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Summary

The aim of this thesis was the identification and analysis of candidate genes for stress response in

silver fir (Abies alba Mill.). This ecologically and economically important forest tree species is native

to many mountainous regions of Europe but little is known about its ecological characteristics.

Silver fir populations were heavily transformed by human activity, which results in a mismatch

between past and current distribution. Recent studies suggest that silver fir can occupy warmer

and dryer climates than it currently does. However, the species also suffered considerably during

the 1970s and 1980s, including foliar damage, radial growth depression and local diebacks in

Germany. This is attributed mainly to the peak in air pollution during this period, especially sulfur

dioxide (SO2), which seems to heavily increase drought sensitivity in silver fir. The combination of

both stressors, SO2 and drought events, negatively affected silver fir even in regions where drought

is usually not a problem.

In the context of anthropogenic global climate change that will very likely lead to an increase

in temperature in Europe and to more extreme events such as severe drought periods, the question

arises, how silver fir will cope with these environmental changes. Given the speed of the predicted

changes and the increasing landscape fragmentation, silver fir might not be able to evade it via

seed dispersal. As a sessile organism, the only other option is adaptation, which will likely draw

from standing genetic variation.

To successfully predict the fate of silver fir, especially in the face of global climate change, and

to potentially manage populations based on such predictions, the genetic architecture of silver fir

in the context of such important stressors as drought and air pollution has to be understood. There

exist, however, little genomic resources for silver fir and conifers in general. This is due to their

large and complex genomes and the long generational cycle, which makes conifers typical non-

model species. As such, methods for the identification of the genetic basis of stress response are

effectively limited to a candidate gene approach.

The candidate gene approach includes the identification of functional candidate genes by mea-

suring differential gene expression between a stressed and a control group. In the context of this

thesis, the water content of silver fir seedlings was monitored in a laboratory using a novel ter-

ahertz spectroscopy setup. One group of seedlings was regularly irrigated while the other group

was drought stressed. Continually measuring the water content allowed to harvest needles from

both groups at a time when the water status was comparable between the individuals within each

group. A differential expression analysis between the needles from both groups then revealed 296

genes that were significantly up- or down-regulated in response to drought stress. Of those genes,

approximately 45% have not been previously described in any organism and are potentially unique

to silver fir or conifers in general. However, since only needles of seedlings were analyzed at a

specific level of drought stress, the results are limited in scope to the source material and stress in-

tensity and cannot be directly applied to silver fir or drought stress in general. Also, this approach

implies a cause-effect relationship between gene expression and a specific level of drought stress.

Thus, it is very important that confounding factors are excluded from the experiment. Chlorophyll

content in the needles, for example, might change over the course of the monitoring period due to

the drought treatment. To test if the chlorophyll content could potentially influence the terahertz

signal, chlorophyll was extracted from silver fir needles, in the course of this thesis, and different
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concentrations were measured using terahertz spectroscopy, showing that chlorophyll content does

not influence terahertz monitoring.

Another aspect of the candidate gene approach involves the variation within a polymorphic

gene and its potential association with the variation in a phenotypic trait. Since the growth de-

pression period of silver fir in the 1970s and 1980s was mostly influenced by the combination

of air pollution and drought, in the context of this thesis, genetic variation, in the form of sin-

gle nucleotide polymorphims (SNPs) in pre-selected genes, was associated with tree-ring derived

phenotypes for individual trees in the Bavarian Forest National Park. These so called ’dendropheno-

types’ were measures for resistance, resilience and recovery during the depression period, as well

as the drought year 1976. Using general linear models and feature selection techniques based on

the machine learning algorithm random forest, 15 out of 103 polymorphic candidate genes for trait

variation could be identified. Since the associated dendrophenotyes are potentially adaptively rele-

vant, the variation in this candidate genes could influence the stress coping capability of individual

trees. However, this approach is of an observational nature and thus, cause-effect relationships

cannot be derived from this type of experiment. The identified SNPs might be the causal variant or

physically close to the true causal variant or it might just be a spurious correlation. Further, reliance

on advanced statistical techniques can be troublesome, as could be demonstrated in the course of

this thesis for a random forest based feature selection technique, developed for genetic association

studies in conifers. Replicating this study and evaluating the algorithm, non-uniqueness of the

results could be demonstrated, which not only hinders biological interpretation but can severely

negatively influence downstream analyses, such as tests for interaction between SNPs.

In conclusion, this thesis presents new techniques to add to the current methodology for can-

didate gene selection and analysis in the stress response of the non-model organism silver fir and

other conifer species. Both approaches should be combined, for example by drawing polymorphic

candidate genes for trait variation from the pool of functional candidate genes to ensure the in-

volvement of the studied genes in the variation of the trait of interest. Further, the results of this

thesis add to the growing molecular resources in silver fir and thereby, hopefully, contribute to the

successful prediction and management of this important forest tree species in the face of rapidly

changing environmental conditions.
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Zusammenfassung

Das Ziel dieser Dissertation war die Identifizierung und Analyse von Kandidatengenen für Stress-

reaktion in der Weißtanne (Abies alba Mill.). Diese ökologisch und ökonomisch wichtige Wald-

baumart ist natürlich beheimatet in bergigen Regionen Europas aber es ist wenig bekannt über

ihre ökologische Charakterisierung. Weißtannenpopulationen wurden durch menschlichen Ein-

fluss deutlich transformiert, was zu einer Diskrepanz zwischen dem früheren und dem heutigen

Verbreitungsgebiet geführt hat. Aktuelle Studien legen nahe, dass die Weißtanne in wärmeren

und trockeneren Klimaten ansässig sein kann, als sie es derzeit ist. Die Art hat jedoch in den

1970ern und 1980ern deutlich gelitten und zeigte in Deutschland Blattschäden, eine Abnahme im

Dickenwachstum und örtliches Waldsterben. Als Grund hierfür wird meist der Höchststand der

Luftverschmutzung während dieses Zeitraums genannt, insbesondere von Schwefeldioxid (SO2),

das offenbar die Empfindlichkeit der Weißtanne gegenüber Trockenstress deutlich erhöht. Die

Kombination dieser beiden Stressoren, SO2 und Trockenperioden, hat die Weißtanne sogar in Re-

gionen in denen Trockenstress üblicherweise kein Problem ist negativ beeinflusst.

Im Kontext des anthropogenen globalen Klimawandels, der sehr wahrscheinlich zu einem An-

steigen der Temperatur in Europa und zu mehr Extremereignissen, wie heftigen Trockenperioden,

führen wird, stellt sich die Frage, wie die Weißtanne mit diesen Umweltveränderungen umgehen

wird. Bedenkt man die Geschwindigkeit der vorhergesagten Veränderungen und die zunehmende

Fragmentierung der Landschaft, besteht die Möglichkeit, dass die Weißtanne diesem nicht durch

Samenausbreitung entgehen kann. Als sessiler Organismus bleibt als die einzig andere Option nur

Adaptation, die sich wahrscheinlich aus der stehenden genetischen Variation speisen wird.

Um das Schicksal der Weißtanne, insbesondere im Kontext des globalen Klimawandels, erfol-

greich abzuschätzen und Populationen möglicherweise aufgrund solcher Vorhersagen zu managen,

bedarf es der Kenntnis der genetischen Architektur im Kontext solcher bedeutender Stressoren wie

Trockenperioden und Luftverschmutzung. Es gibt jedoch sehr wenige genomische Ressourcen für

die Weißtanne und Koniferen im Allgemeinen. Das liegt maßgeblich an der Größe und Komplexität

der Genome und am langen Generationszyklus, was Koniferen zu typischen nicht-Modell Organ-

ismen macht. Aus diesem Grund sind Methoden zur Identifizierung der genetischen Basis von

Stressantwort effektiv auf einen Kandidatengenansatz beschränkt.

Der Kandidatengenansatz beinhaltet die Identifikation von funktionellen Kandidatengenen, in-

dem die differentielle Genexpression zwischen einer gestressten und einer Kontrollgruppe gemessen

wird. Im Kontext dieser Dissertation wurde der Wassergehalt von Weißtannensämlingen mit einem

neuartigen Terahertz-Spektroskopie-Aufbau in einem Labor überwacht. Eine Gruppe von Sämlingen

wurde regelmäßig gegossen, während eine andere Gruppe Trockenstress ausgesetzt war. Durch die

kontinuierliche Messung des Wassergehalts konnten Nadeln der Sämlingen aus beiden Gruppen

zu einem Zeitpunkt geerntet werden, zu dem der Wassergehalt zwischen den Individuen einer

Gruppe jeweils vergleichbar war. Eine differentielle Expressionsanalyse zwischen den Nadeln der

beiden Gruppen resultierte dann in 296 Genen die als Reaktion auf Trockenstress signifikant hoch-

oder herunter-reguliert waren. Ungefähr 45% dieser Gene sind zuvor noch nicht in anderen Or-

ganismen beschrieben worden und sind potentiell spezifisch für die Weißtanne oder Koniferen im

Allgemeinen. Da jedoch nur Nadeln von Sämlingen bei einem bestimmten Trockenstressniveau

analysiert wurden, sind die Ergebnisse in ihrem Umfang auf das Ausgangsmaterial und das spez-
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ifische Stresslevel reduziert und können nicht direkt auf die Weißtanne oder Trockenstress allge-

mein übertragen werden. Weiterhin impliziert dieser Ansatz einen Kausalzusammenhang zwischen

Genexpression und einem spezifischen Maß an Trockenstress. Daher ist es sehr wichtig störende

Faktoren vom Experiment auszuschließen. So kann der Chlorophyllgehalt der Nadeln sich beispiel-

sweise während des Messzeitraumes in Folge der Trockenstressbehandlung verändern. Um zu

testen ob der Chlorophyllgehalt möglicherweise einen Einfluss auf das Terahertz-Signal hat, wurde

im Rahmen dieser Dissertation Chlorophyll aus Weißtannennadeln extrahiert und unterschiedliche

Konzentrationen mittels Terahertz-Spektroskopie gemessen. Dabei konnte gezeigt werden, dass

der Chlorophyllgehalt keinen Einfluss auf das Terahertz-Monitoring hat.

Ein anderer Aspekt des Kandidatengenansatzes beinhaltet die Variation innerhalb eines poly-

morphen Gens und die mögliche Assoziation mit der Variation in einem phänotypischen Merkmal.

Da die Periode der Wachstumsdepression von Weißtannen in den 1970ern und 1980ern maßge-

blich durch eine Kombination von Luftverschmutzung und Trockenperioden verursacht war, wurde

im Rahmen dieser Dissertation genetische Variation, in Form von Einzelnukleotid-Polymorphismen

(engl. single nucleotide polymorphisms (SNPs)) in vorausgewählten Genen, mit Phänotypen as-

soziiert, die aus Jahresringen für individuelle Bäume im Nationalpark Bayerischer Wald abgeleitet

wurden. Diese so genannten ’Dendrophänotypen’ waren Maße für die Resistenz, Resilienz und Er-

holung in der Depressionsperiode und dem Trockenjahr 1976. Basierend auf allgemeinen linearen

Modellen und Feature Selection Techniken, die auf dem maschinellen Lernalgorithmus Random

Forest beruhen, konnten 15 aus insgesamt 103 polymorphen Kandidatengenen für Merkmalsvaria-

tionen identifiziert werden. Da die assoziierten Dendrophänotypen potentiell adaptiv relevant sind,

könnte die Variation in diesen Kandidatengenen die Fähigkeit der Stressbewältigung individueller

Bäume beeinflussen. Dieser Ansatz ist jedoch grundsätzlich beobachtender Natur und diese Art von

Experiment erlaubt daher keine Ableitung von Kausalzusammenhängen. Die identifizierten SNPs

können die ursächliche Variation sein, sie können aber auch physikalisch nah an der tatsächlich

ursächlichen Variation sein oder es kann sich lediglich um einen Scheinzusammenhang handeln.

Weiterhin kann das Vertrauen in fortgeschrittene statistische Verfahren problematisch sein, was

im Rahmen dieser Dissertation für eine auf Random Forest basierende Feature Selection Methode

gezeigt werden konnte, die für genetische Assoziationsanalysen in Koniferen entwickelt wurde.

Durch die Replikation dieser Studie und die Evaluierung des Algorithmus konnte die Multiplizität

der Ergebnisse demonstriert werden, die nicht nur die biologische Interpretation behindert, son-

dern auch nachgelagerte Analysen, wie Tests auf Interaktion zwischen SNPs, negativ beeinflusst.

Schlussfolgernd beschreibt diese Dissertation neue Techniken der Auswahl und Analyse von

Kandidatengenen für die Stressreaktion im nicht-Modell-Organismus Weißtanne und anderen Ko-

niferenarten die der gängigen Methodik hinzuzufügen sind. Beide Ansätze sollten kombiniert wer-

den, beispielsweise indem polymorphe Kandidatengene für Merkmalsvariation aus dem Pool von

funktionellen Kandidatengenen gezogen werden um die Beteiligung der untersuchten Gene an

der Variation des zu untersuchenden Merkmals sicher zu stellen. Weiterhin tragen die Ergebnisse

dieser Dissertation zu den wachsenden molekularen Ressourcen für die Weißtanne bei und haben

dadurch, hoffentlich, einen Anteil an der erfolgreichen Vorhersage und am Management dieser

wichtigen Baumart im Kontext rasanter Umweltveränderungen.
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CHAPTER 1

General introduction
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Forest trees – importance and threats

Forests are one of the most important ecosystem service providers on this planet. Among others,

they host biological diversity, act as carbon sinks and ensure clean water supply, as well as relative

climate stability (Foley et al., 2005). However, since they also provide humans with timber and

often have to give way for agricultural use or human settlements, land-use has a large negative

net impact on global forest change, especially in the tropics and subtropics (Hansen et al., 2013).

