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2 Summary  

 

Hedgehog signaling (Hh) plays a crucial role in vital processes such as embryonic 

development or cell homeostasis. Aberrant Hh signaling is linked to formation, progression 

and growth of tumors.  

 

The canonical Hh signaling cascade is initiated by binding of the Hh ligand to its receptor 

Patched1 (PTCH1) (Hooper and Scott 1989; Nakano et al. 1989), a transmembrane protein 

located in the ciliary membrane which relieves the repression of the membrane-bound G 

protein-coupled receptor (GPCR) Smoothened (SMO) which activates the Hh 

transcriptional factors, zinc finger proteins of the GLI (Cubitus interruptus (Ci) in Drosophila 

melanogaster) family (Hui and Angers 2011). The Hh signaling pathway is reported to 

activate downstream kinases which in turn lead to various cellular processes such as 

differentiation, polarity and proliferation. 

 

The so-called dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are 

induced by Hh activation and a slight change in their amount could lead to large and 

significant effects on various cellular processes. DYRK1A as a candidate gene is 

responsible for the altered neuronal development and brain abnormalities in Down 

syndrome (DS, OMIM #190685). DYRK1B is known to be associated with the metabolic 

syndrome and, is commonly amplified in ovarian and pancreatic cancer (Friedman 2010a; 

Keramati et al. 2014b).  

 

The results of the present work have shown, that Hh signaling induces DYRK1B and this 

kinase has been shown to have a regulatory kinetic effect on Hh signaling pathway, as 

short-term inhibition of DYRK1B kinase leads to increase in GLI protein levels and long-

term inhibition has shown to deplete the protein levels of GLI. This strong fluctuation in the 

kinase could be detrimental in a therapeutical context, as DYRK1B has been shown to 

regulate PI3K/mTOR/AKT signaling pathway which is subject to strong feedback regulation 

and can induce oncogenic Hh signaling. Combination therapy which targets DYRK1B and 

other signaling pathway components such as mTOR, AKT, S6K were used to deplete 

growth of pancreatic and ovarian cancer cells.  
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Hh signaling exerts myriad functions and one of the functions is to induce acetylation of 

microtubules and of Acetylated Tubulin (AcTub)-dependent processes such as cell 

polarization or organelle transport. With my results, I find that Hh signaling increases 

DYRK1B levels, which inactivates Glycogen synthase kinase 3β (GSK3β) through Serine 9 

(Ser9) phosphorylation, resulting in Histone Deacetylase 6 (HDAC6) inhibition and 

increased tubulin acetylation. In summary, I have described a mechanistic framework of 

how intercellular communication can impinge on cytoskeletal regulation and cell function 

via Hh signal transduction.  

 

Considering these effects, I have shown that DYRK1B is one of the very crucial kinases 

mediating multiple signaling pathways and; thereby, it’s extremely important to elucidate 

the mechanistic framework of its action.
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3 Zusammenfassung 

 

Der Hedgehog-Signalweg (Hh) spielt eine entscheidende Rolle bei lebenswichtigen 

Prozessen wie der Embryonalentwicklung oder der Zellhomöostase. Eine abweichende 

Signalweiterleitung ist mit der Bildung und Progression/Wachstum von Tumoren 

verbunden.  

 

Die kanonische Hh - Signalkaskade wird initiiert durch Bindung des Hh- Liganden an seinen 

Rezeptor Patched1 (PTCH1) (Hooper and Scott 1989; Nakano et al. 1989), ein in der 

Ciliarmembran lokalisiertes Transmembranprotein, welches im ungebundenen Zustand die 

Aktivität des membrangebundenen G-Protein-gekoppelten Rezeptors (GPCR) 

Smoothened (SMO) reprimiert. Die Bindung aktiviert Hh-Transkriptionseffektoren, die 

Zinkfingerproteine der GLI Familie (Cubitus interruptus (Ci) in Drosophila melanogaster) 

(Hui and Angers 2011). Es wurde gezeigt, dass der Hh-Signalweg nachgeschaltete Kinasen 

aktiviert, die wiederum zu verschiedenen zellulären Prozessen führen. So wird 

beispielsweise die Expression der DYRK-Kinasen (dual-specificity tyrosine 

phosphorylation-regulated kinases) durch Hh-Aktivierung induziert. Bereits geringfügige 

Veränderungen ihrer Expression können zu großen und signifikanten Effekten auf 

verschiedene zelluläre Prozesse führen.  

 

DYRK1A ist ein Kandidaten, das für veränderte neuronale Entwicklung und Hirnanomalien 

beim Down-Syndrom verantwortlich ist (DS, OMIM # 190685). Weiterhin ist bekannt, dass 

DYRK1B mit dem metabolischen Syndrom assoziiert ist und bei Ovarial- und 

Pankreaskrebs häufig verstärkt exprimiert wird (Friedman 2010a; Keramati et al. 2014b).  

 

Die Ergebnisse der vorliegenden Arbeit konnten zeigen, dass der Hh-Signalweg die 

Expression von DYRK1B induziert, was wiederum einen regulatorischen kinetischen Effekt 

auf den Hh-Signalweg hat, da die Kurzzeit-Hemmung der DYRK1B-Kinase zu Erhöhung 

des GLI-Proteinlevels führt, wohingegen eine Langzeit-Hemmung den GLI-Proteinlevel 

verringert. Diese starken Schwankungen der Kinase könnten therapeutisch schädlich sein, 

da gezeigt wurde, dass DYRK1B den PI3K / mTOR / AKT-Signalweg reguliert, der einer 

starken Rückkopplungsregulation unterliegt und onkogene Hh-Signale induzieren kann. 

Eine Kombinationstherapie, die auf DYRK1B und andere Signalwegkomponenten wie 
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mTOR, AKT, S6K wirkt, wurde verwendet, um das Wachstum von Pankreas- und 

Ovarialkrebszellen zu verringern. 

 

Der Hh-Signalweg steuert unzählige Funktionen. Eine dieser Funktionen ist die 

Acetylierung von Mikrotubuli und von AcTub-abhängigen Prozessen wie Zellpolarisation 

oder Organellentransport. Im Zuge dieser Arbeit konnte gezeigt werden, dass der Hh-

Signalweg DYRK1B-Level erhöht, wodurch Glycogen-Synthase-Kinase 3β (GSK3β) durch 

Ser9-Phosphorylierung inaktiviert wird, was zu einer HDAC6-Inhibierung führt und die 

Tubulin-Acetylierung erhöht. In dieser Arbeit wird ein mechanistisches Zusammenspiel 

beschrieben, wie interzelluläre Kommunikation über die Hh Signaltransduktion auf die 

Zytoskelett-Regulation und Zellfunktionen einwirken kann.  

 

In Hinblick auf die vielfältigen Die Auswirkungen von DYRK1B auf verschiedene wichtige 

Signalwege von Krebs und Entwicklung, die weitere Erforschung seiner Bedeutung ist von 

höchstem Interesse. 
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4 Introduction 

 

Intercellular signaling and signal transduction underlie several aspects of development and 

behavior. Core intercellular signaling pathways found in animal cells include Notch, Wnt, 

BMP/TGFβ, Hedgehog, growth factor signaling and others (Housden and Perrimon 2014). 

These pathways provide a central means of communication between cells. This intercellular 

communication controls almost every aspect of cellular functions such as cell proliferation, 

migration, recognition, and differentiation (Uriu et al. 2014). Various modulators of the 

signaling pathways such as, the ligands, receptors, transducers, and regulators are known 

which provide a better understanding of the multifunctional cellular system and also serve 

as drug targets. 

 

Cell-cell communication is often mediated by protein molecules within a cell that is 

recognized by specific receptors presenting on neighboring cells. These intracellular 

signaling events can occur among distinct cell types (paracrine signaling) and within the 

same cell type (autocrine signaling). Intracellular communication can occur  via indirect 

interactions (autocrine, paracrine) where, the secreted ligands, such as growth factors, 

cytokines, and chemokines, bind to specific receptors expressed on neighboring cells and 

direct interactions (juxtacrine communication) where a cell-cell contact is required for 

triggering the signaling as ligands are expressed on the plasma membrane of neighboring 

cells. Various downstream signaling pathways are activated through dynamic post-

translational modifications and protein-protein interactions upon activation of membrane 

receptors, which in turn lead to the modulation of several cellular functions (Scott and 

Pawson 2009).  

 

Intercellular signal transduction also plays an important role in embryonic development by 

significantly affecting cell growth, differentiation, and morphogenesis. Several reports have 

shown that early embryogenesis and tumorigenesis share several similarities, in terms of 

cell invasive behavior, epigenetic regulation, protein profiling and other biological behaviors 

(Ma et al. 2010). The hallmark of embryonic development is ‘regulation’, the trend that cells 

follow to arrange themselves into organized structures whereas cancer is characterized by 

‘dysregulation’ and ‘disorder’. The process of embryogenesis involves spatial and temporal 

activation of developmental signaling pathways (Dominic Poccia 2006). Re-activation of 

these embryonic signals in adult cells- due to mutations and epigenetic remodeling is one 
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of the major causes of cancer. Several important developmental pathways which include 

Wnt, Hedgehog, and Notch pathways, are mostly, dysregulated in tumor progression, 

initiation, and maintenance of metastatic spread and growth.  

 

4.1 Hedgehog Signaling Pathway 

 

The Hedgehog (Hh) Signaling pathway plays a significant role in tissue homeostasis, 

metabolism control, embryogenesis, and various other developmental processes. It 

regulates the differentiation and proliferation of cells, body patterning, stem cell 

maintenance, survival, and affects the oncogenic transformation and the development of 

tumors (Varjosalo and Taipale 2008; Gupta et al. 2010a; Briscoe and Therond 2013; 

Teperino et al. 2014; D’Amico et al. 2015; Lee et al. 2016b). 

 

In 1980 Eric F. Wieschaus and Nusslein-Volhard  discovered the Hedgehog (HH) gene 

during their genetic screens for mutations that disrupt the larval body plan in Drosophila 

melanogaster (Nusslein-Volhard and Wieschaus 1980). The Drosophila larva is segmented, 

with a smooth posterior end and a bristle coated anterior end, known as denticles. This 

segmental patterning was shown to be affected by polarity mutants in their mutational 

screen. Polarity mutants led to the failed development of the posterior part, which in turn 

resulted in a short and spiky phenotype, resembling a Hedgehog and hence the name 

(Nusslein-Volhard and Wieschaus 1980; Ingham and McMahon 2001; van den Brink 2007; 

Varjosalo and Taipale 2008).  

 

Three Hedgehog homologs are known to be present in vertebrates, namely: Desert (DHH), 

Indian (IHH), and Sonic (SHH). In mouse and humans, the three hedgehog genes are highly 

conserved (Marigo et al. 1995). Specific roles for all the three genes have been found 

(Echelard et al. 1993; Riddle et al. 1993; Roelink et al. 1994; Ingham and McMahon 2001) 

such as: SHH regulates the polarizing activity of the organizing centers located in the limb 

bud, the notochord, or the floor plate of the neural tube (Cohn and Tickle 1996; Jessell 

2000; Singh and Lauth 2017), endochondral bone development, osteoblast differentiation 

and various other cellular events are regulated by IHH (St-Jacques et al. 1999; McMahon 

et al. 2003; Singh and Lauth 2017). Amongst the three, the least studied homolog is DHH. 

Several reports suggest it regulates the development of germ cells in testes and peripheral 

nerve sheath formation (Park et al. 2007; Singh and Lauth 2017).  
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The hedgehog proteins go through comprehensive and specific post-translational 

modifications and cleavage events producing ~45 kDa precursor protein. This precursor 

protein is autocatalytically cleaved and giving rise to a cholesterol modified 19 kDa NH2-

terminal fragment (HhNp), which undergoes dual lipid modification and an unmodified 26 

kDa COOH terminal fragment (HhC,(lacking the palmitate modification)) (Porter et al. 1996), 

which acts as a cholesterol transferase and also catalyzes the cleavage (Lee et al. 1994; 

Marti et al. 1995). The most striking feature of hedgehog proteins is the dual lipid 

modification of the 19 kDa NH2 terminal fragment. The modified signaling protein is 

covalently linked to cholesterol and palmitate groups and is poorly soluble. Palmitoylation 

is critical for effective long and short-range signaling. Attachment of palmitate to Hh proteins 

is independent of cholesterol modification and autoprocessing and is catalyzed by HHAT 

(Hedgehog acyltransferase). HHAT is the member of membrane-bound O-acyltransferase 

(MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty 

acyl groups to lipids and proteins. Mutations in HHAT produce a phenotype that is similar 

to loss of Hh function (Lee et al. 1994; Marti et al. 1995; Porter et al. 1996; Chamoun et al. 

2001; van den Brink 2007; Buglino and Resh 2012). It was also recently shown that 

palmitoylation promotes cleavage of N-terminal amino acids by a disintegrin and 

metalloproteases (ADAM) family of proteases (Ohlig et al. 2011; Koleva et al. 2015). This 

kind of cleavage leads to the formation of active Shh multimers. The amino acid residues, 

if not cleaved can affect SHH, as they are shown to interact with the Zn2+ coordination sites 

on adjacent molecules and this region has been shown to interact with Patched and is 

known to modulate SHH activity and stability (Day et al. 1999; Fuse et al. 1999; Bosanac et 

al. 2009a).  

 

Hh proteins undergo cholesterylation, a post-translational modification (Ciepla et al. 2015) 

at their C-termini (Porter et al. 1996) which increases their membrane affinity and restricts 

their dispersal (Gallet 2011). Mutant Hh proteins lacking the cholesterol modification have 

a longer range of distribution and signaling, which can lead to patterning defects (Li et al. 

2006; Huang et al. 2007). Dispatched (Disp), a 12- pass transmembrane protein related to 

the bacterial RND (Resistance nodulation-cell division) family of transporters is essential for 

the release of Hh from cell surfaces and its long-range signaling activities. Mutants from 

dispatched retain cholesterol-modified Hh and hence show reduced signaling (Burke et al. 

1999; Shirras 2000; Couso 2011). 
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4.1.1 Mechanism of Hh Signal Transduction 

 

The canonical Hh signaling cascade is initiated in the target cell upon binding of the Hh 

ligands to 12-span transmembrane receptors, encoded by the genes PTCH1 and PTCH2 

(Hooper and Scott 1989; Nakano et al. 1989; Goodrich et al. 1996). Two hydrophilic 

extracellular loops are displayed by these receptors which mediate the ligand interactions 

(van den Brink 2007). Ptch family members and bacterial transport proteins share extensive 

homology. These proteins belong to the Resistance-nodulation-cell division (RND) family 

and involved in the transport of various substrates across the cell membrane (Hausmann 

et al. 2009). The eukaryotic Ptch superfamily includes Dispatched (Disp) which maintains 

the discharge of Hh proteins and Niemann-Pick C1 protein (NPC1) regulating cholesterol 

homeostasis (Hausmann et al. 2009).  

 

The Hh reception by Ptch is enhanced by the presence of several other Hh binding proteins 

at the cell surface. These additional co-receptors such as, fibronectin type III (FnIII), and 

immunoglobulin family of membrane proteins Ihog (Interference hedgehog) and Boi 

(Brother of Ihog) transmembrane proteins in Drosophila and Cdo (Cell adhesion molecule 

related/downregulated by oncogenes) and  Boc (Brother of Cdo) in vertebrates are encoded 

by cell surface Ig/fibronectin and are the closest mammalian relatives of Drosophila  Ihog, 

and Gas1 (growth arrest-specific gene 1), act as a specific surface protein and binds SHH 

for signaling (Tenzen et al. 2006; Kang et al. 2007; Beachy et al. 2010; Camp et al. 2010; 

Izzi et al. 2011). Another Hh binding protein in vertebrates is HIP (hedgehog interacting 

protein) a membrane glycoprotein binding to three Hh proteins with an affinity comparable 

to Ptch1 (Chuang et al. 2003; Bosanac et al. 2009b). 

 

The Hh signaling cascade involves a dual function of Ptch1, as a receptor of Hh ligand and 

as a negative regulator of the pathway, by inhibiting the G protein-coupled receptor (GPCR) 

like signal transducer Smoothened (SMO) (7-pass transmembrane protein) in the non-

motile primary cilium (PC), where Ptch localizes in the absence of the Hh ligand (Taipale et 

al. 2002; Eggenschwiler and Anderson 2007; Rohatgi et al. 2007; Roberts et al. 2016). The 

primary cilium, a microtubule-based organelle, which protrudes from the cell surface of most 

vertebrate cells, is a requisite for Hh signal transduction (Goetz and Anderson 2010).  
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Smoothened is a member of the Frizzled family (class F) of GPCRs and contains an N-

terminal, ~14 kDa extracellular cysteine-rich domain (CRD), connected with a linker to a 7-

span transmembrane (7TM) protein and an extended C-terminal tail (Ruiz-Gómez et al. 

2007). Small molecule inhibitors are believed to play an important role in understanding the 

mechanism by which Ptch represses the pathway, by inhibiting smoothened SMO 

regulation. This was clarified when, there were reports showing, oxysterols, oxidized 

derivatives of cholesterol, bind specifically to Smo CRD and hence activate the Hh signaling 

pathway (Rana et al. 2013; McCabe and Leahy 2015). Various smoothened antagonists, 

targeting the heptahelical bundle domain of SMO, have also worked in favor of this 

assumption. These antagonists functionally mimic the overexpression of Ptch (Chen et al. 

2002; Frank-Kamenetsky et al. 2002; Taipale et al. 2002). Recent reports have also shown 

that Hh signal transduction modulates cholesterylation of SMO, and thereby making SMO 

cholesterylation, a therapeutic target to treat Hh pathway related cancers (Xiao et al. 2017). 

 

Gli zinc finger transcription factors mediate Hh signaling at the distal end of the pathway. 

Cubitus interruptus (Ci) is the Gli homolog in Drosophila and in vertebrates there are three 

different Gli transcription factors, GLI1, GLI2 and GLI3 (Hui and Angers 2011). In mammals, 

Gli1, Gli2 and Gli3 contain a carboxy-terminal activation domain but only Gli2 and Gli3 have 

N-terminal repressor domains (Dai et al. 1999; Sasaki et al. 1999). In the absence of the 

Hh ligands, Ci and Gli2/3 are proteolytically processed into repressor forms by removal of 

the activation domain (Aza-Blanc et al. 1997; Hsia et al. 2015). Hh regulated proteolytic 

processing of Ci, Gli2 and Gli3 is promoted by Protein Kinase A (PKA), Casein Kinase1 

(CK1) and Glycogen Synthase Kinase 3β (GSK3β), leading to binding of an E3 ubiquitin 

ligase complex containing β-TrCP (in mammals), and hence proteasome-mediated 

digestion (Jiang 2006; Marks and Kalderon 2011). Albeit myriad facets of vertebrate GLI-R 

production remain elusive, KIF7 (Kinesin family member 7), Suppressor of Fused (SuFu) 

and the primary cilium are needed for adequate processing of GLI-FL (full length) into GLI-

R (repressor) (Cheung et al. 2009; Liem et al. 2009; Goetz and Anderson 2010). 

 

SuFu plays a vital role in the stabilization of GLI2/3 FL , retaining them in the cytoplasm and 

hence preventing their activation by nuclear translocation (Humke et al. 2010; Tukachinsky 

et al. 2010). When SuFu is absent GLI2-FL translocate to the nucleus and is converted into 

its activator form, GLI2-A (proteolytically processed) which is labile and rapidly degraded 

by cullin-3-based ubiquitin ligase adaptor SPOP  (Chen et al. 2009; Wang et al. 2010; Jin 
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et al. 2016). Apart from SuFu, KIF7 plays an important role in GLI processing, although the 

exact mechanism is unclear it is thought to recruit PKA, GSK3 and CK1 thereby 

phosphorylating GLI-FL (Ryan and Chiang 2012). 

 

Another important player in the Hh pathway is the G-protein-coupled-receptor Gpr161. It 

plays an essential role in Hh signaling by negatively regulating the pathway by determining 

Gli processing via cAMP signaling. The IFT-A  complex and Tulp3  are involved in trafficking 

of Gpr161 to the primary cilia (Pal and Mukhopadhyay 2015). Gpr161 is mostly expressed 

in neural tube development and is localized in nervous system post mid-gestation period. 

