, 1228, 1162, 1115, 

1030, 962, 914, 862, 758, 694, 584, 524, 431. 

HRMS (ESI, m/z) calcd for C39H40N3O6 [M+H]
+
: 647.2944, found: 647.2938. 

According to the general procedure, a mixture of 42a 

(27.6 mg, 0.10 mmol), 43n (156.0 mg, 3.0 equiv.), Δ-RhS2 (4.0 mg, 4 mol%), and DABCO (2.2 mg, 

20 mol%) in acetone/CH2Cl2 (1:1, vol/vol, 1.0 mL, 0.1 M) was stirred under nitrogen atmosphere for 

40 hours under irradiation with 24 W blue LEDs at room temperature (in a water bath) to afford 45z as 

a pale yellow solid (65.2 mg, 82% yield, 99:30:1:1 dr). Purification conditions: n-hexane/EtOAc = 

10:1 to 3:1, Rf = 0.5 in n-hexane/EtOAc (3:1) for the major spot, Rf = 0.6 in n-hexane/EtOAc (3:1) for 

the minor spot. The dr value was established by HPLC analysis using a Chiralpak OD-H/AS-H 

column in combination with 
1
H NMR analysis of the product , dr = 99:30:1:1. []D

22
 = 67.8 (c 1.0, 

CH2Cl2). 

It’s chosed to use chiral HPLC (higher detect limitation) as well as the 
1
H NMR to determine the dr 

value. Theoretically, four diastereomers can be generated in this reaction. As we can’t get complete 

separation of the four diastereomers (A & B and C & D) on a single HPLC trace, diastereomers A & B 

(identical Rf value) and C & D (identical Rf value) were isolated and separated on individual chiral 

HPLC conditions, respectively, as shown below: 

Two diastereomers (A and B) with identically low Rf value, Rf = 0.5 in n-hexane/EtOAc (3:1), were 

isolated, and the dr value determined by HPLC analysis as 99:1. HPLC conditions: OD-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 9.3 min, tr (minor) = 11.6 min); 

Other two diastereomers (C and D) with identically high Rf value, Rf = 0.6 in n-hexane/EtOAc (3:1), 

were isolated, dr value determined by HPLC analysis as 97:3. HPLC conditions: AS-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 8.5 min, tr (minor) = 15.0 min. 

Diastereomers A and B (identical 
1
H NMR and Rf value), C and D (identical 

1
H NMR and Rf value) 
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shown a ratio of 3.2:1 as judged by 
1
H NMR of the crude material before purification. Combined with 

the results from chiral HPLC analysis, the exact dr value of the four diastereomers is 99:1: (97/3.2): 

(3/3.2) = 99:1:30:1. 

1
H NMR (300 MHz, CD2Cl2) δ 7.807.76 (m, 2H), 7.427.38 (m, 2H), 7.337.20 (m, 6H), 7.187.11 

(m, 3H), 7.05 (d, J = 1.0 Hz, 1H), 6.95 (d, J = 1.0 Hz, 1H), 6.816.76 (m, 2H), 4.36 (m, 1H), 4.18 (dd, 

J = 11.3, 3.3 Hz, 1H), 3.883.78 (m, 2H), 2.73 (dd, J = 17.3, 3.4 Hz, 1H), 1.85 (dt, J = 12.3, 3.0 Hz, 

1H), 1.771.50(m, 4H), 1.451.34 (m, 4H), 1.331.18 (m, 9H), 1.171.09 (m, 4H), 1.080.88 (m, 9H), 

0.80 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 1.1 Hz, 3H), 0.76 (d, J = 1.1 Hz, 3H), 0.73 (s, 3H), 0.56 (s, 3H). 

13
C NMR (75 MHz, CD2Cl2) δ 189.7, 173.6, 143.2, 140.7, 139.5, 138.5, 130.4, 129.4, 128.7, 128.4, 

128.2, 127.9, 127.8, 127.2, 126.8, 126.6, 125.8, 80.8, 76.8, 56.5, 56.4, 48.5, 44.6, 42.7, 40.1, 39.8, 

39.6, 36.9, 36.3, 35.9, 35.6, 35.4, 33.7, 32.1, 28.7, 28.3, 28.1, 27.1, 24.3, 23.9, 22.6, 22.3, 21.3, 18.5, 

12.0, 11.9. 

IR (film): ν (cm
1

) 2927, 2855, 1718, 1688, 1493, 1451, 1413, 1243, 1172, 1119, 1068, 1030, 956, 916, 

753, 697, 586, 528. 

HRMS (ESI, m/z) calcd for C53H69N2O4 [M+H]
+
: 798.5285, found: 798.5277. 