Temperate forests, especially in Europe, on the other hand, fare generally well with an increase and

stagnation in biomass and area since 1950 (Foley et al., 2005). This, however, does not necessarily

imply increase or stagnation in biodiversity or species composition (Hobbs et al., 2006). For Cen-

tral European forests, for example, only 0.2% are estimated to be undisturbed by human activity

(Hannah et al., 1995). This includes the introduction of exotic species, overgrazing by domes-

tic herbivores and planting of monocultures with short rotation coppice (Bengtsson et al., 2000).

Thus, while maintaining biomass and area, Central European forests are often heavily transformed,

which frequently is accompanied by a reduction in biodiversity. For example, the rare occurrence

of deadwood and old trees in most managed forests has negative impacts on the abundance and

diversity of associated organisms, such as fungi, invertebrates, bats and birds (Krajick, 2001).

While land-use is relatively unidirectional and thus can be potentially shaped by management

strategies - e.g. sustainable forestry in Central Europe with the scope to increase and sustain biodi-

versity and ecosystem function - global climate change poses a more diffuse threat. Some aspects

are relatively certain, such as an increase in global mean surface temperature and a decrease of

renewable surface water and groundwater (IPCC, 2014). Due to the inertia of large systems, these

effects will occur in the short term regardless of mitigation policies and efforts. Long term effects

beyond the year 2100, on the other hand, can still be influenced. On a more regional scale, the

picture gets more diverse. For Europe, high-temperature extremes are occurring more and low-

temperature extremes less frequently since 1950 (Kovats et al., 2014). For the future this means

warmer winters for Northern Europe and warmer summers for Southern Europe. Further, Europe

shows a decreasing gradient in mean annual precipitation from North to South.

Climate change can have varying effects on forests and they do not necessarily have to be

negative. In Northern and Central Europe, for example, warmer winters might prolong the growing

season, which could further be enhanced by higher CO2 availability (Allen et al., 2010). However,

in Southern Europe and especially the Mediterranean area, tree populations are dying-off, mainly

due to extreme heat waves and drought. Even if Central and Northern European populations

might, in general, not be negatively affected in the near future, considering humanities sluggish

actions in mitigating global climate change, these populations will likely face similar problems in

a more distant future. As somewhat of a precursor, mortality and die-offs of more northern tree

populations of Quercus and Picea have already been linked to a combination of summer drought

and biotic stresses (Allen et al., 2010). Even in the absence of a change in precipitation, forest

mortality might still be caused (Barber et al., 2000) or accelerated (Adams et al., 2009) by drought

stress due to rising temperatures.

In any case, in Europe, climate change will lead to more extreme events, such as droughts,

heat waves and heavy precipitation (Kovats et al., 2014). This poses a threat to all forests, since

trees are sessile organisms and have to cope with any sudden change in the environment. As
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such, tree populations are facing challenges as a consequence of global climate change that can

be viewed according to the severity of the change over time. Since trees cannot migrate to evade

threatening conditions, their only ’spatial escape’ lies in seed dispersal, which could be described

as migration over generations. This, however, necessitates that the change in conditions is not too

sudden and severe. Any abrupt change will out-pace the generational cycle and affect the entire

population. Given that the post-glacial re-colonization speed of trees, on average, was probably

around 100 m per year or less (Aitken et al., 2008; Loarie et al., 2009) and that, very broadly

speaking, temperature is projected to change at a velocity of around 110 m, 260 m and 350 m per

year for temperate coniferous forests, the Mediterranean area and temperate broadleaf and mixed

forests, respectively (Loarie et al., 2009), climate change could be too fast for some tree populations

in Europe and will likely favor species with long dispersal ranges. For many species, however, seed

dispersal is often limited by natural barriers, such as mountains, and habitat fragmentation.

This leaves, as a last resort, adaptation. Again, any change that is very sudden and severe

might out-pace the population’s ability to adapt. Just as seed dispersal, adaptation represents a

migration over generations, with the difference that the former is staged on a three-dimensional

spatial landscape, while the latter is staged on a multidimensional fitness landscape (Orr, 2005).

The question then becomes if a population harbors enough standing variation and has enough time

for an adaptive walk up the slope of a new fitness peak to cope with relatively sudden changes in

the environment. Standing variation could allow for rapid adaptation since beneficial alleles might

already be present in the population (Barrett and Schluter, 2008). The alternative would be newly

arisen mutations but their stochastic nature makes them a gamble and they have never been ’tested’

by natural selection.

Adaptation is certainly one of the key elements of future survival for many trees since their

populations are often natural and harbor a large amount of genetic variation (Neale and Kremer,

2011). Given that an increase in extreme events, especially drought and heat waves, are likely to

occur in Europe as a consequence of climate change and that such events can be greatly amplified

in severity by other agents, such as pathogens and herbivores (Ayres and Lombardero, 2000), or

air pollutants such as ozone (Karnosky et al., 2005) or sulfur dioxide (Elling et al., 2009), we need

to understand the molecular basis of adaptation and the contribution of different genes and gene

variants to different phenotypes. Only then will we be able to devise management strategies that

include the necessary genetic component, as well as construct models to successfully predict the

impact of climate change and different land-use practices.

Study species Abies alba

Coniferous forests make up approximately 39% of the worlds forests (Armenise et al., 2012) and

conifers are a dominant component of many forests around the world (Torre et al., 2014). They

are also the most important source for wood and fiber (Ahuja and Neale, 2005). Most conifers

share common characteristics that differentiate them substantially from angiosperms, such as large

genome sizes (1C = 6,500 Mb to 37,000 Mb) (Ahuja and Neale, 2005) and a large amount of

transposable elements (Torre et al., 2014). Given the importance of conifers, there is great interest

to add to the growing resources and develop new methodologies and techniques to understand
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their highly complex genetic architecture.

Silver fir (Abies alba Mill.) is an ecologically and economically important, evergreen conifer-

ous species belonging to the family Pinaceae. Indigenous populations are mainly distributed along

mountainous regions in Eastern, Western, Southern and Central Europe. In higher altitudes, silver

fir is mostly associated with spruce (Picea abies (L.) Karst.), otherwise with beech (Fagus sylvatica
L.). It can grow more than 60 m in height, making it the tallest European tree species, and can

live more than 500 years (Tinner et al., 2013). Silver fir is wind-pollinated, predominantly out-

crossing, monoecious and diploid with 2 n = 24 chromosomes. The genome size of silver fir can

be approximated by the DNA content. With a 1C content of around 16.55 pg (Roth et al., 1997)

and a 2C content of around 34.58 pg (Puizina et al., 2008), this corresponds to a 1C value between

16,000 Mb and 16,900 Mb (Doležel et al., 2003). There exist very little genomic resources for

silver fir and conifers in general. To this date, the only available genome assemblies available in

public repositories are for members of the genus Picea (Birol et al., 2013; Nystedt et al., 2013) and

Pinus (Neale et al., 2014; Zimin et al., 2014).

Drawing from palaeobotanical and genetic studies, glacial refugia and the subsequent re-colo-

nization of Europe could be reconstructed for silver fir (Liepelt et al., 2009). However, the natural

potential range of the species is largely unknown, mainly due to a mismatch of previous (over

5,000 years ago) and present distributions who are heavily influenced by human activities (Tinner

et al., 2013). Current models suggest that silver fir can withstand higher summer temperatures of

up to 5-7°C and dryer conditions, given that precipitation does not fall below 700-800 mm per year.

Uncertainty about the ecological characteristics of silver fir lead to the general description of

the species as very fragile and vulnerable to summer drought. Some went so far as to call silver

fir the mimosa of the forest (Elling et al., 2009). This drought sensitivity could indeed be shown

at the southern margin of the species distribution, for example in the form of diebacks in the

Mediterranean area (Nourtier et al., 2012). In Central Europe, on the other hand, silver fir only

had a short period of local diebacks in the 1970s and 1980s. These diebacks were part of the so-

called ’novel forest decline’ (’neuartige Waldschäden’) and are largely attributed to air pollution,

especially sulfur dioxide (SO2) (Elling et al., 2009). Prior to this period, silver fir was considered

rather drought tolerant in Central Europe, due to its deep rooting system. While older studies

refute the involvement of SO2 in the novel forest decline (Krause et al., 1986), more recent studies

strongly suggest that SO2 is the major factor causing diebacks in silver fir during this period (Elling

et al., 2009). Furthermore, SO2 seems to increase the sensitivity to drought events in silver fir,

leading to a very different reaction of silver fir during periods of water shortage, depending heavily

on the presence of SO2 and consequently explaining the alleged drought sensitivity.

Given that silver fir has the potential to cope with a warmer climate, forest management strate-

gies could increasingly use it to stabilize local tree communities and ensure sufficient timber supply

in the face of climate change. However, there is considerable need for a better understanding of the

response of silver fir to different stressors and especially their interaction. As previously mentioned,

silver fir shows a high susceptibility towards SO2 pollution and the diebacks may have decreased

the genetic diversity of populations (Wolf, 2003). Even if silver fir is drought tolerant, future ex-

treme events will likely co-occur with other stressors, such as pathogens or pollutants, and could,

in combination, have detrimental consequences.
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The focus of this thesis will thus lie on techniques and methods to further our understanding of

the genetic components involved in the response of silver fir to such important stressors as drought

and air pollution.

The complex nature of stress response

Changes in the environment can create potentially unfavorable conditions for plants and as such

constitute a stress (Levitt, 1980). The concept of stress is very diverse and is often used in a

different context. Within the scope of this thesis I will follow the above stated, general definition

by J. Levitt.

As opposed to most animals who can detect a stress and avoid it by moving, the sessile nature

of plants forces them to cope with any stressor. Plants have to endure a stress and will generally go

through four basic phases (Lichtenthaler, 1998). Without any stress, a plant should be in a physio-

logical standard situation which is optimized based on the specific environmental conditions, such

as water supply, light and nutrient availability. Upon onset of stress, a plant will transition from

the pre-stress phase into a (1) response phase. This transition includes deviation from the physio-

logical standard, such as changes in the metabolism which usually means a decrease in anabolism

and an increase in catabolism. The net effect is reduced growth and, depending on the severity

of the stress and the plant’s resistance, increased senescence and acute damage. Should the stress

continue, the plant will enter the (2) restitution phase. Here, the plant will activate metabolic

pathways for general and specific stress response and will acclimate by shifting the physiological

standard to cope with the changed conditions. Restitution is highly dependent on the plant’s resis-

tance to the specific stressor. Depending on the severity of a continuing stress, a plant with a high

resistance maximum can endure and even repair damages. However, should the severity increase

or the duration of the stress be too long, the plant will enter the (3) end phase which is character-

ized by exhaustion. Within this phase, the plant will accumulate chronic damage and eventually

cell death. Given that the stress is not removed too late for the plant to recover, it will enter the (4)

regeneration phase. Depending on the timing of stress release relative to the exhaustion, the plant

will shift to a new post-stress physiological standard.

In temperate forests, stress is a common occurrence. Water and nutrient availability, as well as

sunlight and temperature vary throughout the seasons. Within their adaptive capacity, trees should

be able to cope with these episodic stress periods. Problems arise when a stress increases in severity

and/or duration and thereby exceeds the coping capability of an individual. However, a stress does

not necessarily have be more severe and prolonged to cause problems. While resistance to singular,

and especially episodic stress events is often sufficient in tree populations, a combination of differ-

ent stresses can severely threaten a population. Multiple stresses can either occur successively or

at the same time. This might lead to interaction effects between the stresses that are either positive

or negative with, e.g., temperate woody species showing a generally low tolerance for multifactor

stresses (Niinemets, 2010).

Given that global climate change will lead to rising temperatures and consequently more severe

droughts and heat waves in Europe, water shortage is certainly one of the most important stressors

for silver fir. Drought stress can occur both during winter and summer but is not necessarily a
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singular event. Often other stressors, such as air pollution, co-occur with drought and can enhance

the sensitivity of silver fir towards drought stress (Elling et al., 2009).

How can we identify genes that are potential candidates for the involvement in the stress re-

sponse of silver fir and trees in general?

Identification of stress related genes – The candidate gene approach

In order to identify genes that are involved in the stress response of any organism, the phenotypic

reaction to stress has to be quantified. These phenotypic traits are often of a quantitative nature

and represent the measurable effect of multiple genes or gene variants (Box 1). As such they can

be utilized to identify genes that are involved in stress response.

Box 1. Discrete vs. quantitative traits

Discrete traits are phenotypes like a disease state or flower color in peas and can be inherited

in a monogenic Mendelian fashion (Lander and Schork, 1994).

Quantitative traits are phenotypes that are often, but not necessarily, measured on a contin-

uous scale, such as growth, height or gene expression, i.e. the abundance of a transcript

(Rockman and Kruglyak, 2006). Quantitative traits are ’complex’ traits that are influ-

enced by multiple polymorphic genes, so called quantitative trait loci (QTLs), and do not

follow monogenic Mendelian inheritance (Lander and Schork, 1994). Individual QTLs,

on the other hand, do follow classical Mendelian segregation and linkage (Frankham

and Weber, 2000).