Localization of Gpr161 has also been found in cilia and the ciliary localization is perturbed 

upon knockdown of Tulp3 and IFT-A complex in these fibroblasts (Mukhopadhyay and 

Rohatgi 2014). GPR161 double knockout mutants have shown Gli3 processing defects, 

which are cilia dependent and Smo independent, implying GPR161 would affect Gli3 

processing. The phenotypic appearance of Gpr161 is like that of SuFu and PKA mutants. It 

has been shown that Sufu effects on the Hh pathway take place independent of primary 

cilia (Chen et al. 2009; Humke et al. 2010; Zeng et al. 2011), which indicates that Gli3 

processing by Gpr161 is modulated via activation of PKA. In the absence of Shh, GPR161 

is localized to primary cilium and promotes the increase in the levels of cAMP-mediated 

Gαs activation of adenylyl cyclase. In the presence of the ligand, Gpr161 moves away from 

the primary cilium preventing cAMP production and leading to pathway activation 

(Mukhopadhyay et al. 2013; Pal et al. 2016). 
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Figure1: The mammalian Hh signaling pathway. (a) In the absence of Hh ligand, the Hh receptor 

Patched (Ptch1) inhibits the accumulation of the signal transducer, Smoothened (Smo), on the ciliary 

membrane. As a result, at the base of the primary cilium, PKA and Kif7 promote proteolytic 

processing of the transcription factor Gli3 by the proteasome into a repressor form (GliR) that 

suppresses Hh target gene expression in the nucleus. In addition, Sufu stabilizes the Gli proteins 

and inhibits the transcriptional activity of Gli2, while PKA prohibits the accumulation of full-length Gli2 

(GliFL) in the cilium. All of these events ensure silencing of the Hh pathway without the ligand. (b) 

The Hh ligand binds to its receptor Ptch1 and co-receptors Boc/Cdon. Ptch1 is internalized with Hh, 

relieving the inhibition on Smo. Smo accumulates in the ciliary membrane through both lateral 

transport and the secretory pathways. Phosphorylation of Smo, for instance, at the EvC zone in 

osteoblasts leads to its dimerization and activation. This, in turn, abrogates PKA function and 

promotes the movement of Sufu–Gli2/3 complexes and Kif7 to the ciliary tip and perhaps dissociation 

of Gli2/3 from Sufu in this process. Kif7 also facilitates the trafficking of Gli2/3 into the cilium (e.g. in 

chondrocytes). Accumulation of Gli2/3 at the ciliary tip is associated with the production of Gli 

activators (GliA), which are derived from the full-length Gli proteins. Accumulation of GliA to the 

nucleus enables activation of Hh target genes such as Ptch1, Gli1, and Hhip1 (Nozawa et al. 2013).  

 

4.1.2 Hh Signaling and Cancer 

 

The Hedgehog signaling pathway is essential for embryonic development and stem cell 

maintenance (Wu et al. 2017). But, aberrant activation of the pathway is also linked to 

various forms of cancer. Medulloblastoma (MB), basal cell carcinoma (BCC), 

rhabdomyosarcoma (RMS) and several other forms of cancer have documented the roles 

of mutated Hh pathway components (Raffel et al. 1997; Xie et al. 1998; Tostar et al. 2006). 

In addition, tumor microenvironment modulation by Hh signaling has been shown to be a 
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prominent player in breast, lung, liver, stomach, pancreas, colon and prostate cancer 

(Berman et al. 2003; Thayer et al. 2003; Watkins et al. 2003; Karhadkar et al. 2004; Huang 

et al. 2006; Mukherjee et al. 2006; Varnat et al. 2009). In light of these reports, Hh signaling 

becomes very important for targeted cancer therapy.  

 

Three basic models of Hh pathway activation have been proposed (Rubin and de Sauvage 

2006). Type I cancers contain an activating mutation in the Hh pathway, independent of Hh 

ligand and therefore inhibitors should target at or below SMO in the Hh cascade to be 

therapeutically effective (Gupta et al. 2010b). Type II cancers are ligand-dependent and do 

not display any somatic mutations in the Hh pathway. An autocrine mode of Hh signaling 

occurs in these cancers where Hh is produced and also utilized by the same cells or 

neighboring tumor cells. SMO antagonists can inhibit autocrine Hh signaling in these tumors 

(Gupta et al. 2010b). Type III cancers are also ligand-dependent but in these tumors, 

paracrine signaling works, which is motivated by the overexpression of the Hh ligand by 

these tumors, which are received by the stromal cells and produce reciprocal signals 

leading to the growth and survival of tumors. A combination therapy targeting the Hh 

pathway in stromal cells and drugs for the tumor cells should be used to treat this kind of 

cancer (Gupta et al. 2010b). A variant of this type of cancer may be a reverse paracrine 

signaling, where the ligand is secreted by the stromal cells and received by the tumor cells 

for maintaining growth and survival. Till now this mode of signaling has only been observed 

in hematological malignancies like leukemia, lymphoma and multiple myeloma in which 

stromal secreted Hh is utilized by cancerous B-cells through upregulation of Bcl2, which is 

an antiapoptotic factor (Dierks et al. 2007; Scales and de Sauvage 2009; Gupta et al. 2010b; 

Abidi 2014). 

 

Therapeutically the Hh pathway is an important target for cancer and regenerative medicine. 

The primary focus has been to study the prominent role of Hh signaling in promoting cancer. 

Currently, vismodegib and sonidegib, which are SMO inhibitors are the only clinically 

approved treatments for metastatic BCC (Dlugosz et al. 2012; Burness 2015). Arsenic 

Trioxide (ATO), an FDA approved inhibitor of GLI1 and GLI2 transcription factors. ATO 

directly binds to GLI1 and GLI2, inhibiting activity and decreasing expression of canonical 

Shh-GLI genes. It is currently a part of several clinical trials for both solid tumors and 

hematological malignancies (Beauchamp et al. 2011; Amakye et al. 2013). Drug resistance 

and cross-resistance often follow the treatment with SMO antagonists (Atwood et al. 2013; 
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Sharpe et al. 2015; Danial et al. 2016). Four different acquired resistance mechanisms have 

been known. Type I is the resistance via mutations in SMO in metastatic medulloblastoma, 

which can be overcome by using SMO mutant, SMO translocation, and GLI inhibitors. Type 

II is the resistance to SMO inhibitor due to amplification of GLI2 in Ptch-mutant 

medulloblastoma mouse model, which can be overcome by the use of GLI1 inhibitors. Type 

III is the resistance by the upregulation of PI3K-mTOR pathway, where, use of PI3K-mTOR 

and GLI1 inhibitors would overcome the resistance. Type IV is the resistance by the  

upregulation of aPKCɩ/λ in human basal cell carcinoma, which could be overcome by the 

use of aPKCɩ/λ inhibitors. Apart from the different mechanisms of SMO inhibitor resistance, 

it would be quite informative and helpful to consider and investigate other pathways that are 

interacting with Shh signaling so that the components of these pathways can be used in the 

context of combination therapy (Huang and Yang 2015). 

 

4.2 Regulation of Hh signaling by Kinases 

 

Protein kinases have been known to modulate the Hh signaling which includes, PKA, PKC, 

GRK2, MEK, ERK, AKT, and GSK3β (Wang et al. 2000; Riobo et al. 2006; Lauth et al. 2007; 

Chen et al. 2011; Wang et al. 2012; Zhao et al. 2016). Recent studies have pointed towards 

the involvement of targeting different kinases and hence aiming for a specific response.  

 

Protein Kinase A (PKA) is known to play key roles in many biological processes. In Hh 

receptive cells, PKA is involved in fate specification and in proliferation by attenuating Hh 

signaling. When the Hh pathway is inactive, even basal levels of active PKA can repress 

the Hh target genes. The important substrates of PKA are the Ci/Gli family, which can 

activate and repress Hh target gene expression. The basal level of PKA activity in Hh-

responsive cells should be precisely regulated as increased and decreased levels of PKA 

activity would lead to cell proliferation negatively and can alter cell fate specification. 

However, the mechanism of PKA activity regulation is quite obscure, as its dependent on 

varying factors of different cell types, tissues, and organisms. Two different mechanisms 

have been proposed to address the mechanism; (1) activity of PKA is regulated by cAMP; 

(2) PKA activity is regulated by a protein known as Misty somites (Kotani 2012). PKA and 

CKI are involved in regulation of Smo accumulation at the cell surface in response to Hh. It 

has been shown in Drosophila wing disc, blockade of PKA and CKI leads to prevention of 

Smo accumulation upon Hh induction. Smo is phosphorylated by PKA and CKI at many 
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sites and phosphorylation-defective mutants of Smo are unable to accumulate at the cell 

surface and poorly equipped to transduce Hh signals. At the same time, it has also been 

shown that variants of Smo mimicking phosphorylation exhibit continuous expression at the 

cell surface and also able to transduce signals (Jia et al. 2004). The PKC family of proteins 

consists of three groups: the calcium-dependent conventional PKC isoforms (α, βI, βII, and 

γ), the calcium-independent novel PKC isoforms (δ, ϵ, η, and θ), and the calcium-

independent atypical PKC isoforms (ζ, λ/ι) (Ron and Mochly-Rosen 1995; Brodie et al. 

2004). Protein Kinase C (PKC) pathways and Hh undergo complex crosstalk and PKCdelta 

has been shown to inhibits Gli protein transcriptional activity and thereby alter Hedgehog 

signaling and negatively affect tumorigenesis in Hh associated cancers (Cai et al. 2009b). 

Reports have also shown, Ras-independent activation of MAPK/ERK kinase (MEK) and 

extracellular signal-regulated kinase (ERK) pathway by PKCdelta (Ueda et al. 1996). And 

oncogenic KRAS through RAF MEK/MAPK signaling has been shown to be directly involved 

in the activation of the hedgehog pathway in pancreatic ductal adenocarcinoma (PDA) cells 

and the crosstalk between two pathways play a significant role in PDA progression (Ji et al. 

2007). In general, the kinases in the CMGC (CDKs, MAPKs, GSK3s, CLKs) group have a 

broad spectrum of functional roles ranging from signal transduction to cell cycle regulation, 

RNA related processing, and intracellular communication (Varjosalo et al. 2013). Less 

studied candidates include the dual-specificity tyrosine regulated kinases (DYRKs) and the 

serine-arginine protein kinases (SRPK) (Singh and Lauth 2017). Dual specificity tyrosine 

phosphorylation regulated kinases (DYRKs) have shown to positively and negatively 

regulate Hh signaling pathway. (Mao et al. 2002; Shimokawa et al. 2008; Varjosalo et al. 

2008; Lauth et al. 2010; Keramati et al. 2014b; Schneider et al. 2015a; Gruber et al. 2016; 

Singh et al. 2017). 

 

4.2.1 Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) 

 

The first member of the DYRK family to be discovered was YAK1 from budding yeast 

(Garrett and Broach 1989; Soppa and Becker 2015). DYRK family members have a 

characteristic sequence motif called the DYRK-homology box (DH box) (Figure 2). The 

mammalian DYRK subfamily is comprised of five members and they are categorized into 

two classes. This categorization is based on the sequence homologies within the conserved 

kinase domain (Becker et al. 1998; Aranda et al. 2011). Class I consists of DYRK1A and 
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DYRK1B (the latter is also known as a Minibrain-related kinase (Mirk)), whereas class II is 

made up of DYRK2, DYRK3, and DYRK4 (Becker et al. 1998; Soppa and Becker 2015).  

 

Class I DYRK have certain distinct sequence motifs, such as a C-terminal PEST domain (a 

region rich in proline (P), glutamic acid (E), serine (S), and threonine (T)), which functions 

as a signal for rapid protein degradation (Figure 2) (Galceran et al. 2003). DYRK1A contains 

a poly-histidine stretch (13 consecutive histidine residues) and a serine/threonine enriched 

region (S/T-rich region) (Alvarez et al. 2003; Park et al. 2009). The poly-histidine stretch 

promotes the targeting of DYRK1A to nuclear speckles which are enriched with pre-mRNA 

splicing factors regulating the splicing machinery (Alvarez et al. 2003; Salichs et al. 2009). 

Class II DYRK kinases contain an N-terminal auto-phosphorylation accessory region 

(NAPA) domain, which is required for tyrosine auto-phosphorylation specifically in class II 

DYRKs. The NAPA domain in DYRK2 has been shown to autophosphorylate itself under in 

vitro conditions (Lochhead et al. 2005; Kinstrie et al. 2010; Aranda et al. 2011; Walte et al. 

2013). 

 

DYRK family members regulate protein stability, cell proliferation, and differentiation by 

phosphorylating DYRK recognition sites in target proteins. The consensus sequence motif 

consists of Ser or Thr followed by Pro in position +1. Furthermore, an arginine residue at 

position −2 or −3 relative to Ser/Thr seems to be preferred (RxxS/TP or RPxS/TP), although 

a considerable degree of divergence to this consensus has also been noted (Aranda et al. 

2011; Soundararajan et al. 2013). 

 

DYRK kinases contain an activation loop with a conserved YXY sequence, the 

phosphorylation of which leads to the activation of full enzymatic activity. Due to the distinct 

ability of DYRK family members to auto-phosphorylate the second tyrosine residue in order 

to be fully activated and then phosphorylate substrates in trans on Ser/Thr residues, they 

are known as Dual-specificity tyrosine-regulated kinases (Aranda et al. 2011; 

Soundararajan et al. 2013; Soppa and Becker 2015). The auto-activation mode by an 

upstream kinase is needed for the phosphorylation of the activation loop in case of MAP 

kinase, which is in contrast to DYRKs (Aranda et al. 2011). The tyrosine specificity of 

DYRKs is lost after the protein translation and the Ser/Thr specificity on target proteins 

remains (Lochhead et al. 2005; Alvarez et al. 2007). 
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or cells derived from Down syndrome patients have shown that the increased expression 

of DYRK1A kinase affects neurogenesis and neuroblast proliferation, and results in 

impaired behavioral phenotypes (Contestabile et al. 2007). Behavioral and cognitive 

impairment and neuronal alterations in mice have been shown due to overexpression of 

DYRK1A (Martinez de Lagran et al. 2004; Dierssen 2012; Thomazeau et al. 2014). In 

contrast, a significant decrease in brain size in mice, flies, and men has been shown due to 

loss of function of Dyrk1A or mnb (Tejedor et al. 1995; Moller et al. 2008; Tejedor and 

Hammerle 2010; van Bon et al. 2016). 

 

Studies on DYRK1A/mnb have shown that these kinases play an important role in the 

development of the central nervous system (Tejedor et al. 1995). The Hh signaling pathway 

also plays a significant role in neuronal proliferation (Ruiz i Altaba 1999). Mitogenic roles 

for SHH in neuronal precursor cells, in the cerebellum, neural tube and spinal cord have 

been reported (Rowitch et al. 1999; Wechsler-Reya and Scott 1999). Loss of function 

mutations in Patched which leads to the aberrant activation of HH signaling also leads to 

the proliferation of neural precursors (Wechsler-Reya and Scott 1999). As there have been 

a lot of parallel effects of Shh and DYRK1A, a plausible interaction of these pathways in 

neural development is foreseen.  

 

GLI1 has been found to be one of the downstream targets of DYRK1A. Researchers have 

shown that the nuclear translocation and function of Gli1, an oncogenic transcription factor 

is mediated by DYRK1A through phosphorylation of nuclear localization signals located in 

the N-terminus of Gli1 (Pusapati et al. 2018). DYRK1A can retain Gli1 in the nucleus and 

regulate its transcription (Mao et al. 2002). DYRK1A can also dissociate the Suppressor of 

Fused (SuFu) (a negative regulator of Hh signaling) and Gli complex independent of the N-

terminal phosphorylation of Gli1 (Schneider et al. 2015a). Several reports have suggested 

reduced Hh activity in DS patients, (Roper et al. 2006) which is paradoxical as per the 

hypothesis in which DYRK1A stimulates Hh pathway in a positive manner (Currier et al. 

2012; Das et al. 2013). To support this argument, levels of Hh target genes have been 

compared between normal brain and the brains of DS patients and a significant reduction 

in the expression level was seen (Lockstone et al. 2007). Mechanistic studies revealed that 

DYRK1A regulates the actin cytoskeleton (Liu et al. 2009; Park et al. 2012; Schneider et al. 

2015a) by functional inactivation of actin binding LIM protein (ABLIM). Novel DYRK1A 
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phosphorylation targets i.e. ABLIM proteins, (Schneider et al. 2015a) have been elucidated 

while confirming the negative regulation of Hh pathway by DYRK1A kinase. 

 

DYRK1B Kinase: 

 

The closest relative of mammalian DYRK1A is the DYRK1B kinase, also referred to as 

MIRK (Minibrain-related kinase). DYRK1B was cloned independently by two groups. One 

of the research groups performed RACE studies on human testis RNA (Leder et al. 1999a) 

and another group from a colon carcinoma cell line (Mercer and Friedman 2006b). DYRK1B 

is located on the 19q13.2 chromosome. This region is often amplified in ovarian and 

pancreatic cancer (Jin et al. 2007; Davis et al. 2013). This kinase has three splice variants 

(DYRK1B-p65, DYRK1B-p69, and DYRK1B-p75) with varying expression patterns. 

DYRK1B-p65 and DYRK1B-p69, are differentially expressed in mouse tissues, spleen, 

lung, brain, bladder, stomach and testes whereas DYRK1B-p75 is specifically expressed in 

skeletal muscles and differentiated adipocytes. Transcripts containing either exon 1A or 

exon 1B encode these variants, due to the use of separate promotors which would explain 

the distinct pattern of expression of these variants (Leder et al. 2003). Human DYRK1A and 

DYRK1B proteins are 84% identical in the N-terminal and catalytic domains but show no 

extended similarity in the C-terminal domain. Human and mouse DYRK1B proteins share 

97% sequence similarity (Kentrup et al. 1996; Becker et al. 1998; Becker and Joost 1999; 

Leder et al. 1999b; Li et al. 2001). Similar to DYRK1A, DYRK1B also has an NLS sequence, 

a conserved kinase domain, a PEST sequence and a MAPK phosphorylation sequence in 

C-terminus (Leder et al. 1999a; Mercer and Friedman 2006b). DYRK1B has a similar 

activation mechanism as DYRK1A. DYRK1B has a limited expression in normal tissue, with 

highest expression seen in skeletal muscle, heart, testes, and brain (Lee et al. 2000). 

Myogenesis became the most studied model to elucidate the functions of the DYRK1B 

kinase (Lu et al. 2000; Deng et al. 2003; Mercer et al. 2005). This is due to the fact that 

differentiation can be followed biochemically by monitoring the expression of well-

characterized proteins. The protein levels of DYRK1B are low in the dividing myoblasts. 

During the differentiation phase, the levels of DYRK1B increase greatly and remain 

unchanged in the mature myoblasts. Mirk promotes myoblast differentiation indirectly by 

phosphorylating class II histone deacetylases, which in turn accumulate in the cytoplasm 

and thereby suppression of myogenin-dependent transcription is relieved (Deng et al. 

2005). Mirk promotes the survival of differentiating myoblasts by phosphorylating the CDK 
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inhibitor p21 and causing p21 to accumulate in the cytoplasm where it functions as an anti-

apoptotic signaling molecule (Mercer et al. 2005). These studies have helped to elucidate 

the role of DYRK1B as a multifunctional Ser/Thr kinase which plays critical roles in muscle 

differentiation by executing some regulatory effects on motility, transcription, cell cycle 

regulation and cell survival (Mercer and Friedman 2006a). 

  

DYRK1B phosphorylates and blocks degradation of the cyclin-dependent kinase (CDK) 

inhibitor p27 to maintain a quiescent state (Deng et al. 2014b). DYRK1B is highly abundant 

and active in normal diploid cells and in cancer cells transiently arrested in G0, or in early 

G1, with up to 10-fold lower levels in cycling cells (Deng et al. 2004). Mirk is known to be 

localized fast-twitch skeletal muscles and its inhibition leads to an increase in the amount 

of toxic ROS (Reactive Oxygen Species) induced in differentiating C2C12 myoblasts and 

postmitotic cultures of myotubes which lead to the formation of skeletal muscle. These 

muscles produce ROS endogenously during contractions. Cancer cells can regulate the 

elevated levels of ROS, which promotes many aspects of tumor development and 

progression by upregulating DYRK1B and amplifying DYRK1B gene (Deng et al. 2014b). 

