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Epilepsy is a common disorder affecting about 60 million people worldwide. The
population of epilepsy patients who cannot achieve seizure freedom has remained
stubbornly fixed at around 30% despite the introduction of new therapies in recent years.
The only way to stop the development of epilepsy is to prevent an injury. Epilepsy is caused
by myriad factors and is characterized by recurrent and spontaneous seizures, increased
mortality rate, and decreased social interaction and quality of life (Henshall et al. 2016). The
harmful effects include disruption of the developmental process and neuronal degeneration
(Yehezkel Ben-Ari and Holmes 2006). The most affected region due to epilepsy is the
hippocampus, a part of the limbic system. There are no treatments that can prevent
epilepsy; hence, there is a clear need for better anti-epileptic remedies.

The Innate immune system acts as the first line of defense against foreign intruders
(Akira 2003). Toll-like receptors (TLRs) are a part of the immune system and were first
discovered in Drosophila melanogaster. TLRs are involved in early host defense against
pathogens, and they recognize a pathogen- or damage-associated molecular pattern
(PAMPs/DAMPs). TLRs can also identify phagocytes such as neutrophils, macrophages, and
dendritic cells (Akira 2003). They play a role in innate immunity, and TLR signaling leads to
inflammatory gene expression changes. The first report of TLRs in epilepsy was by Turrin
and Rivest (Turrin and Rivest 2004). All studies related to TLRs in epilepsy have been
confined to the cell surface TLRs, e.g., TLRs 2 and 4 (Maroso et al. 2010).

TLRs 3, 7, and 9 are expressed intracellularly, whereas TLRs 1, 2, 4 are expressed on the
cell surface. TLR3 recognizes double-stranded RNA (dsRNA) and is associated with viral
infection. TLR7 recognizes single-stranded RNA virus. TLR9 recognizes unmethylated CpG
DNA motifs, characteristics of DNA viruses, and prokaryotic genomes. TLR4 is most well-
known for recognizing lipopolysaccharide (LPS), a component present in many bacteria.
Only TLRs 2 and 4 have been implicated in both experimental and human epilepsy, and the
endosomal TLRs (eTLRs) are yet to be studied.

Our research group recently discovered, serendipitously, that mice lacking certain TLRs
have spontaneous seizures. This information led us to hypothesize that TLR deficiency
causes epilepsy. This hypothesis was tested by determining: 1) which of these TLRs is/are
responsible for epilepsy, and 2) whether TLR activation can prevent epilepsy. In the thesis, I
used two different animal models of epilepsy: a) perforant path stimulation (PPS), and b)
systemic injection of kainate and lorazepam (KaL).

I found that TLRs are upregulated in the hippocampus during epileptogenesis and
chronic epilepsy phases, as validated in both animal models using qPCR. I found
upregulation of mRNA in associated cytokines and chemokines. I also showed that the TLR
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proteins are upregulated during chronic epilepsy. Lastly, I knocked down the expression of
TLRs 3 and 7, and found that TLR3/7 knockdown did not have any effect on seizure
reduction.

To summarize, this project revealed that the TLR mRNA and protein expression are
upregulated during epileptogenesis and chronic epilepsy. Knocking down the TLRs using
siRNA did not have any effect on the development of epilepsy or inactivation of spontaneous
seizures. The originality of the work lies in the fact that we are, to the best of our knowledge,
the first to use a phenotype-driven approach to elucidate the role of (as yet unexplored)
TLRs in epilepsy.
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Epilepsie ist eine der haufigsten neurologischen Erkrankungen und betrifft ca. 60
Millionen Menschen weltweit. Trotz neuer Medikamente und Behandlungsmethoden der
letzten Jahre kann bei 30% der Patienten keine Anfallsfreiheit erreicht werden. Die Ausloser
fiir die Entstehung einer Epilepsie sind vielfaltig, bislang konnen jedoch nur bereits
manifeste Epilepsien erkannt werden. Epilepsien sind durch wiederkehrende, spontane
Anfille gekennzeichnet und fithren zu erhohter Mortalitatsrate, eingeschrankter
Lebensqualitit und Sozialleben (Henshall et al. 2016). Weiterhin gehoren
Entwicklungsstorungen und neuronale Degeneration zu den Symptomen (Yehezkel Ben-Ari
and Holmes 2006). Der Hippokampus, ein Teil des limbischen Systems, ist die am
haufigsten bei Epilepsie betroffene Hirnstruktur. Bisher sind keine Verfahren bekannt, die
die Entstehung einer Epilepsie (Epileptogenese) erkennen oder verhindern konnen, deshalb
besteht weiterhin groBer Forschungsbedarf zur Pathogenese.

Das angeborene Immunsystem bildet die erste Abwehrlinie gegen eingedrungene
Pathogene (Akira 2003). Toll-like-Rezeptoren (TLRs) gehoren zum angeborenen
Immunsystem und wurden zuerst in Drosophila melanogaster entdeckt. TLRs erkennen als
Teil des angeborenen Immunsystems frithzeitig pathogen- oder schadens-assoziierte
molekulare Strukturen (PAMPs/DAMPs) und konnen auch Phagozyten wie Neutrophile,
Makrophagen und dendritische Zellen erkennen (Akira 2003). Die Aktivierung der TLR-
Signalwege fiihrt zu veranderten Genexpressionen verschiedener Entziindungsreaktionen.
Im Zusammenhang mit Epilepsien wurden TLRs zuerst 2004 beschrieben (Turrin and
Rivest 2004). Bei den bisher dabei beschriebenen TLRs handelt es sich ausschlieBlich um
TLRs an der Zelloberflache (z.B. TLRs 2, 4 ) (Maroso et al. 2010).

TLRs 3, 7 und 9 werden intrazellular exprimiert, TLRs 1, 2, und 4 dagegen an der
Zelloberflache. TLR3 erkennt doppelstrangige DNA (dsDNA), TLR7 einzelstrangige DNA
(ssDNA) jeweils im Rahmen der viralen Abwehr. TLR9 erkennt fiir DNA-Viren und
Prokaryotengenome typische, unmethylierte CpG-DNA-Motive. TLR4 ist bestens fiir die
Erkennung von Lipopolysacchariden (LPS) in Bakterien bekannt. Nur TLR2 und 4 wurden
im Zusammenhang mit Epilepsie sowohl im Experiment als auch in Patienten erwahnt.
Endosomale TLRs (eTLRs) dagegen sind weitestgehend unbeschrieben.

Mause, denen bestimmte TLRs fehlen, zeigten im Labor epilepsie-typisch spontane
Anfille. Ein Zusammenhang zwischen fehlenden TLRs und Epilepsie ist anzunehmen.
Deshalb sollten im Rahmen dieser Arbeit folgende Fragen gepriift werden:

1. Welche TLRs sind fiir die Epilepsie verantwortlich?
2. Kann die Aktivierung von TLRs eine Epilepsie verhindern?
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Es wurden zwei Tiermodelle der hippokampalen Epilepsie verwendet:
1. Stimulation des Tractus perforans (PPS)
2. Systemische Injektion von Kainat und Lorazepam (KaL)

Eine Hochregulation von TLR-mRNAs im Hippokampus konnte in der Epileptogenese
und der manifesten Epilepsie durch qPCR-Messungen in beiden Modellen gezeigt werden.
Die mRNAs assoziierter Zytokine und Chemokine waren ebenfalls hochreguliert. Erhohte
TLR-Proteinkonzentrationen konnten wahrend der manifesten Epilepsie gezeigt werden.
Ein Knock-down der Expression von TLR 3/7 hatte keinen Einfluss auf eine Anfalls-
Reduktion.

Zusammenfassend konnten in dieser Arbeit Anderungen der TLR-mRNA- und Protein-
Expression wahrend der Epileptogenese und der manifesten Epilepsie gezeigt werden. Ein
Knock-down mittels siRNA konnte weder die Epileptogenese, noch das Auftreten spontaner
Anfille verhindern.

Da die Zusammenhange von eTLRs und Epilepsie weitestgehend ungeklart sind, bieten
sich hier viele Moglichkeiten fiir weitere Untersuchungen, die eine Erkennung und
Behandlung der Epileptogenese zum Ziel haben.
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1. REVIEW OF THE LITERATURE
1.1.1 Epilepsy

Over 60 million people worldwide are affected by epilepsy, which is a common and
chronic neurological disorder (Wijnen et al. 2017; Van de Vel et al. 2013) with a yearly
frequency of 50.4 per 100,000 people (Wijnen et al. 2017; Ngugi et al. 2011). In Europe
alone, about 6 million people are treated for epilepsy with 14 billion € as an estimated
annual cost (Olesen et al. 2011; Henshall et al. 2016). After migraine, stroke, and
Alzheimer’s disease, epilepsy is considered to be one of the most common disorders (Reddy
and Kuruba 2013).

A seizure is defined as “a transient occurrence of signs and/or symptoms due to
abnormal, excessive, or synchronous neuronal activity in the brain” (Fisher et al. 2005), and
is a result of an imbalance between excitation and inhibition (Fisher et al. 2005). A person is
diagnosed with epilepsy after two spontaneous seizures. However, all disorders
characterized by a seizure are not epilepsy, for example, febrile or drug-induced seizures
(Manford 2017). An epileptic seizure is classified either as a partial seizure, also known as
focal seizure, or generalized seizures. A partial seizure affects only one hemisphere of the
brain, whereas a generalized seizure affects both the hemispheres, causing loss of
consciousness. According to the International League Against Epilepsy (ILAE), epilepsy is
defined when one or any of these criteria are met “(i) at least two unprovoked (or reflex)
seizures occurring more than 24 hours apart; (ii) one unprovoked (or reflex) seizure and a
probability of further seizures similar to the general recurrence risk after two unprovoked
seizures (at least 60%) occurring over the next 10 years; and (iii) diagnosis of an epilepsy
syndrome (Fisher et al. 2014)”. However, a new basis of classification is in place that
classifies seizures according to a) the anatomical site of seizure origin, b) awareness level
during a seizure, and c) other features of seizures (Fisher, Shafer, and DSouza 2017; Scheffer
et al. 2016; Scheffer et al. 2017).

Epilepsy is more common in children compared to adults, as the underdeveloped brain is
more inclined to seizure in comparison to the developed brain, due to the imbalance
between excitation and inhibition (Holmes and Ben-Ari 2001). The major causes of epilepsy
in children and newborns are believed to include malformation of the brain, lack of oxygen
during birth, maternal drug use, and seldom brain tumors (Schachter, Shafer, and Sirven
2017). In adults as well as children, brain infection, stroke, brain injury due to accidents,
and genetic factors are some of the reasons that can cause epilepsy.

1.1.2 Epileptogenesis

The process by which a normal brain becomes epileptic is known as epileptogenesis,
(Giblin and Blumenfeld 2010) and it is characterized by pathological changes which lead to
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the epilepsy development and maintenance (Manford 2017). The brain has cellular,
molecular, and neuronal network level changes that result in an epileptic phenotype
(Pitkaenen and Lukasiuk 2009; Giblin and Blumenfeld 2010; Rakhade and Jensen 2009).
The process is slow and can take months to years to complete without any available
biomarkers to detect the process of epileptogenesis (Sloviter and Bumanglag 2013).
Epileptogenesis has both genetic and acquired mechanisms. A genetic mechanism is where
the seizure occurs due to a presumed genetic alteration, whereas an acquired mechanism is
where epileptogenesis occurs after a brain injury. The etiology of idiopathic epilepsy (e.g.,
childhood absence epilepsy) is unknown, and neuronal circuit rewiring after a brain injury is
associated with acquired mechanisms. As shown by human and animal studies, there is a
progressive neuropathological change related to epileptogenesis, and as this process
progresses, the seizures become more frequent (Sillanpaa et al. 1998; Kwan and Sander
2004; Shorvon and Luciano 2007).

Epileptogenesis brings about changes in gene expression, inflammation, protein
expression, and the neural network and circuits, all of which are possible drug targets
(Manford 2017), and this process ends with chronic spontaneous seizures, i.e. epilepsy. It is
hard to study the process of epileptogenesis in humans, as obtaining tissues from the
patients is difficult, and tissues are typically only obtained at a very advanced stage of their
illness. Animal studies (discussed in section 2.2) have proven to be very fruitful to gain
knowledge about the process of epileptogenesis after an initial insult (Tanaka et al. 1992;
Hellier et al. 1998; Kharatishvili et al. 2006), because the tissues from animals can be
collected within a few months of the injury. In humans this process can take several years
(French et al. 1993; Mathern et al. 1995). Also, animal studies allow invasive procedures to
reveal causative mechanisms, making them preferable to use.

1.1.3 Status Epilepticus

According to ILAE, Status epilepticus (SE) is defined as a seizure or repeated seizures
lasting for more than 30 minutes with a loss of consciousness (Knake, Hamer, and Rosenow
2009). SE occurs because of the failure of mechanisms that help stop a seizure (Walker
2016; Betjemann and Lowenstein 2015), and the failure is caused due to loss of inhibitory
mechanisms or excessive increase in excitation during a seizure (Betjemann and Lowenstein
2015). SE is characterized by two stages; the first stage is characterized by generalized tonic-
clonic seizures, while the second stage is characterized by behavioral symptoms, decline in
cerebral blood flow, and rise in intracranial pressure (Levesque, Avoli, and Bernard 2015).
SE can also be focal, and a focal status epilepticus can be defined as a condition where the
epileptic disturbance is anatomically discrete and continuous, and lasts for more than 1 hr
with an apparent neurological behavior (Schomer 2005). SE is a severe medical and life-
threatening condition and needs to be treated rapidy and aggressively (Levesque, Avoli, and
Bernard 2015). Animal studies have also shown that a permanent neuronal damage and
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synaptic reorganization occurs after seizures lasting more than 30 min (Levesque, Avoli, and
Bernard 2015; Norwood et al. 2011), which can be followed by chronic epilepsy. In adult
animals, SE causes loss of neurons in CA3 and CA1 regions of the hippocampus, the granule
cell layer of the dentate gyrus (DG), and the hilar interneurons in the DG (Martin and Pozo
2006). Prolonged seizures can result in synaptic reorganization, sprouting, and formation of
new synapses in different parts of the brain, and compared to adult animals; young animals
are less prone to such hippocampal cell loss after prolonged seizures (Martin and Pozo
2006).

1.1.4 Temporal lobe epilepsy

The temporal lobe in the brain is the site of origin of TLE (Van Roost et al. 1998) and
affects about 80% of focal epilepsy in adults (Hauser, Annegers, and Kurland 1991). The
main structures in the temporal lobe are also a part of the limbic system and include the
amygdala, parahippocampal gyrus, and the hippocampus (Figure 1).

TLE may be caused by many different factors including traumatic brain injury (TBI),
stress (Haut et al. 2007; Koutsogiannopoulos et al. 2009), or drug abuse (Gordon and
Devinsky 2001).

Some TLE patients do respond to anti-epileptic drugs (AEDs) without further problems.
However, about one-third of the patients fail to respond (Loscher 2005). Surgical removal of
the temporal lobe is an alternative form of treatment for those patients who do not respond
to AEDs. Treatment of TLE depends on seizure suppression by the use of AEDs, but as many
as 75% of these patients are drug resistant (Schmidt and Loscher 2005), and approximately
40% have side effects due to AEDs (Kwan and Brodie 2000).

10
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Figure 1: The temporal lobe is located just below the (a) frontal lobe, (b) the parietal lobe, and
positioned right underneath the (c) the Sylvian fissure which separates it from a and b. Image
accessed from http://webspace.ship.edu/cgboer/lobes.html on 4th April 2017 and used with
permission from the author.

Hippocampal sclerosis (HS) is a common neuropathological finding associated with
epilepsy (Goldberg and Coulter 2013) and is characterized by the loss of principal neurons in
the hippocampus. Astrogliosis and atrophy in the different brain regions such as the
amygdala, hippocampus, and the entorhinal cortex are some of the features of HS (Tatum
2012). Mesial TLE (mTLE) appears after damage to entorhinal cortex (Bartolomei et al.
2005), hippocampus (Mathern et al. 2002), and perirhinal cortex (Biagini et al. 2013), as
they are significant in spreading limbic seizures. TLE is defined by (i) localization of seizure
foci in the limbic system; (ii) an initial precipitating injury that is anticipated before the start
of TLE; (iii) a latent period, which is also known as the seizure-free period; and (iv) a
hippocampal lesion leading to atrophy which is caused by neuronal loss and gliosis. These
characteristics can be reproduced in animal models of TLE, especially in the kindling or SE
models, and also in non-SE models like the perforant path stimulation (PPS), the kainate-
lorazepam (KaL) or the pilocarpine models. (Section 1.2.3).