The majority of the information regarding the molecular response of plants to stress, and espe-

cially drought stress, comes from experiments conducted on model organisms, such as Arabidopsis
thaliana, rice (Oryza sativa) or maize (Zea mays) (e.g. Ingram and Bartels, 1996). Often, the goal

is to identify drought tolerant variants in crop plants to potentially breed more sturdy and yield-

ing lines. The benefit of model organisms is the availability of the entire genome, which allows

for genome-wide association studies (GWAS) who scan the entire genome and do not need any

pre-selection of a genomic region. Combined with the ability to cross different clonal strains and

track the inheritance of multiple loci through the generations, even quantitative traits can be suc-

cessively analyzed in model organisms (e.g. Mauricio, 2001; Davila Olivas et al., 2017), granted

that a distinction of causative genetic variants and linked neutral markers will remain problematic,

even in model organisms (Korte and Farlow, 2013).

Silver fir, on the other hand, poses a major challenge. Not only is it a non-model species

with little available genomic resources (Neale and Kremer, 2011), as a conifer, it also has a very

large genome size (Murray, 1998). Further, tracking loci through pedigrees and crosses is often

unrealistic, due to the long generational cycle. First flowering occurs in 25-35 year old individuals,

given they are isolated (Wolf, 2003). Within a forest, silver fir trees first flower between the age of

60 and 70 years.
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This effectively restricts the availability of possible methods for identifying genes or gene vari-

ants that are involved in stress response to a candidate gene approach. In contrast to GWAS, the

candidate gene approach focuses on a subset of predefined genes. However, the term candidate

gene has a different meaning in different disciplines of biology. In physiology, candidate genes are

defined as genes whose expression is linked with a specific trait (Pflieger et al., 2001). In genetics,

on the other hand, candidate genes are polymorphic genes that are possibly associated with the

variation in a given trait. Yet, both approaches share some common ground. While geneticists

are interested in the contribution of a given gene’s variation to a trait variation, the selection of

these polymorphic candidate genes should be based on the biological function of the gene, i.e. the

candidate gene should have a functional consequence (Tabor et al., 2002).

Functional candidate genes

Functional candidate genes can be identified by measuring gene expression in a case control setting

and this has worked rather well for drought related genes (e.g. Ingram and Bartels, 1996). Not

only can this approach be used in non-model organisms, given that no target genes have to be pre-

selected, it can also reveal novel candidate genes. The method targets the transcriptome, i.e. the

part of the genome that is translated into amino acids, namely messenger RNA (mRNA; at least this

is mainly the focus, however, the transcriptome consists of all transcripts, which includes mRNAs,

non-coding RNAs and small RNAs (Wang et al., 2009). Gene expression is measured by extracting

RNA from a tissue, reverse transcribing it into complementary DNA (cDNA) and determining the

amount of transcripts in the tissue by either targeting selected cDNA sequences (e.g. microarray

technology), sequencing the entire cDNA (e.g. RNA-Seq technology) (Wang et al., 2009; Guo et al.,

2013), or deep sequencing a reduced representation of the cDNA (e.g. Massive Analysis of cDNA

Ends (MACE)) (Kahl et al., 2012).

While gene expression is a very useful trait to identify functional candidate genes, setting up

an environment that excludes all but the desired factors can be challenging for trees. Since these

types of studies try to unveil a cause-effect relationship, they warrant an experimental approach

(Box 2). Forest trees such as silver fir can hardly be moved into a laboratory and setting up a

controlled environment around a local stand is unrealistic and will always exhibit gradients in

one environmental factor or another. A few year old seedlings, however, are small enough to

be put in a laboratory in a sufficient enough number to ensure proper replication. This leaves the

problem of controlling the level of stress in a control and a treatment group that is both comparable

within groups and sufficiently different between groups. Overcoming this last challenge results in

functional candidate genes for a specific stress response.

Polymorphic candidate genes for complex trait variation

Identifying polymorphic candidate genes for complex trait variation can be conducted using differ-

ent methods (Box 3). Given the constraints in species like silver fir, however, only genetic associa-

tion is a viable option since no pedigrees are necessary.

Genetic association involves measuring some phenotye and associating the trait variation with

the variation in a set of pre-defined genes. As such, this constitutes an observational study (Box 2).
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Box 2. Study designs in the field of biology

Experimental studies usually test the effect of one or multiple treatments against a control,

with the treatments being randomly assigned by the researcher. In order to establish a

cause-and-effect relationship, the goal is to exclude as many confounding factors as pos-

sible. For this purpose, experimental studies are often conducted in a highly controlled

environment such as a laboratory. Since biology studies living organisms, genetic varia-

tion has to be controlled for as well. This is often achieved by using cloned individuals

with nearly identical life histories to avoid differences in gene expression and regulation.

Observational studies are fundamentally different in that the researcher has no control over

the assignment of treatments. Hence, such studies cannot reveal cause-and-effect rela-

tionships but only hint at associations because there are usually a number of confound-

ing factors present. Observational studies are often the only realistic type of experi-

ment available. Forest ecosystems, for example, are very complex but often have to be

studied by observation. Great efforts are made to develop mathematical and statistical

techniques to account for confounding factors, such as genetic population structure and

environmental variability.

For a genetic association, genes with known variation in a population have to be pre-selected.

The most common type of variation investigated in modern studies are single nucleotide polymor-

phisms (SNPs). For diploid organisms, such as silver fir, this means that within a population most

individuals have a certain nucleotide (either adenine, guanine, cytosine or thymine) at a specific

locus on a chromosome while some individuals have another nucleotide on the exact same position

on their chromosome. Depending on the effect of the variation on the resulting protein of a SNP

within the coding region of a gene, the SNP is either synonymous (both nucleotides lead to the

same amino acid) or non-synonymous (one of the nucleotides changes the amino acid).

Genetic association within an observational study introduces the challenge to control as many

confounding factors as possible and to select a precise and reliable phenotype. Also, genetic struc-

ture has to be accounted for, since any phenotype that occurs, due to heritage, more frequently in

one of multiple groups within the sampled population will often coincide with genetic differences.

A significant association between genetic and phenotypic variation could thus be solely attributable

to population stratification (Lander and Schork, 1994). Given that population stratification is con-

trolled for, the trait associated variation (e.g. a SNP in a gene) is likely to be physically close to, or

is itself, the functional variant (Neale and Kremer, 2011). The reason for this is the rapid decay of

linkage disequilibrium (LD) in most tree populations.
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Box 3. Methods for the genetic dissection of complex traits (Lander and Schork, 1994)

Linkage analysis tracks two loci (one being associated with a phenotype - mostly a disease

state - and the other being proposed to be physically linked to the former) through pedi-

grees and tests if both loci are inherited together more often than expected by chance.

This method is mostly used for simple Mendelian traits since the Null model for complex

traits can be very hard to propose.

Allele-sharing methods are based on proving that chromosomal regions do not follow ran-

dom Mendelian segregation and thus are probably associated with a corresponding phe-

notype. This method is more robust than linkage analysis since it does not assume any

model of inheritance.

Association studies do not track loci through pedigrees but simply test if an allele at a gene

occurs more often with one variant of a discrete trait than expected by chance. For quan-

titative traits the association is tested by comparing mean phenotypic variation between

alleles. This method has some limitations regarding the interpretation of the results. A

significant association can either be due to a cause-effect relationship between allele and

phenotype, a linkage between allele and true causal locus or, in the case of population

stratification, a spurious relationship.

Experimental crosses map polygenic traits in pedigrees (including QTLs). QTL mapping is

a powerful tool, especially for systems in which mutations can be specifically bred. In

principle, QTL mapping is a possibility in conifers, given that progenies of crosses are

available (Mauricio, 2001). However, since any QTL contains numerous loci and genes

that might or might not be associated with the trait under investigation, intensive fine-

mapping is necessary to identify specific genes. Thus, due to their large genome sizes,

QTL mapping can currently not lead to the identification of specific genes for a trait

variation in conifers (Neale and Kremer, 2011)

Goal of the thesis

The goal of this thesis was the identification of functional candidate genes for drought stress re-

sponse in silver fir seedlings in a novel, highly controlled experimental setup, as well as the associ-

ation of variation in pre-selected, polymorphic candidate genes with variation in novel phenotypes

derived from tree-rings of adult silver fir trees that describe their individual reaction to extreme

environmental stress, mainly SO2 and drought, in an observational study.

The combination of both approaches aims at providing a framework that can contribute to the

identification and analysis of candidate genes for stress response in silver fir and other non-model

conifer species.
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Outline of the thesis

Chapter 2 presents a novel terahertz time-domain spectrocopy (THz-TDS) setup that allows to

continually measure the water status of multiple plants. This setup was used to monitor the des-

iccation process of silver fir seedlings during drought treatment, compared to the water status of

well-watered individuals. Thus, needles from both groups could be harvested with near-identical

water status within each group.

Chapter 3 is concerned with the possible influence of chlorophyll content on the terahertz signal

during THz-TDS monitoring. Since decreasing water content can reportedly lead to decreasing

chlorophyll content in leaves, different concentrations of extracted chlorophyll were measured us-

ing THz-TDS. Based on this simple experiment, chlorophyll concentration has no influence on the

terahertz signal and can be disregarded as a potential source for error during THz-TDS monitoring.

Chapter 4 describes the differential transcriptome profiling of the harvested needles from Chap-

ter 2. Two libraries were constructed by Massive Analysis of cDNA Ends (MACE) and subsequent

analyses of differential expression between the two treatments. By comparing the expression levels

between drought stressed and control group, significant up- or down-regulated transcripts could

be identified and partially annotated. Thus, novel functional candidate genes for drought stress

response in silver fir could be identified.

Chapter 5 introduces dendrophenotypes derived from wood cores of silver fir trees in the Bavar-

ian Forest National Park. Silver fir shows a strong depression in tree-ring width in the period

of 1974-1987, which is explained mostly by sulfur dioxide (SO2) pollution in combination with

drought stress. By associating variation in pre-selected polymorphic candidate genes (SNPs) with

individual response parameters during the depression period (dendrophenotypes), genes that might

potentially be of adaptational consequence, could be identified.

Chapter 6 is a critical assessment of minimal-optimal feature selection techniques based on ran-

dom forest that are increasingly used in genetic association studies. Specifically in the context of

biological interpretation, the potential pitfalls and caveats of such an approach are demonstrated.

A proposed interaction analysis is shown as having the potential to create statistically significant,

yet diametrically different results due to random sampling alone.

Chapter 7 recapitulates and synthesizes the results of the previous chapters and places the find-

ings of this thesis in a broader context. The methods and results are critically evaluated and an

outlook on necessary improvements and further studies is given.
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Monitoring Plant Drought Stress Response Using
Terahertz Time-Domain Spectroscopy[C][W]

Norman Born1*, David Behringer1*, Sascha Liepelt, Sarah Beyer, Michael Schwerdtfeger,
Birgit Ziegenhagen, and Martin Koch

Faculty of Physics and Material Sciences Center, Philipps-University Marburg, D–35032 Marburg, Germany
(N.B., M.S., M.K.); and Faculty of Biology, Conservation Biology, Philipps-University Marburg, D–35043
Marburg, Germany (D.B., S.L., S.B., B.Z.)

We present a novel measurement setup for monitoring changes in leaf water status using nondestructive terahertz time-domain
spectroscopy (THz-TDS). Previous studies on a variety of plants showed the principal applicability of THz-TDS. In such setups,
decreasing leaf water content directly correlates with increasing THz transmission. Our new system allows for continuous,
nondestructive monitoring of the water status of multiple individual plants each at the same constant leaf position. It overcomes
previous drawbacks, which were mainly due to the necessity of relocating the plants. Using needles of silver fir (Abies alba) seedlings
as test subjects, we show that the transmission varies along the main axis of a single needle due to a variation in thickness. Therefore,
the relocation of plants during the measuring period, which was necessary in the previous THz-TDS setups, should be avoided.
Furthermore, we show a highly significant correlation between gravimetric water content and respective THz transmission. By
monitoring the relative change in transmission, we were able to narrow down the permanent wilting point of the seedlings. Thus, we
established groups of plants with well-defined levels of water stress that could not be detected visually. This opens up the possibility
for a broad range of genetic and physiological experiments.

Climate change simulations predict an increase in the
occurrence of drought events in the Mediterranean area
and in central Europe due to smaller amounts of
precipitation, especially during summer periods (IPCC,
2007). With the exception of the boreal zone, this leads to
an increase in drought risks for every region on the
European continent (Iglesias et al., 2007). Water availability
is very important for a variety of plant species. Trees and
crops play major roles regarding ecosystem stability and
food supply. Forest trees are keystone elements in
shaping long-term, regional ecosystem composition and
stability and are, like most forest species, highly vulner-
able to increases in drought severity (Breshears et al.,
2005; Choat et al., 2012). Drought-induced forest die-offs
thereby directly reduce ecosystem services such as car-
bon sequestration and timber supply (Allen et al., 2010).
Further research is clearly necessary to elucidate the

physiological traits and responses of plants regarding
their water status.

European silver fir (Abies alba) is an important forest
tree species of ecological and economic relevance. This
study is embedded in the European project LinkTree,
“linking genetic variability with ecological responses
to environmental changes: forest trees as model sys-
tems.” Our group is concerned with the identification
of genes involved in the water stress response of silver
fir. This species is of special interest because of its lower
water-use efficiency compared with other conifer spe-
cies (Guehl and Aussenac, 1987; Guehl et al., 1991).