DYRK1B has been shown to play an important role in breast cancer progression. Statistical 

analysis has shown that various clinicopathologic factors such as tumor size, grade, 

estrogen receptor status, Ki-67 (cellular marker of proliferation) expression are associated 

with the extent of expression of DYRK1B and overexpression results in poor prognosis. 

Also, DYRK1B has been shown to phosphorylate FoxO1 (Forkhead box protein O1) and 

hence promote its nuclear exclusion (Chen et al. 2017). FoxO1 is also subject to regulation 

by PI3K-AKT pathway, which phosphorylates and subsequently translocates FoxO1 out of 

the nucleus, suggesting the involvement of DYRK1B in the PI3K-AKT pathway (Bullock 

2016). Mirk activity also increases with the exposure to chemotherapeutic drugs such as 5-

FU or cisplatin (Jin et al. 2009; Hu and Friedman 2010), through stress signaling to the 

DYRK1B kinase activator MAPK kinase MKK3 (Lim et al. 2002). Recent reports have 

demonstrated that phosphorylation of S471 (site for DYRK1B autophosphorylation) 

contribute to DYRK1B kinase activity. Also, DYRK1B has been defined as a new substrate 

of ERK1/2 signaling. The ERK1/2 pathway is a key regulator of the cell cycle, promoting 

proliferation or cell cycle arrest (Ashford et al. 2016). Mirk is upregulated and amplified in 

the majority of pancreatic and ovarian cancers (Friedman 2007). Mirk has antiapoptotic 

functions in cancer cells in which Mirk is highly expressed such as rhabdomyosarcoma cells 

(Mercer et al. 2006), colon carcinoma cells (Lee et al. 2000), and HeLa cervical carcinoma 
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cells (MacKeigan et al. 2005). RNAi mediated knockdown of Mirk has shown to reduce the 

clonogenicity of pancreatic cancer cells and reducing the tumor cell number, which shows 

that Mirk mediates survival in these cells (Deng et al. 2006). Mirk knockout or depletion had 

no detectable effect on normal tissue which indicates a selective effect of Mirk kinase 

inhibitor on cancer cells expressing elevated levels of Mirk kinase (Ewton et al. 2011). 

Functional characterization of the DYRK1B gene revealed that the nonmutant protein 

inhibited the SHH and WNT pathways, thereby enhancing adipogenesis (Keramati et al. 

2014a). The DYRK1B locus on 19q13 has been linked to type 2 diabetes (Cho et al. 2011) 

and is shown to play a central role in the altered pathways in metabolic syndrome (Keramati 

et al. 2014a). As there is a high abundance of DYRK1B in testes, one of the reports 

suggests that cold-inducible RNA-binding protein (Cirp) functions to positively affect the 

proliferation of undifferentiated spermatogonia by interacting with DYRK1B. Cirp modulates 

the protein levels of p27 and cyclinD1 by suppressing the kinase activity of DYRK1B and 

hence promoting the cell cycle progression of undifferentiated spermatogonia (Masuda et 

al. 2012). Adding up to the developmental roles of mirk, the zebrafish dyrk1b gene is shown 

to be important for the endoderm formation and craniofacial patterning (Mazmanian et al. 

2010).  

 

DYRK1B has been shown to positively and negatively affect Hh signaling (Singh et al. 

2017). It could activate PI3K/AKT/mTOR pathway, which is an established oncogenic driver 

in humans. This pathway has been well characterized and recognized to play essential roles 

in normal cellular functions including nutrition and energy balance, protein synthesis and 

growth control in mammalian cells, thereby, making DYRK1B an important target in Hh 

signaling pathway. 

 

4.2.3 Class II DYRKs 

 

DYRK2, DYRK3, and DYRK4 proteins contain a canonical kinase domain located between 

a large N-terminal region and a short C-terminal extension and features specific to DYRK 

related kinases. DYRK2 and DYRK4, but not DYRK3, possess an NLS sequence and all 

three contain a NAPA (N-terminal autophosphorylation accessory region) domain which is 

absent in class I DYRKs (Aranda et al. 2011; Singh and Lauth 2017). Despite lacking NLS, 

DYRK3 (also known as REDK) is localized in the nucleus in hematopoietic cells (Lord et al. 

2000) whereas DYRK2 is mostly cytosolic, but in conditions of genotoxic stress it 
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accumulates in the nucleus (Taira et al. 2007).  DYRK4 displays splice variant dependent 

subcellular localization (Aranda et al. 2011). DYRK2 shares 46% and DYRK3 shares 43% 

identity with class I DYRKs in the catalytic domain respectively but lack the striking 

sequence motifs such as a C-terminal PEST domain (Becker et al. 1998). Tyrosine 

autophosphorylation by class II DYRKs requires an N-terminal auto phosphorylation 

accessory region (NAPA) motif, which is present in the N-terminal region of class II DYRKs 

only (Aranda et al. 2011). This domain provides a chaperone-like function (Aranda et al. 

2011) and transiently converts class II DYRKs into intramolecular tyrosine kinases (Kinstrie 

et al. 2010).  

 

DYRK2 has been shown to phosphorylate very limited number of substrates such as 

NFAT4, eIFB5, Glycogen synthase6, Oma-17, MEI-18 and chromatin remodeling factors 

SNR1 and TRX9, hence regulating calcium signaling, protein synthesis, glucose 

metabolism, developmental processes and gene expression (Skurat and Dietrich 2004; 

Nishi and Lin 2005; Gwack et al. 2006; Kinstrie et al. 2006; Lu and Mains 2007; Maddika 

and Chen 2009). DYRK2 has also been shown to function in DNA damage signaling 

pathway (Taira et al. 2007). The role of DYRK2 in human cancer remains questionable. As, 

overexpression of DYRK2 predicts better survival in non-small cell lung cancer (NSCLC), 

breast cancer and pulmonary adenocarcinoma, implying a tumor suppressor role 

(Yamashita et al. 2009a; Yamashita et al. 2009b). On the other hand, there are reports 

showing, amplification of DYRK2 gene in esophageal/lung adenocarcinoma as well as in 

gastric stromal tumor implying its potential oncogenic role (Miller et al. 2003; Koon et al. 

2004; Yan et al. 2016).  

 

Signal transduction roles of DYRK3 have been reported, where DYRK3 has been shown to 

regulate raft-mediated endocytosis/caveolae which operate on the principles of membrane 

trafficking. Knockdown of DYRK3 strongly increased the dynamics of caveolar vesicles and 

had a minor destabilizing effect on the caveolar coat (Fujimoto et al. 2000; Pelkmans et al. 

2005; Tagawa et al. 2005). The kinase-dependent differential regulation of cycling events 

between the cell surface and intracellular organelles probably involve changes in the cortical 

actin cytoskeleton and activation of microtubule-dependent motility (Mundy et al. 2002; 

Pelkmans and Helenius 2003; Pelkmans et al. 2005). Integral roles of caveolin-1 have also 

been documented for sequestering the Hh receptor complex in cholesterol-rich 
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microdomains of the plasma membrane, which act as a scaffold for the interactions with the 

Hh protein (Karpen et al. 2001).  

 

DYRK4 is expressed in the testes of adults, but not prepubertal rats (Becker et al. 1998) 

and is highly restricted to step 8 spermatids (Sacher et al. 2007). DYRK4 was shown to be 

present in the duck ovary, and was more active or upregulated in the high egg production 

(HEP) ovaries, which would argue for its role in the female reproductive system but the 

underlying mechanism is still elusive (Tao et al. 2017).   

 

4.3 Hh Signaling & DYRK1B kinase 

 

The DYRK kinase family has a close regulatory connection to the Hh pathway with its five 

members DYRK1A, DYRK1B, DYRK2, DYRK3 and DYRK4 (Mao et al. 2002; Varjosalo et 

al. 2008; Lauth et al. 2010; Aranda et al. 2011; Schneider et al. 2015b; Gruber et al. 2016). 

In particular, DYRK1B (a.k.a. MIRK) is linked with several cancer types and is amplified or 

hyperactive in ovarian and in pancreatic cancer (Mercer et al. 2006; Friedman 2007; 

Friedman 2010b; Hu and Friedman 2010; Deng and Friedman 2014; Deng et al. 2014a). 

DYRK1B has been known to affect Hh signaling in both a positive and a negative manner. 

On the one side, DYRK1B dampens Hh signaling initiated by SMO (Lauth et al. 2010; Jacob 

et al. 2011; Keramati et al. 2014b), and on the other DYRK1B promotes the stability of GLI 

transcription factors (Gruber et al. 2016). DYRK1B has been shown to stabilize GLI1 

transcription factors by activating the pro-survival PI3K/mTOR/AKT arm, a positive regulator 

of Gli stability (Riobo et al. 2006; Fruman and Rommel 2014; Kern et al. 2015). Hh pathway 

stimulation leads to an increase in DYRK1B protein levels by currently unknown post-

transcriptional mechanisms suggesting a feedback loop (Singh et al. 2017). The Hh 

signaling has been known to have an inhibiting impact on adipocytic differentiation (Kha et 

al. 2004; Johnson et al. 2011; Nosavanh et al. 2015) whereas DYRK1B favors the in vitro 

differentiation into adipocytes (Keramati et al. 2014b). This is true for DYRK1B carrying 

mutations identified in families suffering from an autosomal dominant form of metabolic 

syndrome, a disease with prominent adipocytes involvement (Keramati et al. 2014b). 

Although the mechanistic and functional integration of DYRK1B with other signaling 

pathways is not elucidated, it's interesting to know that mutant DYRK1B expression reduced 

GLI2 levels in cultured adipocytes (Keramati et al. 2014b). Therefore, the involvement of 

Hh signaling can be speculated in these effects.  
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The cytoskeleton of eukaryotic cells is made up of filamentous protein, and it is known to 

provide mechanical support to the cell. Microtubules are the largest type of filament and 

they are composed of polymerized tubulin monomers. Tubulin contains two polypeptide 

subunits and dimers of these subunits come together to form long strands called 

protofilaments. Thirteen protofilaments come together to form long straw shaped 

microtubules. With addition and subtraction of tubulin dimers, microtubules are dynamic. In 

cells, microtubules are anchored to microtubule organization centers (MTOCs). The 

centrosome, basal bodies and spindle pole bodies are different forms of MTOCs. 

Microtubules tend to grow from the centrosome to the plasma membrane. In non-dividing 

cells, microtubules support the basic organization of the cytoplasm including the positioning 

of the organelles. Microtubules are responsible for organelle transport, mitosis, secretion, 

cell shape, polarization and cell migration. Various post-translational modification plays 

important roles in the regulation of microtubule function. Some of the examples include 

acetylation, phosphorylation, polyglycylation, and others (Westermann and Weber 2003; 

Janke and Bulinski 2011; Janke 2014).  

 

One of the best-studied covalent modification is acetylation, which is associated with stable 

microtubules e.g. in primary cilia and is conserved from protists to humans. Acetylation 

occurs on Lys40 of the α-subunit of the α/β-heterodimer within microtubules. Functionally, 

microtubules facilitate the transport along their tracks by binding to specific motor proteins 

(Reed et al. 2006; Cai et al. 2009a; Hammond et al. 2010; Walter et al. 2012). Increased 

tubulin acetylation has been shown to promote MT-directed mitochondrial transport in 

neurons (Chen et al. 2010) and to compensate for vesicular transport deficits in a cellular 

model of Huntington’s disease (Dompierre et al. 2007). MT acetylation is mainly governed 

by the opposite action of α-tubulin acetyltransferase 1 (ATAT, a.k.a. αTAT1 or MEC17), 

histone deacetylase 6 (HDAC6), and sirtuins2 (SIRT2) which add or remove acetyl groups 

from α-tubulin, respectively (Hubbert et al. 2002; Montagnac et al. 2013). Abnormal levels 

of this modification are linked to neurological disorders, cancer, heart disease, and other 

pathological diseases thereby making it therapeutically important (Singh et al. 2010; Di 

Martile et al. 2016; Stram et al. 2017; Tapias and Wang 2017). HDAC6 is a multifunctional 

protein with sequence homology to nuclear HDACs, and its involvement in the deacetylation 

of many non-histone proteins including tubulin (Li et al. 2012). It is involved in a wide variety 

of cellular processes including signal transduction, aggresome formation, stress granule 
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biology and gene transcription (Kawaguchi et al. 2003; Boyault et al. 2007; Kwon et al. 

2007; Shan et al. 2008; Deribe et al. 2009; Mak et al. 2012; Chen et al. 2013; Dhanyamraju 

et al. 2014). 

  

Although a lot is known about the enzymes regulating tubulin acetylation and different 

posttranslational modifications, very little is known about different signaling pathways and 

their effect on cytoskeletal regulation. The noncanonical Hedgehog signaling pathway has 

been known to modulate cytoskeletal remodeling (Brennan et al. 2012). While Hh signaling 

has been shown to affect the actin cytoskeleton (Bijlsma et al. 2007; Xiao et al. 2010; 

Schneider et al. 2015a), very little is known about its effects on MTs. 

 

In this work, I have shown that activated Hh signaling promotes MT acetylation, cell 

polarization and organelle transport such as MT-dependent mitochondrial transport. 

Furthermore, I have shown DYRK1B, whose levels are elevated by activated Hh signaling, 

can also affect tubulin acetylation positively. Supporting my findings, I have also shown that 

overexpression of DYRK1B leads to reduced HDAC6 activity. Also, my results have shown 

that increased DYRK1B levels inactivate Glycogen synthase kinase 3β (GSK3β) through 

Ser9 phosphorylation, resulting in HDAC6 inhibition and increased tubulin acetylation. In 

summary, using Hh signaling as a paradigm, I describe a mechanistic framework how 

intercellular communication can affect cytoskeletal regulation and cell function.  

 

4.4 Aim of the present work 

 

Hedgehog (Hh) signaling cascade is one of the intricate signal transduction mechanisms 

that govern the precisely regulated developmental processes of multicellular organisms. Hh 

has been shown to regulate actin cytoskeleton but not much is known about its regulation 

of MT cytoskeleton. Reports have also shown that Hh ligands promote the phosphorylation 

and activation of mTOR and AKT kinases. As protein kinases are known to play a significant 

role in Hh signal transduction, I have focused my research on DYRK1B kinase, a member 

of DYRK family of kinases which, possesses both serine/threonine and tyrosine kinase 

activities and enhances the transcriptional activity of TCF1/HNF1A. 

The aim of my present work is to elucidate the mechanistic regulation of Hh driven/mediated 

processes of mTOR/AKT activation and regulation of  MT cytoskeleton and MT-dependent 

processes with the DYRK1B kinase. 
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5 Results 

 

5.1 DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling 

through activation of the mTOR/AKT pathway 

Rajeev Singh, Pavan Kumar Dhanyamraju, Matthias Lauth 

 

Hedgehog ligands promote the stimulation of Gli transcription factors and also promote the 

phosphorylation and activation of mTOR and Akt kinases, although the molecular 

mechanism behind this unknown (Riobo et al. 2006; Wang et al. 2012). With my results, I 

have tried to place DYRK1B as a mediator between Hh signaling and mTOR/AKT activation. 

My work has shown, how DYRK1B negatively and positively affects Hh signaling. I have 

targeted DYRK1B in GLI dependent cancer cells, therapeutically by combining a DYRK1B 

antagonist with a mTOR/AKT inhibitor resulting in a strong GLI targeting and increased 

cytotoxicity in pancreatic and ovarian cancer cells.  

 

To identify the role of the DYRK1B kinase as a positive and negative modulator of 

Hedgehog signaling, I have used the RNAi technique where I knocked down DYRK1B in 

mouse embryonic fibroblasts stably expressing Sonic Hh ligand (MEF[SHH] cells) (Lipinski et 

al. 2008)), which renders these cells constitutively signaling. In figure 1A, siRNA knockdown 

of endogenous Dyrk1b led to an upregulation of several Hh target genes (Gli1, Ptch1, 

Ptch2) when compared to control siRNA-transfected cells. A de-repression of Hh pathway 

activity upon Dyrk1b knock-down was confirmed by measuring the protein levels of GLI1 

(Fig. 1A inset). Elucidating the roles of DYRK1B kinase when overexpressed, I treated 

NIH3T3 fibroblasts, stably transfected with empty control plasmid and V5-tagged DYRK1B 

(NIH[Con] and NIH[1B] cells; Fig. 1C) with the synthetic SMO agonist SAG (Chen et al. 2002) 

in order to stimulate membrane signaling. Immunoblotting for the endogenous GLI1 protein 

revealed that the DYRK1B-overexpressing cells had lost their SAG-responsiveness (Fig. 

1D, E), arguing that DYRK1B prevents Hh canonical signaling. However, the basal levels 

of GLI1 were increased in NIH[1B] cells even in the absence of any stimulatory SAG, 

indicative of a non-canonical activation of GLI activation. Furthermore, a 130 kDa isoform 

of GLI1 was seen in control cells, which was not evident in 1B overexpressing cells (Fig. 

1D). A 100 kDa large GLI1 isoform has previously been proposed to represent an inhibitory 

variant of GLI1 (Stecca and Ruiz i Altaba 2009). My results were further strengthened with 

the measurement of mRNA expression levels of target genes, where DYRK1B 
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overexpression blocked SAG-induced Hh signaling while at the same time it increased the 

basal expression of Ptch1 (Fig. 1F). Taken together, my data suggests that DYRK1B inhibits 

canonical Hh signaling while it promotes non-canonical activation of the GLI1 transcription 

factor.  

 

To support my results further I took human cancer cells (HeLa). Stable expression of 

DYRK1B increased the endogenous GLI1 protein levels (Fig. 2A) while at the same time it 

decreased the GLI1 mRNA levels (Fig. 2B). This ambiguity argued for a stabilizing effect of 

DYRK1B on the GLI1 protein. Protein stability assays were performed in NIH[Con] and NIH[1B] 

cells blocking de novo protein synthesis with Cycloheximide. Endogenous GLI1 got 

degraded with a half-time (t1/2) of approx. 3.5 h in SAG-treated control cells whereas GLI1 

protein levels in SAG-treated DYRK1B-expressing cells were extremely stable (Fig 2C,2D). 

As its already known that AKT kinase has a stabilizing effect on GLI transcription factors 

(Riobo et al. 2006; Paul et al. 2013; Shi et al. 2015), I treated the NIH[1B] cells, with a pan-

AKT inhibitor (GSK-690693) and GLI1 levels dropped significantly upon AKT inhibition, and 

could be rescued by pharmacological blockade of the proteasome (Fig. 2E). This proves 

that AKT mediated GLI protein stability is increased by ectopically expressed DYRK1B 

kinase.  

 

Following up on the results, I wanted to find out if DYRK1B could activate the 

PI3K/mTOR/AKT pathway. In line with my previous findings, overexpression of DYRK1B 

leads to the phosphorylation (activation) of mTOR (Ser2448) and AKT (Ser473 and Thr308) 

(Fig. 3A, B). As, AKTSer473 phosphorylation is mTORC2 dependent (Guertin et al. 2006; 

Shiota et al. 2006), and AKTTh308 phosphorylation is PDK-1 induced, my data suggests that 

DYRK1B directly or indirectly activates the PI3K/mTORC2/AKT signaling arm or that both 

phospho-sites communicate and influence each other. To investigate further, I looked at the 

phosphorylation status of downstream effectors of the second mTOR complex (mTORC1), 

which is S6-Kinase (S6K-Thr389) and the S6K target ribosomal protein S6 (S6-

Ser235/Ser236). Both S6K and S6 were phosphorylated (activated), hence suggesting that 

DYRK1B activates mTORC1 complex. Although in high serum conditions, the 

phosphorylation events were less evident. (Fig. 3C, D). DYRK1B-expressing HeLa cells 

also showed similar results as the fibroblasts (Fig. 2A) for AKT and mTOR phosphorylation. 