1.2 Animal models of epilepsy

Epilepsy can be modeled in animals by different ways depending on the objectives of the
experiments and is either induced by chemoconvulsants or electrical stimulation of the
brain structures or kindling. Researchers use animal models before any application on
humans because of the high anatomical and physiological similarities between animals and
humans. Therefore, animal models are important in epilepsy research, and details like the

11
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complex mechanisms of epileptogenesis and seizure generation can be better understood
through animal models (Kandratavicius et al. 2014).

1.2.1 Electrical Stimulation models

The advantages of electrical stimulation based models are that they reproduce
epileptogenic features in the brain, have low mortality, and better reproducibility as
compared to chemoconvulsant methods (Kandratavicius et al. 2014). However, a major
limitation of electrical stimulation models are their high costs and labor intensity for chronic
epilepsy studies (Pitkdnen, Schwartzkroin, and Moshé, 2006; Kandratavicius et al. 2014).
The stimulation based models target brain areas prone to epileptogenesis such as the
hippocampus (Vicedomini and Nadler 1987), amygdala (Nissinen et al. 2000), and perforant
pathway (Sloviter 1983; Norwood et al. 2010). Electrical stimulation results in neuronal
damage as well as spontaneous seizures, after a seizure-free period (Nissinen et al. 2000).
The latent period is characterized by neuronal degeneration and synaptic reorganization
(Nissinen et al. 2000).

1.2.2 Kainic acid

A convulsant is defined as “a substance with demonstrated convulsive effects in vivo” (De
Deyn et al. 1992), and it acts by creating an imbalance between excitatory and inhibitory
signals (De Deyn et al. 1992). Kainic acid (KA) is a common chemoconvulsant used in
animal models of epilepsy and is a cyclic analog of L-glutamate and an agonist at ionotropic
KA receptor (Lévesque and Avoli 2013). It was first isolated and extracted in tropical and
sub-tropical waters from red algae (Digenea simplex) in 1953 (Murakami, Takemoto, and
Shimizu 1953). Local application of KA on neurons causes neuronal destruction and
pyramidal cell loss in the hippocampus (Nadler, Perry, and Cotman 1978). Some major
characteristics of TLE such as depolarization and excitotoxic cell death are activated by KA
(Lévesque and Avoli 2013). KA activates KA receptors (KARs), and with a higher
concentration of KA a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPARSs) can be activated (Lerma et al. 1993). KARs are expressed in different regions of
the brain during development (hippocampus, cortex, thalamus, and the cerebellum) (Bahn,
Volk, and Wisden 1994) and localize within hippocampal neurons both pre- and post-
synaptically (Bloss and Hunter 2010). KA-induced neurodegeneration depends on the
concentration of KA and administration route. For example, an intraperitoneal (i.p.)
injection damages the CA1 region, whereas intracerebroventricular or intra-amygdala
injection damages the CA3 region (Nadler, Perry, and Cotman 1978; SPERK 1994). KA
causes SE seizure which lasts for several hours and is characterized by motor convulsion
(SPERK et al. 1983). An advantage of the KA model is that it causes injuries restricted only
to the hippocampus (Kandratavicius et al. 2014).
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1.2.3 Other chemoconvulsant models

Another commonly used chemoconvulsant method is pilocarpine, which is a potent
muscarinic Acetylcholine receptor (AChR) agonist and shows sequential behavioral and
electrographic changes. Systemic injection of pilocarpine can cause seizure and also develop
into limbic SE. Inducing epilepsy using pilocarpine can lead to severe and extensive cell loss
in different brain regions (Scorza et al. 2009). A common feature shared by the KA and
pilocarpine model is widespread neuronal damage and associated changes like gliosis and
neurogenesis within a few days after SE (SPERK et al. 1983), and after a quiet period of 1-3
weeks, spontaneous seizures can be noticed. The significant limitations of the pilocarpine
model of SE are its high mortality rate, variable frequency, and severity of spontaneous
seizures and neocortical lesions (Kandratavicius et al. 2014). However, if animals are
directly injected pilocarpine in the hippocampus, they show reduced mortality rate and
similar kind of behaviors and neuropathological characteristics compared to the systemic
injection of pilocarpine (Furtado et al. 2002).

Some other chemoconvulsant models induce seizures by blocking inhibitory GABAergic
systems (Fisher 1989), and pentylenetetrazole (PTZ) or bicuculline methiodide. They are
used as acute seizure models but cannot be used in animal models of epilepsy
(Kandratavicius et al. 2014) because they cause less damage to the brain and are not
associated with spontaneous seizures (Nehlig and Pereira de Vasconcelos 1996).

Kindling is defined as “the progressive changes that result from repeated electrical
stimulation” (Goddard, McIntyre, and Leech 1969). It is a process where repeated stimuli
cause an increased seizure susceptibility, and it also is a common chronic model of TLE
(Kandratavicius et al. 2014). The animals undergo electrical stimulation daily in the seizure-
prone regions of the brain (hippocampus or amygdala) (Rolston et al. 2011). Initially, the
stimulation generates low electrical after-discharges that do not cause behavioral seizures.
Repeated stimulation eventually causes high-frequency electrical discharges and convulsive
seizures (Rolston et al. 2011). Kindled animals typically do not exhibit spontaneous seizures.
A major limitation of the kindling model is the associated costs and the time-consumption.
However, it can be wused for the prevention of epileptogenesis processes and
pharmacoresistant epilepsy treatments (Kandratavicius et al. 2014).

1.3 Hippocampus

The hippocampus is located in the temporal lobe of the brain and is an important brain
area in the pathophysiology of epilepsy. The hippocampus is susceptible to epileptic
seizures, and TLE is considered to be generated in the hippocampus due to observations
made by histopathology in TLE patients (Avoli 2007). The hippocampus is more prone to
damages caused by epileptic seizures, and CA3 and CA1 sub-regions of the hippocampus are
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more susceptible to neuronal damage (Faherty, Xanthoudakis, and Smeyne 1999; W. Liu et
al. 2001).

The hippocampus is sub-divided into the following regions — cornu ammonis (CA) CA1 -
CA4, dentate gyrus (DG), and the subiculum (Figure 2), and these parts vary in sizes and cell
types (Amaral and Lavenex 2006). The DG is further subdivided into two layers; a granular
cell layer that includes the granule cells, and a molecular layer that includes dendrites of the
granular cells and axons projecting from the entorhinal cortex (EC) (also known as the
perforant path) (Amaral and Lavenex 2006). The granule cell (mossy fibers) layer axons
project towards the CA3 region. Pyramidal cell layers are present in the CA region and have
cell bodies of the pyramidal cell types neurons, adjacent to the stratum oriens, and stratum
radiatum (Amaral and Lavenex 2006). The basal dendrites of pyramidal cells are present in
the stratum oriens, while the apical dendrites are present in the stratum radiatum. Axons
from the CA3 region (Schaeffer collaterals) first project into the stratum oriens and then to
stratum radiatum of the CA1 region. Finally, the axons from the CA1 region project towards
the subiculum and from there they project back to the EC (Amaral and Lavenex 2006).

Perforant
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Figure 2: Cross section of the hippocampus. The Hippocampus book (Amaral and Lavenex 2006). The
figure has been used with permission from the publisher (Oxford University Press).

The excitatory pathway starts by input from the EC present at the DG and continues from
CA3 to CA1 to the subiculum, and then continues back to the EC. Hippocampal neurons
mainly consist of excitatory neurons with glutamate as their neurotransmitter; however, a
small population, ~ 10% neurons are inhibitory with gamma-aminobutyric acid (GABA) as
their neurotransmitter (Freund and Buzsaki 1996). The excitatory activity of the
hippocampus is modulated by these interneurons (Freund and Buzsaki 1996).
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1.4 Inflammation

Inflammation can be defined as an adaptive response to harmful stimuli such as
pathogens or irritants (Medzhitov 2008), and the process of inflammation protects the body
against pathogens (Vezzani et al. 2011). During an inflammatory response, molecules are
produced by cells of the immune system with proinflammatory or anti-inflammatory
properties to heal the site of injury (Vezzani and Riiegg 2011). Invading pathogens (Vezzani
and Riiegg 2011) and endogenous “danger signals” released by cells (Bianchi 2007) prompt
inflammation.

1.4.1 Brain Inflammation

Neuroinflammation or brain inflammation can be defined as the inflammation of the
central nervous system (CNS). Neuroinflammation is characterized by a wide range of
pathological phenomena such as glial cell morphological changes and invasion of foreign
agents to tissues (Becher, Spath, and Goverman 2016). They have an important role in
innate immunity by producing inflammatory mediators like cytokines, chemokines, and
leukocytes (Vezzani and Riiegg 2011).

It was assumed in previous studies that the blood-brain-barrier (BBB) protects the CNS
from the immune system, preventing the entry of inflammatory cells and molecules. It has
also been observed that leukocytes, cytokines, and chemokines can cross the BBB and
induce an immune response in microglia and astrocytes (Rivest 2009). After the first signs
of inflammation, different mechanisms have been identified to stop detrimental effects on a
tissue. Inflammation may become chronic and can last for longer periods to provoke tissue
damage or dysfunction when endogenous and regulatory mechanisms fail (Vezzani and
Riiegg 2011).

1.4.2 Inflammation and epilepsy

Previous studies have suggested an involvement of inflammation in epileptogenesis and a
relation between inflammation and the immune system in different types of seizures (Aarli
2000; Palace 2000; Choi et al. 2009; Vezzani et al. 2011). The role of inflammation and
immunity in human epilepsy was first shown by an anticonvulsant activity of
adrenocorticotropic hormone (ACTH) (Vezzani and Riiegg 2011). An epileptic condition
known as Rasmussen’s encephalitis is characterized by severe seizures, encephalitis, and
dementia (Rasmussen, Olszewski, and Lloydsmith1958), providing the first evidence of
chronic and progressive brain inflammation (Vezzani and Riiegg 2011). There is an
activation of the immune system in epileptic patients, which happens by circulation of
autoantibodies that recognize intracellular or membrane antigenic neuronal epitopes
(Vezzani and Riiegg 2011). It has been observed in animal models that epileptic activity and
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brain inflammation are correlated. This emphasizes that inflammation can be a major cause
that contributes to epilepsy development after an injury. Recurrent seizures are “potent
inducers” in brain inflammation in endothelial cells, neurons, microglia, and the BBB
(Vezzani and Riiegg 2011). A correlation between activation of specific inflammatory
pathways in the brain and seizure activity has been studied in acute and chronic epilepsy
models. For example, anticonvulsant activity has been observed during blocking or
activation of proinflammatory cytokines, such as tumor necrosis factor-a (TNF-a) or
interleukin-1p (IL-1B) (Vezzani, Balosso, and Ravizza 2008; Heida, Moshé, and Pittman
2009), TLR signaling pathways (Maroso et al. 2010), and cyclooxygenase-2 (COX-2)
(Kulkarni and Dhir 2009). In patients who have chronic epilepsy, the level of pro-
inflammatory cytokines has been found to be elevated in the cerebrospinal fluid (CSF) and
sera. This suggests that neuroinflammation plays a role in epileptogenesis (Babcock et al.
2006; Iliev et al. 2004; Alexopoulou et al. 2001).

1.4.3 Inflammatory mediators

(a) Cytokines

Cytokines can be defined as small peptides or proteins secreted by cells associated with
inflammation, immune activation, cell differentiation, or death, and have an effect on
interaction and communications among cells. Cytokines are pleiotropic in nature (Becher,
Spath, and Goverman 2016) and function either by autocrine action, i.e. acting on cells that
secrete them, or by paracrine action, i.e. acting on nearby cells, and are grouped into pro-
inflammatory and anti-inflammatory cytokines (Zhang and An 2007). They are upregulated
after brain insults and are expressed in immune cells, but are also produced in resident
brain cells including glia and neurons (Hedtjarn et al. 2002; T. Liu et al. 1994; Szelényi
2001). After inducing chemoconvulsants, there has been a rapid increase in cytokines in
seizure models, both in the developing and mature brain (Jankowsky and Patterson 2001;
Ravizza et al. 2005).

In an adult brain, TNF-a is upregulated after ischemia (Ohtaki et al. 2004; Saito et al.
1996) and it induces apoptosis of oligodendrocytes (Selmaj et al. 1991; Cammer 2000). TNF-
a acts as a proconvulsant and is important in enhancing PTZ-induced seizures by Shigella
dysenteriae (Yuhas et al. 2002). In amygdala-kindled rats, TNF-a treatment increased the
seizure frequency and caused changes in the EEG pattern (Shandra et al. 2002). Recent
studies have found that TNF-a concentration decreased in the hippocampus and piriform
cortex 5 h post pilocarpine SE. However, TNF-a levels were elevated in the hippocampus 5
days after SE (Arisi et al. 2015).

Administering IL-1  can induce white matter damage in neonatal mice, and in neonatal

brains with hypoxia-ischemia (HI), IL-1f increased with infection. Deletion of IL-1 didn’t
protect against HI, but administering IL-ira, an inhibitor of IL-1 protects the neonatal
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brain against HI. Depending on the dosage and concentration, IL-13 can be neuroprotective
in nature (Bernardino et al. 2005). IL-1 3 is upregulated 2 hr after pilocarpine-induced SE in
the piriform cortex, hippocampus and neocortex. However, the concentration returned to
basal levels after 5 days (Arisi et al. 2015).

IL-6 is a pro-inflammatory cytokine and has an increased level in the hippocampus, DG,
amygdala, and meninges after seizures, however, IL-6 messenger RNA (mRNA) level is
limited to the hippocampus (Li et al. 2011). In limbic SE models, it has been found that both
IL-6 mRNA and IL-6 protein levels were increased in glial cells 6h after SE (Vezzani et al.
2002). Some studies showed that mice lacking IL-6 develop severe brain injuries, while
others showed that mice which overexpressed IL-6 develop neurologic syndromes.

IL-10 acts by inhibition of IL-1, TNF-a, and IL-6, and is an anti-inflammatory cytokine
(Ledeboer et al. 2000; Zhai, Futrell, and Chen 1997; Heyen et al. 2000). Studies have shown
that IL-10 is neuroprotective against glutamate-induced or HI-induced neuronal death. Li et
al have demonstrated that IL-10 has anti-convulsant properties (Li et al. 2011), and another
study by Levin and Godukhin has shown that they have protective effects against the
development of epileptiform activity (Levin and Godukhin 2007).

(b) Chemokines

They are a family of cytokines but are smaller in size (8-14 kDa) and have
chemoattractant properties (Bernardino et al. 2005) that guide them towards the
chemokine. They are either pro-inflammatory or homeostatic and are involved in controlling
cell migration, proliferation, and differentiation and attract inflammatory cells and
leukocytes to the injury spot. They bind to cell surface receptors which are coupled with G-
proteins to exert their biological activity (Bernardino et al. 2005). They have recently been
described in the CNS and are upregulated during inflammation (Bernardino et al. 2005).
Previous studies have shown the involvement of chemokines in epilepsy: (a) there is an
increased release of Monocyte Chemokine Protein-1 (MCP-1) by NMDA-induced neuronal
death from astrocytes (Minami and Satoh 2003); (b) in pilocarpine-induced seizures, MCP-1
mRNA levels were seen to be upregulated (Turrin and Rivest 2004); and (c¢) upregulation of
CCR5 in neuronal and non-neuronal cell types by kainate-induced seizures (Mennicken,
Chabot, and Quirion 2002). In ischemic brain injury, MCP-1 production is reduced.
However, increased MCP-1 levels have been associated with brain injury. It has been shown
that there is an upregulation of CCL3 and CCL2 in the neocortex, hippocampus, and
piriform cortex in pilocarpine-induced seizures (Arisi et al. 2015). CCL5 was also found to be
upregulated after 24 hr in the neocortex and piriform cortex in pilocarpine-induced SE
(Arisi et al. 2015).
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1.5 Toll-like receptors

The immune system is classified into either innate or adaptive immunity. Innate
immunity is activated during birth and helps to combat pathogens, while adaptive immunity
(acquired immunity) is limited to vertebrates. The innate immune system includes TLRs,
which are transmembrane proteins initially discovered in Drosophila Melanogaster. It
helps in the developmental process and is responsible for controlling functions like
synaptogenesis and axon path-finding (Stein et al. 1991; Rose et al. 1997). Pathogen-
associated molecular patterns (PAMPs) or damage- (or danger-) associated molecular
patterns (DAMPs) activate the TLR signaling pathway. In humans, 11 TLR paralogues have
been recognized, while in other mammals 13 TLR paralogues have been recognized
(Hopkins and Sriskandan 2005). The presence of TLRs is not just confined to the peripheral
immune system where they are abundantly expressed, but also to immunological functions
and CNS injuries (Lehnardt 2010; Visser et al. 2006). TLRs are expressed in mammalian
immune cell types like B cells, mast cells, dendritic cells, neutrophils, and basophils. Also,
they are present in non-immune cells such as epithelial and endothelial cells (Okun,
Griffioen, and Mattson 2011).