For this purpose, monitoring plant water status
without inducing other forms of stress is instrumental
in order to apply well-defined levels of water stress.
Obtaining information regarding the water status of a
plant is highly problematic without using invasive and
destructive methods that usually only allow a retro-
spective assessment. These include commonly estab-
lished methods, such as the gravimetric water content
and pressure chamber techniques, most notably
Scholander’s pressure bomb (Scholander et al., 1965).

Chlorophyll fluorescence, stomatal conductance, and
visual assessment are examples of nondestructive and
noninvasive measurement techniques. The former two
only provide indirect information about the plant stress
status and, therefore, the water content via photosyn-
thetic activity (Lichtenthaler and Rinderle, 1988; Tardieu
and Davies, 1993). The latter is difficult to standardize
and highly dependent on the morphology of the studied
plant species. Conifers especially are challenging sub-
jects for visually assessing drought stress. Due to their
needle morphology, it is nearly impossible to detect
early signs of dehydration.
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Measurement techniques using electromagnetic radi-
ation in the terahertz (THz) regime have shown prom-
ising results, due to the nondestructive nature and high
sensitivity of THz waves to water. With THz waves, we
refer to frequencies in the electromagnetic spectrum be-
tween 0.1 and 1 THz, corresponding to wavelengths
between 3 and 0.3 mm, which are located between in-
frared light (thermal radiation) and microwave radiation
(used in common wireless data communication systems).
In the last decade, terahertz time-domain spectroscopy
(THz-TDS) has proven to be a very strong and accurate
tool for characterizing and imaging various materials (for
review, see Jepsen et al., 2011). Crucial for our study is
the remarkably high absorption coefficient of water in
this part of the electromagnetic spectrum. Thus, it is a
robust technique hardly affected by physiological con-
centrations of soluble substances. Using transmission
geometry, the resulting absorption by plant tissues di-
rectly reflects the quantity of water molecules.

Furthermore, THz-TDS does not suffer from the dis-
advantages of other radiation-based techniques. These
are mainly focused on the infrared or microwave spec-
trum but either lack the sensitivity for small changes in
leaf water status or are affected by the plant’s inorganic
salt content, leading to significant disturbances (Ulaby
and Jedlicka, 1984). Moreover, the applicability of emit-
ting microwave radiation is limited to minimal wave-
lengths of approximately 2.5 mm. The Abbe diffraction
limit, therefore, restricts the minimum diameter of a
measurable object to approximately 1.25 mm. In order
to measure small leaves, such as coniferous needles,
electromagnetic radiation with shorter wavelengths is
necessary.

Although presenting a useful alternative, THz-TDS
was not feasible until recently, due to the difficulty of
generating and detecting electromagnetic radiation with
wavelengths in the THz spectrum. Despite its promising
applicability in plant sciences, until now this relatively
novel method relied exclusively on measurement setups
that allowed only a single measurement per alternating
plant (Hadjiloucas et al., 1999; Jördens et al., 2009;
Breitenstein et al., 2012; Castro-Camus et al., 2013; Gente
et al., 2013). For the purpose of continuously monitoring
multiple plants, these setups are only of limited use, since
the plants must be relocated for every measurement. This
results in two problems: (1) an increase in possible dis-
turbances (e.g. mechanical), influencing the plant’s stress
response, and (2) the necessity to precisely target the
same measurement spot on every analyzed plant at
every consecutive measurement. The latter is of crucial
importance for the exact monitoring of any individual
plant’s water status because, as we will show in this
study, the transmission varies substantially across the
area of plant leaf tissue.

We present a novel measurement procedure that over-
comes the drawbacks of previously proposed methods.
Our approach enables us to precisely monitor changes in
the water content of multiple plants simultaneously.

In the course of this study, three different experi-
ments were performed. The profile measurement and

the rehydration experiment were preliminary investi-
gations to examine the influences of needle and tissue
thickness and to define a nonlethal stress level. The main
experiment established groups of plants with compara-
ble levels of water stress.

RESULTS

The THz transmission is a measure for the proportion
of radiation reaching the detector. Without any absorb-
ing or reflecting materials, the transmission is defined as
100%. When monitoring plant leaves, the measured
transmission is always a result of the volume of water at
the measurement spot. A lower transmission, therefore,
might be due to higher water content and/or leaf thick-
ness. Accordingly, every individual needle produces an
individual transmission baseline, which does not pre-
cisely translate into specific water content. Increase or
decrease of transmission (DT), instead, is comparable
and directly attributable to changes in the water con-
tent. The profile measurements of the needle showed a
general decrease in transmission along its main axis
(Fig. 1). Correspondingly, the highest transmission of
36% was measured at the tip and the lowest transmis-
sion of 22% was measured near the base of the needle.
The transmission correlated with the difference in needle
thickness of the tip and base, 170 and 250 mm, respectively.
The repeated measurements of every position along
the needle showed highly reproducible values, leading
to very low SD values ranging at maximum up to 4%
for five consecutive measurements.

At the time of harvesting, a statistically significant
negative correlation between transmission and relative
water content for all measured seedlings was evident
(r = 20.98, P , 0.001; Fig. 2).

Figure 1. Transmission profile of a silver fir needle along the main axis,
with the thickness of the needle at the outermost points of the profile. Each
point represents the mean over five measurements. The SD is given for every
point but sometimes is smaller than the pixel of the point (Supplemental
Table S1). [See online article for color version of this figure.]
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In the rehydration experiment, irrigation after drought
treatment was conducted for seedlings R1 and R2 after
reaching a DT of 58% and 43%, respectively (Fig. 3A).
Correspondingly, R3 and R4 were irrigated after reach-
ing a DT of 11% and 19%, respectively (Fig. 3B). Thus,
the permanent wilting point (PWP) of the seedlings was
narrowed down to a DT between 19% and 43% at 1.5 to
3 d after the onset of increased transmission. While R1
and R2 did not show any signs of recovery from drought
and instead remained on high transmission levels,
transmission in R3 and R4 dropped quickly after rehy-
dration to levels close to the initial baselines.
The stressed group of seedlings in the main experi-

ment showed an increase in transmission similar to each
other, while the irrigated control seedlings remained at
relatively constant levels (Fig. 4; for further information
regarding the overall drought period, see Supplemental
Table S2). Transmission at harvesting varied from 42%

to 56% within the stressed group. DT, however, only
showed a slight variation of 5% (Table I). Seedling S7
showed a relatively high DT of 24% and, accordingly, a
very low gravimetric water content of 27.44%. Nor-
malization of the data revealed that the respective pin-
hole was not properly adjusted, leading to a reflection of
THz radiation. Hence, seedling S7 was too desiccated
and, therefore, was removed from the stressed group as
an artifact.

The transmission of all irrigated control seedlings
exhibited a very low SD of 0.86%. The accuracy of the
control measurements is illustrated by the shape of the
probability-density function (Fig. 5). The differences in
relative water content were highly significant between
the stressed group and the irrigated control group
(Student’s t test, P , 0.001).

Room temperature fluctuated regularly during the
whole measurement period around 20.3°C, with maxi-
mum values up to 21.4°C during the day and minimum
values down to 19.6°C at night. Relative humidity
showed strong fluctuations ranging from 44.8% to
16.8%, not following any recognizable pattern. Both
temperature and relative humidity did not correlate
with the fluctuations in transmission (Supplemental
Figs. S1–S3). Illumination intensity during the day was
3,500 lux on average.

DISCUSSION

In this paper, we introduce a newly developed
THz-TDS setup that was thoroughly validated. The main
goal of our study was to provide a sensitive tool for
monitoring the reaction of plants in an in vivo drought
stress experiment by using DT. Before discussing the
main results, we address the outcome of the prelimi-
nary validation steps. These were performed to dem-
onstrate the accuracy of the experiment and to identify
factors that influenced the measurements.

To better understand the results, we emphasize the fact
that THz transmission is expected to be influenced not
only by the water content but also by the measurement

Figure 2. Correlation between THz transmission and gravimetric water
content of the respective irrigated (white circles; I1–I5), stressed (black
circles; S1–S6), relatively desiccated (white square; S7), and completely
desiccated (black squares; D1–D5) seedlings, with the linear regression
line and the corresponding coefficient of determination (r2).

Figure 3. Monitoring DT over time to
narrow down the PWP. A, Seedlings R1
and R2 irreversibly passed the PWP
(the dashed line shows the beginning of
regular irrigation). B, Seedlings R3 and
R4 recovered from drought treatment
after irrigation (the dotted and dotted-
dashed lines show the time of needle
extraction and the beginning of regular
irrigation, respectively). [See online article
for color version of this figure.]
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spot (Mittleman et al., 1996). We demonstrated this by
moving the measurement spot along the axis of a needle
(Fig. 1). Thus, the variation of transmission along the axis
can be attributed mainly to leaf thickness/composition.
Using broad-leafed specimens, we observed similar var-
iation when moving the measurement spot across the
surface of a leaf (data not shown). Therefore, repeated
measurements of plants at different spots introduce a
variation in transmission even without a change in water
content. We could demonstrate, however, that repeated
measurements at the same spot are highly accurate and
reproducible (see error bars in Fig. 1).

In the next step, we observed a high correlation
between transmission and water content and, thus, a

high sensitivity of THz radiation to the water content
(Fig. 2). This correlation could be used for establishing
a species- and setup-specific standard curve as a proxy
for water content. The remaining variation, however,
indicates that the use of absolute values is not straight-
forward for studying the response of plants in such an
experiment, at least without knowledge of the exact
thickness or composition.

This is exactly where our system was meant to
provide a solution. As we discuss below, the contin-
uous monitoring of the drought stress response clearly
overcomes previous shortcomings. In advance of the
main experiment, we performed a rehydration exper-
iment, which already confirmed the advantages of our

Figure 4. DTover a relative time for the
six water-stressed seedlings S1 to S6 (A)
and the five irrigated control seedlings I1
to I5 (B). The transmission curves of the
stressed seedlings were aligned at their
respective baselines, and the range of DT
at harvesting is shown. While the stressed
seedlings show a relatively uniform in-
crease in transmission and therefore a
decrease in water content, the irrigated
seedlings remain at a relatively constant
level of transmission and therefore show
no signs of dehydration. [See online arti-
cle for color version of this figure.]

Table I. Fresh weight, dry weight, relative water content, and transmission at harvesting for each seedling
with its respective plant and treatment group

For each stressed seedling, the difference in transmission between the respective baseline and the point
of harvesting (DT) is given. –, DT was not calculated for the irrigated and desiccated seedlings.

Plant Treatment Fresh Weight Dry Weight
Relative Water

Content

Transmission at

Harvesting
DT

mg %

S1 Stressed 117.0 67.3 42.48 50 15
S2 Stressed 102.7 61.3 40.31 56 15
S3 Stressed 129.0 70.1 45.66 50 14
S4 Stressed 171.8 104.8 39.00 52 12
S5 Stressed 140.7 76.3 45.77 52 13
S6 Stressed 126.0 70.1 44.37 42 17
S7 Stresseda 102.4 74.3 27.44 72 24
I1 Irrigated 261.6 122.4 53.21 42 –
I2 Irrigated 287.1 147.3 48.69 36 –
I3 Irrigated 243.3 107.3 55.90 41 –
I4 Irrigated 141.9 59.4 58.14 28 –
I5 Irrigated 142.0 61.1 56.97 37 –
D1 Desiccated 54.4 47.6 12.50 91 –
D2 Desiccated 81.8 72.4 11.49 92 –
D3 Desiccated 60.5 53.9 10.91 94 –
D4 Desiccated 66.0 60.6 8.18 87 –
D5 Desiccated 25.3 61.1 12.25 98 –

aSeedling S7 was considered desiccated.
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setup but still served as a preliminary step for the main
experiment. To be more specific, we were interested in
determining the point at which drought stress affects
the plants but is not yet lethal. Thus, a rough estima-
tion of the PWP was sufficient in this case (Fig. 3). With
the appropriate experimental design, our THz-TDS
setup will allow for a much more precise determina-
tion of a species’ or ecotype’s specific PWP. Exact
knowledge about the DT threshold, at which the PWP
is reached, could provide valuable phenotypic infor-
mation about a plant.
In addition, the rehydration experiment again pro-

vided evidence for variation introduced by moving the
measurement spot. Prior to the irrigation, one needle
was harvested from seedling R3 and one from R4,
leading to an unavoidable shift in the position of the

measured needle over the pinhole. Therefore, directly
after remounting the needles, the transmission shifted
for both samples, which corresponded precisely with
the elevation of the baseline after recovery. From this
evidence, we conclude that, in order to successfully
monitor changes in plant water status, repeated mea-
surements have to be performed at the exact same
spot. Our novel measurement setup provides this basic
ability.

In the main experiment, we observed that the stressed
group of seedlings reacted in a similar way by losing
water at similar rates after the onset of dehydration
(Fig. 4A). This could be expected from seedlings ori-
ginating from the same mother tree. Further experiments
with seedlings from different genetic and geographic
backgrounds are necessary to provide an assessment
of the variation of the stress response within silver fir.
The irrigated control group showed only slight variation
(Figs. 4B and 5), demonstrating that our measurements
were not significantly influenced by sources other than
irrigation. This was confirmed by the recorded data for
temperature and humidity, which showed no signs of
correlation with the transmission of any individual
seedling.