My results were further strengthened by using cells which are genetically depleted of 

DYRK1B through CRISPR/Cas9 methodology (Fig. 3E). These are mammalian HAP1 cells 
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harboring a haploid genome (Carette et al. 2011). Interestingly, DYRK1B-knock out (KO) 

cells displayed similar results as fibroblasts and HeLa cells i.e. reduced endogenous GLI1 

protein levels (Fig. 3E) and an overall reduced level of AKT (Ser473; Thr308) and mTOR 

(Ser2448) phosphorylation (Fig. 3F, G, and H). Taken together, my data implies that 

DYRK1B is an activator of the PI3K/mTOR/AKT signaling pathway. 

 

With my results from MEF[SHH] cells, where signaling is continuously active I could show 

elevated levels of phosphorylated AKT and mTOR, which could be suppressed by inhibition 

of the Hh pathway with the SMO antagonist SANT (Fig. 4A, B) (Chen et al. 2002). As 

DYRK1B has been shown to activate the mTOR/AKT kinases, there is a strong possibility 

of DYRK1B mediating the effects of Hh signaling on AKT/mTOR. Two different fibroblast 

cell lines have shown the induction of DYRK1B levels with Hh pathway stimulation and 

reduced DYRK1B levels with suppressed Hh signaling (Fig. 4C). Therefore, I analyzed the 

effect of Dyrk1b knock-down on phospho-mTOR/AKT levels in MEF [SHH] cells. As can be 

seen in figures 4D and 4E, the levels of phospho-AKTSer473 and phospho-AKTThr308 were 

significantly reduced upon knock-down of Dyrk1b. Thereby, I could say that DYRK1B 

mediates the effect of Hh signaling on phosphorylation of AKT (and potentially mTOR).  

 

The PI3K/mTOR/AKT system is subject to intense feed-back regulation. I investigated the 

systemic feedback regulation by analyzing AKT phosphorylation in NIH [MCS] and NIH[1B] cells 

upon inhibition of AKT (GSK-690693, a pan-AKT inhibitor), mTOR (KU-0063794, a dual 

mTORC1/2 inhibitor) and DYRK1B (AZ191, a selective small molecule DYRK1B inhibitor 

(Ashford et al. 2014)). As can be seen in figure 5A, all inhibitors led to a subsequent increase 

in phospho-AKT levels in DYRK1B-overexpressing cells, although they were different in 

amplitude. In contrast, in wild-type, NIH[MCS] cells, AKT, and mTOR inhibition resulted in 

reduced phospho-AKT levels while AZ191 led to an increase. Taken together with the 

previous experiments, this result strongly suggested that DYRK1B is indeed involved in a 

complex regulatory mTOR/AKT feedback loop.  To investigate further, ShhL2 cells (a clonal 

NIH3T3 cell line harboring a Hh/GLI-responsive luciferase reporter construct in the genome 

(Taipale et al. 2000)) were used. Hh activation by SAG and AZ191 was added for different 

time periods and the activity of Hh signaling was recorded. As can be seen in figure 5B and 

5C, when compared to the DMSO control, Hh signaling was suppressed by AZ191 in the 

first 24h and was then increased over controls at later time points (48-72h), suggesting a 

pronounced influence of feedback regulation on the kinetics of the Hh response. These data 
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show that the exact time point of analysis is important when determining the effects of 

DYRK1B. To delve deeper into the kinetics issue endogenous DYRK1B was knocked down 

in human Panc1 pancreatic cancer cells by two different approaches: 1.) In a short-term 

experiment (2-3d), short-interfering RNA (siRNA) was used and 2.) In a long-term 

experiment (6-7d), short hairpin RNA (shRNA) was applied. The acute knock-down of 

DYRK1B by means of siRNA (short-term) resulted in an increase of endogenous GLI1 

levels (Fig. 5D). In contrast, the long-term knock-down of DYRK1B through a shRNA 

approach led to a suppression of GLI1 expression (Fig. 5E). To rule out potential effects of 

siRNA versus shRNA technology, I performed a time course experiment treating Panc1 

cells for 9 d with AZ191 and determined the daily changes in GLI1 levels (Fig. 5F). 

Supporting my previous results, GLI1 protein levels were induced during the first 6 days, 

followed by a reduction afterward (7-9 d). Altogether, a prominent time-dependent impact 

of DYRK1B inhibition on GLI1 levels was seen.   

 

Considering that the fluctuating kinetics could lead to upregulation of oncogenic GLI1 levels 

in cancer cells, with short-term treatments with DYRK1B antagonists. I, therefore, tested 

the combination of AZ191 (DYRK1B inhibitor) with drugs targeting mTORC1/2 (KU-

0063794), AKT (GSK-690693) or S6K (PF-4708671) and measured the effects on GLI1 

levels in DYRK1B-amplified Panc1 cells (Fig. 6A). Treatment with AZ191 alone (24h) 

increased the phosphorylation of AKT and the GLI1 expression, whereas co-treatment with 

the mTOR/AKT/S6K inhibitors significantly reduced the levels of both. In combination with 

AZ191 however, GLI1 levels were almost completely abrogated (Fig. 6A). To measure the 

cytotoxic effects of these inhibitors, I performed cell growth assays. While single treatment 

with AZ191, KU-0063794, AKT inhibitor and S6K inhibitor alone displayed only a moderate 

effect on cell growth (cytostatic), the combination of drugs was strongly cytotoxic to 

pancreatic cancer cells (Fig. 6B, 6C, 6D). Moreover, the results on dual DYRK1B - 

PI3K/AKT/mTOR/S6 inhibition was not specific to Panc1 cells as I could reproduce them in 

Ovcar-3 ovarian cancer cells using combinations of AZ191 and inhibitors targeting PI3K, 

mTOR, AKT, and S6K. This concludes that a dual targeting approach combining a DYRK1B 

antagonist with an inhibitor of the PI3K/mTOR/AKT pathway has a pronounced impact on 

the GLI1 oncoprotein and exerts strong cytotoxic effects in cancer cells. 
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5.2 DYRK1B regulates Hedgehog-induced microtubule acetylation  

Rajeev Singh, Philipp Simon Holz, Katrin Roth, Anna Hupfer, Wolfgang Meissner, Rolf Müller, 

Malte Buchholz, Thomas M. Gress, Hans-Peter Elsässer, Ralf Jacob, Matthias Lauth 

 

The post-translational modifications (PTM) of tubulin subunits are important for maintaining 

the physiological functions of the microtubule (MT) cytoskeleton. A lot of progress has been 

made in the identification of enzymes carrying out MT-PTMs although little is known on how 

intercellular signaling molecules and their associated pathways regulate MT-PTM-

dependent processes inside signal-receiving cells. Here I show that Hedgehog (Hh) 

signaling, affects the MT acetylation in mammalian cells. Mechanistically, Hh pathway 

activity increases the levels of the MT-associated DYRK1B kinase, resulting in the inhibition 

of GSK3β through phosphorylation of Serine 9 and the subsequent suppression of HDAC6 

enzyme activity. Since HDAC6 represents a major tubulin deacetylase, its inhibition 

increases the levels of acetylated MTs. Through the activation of DYRK1B, Hh signaling 

facilitates MT-dependent processes such as intracellular mitochondrial transport, 

mesenchymal cell polarization or directed cell migration. Taken together, my results provide 

evidence that intercellular communication through Hh signals can regulate the MT 

cytoskeleton and MT-dependent processes by affecting the level of tubulin acetylation. 

 

There has been a report showing that Hh signaling promotes α-tubulin acetylation (Lee and 

Ko, 2016). I also found similar results in fibroblasts. After treating them with SAG, a synthetic 

Hh activator (Chen et al. 2002), induced levels of acetylated tubulin (AcTub) in 

immunofluorescence (Fig. 1A, B) and in Western blotting experiments (Fig. 1C, D) were 

observed. This AcTub increase correlated with the induction of the Hh pathway target GLI1 

and the levels of the Dual-specificity Tyrosine (Y)-regulated kinase 1B (DYRK1B, a.k.a. as 

MIRK) (Mercer and Friedman 2006b) which I have previously shown to be upregulated by 

Hh signaling (Singh et al. 2017) (Fig. 1D). I could obtain similar results with MEFs (Fig. 1E), 

demonstrating that this effect was not restricted to NIH3T3 cells. To rule out a Hh-unrelated 

effect of the compound SAG, I investigated MEF cells stably expressing SHH ligand 

(MEF[SHH] cells) and found that pathway inhibition with the SMO inhibitor SANT (Chen et al. 

2002) concomitantly reduced the levels of AcTub and DYRK1B (Fig. 1F). Based on these 

experiments my hypothesis was that DYRK1B could be involved in mediating all or some 

of the effects of Hh on AcTub. To investigate further, endogenous Dyrk1b was knocked 

down by RNAi in MEF cells. The SAG-mediated increase in acetylated tubulin could be fully 
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blocked upon removal of DYRK1B (Fig. 1G). Supporting my results further, the elevated 

AcTub levels in MEF[SHH] cells could be reduced by siRNA transfection targeting Dyrk1b 

(Fig. 1H). These experiments suggest that Hh signaling increases DYRK1B protein levels 

by posttranscriptional mechanisms leading to a rise in DYRK1B-mediated tubulin 

acetylation. 

 

To understand the role of DYRK1B in more detail I generated NIH3T3 cells stably 

expressing a V5-tagged form of this kinase (NIH3T3[1B] cells). Interestingly, there was a 

striking difference in the morphology when compared to control cells (Figure 2A). Control 

cells were elongated and had a spindle-shaped morphology of mesenchymal cells whereas 

the DYRK1B-overexpressing cells had much smaller and rounder cell bodies with longer 

cellular extensions, suggesting a potential cytoskeletal effect induced by the increased 

DYRK1B expression. AcTub levels were found to be strikingly elevated in these cells (Fig. 

2B, C, D), showing that the sole overexpression of DYRK1B can lead to AcTub induction. I 

could recapitulate these finding in HeLa cells stably expressing DYRK1B (Fig 2E, F, G). As 

HDAC6 is known as a major determinant of the tubulin acetylation status, I used the 

Hela[DYRK1B] cells to investigate whether DYRK1B expression affects HDAC6 enzyme 

activity when compared to control cells. I immunoprecipitated endogenous HDAC6 from 

control and from DYRK1B-expressing HeLa cell lines and subjected the precipitate to a 

luminometric in vitro deacetylase assay. Indeed, the HDAC6 enzyme activity (normalized 

to the amount of total HDAC6 protein precipitated) was significantly lower (by about 40 %) 

in DYRK1B-expressing cells. This difference was blunted when an HDAC6-selective 

inhibitor (Cay10603) was co-applied to the deacetylase assay (Fig. 2H). With these 

experiments, I could conclude that increased expression of DYRK1B is sufficient to elicit 

MT acetylation in the absence of additional Hh receptor activation. Furthermore, increased 

DYRK1B levels result in functional downregulation of HDAC6, a known master regulator of 

MT acetylation. 

 

I wanted to investigate the mechanism by which DYRK1B and HDAC6 are related. There 

have been reports suggesting a stimulatory effect of Glycogen synthase kinase 3 β (GSK3β) 

on HDAC6 (Chen et al. 2010). I worked further to determine if Hh/DYRK1B would inhibit 

GSK3β, thereby indirectly leading to the suppression of HDAC6 activity. To this end, I 

treated the cells with SAG and could clearly see the elevated phosphorylation of GSK3ß at 

Ser9 (Fig. 3A) and SANT treatment reduced levels of GSK3ß (Fig. 3B) phosphorylation. To 
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investigate how DYRK1B affects GSK3ß phosphorylation, I knocked down Dyrk1B in 

continuously SHH-expressing cells, and this led to a clear reduction in phospho-GSK3ß 

levels (Fig. 3C). Adding to this, pharmacological blockade of DYRK1B with the inhibitor 

DYRK1B (Ashford et al. 2014), also reduced the phospho-GSK3ß levels in SAG treated 

cells (Fig. 3D). Moreover, stable expression of DYRK1B was enough to elevate phospho-

GSK3ß levels (Fig. 3E), which suggests a close functional connection between the two 

players. Thereby, I performed in vitro kinase assays and could see that the recombinant 

DYRK1B was able to phosphorylate GSK3ß (Fig. 3F). My data suggest that Hh signaling, 

by upregulation of DYRK1B, phosphorylates GSK3ß (inactive) and hence inhibits HDAC6 

enzyme activity. 

 

It is already known that HDAC6 and GSK3β are localized to MTs (Hubbert et al. 2002; 

Kovacs et al. 2004; Sun et al. 2012). I wanted to find if DYRK1B is also localized to MTs. 

To this end I performed biochemical MT-association assay (MTaa), using control and SAG 

treated NIH3T3 fibroblasts, and looked at the protein fractions bound to polymerized 

microtubules. I could clearly see, a fraction of total DYRK1B and GSK3ß (positive control) 

at polymerized microtubule protein fractions (Fig. 4A). To support my observations further, 

I performed sub-diffraction super-resolution microscopy (GSD-Ground State Depletion 

microscopy) and were able to visualize transfected V5-tagged DYRK1B on endogenous 

MTs (Fig. 4B) in human fibroblasts (PSC). With the help of this type of microscopy, I could 

also visualize the localization of endogenous DYRK1B on single MT tracks in HeLa cells 

(Fig. 4C). As a positive control, I was able to detect endogenous HDAC6 on defined MT 

tracks in PSC fibroblasts (Fig. 4D). With these experiments, I could prove that DYRK1B is 

associated with MTs. 

 

After looking into the mechanical aspects of Hh-DYRK1B-GSK3β-HDAC6-AcTub axis, I 

looked at the functional consequences of this process. To this end, I analyzed MT-

dependent mitochondrial transport where tubulin acetylation had been shown to facilitate 

organelle motility in neurons (Chen et al. 2010). I wanted to find out if Hh signaling also 

affects the mitochondrial transport and to this end, I generated NIH3T3 cells stably 

expressing fluorescent Dendra protein fused to a mitochondrial targeting sequence derived 

from human cytochrome c oxidase subunit 8a (NIH[Cox8a-Dendra] cells). The 

mitochondrial expression of this fusion protein was verified by its perfect co-localization with 

MitoTracker (Fig. 5A). Also the SAG and DYRK1B dependent regulation of AcTub levels 
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were verified in these cells (Fig. 5B) Thereafter, I looked at the impact of Hh activation 

(SAG), DYRK1B inhibition (AZ191) and HDAC6 inhibition (ACY-1215 (Santo et al. 2012)) 

on mitochondrial transport by using live cell imaging. My results have clearly shown that 

overall track length of mitochondrial transport is considerably increased with SAG 

stimulation and HDAC6 inhibition, whereas this effect could be completely abrogated with 

DYRK1B inhibition by AZ191 (Fig. 5C). Adding to these results, the mitochondrial track 

speed was also increased with HDAC6 inhibition, and Hh activation (SAG) whereas 

DYRK1B inhibition by AZ191 completely abrogated this effect (Fig. 5D). Plotting the Mean 

square displacement (MSD), which is a measure of the deviation of the position of cells, 

with respect to a reference position over time, showed us increased directionality with SAG 

and reduced directionality with DYRK1B inhibition with AZ191. HDAC6 inhibition by ACY-

1215 also led to an increased directionality, which suggests that increased tubulin 

acetylation enhances the mitochondrial transport (Fig. 5E). With these results, I could prove 

that Hh signaling promotes MT based mitochondrial transport and that DYRK1B plays a 

critical role in this process.  

 

Another important MT-dependent functional process is the polarization of migrating 

mesenchymal cells. In this process, the microtubule organizing center (MTOC) is re-

oriented towards the wound (scratch made on the confluent NIH3T3 fibroblasts). I 

performed the in vitro wounding assays in confluent fibroblast cultures and stained for the 

MTOC (using an α-Pericentriolar material 1 (PCM-1) antibody) and the MT cytoskeleton 

(αTub antibody). A scratch was made in the confluent cultures on the glass coverslip, and 

positive polarization towards the wound is indicated by an asterisk. As can be seen in Fig. 

6A and 6B, induction of Hh signaling by SAG and inhibition of HDAC6 by ACY-1215 led to 

an increased polarization towards the wound. When I pharmacologically blocked DYRK1B 

by AZ191, I could see that it reduced the polarization process (Fig. 6C). To investigate 

further, I tested the impact of DYRK1B inhibition on Hh-driven scratch wound closure using 

live-cell imaging (Fig. 6D). In line with my previous results, SAG promoted the migration of 

NIH3T3 fibroblasts into an in vitro wound whereas DYRK1B inhibition reduced the migratory 

potential. This result was quantified and represented in Fig. 6E. This shows the importance 

of DYRK1B in Hh induced fibroblast polarization and cell motility. 
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6 Discussion 

 

6.1 DYRK1B regulates Hh signaling pathway 

 

Earlier reports on the role of DYRK1B on Hh pathway stated positive (Gruber et al. 2016) 

as well as negative (Lauth et al. 2010; Jacob et al. 2011; Keramati et al. 2014b) regulatory 

functions to this kinase. With my findings, I have bring together the previous results and 

clarify the regulatory role of DYRK1B in more detail. With my data, I have shown the dual 

and sometimes an opposing interaction of this kinase with Hh pathway: 1.) The ectopic 

expression of DYRK1B has been shown to block canonical SMO-initiated signaling, 

although the exact mechanism still needs to be elucidated. 2.) On the other hand, 

overexpressed DYRK1B stabilizes GLI1 by rescuing it from proteasomal degradation. 

DYRK1B is also known to activate the PI3K/mTOR/AKT signaling arm and there have been 

reports showing that AKT phosphorylates and protects GLI transcription factors from decay 

(Riobo et al. 2006; Shi et al. 2015). 3.) DYRK1B activates the PI3K/mTOR/AKT pathway 

which is subject to intense feedback regulation (Manning and Cantley 2007) and thereby 

the whole DYRK1B-Hh/GLI-system is subject to pronounced feedback control, which 

results in a strong kinetic influence on the Hh pathway output. As shown by my results, 

short-term inhibition of DYRK1B resulted in increased GLI protein levels whereas, long-term 

blockade of DYRK1B led to decreased GLI protein levels. With these findings, I would 

suggest, that the earlier reports, might have considered a specific part of the entire crosstalk 

spectrum and with these results, I could explain most, if not all the published results about 

the regulatory effects of DYRK1B on Hh signaling. The role of oncogenic RAS on Hh 

signaling has also been reported for its dubious effects (Ji et al. 2007; Stecca et al. 2007; 

Lauth et al. 2010; Zhao et al. 2015). And DYRK1B has been shown as a downstream 

effector of mutant KRAS (Jin et al. 2007) and was also discovered as synthetic lethal gene 

partner of mutant KRAS in a screen (Barbie et al. 2009), which might be explained by my 

results showing a connection between DYRK1B and PI3K/mTOR/AKT signaling. Adding to 

this the discovery of DYRK1B mutations in the metabolic syndrome and its involvement with 

PI3K signaling are fascinating.  

 

Interestingly, I could observe the stress-induced response of DYRK1B kinase in one specific 

cell line tested which was able to promote GLI1 stability, even in the absence of clearly 

measurable Gli1 and Gli2 mRNA expression (Fig. 1F, S1D). Considering this effect, I could 
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imagine that GLI1 would be activated in various pathological events, by unrelated Hh 

regulators which, induce DYRK1B expression, bypassing the need for increased GLI1/2 

mRNA levels. My results have shown that ectopic expression of DYRK1B altered the 

appearance of GLI1 protein isoforms and a new 100 kDa variant was generated. Although, 

previous findings have also mentioned a variant of this size to be inhibitory (Stecca and 

Ruiz i Altaba 2009), another shorter isoform of 130 kDa seems to be activating (Amable et 

al. 2014). My data leads us to some of the open questions, about the shorter GLI1 isoform 

and would require further investigations.  