1.5.1 Toll-like receptor signaling pathway

TLRs are classified according to their cellular distribution. TLRs 1, 2, 4, 5, 6, 8, 9, 11, 12,
and 13 are expressed on the cell surface, while TLRs 3, 7, 8, and 9 are present in the
intracellular compartments. Pattern recognition factor (PRR) is a primary component of the
innate immune system and recognizes both PAMPs and DAMPs. Microbial membrane
components like proteins and lipids are identified by TLRs present on the cell surface,
whereas bacteria and virus-derived nucleic acids are identified by endosomal TLRs (e€TLRs)
(Kawasaki and Kawai 2014). TLR3 detects viral double-stranded RNA (dsRNA) formed
during the replication process of a positive-stranded RNA virus, small interfering RNAs
(siRNAs), and self-RNAs extracted from damaged cells (Kawasaki and Kawai 2014). TLR4
detects lipopolysaccharides (LPS), which are major components of gram-negative bacteria
(Maroso et al. 2010). TLR7 recognizes single-stranded RNA (ssRNA) and is expressed in
plasmacytoid dendritic cells (DC) (Kawasaki and Kawai 2014). TLR9 recognizes non-
methylated CpG-dinucleotides, which are present abundantly in microbial DNA compared
to mammalian DNA (Latz et al. 2004). Initially, TLR9 was thought to recognize microbial
DNA, but recent research has shown that it can also identify self-DNA as a DAMP and is
involved in numerous autoimmune diseases (Matsuda et al. 2015).

All the TLRs bind to adaptor proteins, among which MyD88 and TRIF are the essential
adaptor proteins required for activating the intracellular pathway and releasing the
inflammatory response in the immune cells. Additionally, there are three other adaptor
proteins, Toll-like receptor adaptor molecule 1 (TICAM1), Translocation associated
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membrane protein (TRAM), and sterile-alpha and Armadillo motif containing protein
(SARM) (Matin et al. 2015).

TLR3 is the only TLR which does not recruit MyD88, while all other TLRs recruit MyD88
followed by Interleukin-1 receptor-associated kinase (IRAK) protein family, thus leading to
TNF receptor-associated factor 6 (TRAF6) activation. TRAF6 activates TAK1 by linking k63-
linked polyubiquitination, which is followed by activation of Nuclear Factor kappa-light-
chain-enhancer of activated B cells (NF-«B) by employing IkB Kinase (IKK) complex or
MAP-kinases, respectively. TLR3 wuses a TIR-domain-containing adapter-inducing
interferon-B (TRIF) dependent pathway leading to activation of inflammatory cytokines and
type-1 interferons by two independent pathways. Whereas the TRIF N-terminal associates
with TRAF6, the C-terminal interacts with RIP1 activating transforming growth factor-beta-
activated kinase 1 (TAK1). Both these pathways end up enabling NF-xB and help in the
expression of inflammatory cytokines. TLR3 activates type-1 Interferons (IFNs) using
Interferon regulatory transcription factor (IRF)-3, a phosphorylated protein activated by the
IKK-related kinases, and TBK1, which is recruited by TRAF3. The TLR4 signaling pathway is
split into MyD88-dependent and -independent pathway. TRAF6 and Interlukin-1 receptor
associated kinase-4 (IRAK-4) are essential for the MyD88 dependent pathway while the
MyD88 independent pathway employs TRIF, IRF-3, and NF-xB. On the other hand, TLR7
and TLR9 secrete inflammatory cytokines using MyD88, and both of them can also secrete
type 1 IFNs by activation of IRF7 (Zhu and Mohan 2010) (Figure 3).
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Figure 3: Toll-like receptor signaling pathway. TLR 3, 7, 8 and 9 are endosomal TLRs and bind to
microbes or nucleic acids whereas the other TLRs are located on the cell surface and bind to their
respective ligands. TLR4 is an exception which localizes both at the plasma membrane and
endosomes. Only TLR3 follows a MyD88 independent pathway, whereas other endosomal TLRs
follow a MyD88 dependent pathway. The TLRs activate NFkB, CREB, IRFs by using and activating
other intermediary pathways. The figure has been adapted from O’Neill, 2013 (O'Neill, Golenbock,
and Bowie 2013) with permission from the publishers.
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1.5.2 Toll-like receptor function

The adult brain (B. B. Mishra, Mishra, and Teale 2006; Bsibsi et al. 2002), as well as
different cell types, express TLRs (Mallard, Wang, and Hagberg 2009). At Po and P8
embryonic stages TLR3 is highly expressed, but expression decreases at later developmental
stages (embryonic, postnatal, and adult stages). TLRs 7 and 9 are strongly expressed during
different stages of development, while the other TLRs don’t show significant differences
during development (Kaul et al. 2012). TLRs 7 and 9 mRNA levels were detected by in-situ
hybridization and qPCR in different brain regions of the mouse including the hippocampus
and the neocortex (Kaul et al. 2012). TLR7 is increased prenatally in CNS neurons and axons
of the developing brain (Kaul et al. 2012). TLR8 is involved in injury and neurite outgrowth
(Ma et al. 2006), whereas TLRs 2 and 4 are involved in adult neurogenesis. (Rolls et al.
2007; Okun et al. 2010). TLRs also play a pivotal role in developmental and adult stages of
life, for example, TLR3 is involved in inhibiting neural progenitor cell proliferation and
regulates axonal growth (Lathia et al. 2008; Cameron et al. 2007).

TLR3 is prevalent in the CNS (Alexopoulou et al. 2001) and is expressed in glial cells
(Jack et al. 2005; Farina et al. 2005), neurons, and in neurodegenerative disorders (Préhaud
et al. 2005; Jackson, Rossiter, and Lafon 2006). TLR3 is found intracellularly in neuronal
cells (Jack et al. 2005; Préhaud et al. 2005; Jackson, Rossiter, and Lafon 2006), whereas in
non-neuronal cells (Dendritic or Epithelial Cells) it is found in intracellular compartments
(Ménager et al. 2009) or multivesicular bodies (MVBs) (Matsumoto et al. 2003; Jack et al.
2005). The high expression of TLR3 can be associated with neuronal injury or viral
infection. TL3 function is not limited to innate immune response, as it inhibits axonal
growth in neurons. TLR7 doesn’t elicit inflammatory, thermal, mechanical, and neuropathic
pain in mice but is expressed in dorsal root ganglion (DRG) neurons, where it induces itch
sensation by using non-histamine pruritogens (Okun, Griffioen, and Mattson 2011). They
are involved in protection against infections like encephalitis mediated by West Nile Virus
and herpes simplex virus (HSV), and also in the pathogenesis of influenza virus. TLR9
doesn’t have any effect on neuronal viability (Okun, Griffioen, and Mattson 2011). Activation
of TLR9 has an effect on spatial learning and memory, and TLR9 also plays a role in
stimulating antiviral activities to protect against HSV (Sgrensen et al. 2008) and doesn’t
play any role in ischemic stroke outcome (Hyakkoku et al. 2010).

1.5.3 Toll-like receptors in epilepsy

TLRs were first reported in epilepsy by Turrin and Rivest (Turrin and Rivest 2004) by
studying hippocampal levels of pro-inflammatory transcripts in a mouse model of
pilocarpine-induced SE in which increased levels of TLR2 were reported. TLR expression
has been found to change during epileptogenesis and chronic epilepsy, but all the literature
has been limited to the expression of either TLRs 2 or 4, which are expressed on the cell
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membrane. TLR3 is involved in seizures, and its involvement has been shown by the
interaction of febrile seizures due to viral infection, and the viral PAMPs interact with TLR 3
(Matin et al. 2015).

In focal cortical dysplasia (FCD), a common cause of medically refractory epilepsy in
newborns (Kabat and Kro6l 2012), human specimens have also shown an increase in mRNA
expression of TLRs 2 and 4 and also associated with high-mobility group box protein 1
(HMGB1). TLR3 has functions in neurogenesis, neuronal plasticity, immunity, cognition,
and embryonic neural progenitor cells, but doesn’t play any role in protection against
ischemic stroke and neurodegenerative disorders (Okun, Griffioen, and Mattson 2011).
According to recent studies, TLR3 deficiency in a pilocarpine mouse model decreases
epileptogenesis (Gross et al. 2017).
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2. Aims

Previous studies have shown the involvement of TLRs in brain injury, both in response to
injurious and non-injurious stimuli. The role of TLRs has also been studied in epilepsy.
However, all the data has been limited to TLRs 2 and 4. Only a few studies have shown the
role of endosomal TLRs in epilepsy. The overall aim of this thesis was to study the role of
endosomal TLRs, associated cytokines and chemokines, and intracellular signaling
pathways in epileptogenesis and chronic epilepsy.

Specific aims were:

¢ To study the expression and regulation of endosomal TLRs in the hippocampus in
epileptogenesis and chronic epilepsy.

¢ To study the expression of associated cytokines, chemokines, and downstream signaling
pathways.

¢ To study the role of activation of endosomal TLRs in preventing epilepsy.
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3. Methods
3.1 Animals

Male Sprague-Dawley (SD) rats were used for all the experiments. The animals weighed
in the range of 318-344 g. They were housed in an on-site animal facility (21-25°C; 31-47%
humidity) and were provided with a 12:12 light/dark cycle with access to ad libitum food and
water. The animals were treated in accordance with the guidelines of the European
community (EUVD 86/609/EEC). All experiments were approved by the local regulation
authority (Regierungsprasidium GieBen (MR 20/15 Nr. 56-2014), Germany).

3.2 Animal models

(a) Perforant Path Stimulation (PPS) model

All surgeries were performed in a stereotaxic apparatus (David Kopf) under anesthesia
(3-5% in oxygen). Bipolar stimulating electrodes were implanted bilaterally in the perforant
path. The rats were implanted with unipolar recording electrodes and stimulated, whereas
the control rats were implanted with electrodes but were not stimulated. After electrode
implantation, the rats were transferred to the home cage with access to ad-libitum food and
water for a week to recover from surgery. Rats were either stimulated for 8 h or 30 min
using the PPS model.

(b) Kainate Lorazepam (KaL) model

Rats were administered 15 mg/kg Kainic acid monohydrate (10 mg/ml in phosphate
buffer saline (PBS) Milestone Pharmaceuticals, USA, CM-0100) and 0.25 mg/kg lorazepam
(Pfizer, Germany), while the control rats received a single dose of 1 mg/kg lorazepam and
PBS, subcutaneously (Kienzler-Norwood et al. 2017). The animals were transferred to the
home cage after injections.

3.3 EEG transmitter implantation

EEG data was obtained by screws fitted on top of the cerebrum surface. Reference ground
was always a screw located caudal and medial to the recording site and was not over the
hippocampus. The wireless transmitters (FT20, Data Science International, USA) were
implanted subcutaneously in the rats. Spontaneous EEG activities were recorded using
LabChart 7 Software (ADInstruments, New Zealand), and the behavior was recorded using
Edimax IC-7110W infrared cameras (Taiwan). Both the EEGs and animal behaviors were
recorded continuously (24/7). The EEG activities were stored digitally in 3-hour periods,
and the video files were captured at 15 frames/sec and time stamped to match the EEG data
using Security Spy Surveillance Software (Ben Software, UK).
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3.4 EEG analysis

All EEG files were reviewed manually, and all events with amplitudes >120% of baseline
were analyzed.

3.5 Perfusion

Animals were transferred to a transparent box containing Isoflurane and received an
overdose of Ketamine (> 100 mg/kg i.p.). The rats were perfused with 0.9% saline, either
with or without 4% Paraformaldehyde (PFA). The animals were sacrificed after 4 or 14 days
(epileptogenesis group) or 20 weeks (chronic epilepsy group).

(a) Saline perfusion

The animals were perfused through the aorta for 2 min to remove intravascular blood.
The Brain was removed from the skull and the hippocampi were microdissected, frozen on
dry ice, and stored at -80°C until RNA or protein extraction.

(b) PFA perfusion

The animals were initially perfused with 0.9% saline for 2 min through the aorta to wash
off the intravascular blood, followed by 8 min perfusion with PFA. Brain was removed from
the skull and transferred to 4 % PFA and stored at 4°C until sectioned on a cryostat.

3.6 RNA extraction and qPCR

RNA was extracted, cDNA was synthesized from the extracted RNA, and qPCR was
performed as described in paper II (Sadangi, Rosenow, and Norwood 2017).

3.7 Sample preparation for ELISA

The left hippocampi from the saline perfused rats were homogenized using 1 ml of 1x
Phosphate Buffer Saline (PBS) mixed with 10 pul of Halt Proteinase Inhibitor Cocktail
(Thermo Scientific, Germany, 87785), using the mechanical pellet pestle. The homogenate
was then centrifuged at 13,000g for 20 min at 4°C(Do Young Kim et al. 2012), the
supernatant was transferred to a fresh tube, and the pellet was stored at -80°C.

3.8 ELISA
A multi-analyte ELISA was performed using the Qiagen Multi-Analyte ELISArray Kit
(Qiagen, Germany, 336161) which analyzed eleven cytokines and one chemokine as

described below. Quantitative ELISA was performed for five cytokines and one chemokine
using Kkits from Peprotech, Germany (ELISA Buffer Kit — 900 — M109; IFN y — 900-M109;
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IL6 — 900-M86; IL2- 900-M205; IL1 — 900- M91; and CCL5 — 900- M72). For the
quantitative ELISA, the samples were diluted in a 1:5 ratio using the sample buffer provided
with the Peprotech kit (Peprotech, Germany).

(a) Multi-Analyte ELISA

The cytokines and chemokines that were detected using this kit were IL1A, IL1B, IL2, IL6,
IL10, IL12, IL13, IFN-y, TNF-a, GM-CSF, and RANTES (CCL5). For the analysis, samples
from 4- and 14 days epileptogenesis group were used. On a 96-well pre-coated antigen plate,
the upper and lower rows (A & H respectively) were used as negative and positive controls
respectively. 50 ul of Assay Buffer was added to the entire plate followed by adding 50 pl of
samples to the rows B-G and was incubated for 2 hours. The plate was washed three times,
and 100 pl of detection antibody was added and was further incubated for 1 hour. The plate
was again washed three times, and 100 ul of Avidin was added, and incubated for 30 min,
followed by four washes. 100 pl of development solution was added to the plate and
incubated for 15 min in the dark, and 100 pl of stop solution was added to stop the reaction.
The plate was read at 450 nm using a Spectral Plate Reader (Thermo Electron, Multiskan,
Germany), and raw optical density (OD) values were obtained using the Ascent Software
(Thermo Scientific, Germany). All the plate washes were performed using the Wash Buffer
provided with the kit, and all incubations were carried out at RT.

(b) Quantitative ELISA

The ELISAs were performed over two days. On day 1, the capture antibody was diluted in
PBS, and 100 pl of capture antibody was added to a 96-well plate. The plate was sealed using
a sealing film in an aluminum foil, and incubated overnight at RT. On day 2, the capture
antibody was aspirated, and the plate was washed four times and was incubated with
blocking buffer for 1 hr. The plate was washed four times, and standards were added for
either one of the cytokines or chemokine (mentioned above), and then the samples were
added to the plate in duplicates along with a positive control. The plate was incubated for 2
hr before adding the detection antibody and further incubated for 2 hr at RT. The Avidin-
HRP conjugate was diluted and added to the plate and incubated for 30 min, after which
100 pl of ABTS substrate was added to the wells and incubated at RT until the color changed
to green. The plate was read at 405 nm using Spectral Plate Reader, and raw ODs were
obtained using the Ascent Software (Thermo Fisher Scientific, Germany).

3.9 Sample preparation for Western Blots

Western Blots were performed to measure TLRs 3 and 7 protein expression changes in
chronic epilepsy groups. Animals were perfused with saline, as described before, and the
hippocampi were extracted. 1 mL of RIPA buffer was added to the hippocampi, also, to halt
protease inhibitor and homogenized using the mechanical pellet pestle. The amount of
protein present was measured using a Bicinchoninic acid assay (BCA) kit (Thermo Fisher,

26



Methods

Germany, 23327), and Laemmli buffer was added to the samples in a ratio of 4:1 and heated
at 95°C for 5 min. The samples in Laemmli buffer were stored at -20°C. The samples were
re-heated at 95°C for 5 min before loading onto the gel.