According to the general procedure, a mixture of 42a (27.6 mg, 0.10 mmol), 43b 

(54.0 mg, 3.0 equiv.), Δ-RhS1 (3.5 mg, 4 mol%), and DABCO (2.2 mg, 20 mol%) in DMF (1.0 mL, 

0.1 M) was stirred under nitrogen atmosphere for 24 hours under irradiation with 24 W blue LEDs at 

room temperature (in a water bath) to afford 50 as a pale yellow solid (21.6 mg, 55% yield, 94% ee). 

Purification conditions: n-hexane/EtOAc = 8:1 to 2:1, Rf = 0.3 in n-hexane/EtOAc (2:1) for the major 

diastereomer. The ee value of pure product was established by HPLC analysis using a Chiralpak AD-H 

column, ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr 

(major) = 12.7 min, tr (minor) = 21.2 min). []D
22

 = 14.6 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.827.78 (m, 1H), 7.527.31 (m, 8H), 7.307.21 (m, 2H), 7.17 (d, J = 

0.9 Hz, 1H), 7.10 (d, J = 0.9 Hz, 1H), 7.046.92 (m, 5H), 6.816.77 (m, 2H), 4.19 (dd, J = 8.9, 5.6 Hz, 

1H), 3.743.70 (m, 2H), 2.93 (br, 1H). 

13
C NMR (75 MHz, CD2Cl2) δ 190.3, 148.4, 147.7, 143.6, 140.8, 140.1, 139.1, 138.8, 130.0, 129.6, 
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129.5, 129.1 (2C), 128.8, 128.0, 127.8, 127.5, 127.2, 126.8, 126.1, 125.1, 124.7, 120.2, 120.0, 84.6, 

50.5, 40.3.. 

IR (film): ν (cm
1

) 2935, 2859, 1732, 1681, 1609, 1494, 1407, 1320, 1230, 1163, 1117, 1067, 1021, 

968, 919, 832, 760, 692, 652, 612, 525. 

HRMS (ESI, m/z) calcd for C31H24N2O2Na [M+H]
+
: 479.1730, found: 479.1730. 
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5.6.4 Removal of Directing Group 

 

The directing group imidazole moiety was cleaved according to our previous report with slight 

modification.
9
 To a mixture of 4 Å MS (90 mg, 100 mg/0.1 mmol of 45i) and 45i (50.0 mg, 0.090 

mmol) was added CH3CN/CH2Cl2 (0.09 M, 1 mL) under nitrogen atmosphere. The suspension was 

stirred vigorously under a positive pressure of nitrogen for 1 hour at room temperature. Then methyl 

triflate (6.0 μL, 0.054 mmol, 0.6 equiv) was added in one portion at 0 ℃. After being stirred at 0 ℃ 

for 3 h, another 0.6 equiv of methyl trifluoromethansulfonate was added, and kept at 0 ℃ for another 3 

h. Afterwards, DBU (23 μL, 0.135 mmol, 1.5 equiv) was added and the mixture was stirred at 0 ℃ for 

furthermore 1 h. The reaction was quenched by the adition of water (0.1 mL). Then the mixture was 

concentrated under vacuum and the residue was purified by flash chromatography on silica gel 

(EtOAc/n-hexane = 1:20) to give 46 (32.0 mg, 86%) as a white solid. Rf = 0.5 in n-hexane/EtOAc 

(10:1). 

Dr of 46 was determined by the 
1
H NMR analysis of pure compound. 

Ee of 46 was established by HPLC analysis using a Chiralpak AS-H column to obtain 98% ee (HPLC: 

AS-H, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 19.4 min, tr (minor) = 

22.1 min). []
D

22 = –33.4 (c 1.0, CH2Cl2). 

1
H NMR (300 MHz, CD2Cl2) δ 7.237.69 (m, 2H), 7.507.43 (m, 3H), 7.327.22 (m, 4H), 4.55 (m, 

1H), 4.11 (dd, J = 8.3, 4.5 Hz, 1H), 2.90 (dd, J = 17.6, 8.4 Hz, 1H), 2.77 (dd, J = 17.6, 4.5 Hz, 1H), 

2.53 (s, 3H), 1.521.40 (m, 5H) 1.301.06 (m, 5H). 

13
C NMR (75 MHz, CD2Cl2) δ 174.9, 167.7, 139.3, 138.6, 135.4, 129.2, 128.8, 127.1, 126.2, 90.8, 

75.1, 51.6, 36.6, 31.2, 31.1, 25.5, 23.6, 16.0. 