 

There is enough evidence that Hh signaling leads to the induction of various kinases, 

including protein kinase B (PKB) or AKT. AKT kinase is a key mediator of PI3K signaling 

pathway and has two phosphorylation sites at Ser473 and Th308. My results have shown 

that DYRK1B is upregulated by SAG, and overexpression of this kinase leads to induced 

levels of mTOR and AKT phosphorylation, and depletion of this kinase by RNAi, abrogates 

the ability of Hh signaling to induce phosphorylation. The PI3K/mTOR/AKT pathway is one 

of the most frequently activated signaling cascades in human cancer (Fruman and Rommel 

2014). The mTOR kinase is composed of two multi-protein complexes, mTORC1 and 

mTORC2. The first complex is downstream of AKT and is activated through TSC1/2 and 

Rheb proteins whereas the latter complex is upstream of AKT and is activated by PI3K in 

an unknown manner (Shimobayashi and Hall 2014). The mTORC1 complex is known for 

being a major regulator of protein translation and autophagy while mTORC2, amongst 

others, impinges on cell survival through regulation of FOXO and PKCα (Guertin et al. 2006; 

Shiota et al. 2006). My hypothesis that DYRK1B might regulate mTORC2, as both of them 

is shown to phosphorylate AKT at Ser473. Also, confirming the results of RNAi, I could show 

that with the knockdown of the DYRK1B kinase, phosphorylation levels of AKT at Ser473 

are reduced, but it had no effect phospho-S6/S6K (read-out of mTORC1 activity). As AKT, 

DYRK1B has also been described as a survival kinase before (Deng et al. 2006; Mercer et 

al. 2006).  

 

Altogether, my results describe a complex crosstalk between DYRK1B and Hh signaling. 

As per the suggested model, the effects of DYRK1B kinase on oncogenic Hh signaling are 

dependent on several factors, such as the expression level of DYRK1B, canonical/non-

canonical Hh signaling, analysis time intervals or cell type. Due to these varying factors, 

which can affect the plausible outcome, if DYRK1B kinase is used in a clinical setting as a 
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target, I tried a combination treatment where I used pharmacological inhibitors of DYRK1B 

along with inhibitors of AKT, mTOR, and S6K. In DYRK1B amplified pancreatic and ovarian 

cancer cells the combination treatment yielded increased cell death and a significant 

reduction in GLI1 level which could direct us to have novel cancer therapy in the future. 

 

6.2 DYRK1B regulates Hh induced tubulin acetylation 

 

Microtubule-dependent cellular processes have been widely studied and the mechanism 

behind these processes is very well known. But, how different signaling pathways and 

extracellular ligands affect the cytoskeletal events, is largely unknown. With my results, I try 

to show how Hh signaling affects MT acetylation and MT-dependent processes by DYRK1B 

induction. DYRKs, unlike many other kinases, are mainly regulated by their overall 

abundance, thereby a slight increase in the amount could have large and significant effects 

on various cellular processes. This is shown for instance by the devastating effect of the 

1.5-fold increase in DYRK1A on neuronal and brain development in Down syndrome 

(Trisomy 21) patients (Gardiner et al. 2010; Duchon and Herault 2016). DYRK1B kinase 

has been known to promote motility in ovarian cancer cells (Collins et al. 2006) which often 

harbor a 19q13 chromosomal DYRK1B-containing amplicon or display elevated levels of 

DYRK1B kinase expression by other means (Friedman 2013). In addition, work in 

pancreatic cancer has shown DYRK1B can protect the cells from the depolymerization 

agent Nocodazole (Deng et al. 2006). My findings, provide a mechanistic explanation for 

these observations and show that DYRK1B regulates MT acetylation. I have shown that the 

cellular DYRK1B pool is localized to microtubule cytoskeleton. Ectopic expression of 

DYRK1B promotes the phosphorylation of GSK3β at Ser9 position, which in turn inactivates 

GSK3β. GSK3β has been shown to have a stimulatory effect on HDAC6. Thereby, 

overexpression of DYRK1B kinase leads to inactivation of GSK3β which in turn leads to the 

reduction of HDAC6 activity, which regulates tubulin acetylation. GSK3β and HDAC6 are 

known to associate with MTs and as shown in Fig. 6F, I can speculate that these proteins 

form a functional unit around microtubules. The elucidation of how exactly HDAC6 is 

regulated by GSK3β awaits further studies. 

 

DYRK1B is known to modulate the PI3K/mTOR/AKT signaling pathway, where feedback 

control mechanisms play a critical role (Singh et al. 2017). Glycogen synthase kinase 3 

(GSK-3) has been shown to affect several biological processes such as metabolism gene 
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expression, cell fate determination, proliferation, and survival. GSK-3 activity is inhibited 

through phosphorylation of serine 21 in GSK-3 alpha and serine 9 in GSK3β. AKT is known 

to phosphorylate GSK3β, independent of the DYRK1B kinase. Due to this complex 

crosstalk, the final effect on tubulin acetylation is difficult to speculate, especially when 

feedback mechanisms are active.  

 

My results support Hh mediated tubulin acetylation and this is in line with the previously 

published data (Lee and Ko 2016). With my findings, I address more mechanistic approach 

by integrating extracellular Hh ligands to intracellular cytoskeletal outputs. In this respect, it 

is interesting to note that both, Hh signaling as well as HDAC6 inhibition/MT acetylation 

were found to drive Interleukin-10 production, which is an anti-inflammatory cytokine and 

has multiple pleiotropic effects (Wang et al. 2014; Lee et al. 2016a). From previous reports, 

and my results, which are in line with the findings, I know that DYRK1B and HDAC6 are the 

regulatory components of the Hh cascade which, increases the possibility for cytoskeleton-

mediated autoregulation of the pathway (Lauth et al. 2010; Dhanyamraju et al. 2014; Gruber 

et al. 2016). Hedgehog signaling pathway is often subject to a complex crosstalk, and my 

results, show that the effects on MT regulation are dependent on tubulin-PTMs, and not 

through motor proteins. Thereby understanding the regulation of cell migration became 

more complicated. Whether these processes involve canonical or non-canonical pathway 

activation, needs further work. Several noncanonical mechanisms have been reported to 

modulate Hh induced cell migration such as non-ciliary SMO and/or Gli-independent 

regulation of the actin cytoskeleton (Bijlsma et al. 2007; Polizio et al. 2011a; Polizio et al. 

2011b; Bijlsma et al. 2012). 

 

With my results, I have looked at the functional aspects of the microtubule regulation by 

post-translational modifications and have shown that Hh signaling promotes mitochondrial 

transport along microtubules in fibroblasts. These were considerably novel work as, before 

this, studies have reported MT-based mitochondrial motility in neuronal cells where long 

axons mediate the mitochondrial transport to distant sites for local ATP production (Saxton 

and Hollenbeck 2012). There have been studies showing the importance subcellular 

localization of mitochondria in migrating epithelial cancer cells (Desai et al. 2013). As per 

the central bioenergetics role of mitochondria in eukaryotic cells, several links have been 

suggested on metabolic regulation of mitochondrial dynamics (Mishra and Chan 2016). At 

the same time, studies have shown DYRK1B mutations in families with metabolic syndrome 
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(Keramati et al. 2014a) where a potential role of mitochondria would be interesting to follow 

up.  

Altogether, with my results I have shown how ligand based Hh signaling pathway modulates 

the PTM of MTs and positively affect DYRK1B kinase and subsequently affect the 

intracellular processes like cell polarization, migration and organelle transport.  

 

6.3 Emerging Roles of DYRKs in Embryogenesis & Hh Pathway Control 

 

DYRK family of kinases have been highly conserved from yeast to humans. In my review, I 

have tried to outline the currently available knowledge on the DYRK family of kinases 

engaging in developmental biology, physiology, and pathology, focusing on its impact on 

Hh signaling. I have also discussed the significance of this family of kinases and their roles 

in embryogenesis and Hh signaling pathway. Several reports have linked DYRK kinases to 

Hh signaling, which suggests a close regulation between these kinases and Hh signaling. 

Henceforth, it can be hypothesized that they contribute to Hh mediated steps during 

embryonic development. Although a clear mechanistic picture is still missing, which would 

identify the intense crosstalk between DYRKs and Hh, particularly in in vivo settings. As 

certain DYRKs have a preferred expression in specific tissues (e.g., DYRK1A in neuronal 

and DYRK1B in muscle tissue), it is reasonable to speculate that the impact on the tissue-

selective Hh pathway activity is specified by the respective DYRK enzyme. Although, some 

sort of functional redundancy might exist, in tissues or cell types where several DYRK 

kinases are expressed together. DYRK1A has been linked intensively with neuronal tissue 

development and it has prosurvival function and negatively regulates the apoptotic process. 

DYRK1B has been linked with muscle tissue and enhances the transcriptional activity of 

TCF/HNF1A and FOXO1. It has been also shown to promote adipogenesis. From a 

therapeutic point of view, this might be important for the development of small molecule 

inhibitors, which might lack necessary specificity and target several DYRKs simultaneously. 

DYRK kinase has also been known to modulate other signaling pathways, such as the 

NFAT (nuclear factor of activated T-cells) (Gwack et al. 2006) pathway or HIF (hypoxia-

inducible factor) signaling (Lee et al. 2016c). Future work will reveal whether Hedgehog or 

any of the other signaling systems is particularly important for the physiological impact of 

DYRK kinases. 
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Most studies for developmental crosstalk between DYRKs and Hh stems from DYRK1A, 

neuronal development, and Down syndrome. Although in recent studies on DYRK1B and 

DYRK2 discussing the roles of Hh signaling in muscle development, adipocytic 

differentiation has also helped in understanding other family members of DYRKs. Recent 

reports involving the effects of DYRKs in metabolic syndrome and cancer have given us the 

cue for interesting and significant roles of these kinases in cross-talk with Hh and other 

signaling pathways.  
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Abstract 41 

The posttranslational modification (PTM) of tubulin subunits is important for the 42 

physiological functions of the microtubule (MT) cytoskeleton. Although major advances have 43 

been made in the identification of enzymes carrying out MT-PTMs, little knowledge is 44 

available on how intercellular signaling molecules and their associated pathways regulate 45 

MT-PTM-dependent processes inside signal-receiving cells. Here we show that Hedgehog 46 

(Hh) signaling, a paradigmatic intercellular signaling system, affects the MT acetylation state 47 

in mammalian cells. Mechanistically, Hh pathway activity increases the levels of the MT-48 

associated DYRK1B kinase, resulting in the inhibition of GSK3β through phosphorylation of 49 

Serine 9 and the subsequent suppression of HDAC6 enzyme activity. Since HDAC6 represents 50 

a major tubulin deacetylase, its inhibition increases the levels of acetylated MTs. Through 51 

the activation of DYRK1B, Hh signaling facilitates MT-dependent processes such as 52 

intracellular mitochondrial transport, mesenchymal cell polarization or directed cell 53 

migration. Taken together, we provide evidence that intercellular communication through 54 

Hh signals can regulate the MT cytoskeleton and contribute to MT-dependent processes by 55 

affecting the level of tubulin acetylation.  56 

57 
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Introduction 58 

The microtubule (MT) cytoskeleton is crucial for a vast number of cellular processes 59 

including signal transduction, organelle transport, mitosis and cell migration. A major mode 60 

of MT regulation is through posttranslational modification (PTM) such as acetylation, 61 

phosphorylation, polyglycylation, polyglutamylation and others [1-3]. One of the best-62 

studied modification is acetylation, which can occur on Lys40 of the α-subunit of the α/β-63 

heterodimer within MTs. Acetylated α-tubulin (AcTub) is often associated with stable and 64 

long-lived MTs, such as those observed e.g. in primary cilia. Although initial speculations 65 

about tubulin PTMs affecting transport velocity along MTs were questioned later, these 66 

modifications seem to determine the binding specificity of selected motor proteins and 67 

thereby facilitate the transport of certain cargoes along MT tracks [4-7]. Indeed, increasing 68 

tubulin acetylation has been shown to promote MT-directed mitochondrial transport in 69 

neurons [8] and to compensate for vesicular transport deficits in a cellular model of 70 

Huntington’s disease [9]. Moreover, recent data show that acetylation protects MTs from 71 

mechanical breakage, which might affect transport processes indirectly [10, 11].  72 

Key enzymes regulating MT acetylation are α-tubulin acetyl transferase (ATAT, a.k.a. αTAT1 73 

or MEC17) and histone deacetylase 6 (HDAC6), which add or remove acetyl groups from α-74 

tubulin, respectively [12-14]. HDAC6 is a multifunctional protein with sequence homology to 75 

nuclear HDACs, deacetylating many non-histone proteins such as tubulin [15]. It is involved 76 

in a wide variety of cellular processes including signal transduction [16-19], aggresome 77 

formation [20, 21], stress granule biology [22] and gene transcription [23].  78 

Although a lot of information about the enzymes governing tubulin PTMs has been gathered 79 

in recent years, comparatively little knowledge is available about how this cytoskeletal 80 

regulation is controlled by signaling networks. This information would be of particular 81 

interest as signaling pathways are perfectly suited to sense extracellular conditions and to 82 

translate these cues into modifications of the intracellular cytoskeleton. 83 

One example of such a signaling system is the evolutionary conserved Hedgehog (Hh) 84 

pathway. Hedgehog signaling is absolutely essential for proper embryonic development [24, 85 

25] and its overactivation is associated with numerous forms of cancer [26-28]. In many 86 

instances during development, tissue repair or cancer, Hh ligands (Sonic Hh (SHH), Desert Hh 87 
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(DHH), Indian Hh (IHH)) signal from epithelial to neighboring mesenchymal cell types [29, 88 

30]. Binding to the primary cilia-localized Patched1 (PTCH1) receptor releases Smoothened 89 

(SMO) from PTCH1-mediated inhibition and allows for the activation of the GLI family of 90 

transcription factors (GLI1, GLI2, GLI3) [31-35].  While Hh signaling has been shown to affect 91 

the actin cytoskeleton [36-39], very little is known about its effects on MTs. 92 

In this work, we show that activated Hh signaling promotes the acetylation of microtubules 93 

and contributes to AcTub-dependent processes such as cell polarization, migration or 94 

organelle transport. Mechanistically, we identify the Hh-regulated DYRK1B kinase as a 95 

negative modulator of GSK3β, leading to the suppression of HDAC6 enzyme activity and an 96 

increase in tubulin acetylation. Using biochemical assays as well as super-resolution 97 

microscopy we could further show that DYRK1B, GSK3β and HDAC6 are associated to MTs. In 98 

summary, using Hh signaling as a paradigm, we describe a mechanistic framework how 99 

intercellular communication can impinge on cytoskeletal regulation and cell function.   100 
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Results 102 

Hedgehog signaling regulates tubulin acetylation 103 

In line with another recent report [40], we found that Hh signaling promotes the increase of 104 

α-tubulin acetylation in fibroblasts, a cell type representing a major Hh-responsive cell 105 

population in vivo. When NIH3T3 cells, cultured under low serum conditions, were treated 106 

with the Hh pathway-activating synthetic compound SAG (Smoothened agonist) [41], we 107 

observed an induction of acetylated tubulin (AcTub) in immunofluorescence (Fig. 1A,B) and 108 

in Western blotting experiments (Fig. 1C,D). This AcTub increase correlated with the 109 

induction of the Hh pathway target GLI1 and the levels of the Dual-specificity Tyrosine (Y)-110 

regulated kinase 1B (DYRK1B, a.k.a. as MIRK) [42] which we have previously shown to be 111 

upregulated by Hh signaling  [43] (Fig. 1D). However, Dyrk1b mRNA levels were not 112 

significantly affected by Hh signaling, as were the levels of AcTub regulating enzymes such as 113 

Hdac6 and Mec17 (αTat1) (Fig. S1A), arguing for a post-transcriptional regulation of DYRK1B 114 

by Hh. 115 

Furthermore, Hh-induced tubulin acetylation and DYRK1B induction was also observed in 116 

other fibroblast cells such as in SAG-treated mouse embryonic fibroblasts (MEFs) (Fig. 1E), 117 

demonstrating that this effect was not restricted to NIH3T3 cells. To rule out a Hh-unrelated 118 

effect of the compound SAG, we investigated MEF cells stably expressing SHH ligand 119 

(MEF[SHH] cells) and found that pathway inhibition with the SMO inhibitor SANT [41] 120 

concomitantly reduced the levels of AcTub and DYRK1B (Fig. 1F). Based on these 121 

experiments we hypothesized that DYRK1B could be involved in mediating all or some of the 122 

effects of Hh on AcTub. 123 

In order to demonstrate that the Hh-induced AcTub increase was indeed mediated through 124 

DYRK1B, we knocked down endogenous Dyrk1b by means of RNAi in MEF cells. As can be 125 

seen in figure 1G, the SAG-mediated increase in acetylated tubulin could be fully blocked 126 

upon removal of DYRK1B. In support of our finding of Hh-regulated tubulin acetylation, the 127 

elevated AcTub levels previously seen in MEF[SHH] cells could be reduced by siRNA 128 

transfection targeting Dyrk1b (Fig. 1H). These experiments suggest that Hh signaling 129 

increases DYRK1B protein levels by posttranscriptional mechanisms leading to a rise in 130 

DYRK1B-mediated tubulin acetylation.  131 
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 133 

The expression of DYRK1B is sufficient for AcTub induction 134 

Given the cross-talk between Hh signaling and tubulin acetylation, we were interested to 135 

address the role of DYRK1B in more detail. To this end, we generated NIH3T3 cells stably 136 

expressing a V5-tagged form of this kinase (NIH3T3[DYRK1B] cells). Intriguingly, these cells 137 

displayed a strikingly different morphology in culture when compared to control cells (Figure 138 

2A). While control cells (NIH3T3[Mock]) possessed the expected elongated, spindle-shaped 139 

morphology of mesenchymal cells, the DYRK1B-overexpressing cells had much smaller and 140 

rounder cell bodies with longer cellular extensions, suggesting a potential cytoskeletal effect 141 

induced by the increased DYRK1B expression. Indeed, when analyzing the levels of AcTub in 142 

these cells, we found strikingly elevated levels of acetylated tubulin (Fig. 2B,C,D), showing 143 

that the sole overexpression of DYRK1B can lead to AcTub induction. Intriguingly, DYRK1B-144 

induced acetylated MT were more resistant to the depolymerizing activity of Nocodazole 145 

(Fig. S2A,B), which is in line with a previous report describing a protective function of 146 

DYRK1B against Nocodazole [44]. We furthermore investigated whether an increased 147 

DYRK1B expression might affect the morphology of primary cilia, a cellular organelle rich in 148 

AcTub and essential for proper Hh signal transduction [45, 46]. However, by using 149 

immunofluorescent staining with an α-detyrosinated tubulin antibody (a primary cilia 150 

marker) as well as by electron microscopy we were unable to detect obvious morphological 151 

aberrations in the (ultra)structure of primary cilia upon DYRK1B overexpression (Fig. S2C). 152 

Next, we went on to investigate whether the finding of increased AcTub levels in DYRK1B-153 

expressing cells was specific to fibroblasts. As can be seen in figures 2E,F,G, we could 154 

recapitulate these observation also in Hela cells stably transfected with DYRK1B (Hela[DYRK1B] 155 

cells). Since HDAC6 is known as a major determinant of the tubulin acetylation status, we 156 

used the Hela[DYRK1B] cells to investigate whether DYRK1B expression would diminish the 157 

overall HDAC6 enzyme activity when compared to control cells. We immunoprecipitated 158 

endogenous HDAC6 from control and from DYRK1B-expressing Hela cell lines and subjected 159 

the precipitate to a luminometric in vitro deacetylase assay. Indeed, the HDAC6 enzyme 160 

activity (normalized to the amount of total HDAC6 protein precipitated) was significantly 161 

lower (by about 40 %) in DYRK1B-expressing cells. This difference was blunted when a 162 

HDAC6-selective inhibitor (Cay10603) was co-applied to the deacetylase assay (Fig. 2H). 163 

Taken together, these experiments demonstrate that the increased expression of DYRK1B is 164 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