For our purpose of defining plants with nearly iden-
tical levels of water stress, the presented setup was fully
sufficient. As a novelty, it enabled us to apply a level of
stress that was traceable in the seedling’s physiological
response (i.e. water content) but not in its visual ap-
pearance (i.e. wilting).

Both the rehydration and the main experiment revealed
that, instead of using absolute measures of transmission,
continuously monitoring plants provides the key infor-
mation, DT. Since this value is corrected for by the indi-
vidual transmission prior to dehydration, it is possible
to compare all plants in the experiment independently
of tissue thickness and composition. This is applicable to
both broad-leafed and coniferous plants.

Although our novel setup provides precise contin-
uous measurements at the same spot, growing plant
tissue might introduce additional variation. While this
was not relevant in our specific case, this should be

Figure 5. Histogram of DT for all irrigated control seedlings I1 to I5
with the corresponding probability-density function. The course of
transmission for each seedling was set to a mean of 0% prior to the
analysis.

Figure 6. Measurement setup with the
goniometer rotating the THz antennas in a
precise angle along the positioned silver
fir seedlings (A), which each have one
needle clamped with a small magnet onto
a holding device that positions the needle
directly above a pinhole through which
the THz radiation passes (B). [See online
article for color version of this figure.]
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considered when adapting the system to fast-growing
plant species.

Previous studies using THz-TDS showed that the
method works in principle and is applicable to different
plant taxa. Yet, these setups are limited in experimental
design (Jördens et al., 2009; Castro-Camus et al., 2013).
Here, we present a setup suitable for a broad range of
applications in ecophysiology and genetics. This is mainly
due to three features: (1) high accuracy and reproduci-
bility of the measurements, (2) multiple samples studied
in parallel, with the ability for legitimate comparison be-
tween test subjects, and (3) the possibility to manipulate
selected environmental conditions while reducing han-
dling stress to a minimum.

PERSPECTIVE

In this study, we established an accurate tool for
measuring effects directly related to water deficiency.
This opens up the possibility for a broad range of ex-
periments studying cause-effect relationships. By moni-
toring the reaction of an array of plants to defined levels
of stress, groups exhibiting similar responses can be
identified and selected for in-depth study of the under-
lying causes. Beyond the focus of our exemplary study,
our DT approach allows the comparison of genotypes or
accessions regarding their specific stress response. This
response can be further characterized in terms of delay
time until the onset of the stress reaction as well as the
intensity of the response, which is defined by the vari-
ation of transmission over time (DT/Δt).

MATERIALS AND METHODS

Plant Material

Silver fir (Abies alba) seeds were collected from the female cones of a single
seed tree in a forest stand near Hagenbach, in the Black Forest region of
southwestern Germany.

The seedswere cleaned, soaked in coldwater for 24 h, and put into germination
trays. For the stratification process, the germination trays were stored in a cooling
chamber at 5°C for 6 weeks. Afterward, they were relocated to a thermal chamber
that was adjusted to 28°C and moved to a greenhouse after 1 week. The ger-
minated seedlings were individually planted into identical pots containing peat
soil and kept in a greenhouse for 6 months. The positions of the single pots in the
greenhouse were randomized to avoid the effects of a heterogenous environment
and were irrigated three times per week. In preparation for the THz measure-
ments, the seedlings were repotted into smaller clay pots containing slightly
sandy topsoil 2 months prior to the experiments.

In thefirst step,we used one seedling tomeasure a needle profile to demonstrate
the influence of varying the measurement spot. Subsequently, four seedlings
(R1–R4) were chosen for a rehydration experiment. The aim was to determine the
PWP. Another 12 seedlings were chosen for the main water stress experiment. The
seedlings were assigned to two groups, one water-stressed group of seven seed-
lings, labeled S1 to S7, and one irrigated control group of five seedlings, labeled
I1 to I5. Additionally, five completely desiccated seedlings (D1–D5) were chosen to
be included in a correlation analysis.

THz-TDS Setup

The setup consisted of an erbium fiber laser (C-Fiber; Menlo Systems), which
generated infrared light pulses at a wavelength of 1,550 nm with pulse lengths
of 66 fs and a fiber length of 36 m. These laser pulses were split into two arms
and guided through an optical fiber to two THz antennas (low-temperature

molecular beam epitaxy-grown beryllium-doped indium-gallium-arsenide/
indium-aluminium-arsenide multinanolayer; commercially available at Menlo
Systems). These antennas were mounted on a probe head that was fixed on a
movable goniometer arm (Fig. 6A; Supplemental Video S1). The upper antenna
acted as an emitter and the lower one as a detector. The radiated THz beam was
guided through the probe head via four high-density polyethylene lenses and two
plane metallic mirrors, thus focusing the beam on a fir needle. Metallic holding
devices were used to define a fixed measurement spot for every probed needle
(Fig. 6B). These holding devices were designed to minimize any disturbances that
could negatively affect plant growth. Hence, plant shading was reduced to a
minimum. With a small and weak magnet, the probed needles were gently at-
tached to a metallic spot face above a pinhole with 1.5 mm in diameter. The
pinhole defined the focal spot of the THz radiation and was used to properly
adjust the needle position in the optical path. In addition, the pinhole avoided
spatial overexposure of the needle by blocking any radiation not guided through
the pinhole, which would have led to a degradation of the measured data.

Up to 12 seedlings were measured automatically over several weeks, with
eachmeasuring cycle lasting 1.5 h. Furthermore, we applied a simulated day/night
cycle with 10-h days and 14-h nights. Illumination was provided by a Philips
bulb with an average of 3,500 lux at approximately 2 m distance from each
holding device. During the measurement period, the facilities were monitored
by an air conditioning system, which constantly adjusted the temperature
within 21°C 6 0.5°C.

The data for a single measurement were acquired as a function of time by
varying the spatial length of the optical paths through the detector antenna.
Hence, it was possible to detect the time-resolved electrical field of a THz pulse.
Fast Fourier transformation allowed calculating the frequency components
comprising the THz pulse. By measuring a probe signal and comparing it with
a reference signal, the frequency-resolved transmission was calculated in a
frequency window ranging from 150 to 300 GHz, without any system-specific
characteristics (for further information, see Koch et al., 1998).

Every third measurement was a referenceMR (i.e. one holding device without
a needle). This was necessary to minimize systematic errors caused by changes
in the room temperature or the humidity. This reference was used to adjust the
transmission Ta of each measured needle MN using the following equation:

Ta ¼ MR

MN

Simultaneously, fluctuations in room temperature and humidity were recorded
using a data logger (LOG 32; Dostmann Electronic), which was placed in a
shady position on the measuring table adjacent to the holding devices. Illu-
mination intensity during the daytime was measured at several spots on the
height and position of the holding devices using a conventional lux meter (LM-
1010; Elvos).

To exclude possible variations in transmission attributable to physical causes,
two blank holding devices were placed among the others. By measuring those
blank controls, variation in transmission of the probed needles could be separated
between “real” biological changes in water status and “concealed” fluctuations
caused by (long-term) systematic errors. Therefore, the transmission for each
seedling was individually corrected by an adjustment function, based on the
variation of the control measurements. To be more precise, we subtracted the
transmission of the blank controls from the sample transmissions in order to
exclude the concealed errors (e.g. proximity to the air conditioning system or the
entrance). Finally, each curve was normalized to the determined maximum
transmission of the respective holding device without the needle.

THz-TDS Measurements

Initially, one needle of a seedling was cut off and fixed to an adjustable
device that allowed moving the needle in parallel above a pinhole. By mea-
suring points along its axis, a transmission profile was obtained. Directly after
the measurements, the thickness of the needle at the outermost points of the
profile was measured using a digital micrometer screw (Mitutoyo).

To establish a nonlethal stress level by narrowing down the PWP, seedlings
R1 and R2 were irrigated after approximately 3 d of transmission increase and
seedlings R3 and R4 after 1 and 1.5 d, respectively. Directly prior to the irri-
gation, one needle was cut off from both R3 and R4 and stored in liquid
nitrogen for future genetic analysis. Afterward, the measured needles had to
be relocated above the respective pinhole.

In order to establish plants with comparable levels of water stress, seedlings
I1 to I5 were irrigated every 2 dwith 25mL of tapwater, while S1 to S7were not
irrigated at all. After an increase in transmission from the respective baseline
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(DT) of approximately 14%, two needles of each seedling were cut off. Needles
from the irrigated control group were cut off matching the harvesting time of
the stressed seedlings. All harvested needles were stored in liquid nitrogen for
future genetic analyses.

Gravimetric Water Content

To evaluate the accuracy of the THz measurements, each seedling was
stored in a plastic bag directly after the measurement was finished, and the
fresh weight (FW) was determined. After drying the seedlings at 110°C to the
point of brittleness for 4 to 8 h, depending on the water content and dimen-
sions of the individual seedling, the corresponding dry weights (DW) were
determined, and the relative water content (RWC) was calculated for each
seedling using the following equation:

RWCð%Þ ¼ FWðgÞ2DWðgÞ
FWðgÞ $ 100

Statistical Analysis

To test for a significant correlation between the gravimetric water content
and the respective transmission of all measured seedlings, the Pearson product-
moment correlation coefficient was calculated. A significant difference in
gravimetric water content between the water-stressed group (S1–S6) and the
irrigated control group (I1–I5) was tested for with Student’s two-sample t test
after confirming the necessary assumptions.

For illustration purposes, the relative transmission over time of each stressed
seedlingwas plotted in one graph. Thiswas done by aligning the baselines of each
seedling, although the individual courses had different baselines and were
monitored at different times (Supplemental Figs. S1 and S2). The irrigated control
seedlings were treated similarly, but in order to determine the variation of the
measurement values around the mean, the respective values were set to the
same mean transmission of 0%. Based on this new data set, the SD of all irrigated
seedlings was calculated. All statistical analyses were carried out using
version 2.13.1 of the statistical software R (R Development Core Team, 2011).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Monitoring of water-stressed seedlings with the
corresponding data for temperature and humidity.

Supplemental Figure S2. Monitoring of irrigated seedlings with the cor-
responding data for temperature and humidity.

Supplemental Figure S3. Monitoring of the seedlings during the re-
hydration experiment with the corresponding data for temperature
and humidity.

Supplemental Table S1. Data for the transmission profile measurements.

Supplemental Table S2. Times of final irrigation, harvesting, and total
duration of the drought period for all water-stressed seedlings and the
seedlings used in the rehydration experiment.

Supplemental Video S1. Video of THz measurement setup with probe
head in motion and closeup of holding device with seedling.
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Abstract

Terahertz time-domain spectroscopy (THz-TDS) allows for the highly precise monitoring of the wa-

ter status of a single spot on a plant leaf. The measurements are, however, dependent on the water

content being the only variable influencing the terahertz signal over time. Any confounding factor

would lead to the introduction of a measurement error. Since a decrease in water content is closely

linked with a decrease in the chlorophyll content of a leaf, the question arises if the terahertz signal

might be influenced by the chlorophyll concentration during drought stress monitoring. Extract-

ing chlorophyll from silver fir needles and measuring different concentrations using THz-TDS, no

confounding effect of chlorophyll on the terahertz signal could be observed.

Keywords: Terahertz, time domain spectroscopy, chlorophyll extraction, Abies alba

Introduction

Water availability is of crucial importance to trees but also very hard to assess. Especially conifers

pose a challenge since their leafs frequently do not show any visible signs of dehydration. At the

same time, in the context of global climate change, drought stress is increasingly threatening conifer

species at their southern distribution range. As such, silver fir (Abies alba Mill.) already shows

diebacks at its southern margin in Mediterrenean areas due to more severe periods of summer

drought (Nourtier et al., 2012).

In order to assess the water status of conifer needles, Born et al. (2014) developed a novel

measurement setup based on terahertz time-domain spectroscopy (THz-TDS). Using this device,

the water content of one spot on a single needle of multiple silver fir seedlings could be monitored

over time. Continuously measuring the same spot ensured that the leaf properties were constant

over the entire measurement period, with the exception of the water content. Born et al. (2014)

conceded, however, that excessive plant growth (relative to the monitoring period) could introduce

measurement errors. Given that the nature of the experiment in Born et al. (2014) was to harvest

needles from different seedlings with the same level of drought stress, and being aware of the doc-

umented decrease in chlorophyll content in conifer needles as a result of water shortage (Buxton

et al., 1985; Wallin et al., 2002), one might argue that even without an error due to growth, the
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measurements might still be influenced by a decreasing chlorophyll concentration. If the chloro-

phyll content has an influence on the amount of terahertz radiation passing through a needle, then

continuous measurement results of the same spot would not only be a function of the water content

at that spot but also of the current chlorophyll concentration.

This study, therefore, attempts to assess the influence of total chlorophyll content on the results

of in-vivo THz-TDS measurements of silver fir needles.

Materials and Methods

Chlorophyll extraction

Two needles were harvested from an adult Abies alba tree in the Botanical Garden in Marburg.

The needles were immediately placed in an Eppendorfer tube and cooled down in liquid nitrogen

to prevent chlorophyll degradation. Upon arrival in the laboratory the weight of the individual

needles was measured. All following steps were conducted on ice and in shaded areas to minimize

photo-oxidation and largely follow the protocol described in Schopfer (1989). The needles were

cut with a scissor and then ground down with a pestle in 0.5 ml extraction medium containing 80%

Acetone, 19.5% distilled water and 0.5% concentrated NH3 (25% by weight). The homogenate was

then transferred to a test tube, covered in tin foil, and filled up to a total of 2 ml with extraction

medium. After 30 minutes with intermittent shakes, the homogenate was placed in a centrifuge

(Spectrafuge 24D, Labnet International, Inc., NJ, USA) for 10 min at 10,000 x g. 1750 µl of the

clear supernatant was then placed in another tin covered test tube and a dilution series with three

concentrations was prepared (Table 1).