IR (film): ν (cm
1

) 2922, 2859, 1795, 1733, 1496, 1468, 1446, 1432, 1417, 1397, 1314, 1276, 1262, 

1236, 1170, 1132, 1086, 1056, 1035, 1016, 1005, 977, 937, 899, 885, 844, 801, 790. 

HRMS (ESI, m/z) calcd for C24H26O4SNa [M+Na]
+
: 433.1444, found: 433.1445. 
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5.6.5 Mechnistic Experiments 

1) UV-Vis Absorption Spectra 

 

Figure 100. UV-Vis absorption spectrum of -ketoester 43d (0.3 M in acetone). 

 

 

Figure 101. UV-Vis absorption of different compound combinations. Each component was mixed in a 

ratio that reflects the actual reaction setup. The concentrations are 100-fold lower compared to the 

actual reaction setup. 
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Figure 102. UV-Vis emission (black) spectra of -ketoester 43d (0.3 M in acteone) and different 

combinations. Each component was used in a ratio and concentration that reflects the actual reaction 

setup. λex = 420 nm. A Rh-enolate
9
 devoid of a -methylene was employed to rule out a -H abstraction 

pathway. 
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2) Determination of Extinction Coefficient of 43d and Rh-enolate 

 The absorbance values of 43d and Rh-enolate were collected at differnent concentrations at 420 

nm in acetone and the extinction coefficients determined according to the Lambert-Berr law. As a 

result, the extinction coefficient of 43d was calculaed as: ε420 = 0.46 M
-1

cm
-1

 and the extinction 

coefficient of Rh-enolate
9
 as: ε420 = 3235 M

-1
cm

-1
. 

 
Figure 103. The relation between absorbance at 420 nm and concentrations of 43d in acetone. 

 

 

Figure 104. The relation between absorbance at 420 nm and concentrations of Rh-enolate in acetone. A 

Rh-enolate devoid of a -methylene was employed as a model Rh-enolate intermediate because of 

higher chemical stability. 
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5.6.6 Single Crystal X-Ray Diffraction Studies 

 

Figure 105. Crystal structure of Δ-(S)-56. ORTEP drawing with 50 % probability thermal ellipsoids. 

 

Figure 106. Crystal structure of 45i. ORTEP drawing with 50 % probability thermal ellipsoids. 
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Table 18. Crystal data and structure refinement for Δ-(S)-56. 

 

Identification code  Δ-(S)-56 

Habitus, colour  prism, yellow 

Crystal size 0.37 x 0.11 x 0.10 mm3 

Crystal system  Orthorhombic 

Space group  P212121 Z = 4 

Unit cell dimensions a = 12.86140(10) Å  

 b = 17.9146(2) Å  

 c = 18.8871(2) Å  

Volume 4351.72(8) Å3 

Cell determination  79289 peaks with Theta 2.3 to 75.9°. 

Empirical formula  C49 H41 Br2 F N3 O2 Rh S2 

Moiety formula  C49 H41 Br2 F N3 O2 Rh S2 

Formula weight  1049.70 

Density (calculated) 1.602 Mg/m3 

Absorption coefficient 6.609 mm-1 

F(000) 2112 

 

Data collection:  

 

Diffractometer type  STOE STADIVARI 

Wavelength  1.54178 Å 

Temperature  100(2) K 

Theta range for data collection 3.400 to 76.137°. 

Index ranges -16<=h<=15, -22<=k<=18, -15<=l<=23 

Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)
17

  

Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)
18

  

Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)
19

 

 X-Area LANA 1.68.2.0 (STOE, 2016)
20

  

 

Solution and refinement: 

 

Reflections collected 77982 

Independent reflections 8981 [R(int) = 0.0427] 

Completeness to theta = 67.679° 100.0 %  

Observed reflections  8638[I > 2σ(I)]  

Reflections used for refinement  8981 

Absorption correction Semi-empirical from equivalents
20

 

Max. and min. transmission 1.0000 and 0.2381 
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Flack parameter (absolute struct.)   -0.006(4)
21

  

Largest diff. peak and hole 0.538 and -0.573 e.Å-3 

Solution  dual space algorithm 

Refinement  Full-matrix least-squares on F2 

Treatment of hydrogen atoms  Calculated positions, constr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)
22

  

 SHELXL-2016/6 (Sheldrick, 2016)
23

  

 DIAMOND (Crystal Impact)
24

 

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)
25 

 

Data / restraints / parameters 8981 / 42 / 578 

Goodness-of-fit on F2 1.063 

R index (all data) wR2 = 0.0687 

R index conventional  [I>2sigma(I)] R1 = 0.0265 

 

Table 19. Crystal data and structure refinement for 45i. 