8 

 

sufficient to elicit MT acetylation in the absence of Hh receptor activation. Furthermore, 165 

increased DYRK1B levels result in functional downregulation of HDAC6, a known master 166 

regulator of MT acetylation. 167 

 168 

 169 

DYRK1B phosphorylates the inhibitory Ser9 site of GSK3β  170 

In our attempts to decipher the mechanistic link between DYRK1B and HDAC6, we 171 

speculated that the DYRK1B kinase might directly phosphorylate HDAC6. To address this 172 

issue, we performed in vitro kinase assays with both proteins but failed to observe a direct 173 

phosphorylation (not shown), which prompted us to hypothesize an indirect mechanism. 174 

One example of such a mechanism would envision that DYRK1B does not phosphorylate 175 

HDAC6 directly, but instead phosphorylates an HDAC6-regulating protein. Therefore, we 176 

focused on Glycogen synthase kinase 3 β (GSK3β), which had previously been shown to 177 

regulate HDAC6 in a stimulatory manner [8]. Hence, we wanted to find out whether 178 

Hh/DYRK1B would inhibit GSK3β, thereby indirectly leading to the suppression of HDAC6 179 

activity. To this end, we first investigated whether Hh signaling modulates GSK3β. In fact, 180 

immunoblot analyses of lysates from SAG-treated cells revealed that Hh activity promotes 181 

the phosphorylation of Ser9 (Fig. 3A), an important regulatory residue known to control 182 

phosphorylation-induced GSK3β inactivation. In contrast, blocking Hh pathway activity in 183 

continuously SHH-expressing cells reduced the levels of phospho-GSK3βS9 (Fig. 3B).  184 

Next, we investigated whether DYRK1B plays a role in Hh-induced GSK3β phosphorylation 185 

and found that RNAi-mediated knock-down of endogenous Dyrk1b resulted in a concomitant 186 

reduction of phospho-GSK3βS9 levels in MEF[SHH] cells (Fig. 3C). In addition, the 187 

pharmacological blockade of DYRK1B with the selective inhibitor AZ191 [47] reduced 188 

phospho-GSK3βS9 and AcTub levels in SAG-treated cells (Fig. 3D). Moreover, the stable 189 

expression of DYRK1B (in the absence of Hh signaling) was sufficient to induce GSK3β 190 

phosphorylation (Fig. 3E), suggesting a close functional connection between these two 191 

players. Therefore, we performed in vitro kinase assays and found that recombinant DYRK1B 192 

was able to phosphorylate immunoprecipitated GSK3β on Ser9 under in vitro conditions 193 

(Fig. 3F). In summary, we could provide evidence that Hh signaling, through upregulation of 194 

DYRK1B, inactivates GSK3β by phosphorylation on the important control residue Ser9. This 195 

subsequently inhibits HDAC6 enzyme activity, leading to an increase in cellular AcTub levels.     196 
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 197 

 198 

DYRK1B is associated with the MT cytoskeleton 199 

Since our data suggested that DYRK1B regulates tubulin acetylation and since it was known 200 

that HDAC6 and GSK3β are localized to MTs [12, 48-50], we were interested whether 201 

DYRK1B would also be associated to MTs. To analyze this issue in more depth, we performed 202 

biochemical MT-association assays (MTaa) using control or SAG-treated NIH3T3 cells in order 203 

to purify protein fractions bound to polymerized MTs. As can be seen in figure 4A, a fraction 204 

of total DYRK1B (as well as GSK3β which was included as positive control) could consistently 205 

be found in the pelleted fraction (‘MT’) containing polymerized MTs. Stimulation with the 206 

SMO agonist SAG led to increased levels of MT-bound DYRK1B, which was however most 207 

likely due to an overall increase in protein amount and not due to a specific recruitment to 208 

MTs.  209 

In order to support the MT-localization of DYRK1B by an independent technical approach, 210 

we performed sub-diffraction super-resolution microscopy (GSD-Ground State Depletion 211 

microscopy) and were able to visualize transfected V5-tagged DYRK1B on endogenous MTs 212 

(Fig. 4B) in human fibroblasts (PSC). As shown in figure S3A, DYRK1B also regulates AcTub 213 

levels in these cells. In addition, super-resolution microscopy also revealed the localization of 214 

endogenous DYRK1B on single MT tracks in Hela cells (which were used as the endogenous 215 

DYRK1B levels in PSC cells were difficult to visualize by microscopy) (Fig. 4C). As a positive 216 

control of another protein previously reported to be MT-associated, we were able to detect 217 

endogenous HDAC6 on defined MT tracks in PSC fibroblasts (Fig. 4D). Taken together, using 218 

biochemical as well as microscopic techniques we could provide evidence for DYRK1B being 219 

associated with MTs, the expected subcellular localization for a MT-regulating protein.  220 

 221 

 222 

Hh signaling enhances the intracellular transport of mitochondria  223 

After having investigated mechanistic aspects of the Hh-DYRK1B-GSK3β-HDAC6-AcTub axis, 224 

we wanted to address the functional consequences of this chain of events. To this end, we 225 

investigated different cellular processes which have been described as being dependent on 226 

MTs and which are potentially influenced by MT-PTMs: Intracellular mitochondrial transport 227 

and mesenchymal cell polarization coupled with directed cell migration. First, we analyzed 228 
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MT-dependent mitochondrial transport where tubulin acetylation had been shown to 229 

facilitate organelle motility in neurons [8]. In order to investigate whether Hh signaling 230 

affects mitochondrial transport, we generated NIH3T3 cells stably expressing fluorescent 231 

Dendra protein fused to a mitochondrial targeting sequence derived from human 232 

cytochrome c oxidase subunit 8a (NIH[Cox8a-Dendra] cells). The mitochondrial expression of this 233 

fusion protein was verified by its perfect co-localization with MitoTracker (Fig. 5A). In 234 

addition, we also verified the SAG- and DYRK1B-dependent regulation of AcTub levels in 235 

these cells (Fig. 5B).  236 

Using live cell imaging on the NIH[Cox8a-Dendra] cells, we first demonstrated that MT 237 

depolymerization by means of Nocodazole addition significantly reduced the overall distance 238 

(track length) and the speed of labelled mitochondria, verifying the importance of MT-239 

dependent transport in this process (Fig. S4A,B). In addition, when we plotted the mean 240 

square displacement (MSD) rate as a quantitative measure for directionality [51], we 241 

observed a decreased directionality in mitochondrial transport, as would be expected in a 242 

situation in which the MT tracks have been destroyed (Fig. S4C). 243 

Next, we investigated the impact of Hh activation (SAG), DYRK1B inhibition (AZ191) and 244 

HDAC6 inhibition (ACY-1215 [52]) on mitochondrial transport. We decided to measure a 245 

longer time frame (3h) than in the previous Nocodazole experiment, with less resolution in 246 

order to get an idea of physiologically meaningful intracellular distances (although this 247 

meant that we might not have recorded all short lateral movements). Nevertheless, our 248 

recordings clearly showed that, when compared to untreated control cells, SAG stimulation 249 

significantly increased the overall track length of transported mitochondria (Fig. 5C). 250 

Importantly, this effect could be completely abrogated by co-application of the DYRK1B 251 

antagonist AZ191 (Fig. 5C). In line with the hypothesized function of acetylated tubulin in 252 

organelle mobility, the mere induction of AcTub levels by the small molecule HDAC6 253 

inhibitor ACY-1215 also led to a significant increase in mitochondrial track length. In 254 

addition, also the mitochondrial transport speed was significantly increased by ACY-1215 255 

and there was a trend towards increased speed with SAG application. Again, 256 

pharmacological blockade of DYRK1B resulted in a clear reduction in mitochondria transport 257 

speed in SAG-treated cells (Fig. 5D). Plotting the MSD revealed that Hh signaling (SAG) 258 

increased the directed movement whereas the co-application of AZ191 completely 259 

abrogated this surplus in directionality (Fig. 5E). Moreover, inducing tubulin acetylation by 260 
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pharmacological HDAC6 inhibition (ACY-1215) also led to more directionality in 261 

mitochondrial transport, strongly suggesting that these effects are largely mediated through 262 

tubulin acetylation. In summary, we could provide evidence for Hh signaling enhancing MT-263 

based intracellular organelle transport and for a critical role of DYRK1B in this process. 264 

 265 

 266 

Hh promotes cell polarization and directed migration through DYRK1B 267 

In our attempts to link Hh signaling, DYRK1B and MT-PTMs to physiological events, we next 268 

turned to another MT-dependent process: The polarization of migrating mesenchymal cells, 269 

a process which can be recapitulated in in vitro wounding assays. In confluent cultures of 270 

fibroblasts, cells are usually not polarized towards a particular direction and the microtubule 271 

organizing center (MTOC) can be found randomly localized around the nucleus. However, if a 272 

scratch would is applied to the cultured monolayer, cells at the border re-orient their MTOC 273 

towards the wound. This sequence of events requires, among others, inactive GSK3β and the 274 

MT-bound motor protein dynein [53-56]. In addition, cell polarization and the subsequent 275 

directed cell migration towards the wound need the stabilization of MTs [54].  276 

Therefore, we performed in vitro wounding assays in confluent fibroblast cultures and 277 

stained for the MTOC (using an α-Pericentriolar material 1 (PCM-1) antibody) and the MT 278 

cytoskeleton (α-αTub antibody). As can be seen in figure 6A,B (and S5A), induction of Hh 279 

signaling by SAG led to an increase in cell polarization towards the wound. Increased cell 280 

polarization was also observed with the independent MT stabilizer ACY-1215 (HDAC6 281 

inhibitor) (Fig. 6A,B). In line with our previous results on the involvement of DYRK1B in 282 

AcTub regulation, we found that blocking DYRK1B function with AZ191 abrogated the Hh-283 

mediated mesenchymal cell polarization (Fig. 6C). 284 

As the polarization of mesenchymal cells is the first step for directed migration into e.g. 285 

wounded areas, we tested the impact of DYRK1B inhibition on Hh-driven scratch wound 286 

closure using live-cell imaging (Fig. 6D). As expected, when compared to control cells, SAG 287 

promoted the migration of NIH3T3 fibroblasts into an in vitro wound (Fig. 6E). When AZ191 288 

was co-administered, this increase in migratory potential was blunted, demonstrating an 289 

important role for DYRK1B in Hh-induced fibroblast polarization, cell motility and 290 

experimental wound closure. 291 

 292 
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 293 

Discussion 294 

A considerable amount of data has been accumulated on the mechanisms of MT-dependent 295 

cellular processes such as intracellular transport and mitosis, but little knowledge exists on 296 

how extracellular ligands actually modulate cytoskeletal events. Here, we show that Hh 297 

signaling has the capability to affect MT acetylation and MT-dependent processes through 298 

induction of DYRK1B. In contrast to many other kinases, DYRKs are mainly regulated through 299 

their overall abundance. Even small changes in total DYRK amount can have significant 300 

impact on cellular functions, as evidenced for instance by the devastating effect of the 1.5-301 

fold increase in DYRK1A levels on neuronal and brain development in Down syndrome 302 

(Trisomy 21) patients [57]. As such, we anticipate that also moderate Hh-induced DYRK1B 303 

increases could have larger effects on cellular processes, such as tubulin acetylation. We are 304 

however also aware of the fact that highly complex processes such as cell migration involve 305 

numerous regulators on several cellular levels and that the post-translational modification of 306 

tubulin most likely exerts a modifying role and is not the sole cause of these processes. 307 

DYRK1B has previously been identified as a potent pro-migratory gene in ovarian cancer cells 308 

[58], which often harbor a 19q13 chromosomal DYRK1B-containing amplicon or display 309 

elevated expression of this kinase by other means [59]. In addition, work in pancreatic 310 

cancer revealed that DYRK1B can protect cells from the MT-depolymerizing agent 311 

Nocodazole [44]. Our data provide a mechanistic explanation for these observations and 312 

present evidence for the role of this kinase in regulating MT acetylation. We find that a 313 

fraction of the cellular DYRK1B pool is localized to the microtubule cytoskeleton. 314 

Functionally, it inactivates GSK3β by direct phosphorylation of Ser9, leading to the indirect 315 

suppression of HDAC6 enzyme activity, a major cellular regulator of tubulin acetylation. 316 

Since both, GSK3β and HDAC6 can also associate to MTs, it is reasonable to speculate that 317 

these proteins form a functional unit at or around MTs (Fig. 6F). The elucidation of how 318 

exactly HDAC6 is regulated by GSK3β awaits further studies. 319 

 320 

Of note, we have previously shown that DYRK1B is able to manipulate PI3K/AKT signaling, 321 

which itself is subject to intense feedback control mechanisms [43]. As AKT can potentially 322 

phosphorylate GSK3β independently of DYRK1B, this complex network of signaling 323 

molecules could complicate the predictability of the net effect of tubulin acetylation, 324 
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particularly at time points at which feedback mechanism are still at play. Adding to this 325 

situation are somatic mutations activating the PI3K/AKT kinase arm in a constitutive manner 326 

as found in many cancer cells.  327 

Supporting and extending previously published evidence on Hh-regulated tubulin regulation 328 

[40], our manuscript integrates this regulation into a wider mechanistic framework ranging 329 

from Hh ligands to modulation of intracellular cytoskeletal outputs. In this respect, it is 330 

interesting to note that both, Hh signaling as well as HDAC6 inhibition/MT acetylation were 331 

found to drive Interleukin-10 production [60, 61]. Furthermore, DYRK1B and HDAC6 seem to 332 

be regulatory components of the Hh cascade itself, raising the possibility for cytoskeleton-333 

mediated autoregulation of the pathway [16, 62, 63]. 334 

Our results of Hh-mediated MT control through effects on tubulin-PTMs, and not through 335 

effects on e.g. motor proteins, add a new layer of complexity to the regulation of directed 336 

cell migration, a process involving a large number of proteins. Whether these effects utilize 337 

the canonical Hh signaling cascade or whether other ‘non-canonical’ mechanisms are 338 

responsible requires further investigations. Certain non-canonical mechanisms at several 339 

levels have been reported to modulate Hh-induced cell migration, such as non-ciliary SMO 340 

and/or GLI-independent regulation of the actin cytoskeleton [36-38, 64].  341 

Another interesting finding of this study is the fact that Hh signaling promotes the transport 342 

of mitochondria along MTs in non-neuronal cells such as fibroblasts. Until now, MT-based 343 

mitochondrial motility has been mostly investigated in neuronal cells, where long axons 344 

necessitate the transport of mitochondria to distant sites for local ATP production [65]. 345 

However, there is emerging evidence that the subcellular localization of mitochondria is also 346 

important for cell migration in non-neuronal cells [66]. In addition, the first links between 347 

mitochondrial dynamics and cellular metabolism are considered [67]. In light of the fact that 348 

DYRK1B has recently been associated with the metabolic syndrome [68, 69], a potential role 349 

of mitochondria will be interesting to follow up. Furthermore, Hh signaling has been 350 

implicated in controlling the functionality of the T-cell immunological synapse, a structure 351 

relying, among others, on motor-protein driven mitochondrial transport [70, 71]. 352 

In summary, we present a mechanistic framework how extracellular Hh ligands can 353 

modulate the PTM status of MTs and can subsequently contribute to the regulation of 354 

intracellular MT-dependent processes such as cell polarization, migration and organelle 355 

transport. 356 
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 357 

 358 

Material and Methods 359 

Cell lines 360 

NIH3T3 and HeLa cell lines were purchased from ATCC. MEF and MEF[SHH] cells were kindly 361 

provided by Wade Bushman [72]. PSC cells were a kind gift of M. Löhr [73]. The generation 362 

of NIH3T3 cells stably expressing empty vector control or DYRK1B was described in [43]. All 363 

cell lines were mycoplasma-free and were cultured in Dulbecco’s Modified Eagle Medium 364 

(DMEM (high Glucose plus Glutamine and Pyruvate), Invitrogen) supplemented with 10 % 365 

fetal bovine serum (FBS) and 1 % Penicillin/Streptomycin at 37°C with 5 % CO2. If not 366 

otherwise stated, serum concentrations were reduced to 0.5% during experiments for all cell 367 

types. 368 

 369 

Small-interfering RNA (siRNA) transfection 370 

Cells were transfected with 35 nM siRNA (Dharmacon SMARTpools and Qiagen control siRNA 371 

using RNAiMax (Invitrogen). Control siRNA (siCon) was purchased from Qiagen (All-Stars-372 

siRNA; siAll). The mouse Dyrk1b-specific siRNA was an equimolar pool of four target 373 

sequences: si1b_1: AUACAGAGAUGAAGUACUA; si1b_2: GCACAUCAAUGAGGUAUAC; si1b_3: 374 

GAGAUGAAGUACUACAUAG; si1b_4: GGACAAAGGAACUCAGGAA. The human DYRK1B-375 

specific siRNA target sequences were: si1B_3: GAGAUGAAGUACUAUAUAG; si1B_4: 376 

CGAAAGAACUCAGGAAGGA; si1B_5: GGUGAAAGCCUAUGAUCAU; si1B_6: 377 

GGACCUACCGCUACAGCAA.  378 

 379 

RNA preparation, cDNA synthesis, qPCR 380 

Total RNA was extracted using NucleoSpin RNA II kit (Macherey-Nagel) according to the 381 

manufacturer’s protocol. cDNA synthesis of 1 μg total RNA was performed using iScript cDNA 382 

Synthesis Kit (Biorad) following the manufacturer’s guidelines. Quantitative PCR reactions 383 

were performed using the Absolute QPCR SYBR Green Mix (ABGene). qPCR reactions were 384 

performed on 96 well qPCR plates (ABGene) using either the Mx3000P or Mx3005P qPCR 385 

systems (Agilent). Results were calculated as relative mRNA expression (2ΔΔCt). Data was 386 

obtained from at least three independent experiments and is shown as the mean ± StDev. 387 

Primer sequences (5’ to 3’) for the detection of mouse Dyrk1b were: For-388 
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TTGACACCTGCCCCTCCTCTAGCAC; Rev-GGCCCCCACAATATCGGTTGCTGTA. Human DYRK1B: 389 

For-TTGGCCAGGTGGTGAAAGCCTATGA; Rev-CAATCTGGGCCTGGTTCAGGAAAGC. Mouse 390 

Hdac6: For-TCCCTACAGCTTGGGGTTCTCAGCA; Rev-TCCCCAAATCCTTGTGTCAGCATCA. Mouse 391 

Mec17: For-TGACCGGGAGGCTCACAATGAGGTA; Rev-TGGGGCTCCACTCGCTCTTTCTGTA. All 392 

other primer sequences have been described elsewhere [16, 74-76]. 393 

 394 

Immunoblotting 395 

Separation of lysates by SDS-PAGE was followed by subsequent Western Blot analysis. SDS-396 

PAGE gels were blotted on Immobilon-PVDF membranes (Millipore) and incubated with the 397 

respective primary antibody, followed by an HRP-coupled secondary antibody. Detection of 398 

the HRP signal was performed using Pierce ECL Western Blotting Substrate (Thermo Fisher 399 

Scientific, Waltham, USA) according to the manufacturer’s protocol. The following primary 400 

antibodies were used: α-DYRK1A (#2771; Cell Signaling Technology (CST), Danvers, USA); α-401 

DYRK1B (#5672; CST); α-DYRK2 (#8143; CST); α-DYRK3 (sc-390532; Santa Cruz Biotechnology, 402 

Santa Cruz, USA); α-GLI1 (#2643; CST); α-phospho-GSK3βS9 (#5558, CST); α-total GSK3β 403 

(#12456, CST); α-acetylated α-tubulin (AcTub, T6793, Sigma-Aldrich, St. Louis, USA); α-404 

tyrosinated-α-tubulin; α-polyglutamylated-α/β-tubulin; α-α-tubulin (T6199, Sigma); α-Lamin 405 

B (sc-6217, Santa Cruz); α-GAPDH (#G9545; Sigma); α-β-Actin (#A5441; Sigma). 406 

 407 

Immunofluorescence on fixed samples 408 

Cells were seeded on cover slips and fixed with 4 % formaldehyde/PBS for 10 min at RT. 409 

After washing twice with PBS at RT for 5 min, cells were permeabilized with 0.5 % Triton-410 

X100/PBS at RT for 5 min. For immunostaining, cover slips were blocked with 10 % 411 

serum/PBS for 1 h at RT and washed with PBS at RT for 10 min. Primary antibodies were 412 

diluted in PBS containing 10 % serum and 0.1 % saponin and incubated overnight at 4°C. 413 