3.10 Coomassie staining

Coomassie staining shows the presence of proteins as blue bands on a transparent
background. 8-12% gels were prepared, and the samples in Laemmli buffer were loaded onto
the gel. An SDS-PAGE was run for the samples for 90-100 min. The gel was then carefully
transferred to a container filled with distilled water and washed for 5 min with gentle
agitation. The distilled water was then discarded, and fresh staining solution was added. It
was then agitated slowly on a shaker for 60 min at RT. This was followed by washing the gel
with distilled H-O briefly, and was further destained with a fast destaining solution for 1-2
hr. The gel was then transferred to a slow destaining solution, and was agitated overnight at
RT. The following day the gel was observed for the presence of blue bands on a transparent
background. If there was a high background, the gel was further destained in fast destaining
solution until the background became transparent. The gel was given a brief wash with
distilled H.O to get rid of the excess destaining solution, and it was packed between plastic
membranes and scanned on a flat-bed scanner to obtain a digital copy.

3.11 Western Blots

20ug of samples were loaded onto an 8-12% SDS-PAGE gel. The SDS-PAGE gel was run
for 120 minutes, post which it was transferred to a Polyvinylidene fluoride (PVDF)
membrane and sandwiched between sponges and filter paper, and was blotted for 9o
minutes at 9o V. After disassembling the blot, the membrane was stained with Ponceau
staining for 2-3 min, or until the protein bands could be seen. The membrane was then
bathed several times with distilled water to wash off the Ponceau staining, followed by
blocking with 5% milk in TBS-T at 4°C overnight. TLR3 (Novus Bio, NBP2-24565, Germany,
1:2000), TLR7 (Novus Bio, NBP2-24906, Germany, 1:2000), or ACTB (Sigma-Aldrich,
A5316, Germany) primary antibody was added to the membrane and incubated for 1 hr at
RT. The primary antibody was collected, and the membrane was washed with TBS-T,
followed by incubating the membrane in anti-mouse (Calbiochem, 1: 20,000) or anti-rabbit
(Calbiochem, 1: 20,000) secondary antibody for 1 hr. The membrane was washed with TBS-
T to wash off the secondary antibody, followed by a short wash with TBS. ECL reagent (GE
Healthcare, Amersham, Germany, RPN 2232) was added to the membrane and incubated
for 5 min with gentle shaking for TLRs, while a homemade ECL reagent was used to
incubate the ACTB membrane for 3 min. The membrane was transferred to a Hypercassete
(Amersham, Germany, RPN 1642) and developed in the dark room. Quantification of the
blot was done using ImageJ.
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3.12 siRNA

Small Interfering RNA (siRNA) was used to knockdown TLR 3 and 7 mRNA. siRNA
sequences were ordered from GE Dharmacon, Netherlands.

a) Pilot study

A pilot study was conducted to verify the knockdown (KD) effect of TLRs 3 and 7. Rats
received an intracerrebellar ventricle (i.c.v.) injection using a single 28-gauge stainless steel
injection cannula (define coordinates) of Accell siRNA (5ug/rat) in sul of Accell siRNA
delivery media (GE Dharmacon, Netherlands, B-005000-100), at a rate of 1 ul/min in a 10
ul microsyringe(Nakajima et al. 2012). The rats received 5 ug of TLRs 3 and 7 in the right
and left hippocampi respectively. After the injection, the cannula was left in place for
additional 5 min and was removed slowly. The skin was closed using a clip applier (Reflex
Clip Applier, USA, 204-1000), and the rats were transferred to the home cage with access to
ad-libitum food and water. The animals were sacrificed by saline after 2, 4, and 7 days to
assess the maximum knock-down time point. RNA was extracted from the hippocampi and
qPCR was performed as described earlier.

b) TLR 3 and 7 Knockdown

After concluding the time point at which the TLR KD was maximum, rats were injected
bilaterally with 5 pl of either TLRs 3 or 7 in the right and left hippocampi as described
above. The rats were implanted with EEG transmitters (as described above) and were
transferred to the home cage with access to ad-libitum food and water. After four days, the
rats were injected with a dose of kainate and lorazepam (as described earlier) and monitored
for seizure activity for three weeks.

3.13 Statistics

All statistical analyses were done using Graphpad Prism, Version 7.0 a (La Jolla,
California, USA) for Mac. All data are presented as mean + Standard Error of Mean (S.E.M).
The t-tests were done using two-tailed tests. * represents p < 0.05; ** represents p < 0.005;
and *** represents p < 0.0005. For the ELISA data, raw OD values were entered into
GraphPad, and the values were converted to log-format before analyzing, using the
Sigmoidal 4PL parameter. The log values were converted back to the base and were
multiplied by the dilution factor to get values for the unknown in pg/ml.
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4. Summary of papers
4.1 Paper I: A novel animal model of acquired human temporal lobe epilepsy based on
the simultaneous administration of kainic acid and lorazepam

Friederike Kienzler-Norwood, Lara Costard, Chinmaya Sadangi, Philipp Muller,
Valentin Neubert, Sebastian Bauer, Felix Rosenow, and Braxton A. Norwood

The objective of this paper was to develop a simple animal model of temporal lobe
epilepsy (TLE) that avoids caveats associated with traditional models. We used kainic acid
(KA) to induce epilepsy and avoid convulsive status epilepticus (cSE). ¢SE is a condition that
can occur with extended or repeated tonic-clonic seizures, and can lead to long-term
injuries. cSE is also associated with problems like variability and mortality, and without
pharmacological treatment it can be fatal. Kainate, a glutamate agonist, is a commonly used
chemoconvulsant to model human TLE in rodents. It initiates seizures by activating kainate
receptors (KAR) or AMPA receptors. KA was first used as a model of epilepsy by Ben-Ari
and colleagues (Y Ben-Ari et al. 1979), where they did recurrent intra-amygdaloid KA
injections to induce seizures. We show a list of different KA models of epilepsy in Table 1 of
this publication (Kienzler-Norwood et al. 2017).

In this paper, we described a novel method for inducing epilepsy in the animals by using
KA and lorazepam. Lorazepam is a benzodiazepine used to terminate cSE. We injected a
single dose of KA subcutaneously with a single lower dose of lorazepam. The lorazepam dose
was lower than what is used to stop cSE.

We recorded video-EEGs, which showed that animals that received less lorazepam
developed more neurodegeneration and vice versa. A low dose of lorazepam blocked kainate
induced convulsive seizures in the animals, but had no effect on the hippocampal seizure
activity (Kienzler-Norwood et al. 2017). We also quantified hippocampal neurodegeneration
using Fluoro-Jade-B staining, and the mossy fiber sprouting using Timm staining (Figure
2). Mossy fiber sprouting in the dentate gyrus (DG) is a pattern of synaptic reorganization
(Dudek and Shao 2004). It develops in human and animal models of TLE.

Our study shows that c¢SE is blocked by an inadequate dose of lorazepam, but acute
hippocampal seizures, neurodegeneration, or epileptogenesis are not blocked by the same.
The advantage of this model is its simplicity of use. Previous kainate models required
repeated administration; hence the animals needed more attention and care. Our model is
based on a single dose of KA and lorazepam, thus avoiding cSE. Therefore, the animals do
not need additional or post-operative care. This model shows the same characteristics as
acquired mesial TLE, hippocampal sclerosis, and spontaneous hippocampal-onset seizure
after a prolonged seizure-free period.
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Our study shows that a single dose of KA with a low dose of lorazepam can induce
characteristics of mesial TLE in rats while avoiding cSE. In conclusion, this is a simple
protocol for inducing epilepsy where acute hippocampal seizures are self-terminating, and
there is a lack of morbidity and mortality. Due to the ease of use of this model, it will be
useful in studies related to elucidating the mechanisms of epileptogenesis and ictogenesis.
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4.2 Paper II: Validation of Reference Genes for Quantitative Gene
Expression Analysis in Experimental Epilepsy

Chinmaya Sadangi, Felix Rosenow, and Braxton A. Norwood

The objective of this paper was to identify (novel) reference genes for
quantitative real-time polymerase chain reaction (QPCR) data normalization in
two different models of epilepsy. Previous studies have used either one or multiple
invalidated reference genes for quantifying gene expression normalization. Ours
was the first study to systemically evaluate and validate reference genes in
experimental epilepsy using rat models in epileptogenesis and chronic epilepsy. In
this paper, I described novel reference genes that are more stably expressed
(NONO, RP2), instead of those that are commonly used (GAPDH, HPRT1) in
epilepsy studies.

Reference genes play a role in the core maintenance of cellular and molecular
structure or function. They are used to determine the expression of the genes of
interest (GOI) because they are supposed to be stably expressed across
experimental conditions. Normalizing data from gene of interests to reference
genes is important to understand the amplification efficiency, cDNA loading
differences, and comparison of GOI in different samples. In various experimental
models the reference genes vary; therefore, it is crucial to validate them before
using them for the normalization of qPCR data.

The first model was a perforant path stimulation (PPS) model, where the
animals were stimulated for either 8 h or 30 min. The 8 h stimulation model
induced hippocampal sclerosis, and onset of epilepsy that occurred after two to
three weeks. The 30 min PPS model did not induce epilepsy or
neurodegeneration. The second model used was a Kainate-lorazepam (KaL) model
(Kienzler-Norwood et al. 2017), as described in Paper I. All animals were
sacrificed after 4- and 14- days post-PPS or KaL injections. An additional group of
the KaL animal model was sacrificed 20-weeks post-injection (chronic epilepsy

group).

I selected 15 candidate reference genes used in prior epilepsy studies, other
rodent disease models and model organisms. In addition, I used some novel
reference genes like NONO, RP2, and RPLP1, which were never used earlier in
experimental epilepsy studies. I obtained the nucleotide sequences from NCBI and
Rat Genome Database (RGD), designed the primers using the online software
primer3plus, and verified for secondary structures. The candidate reference genes
are given in the paper. Primer sequences for all the candidate reference genes are
provided in the Supplementary files of this paper. An r2 value was obtained for
each primer pair to determine its efficiency.
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I used four different algorithms to identify the most stable reference genes:
geNorm, NormFinder, BestKeeper, and Delta-Ct. These algorithms determine the
stability of genes, calculate expression stability, and provide a minimum number
of reference genes to be used for normalization. I have provided all the necessary
information about the algorithms in this paper and performed all the experiments
according to the Minimum Information for Publication of Quantitative Real-time
PCR (MIQE) guidelines. These guidelines promote transparency in the
experiments and help in facilitating replication of experiments.

I found that each algorithm gave a different set of stable reference genes. To
reach a consensus, I calculated a comprehensive ranking by taking the geometric
mean of individual ranking provided by the four algorithms. Lastly, I used TLR4
to evaluate the most stable and unstable reference genes in different models of
epilepsy (Figure 2).

Reference genes were systematically evaluated in two different animal models
of epilepsy, at various time points and using four different algorithms. According
to a few previous studies, reference genes can vary between animal models of
disease. In addition to confirming this finding, I also show that they can even vary
within a model — at different time points. I found that some commonly used
reference genes like GAPDH and PPIA were unstable, and a few novel reference
genes like NONO and RPLP1 were stable. Some stable reference genes remained
the same within models. For example, TFRC was stable in both epileptogenesis
and chronic epilepsy groups. I also found that some reference genes were common
to multiple models. For example, NONO was a stable reference gene for the 8-hr
PPS and chronic KaL groups. One limitation of this study was that I did not
evaluate potential reference genes in other models of epilepsy, or in other strains
or model organisms.

To summarize, I showed that reference genes could vary between different
models and different time points in the same model. I also studied the importance
of validation of reference genes before using them for qPCR normalization, and
found that a few novel reference genes (NONO, RP2, and RPLP1) were more
stable compared to commonly used ones (PPIA, GAPDH, and HPRT?1).
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4.3 Paper III: Role of endosomal toll-like receptors in epilepsy (In
preparation)

Chinmaya Sadangi, Stephan Bauer, Felix Rosenow, Philip Yu, and Braxton A.
Norwood

In paper III, I determined the endosomal Toll-like receptors (€TLRs) mRNA
expression changes in epileptogenesis and chronic epilepsy by using the perforant
path stimulation (PPS) and the KaL model. Epilepsy was induced in male
Sprague-Dawley rats by using the Kal. method described in Paper I (Kienzler-
Norwood et al. 2017), or by the PPS model described in Paper II (Sadangi,
Rosenow, and Norwood 2017). I measured the gene expression changes of TLRs 3,
7, and 9 by using qPCR. I also measured TLR4, which is upregulated during
epileptogenesis (Maroso et al. 2010) in both the animal models. I used the
validated reference genes obtained in paper II (Sadangi, Rosenow, and Norwood
2017) to normalize the qPCR data for both animal models. I found that the TLRs
(3, 7, and 9) and TLR4 are upregulated during epileptogenesis in both models. I
also measured the gene expression changes of the TLRs in chronic epilepsy and
found that they remain upregulated during the chronic phase, but with minor
divergences from the epileptogenesis phase.
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Figure 4: TLR expression during epileptogenesis at (a) 4 days and (b) 14 days post PPS
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In addition, I measured the mRNA expression changes of cytokines and
chemokines, which are part of the TLR signaling pathway. IL-1f, IL-2, IL-6, IL-10,
and TNFa were measured both during epileptogenesis and chronic epilepsy time
points using the KaL. model. A difference in gene expression at 4 and 14 days KaL
epileptogenesis was found. At 4 days, IL-2 and TNFa were significantly
upregulated, but at 14 days they were significantly downregulated compared to the
controls. IL-6 which was not expressed at 4 days, but was significantly
upregulated at 14 days compared to the controls. IL-1f and IL-10 were not
expressed at both time points. In the chronic phase, IL-13 and TNFa were
upregulated, and the other cytokines (IL-2, IL-6, and IL-10) were not detectable.
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Quantitative and qualitative ELISA was performed for cytokines and
chemokines to monitor changes in protein levels during epileptogenesis and
chronic epilepsy. A qualitative ELISA was carried out to measure protein
expression levels of different cytokines and chemokines, such as IL-2, IL-1p, IL-6,
IFN-y, and CCLs.
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Figure 7: Qualitative analysis of cytokines and chemokines in the KaL model of epilepsy

Protein expression changes of TLRs were measured for the chronic epilepsy
model by Western Blot analysis. Protein was extracted from the hippocampi and
analyzed for expression changes as described in the methods. The protein
expression changes were similar to the mRNA levels of TLRs, i.e. they were
upregulated in chronic epilepsy. Immunohistochemistry was also performed for
the TLRs to see the expression of TLRs in the hippocampal neurons.

Lastly, I knocked down TLR mRNA using siRNA to study the effect of TLR
inactivation on spontaneous seizures. In a pilot study, I determined the optimal
time point at which TLR knockdown efficiency was maximal post-siRNA injection
by using qPCR. I injected siRNA directly into the hippocampus and sacrificed the
animals at three different time points. Then I performed qPCR with RNA obtained
from hippocampus, and found that TLR knockdown was maximal at 4 days post
siRNA injection. In the treatment group, I injected the siRNA bilaterally, and after
4 days started monitoring the effect of knocking down TLRs on seizure frequency
in the KaL model. The animals were observed for 3 weeks, and I found that
knocking down the TLRs did not have any effect on epileptogenesis or seizure
frequency.
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To summarize, I showed that the endosomal TLRs are expressed during
epileptogenesis and chronic epilepsy and are present in the hippocampus. They
are upregulated during epileptogenesis and chronic epilepsy, along with a few
associated cytokines and chemokines. However, knocking down the TLRs does not
have any effect on seizure frequency, suggesting that they are not functionally
involved in epileptogenesis.  The reason for this could be that I used siRNA for
TLRs knockdown. siRNA has a low knockdown efficiency, and it may be degraded
by serum and tissue exonucleases (Lan et al. 2010). The siRNA oligonucleotides
are not capable of crossing the blood-brain barrier. However, they can help in
achieving enhanced levels of gene silencing, increased in vivo potency, and
enhanced plasma stability, with less side effects (Lan et al. 2010).
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5. Contribution to the papers and manuscripts

Paper I: A novel animal model of acquired human temporal lobe epilepsy based on
the simultaneous administration of kainic acid and lorazepam

Epilepsia, 58(2):222—230, 2017 doi: 10.1111/epi.13579

Friederike Kienzler-Norwood, Lara Costard, Chinmaya Sadangi, Philipp Muller,
Valentin Neubert, Sebastian Bauer, Felix Rosenow, and Braxton A. Norwood

F.K.N. and B.A.N. designed the experiments, analyzed the data and wrote the first
draft of the manuscript. L.C., C.S., P.M., V.N,, and S.B. assisted in the EEG analysis.
All the authors contributed in editing and proofreading of the manuscript.