Identification code  45i 

Habitus, colour  nugget, pale yellow 

Crystal size 0.36 x 0.13 x 0.12 mm3 

Crystal system  Triclinic 

Space group  P1 Z = 4 

Unit cell dimensions a = 10.3202(5) Å = 78.028(1)°. 

 b = 15.5911(6) Å = 74.768(2)°. 

 c = 19.1946(8) Å  = 83.519(2)°. 

Volume 2909.6(2) Å3 

Cell determination  9758 peaks with Theta 2.4 to 27.5°. 

Empirical formula  C33 H34 N2 O4 S 

Moiety formula  C33 H34 N2 O4 S 

Formula weight  554.68 

Density (calculated) 1.266 Mg/m3 

Absorption coefficient 0.151 mm-1 

F(000) 1176 

 

Data collection:  

 

Diffractometer type  Bruker D8 QUEST area detector 

Wavelength  0.71073 Å 
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Temperature  100(2) K 

Theta range for data collection 2.238 to 27.588°. 

Index ranges -13<=h<=13, -20<=k<=20, -24<=l<=24 

Data collection software  APEX3 (Bruker AXS Inc., 2015)
17

  

Cell refinement software  SAINT V8.37A (Bruker AXS Inc., 2015)
18

  

Data reduction software  SAINT V8.37A (Bruker AXS Inc., 2015) 

 

Solution and refinement: 

 

Reflections collected 176522 

Independent reflections 25501 [R(int) = 0.0409] 

Completeness to theta = 25.242° 99.9 %  

Observed reflections  23537[I > 2σ(I)]  

Reflections used for refinement  25501 

Absorption correction Semi-empirical from equivalents
19

 

Max. and min. transmission 0.7456 and 0.7256 

Flack parameter (absolute struct.)   0.002(9)
20

  

Largest diff. peak and hole 0.525 and -0.416 e.Å-3 

Solution  dual space method 

Refinement  Full-matrix least-squares on F2 

Treatment of hydrogen atoms  CH calculated, constr., OH located, isotr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)
21

 

 SHELXL-2016/6 (Sheldrick, 2016)
22

  

 DIAMOND (Crystal Impact)
23

 

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)
24

 

Data / restraints / parameters 25501 / 3 / 1461 

Goodness-of-fit on F2 1.038 

R index (all data) wR2 = 0.0918 

R index conventional  [I>2sigma(I)] R1 = 0.0377 
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Chapter 6: Appendices 

6.1 List of Abbreviations 

1
H NMR proton nuclear magnetic resonance spectroscopy 

13
C NMR carbon nuclear magnetic resonance spectroscopy 

9
F NMR fluorine nuclear magnetic resonance spectroscopy 

δ
 

chemical shift 

J coupling constant 

br broad 

s singlet 

d doublet 

t triplet 

q quartet 

m multiplet 

ppm parts per million 

AcOH acetic acid 

aq aqueous 

Ar argon 

bpy 2,2 -́bipyridine 

CD circular dichroism 

CH2Cl2/ DCM dichloromethane 

CD2Cl2 dideuteromethylenechloride 

CHCl3 chloroform 

CDCl3 deuterochloroform 

CH3CN/ MeCN acetonitrile 

conc concentrated 

DMAP 4-dimethylaminopyridine 

DMF dimethylformamide 

DMSO dimethyl sulfoxide 
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dr diastereomeric ratio 

EDA electron donor-acceptor 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

ee enantiomeric excesses 

e.g. exempli gratia (lat.: for example) 

et al. et alii (lat.: and others) 

ESI electrospray ionization 

EtOH ethanol 

Et2O diethyl ether 

Et3N triethyl amine 

EtOAc ethyl acetate 

EWG electron withdrawing group 

HAT hydrogen atom transfer 

h hour(s) 

HPLC high performance liquid chromatography 

HRMS high resolution mass spectrometry 

Hz Hertz 

IR spectra infrared spectra 

Ir iridium 

L liter(s) 

M mol/liter 

m meta- 

min minute(s) 

mL milliliter(s) 

mmol millimole 

MS mass spectroscopy 

N2 nitrogen 

Nu nucleophile 

PCET proton-coupled electron transfer 
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Ph phenyl 

PPh3 triphenylphosphine 

ppm parts per million 

ppy 2-phenylpyridine 

PC photoredox catalyst 

rac racemate 

Rh rhodium 

rt room temperature 

SET single-electron transfer 

TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy 

TFA trifluoroacetic acid 

THF tetrahydrofuran 

TLC thin layer chromatography 

UV ultraviolet 
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