After washing twice with PBS at RT for 5 min, the cover slips were incubated with 414 

fluorophor-coupled secondary antibodies diluted in PBS containing 10 % serum and 0.1 % 415 

saponin at RT in the dark for 2 h. After washing twice with PBS for 5 min and rinsing with 416 

H2O, the cells were covered with mounting medium containing DAPI. Microscopy was 417 

performed on a Leica DMR epifluorescence and a Leica AF6000 widefield fluorescence 418 

microscope with 3D deconvolution software (Leica Microsystems, Wetzlar, Germany). 419 
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Microtubule-association assay (MTaa) 422 

Fully confluent NIH3T3 fibroblasts were incubated on 10 cm culture dishes in 0.5 % FBS-423 

containing DMEM with or without SAG (100 nM) for 48 h. Subsequently, cells were washed 424 

with warm PBS, scraped off and pelleted (300 g, 30 sec, RT), followed by resuspension in 425 

PBS/Taxol (20 µM) and incubation for 15 min at RT. After another centrifugation step (300 g, 426 

30 sec, RT), cells were resuspended in 1 ml of room-temperature MTaa lysis buffer (1 mM 427 

EGTA, 0.05 % NP-40, 3 mM MgCl2, 100 mM NaCl, 10 mM Tris pH 7.5 plus protease inhibitors) 428 

and an aliquot (400 µl) of the lysate was stored (whole cell lysate). The remaining cell lysate 429 

(600 µl) was layered on a cushion of cold MTaa lysis buffer containing 1M sucrose and 430 

centrifuged (400 g, 5 min, RT) to pellet the nuclear fraction. The supernatant was transferred 431 

to a new tube for ultracentrifugation (27.000 g, 45 min, RT) in order to pellet unwanted 432 

membrane debri. The supernatant was collected and another ultracentrifugation step was 433 

performed (100.000 g, 90 min, RT). The supernatant collected from this step was stored as 434 

cytoplasmic fraction and the pellet was taken as polymerized microtubule fraction. 435 

 436 

Cell polarization assay 437 

NIH3T3 cells were grown confluent on glass cover slips (24h) followed by another 24h in the 438 

presence of 100 nM SAG (0.5% FBS). Subsequently, DMSO, ACY1215 (10 µM) or AZ191 (0.5 439 

µM) was added for 30 min followed by wounding of the confluent monolayer with a yellow 440 

pipette tip. Cells were washed once with medium, followed by addition of 3% FBS-containing 441 

medium containing SAG/DMSO/ACY-1215/AZ191 for 6 h at 37° C. Cells were fixed with 3.7% 442 

formaldehyde, stained with antibodies against α-tubulin and pericentriolar material 1 443 

(PCM1) and mounted in Vectashield containing DAPI (Vectorlabs). Images shown in the 444 

manuscript are maximum intensity projections of 3D-deconvoluted Z-stacks taken on a Leica 445 

AF6000 widefield fluorescence microscope with 3D deconvolution software. 446 

 447 

Ground state depletion microscopy (GSD) 448 

GSD was performed on a Leica GSDIM Super Resolution SR microscope system according to 449 

the manufacturer’s protocols using AlexaFluor488- and AlexaFluor647-labelled secondary 450 

antibodies. In some cases, the soluble cytoplasm was washed out before fixation by gently 451 

shaking the cells for 2x 5min in 1M EGTA/2.5mM GTP/4% PEG-6000/0.1M PIPES/0.2% Triton-452 

X100 at room temperature.  453 
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 454 

Live cell measurement of mitochondrial transport 455 

Cells were grown in chamber slides (Ibidi) in 0.5% FBS for 48h with/without SAG (100 nM), 456 

followed by addition of DMSO, ACY-1215 (10 µM) or AZ191 (0.5 µM). Live cell imaging was 457 

started approx. 30 min later. Recordings were taken on a laser scanning confocal microscope 458 

(LSCM) (Leica TCS-SP8i) with an incubation chamber tempered to 37°C. Recordings were 459 

made in 10 min intervals from several slide areas for a duration of 3h (20x objective, NA 0.75, 460 

1024x1024 pixel, 2x average, zoom 3.0).  Analysis of mitochondria motility from three cells was 461 

done in Imaris software (Bitplane, v8.2.0) using the spot algorithm. The overall movement of 462 

the cells was set to zero by using the surface algorithm before mitochondria calculations. 463 

 464 

Statistical analysis 465 

Unless otherwise stated, data is presented as the mean of three independent experiments ± 466 

standard deviation (StDev). Statistical significance was calculated by applying a two-tailed 467 

student’s t-test. *p<0.05; **p<0.01; ***p<0.001.  468 
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Figure legends 678 

Figure 1: Hh signaling increases levels of DYRK1B and tubulin acetylation. 679 

(A) Immunofluorescent AcTub (green) staining of NIH3T3 cells treated with either DMSO, 680 

Smoothened agonist SAG (100 nM) or SANT1 (200 nM). Scale bars equals 10 µm. Blue 681 

= DAPI staining. 682 

(B) Quantification of AcTub intensities as shown in (A). Shown is the AcTub fluorescence 683 

intensity per cell measured in nine different viewing fields from 3 different 684 

experiments. The total cell number analyzed was 180-210. 685 

(C) Immunoblot of NIH3T3 cell lysates treated with SAG. Shown is a representative blot 686 

of three. 687 

(D) Quantification of (C) (mean of n=3 ±SD).  Values were normalized to GAPDH levels or 688 

total α-Tubulin (aTub). 689 

(E) Western blot of MEF lysates treated with SAG (100 nM, 48-72h). Shown is one blot of 690 

two. 691 

(F) Immunoblot of MEF cell lysates stably expressing SHH (MEF[SHH] cells). Cells were 692 

treated with the SMO antagonist SANT to block Hh signaling. Shown is a 693 

representative blot of three. 694 

(G) Western blot of MEF cell lysates transfected with control siRNA or with Dyrk1b-695 

specific siRNA. Cells were treated with SAG (100 nM, 48h). Shown is one blot of two. 696 

(H) Immunoblot depicting the changes in AcTub levels after RNAi-mediated knock-down 697 

of Dyrk1b in MEF[SHH] cells. Shown is one blot of two independent experiments. 698 

 699 

 700 

701 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



24 

 

 Figure 2: DYRK1B expression is sufficient to augment tubulin acetylation. 702 

(A) Bright field images of NIH3T3 cells stably expressing mock control (empty vector) or 703 

DYRK1B. Scale bar 50 µm. 704 

(B) Immunoblot of NIH3T3 cells stably expressing DYRK1B or empty vector control 705 

(mock) showing the expression levels of the indicated proteins. Shown is one 706 

representative blot of four.  707 

(C) AcTub immunofluorescence image (green) of control NIH3T3 (mock) or of cells with 708 

stable DYRK1B expression. 709 

(D) Quantification of the results obtained in panel (C). Shown is the mean of n=5 ±SD. 710 

AcTub= Acetylated α-tubulin. 711 

(E) Acetylated tubulin staining (green) in human Hela cells stably expressing DYRK1B or 712 

empty vector control (mock). Blue = Nuclei. Scale bar 100 µm. 713 

(F) Western blot verifying DYRK1B-V5 overexpression of cells depicted in (E). 714 

(G) Quantification of AcTub intensities of cells shown in (E). Shown is the mean of n=4 715 

±SD. 716 

(H) In vitro HDAC6 enzyme assay (mean of n=3 ±SD). Endogenous HDAC6 protein was 717 

immunoprecipitated from Hela cells stably expressing empty vector control (mock) or 718 

DYRK1B. HDAC6 activity was subsequently measured with a luminometric HDAC 719 

assay. Values were normalized against western blot band intensities of 720 

immunoprecipitated HDAC6 (see inset as example). The selective HDAC6 inhibitor 721 

Cay10603 (100 nM) was used as a positive control. 722 
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Figure 3: Hh and DYRK1B inactivate GSK3β by Ser9 phosphorylation. 728 

(A) Western blot example of n=2 independent experiments showing phospho-GSK3βS9 729 

levels after SAG induction. 730 

(B) Western blot data and the corresponding quantification (mean of n=3 ±SD) of 731 

MEF[SHH] cells treated with the SMO inhibitor SANT (200 nM, 48-72h). 732 

 733 

(C) MEF[SHH] cell lysates transfected with control siRNA (siCon) or with Dyrk1b-directed 734 

siRNA (si1B). Shown is one representative blot of three. 735 

(D) Western blot of NIH3T3 lysates. Cells were pre-treated with SAG (100 nM) for 48h 736 

prior to addition of the DYRK1B inhibitor AZ191 (AZ, 0.1 or 0.5 µM) for 3h. 737 

(E) Quantification of Phospho-GSK3βS9 levels in NIH3T3 stably expressing empty vector 738 

(mock) or V5-tagged DYRK1B in two different serum concentrations (mean of n=3 739 

±SD). Inset: One representative blot. 740 

(F) Quantification of in vitro kinase assays with recombinant DYRK1B enzyme and 741 

immunoprecipitated GSK3β. Shown is the mean of n=3 ±SD. Rec.1B = Recombinant 742 

DYRK1B. The inset depicts a representative blot. 743 
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Figure 4: DYRK1B is associated with microtubules. 747 

(A) Microtubule-association assay (MTaa) of lysates derived from control NIH3T3 cells or 748 

of cells treated with SAG (100 nM, 48h). WCE = Whole cell extract; Nuc = Nuclear 749 

fraction; Cyt = Cytoplasmic fraction; MT = Polymerized MT-containing pellet. The 750 

levels of endogenous HDAC6 in control NIH3T3 cells were too low to be detected by 751 

Western blotting. Lamin B (mainly WCE + Cyt fractions) was included to demonstrate 752 

purity of fractions. Shown is one representative experiment of n=3. 753 

(B) Super resolution images by means of Ground State Depletion (GSD) microscopy 754 

showing transiently transfected human PSC cells. Left panel: Mock-transfected; right 755 

panel: DYRK1B-V5 transfected. Red = endogenous β-tubulin. Green = V5-antibody. 756 

The orientation of microtubules is indicated as faint white dotted lines in the insets. 757 

A scale bar of 2.5 µm is given. 758 

(C) GSD-image of non-transfected Hela cells. Red = endogenous α-tubulin. Green = 759 

endogenous DYRK1B. 760 

(D) GSD-image of non-transfected PSC cells. Red = endogenous α-tubulin. Green = 761 

endogenous HDAC6. The soluble cytoplasm has been washed out before in this 762 

experiment. 763 
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Figure 5: Hh signaling facilitates organelle transport. 765 

(A) Confocal image of NIH3T3 cells stably expressing a Cox8a-Dendra2 fusion 766 

construct (NIH[Cox8a-Dendra]; green). In addition, cells were co-stained with 767 

MitoTracker (Red). Nuclei appear in blue. Scale bar represents 10 µm. 768 

(B) Levels of DYRK1B and acetylated tubulin in SAG (100 nM, 48h)- and AZ191 769 

(DYRK1B inhibitor, 0.5 µM for last 2h)-treated NIH[Cox8a-Dendra] cells. 770 

(C) Track length of mitochondria movement over a 3h time window in NIH[Cox8a-Dendra] 771 

cells. Shown is one representative experiment (20x objective) measuring three 772 

different cells of n=4 independent experiments. At least 500 events were 773 

recorded for each condition. Drug concentrations were: ACY-1215 (ACY, HDAC6 774 

inhibitor) 10 µM; SAG 100 nM; AZ191 0.5 µM (all in 0.5%FBS). 775 

(D) Speed of mitochondria movement over a 3h time window in NIH[Cox8a-Dendra] cells. 776 

Shown is one representative experiment (20x objective) measuring three 777 

different cells of n=4 independent experiments. At least 500 events were 778 

recorded for each condition. Drug concentrations were: ACY-1215 (ACY) 10 µM; 779 

SAG 100 nM; AZ191 0.5 µM (all in 0.5%FBS). 780 

(E) Mean square displacement (MSD) over time. Shown is the MSD calculation 781 

(exponential curve fitting) of the experiment depicted in panels (C) and (D). An 782 

increase in directed transport is reflected as an increased slope. 783 
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Figure 6: Hedgehog promotes mesenchymal cell polarization and cell migration. 787 

(A) Microscopic determination of NIH3T3 fibroblast polarization by means of MTOC 788 

(PCM1, red) and α-tubulin (green) staining. Nuclei appear in blue. The orientation of 789 

the scratch is indicated by a white dashed line. Positive polarization towards the 790 

wound is indicated by a white asterisk. For experimental details see materials and 791 

methods section. 792 

 793 

(B) Quantification of the polarization experiment depicted in (E) (mean of n=3 ±SD). SAG 794 

(SMO agonist, 100 nM); ACY-1215 (HDAC6 inhibitor, 10 µM). 795 

 796 

(C) Fraction of polarized NIH3T3 fibroblasts, pre-treated with SAG (100 nM) for 2d, 797 

followed by scratch wounding. DMSO or AZ191 (DYRK1B inhibitor, 0.5 µM) was 798 

added 30 min before the scratch. Shown is the mean of n=3 ±SD. 799 

 800 

(D) Example of scratch wounds in confluent NIH3T3 cultures directly after scratching 801 

(Start, left), after approx. 9.5h (Mid, middle) or at the end (approx. 20h, right panel). 802 

The border is outlined by a dashed line. AZ = AZ191 (1µM). 803 

 804 

(E) Relative wound closure over time as assessed by live cell recording. One 805 

representative example of three is shown. AZ = AZ191 (1µM). 806 

 807 

(F) Schematic depiction of the findings described in this manuscript. Left panel: Without 808 

Hh stimulation. Right panel: With Hh stimulation. Not shown is the possibility that 809 

Hh/SMO might also activate AKT, leading to an additional route of GSK3β regulation. 810 

DYRK1B can also functionally interact with AKT. 811 
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Abstract: Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes

during embryonic development, such as tissue patterning, stem cell maintenance, and cell

differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies.

Understanding the molecular mechanisms of pathway regulation is therefore of high interest.

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein

kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell

differentiation. Work from the last years has identified a close regulatory connection between DYRKs

and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK

kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring

together what is known about the functional consequences of a DYRK-Hh cross-talk and how this

might affect cellular processes in development, physiology, and pathology.

Keywords: hedgehog; GLI1; dual-specificity tyrosine-regulated kinase; DYRK; MIRK; Down syndrome

1. Introduction

1.1. The Hedgehog Signaling Pathway

The Hedgehog (Hh) gene was first identified in genetic screens for mutations that disrupt the

larval body plan in Drosophila melanogaster [1]. The name Hedgehog originates from the short and

‘spiked’ phenotype of the cuticle of the Hh mutant Drosophila larvae, which resembles the spikes

of a hedgehog [1,2]. The members of the Hh family of proteins have since been recognized as key

mediators of many fundamental processes in embryonic development, playing a crucial role in

controlling cell fate, patterning, proliferation, survival, and differentiation. Furthermore, Hh signaling

also regulates the maintenance of tissue stem cells and affects oncogenic transformation and the

development of tumors [3–5]. Vertebrates possess three Hedgehog homologues: Desert (DHH),

Indian (IHH), and Sonic (SHH). All three genes have evolutionary conserved roles in body plan

organization and development [2,6–8]. The polarizing activity of the organizing centers located

in the limb bud, the notochord, or the floor plate of the neural tube is regulated by SHH [9,10].

IHH regulates the coordination of multiple cellular events during endochondral bone development

including osteoblast differentiation [11,12], while DHH is required for the development of germ cells

in testes and peripheral nerve sheath formation [13].

The Hh signaling cascade has been discussed in depth by other excellent reviews of this special

issue on embryogenesis (e.g., [14–17]). Briefly, the canonical Hh signaling cascade is initiated in the

target cell by the Hh ligand binding to the Patched1 receptor (PTCH1) [18,19], a 12-span transmembrane

protein located in the ciliary membrane relieving the repression of Smoothened (SMO) [20,21], a 7-span

transmembrane protein, which is a member of the G protein-coupled receptor (GPCR) superfamily.

J. Dev. Biol. 2017, 5, 13; doi:10.3390/jdb5040013 www.mdpi.com/journal/jdb
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This de-repression results in the activation of the Hh transcriptional effectors, the zinc finger proteins

of the GLI (Cubitus interruptus (Ci) in Drosophila melanogaster) family [22].

Several studies have reported the modulation of Hh signaling through protein kinases,

amongst others PKA, PKC, GRK2, MEK, ERK, AKT, S6K, and GSK3β all of which have been

documented to play a role in Hh signal transduction [23–28]. Moreover, recent studies have outlined

the importance of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) in the positive

and negative regulation of Hh pathway activity [29–36]. This review centers on the DYRK family of

kinases and their role in regulating the developmentally important Hh signaling pathway.

1.2. Protein Kinases: An Introduction

Protein kinases are central for the regulation of major cellular processes. Kinases play particularly

prominent roles in signal transduction as they direct the cellular activities by the addition or removal of

a phosphate group. As abnormal levels of protein phosphorylation are associated with the development

of several diseases [37], it is crucial to delve deeper into the understanding of the varying mechanisms

that control these phosphorylation events [38]. Eukaryotic protein kinases (ePKs) are divided into

nine large groups (plus one atypical group which does not show similarity to ePKs), which are further

divided into families and subfamilies [39,40]. These groups are: (1) Tyrosine kinases (TK); (2) Tyrosine

kinase-like (TKL); (3) cAMP-dependent protein kinase, cGMP-dependent protein kinase and protein

kinase C (AGC); (4) Calcium/calmodulin-dependent kinases (CAMK); (5) Casein kinase 1 (CK1);

(6) Cyclin-dependent kinases (CDK), Mitogen-activated protein kinases (MAPK), Glycogen synthase

kinase (GSK3) and CDC-like kinase (CLK) group of protein kinases (CMGC); (7) Homologs of the

yeast STE7, STE11 and STE20 genes (STE); (8) Receptor Guanylate Cyclases (RGC); and (9) Others

(kinases that do not fit within any of the other main kinase groups) [40–42].

2. The CMGC Group of Kinases

Due to sequence homologies in their kinase domains, CDKs, MAPKs, GSK3s, CLKs, and related

kinases (CMGCs) form one big group of eukaryotic protein kinases [40]. The CMGC group consists

of 62 members in total, which are subdivided further into nine families (CDK-, CDKL-, GSK-, CLK-,

MAPK-, HIPK-, DYRK-, RCK-, and SRPK-families) [43]. This group is highly conserved during

evolution, arguing that its members fulfill important functions from nematodes to humans. Given their

involvement in cell proliferation, MAPKs and CDKs are the most studied kinases within the CMGC

group and are the subject of intense research efforts in oncological research. Less studied candidates

include the dual-specificity tyrosine regulated kinases (DYRKs) and the serine-arginine protein kinases

(SRPK). In general, the kinases in the CMGC group have a broad spectrum of functional roles

ranging from signal transduction to cell cycle regulation, RNA related processing, and intracellular

communication [43].

3. The DYRK Family of Kinases

Dual-specificity tyrosine phosphorylation-regulated kinases belong to the CMGC group of kinases

and contain a characteristic sequence motif called the DYRK-homology box (DH box) (Figure 1).

YAK1 from budding yeast was the first member of the DYRK family to be discovered [44,45]. There are

five members within the mammalian DYRK subfamily and they are categorized into two classes.