Paper II: Validation of Reference Genes for Quantitative Gene Expression Analysis
in Experimental Epilepsy

Journal of Neuroscience Research (In press) doi: 10.1002/jnr.24089

Chinmaya Sadangi, Felix Rosenow, and Braxton A. Norwood

C.S. and B.A.N designed the experiments and analyzed the data. All the
experiments and data analysis were carried out by C.S. and C.S. wrote the first draft
of the manuscript. All the authors contributed in editing and proofreading of the
manuscript.

Paper III: Role of endosomal toll-like receptors (TLRs) in experimental epilepsy
In preparation

Chinmaya Sadangi, Stephan Bauer, Felix Rosenow, Philip Yu, and Braxton A.
Norwood

C.S. and B.A.N. designed the experiments and analyzed the data. C.S. carried out
all the experiment in the rat models. C.S. wrote the first draft of the manuscript. S.B.
and P.Y. provided the TLR 379 knockout mice. All the authors contributed in editing
and proofreading of the manuscript.
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SUMMARY

Objective: Kainic acid (KA) is a potent glutamate analog that is used to induce neu-
rodegeneration and model temporal lobe epilepsy (TLE) in rodents. KA reliably
induces severe, prolonged seizures, that is, convulsive status epilepticus (cSE), which is
typically fatal without pharmacologic intervention. Although the use of KA to model
human epilepsy has proven unquestionably valuable for >30 years, significant variabil-
ity and mortality continue to confound results. These issues are probably the conse-
quence of cSE, an all-or-nothing response that is inherently capricious and
uncontrollable. The relevance of cSE to the human condition is dubious, however, as
most patients with epilepsy never experienced it. We sought to develop a simple,
KA-based animal model of TLE that avoids cSE and its confounds.

Methods: Adult, male Sprague-Dawley rats received coincident subcutaneous injec-
tions of KA (5 mg) and lorazepam (0.25 mg), approximately 15.0 and 0.75 mg/kg,
respectively. Continuous video—electroencephalography (EEG) was used to monitor
acute seizure activity and detect spontaneous seizures. Immunocytochemistry, Flu-
oro-Jade B staining, and Timm staining were used to characterize both acute and
chronic neuropathology.

Results: Acutely, focal hippocampal seizures were induced, which began after about
30 min and were self-terminating after a few hours. Widespread hippocampal neu-
rodegeneration was detected after 4 days. Spontaneous, focal hippocampal seizures
began after an average of 12 days in all animals. Classic hippocampal sclerosis and
mossy fiber sprouting characterized the long-term neuropathology. Morbidity and
mortality rates were both 0%.

Significance: We show here that the effects of systemic KA can be limited to the hip-
pocampus simply with coadministration of a benzodiazepine at a low dose. This means
that lorazepam can block convulsive seizures without truly stopping seizure activity.
This novel, cSE-free animal model reliably mimics the defining characteristics of
acquired mesial TLE: hippocampal sclerosis and spontaneous hippocampal-onset sei-
zures after a prolonged seizure-free period, without significant morbidity, mortality,
or nonresponders.

KEY WORDS: Nonconvulsive status epilepticus, Benzodiazepine, Hippocampal
sclerosis.
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KEY POINTS

¢ Simultaneous administration of kainic acid and loraze-
pam reliably models TLE with hippocampal sclerosis
in rats

e Spontaneous, hippocampal seizures arise in this model
after 10-15 days

e Lorazepam can block cSE without stopping electro-
graphic seizures

Epilepsy is a chronic neurologic condition that is charac-
terized by recurrent, unprovoked seizures.' It is the most
common neurologic disorder, affecting approximately 1%
of the world population (approximately 65 million), with
~2.4 million new diagnoses annually.>* Temporal lobe epi-
lepsy (TLE), where seizures originate in the temporal lobe,
is the most common epilepsy syndrome, is often refractory
to treatment, and is thought to be caused by a brain insult.®
TLE is characterized by pronounced hippocampal atrophy
and limited extrahippocampal damage,> as well as seizures
that originate in the hippocampus and/or closely related
structures.®

Kainic acid (KA) is a glutamate analog that is used to
induce acute seizures and neurodegeneration, and to model
human TLE in animals, most commonly rodents.” KA was
first isolated from red algae (Digenea simplex) found in
tropical and subtropical waters.® It evokes seizures through
activation of kainate receptors, a type of ionotropic gluta-
mate receptor, and also through activation of AMPA recep-
tors, for which it is a partial agonist.” The original KA
model of epilepsy was developed by Ben-Ari and col-
leagues.'”!! In these initial studies, intraamygdaloid injec-
tions of KA were found to induce behavioral seizures and
neurodegeneration in the dorsal hippocampus, primarily in
the CA3 region. Since then, several KA-based models of
epilepsy have been developed (Table 1). The crux of these
models is the induction of a period of severe, prolonged sei-
zures, that is, convulsive status epilepticus (cSE), which is
typically fatal without pharmacologic intervention.'? Vari-
ous protocols have been developed with the goal of reducing
variability and mortality without preventing cSE and later
epilepsy, such as repeated low doses, which have been
somewhat successful'® (Table 1).

Despite the value of KA-based epilepsy models, which
have unequivocally contributed greatly to our understand-
ing of epilepsy, substantial drawbacks persist: high mortal-
ity (up to 50%), variable neuropathology, erratic latency to
spontaneous epilepsy (first seizures can occur weeks apart
in age-matched animals that received identical treatment),
and nonresponders (up to 50% of surviving animals never
exhibit spontaneous seizures).”'> Rather than attempt to
incrementally increase either the reliability or survivability
of cSE, we approached the problem from a different angle.
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Our aim was to develop a simple, robust animal model of
acquired TLE, based on KA, which closely and reliably
mimics the human condition, while avoiding ¢SE and its
complications. Herein we introduce a novel method, which
comprises a single dose of KA administered concurrently
with a single low-dose of lorazepam—a benzodiazepine that
is a first-line treatment for cSE'*—to adult Sprague-Dawley
rats.

METHODS

Animals

Male Sprague-Dawley rats (Harlan-Winkelmann,
Borchen, Germany), weighing approximately 330 g (range
318-344 g), were treated in accordance with the guidelines
of the European community (EUVD 86/609/EEC). All
experiments were approved by the local regulation authority
(Regierungsprasidium Gieflen). Rats were housed in an
on-site animal facility (21-25°C; 31-47% humidity) under
a 12:12 light/dark cycle with ad libitum access to food and
water.

Kainate + lorazepam administration

Single subcutaneous injections of 5 mg (equivalent to
14.5-15.7 mg/kg, depending on animal weight) kainic acid
monohydrate (K0250, 10 mg/ml in phosphate-buffered sal-
ine; Sigma-Aldrich, Germany) and 0.25-1.5 mg (approxi-
mately 0.75-4.5 mg/kg) lorazepam (2 mg/ml; Pfizer,
Germany) were administered under isoflurane sedation.
Rats were placed in an acrylic box containing 5% isoflurane
in oxygen until sedation was achieved (15-30 s), then
removed and placed on a clean table where the injections
were given. If electrodes and/or electroencephalography
(EEG) transmitters were implanted (see below), injections
were given after a recovery period of at least 4 days. Fol-
lowing injections, rats were housed in clear acrylic boxes
allowing free movement and visual observation.

Seizure monitoring (continuous video-EEG)

EEG data were acquired via either (1) recording elec-
trodes with tips located in the dentate gyrus (approximate
coordinates 2 mm lateral, 3 mm caudal to bregma, and
3.5 mm below the brain surface) or (2) screws with tips on
the brain surface. Reference ground was always a screw
located caudal and medial to the recording site and was not
dorsal to the hippocampus. Electrodes and ground screws
were connected to miniature wireless transmitters (FT20;
Data Sciences International, U.S.A.) that were implanted
subcutaneously on the animal’s flank. All surgeries were
performed in a stereotaxic apparatus (David Kopf) under
isoflurane anesthesia (3—5% in oxygen). Spontaneous activ-
ity was recorded continuously (24/7) and stored digitally
and automatically in 3-h epochs using LabChart 7 software
(ADInstruments, New Zealand) as described previ-
ously.'>1% All files were evaluated by at least two

Epilepsia, 58(2):222-230, 2017
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Table I. Common kainic acid (KA)-based epilepsy models

Model Advantages

Disadvantages References

Intracerebral KA
Intrahippocampal Induces severe hippocampal

sclerosis and spontaneous seizures

Intraamygdaloid Induces mild hippocampal sclerosis
and spontaneous seizures

Low nonresponder rate

Systemic KA injection
Intraperitoneal or
subcutaneous
Single injection

No surgical procedures

No brain damage, e.g., from cannulas

High throughput

Low costs (no expensive laboratory
equipment is necessary, e.g., stereotaxic)

Induces hippocampal sclerosis and
spontaneous seizures

Intraperitoneal No surgical procedures
Multiple low-dose No brain damage, e.g., from cannulas
injections Low nonresponder rate

Medium throughput

Low costs (no expensive laboratory
equipment is necessary, e.g., stereotaxic)

Induces hippocampal sclerosis and
spontaneous seizures

Causes convulsive SE that requires pharmacologic 2428

termination (e.g., benzodiazepine, ketamine)
Hippocampal injury is variable; extensive damage
to extrahippocampal regions
High nonresponder rate
Highly variable seizure rate
Elaborate and costly implementation
Results tend to be unique to each lab
Causes convulsive SE that requires
pharmacologic termination
(e.g., benzodiazepine, ketamine)
Hippocampal injury is variable; extensive
damage to extrahippocampal regions
(dose dependent)
Mortality + 55%
Elaborate and costly implementation
Results tend to be unique to the lab

29-36

No control over bioavailability of KA in the brain 303743

Amount of KA varies between animals
Causes convulsive SE that needs to
be terminated medically (diazepam, ketamine)
If SE is successfully induced, massive
extrahippocampal neuron loss occurs
as well as extensive bilateral gliosis, brain
edema and neuron loss in the piriform
and entorhinal cortices, olfactory bulb,
substantia nigra, thalamus, and mesencephalon
High variability in neuropathology
Up to 30% mortality
Nonresponders: 20-40% of surviving animals
No control over bioavailability of KA in the brain
Amount of KA varies between animals
Doses are given over several hours
and the amount of KA has to be
tailored to each animal, which requires
close monitoring
Mortality + 15%

13,46

experienced reviewers; at least one reviewer was blinded to
the treatment. Recordings were assessed visually, and all
events with amplitudes obviously larger than baseline were
analyzed. Simultaneous video monitoring used Edimax
IC-7110W infrared cameras (Taiwan). Video files were
captured at 15 frames/s and time-stamped for integration
with the EEG data using SecuritySpy surveillance software
(Ben Software, United Kingdom) and stored digitally.
Seizures were scored according to the Racine scale.'”

Perfusion fixation

Rats received an overdose of ketamine (>100 mg/kg,
i.p.) and xylazine (10 mg/kg, i.p.) and were then perfused
through the aorta with 0.9% saline for 90 s to remove
intravascular blood. This was followed by 8 min of aortal
perfusion with paraformaldehyde (4%) in 0.1 M phosphate
buffer (pH 7.4). Brains were immediately removed from the

Epilepsia, 58(2):222-230, 2017
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skull and placed in 4% paraformaldehyde solution for at
least 48 h before being sectioned (30 um) on a freezing
microtome.

Fluorescence and light microscopy

Nissl staining, Fluoro-Jade B staining, Timm staining,
and neuronal nuclear antigen (NeuN) immunocytochem-
istry were performed on the resultant sections as described
previously.'” Images were acquired with a DMI6000B
microscope equipped with a DCF360FX camera (Leica,
Germany). Figures were made with Photoshop CS6 soft-
ware (Adobe, U.S.A.), which was used to optimize contrast
and brightness, but not to change the image content.

Quantification of neurodegeneration
Fluoro-Jade B—positive neurons were counted in match-
ing Fluoro-Jade B-stained sections from the dorsal
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hippocampus (one section per animal) using the Count Tool
in Adobe Photoshop CS6.

Quantification of hippocampal area

The area of five matching, nonadjacent NeuN-immunos-
tained or Nissl-stained sections from throughout the dorsal
hippocampus was measured using the Adobe Photoshop
CS6 Extended Measurement feature to calculate the area
bounded by an irregular border, as described previously.’
Values were obtained for the entire hippocampus (excluding
the fimbria), dentate gyrus, and cornu ammonis. Group
means were compared using Student’s 7-test.

Quantification of mossy fiber sprouting, that is, Timm
staining

Five Timm-stained sections, equally distributed through-
out the dorsal hippocampus, were evaluated using the
Adobe Photoshop CS6 Histogram feature, which calculates
the mean gray value for a selected area. Color images were
converted to grayscale and inverted. The mean gray values
for 64 pixel® squares in the intermolecular layer were
recorded and averaged. Background was calculated from a
cell-free area in stratum radiatum and subtracted from the
intermolecular layer values. Group means were compared
using Student’s #-test.

RESULTS
Smaller lorazepam doses increase hippocampal
neurodegeneration
Various doses of lorazepam were evaluated

(0.25-1.5 mg/animal; approximately 0.75-4.5 mg/kg),
whereas the KA dose was kept constant (5 mg/animal;
equivalent to 14.5-15.7 mg/kg, depending on weight)
(n > 4 per group, n = 33 total). These doses of lorazepam
are far below what is typically used to terminate experimen-
tal SE in rodents (6-8 mg/kg). Although acute hippocampal
seizures were induced by KA at lorazepam doses of 1 mg
(n = 8) and 1.5 mg/animal (n = 5), neither neurodegenera-
tion nor later spontaneous seizures was detected. Animals
that received less lorazepam had more neurodegeneration
and vice versa (Fig. 1). By systematically reducing the
lorazepam dose, we found the optimal amount to be
0.25 mg/animal (approximately 0.75 mg/kg). An average of
565.4 + (standard deviation) 43.7 Fluoro-Jade B—positive
neurons were counted in dorsal hippocampus sections from
animals that were sacrificed 4 days after receiving 5 mg
KA and 0.25 mg lorazepam (n = 8), compared with
0.0 £ 0.0 in animals that received 5 mg KA and 1.0 mg
lorazepam (n = 8). Broken down into hippocampal
subfields, the mean values were 255.4 4+ 31.7 for CAI,
273.0 £ 29.1 for CA3, and 37 £ 7.7 for the hilus. During
the 24 h immediately following KA and lorazepam admin-
istration, as determined by continuous video-EEG moni-
toring, not a single animal in any group exhibited any
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convulsive seizures, let alone ¢SE (n = 33 total). At no time
did any animal exhibit signs of morbidity; the survival rate
was 100%.

Low-dose lorazepam blocks kainate-induced convulsive
seizures, but not hippocampal seizure activity

Following simultaneous, subcutaneous administration of
5 mg KA and 0.25 mg lorazepam (n = 8), aberrant electro-
graphic activity was detected within minutes and the first
hippocampal seizures after 3040 min, as determined with
electrodes located in the dorsal dentate gyrus. Epileptiform
discharging of hippocampal granule cells (Fig. 2) persisted
for at least 3 h in all animals, with an average of
3.3 + 0.4 h. During the treatment, seizure behavior was
limited to occasional wet dog shakes, which were observed
in some, but not all, rats. As seizures were self-terminating,
no additional lorazepam was administered. On the 3 days
following treatment, animals appeared and behaved nor-
mally. None presented with any sign of morbidity, for
example, >10% weight loss, jumpiness, or reduced mobil-
ity. Consequently, none required palliative care. Animals
that received 5 mg KA and 1.0 mg lorazepam exhibited an
average of 12 £ 7 min of hippocampal seizures (n = 5).

Spontaneous hippocampal seizures arise after a discrete
latent period

Continuous video-EEG monitoring revealed the first
spontaneous seizures, which were nonconvulsive, to occur
an average of 12.1 days after administration of 5 mg KA
and 0.25 mg lorazepam (n =5; range 10-15 days)
(Fig. 3A, video). Spontaneous seizures were detected in all
animals, were typically 45-60 s long (Fig. 2A), and
occurred at a frequency of 7.8 per animal per day during the
first two weeks of spontaneous epilepsy (Fig. 3B). Seventy-
two percent of seizures occurred during the light phase
(6:00 a.m. to 5:59 p.m.) (Fig. 3C). Intracerebral recordings
obtained from the dentate gyrus demonstrated hippocampal
involvement, for example, epileptiform discharging of gran-
ule cells (Fig. 2B). The corresponding, time-stamped video
files revealed no overt seizure-like behavior, rather only
freezing/staring. Later spontaneous seizures (>3 weeks
post-treatment) also included behavioral manifestation, for
example, mastication and forepaw clonus, corresponding to
stages 3-5 on the Racine scale'” (Videos S1 and S2). No
spontaneous seizures were detected in any rats that received
5 mg KA and 1.0 mg lorazepam (n = 4, 4 weeks continu-
ous video-EEG monitoring).