Table 1. Mixture ratios for the dilution series of the chlorophyll extract of two silver fir needles.

100% cChl a+b 50% cChl a+b 25% cChl a+b

Homogenate [µl] 1000 500 250
Extraction medium [µl] - 500 750

Total volume [µl] 1000 1000 1000

The total chlorophyll content (chlorophyll a and b) of the different samples was measured with a

spectrophotometer (Ultrospec 2000, Pharmacia Biotech, Uppsala, Sweden). Prior to each measure-

ment, the machine was calibrated by measuring the absorption of the empty cuvette at 750 nm to

control for turbidity. Pure extraction medium was used as a reference. Each sample was measured

at 645, 652 and 663 nm, respectively. The total chlorophyll concentration in each solution was

then calculated according to Bruuinsma (1963) using equations 1 and 2.

cChl a+b [mg l−1] = 20.2 E645 + 8.0 E663 (1)

cChl a+b [mg l−1] = 27.8 E652 (2)
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Based on the chlorophyll concentration in the liquid solution the concentration per gram was cal-

culated using equation 3 and averaged over both values derived from equations 1 and 2.

cChl a+b [mg g−1] =
Extraction medium [l] cChl a+b [mg l−1]

Sample weight [g]
(3)

THz-TDS measurements

All three samples, plus a reference sample consisting only of extraction medium, were covered

in tin foil, put on ice and transferred to a terahertz time-domain spectrometer in an adjacent

building. The spectrometer consisted of an airtight chamber that could be flooded with nitrogen

gas to displace all the moisture. Samples could be placed in the center of the chamber, directly

positioned between a terahertz emitter on the one side of the chamber and a detector on the other.

A femtosecond laser in conjunction with a beam cutter was used to send pulses of light to both

terahertz antennas to generate terahertz radiation passing through the sample. By manipulating

the length of the optical path through the detector, the electrical field of a terahertz pulse could

be resolved in time and then transformed using the Fast Fourier algorithm to obtain the signals in

the frequency domain. The THz-TDS setup was identical to the one used and described in detail

in Born et al. (2014), except for the optical path which was guided by mirrors and not by optical

fibers.

For each sample, the actual measurement results were divided by the measurements of the

respective empty cuvette to account for the potential absorbing and reflecting effects of the cuvette

material. Further, all measurements for the three concentrations were divided by the results from

the reference sample (0% chlorophyll) to calculate the part of the transmission (i.e. terahertz

radiation reaching the detector) that was only attributable to chlorophyll content.

Results

Chlorophyll extraction

The fresh weight of the two needles was 0.0213 g and 0.0257 g respectively. The total sample

weight was 0.047 g. The three samples (100%, 50% and 25% cChl a+b) showed different trans-

missions at the three measured wavelengths, roughly corresponding to the respective dilution

(Table 2). Accordingly, the chlorophyll content correlated quite closely with the dilution factor

(Table 3).

Table 2. Absorption of the three different chlorophyll concentrations at different wavelengths λ, measured
with a spectrophotometer.

λ 100% cChl a+b 50% cChl a+b 25% cChl a+b

645 0.760 0.376 0.184
652 1.833 0.947 0.459
663 1.098 0.545 0.263
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Table 3. Chlorophyll content of the three solutions based on the absorption at different wavelengths (645,
652 and 663 nm). TCC = cChl a+b [mg l−1].

cChl a+b TCC TCC TCC TCC Average
(λ645+663) (λ645+663) (λ652) (λ652) TCC

100% 30.02 1.28 30.52 1.30 1.29
50% 15.17 0.65 15.15 0.64 0.65
25% 7.39 0.31 7.31 0.31 0.31

THz-TDS measurements

All samples were measured over a frequency range of zero to ten terahertz (Fig. 1) with a usable

section from slightly above zero to one terahertz (Fig. 2). Within this section, the samples showed,

on average, slight differences in signal strength with the 25% and 50% solution having about the

same transmission. The solution with the highest chlorophyll concentration (100%) on the other

hand had a higher signal strength than the other solutions. The reference samples containing only

extraction medium transmitted less terahertz radiation than the samples for each concentration

(all lines in Fig. 2 are above one, i.e. the samples have a stronger signal and therefore more

transmission than the respective references).
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Figure 1. Signal strength over the entire measured frequency range for the three chlorophyll concentra-
tions. Shown are the processed data that already account for possible effects of the cuvettes, as well as the
extraction medium. The y-axis shows the signal strength in decibel (dB).
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Figure 2. Section of the usable frequency range for all chlorophyll concentrations. Shown are the processed
data that already account for possible effects of the cuvettes, as well as the extraction medium. The left
y-axis shows the signal strength in decibel (dB). For the right y-axis the data was converted back to a linear
representation with a value of one representing a 1:1 signal ratio between sample and reference (only
extraction medium).1

Discussion

Regarding the potential influence of the chlorophyll content on THz-TDS measurements of silver

fir needles, the results indicate no confounding effect.

Since more terahertz radiation passes through the samples containing chlorophyll than the

respective reference samples and the solution with proportionally the least extraction medium

(100% chlorophyll content) has the highest transmission, the extraction medium presumably has a

bigger effect on the terahertz signal than the chlorophyll content. The effect of the latter is, at least

based on the results of this study, negligible. It should further be mentioned that the differences

in concentration of the measured chlorophyll samples are rather excessive. One would not expect

a 50% drop in chlorophyll in a living plant as a consequence of drought stress. For example, after

20 days of drought stress (60% field capacity), five different varieties of Helianthus annuus plants

showed an average decrease in total chlorophyll content of 0.13 mg g−1 fresh weight, compared

to plants with 100% field capacity (Manivannan et al., 2007). Accordingly, after 40 days the

decrease was, on average, 0.2 mg g−1 fresh weight. This corresponds to an average decrease in

total chlorophyll content of 8.65% and 10.48% after 20 and 40 days of drought stress, respectively.

In comparison, the drought stress period in Born et al. (2014) did not exceed five days.

Even if in the context of this study a confounding effect of chlorophyll content could not be

shown, further research is clearly necessary. On one hand, the methods employed could surely be

improved, both regarding the chlorophyll extraction as well as the THz-TDS measurements. Multi-

ple extraction methods and solutions should be compared and the individual terahertz transmission

1The signal ratio (SR) in dB (SRdB) is 10 log10(SR). So to convert back from SRdB to SR is 10SRdB 10−1

.
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profile of every used substance should be accounted for. On the other hand, the measurements lack

proper replication, both in sample size and, to widen the scope beyond silver fir, across different

taxa. Further, chlorophyll might show different transmission profiles in-vivo than in an extracted

solution based on e.g. electrical or magnetic properties. Next steps should also include juvenile leaf

material and other plant substances, such as secondary metabolites, that could potentially influence

THz-TDS measurements.
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Abstract
Increasing drought periods as a result of global climate change pose a threat to many tree

species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of

drought stress response is therefore implemental for future conservation strategies and risk

assessment. Access to informative genomic regions is however challenging, especially for

conifers, partially due to their large genomes, which puts constraints on the feasibility of

whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the

analysis and the amount of sequencing work and costs. For this study we combined an im-

proved drought stress phenotyping of needles via a novel terahertz water monitoring tech-

nique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress

response in European silver fir (Abies albaMill.). A pooled cDNA library was constructed

from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respec-

tively. Differential expression analyses of these libraries revealed 296 candidate genes for

drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was

validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code

for currently uncharacterized proteins and hint on new genomic resources to be explored in

conifers. Furthermore, we could show that some traditional reference genes from model

plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose

a new reference gene, TPC1, for drought stress expression profiling in needles of conifer

seedlings.

Introduction
Smaller amounts of precipitation and an increase in the occurrence of drought events are being
predicted for the Mediterranean region and parts of Central Europe, especially during summer
periods [1]. Drought stress poses a major threat to trees by possibly causing hydraulic failure.
Facing low water availability, trees react with stomatal closure and reduced photosynthesis
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while maintaining metabolism. Thus, severe drought periods can ultimately cause forest die-
backs by xylem cavitation, carbon starvation and damage by pathogens and insects [2]. While
single trees might reveal sufficient plasticity, tree populations can cope with changing climatic
conditions either by migration and/or adaptation [3]. Migration via seed dispersal might be in-
creasingly constrained by fragmented landscapes and is generally limited by natural barriers,
especially for mountainous species [4]. Adaptation only works via selection on standing genetic
variation or newly arisen mutations [5]. Standing variation offers the best chance for rapid ad-
aptation since potentially beneficial alleles might already be numerously present in the popula-
tion [5].

To assess the adaptive potential of tree populations it is therefore necessary to identify genes
that are, among other stress-related traits, involved in the drought stress response and to study
their variation in natural populations. Many studies on tree populations today use a candidate
gene approach for the following reasons: While genomic resources are readily available for
model species such as Arabidopsis, rice or maize, for most tree species, and especially conifers,
such resources are scarce [6]. Furthermore, the identification of drought stress related genes is
a big challenge when working with conifers, due to their large genome sizes [7] which make ge-
nome-wide association studies very resource-intensive [8]. Candidate genes are thus used as an
alternative for detecting selective signals [9,10]. This approach traditionally involves Fst outlier
analysis of single-nucleotide polymorphisms (SNPs) within those candidate genes (“bottom-
up” approach) [11]. Alternatively, candidate genes allow for a reasonable selection of target
genes for association studies (“top-down” approach), especially when handling large genomes.
Moreover, drought stress is hard to assess in conifers and the response is a highly quantitative
trait.

However, using a novel terahertz spectroscopy setup, it is now possible to continuously
measure the water content of multiple plants and thereby precisely monitor the drought stress
response [12]. This allows sampling leaves from multiple plants with identical drought stress
response and analyzing them with next generation sequencing methods. Thus it is possible to
identify those specific genes that are underlying an accurately assessed drought stress pheno-
type. This approach provides a unique opportunity for detecting and exploring novel candidate
genes in non-model species which may not be found annotated from traditional model species.
We chose European silver fir (Abies albaMill.) as the model species for our study. A. alba is an
ecologically and economically valuable coniferous tree, which has its main area of distribution
in mountainous regions of Central and Southern Europe [13]. Effects of drought were shown
to manifest in a reduced growth rate [14–16], reduced photosynthetic activity and stomatal
conductance [17,18], crown-damage [19,20] and an increasing susceptibility to damage caused
by pathogens or insects [21,22]. A dieback as a response to frequent and severe water shortages
can already be observed, e.g. at Mont Ventoux in Southern France [23].

The major goals of our study were (I) the identification of candidate genes for drought stress
response in A. alba, (II) the comparison of drought stress related genes between A. alba and
model organisms to identify conifer-specific genes, (III) the validation of the expression pro-
files by reverse-transcription quantitative real-time PCR (RT-qPCR) and (IV) the identifica-
tion of reference genes for RT-qPCR data normalization.

Materials and Methods

Plant material and drought stress monitoring
Silver fir seedlings were propagated from seeds of female cones of a single tree in a forest stand
near Hagenbach, a Black Forest region of South-Western Germany (the seeds were provided
with permission by Hans Lehman from the forestry office Oberharmersbach). Thus, all
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seedlings used in the experiment were either half-siblings or full-siblings. To establish groups
of plants with highly controlled levels of drought stress, a novel terahertz time-domain spec-
troscopy setup was used in a preliminary study conducted by Born et al. [12]. This allowed the
manipulation and monitoring of the individual water status of multiple seedlings by continu-
ously measuring the cotyledons, without inducing other forms of stress. Twelve seedlings were
measured this way. While six of them were well-watered, the other six seedlings were not wa-
tered until they reached comparable levels of considerable drought stress (for a more detailed
account of the drought stress monitoring and its results see Born et al. [12]). At this point, two
cotyledons were cut off from each seedling for RNA extraction and immediately stored in liq-
uid nitrogen. Cotyledons were also harvested from the control group of well-watered seedlings
at corresponding times of the day.

RNA extraction
For sequencing, total RNA from every individual needle was extracted using the InviTrap Spin
Plant RNAMini Kit (STRATEC Molecular GmbH, Berlin, Germany). The cotyledons were
ground in liquid nitrogen with mortar and pestle in lysis buffer RP and β-Mercaptoethanol.
Half of each lysate was used for RNA extraction by GenXPro GmbH (Frankfurt amMain, Ger-
many) while the rest was stored at -80°C for RT-qPCR validation. To remove genomic DNA
contaminants the samples were treated “off-column” with Baseline-ZeroTM DNase (Epicen-
tre/Biozym, Hessisch Oldendorf Germany) and subsequently purified using RNA Clean &
ConcentratorTM-5 Kit (Zymo Research Europe, Freiburg Germany). RNA samples for RT-
qPCR validation were immediately stored in a deep freezer at -80°C. RNA concentration and
purity were measured via ratios of optical density (OD260/280, OD260/230) using NanoDrop 1000
spectrophotometer (PEQLAB Biotechnologie GmbH, Erlangen Germany). The absence of
DNA contamination was confirmed after performing a PCR using a primer pair which targets
the nuclear microsatellite marker NFH15 (GenBank Accession Number: AY966492, [24]) at an
annealing temperature of 57°C. Integrity was assessed using gel-electrophoresis. Complemen-
tary DNA (cDNA) was synthesized using the Maxima First Strand cDNA Synthesis Kit for RT-
qPCR (ThermoScientific, Schwerte Germany). The cDNA samples were immediately stored in
aliquots at -80°C. All kits were applied according to the manufacturer’s protocol. Any modifi-
cations are explicitly described.