Class I consists of DYRK1A and DYRK1B (the latter is also known as Minibrain-related kinase (Mirk)),

while class II is made up of DYRK2, DYRK3, and DYRK4 [45,46]. The assortment of mammalian

DYRKs in the corresponding classes is based on sequence homologies within the conserved kinase

domain [46,47]. Certain sequence motifs can only be found in class I DYRKs, such as a C-terminal PEST

domain (a region rich in proline (P), glutamic acid (E), serine (S), and threonine (T)) (Figure 1). The PEST

sequence is known to act as a signal for rapid protein degradation [48]. However, to our knowledge,

this function has not been formally proven in DYRKs. DYRK1A protein stability is regulated through

the ubiquitin/proteasome system, but involves an N-terminal region [49]. DYRK1A is the only
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family member containing a poly-histidine stretch (13 consecutive histidine residues) and a region

enriched in serine/threonine residues (S/T-rich region) [50,51]. The poly-histidine stretch promotes

the targeting of DYRK1A to nuclear speckles which are enriched with pre-mRNA splicing factors

regulating the splicing machinery [51,52]. Other elements, such as nuclear localization signals (NLS),

can be found in many DYRKs. On the other hand, only class II DYRK kinases contain a N-terminal

auto-phosphorylation accessory region (NAPA) domain, which is thought to be required for tyrosine

auto-phosphorylation specifically in class II DYRKs, although DYRK2 lacking the NAPA domain

has been shown to auto-phosphorylate itself under in vitro conditions [47,53–55]. Further differences

include the extent of the respective N- and C-termini (Figure 1). In general, DYRK family members are

known to regulate protein stability, cell proliferation, and differentiation. These events are mediated

by the phosphorylation of DYRK recognition sites in target proteins. The consensus sequence motif

consists of Ser or Thr followed by Pro in position +1. Furthermore, an arginine residue at position

−2 or −3 relative to Ser/Thr seems to be preferred (RxxS/TP or RPxS/TP), although a considerable

degree of divergence to this consensus has also been noted [47,56].

The activation loop of DYRK kinases contains a conserved YXY sequence, the phosphorylation

of which leads to the activation of full enzymatic activity. Members of the DYRK family

auto-phosphorylate the second tyrosine residue in order to be fully activated and then phosphorylate

substrates in trans on Ser/Thr residues, hence they are known as Dual-specificity tyrosine-regulated

kinases [45,47,56]. The auto-activation mode of DYRKs is in contrast to MAP kinases, where an

upstream kinase is needed for the phosphorylation of the activation loop [47]. The tyrosine specificity

of DYRK kinases is thought to be lost once the protein is fully translated and only the Ser/Thr specificity

on target proteins remains [53,57].

− −

 

Figure 1. Schematic representation of the DYRK family of proteins: Distinct sequence motifs such as

the nuclear localization signal (NLS); DYRK-homology box (DH); a motif rich in proline, glutamic acid,

serine, and threonine residues (PEST); a poly-histidine stretch (HIS); a serine/threonine rich region

(S/T); a N-terminal auto-phosphorylation accessory region (NAPA); and a conserved kinase domain

comprising the structural and functional features of DYRKs.

4. Class I DYRKs: DYRK1A and DYRK1B

4.1. The DYRK1A Kinase

DYRK1A is a nuclear kinase, but can also be found in the cytosol. It represents the most studied

member of the DYRK family, which is due to its presumed involvement in the Down syndrome

(DS, OMIM #190685). DS is one of the most common genetic defects in humans with an estimated

incidence of about 1 in 1000 live births worldwide and is caused by the complete or partial duplication

of human chromosome 21 (trisomy 21) [58,59]. In humans, the DYRK1A gene is located on chromosome

21 (21q22.13), which is part of the so-called Down-Syndrome Critical Region (DSCR) [60]. Genes present

within the DSCR (21q22.1–22.3 encompassing 33 genes) are thought to account for the development of

DS, characterized by a general intellectual impairment, characteristic craniofacial dysmorphologies,

and congenital heart disease [60–62].
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Despite the fact that upstream modulators of DYRK1A kinase activity exist [63,64], the prime

determinant of DYRK1A protein function is considered to be its overall protein amount making it

very sensitive to gene dosage. An altered copy number of the DYRK1A gene in mammals or of its

orthologous gene, minibrain (mnb) in Drosophila, impedes with the proper development of the central

nervous system [65]. Different studies with the trisomic DS mouse model Ts65Dn or cells derived from

Down syndrome patients [66] have shown that an increased kinase expression affects neurogenesis

and neuroblast proliferation, and results in impaired behavioral phenotypes. Genetic overexpression

of Dyrk1A in mice leads to behavioral and cognitive impairment and neuronal alterations [67–69].

In contrast, loss of function of Dyrk1A or mnb results in significant brain size reduction in mice [70],

flies [65,71], and men [72].

Intriguingly, a recent study identified DYRK1A loss-of-function mutations which are associated

with impaired dendritic and spine growth, cortical development, and the pathophysiology of

autism [73]. The exact mechanisms underlying DYRK1A’s effects on dendritogenesis and neurogenesis

remain open, but might involve its role in actin regulation [36,74–77]. Furthermore, DYRK1A

has functions in synaptogenesis and synaptic vesicle endocytosis [74,78]. Haplo-insufficiency

of DYRK1A is associated with the development of autosomal dominant mental retardation-7

(MRD7) (OMIM #614104), a syndrome characterized by primary microcephaly, facial dysmorphism,

and behavioral problems [79]. Also, DYRK1A expression might be epigenetically misregulated in the

William-Beuren region duplication syndrome (WBS) (OMIM #609757). WBS phenotypes commonly

include craniofacial anomalies and cognitive deficits ranging from mental retardation to autism [80,81].

The documented evidence of DYRK1A functioning in brain development suggests that it interacts

with embryonic signaling pathways such as Hedgehog, which is known to be crucial for neuronal

specification in the neural tube, hippocampal neural stem cell maintenance, and the development of the

cerebellar cortex [82,83]. Mice with a genetic Shh knockout present with Cyclopia [84], and inactivating

mutations in the human SHH gene cause holoprosencephaly (OMIM #236100), a common form of

structural malformation of the developing brain hemispheres [85–87]. In contrast, human patients

suffering from the Hh-activating Gorlin syndrome (Basal Cell Nevus Syndrome, OMIM #109400) have

an increased brain size [88].

4.2. DYRK1A as a Regulator of (Neuronal) Hedgehog Signaling

The fact that both Hh signaling and the DYRK1A kinase have such important roles in embryonic

brain development suggests that they might be functionally linked. The exact interplay between

DYRK1A and Hh signaling seems to be complex and stimulatory, and inhibitory functions have

also been described (Figure 2). Indeed, suppression of Hh pathway activity was seen in cerebellar

cells derived from a Down syndrome mouse model [89]. Furthermore, some morphological as well

as functional deficits could be ameliorated by the application of a synthetic SMO agonist or by

genetic Hh pathway activation [90,91], suggesting a too low level of Hh signaling in DS. Subsequent

mechanistic studies revealed that increased levels of the DSCR-localized DYRK1A kinase can dampen

Hh signaling [92], most likely through its effect on the actin cytoskeleton and on actin-regulated

transcriptional regulators [36]. For instance, DYRK1A can phosphorylate the F-actin stabilizing

ABLIM proteins and thereby functionally exert a negative impact on the actin cytoskeleton and on

actin-modulated transcriptional co-factors such as MAL (MKL1, MRTF), which also modulate the Hh

pathway [36]. This mechanism might explain why DS cerebellar cells display a limited response to

Purkinje cell-derived SHH (Figure 2). However, this finding was unexpected as previous reports had

proposed a direct activating function of DYRK1A on GLI1. Specifically, DYRK1A can phosphorylate

amino acid residues in the N-terminus critical for the nuclear import of GLI1 [31,32,36,92] (Figure 2).

As a result, the impact of DYRK1A on Hh signaling might be context-dependent and might also

be dictated by the exact mode of pathway activation (ligand/receptor-triggered versus direct GLI1

activation). Further investigations are certainly needed to clarify this point.
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Hypothetically, a physiological connection between Hh signaling and DYRK1A might also exist in

the case of neural stem cell (NSC) division. In general, stem or progenitor cells can undergo symmetric

or asymmetric types of cell division in order to generate progeny [93]. Hh signaling preferentially

supports symmetric cell divisions [94,95]. DYRK1A has also been implicated in signaling aspects

during asymmetric versus symmetric neural stem cell division, although the details await further

investigation [96,97]. In general, Hh pathway activity has been associated with brain size (see above),

which might be caused by its positive effects on neural stem cell pools. Intriguingly, truncation of

DYRK1A results in the stimulation of kinase activity [98] and DYRK1A gene truncations have been

found in human microcephaly [72]. Finally, it is interesting to note that Down syndrome patients have

a reduced risk of developing solid cancer. The fact that DYRK1A is capable of suppressing canonical

Hh signaling might contribute to its described potential as a tumor suppressor [99–103], in addition to

other Hh-independent proposed mechanisms [104,105].

In addition to the neuronal effects of DYRK1A, one report exists describing the Hh-related impact

of DYRK1A and its physical interactors HAN11 and mDia1 in cultured sebocytes [106]. Overexpression

of either HAN11 or mDia1 suppressed GLI1 nuclear localization and activity in reporter assays and

slowed the growth of these cells. In the murine embryo, Han11 is expressed in the developing limb

bud (E10.5), together with Gli1 and Ptch1. It is possible that the actin-regulating formin mDia1 is

functionally linked to the aforementioned DYRK1A-ABLIM-Actin-MAL-GLI axis, but experimental

proof is lacking at this point.
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Figure 2. Schematic depiction of the cross-talk between Hh signaling and DYRK kinases.

Three DYRK kinases (DYRK1A, DYRK1B, DYRK2) have been described as regulators of

upstream (above GLI transcription factors) and downstream (at the level of GLI transcription

factors) Hh signaling. As Hh pathway modulators, they might control important embryogenic

and developmental processes, such as myogenesis, neurogenesis, or the pathophysiology of Down

syndrome. Literature references are given in square brackets.

4.3. The DYRK1B Kinase

The closest relative of mammalian DYRK1A is the DYRK1B kinase, also referred to as MIRK

(Minibrain-related kinase). The human DYRK1B gene is located on chromosome 19q13.2, a region often

amplified in ovarian and pancreatic cancer [107,108]. This kinase has three splice variants (629aa (p69),

601aa (p66), and 589aa (p65)) and is expressed in abundance in human skeletal muscle and testes [109].

Human DYRK1A and DYRK1B proteins are 84% identical in the N-terminal and catalytic domains but

show no extended similarity in the C-terminal domain. Human and mouse DYRK1B proteins share
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97% sequence similarity [46,110–113]. In many different cell types, DYRK1B can be found both in the

nucleus and in the cytoplasm [114].

4.4. DYRK1B in Developmental and Physiological Processes

The observation that DYRK1B is strongly expressed in skeletal muscle argues for a physiological

role in muscle function and/or development. Indeed, DYRK1B levels have been shown to be

comparatively low in myoblasts, but to increase significantly upon the induction of differentiation [115].

DYRK1B favors myoblast fusion and the subsequent expression of differentiation markers [116].

Furthermore, DYRK1B supports the survival of muscle progenitor (C2C12) cells in culture and of cells

from muscle-related tumors such as rhabdomyosarcoma [117,118]. The pro-differentiating effects of

DYRK1B on myoblasts are opposite to the effects which Hh signaling exerts on muscle stem cells

(satellite cells) and on C2C12 progenitor cells [119]. Here, Hh promotes cell division and blocks

differentiation along the myogenic lineage, thereby maintaining the progenitor cell pool. Although

it is not clear whether the influence of Hh or DYRK1B occurs exactly at the same developmental

stage, currently available data would suggest a primarily antagonistic relationship between these two

pathways. Recent work has identified a complex regulatory relationship between DYRK1B and Hh.

While DYRK1B dampens Hh signaling initiated by SMO, it also promotes the stability of the GLI1

transcription factor on the other side [29,30,34]. The latter might be mediated by DYRK1B-induced

stimulation of the pro-survival PI3K-AKT signaling pathway, a known positive regulator of GLI

stability [23,120] (Figure 2). In addition, at least in cultured fibroblasts, Hh pathway stimulation

increases DYRK1B protein levels by currently unknown post-transcriptional mechanisms [29],

suggesting a feedback loop.

Another example of physiological cross-talk between DYRK1B and Hh might be the differentiation

of mesenchymal progenitor cells into adipocytes. Hh signaling has a generally inhibiting

impact on adipocytic differentiation, usually redirecting cellular fate towards the osteogenic

lineage [121–123]. In contrast, DYRK1B favors the in vitro differentiation into adipocytes [35].

This holds particularly true for DYRK1B carrying mutations which were identified in families suffering

from an autosomal-dominant form of metabolic syndrome [35], a disease with prominent adipocyte

involvement. The mutations found result in misfolding of the DYRK1B protein and in intracellular

aggregation [124]. It remains to be clarified how these mutations affect the functional integration of

DYRK1B into other signaling pathways, but it is intriguing to note that mutant DYRK1B expression

reduced GLI2 levels in cultured adipocytes [35]. It is therefore reasonable to speculate that the

suppression of Hh pathway activity contributes to these effects.

5. The Class II DYRKs

5.1. The DYRK2, DYRK3, and DYRK4 Kinases

Compared to the DYRK class I members, the class II DYRKs (DYRK2, DYRK3, DYRK4)

contain a larger N-terminal region and a shorter C-terminal domain. DYRK2 and DYRK4, but not

DYRK3, possess an NLS sequence and all three contain an NAPA (N-terminal autophosphorylation

accessory region) domain which is absent in class I DYRKs [47]. The NAPA domain provides

a chaperone-like function and transiently converts class II DYRKs into intramolecular tyrosine

kinases [54]. Despite lacking an apparent NLS, DYRK3 (also named REDK) is localized in the nucleus

in hematopoetic cells [125], whereas DYRK2 is mostly cytosolic, but under conditions of genotoxic

stress, it accumulates in the nucleus regulating p53 [126]. DYRK4, which is currently the least studied

DYRK family member, displays splice variant-dependent subcellular localization [47].

In contrast to DYRK1B, which has been described as an oncogenic kinase in numerous cancer types,

DYRK2 can also exert opposite functions and can display tumor suppressive traits. This is brought

about by DYRK2’s ability to activate p53-dependent apoptosis following DNA damage [126,127]

and by negatively controlling the protein stability of well-established oncogenes such as c-MYC
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or c-JUN [128]. Phosphorylation-dependent regulation of proteasomal degradation seems to be a

recurrent mechanism employed by many if not all DYRK kinases [129–134].

5.2. Class II DYRKs in Development

In zebrafish, DYRK2 has been shown to be expressed in lateral somites (mesodermal blocks around

the anterior-posterior axis of the developing embryo) and adaxial cells (muscle precursor cells that are

adjacent to the notochord and part of the presomitic mesoderm) at an early stage of embryogenesis [135].

Co-localization of Dyrk2 mRNA and myogenic differentiation factor D (MyoD) mRNA was seen in muscle

progenitor cells in the posterior compartment of somites. Here, DYRK2 might positively regulate fast

twitch muscle differentiation in the early stages of embryonic development [135]. Although the link

has not yet been experimentally verified, it is intriguing to note that in contrast to DYRK2, Hh signaling

promotes the formation of slow-twitch fibers in zebrafish [136]. Furthermore, mammalian DYRK2 has

been shown to negatively regulate Hh pathway activity by phosphorylating and degrading GLI2 [33]

(Figure 2). It is therefore reasonable to speculate that DYRK2, through its negative influence on Hh

signaling, might impact on the slow/fast-twitch fiber differentiation during muscle development.

A similarly antagonistic relationship between DYRK2 and Hh signaling might also play a role in

Drosophila, which encodes three DYRKs: Minibrain/Dyrk1A, DmDyrk2, and DmDyrk3. Recent reports

have shown that DmDyrk2 is expressed in the developing third antennal segment, an anatomical

structure responsible for smell, and in the morphogenetic furrow of the developing eye, where

it contributes to the development of the visual system [137]. In addition, Hedgehog is a known

regulator of morphogenetic furrow progression and ommatidial cell differentiation in the Drosophila

eye disc [138,139]. If, in analogy to mammals, DmDYRK2 also regulates Hh signaling, it is intriguing to

hypothesize that functional DYRK2-Hh cross-talk is involved in the specification of the Drosophila eye.

In comparison to class I DYRKs and DYRK2, the class II family members DYRK3 and DYRK4

show a very restricted expression profile with the strongest expression in erythroid progenitors and

testes, respectively [140,141]. As can be assumed from this expression pattern, DYRK3 is involved in

erythropoiesis. While Dyrk3−/− mice surprisingly present without a hematological phenotype, they

develop increased numbers of red blood cells under conditions of anemia, suggesting that DYRK3

functions as a negative regulator of erythropoiesis [140]. Therefore, small-molecule DYRK3 inhibitors

might be of interest to ameliorate anemic conditions. Although Hh ligands (mostly DHH and IHH)

have also been shown to regulate erythropoiesis [142–144], it currently remains unclear whether

cross-talk between DYRK3 and Hh signaling contributes to this process.

Significantly more work has been done on the function of DYRK3 on the cellular and molecular

level, albeit a clear link to Hh signaling has so far not been established. Specifically, DYRK3 impinges on

stress-associated mTOR signaling [145], as well as on endocytosis dynamics [146]. Endocytic sorting of

SHH and PTCH1 in clathrin-coated vesicles is also critical for proper Hh signaling in signal producing

and receiving cells [147–149]. However, whether DYRK3 is indeed involved in these steps awaits

further experimentation.

Of all the DYRK kinases discussed so far, the least is known about DYRK4. The expression

of this family member is strongly restricted to testicular tissue, with a strikingly selective peak of

expression in step VIII spermatids [46,141], suggesting a role in male fertility. Surprisingly, however,

analysis of Dyrk4 null animals revealed no aberrant sperm phenotype or defects in male fertility [141].

DYRK4 was shown to be present in the duck ovary, and was more active or upregulated in the high

egg production ovaries, which would suggest a hitherto unrecognized role in the female reproductive

system, at least in some species [150]. Desert Hh (DHH) signaling also occurs in testes and, at least in

certain species, also in ovaries, but the involvement of DYRK4 in DHH-mediated processes is unclear

at the moment [151–153].
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6. Conclusions

DYRK kinases are highly conserved during evolution from yeast to humans. Due to the

evolutionary diversification, DYRKs might represent the requirement of more critical and specialized

functions in vertebrates or might have contributed to this diversification. Multifaceted roles of DYRK

kinases have been discussed in this review and their importance in various developmental processes

has been stated. As of now, three of five mammalian DYRK kinases have been functionally linked

to Hh signaling (DYRK1A, DYRK1B, DYRK2), arguing for a close regulatory connectivity to the

developmentally important Hh system. Hence, although DYRK kinases are not absolutely required

for Hh signaling, they function as modulators and it is therefore reasonable to hypothesize that

they contribute to many Hh-driven steps during embryonic development. Unfortunately, however,

more work is needed to provide a clear picture of the exact and tissue-specific cross-talk between

DYRKs and Hh, particularly in in vivo settings. As certain DYRKs have a preferred expression

in specific tissues (e.g., DYRK1A in neuronal and DYRK1B in muscle tissue), it is reasonable to

speculate that the impact on the tissue-selective Hh pathway activity is specified by the respective

DYRK enzyme. In other tissues or cell types, where several DYRK kinases are expressed together

at comparable levels, a certain degree of functional redundancy might exist, particularly for the

class I DYRKs. These questions are important to address in the future in light of the development

of small-molecule inhibitors which might lack the necessary specificity and target several DYRKs

simultaneously. Complicating the developmental interpretation is the fact that DYRK kinases also

modulate other, non-Hh signaling systems, such as, e.g., the NFAT (nuclear factor of activated

T-cells) [154] pathway or HIF (hypoxia-inducible factor) signaling [155]. Future work will reveal

whether Hedgehog or any of the other signaling systems is particularly important for the physiological

impact of DYRK kinases.

Most evidence for developmental cross-talk between DYRKs and Hh stems from studies on

DYRK1A, neuronal development, and the Down syndrome. In addition, available data encourage

speculations on DYRK1B and DYRK2 modulating Hh signaling in muscle development and on the

involvement of DYRK1B in adipocyte differentiation. In light of recent reports strengthening the

concept of Hh-pathway modulation by DYRKs in pathological conditions such as metabolic syndrome

or cancer, it will be interesting to see whether future research unveils more cross-talk between this

group of kinases and the Hh system in physiological processes. In this review, we have tried to outline

the currently available knowledge on the DYRK family of kinases engaging in developmental biology,

physiology, and pathology, focusing on its impact on Hh signaling.
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