Neuropathology resembles (refractory) mesial TLE with
hippocampal sclerosis

Hippocampal neuropathology in this model closely
mimics that seen in a subset of patients with mesial
TLE whose seizures are refractory to drug treatment
(International League Against Epilepsy [ILAE] Type I'®).
In fact, ILAE Type I is the most common TLE pathology.

Epilepsia, 58(2):222-230, 2017
doi: 10.1111/epi.13579
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Untreated control

5 mg KA + 1 mg lorazepam

5 mg KA + 1/4 mg lorazepam

Figure 1.

Acute and chronic hippocampal neuropathology after systemic, concurrent administration of 5 mg kainate (KA) and lorazepam at either
| or 1/4 mg. (A) Fluoro-Jade B (FJB) staining, (B) NeuN immunoreactivity, and (C) Timm staining in the dorsal hippocampus from an
untreated control rat, demonstrating normal neuroanatomy. (D) FJB staining 4 days posttreatment (I mg lorazepam) showing no appar-
ent neurodegeneration. (E) NeuN-immunostaining 10 weeks posttreatment (I mg lorazepam) exhibiting apparently normal neu-
roanatomy. (F) Timm staining 10 weeks posttreatment (I mg lorazepam) confirms normal granule cell efferents, that is, lack of mossy
fiber sprouting. (G) FJB staining 4 days posttreatment (I1/4 mg lorazepam) showing widespread neurodegeneration in the dentate hilus,
CA3, and CAl. (H) NeuN-immunostaining 10 weeks posttreatment (1/4 mg lorazepam) reveals extensive neuron loss in the dentate
hilus, CA3, and CAl, that is, classic hippocampal sclerosis. (I) Timm staining |0 weeks posttreatment (1/4 mg lorazepam), demonstrating
aberrant reorganization of granule cell axons, that is, mossy fiber sprouting. Scale bar: 200 pum.

Epilepsia © ILAE

Acutely, following administration of 5 mg KA and
0.25 mg lorazepam, pyramidal neurons in areas CA3 and
CA1l were virtually wiped out, as were many neurons in
the dentate hilus (Fig. 1B). Long-term histology
(>2 months) revealed hallmarks of mesial TLE, such as
classic hippocampal sclerosis (Figs. 1D and 4A) and

DiScuUSSION

The present results demonstrate that a single dose of KA
administered concurrently with a low dose of lorazepam can
be used to dependably reproduce fundamental characteris-
tics of acquired human TLE in rats, while avoiding cSE and

mossy fiber sprouting (Figs. 1F and 4B). Compared with
control samples, atrophy was pronounced in the hippocam-
pus overall (—40.0 + 9.6% mm?), specifically the hip-
pocampus proper (—74.3 + 7.6% mm?), whereas the
dentate gyrus was enlarged by at least 34% in three of four
samples (all n’s =4, all p-values < 0.01). Although the
thickness of the granule cell layer was consistently
enlarged (124.7 £ 25.0% of control), a phenomenon
called “granule dispersion,” this expansion does not seem
to drive the overall enlargement seen in the molecular
layer (Fig. 1D).

Epilepsia, 58(2):222-230, 2017
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its associated problems, for example, significant variability
and mortality. The protocol is simple. Animals receive sin-
gle, simultaneous, subcutaneous injections of KA and lora-
zepam and require no additional treatment or care. This is
unlike cSE-based models that often require multiple injec-
tions and/or substantial palliative care.”'> The former is an
effort to maximize the number of animals that experience
¢SE and the latter to reduce mortality. The present results
suggest that the crux of animal models should not be the
induction of cSE, but rather of prolonged electrographic sei-
zure activity, since seizures do not always have a significant
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Hippocampal seizures, kainate-induced and spontaneous, recorded from the dentate gyrus in freely moving Sprague-Dawley rats. (A)
Fifty-eight seconds of activity, recorded 44 min after kainate and lorazepam administration (5 mg and 1/4 mg, respectively). (B) Eight
hundred milliseconds extract from panel A, demonstrating epileptiform discharging of hippocampal granule cells. (C) A rat’s first sponta-
neous (focal) seizure 10 days post-kainate (5 mg) and lorazepam (1/4 mg) administration (see also Video SI). Trace represents 58 s of
spontaneous activity. (D) Eight hundred milliseconds extract from panel C, showing epileptiform discharging of hippocampal granule cells.
Behavior during the spontaneous seizure was limited to staring; a few wet dog shakes were seen after the EEG signal returned to baseline.
Calibration bar: 2 mV in all panels; 4 s in Panels A and C, 55 msec in Panels B and D; sampling rate 2 kHz.
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behavioral component. In fact, human status epilepticus is
often nonconvulsive.'” Along these lines, terminating SE,
both in the laboratory and clinic, requires both adequate
treatment and EEG confirmation that seizures have stopped.
We have shown here that an “inadequate” dose of loraze-
pam can block cSE, but not acute hippocampal seizures,
neurodegeneration, or epileptogenesis.

A comparison to the present study is the repeated low-
dose KA model, which was thoroughly characterized by
Williams et al.?® Although that model is apparently robust
and reliable, the one presented here has some clear advan-
tages; the first is simplicity. Repeated administration
requires constant attention for several hours, each animal
needs individualized treatment, and much care must be
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taken to ensure that animals are not overdosed. Because our
approach is based on a single administration of KA, which
was effective in all animals, no additional attention is neces-
sary, and there is no need to titrate dosing for each individ-
ual animal. This ease of use, coupled with a lack of
significant variability, should facilitate the present model’s
implementation in experimental epilepsy studies.

The second advantage is a lack of cSE, which is actually
the crux of the low-dose model. Essentially, repeated doses
of KA are given until c¢SE is induced, which is then allowed
to persist for 3 h. Animals that survive cSE often require
significant care posttreatment. A recovery period of
several days is common, during which time animals may
not eat or drink normally. The present model avoids cSE

Epilepsia, 58(2):222-230, 2017
doi: 10.1111/epi.13579
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and its confounds, for example, morbidity and mortality,
nevertheless inducing hippocampal seizures lasting 3—4 h.
Presumably because cSE is avoided, animals do not require
any palliative care.

That later spontaneous seizures, but not the first, were
convulsive, could be indicative of progressing neuronal net-
work reorganization, for example, mossy fiber sprouting,
which takes weeks or months to complete.'>'®?! Such reor-
ganization could provide an aberrant pathway through
which early “sequestered” seizure activity can exit the hip-
pocampus and propagate to other brain regions. This might
explain why, despite the fact that all seizures involved gran-
ule cell discharging, only later seizures generalized.

Finally, there is an urgent need to implement novel mod-
els of epilepsy in order to (1) reveal new and different tar-
gets for intervention and (2) discover treatments that exploit
these novel mechanisms. Despite the advantages of newer
antiseizure drugs in the management of epilepsy, such as
fewer adverse drug interactions or hypersensitivity

Epilepsia, 58(2):222-230, 2017
doi: 10.1111/epi.13579
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Figure 3.

Characteristics of spontaneous
seizures after systemic, concurrent
administration of 5 mg kainate and
1/4 mg lorazepam. (A) Latency from
treatment to the first spontaneous
seizure as determined by continuous
video-EEG recording with electrodes
located in the dorsal dentate gyrus.
The mean time to epilepsy was

12.1 + (standard deviation) 1.7 days.
(B) Frequency of spontaneous
seizures. Animals exhibited an
average of 7.8 £ 5.1 seizures per day
during the first 2 weeks of
spontaneous epilepsy.

(C) Distribution of seizures during
the day (6:00-17:59) and night
(18:00-5:59). A majority of seizures
(72%) occurred during the day.

(D) Seizure behavior. All
spontaneous seizures that occurred
during the first 2 weeks
posttreatment were nonconvulsive.
Starting at week 3, convulsive motor
seizures were seen. Data are
presented as mean £ SEM; stages in
(B) are according to the Racine
scale,'” n’s = 5.
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reactions,”>?® their efficacy and tolerability has not

improved much over the last 25 years.”®> Consequently,
~30% of patients with epilepsy do not respond satisfactorily
to drug therapy, a figure that has also not budged during this
time.>* One reason for this persistent problem is that, with
very few exceptions, the same animal models have discov-
ered all antiseizure drugs.”® Therefore, we propose to
include novel animal models in the drug-screening reper-
toire, in an effort to discover substances targeting novel
epileptogenic and ictogenic mechanisms. The present
model could be of particular use in drug discovery efforts
focused on refractory TLE. Although the pronounced hip-
pocampal sclerosis exhibited by this model is seen in but a
minority of patients with TLE, this pattern of injury is
strongly correlated with drug-refractory epilepsy.

In summary, the present results demonstrate that a single
dose of KA administered concurrently with a low dose of
lorazepam can be used to dependably reproduce fundamen-
tal characteristics of acquired mesial TLE in rats, while
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four brains for each group; all p-values < 0.01.
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avoiding ¢SE and its inherent problems. The main features
of the “Kal. model” are the following: a simple protocol,
acute hippocampal seizures that persist for 3—4 h and are
self-terminating, substantial hippocampal neurodegenera-
tion, spontaneous hippocampal seizures after a 10-15 day
seizure-free period, and a lack of both morbidity and mortal-
ity. Due to this model’s reliability and ease of use, it is
expected to prove useful in studies on mechanisms of epilep-
togenesis (the development of epilepsy) and ictogenesis
(manifestation of individual, spontaneous seizures), as well
as drug discovery efforts focused on refractory epilepsy.
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1 | INTRODUCTION tion of kainic acid (Ben-Ari & Lagowska, 1978; Ben-Ari, Lagowska,

Tremblay, & Le Gal La Salle, 1979), or systemic administration of pilo-
Epilepsy is a chronic neurological condition that is characterized by carpine (Turski, Cavalheiro, et al., 1983; Turski, Czuczwar, Kleinrok, &
recurrent, unprovoked seizures (Thurman et al., 2011). It is one of the Turski, 1983).

world’s most common neurological disorders, affecting approximately

1% of the world population (~65 million) with around 2.4 million new Significance

diagnoses annually (Thurman et al, 2011). Temporal lobe epilepsy This is the first study on systemic evaluation and validation of

(TLE), where seizures originate in the temporal lobe, is the most com- reference genes in experimental epilepsy. We present novel

mon epilepsy syndrome, often refractory to treatment, and is thought reference genes that are more stably expressed than those most

to be caused by a brain insult (Chang & Lowenstein, 2003). TLE is char- often used. We also show that stable, appropriate reference

acterized by hippocampal atrophy and limited extrahippocampal dam- genes can vary between animal models and even within the

age as well as seizures that originate in the hippocampus and/or same animal model (at different time points). We also

closely related structures (Spencer & Spencer, 1994). TLE is most com- demonstrate that a minimum of two reference genes should be

monly modeled in rats by one of three methods: electrical stimulation used for normalization; most studies have used only one.

(Norwood et al., 2010; Sloviter & Damiano, 1981), systemic administra-

J Neuro Res. 2017;1-10. wileyonlinelibrary.com/journal/jnr © 2017 Wiley Periodicals, Inc. | 1
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Gene expression analysis is a standard approach for studying the
regulation of biological mechanisms under normal and diseased condi-
tions. A better understanding of the molecular mechanisms at play in
epilepsy is crucial for the development of novel therapeutics that cor-
rect culpable dysfunction. Quantitative real-time polymerase chain reac-
tion (gPCR) is the gold standard for gene expression analysis in small
quantities of tissue. Appropriate reference genes (formerly known as
housekeeping genes) are required in order to precisely and accurately
determine the expression of genes of interest (GOls) (Bustin et al.,
2009). The purpose of normalizing data to one or more reference genes
is to account for differences in the amount of cDNA (McCulloch, Ash-
well, O'Nan, & Mente, 2012) and efficiency of amplification (Vandesom-
pele et al, 2002), and to compare GOIls among different samples.
Reference genes are typically involved in the basic maintenance of cel-
lular structure and/or function. Irrespective of its role, reference gene
mMRNA should express at a constant level in all conditions, regardless of
cell cycle stage or age (Eisenberg & Levanon, 2013; Radoni¢ et al.,
2004). Reference genes vary widely across diseases and experimental
models (Bademci et al., 2010) but can be considered suitable if several
criteria are met (Chervoneva et al., 2010), the most important criterion
being stable expression. The expression of a reference gene cannot be
influenced by experimental conditions (Kozera & Rapacz, 2013).

Reference genes have been proposed in a few studies on human
and experimental epilepsy (Maurer-Morelli et al., 2012; Pernot, Doran-
deu, Beaup, & Peinnequin, 2010). There has, however, not been a sys-
tematic evaluation or validation of potential reference genes in any
experimental epilepsy model. The aim of this study was to discover ref-
erence genes for two rat models of epilepsy: 8-hr perforant pathway
stimulation (PPS) (Norwood et al, 2010) and systemic kainate-
lorazepam (Kal) during epileptogenesis and/or chronic epilepsy, and
after acute, noninjurious seizures (30-min PPS) (Norwood et al., 2010).
The mRNA expression levels of 15 (Kienzler-Norwood et al., 2017)
potential reference genes were determined in hippocampi from treated
and control animals. Four different validated and established methods
to determine expression stability were used: geNorm (Vandesompele
et al., 2002), NormFinder (Andersen, Jensen, & @rntoft, 2004), Best-
Keeper (Pfaffl, Tichopad, Prgomet, & Neuvians, 2004), and Delta-Ct
(ACt) (Silver, Best, Jiang, & Thein, 2006).

The 15 candidate genes used in this study are actin beta (ACTB),
beta-2-microglobulin (B2M), glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), lac-
tate dehydrogenase (LDHA), non-POU domain containing octamer-
binding (NONO), peptidylprolyl isomerase A (PPIA), peptidylprolyl isom-
erase B (PPIB), retinitis pigmentosa 2 (RP2), ribosomal protein large P1
(RPLP1), TATA box binding protein (TBP), transferrin receptor (TFRC),
ubiquitin C (UBC), tyrosine-3-monooxygenase (YWHAZ), and 18s ribo-
somal RNA (18s). Toll-like receptor 4 (TLR4) was used as a GOI to eval-
uate potential reference genes since it is known to upregulate in
experimental and human epilepsy. The candidate reference genes were
selected based on previous epilepsy studies, use in other rodent dis-
ease models, or use in other model organisms. For example, TBP has

been determined to be a stable reference gene in a febrile seizure

65

model used in male Sprague-Dawley rat pups (Swijsen, Nelissen,
Janssen, Rigo, & Hoogland, 2012); NONO has been validated as a
stable reference gene in a mouse model of colitis (Eissa, Kermarrec,
Hussein, Bernstein, & Ghia, 2017) and adipocyte cell differentiation
(Arsenijevic, Grégoire, Delforge, Delporte, & Perret, 2012); HPRT1 and
TBP have been described as stable genes in the intrahippocampal kainic
acid mouse model (Pernot et al., 2010); and YWHAZ, ACTB, and GAPDH
in a nonhuman primate model of Alzheimer disease (Park et al., 2013).
Some of our candidate reference genes (GAPDH, HPRT, TBP, ACTB,
UBC, B2M) have been used in human epilepsy studies (Wierschke et al.,
2010).

2 | METHODS

2.1 | Animals

Male Sprague-Dawley rats (n=32) (Harlan-Winkelmann, Borchen,
Germany, weight range: 318-344 g) were used in this study. Animals
were treated in accordance with the guidelines of the European com-
munity (EUVD 86/609/EEC) and were housed in an on-site animal
facility (21°-25°C; 45%-60% humidity) under a 12:12 light/dark cycle
with ad libitum access to food and water. All experiments were
approved by the local regulation authority (Regierungsprasidium
GieRen, Germany). All animals were housed in groups (at least two per
cage); none were excluded from the study.

2.2 | Animal models

221 | PPS

The 8-hr PPS model is characterized by hippocampal sclerosis and
hippocampal-onset epilepsy after 2 to 3 weeks (Norwood et al., 2010),
whereas 30-min PPS does not induce either neurodegeneration or epi-
lepsy (Norwood et al., 2011). Briefly, rats were implanted bilaterally
with bipolar stimulating electrodes in the perforant pathway and unipo-
lar recording electrodes in the dorsal hippocampus, then stimulated for
30min or 8hr as described previously (Norwood et al., 2010, 2011).

Control animals were implanted with electrodes, but not stimulated.