Transcriptome sequencing
Prior to synthesizing cDNA, the extracted mRNA from the drought stressed and the well-wa-
tered seedlings was pooled, respectively. From each pool a cDNA library was constructed tar-
geting sequences near the cDNA 3’-ends. This Massive Analysis of cDNA Ends (MACE) was
conducted by GenXPro GmbH as described in Kahl et al. [25]. The 5’-ends of 50–500 bp long
fragments were sequenced (single-read) using the Illumina HiSeq 2000 platform (Illumina
Inc., San Diego, CA, USA), generating 100 bp long tags. Illumina’s HiSeq Control Software v.
2.0.5 was used for sequencing, RTA v. 1.17.20.0 for real time analysis and CASAVA v. 1.8.2
(Consensus Assessment of Sequence and Variation) for base calling and demultiplexing. To
prevent PCR-biased quantification, GenXPro’s “TrueQuant”method was applied, thereby
eliminating PCR-based copies from the dataset. For this purpose, unique oligonucleotides were
ligated to each tag prior to PCR, making it possible to identify and eliminate PCR copies with
identical barcode-tag-combinations [26,27].

Candidate Genes for Drought Stress Response in Abies alba

PLOSONE | DOI:10.1371/journal.pone.0124564 April 29, 2015 3 / 18



Assembly, annotation and gene expression profiling
After sequencing, the tags were assembled and annotated using the TIGR Plant Transcript As-
semblies database (http://plantta.jcvi.org/). Not annotated tags were assembled and subsequently
blasted (BLASTx) against the Swiss-Prot and TrEMBLE databases (http://www.uniprot.org/). A
differential expression analysis was conducted using the MA-plot based method with random
sampling model (MARS) of the DEGseq R package [28]. Prior to this analysis the libraries were
normalized according to their respective size by dividing each tag frequency through the sum of
the total tags and multiplied by 106 (tags per million). For multiple testing corrections a p-value-
threshold of 1e-10 for significantly differentially expressed (DE) transcripts was set. Following,
the enrichment of each gene ontology (GO) term was tested using Fisher’s exact test (two-tailed)
[29]. Additionally, we analyzed the MACE results using the R packages DESeq [30] with a single
estimated dispersion condition, a size factor normalization and an FDR (false discovery rate)
threshold of q< 0.1 as well as NOISeq [31] with simulated technical replicates (NOISeq-sim), a
trimmed mean of M-values normalization and a threshold of q = 0.9.

RT-qPCR validation
The gene expression of a small number of genes was assessed in each individual seedling by
RT-qPCR using relative quantification according to the MIQE criteria (Minimum Information
for the Publication of Quantitative Real-Time PCR Experiments) [32].

The MACE dataset was first searched for DE transcripts with log2 fold changes higher than
3 (for up-regulated transcripts) or lower than -3 (for down-regulated transcripts) since they
were most likely responsive to dehydration. To minimize the rate of false positives introduced
by rare transcripts, a threshold of at least 50 different tags with match in sense orientation (5’-
3’) to a database entry was set. Genes for validation were selected from this filtered subset of
DE transcripts that were significantly assigned (enrichment-p-value< 1e-10) to the GO terms
response to water stimulus (GO:0009415), response to water deprivation (GO:0009414) and re-
sponse to osmotic stress (GO:0006970). Furthermore, genes were selected from the subset of
filtered DE transcripts with the ten highest and ten lowest fold changes that were significantly
assigned to the GO domain biological process (GO:0008150). Primer pairs (Metabion, Mar-
tinsried, Germany) were designed based on the assembled MACE tag sequences for each select-
ed gene using Primer3 v. 4.0.0 (http://bioinfo.ut.ee/primer3/) with default parameters for a
product size of 60 bp to 150 bp and an optimum annealing temperature of 60°C. Primer pairs
were considered specific when (1) there was no amplicon present in genomic DNA samples,
(2) the first derivative of the corresponding melting curves resulted in a single peak, (3) gel-
electrophoresis showed one product with the expected size and (4) the amplicon-sequence was
identical with the target sequence which was verified by re-sequencing of the PCR-products
using the Macrogen Europe Laboratory sequencing service (Amsterdam, The Netherlands).

To select adequate reference genes for the normalization of the RT-qPCR data two different
approaches were used. First, by searching the literature for conifer gene expression studies, tra-
ditionally used reference genes were identified. Second, the MACE-dataset was searched for se-
quence tags which were neither up- nor down-regulated (p-value> 0.99, log2 fold change:
-0.005 to 0.005), and had a minimum amount of ten sequence tags. The potential reference
genes were tested for their expression stability among the drought stressed and well-watered
seedlings using geNorm [33] and Normfinder [34]. Both algorithms were implemented in
GenEx v. 5.4.4.119 (MultiD Analyses AB, Göteborg Sweden) which also provided the expected
accumulated standard deviation to assess the optimal number of reference genes to be included
for the most precise data normalization [35]. Real-time PCR was performed on the Roche
LightCycler 480 II System (Roche Diagnostics, Mannheim, Germany) using the sample
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maximization method with samples in triplicates at an optimized and standardized tempera-
ture and cycle program (Table S1 in S1 File) in which only the annealing temperatures were
varied according to the optimum of the primer pairs (Table S2 in S1 File). Each PCR reaction
was performed with KAPA SYBR Fast Universal Master Mix (Peqlab, Erlangen, Germany).

After the RT-qPCR the quantification cycles (Cq) were determined using the second deriva-
tive maximummethod implemented in the Roche LightCycler 480 Instrument Software v. 1.5.0.
The gene expression ratio was calculated using the Pair Wise Fixed Reallocation Randomization
Test implemented in the Relative Expression Software Tool-384 v. 1 (REST) using 5000 itera-
tions [36]. The ratio was corrected for the amplification efficiencies which were calculated ac-
cording to Liu & Saint [37]. The intra- and inter-assay variations were assessed by calculating
the coefficient of variance as the standard deviation relative to the mean of the Cq-values. There-
fore, thirty replicates of the same cDNA sample were used to amplify GAPDH in three separate
qPCR runs (each with ten of the replicates) on three different days. The coefficient of variance
was not supposed to exceed four percent on the Cq basis [38].

Results

MACE libraries
After sequencing, the MACEmethod yielded two libraries containing, in total, 15.4 million tags
with 6.2 million tags for the drought stressed pool and 9.2 million tags for the well-watered pool
(Table 1).

Annotation of the tags resulted in a total of 65,535 transcripts, which were assigned to the
three main gene ontology (GO) domains: molecular function (GO:0003674) contained 38,745
transcripts, cellular component (GO:0005575) 39,776 and biological process (GO:0008150)
37,140. Since this analysis aimed to find candidate genes associated with drought stress response,
transcripts assigned to the GO domain biological process were most interesting. Within this do-
main, GO terms associated with metabolic processes were most enriched. In response to drought
stress these GO terms were mostly down-regulated, as was methylation (GO:0032259) and pho-
tosynthesis (GO:0015979) (Fig 1 and Table S3 & S4 in S1 File). In contrast, GO terms associated
with stimuli and stress were generally up-regulated, especially terms most obviously linked to
drought stress, namely response to water stimulus, response to water deprivation and response
to osmotic stress.

Differential gene expression analyses
The DEGseq analysis resulted in a total of 3,407 significantly DE transcripts (p< 1e-10) be-
tween the drought stressed and the well-watered pool (Fig 2A). The NOISeq (q = 0.9, Fig 2B)
and DESeq (q< 0.1, Fig 2C) analyses yielded 2,694 and 342 DE transcripts, respectively. DEG-
seq uniquely identified 1,726 transcript and NOISeq 1009 transcripts, while DESeq shared all
identified transcripts with either NOISeq or both DEGseq and NOISeq (Fig 3).

Table 1. Characteristics of the MACE libraries constructed from the drought stressed and the well-watered seedlings.

Tags (total) Tags (unique) Drought stressed Well-watered

Hits (S+AS) 14,162,592 6,435,157 5,664,178 8,498,414

No hit 1,275,004 1,029,367 542,833 732,171

Total 15,437,596 7,464,524 6,207,011 9,230,585

Shown is the amount of total tags analyzed for the library, the amount of unique tags and the amount of tags for each treatment pool (drought stressed

and well-watered).

S: sense direction; AS: antisense direction.

doi:10.1371/journal.pone.0124564.t001
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RT-qPCR validation and candidate gene selection
After filtering by fold change and the minimum number of different sense tags (� 50), out of
the 3,407 DE transcripts identified by DEGseq, 832 transcripts could be listed (Table 2, FASTA
files of all 832 transcripts available in S2 File). From the subset of filtered DE transcripts with a
significant assignment to the GO terms response to water stimulus, response to water

Fig 1. Log-log plot of up- and down-regulated transcripts in response to drought stress on GO-level 4 in silver fir seedlings. Transcripts are
differentiated by their GO ancestor: metabolic process (GO:0008152), response to stimulus (GO:0050896) or other ancestor. Most obvious GO terms
associated with drought stress, as well as photosynthesis, are highlighted and labeled specifically.

doi:10.1371/journal.pone.0124564.g001
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deprivation and response to osmotic stress and the top ten up- and down-regulated transcripts
significantly assigned to biological process, 29 different up-regulated (Table S5, S6 & S8 in S1
File) and 14 different down-regulated (Table S7 & S8 in S1 File) genes for validation could be

Fig 2. Scatter plots of the MACE results and subsequent analyses of differential expression for DEGseq (A), NOISeq (B) and DESeq (C). Each plot
contains all identified transcripts (grey dots), as well as the analysis-specific DE transcripts (red dots). Further, the candidate genes validated via RT-qPCR
are shown, as well as the corresponding stably expressed reference genes. The x- and y-axis give the transcript count in the well-watered and the drought
stressed pool, respectively. Counts are normalized differently for the three analyses: tags per million (TPM) for DEGseq, trimmed mean of M-values (TMM)
for NOISeq and hitcount/size factor (hc/fc) for DESeq. Transcripts falling on the straight line (90° bisecting line) are equally expressed in both pools.
Transcripts above the line are up-regulated in response to drought stress, while those below the line are down-regulated.

doi:10.1371/journal.pone.0124564.g002
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listed (Table 3). All these selected genes were represented in the NOISeq results, while DESeq
did not identify eight up-regulated and seven down-regulated genes as DE transcripts.

The literature search revealed twelve reference genes from published conifer studies
(Table S9 in S1 File). Profiling the MACE dataset revealed three potential reference genes: the

Fig 3. Venn diagram of the overlapping DE transcripts from the DEGseq, DESeq and NOISeq analyses. The amount of up- and down-regulated
transcripts is given for each segment.

doi:10.1371/journal.pone.0124564.g003

Table 2. Differentially expressed transcripts resulting from the MACE and DEGseq analyses, filtered
by log2 fold change andminimum different sense tags (� 50).

Up-regulated Down-regulated Total

With database hita 330 125 455

Assigned to biological process 217 77 294

Not assigned to biological process 113 48 161

Without database hit 253 124 377

Total 583 249 832

Shown is the amount of transcripts with and without database hit and significant assignment to the GO

domain biological process (enrichment-p-value < 1e-10).
a
‘Database hit’ refers to transcripts with database accession number or similarity to a UniProt Reference

Cluster (UniRef) sequence.

doi:10.1371/journal.pone.0124564.t002
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Table 3. Genes for validation derived from the DEGseq analysis; sorted by log2 fold change in descending order.