2.2.2 | KaL

The KaL model also recapitulates essential characteristics of human
TLE, such as hippocampal sclerosis and hippocampal-onset epilepsy
after a discreet seizure-free period (Kienzler-Norwood et al., 2017).
Animals received 15mg/kg kainic acid monohydrate (10mg/ml in
K0250, Sigma-Aldrich, Germany) and
0.75mg/kg lorazepam (2mg/ml, Pfizer, Germany) that was adminis-

phosphate-buffered saline,

tered subcutaneously, while the control animals received 15 mg/kg
kainic acid monohydrate and 3 mg/kg lorazepam. The controls received
a higher dose of lorazepam that blocks neurodegeneration and epilepsy
(Kienzler-Norwood et al., 2017).

Animals were not video-EEG monitored to confirm epilepsy. In
previous studies (Kienzler-Norwood et al, 2017; Norwood et al,
2010), we found that all animals that were EEG monitored developed
epilepsy. In this study, a few animals from the 14-day and 20-week
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groups (n =3 for both PPS and KaL models) were video monitored,
however, to confirm epilepsy. All six animals exhibited spontaneous

convulsive seizures.

2.3 | Tissue harvesting

Rats were sacrificed after 4 days, 14 days, or 20 weeks (n =4 per
group). The 30-min PPS, 8-hr PPS, and KaL animals were sacrificed
after 4 and 14 days. An additional group of KalL rats was sacrificed
after 20 weeks. All animals received an overdose of ketamine
(> 100 mg/kg i.p.) and xylazine (10 mg/kg i.p.) and were then perfused
through the aorta with 0.9% saline for 90 s to remove intravascular
blood. Brains were removed from the skull and the hippocampi were

microdissected, frozen on dry ice, and stored at —80°C.

2.4 | RNA extraction and cDNA synthesis

RNA was extracted using the Quick-RNA Miniprep Kit (R1054, Zymo
Research, Germany) according to the manufacturer’s protocol. Briefly,
hippocampi were weighed and then homogenized using a pellet pestle
(Z2359971-1EA, Sigma-Aldrich, Germany) in 600 pl of lysis buffer with
0.5% v/v of reagent DX (19088, Qiagen, Germany) to prevent froth
formation. RNA was eluted with 30l of water and analyzed on a
NanoDrop spectrophotometer (2000c, Thermo Scientific, Germany) to
obtain the yield and determine purity by 260/280 and 260/230 ratios
(Supplementary Figure 1). gDNA was removed by use of the Turbo
DNA-free kit (AM1907, Ambion, Life Technologies, Germany) following
the manufacturer’s instructions. cDNA was synthesized in a 20-pl reac-
tion by using Maxima First Strand cDNA synthesis kit for RT-gPCR
(k1641, Thermo Scientific, Germany) using 1 pug of RNA per sample and
random hexamer primers. cDNA was aliquoted and stored at —20°C

until further use.

25| gPCR

This was performed on a StepOnePlus Real-Time PCR system (Applied
Biosystems, Germany). Each reaction contained 5ul of 2X Maxima
SYBR Green/ROX gPCR Master Mix (K0222, Thermo Scientific, Ger-
many), 2 pl of the cDNA corresponding to 100 ng of RNA, and 0.6 uM
forward and reverse primers in a total reaction volume of 10 pl. A two-
step protocol was used for amplification with an initial denaturation for
10min at 95°C, followed by 40 cycles of 15 s at 95°C and 60 s at
60°C in a 96-well reaction plate. The specificity of PCRs was verified
by melt curve analysis for each sample after 40 cycles by raising the
temperature from 60°C to 95°C at a rate of 1°C per minute. gPCR
was performed in triplicate (technical replicates) along with a no-
template control (NTC) to rule out contamination. In the NTC well,
template RNA was substituted with nuclease-free water; otherwise,

the protocol was identical.

2.6 | Primer design

Gene sequences were obtained from the Rat Genome Database (RGD)
(RRID: SSCLBR_RGD13063) (http://www.rgd.mcw.edu/wg/home) and
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NCBI (http://www.ncbi.nlm.nih.gov). Primers were designed using the
web interface Primer3Plus (RRID: SCR_003081) (http://primer3plus.
com/cgi-bin/dev/primer3plus.cgi). The presence of secondary struc-
tures was excluded by the online oligo evaluator from Sigma-Aldrich
(http://www.oligoevaulator.com/ShwoToolservlet?TYPE=ANALYSIS),
and primers were synthesized at 100 nm (Sigma-Aldrich, Germany).
The primer sequences for all of the candidate reference genes and

the GOl are shown in Supplementary Table 1.

2.7 | Primer efficiency

Primer efficiency was calculated based on standard curve slope and r?
value. Standard curves were obtained and analyzed on a StepOnePlus
system, using the StepOnePlus software (RRID: SCR_014281) (Applied
Biosystems, Version 2.3, Germany). A pair of primers was considered
valid if its efficiency was between 90% and 110% (Robledo et al.,
2014; Sepllveda, Bohle, Labra, Grothusen, & Marshall, 2013). The
primer pair efficiency ranged between 98% and 102% for all reference
genes and GOls (Supplementary Table 1).

2.8 | Determination of endogenous control stability

We used geNorm (RRID: SCR_006763), NormFinder (RRID: SCR_
003387), BestKeeper (RRID: SCR_003380), and the ACt method to

determine gene expression stability in common samples.

2.8.1 | geNorm

This method determines both the relative stability of genes and the
minimum number of reference genes necessary for GOI normalization.
Reference gene stability is determined by average expression stability
(M) value. The geNorm algorithm has been integrated into a qBase
software package (http://biogazelle.com/gbaseplus) and is no longer
freely available. A Microsoft Office-compatible version of the original
spreadsheet is available at http://ulozto.net/xsFueHSA/geNorm-v3-
zip. geNorm converts the raw Cq values to relative quantities by using

the ACt equation (Equation 2); the highest expression level is set to 1.
Q=EDetaCt 1)

Q:Eme Ct—sampleCt) (2)

where,

Q = sample quantity relative to sample with the highest expression

E=PCR amplification efficiency (2 =100%) calculated from the
standard curve min Ct = lowest Ct value among all genes analyzedsam-
ple Ct = Ct value for the current gene geNorm defines the number of
genes required for normalization of GOls by determining an M value
that describes the stability of expression of the respective gene (Equa-
tion 3). The M value is defined as the mean pairwise variation for a
given gene compared with other genes, with a cutoff value of 1.5
(Vandesompele et al., 2002), where lower values indicate greater stability.

n
D Vi
_ k=t

M;= 1 (3

where,
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TABLE 1 Most stable reference genes for the 8-hr PPS model
according to the four different algorithms

M value/stability value/

Algorithm Stable genes Pearson coefficient value
geNorm LDHA and NONO 0.2
NormFinder ACTB and LDHA 0.198
ACTB 0.341
BestKeeper YWHAZ 0.987
uBC 0.987
Delta-Ct uBC 0.73
LDHA 0.79

Note: LDHA = lactate dehydrogenase; NONO = non-POU domain con-
taining octamer-binding; PPIA = peptidylprolyl isomerase A; RP2 = retini-
tis pigmentosa 2; TBP = TATA box binding protein; TFRC = transferrin
receptor; UBC = ubiquitin C.

M; = gene stability measure

Vji = pairwise variation

n = total number of genes geNorm also calculates a pairwise varia-
tion value that determines the minimum number of reference genes
required for normalization with a cutoff value of 0.15 (Vandesompele
et al, 2002). Values above 0.15 mean additional reference genes are
required. Similar to the M value, a lower pairwise variation value indi-

cates a more stable combination.

2.8.2 | NormFinder

NormpFinder also calculates expression stability values for potential ref-
erence genes (Kozera & Rapacz, 2013) and suggests the best candidate
gene pairs. It evaluates candidate genes based on expression stability
values along with inter- and intragroup variation by direct comparison
of genes (Hildyard & Wells, 2014). NormFinder is available as a Micro-
soft Excel plugin (http://moma.dk/normfinder-software). It accepts Q
values as input (Equation 2) and ranks genes according to expression
and stability value, which is a measure of expression variation. As with

geNorm, smaller values mean greater stability.

2.8.3 | BestKeeper

This is a tool for the selection of reference genes based on pairwise
correlation analysis and generation of a normalization factor (known as
the BestKeeper index). BestKeeper is available as a Microsoft Excel
spreadsheet file (http://genequantification.de/bestkeeper.html). It
assesses the stability of each gene by comparing the standard deviation
of Cq values with the genes and averages these values. Descriptive sta-
tistics for individual genes such as coefficient of variance, Pearson cor-
relation coefficient (r) values, arithmetic mean (average), and geometric
mean are obtained. Genes with high r values are considered to be
more stable compared with genes with lower r values. BestKeeper uses
a different algorithm than geNorm and NormFinder; raw Cq values are

used to calculate expression variation for candidate reference genes.
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2.8.4 | ACt method

This is perhaps the simplest way of determining gene expression stabil-
ity. It can be performed either by using a Microsoft Excel spreadsheet
or by input of raw Cq values in RefFinder (RRID: SCR_000472) (http://
fulxie.Ofees.us). The concept and goal of ACt analysis are similar to
those of geNorm, but ACt is not a unique algorithm. Like geNorm, ACt
calculations are based on pairs of genes, but it ignores the need to
accurately quantify input RNA and instead compares ACt values
between genes (Silver et al., 2006). The ACt method ranks genes
according to calculations based on standard deviation and pairwise

comparison with other genes.

2.9 | Minimum Information for Publication of
Quantitative Real-Time PCR Experiments guidelines

All experiments were performed in accordance with Minimum Informa-
tion for Publication of Quantitative Real-Time PCR Experiments
(MIQE) guidelines (Bustin et al., 2009).

2.10 | Statistics

Statistical analysis was performed using Graphpad Prism 7.0(a) (Graph-
pad Software, Inc., La Jolla, CA). Data were presented as the mean +
standard error of mean. Student’s t-test was used for the chronic KaL
group (unpaired, two-tailed), and for the remaining groups one-way
ANOVA, followed by Tukey method for multiple comparison, was
used. P values < .05 were considered statistically significant.

3 | RESULTS

3.1 1 gPCR

Cq values between 15 and 35 cycles were considered valid; mean Cq
values are shown in Supplementary Figure 2. A single peak was
observed in the dissociation curve for all primer pairs, demonstrating
that only specific target products were amplified. The NTC showed no
synthesis of any products, thereby indicating that reactions were con-
tamination-free.

3.2 | 8-hr PPS model (epileptogenesis)

3.2.1 | geNorm
LDHA and NONO were the most stable genes, whereas PPIA and

HPRT1 were the least stable (Table 1). The pairwise variation value for
the combination of LDHA and NONO was 0.13, suggesting that these
reference genes were adequate for normalization. The M values for all
candidate reference genes are shown in Supplementary Figure 3A, and
the pairwise variation values are shown in Supplementary Figure 4A.

3.2.2 | NormFinder

ACTB and LDHA were ranked as the most stable combination (ACTB
was the most stable gene), while PPIA and HPRT1 showed the lowest
expression stability (Table 1). The expression stability values are shown

in Supplementary Figure 3B.
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TABLE 2 Most stable reference genes for the 30-min PPS model
according to the four different algorithms

M value/stability value/

Algorithm Stable genes Pearson coefficient value
geNorm UBC and TBP 0.16
NormFinder PPIB and RPLP1 0.242
RPLP1 0.274
BestKeeper TBP 0.993
uBC 0.972
Delta-Ct TBP 1.19
uBC 121

Note: ACTB = actin beta; GAPDH = glyceraldehyde 3-phosphate dehydro-
genase; LDHA = lactate dehydrogenase; PPIA = peptidylprolyl isomerase
A; PPIB = peptidylprolyl isomerase B; RPLP1 = ribosomal protein large
P1.

3.2.3 | BestKeeper

YWHAZ was ranked the most stable gene, followed by UBC, while
RPLP1 and GAPDH were the least stable (Table 1). Pearson correlation
coefficient (r) values for the candidate reference genes are shown in
Supplementary Figure 3C.

3.24 | ACt
UBC and LDHA were the most stable genes, while GAPDH and HPRT1
were the least stable (Table 1). The stability values for all candidate ref-

erence genes are shown in Supplementary Figure 3D.

3.3 | 30-min PPS model (acute phase)

3.3.1 | geNorm
UBC and TBP were the most stable combination, while B2M and

HPRT1 were the least stable genes (Table 2). The pairwise variation
value for a combination of UBC and TBP was 0.10, suggesting that this
combination of these reference genes was suitable for normalization of
GOls. The M values for all candidate reference genes are shown in
Supplementary Figure 5a, and the pairwise variation values are shown

in Supplementary Figure 4B.

3.3.2 | NormFinder

PPIB and RPLP1 were ranked the most stable combination (RPLP1 was
the most stable gene), while B2M and HPRT1 were the least stable
genes (Table 2). The expression stability values are shown in

Supplementary Figure 5B.

3.3.3 | Bestkeeper
TBP was the most stable gene, followed by UBC, while PPIA and HPRT1

were ranked the least stable (Table 2). Pearson correlation coefficient
(r) values for all candidate reference genes are shown in Supplementary
Figure 5C.
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3.34 | ACt
TBP and UBC were ranked most stable, and B2M and HPRT1 were the
least stable genes (Table 2). The stability values for all candidate refer-

ence genes are shown in Supplementary Figure 5D.

3.4 | KaL (epileptogenesis)
3.4.1 | geNorm

PPIA and RP2 were found to be the most stable combination, whereas
TBP and YWHAZ were ranked as the least stable genes (Table 3). The
pairwise variation value for the combination of PPIA and RP2 was 0.14,
suggesting that these reference genes were suitable for normalization.
The M values for all candidate reference genes are shown in Supple-
mentary Figure 6a, and the pairwise variation values are shown in Sup-
plementary Figure 4C.

3.4.2 | NormFinder

ACTB and PPIA were considered the best pairing (ACTB was ranked
highest for stability), while TBP and YWHAZ were the least stable genes
(Table 3). The expression stability values are shown in Supplementary
Figure 6B.

3.4.3 | BestKeeper

ACTB and YWHAZ were ranked the most stable genes; B2M and RPLP1
were the least stable genes (Table 3). Pearson correlation coefficient (r)
values for the candidate reference genes are shown in Supplementary
Figure 6C.

3.4.4 | ACt

ACTB and PPIA were the most stable genes, and TBP and YWHAZ were
the least stable genes (Table 3). The stability values for all candidate

reference genes are shown in Supplementary Figure 6D.

TABLE 3 Most stable reference genes for the KaL epileptogenesis
group according to the different algorithms

M value/stability value/

Algorithm Stable genes Pearson coefficient value
geNorm PPIA and RP2 0.32
NormFinder ACTB and PPIA 0.053
ACTB 0.066
BestKeeper ACTB 0.929
YWHAZ 0.781
Delta-Ct ACTB 0.78
PPIA 0.79

Note: ACTB = actin beta; GAPDH = glyceraldehyde 3-phosphate dehydro-
genase; LDHA = lactate dehydrogenase; PPIA = peptidylprolyl isomerase
A; PPIB = peptidylprolyl isomerase B; RPLP1 = ribosomal protein large
P1.



ﬂ—WI LEY

ond Pyblication

SADANGI ET AL

TABLE 4 Most stable reference genes for the KalL chronic epilepsy
group according to the different algorithms

M value/stability value/

Algorithm Stable genes Pearson coefficient value
geNorm NONO and TFRC 0.1
NormFinder RPLP1 and GAPDH 0.045
GAPDH 0.070
BestKeeper UBC 0.98
RPLP1 0.963
Delta-Ct GAPDH 0.37
RPLP1 0.39

Note: ACTB = actin beta; GAPDH = glyceraldehyde 3-phosphate dehydro-
genase; LDHA = lactate dehydrogenase; PPIA = peptidylprolyl isomerase
A; PPIB = peptidylprolyl isomerase B; RPLP1 = ribosomal protein large
P1.

3.5 | KaL (chronic epilepsy)

3.5.1 | geNorm

The most stable combination was NONO and TFRC, whereas UBC and
PPIB showed the lowest expression stability (Table 4). The pairwise var-
iation value of NONO and GAPDH was 0.07, demonstrating adequate
stability for this pair. The M values for all candidate reference genes
are shown in Supplementary Figure 7A, and the pairwise variation val-

ues are shown in Supplementary Figure 4D.

3.5.2 | NormFinder

The combination of RPLP1 and GAPDH was the most stable gene pair
(GAPDH was the most stable gene), while B2M and ACTB were the
least stable genes (Table 4). The expression stability values are shown
in Supplementary Figure 7B.

3.5.3 | BestKeeper

UBC and RPLP1 were ranked the most stable genes for the chronic
group, while ACTB and B2M were the least stable (Table 4). Pearson
correlation coefficient (r) values for the candidate reference genes are
shown in Supplementary Figure 7C.

354 | ACt
GAPDH and NONO were the most stable genes, while UBC and PPIB

were the least stable genes (Table 4). The stability values for all candi-

date reference genes are shown in Supplementary Figure 7D.

3.6 | Comprehensive ranking of reference genes

Each algorithm ranked potential reference gene (pairs) differently. To
reach an objective and unbiased consensus, an overall ranking was
obtained by calculating the geometric mean (Chen, Pan, Xiao, Farwell,
& Zhang, 2011) of the individual rankings from the four algorithms
(Figure 1). The comprehensive ranking showed that LDHA, UBC, and
NONO were the overall most stable reference genes for the 8-hr PPS

model, and TBP, UBC, and PPIB were the most stable reference genes
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for the 30-min PPS model. Similarly, for the KaL model, ACTB, PPIA,
and RP2 were identified as the most stable reference genes during the
epileptogenesis phase; GAPDH, NONO, and RPLP1 were the most sta-
ble during the chronic phase.

3.7 | Validation of reference genes

The expression of TLR4 is known to be enhanced in both TLE patients
and epilepsy models (Maroso et al, 2010). We determined TLR4
expression in each of the four treatment groups using both the three
most stable and two most unstable reference genes (Figure 2). This
was done to illustrate how apparent gene expression can change when
reference genes of varying stability are used.

For the 8-hr PPS model, TLR4 expression was found to be 4.6-fold
and 4.2-fold higher than control at 4 and 14 days, respectively, when
the most stable genes were used. When the two most unstable genes
were used (HPRT1 and PPIA), TLR4 expression was only 1-fold and 1.1-
fold at the same time points.

In the 30-min PPS model, TLR4 expression was 1.3-fold higher
than control at 4 days and slightly downregulated at 14 days when
using the most stable reference genes. Conversely, the most unstable
genes (HPRT1 and B2M) showed TLR4 expression to be downregulated
in the 4-day group and upregulated 1.1-fold in the 14-day group.

In the KaL model, TLR4 expression was 1.4-fold and 3.4-fold that
of control at 4 and 14 days, respectively, when the most stable refer-
ence genes were used. The use of YWHAZ and TBP, the most unstable
genes, resulted in increased TLR4 expression in the 4- and 14- day
groups to be enhanced 2.5-fold and 7.2-fold, respectively.

In the chronic KaL group, apparent TLR4 expression was 3-fold
higher than control when the most stable reference genes were used.
The combination of ACTB and LDHA, the most unstable genes, showed

a 4.8-fold expression increase.

4 | DISCUSSION

This study systematically evaluated reference genes at various time
points and with several algorithms in two different animal models of
epilepsy. We found a few novel reference genes, which to our knowl-
edge had not previously been used in experimental epilepsy studies
(NONO, RP2, and RPLP1), to be more stable than others that are com-
monly used, such as PPIA (Grabenstatter et al., 2014) and GAPDH
(Matsuda et al., 2015).

Previous studies have shown that appropriate reference genes can
vary between animal models of the same disease (Suzuki, Higgins, &
Crawford, 2000; Thellin et al., 1999). We show here that they can even
vary within a model—for instance, at different time points. In the KaL
model, only one of the five most stable genes was shared between the
epileptogenesis and chronic epilepsy groups: TFRC (Figure 1). Interest-
ingly, overall reference gene stability increased over time in the KalL
model. During epileptogenesis, only 4 genes were sufficiently stable
(Supplementary Figure 6A), whereas in the chronic epilepsy phase, all
15 genes were below the stability cutoff (Supplementary Figure 7A).

Pairwise variation during the chronic phase was also substantially lower
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for all gene combinations (Supplementary Figure 4, Panel C and D). A
potential explanation for this phenomenon is that the brain is seriously
perturbed by an epilepsy-inducing event and many genes/pathways
are temporarily dysregulated, which affects the expression of reference
genes. In fact, a recent study showed that more genes are dysregulated
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during epileptogenesis than chronic epilepsy in the pilocarpine rat
model (Hansen, Sakamoto, Pelz, Impey, & Obrietan, 2014).

We did find that some reference genes are common to multiple
models/groups as seen in the comprehensive ranking (Figure 1). NONO
was a stable reference gene for the 8-hr PPS and chronic KaL groups;
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FIGURE 2 Evaluation of reference genes using Toll-like receptor 4 (TLR4) (A) with the three most stable reference genes and (B) two most
unstable reference genes. Please refer to Figure 1 for the reference gene list.
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UBC was common to the 8-hr and 30-min PPS models. We also found
genes unique to particular models and time points. LDHA (8-hr PPS);
TBP (30-min PPS); PPIA, ACTB, and RP2 (KaL epileptogenesis); and
GAPDH and RPLP1 (chronic KaL) were not common to the top three of
any other group.

Comprehensive ranking for the PPS models differed significantly.
In fact, only two of the top five genes were shared between the 8-hr
and 30-min models (NONO and UBC). This could be because 8-hr PPS
induces substantial neuronal injury and epilepsy, whereas 30-min PPS
is noninjurious (Norwood et al., 2010, 2011). It is possible that some of
the candidate reference genes are influenced by processes involved in
neurodegeneration or glial proliferation; both of these phenomena are
characteristic of the 8-hr model, but not the 30-min model (Norwood
et al., 2010). This would help explain differences in the top candidate
reference genes between the two PPS paradigms.

We also found that apparent gene stability varied somewhat
between the different evaluation methods. This is, of course, due to
subtle differences between the four algorithms. Along these lines, in
previous studies evaluating reference genes, minor divergences in geN-
orm and NormFinder have been reported (Cruz et al., 2009; Pellino,
Sharbel, Mau, Amiteye, & Corral, 2011), which leads to slight differen-
ces in candidate gene ranking, as we also found in the present study.

A limitation of the present study is that we did not evaluate poten-
tial reference genes in other epilepsy models (e.g., pilocarpine or intra-
amygdala kainate), in other strains, or in other model organisms. Previ-
ous studies have, however, validated some of the same reference genes
both in human epilepsy samples (Wierschke et al., 2010) and in the pilo-
carpine rat model of epilepsy using male Wistar rats (Marques et al.,
2013). Regarding the former, TBP, ACTB, and UBC were found to be
suitable reference genes in human samples; we show here that they are
appropriate for use in the 8-hr and 30-min PPS models. Regarding the
latter, TBP is a stable reference gene in the pilocarpine model and was
ranked first overall for the 30-min PPS group (Figure 1B). The same
study showed ACTB and GAPDH to be stable reference genes; these
were ranked first in the KalL epileptogenesis and chronic epilepsy
groups, respectively (Figure 1, Panel C and D). Marques and colleagues
also found RPLP1 to be another stable reference gene in the pilocarpine
model (Marques et al., 2013); it was ranked among the top four for both
the 30-min PPS and chronic KaL groups (Figure 1, Panel B and D).

Unsurprisingly, the use of inappropriate reference genes can lead
to erroneous gene expression values (Dheda et al., 2005). An example
of this is seen in Figure 2. Apparent expression values are significantly
skewed for all groups when unstable reference genes are used. Vande-
sompele et al. strongly recommend employing multiple reference
genes, as the use of a single reference gene might result in higher
gene-specific variation and errors in normalization (Vandesompele
et al,, 2002). It is also prudent to use the geometric mean of multiple
reference genes to normalize GOI expression (Equation 4) (Vandesom-
pele et al.,, 2002) to control for potential outliers.

Geometric mean= {/x1,x2,x3....xn (4)

We suggest using the geNorm algorithm to evaluate reference

genes because it ranks the potential genes according to their stability
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and also determines the minimum number of reference genes required
for normalization. Although NormFinder calculates stability values for
each gene and BestKeeper ranks the genes according to r values, these
algorithms do not determine the minimum number of reference genes
required for normalization (Kozera & Rapacz, 2013).

Our geNorm data suggest that two reference genes are suitable
for normalization as the pairwise variation values for all the animal
models were below the 0.15 threshold. Although our data show that
just two reference genes can be used for accurate normalization, it is
not advisable to rely on these data without validation. The minimum
number of reference genes required for normalization should always
be determined for each experimental setting.

In summary, we present here validated stable reference genes for
two different models of epilepsy and one model of acute, noninjurious
seizures. These data show that suitable reference genes vary between
models and can also differ between time points in the same model. We
found several novel reference genes to be more stably expressed than
others that are commonly used in experimental epilepsy studies. These
findings demonstrate the importance of validating potential reference
genes before using them as normalizing factors in expression analysis.
The use of inappropriate (i.e., unstable) reference genes can inadver-

tently skew data and lead to erroneous conclusions.
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Supplementary Figure 1: RNA purity ratios for (A) treated and (B) control groups for
the four animal models. The 260/280 ratio is labeled in blue and the 260/230 ratio is
labeled in red in both the panels. The 260/280 ratio is used to evaluate purity and a
value of around 2.0 is considered to be adequate. The 260/230 absorbance ratio is a

secondary assessment of purity and a value of around 2.0 — 2.2 is considered

appropriate.
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Supplementary Figure 2: Mean Cq values for (A) 8 h PPS, (B) 30 min PPS, (C) KaL

epileptogenesis, and (D) KaL chronic epilepsy groups. The four panels in Figure 1 show
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the average Cq values for candidate reference genes for treated and control groups. The
treated groups are shown in blue and the control groups are red in all panels. The mean

Cq values are represented on the y-axis and the candidate reference genes are shown on

the x-axis.
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Supplementary Figure 3: Ranking of candidate reference genes for the 8 h PPS
model according to (A) geNorm, (B) NormFinder, (C) BestKeeper, and (D) Delta Ct.
Panel A shows ranking based on geNorm, where the y-axis represents the average
expression stability (M) value, and candidate reference genes are ranked from least to
most stable on the x-axis. The dashed line represents the cut-off value of 0.5, below
which genes are considered sufficiently stable. Panel B represents ranking based on
NormFinder, where the y-axis represents the stability value and the x-axis shows the
ranking of reference genes. Panel C represents BestKeeper, where the y-axis represents
the co-efficient of variation (r) values, and the x-axis shows the ranking of least to most
stable reference genes. Panel D represents the ranking based on Delta Ct method, where
the y-axis represents stability values and the x-axis represents the candidate reference
gene ranking. All colors are consistent in all panels in all figures, e.g. HPRT1 is always

dark blue.
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Supplementary Figure 4: geNorm pairwise variation ranking for (A) 8 h PPS, (B) 30
min PPS, (C) KaL epileptogenesis, and (D) KalL chronic epilepsy groups. The y-axis
represents the pairwise variation values, whereas the x-axis shows an increasing number
of genes, e.g. V14/15 means the addition of a 15th gene. The dashed line represents the
cut-off value of 0.15, below which combinations are considered to be sufficiently stable.
Note that the addition of a 15th reference gene in Panel A (HPRT1) substantially

decreases stability.
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Supplementary Figure 5: Ranking of candidate reference genes for the 30 min PPS
model according to (A) geNorm, (B) NormFinder, (C) BestKeeper, and (D) Delta Ct.
Panel A shows ranking based on geNorm where the y-axis represents the average
expression stability (M) value. Candidate reference genes are ranked from the least to
the most stable on the x-axis. The dashed line represents the cut-off value of 0.5, below
which genes are considered sufficiently stable. Panel B represents ranking based on
NormFinder, where y-axis represents the stability value and the x-axis represents the
ranking of reference genes. Panel C represents BestKeeper, where y-axis represents the
co-efficient of variation (r) values and the x-axis shows the ranking of least to most
stable reference genes. Panel D represents the ranking based on Delta Ct method, where
y-axis represents the stability value and x-axis represents the ranking of candidate
reference genes. All colors are consistent in all panels in all figures, e.g. HPRT1 is always

dark blue.
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Supplementary Figure 6: Ranking of candidate reference genes for the KaL
epileptogenesis group according to (A) geNorm, (B) NormFinder, (C) BestKeeper, and
(D) Delta Ct. Panel A shows ranking based on geNorm, where the y-axis represents the
average expression stability (M) value and the x-axis shows the candidate reference
genes ranked from the least to the most stable. The dashed line represents the cut-off
value of 0.5, below which genes are considered sufficiently stable. Panel B represents
ranking based on NormFinder, where the y-axis shows the stability value and the x-axis
represents the ranking of reference genes. Panel C represents BestKeeper, where the y-
axis shows the co-efficient of variation (r) values and the x-axis has the ranking of the
least to the most stable reference genes. RPLP1, B2M, and TBP do not have bars since
the values were negative. Panel D shows the ranking based on Delta Ct method, where y-
axis represents the stability value and the x-axis presents the ranking of candidate

reference genes. All colors are consistent in all panels in all figures, e.g. HPRT1 is always
dark blue.
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Supplementary Figure 7: Ranking of candidate reference genes for the KaL chronic
epilepsy group according to (A) geNorm, (B) NormFinder, (C) BestKeeper, and (D)
Delta Ct. Panel A shows ranking based on geNorm, where y-axis represents the average
expression stability (M) value and x-axis shows the candidate reference genes ranked
from the least to the most stable. The dashed line represents the cut-off value of 0.5,
below which genes are considered sufficiently stable. Panel B represents ranking based
on NormFinder, where the y-axis represents the stability value and the x-axis represents
the ranking of reference genes. Panel C represents BestKeeper, where the y-axis
represents the coefficient of variation (r) values and the x-axis shows the ranking of
reference genes from least to most stable. B2M, ACTB, TBP, and PPIA do not have bars
since the values were negative. Panel D represents the ranking based on the Delta Ct
method, where y-axis represents stability values, the ranking of candidate reference
genes is shown on the x-axis. All colors are consistent in all panels in all figures, e.g.

HPRT1 is always dark blue.
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Gene name Abbreviation Forward Primer Reverse Primer Length (bp) ? value Efficiency
Actin B ACTB TGACAGGATGCAGAAGGAGA GGACAGTGAGGCCAGGATAG 121 0.96 97.533
Beta 2 Microglobulin B2M GCAGCCTAGCAGTTCAATCC CACACAGGCTTGCAGACATT 166 0.98 98.067
Glyceraldehyde-3- GAPDH CAAGTTCAACGGCACAGTCA TACTCAGCACCAGCATCACC 128 1 100.08
phosphate
dehydrogenase
Hypoxanthine HPRT1 CAGTCAACGGGGGACATAAA GGTCCTTTTCACCAGCAAG 180 1 101.86
Phosphoribosyl-
transferase 1
Lactate LDHA CCGTTACCTGATGGGAGAAA ACGTTCACACCACTCCACAC 108 1 100.034
Dehydrogenase
Non-POU domain NONO GGTCCACTTGATCCTGCTGT GCCTGGGTCCTTTGAGTATG 83 0.99 100.3
containing Octamer
binding
Peptidylprolyl PPIA AGGCATGAGCATTGTGGAAG GCCGCAAGTCAAAGAAA 193 0.99 100.84
Isomerase A
Peptidylprolyl PPIB GGCTCCGTTGTCTTCCTTTT CGTCCTACAGGTTCGTCTCC 119 0.99 100.19
Isomerase B
Ribosomal Protein RPLP1 GACGGTCACGGAGGATAAGA AACAAGCCAGGCCAGAAAG 78 0.99 102.18
Large P1
Retinitis Pigmentosa 2 RP2 TGGAAAATGCTGAGGAGGAG TGGTGATACGCTTCTGGTTG 87 0.99 100.09
TATA box binding BP TTACGGCACAGGGCTTACTC TGCTGCTGTCTTTGTTGCTC 81 1 100.11
protein
Toll-like receptor 4 TLR4 CACCAACGGCTCTGGATAAA GAGGACTGGGTGAGAAACGA 188 0.96 98.968
Transferin receptor TFRC GGCTGCAGATGAGGAAGAAA CCCAGGTAGCCGATCATAAA 141 0.98 99.786
Ubiquitin C uBC ACTCGTACCTTTCTCACCACAG AGACACCTCCCCATCAAACC 76 1 100
Tyrosine 3- YWHAZ AGACGGAAGGTGCTGAGAAA CCTCAGCCAAGTAGCGGTAG 192 1 101.09
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\ monooxygenase [ [ [ [ [ [
| 18sribosomal RNA | 18s | ATACCGCAGCTAGGAATAATGG | CCTCTTAATCATGGCCTCAGTT | 78 | 1 | 99523 |

Supplementary Table 1: Primer sequences and efficiencies for the reference genes and genes of interest.

Supplementary Table 1: Primer sequences and efficiencies for the reference
genes and genes of interest.
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