Gene name Abbreviation Protein name Possible
isoform

Accession
number

Source organism Fold
change

- - Polyphenol oxidase A1 - Q06215 Vicia faba 10.61

Os01g0656200 - Probable protein phosphatase 2C 8 - Q5SN75 Oryza sativa subsp.
japonica

9.55

- - Glucan endo-1,3-beta-glucosidase, acidic
isoform

- P49237 Zea mays 9.24

At4g33300 - Probable disease resistance protein
At4g33300

- Q9SZA7 Arabidopsis thaliana 8.63

dhn2 - Dehydrin 2 (fragment) - E1A556 Pinus pinaster 8.56

- PUP2 Putative uncharacterized protein 2 - A9NPH4 Picea sitchensis 8.50

CXE15 or
CXE2

- Probable carboxylesterase 15 or 2 - Q9FG13 or
Q9SX78

A. thaliana 8.42

Cht8 - Chitinase 8 - Q7XCK6 O. sativa subsp.
japonica

8.37

GOLS2 - Galactinol synthase 2 b Q9FXB2 A. thaliana 8.27

GSTU19 - Glutathione S-transferase U19 - Q9ZRW8 A. thaliana 6.82

BAM1 - Beta amylase 1, chloroplastic a Q9LIR6 A. thaliana 6.74

TIP1-1 - Aquaporin TIP1-1 - P25818 A. thaliana 5.75

LTI6B - Hydrophobic protein LTI6B a Q0DKW8 O. sativa subsp.
japonica

5.63

STP13 - Sugar transport protein 13 - Q94AZ2 A. thaliana 5.52

RHA2A - E3 ubiquitin-protein ligase RHA2A a Q9ZT50 A. thaliana 5.36

GOLS1 - Galactinol synthase 1 - Q947G8 Solanum
lycopersicum

4.94

LEA14-Aa - LEA protein Lea14-A - P46518 Gossypium hirsutum 4.88

GOLS2 - Galactinol synthase 2 a C7G304 S. lycopersicum 4.60

LTI6B - Hydrophobic protein LTI6B b Q0DKW8 O. sativa subsp.
japonica

4.52

RCI2Aa - Hydrophobic protein RCI2A - Q9ZNQ7 A. thaliana 4.02

CIPK17a - CBL-interacting protein kinase 17 - Q75L42 O. sativa subsp.
japonica

3.73

- PUP1 Putative uncharacterized protein 1 b A9NLY4 P. sitchensis 3.55

Zlpa - Zeamatin - P33679 Z. mays 3.51

- PUP1* Putative uncharacterized protein 1 a A9NLY4 P. sitchensis 3.50

BAMa* - Beta amylase 1, chloroplastic b Q9LIR6 A. thaliana 3.33

ERD10a* - Dehydrin ERD10 - P42759 A. thaliana 3.29

KCS11 - 3-ketoacyl-CoA synthase 11 a O48780 A. thaliana 3.20

- - LEA proteina - P21298 Raphanus sativus 3.16

MGLa - Methionine gamma-lyase - Q9SGU9 A. thaliana 3.00

TUBB8a - Tubulin beta-8 chain - P29516 A. thaliana -3.04

UGT74E2a - UDP-glycosyltransferase 74E2 - Q9SYK9 A. thaliana -3.16

XTH6a - Probable xyloglucan endotransglucosylase/
hydrolase protein 6

- Q8LF99 A. thaliana -4.25

KCS11a - 3-ketoacyl-CoA synthase 11 b O48780 A. thaliana -5.69

GPPS3a - Geranyl diphosphate synthase - Q8LKJ1 Abies grandis -5.92

- PUP5a Putative uncharacterized protein 5 - B8LN73 P. sitchensis -5.94

RHA2A - E3 ubiquitin-protein ligase RHA2A b Q9ZT50 A. thaliana -6.02

- PUP4a Putative uncharacterized protein 4 - C0PT89 P. sitchensis -7.27

XTH7* - Probable xyloglucan endotransglucosylase/
hydrolase protein 7

- Q8LER3 A. thaliana -7.57

(Continued)
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global transcription factor group E8 (GTE8), the transcription initiation factor 2A (TIF2A) and
the two pore calcium channel protein 1 (TPC1). All three exhibited medium abundance levels
and were therefore optimal candidates as reference genes. Out of the 15 potential reference
genes, four (GAPDH, TPC1, 18S rRNA and elF4A2) specifically amplified their target in the
RT-qPCR. The expression stability of these genes was tested using Normfinder [34] and geN-
orm [33]. Both algorithms identified TPC1 and 18S rRNA as the most stable reference genes
(Table S10 in S1 File). Furthermore, their combination exhibited the lowest accumulated stan-
dard deviation. Thus, TPC1 and 18S rRNA were both applied for normalization in REST.

Out of the 50 tested primer pairs for validation (Table S2 in S1 File), four could meet our
conservative criteria and were specifically amplifying their targets during the qPCR: ERD10,
BAM1(b), XTH7 and PUP1(a) (Table S11 in S1 File). The calculated gene expression ratios
were similar to those obtained by the MACE method (Table 4). The assay precision was as-
sessed by calculating the intra-assay variation (repeatability) and inter-assay variation (repro-
ducibility) based on Cq-values. The intra-assay coefficient of variance ranged between 0.8%
and 1.08% while the inter-assay coefficient of variance was 0.92%.

From the 338 transcripts identified unanimously by all Seq-analyses (Fig 1), 296 remained
after filtering by minimum different sense tags (Table 5, FASTA files of all 296 transcripts
available in S3 File). Almost half of these transcripts (~45%) were unknown and many of the
transcripts with a database hit (~38% of the remaining ~55%) were not yet properly assigned.

Discussion
Analyzing the adaptive potential of plant species to drought stress is of crucial importance in
the context of rapid climate change. For species with large genomes, such as conifers, where

Table 3. (Continued)

Gene name Abbreviation Protein name Possible
isoform

Accession
number

Source organism Fold
change

COL6 - Zinc finger protein CONSTANS-LIKE 6 - Q8LG76 A. thaliana -7.80

- - Patatin-like protein 3 - B6TPQ5 Z. mays -8.02

VTE4 - Tocopherol O-methyltransferase - Q9ZSK1 A. thaliana -8.72

INR1 - Inducible nitrate reductase [NADH] 1 - P54233 Glycine max -9.01

- PUP3 Putative uncharacterized protein 3 - F6HZZ7 Vitis vinifera -10.32

Gene names according to UniProt Protein Knowledgebase (http://www.uniprot.org/) with the corresponding database accession number.

- No gene name available or abbreviation assigned;

* Validated via RT-qPCR;
a Not identified as DE by DESeq.

doi:10.1371/journal.pone.0124564.t003

Table 4. Log2 fold changes of the four specifically amplified genes for validation resulting from the MACE analysis and RT-qPCR (calculated using
REST with correction of amplification efficiencies).

Gene name log2 fold change MACE log2 fold change RT-qPCR ± SE Pair-wise fixed reallocation randomization test p-value

BAM1(b) 3.33 2.50 ± 0.97 0.0052

ERD10 3.29 2.91 ± 1.36 0.0016

PUP1(a) 3.50 3.95 ± 2.60 0.0016

XTH7 -7.57 -3.83 ± 4.958 0.001

SE = standard error.

doi:10.1371/journal.pone.0124564.t004
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genomic resources are scarce, it is often necessary to reduce the pool of target genes to an af-
fordable size. Combining a new water monitoring setup with the MACE technique we were
able to link a standardized phenotypic response to specific genes and thereby identify novel
candidate genes for drought stress response in A. alba.

For our approach, we pooled RNA from individual seedlings for each treatment group and
subsequently analyzed both pools via transcriptome sequencing. To exclude bias by individual
expression patterns we applied RT-qPCR to validate the differential expression for a subset of
genes known to be involved in the drought stress response of model plant species. Among
these genes, only UGT74E2 displayed a gene-regulation pattern that clearly differed from ex-
pectation according to the respective literature. In Arabidopsis, an ectopic over-expression of
UGT74E2 increased the tolerance to salinity and drought stress and reduced the plants’ water
loss [39]. Therefore, one would assume an up-regulation in response to drought stress. Howev-
er, in silver fir the opposite was the case. Hence, UGT74E2might play a different physiological
role in the phylogenetically distant silver fir, compared to Arabidopsis. Further research regard-
ing the function of UGT74E2 in other conifer taxa are necessary to offer an explanation for the
different expression in response to drought stress.

The up-regulation of PUP1(a), BAM1(b) and ERD10 based on the MACE technique and
subsequent DEGseq analysis could be verified by the RT-qPCR. Individual differences among
the seedlings were expected but proved to be low for BAM1(b) and ERD10 and moderate in the
case of PUP1(a). Though varying to a larger extent, the overall down-regulation of XTH7 could
be affirmed. However, DEGseq predicted a much higher gene expression ratio than observed
with RT-qPCR. Individual differences were more pronounced for XTH7 and may partially be
attributed to PCR inhibition and/or stochastic cDNA template variation.

In order to select adequate reference genes for the RT-qPCR, we tested traditional reference
genes which were previously used in other conifer gene expression studies. Depending on the
treatment, ontogenetic stage or the tissue under investigation some of them showed expression
stability [40–42], even though in other studies [33,40,42,43] these genes showed significant var-
iability in expression patterns. Here we tested GAPDH, elF4A2 and 18S rRNA, with only 18S
rRNA showing expression stability across all individual seedlings. Since the expression of
GAPDH and eIF4A2 varied among the drought stressed and well-watered seedlings, these
genes were not suitable as internal controls. However, 18S rRNA should not be used as the
only reference gene for normalization due to the possible mismatch of rRNA and mRNA abun-
dance [44]. Fortunately, the selection of reference genes based on the MACE results proved to

Table 5. Properties of the sense-tag-filtered consensus transcripts identified by the three different
Seq-analyses.

Up-regulated Down-regulated Total

With database hita 140 22 162

PUPs (Picea sitchensis) 43 5 48

PUPs (other species) 2 1 3

UPs 7 1 8

Similarity to UniRef sequence 3 0 3

Without database hit 107 27 134

Total 247 49 296

PUP: Putative uncharacterized protein; UP: Uncharacterized protein.
a
‘Database hit’ refers to transcripts with database accession number or similarity to a UniProt Reference

Cluster (UniRef) sequence.

doi:10.1371/journal.pone.0124564.t005
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be successful. We could verify the expression stability of TPC1 for all individual seedlings using
RT-qPCR. In Arabidopsis and rice TPC1 is known to be ubiquitously expressed across several
tissues [45,46]. However, Wang et al. [47] identified a TPC1 homologous gene which was in-
duced in Triticum aestivum as a response to high salinity, polyethylene glycol (PEG), low tem-
perature and abscisic acid treatment. They suggested an important role of TPC1 in the
stomatal closure and abiotic stress response of T. aestivum. On the one hand this implies the
necessity for further investigation on the expression stability of TPC1 as a potential reference
gene when investigating drought stress response. On the other hand the TPC1 homologue
might be involved in the osmotic rather than the drought stress response. Since the expression
stability of TPC1 was only tested in cotyledons, future studies need to address other tissues
such as roots, as well as different age stages of needles.

Our study design lacked biological replicates, which is a serious limitation but was damp-
ened by pooling the samples for the two libraries. Pooling samples for RNA-Seq analysis has
proven to be a reliable method for estimating gene expression, especially for genes exhibiting
high expression levels [48]. Furthermore, the THz measurements were highly precise which en-
sured that the pools had very homogenous stress levels [12]. It is also notable that the THz ap-
proach enabled us to measure a stress response solely induced by water deprivation. Other
approaches, such as PEG treatment, might largely lead to the differential expression of genes
involved in osmotic stress response rather than in the response to water shortage. Since the in-
dividuals in our study were pooled in two treatment groups we could not estimate the biologi-
cal variation within those groups. As stated in other studies facing the same problem [49–51],
the results must be taken cautiously and the candidates should be further examined. Nonethe-
less, in order to analyze our data, we chose a conservative approach. Therefore, apart from
DEGseq, we additionally employed DEseq and NOISeq. All three analyses showed different re-
sults as was expected according to comparative studies of the used methods [52,53]. DESeq is
generally more conservative, while DEGseq and NOISeq are more aggressive but prone to false
positives. However, DESeq did not identify three of the four genes verified by RT-qPCR as DE
transcripts (Fig 2). Since the genes for validation were selected by very strict criteria and the
RT-qPCR was conducted on the individual seedlings and not on pooled plant material, we con-
clude that the DEGseq and NOISeq results likely include a relatively high amount of false posi-
tives, while the 43 genes for validation (Table 3) should be correctly defined as DE transcripts.
Since these genes were representatives of the group of 832 filtered DE transcripts, we define the
whole set as potential candidate genes for drought stress response for further studies. However,
the most conservative selection would only include the 296 filtered consensus transcripts.

Some of these genes or close variants were previously identified or used as candidates in
other studies regarding drought stress response in conifers. For example, xyloglucan endo-
transglycosylase/hydrolase (AoXET1) was down-regulated in needles and stems of Pinus pina-
ster seedlings in response to drought stress [54]. A glutathione S-transferase and chitinases
(cht1 and cht2) were up-regulated in response to drought- and pathogen-related-stress in roots
and shoots of six-week-old seedlings of Picea abies [55]. Velasco-Conde et al. [56] measured
the expression pattern of several dehydrins (dhn1, dhn2, dhn3, dhn7, dhn9 and a dhn-like pro-
tein) in needles of 3-year-old cuttings of drought-sensitive and drought-resistant genotypes of
P. pinaster. Only dhn3 and dhn4 showed an involvement in drought resistance between geno-
types, while dhn2 was consistently down-regulated in response to drought stress. Our results
suggest that dhn2might play a different role in drought stress response in A. alba, since it was
significantly up-regulated. Dehydrins (dhn1 and dhn2), aquaporin (aquaMIP) and early re-
sponsive to dehydration 3 (erd3) were used as candidate genes for drought stress response in
megagametophytes of Pinus taeda [57]. Similarly, a putative glucan-endo-1,3-beta-glucosidase
precursor, dehydrins (dhn1 and dhn2) and erd3 were used as candidates for outlier analyses in
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megagametophytes of P. pinaster [58]. Chitinase 4 and a putative LEA protein were identified
as drought stress responsive in needles, stems and roots of P. pinaster [59] and a glutathione S-
transferase in needles of adult Pinus halepensis trees [50].

To our knowledge, no studies exist, which aimed to identify adaptive genes for drought
stress response in any member of the genus Abies. However, such an analysis would surely ben-
efit from genus-specific candidate genes. Here we present a selection of 296 genes that contains
previously identified candidates but predominantly adds to the possible selection of candidates
for future studies. Many of these genes are linked by their biological function to a specific re-
sponse to water deprivation. For example, 3-ketoacyl-CoA synthase 11 belongs to the group of
“very long chain fatty acids”, which are required for wax synthesis [60]. The leaf cuticle is pro-
tected by the wax layer against non-stomatal water loss, which could explain its up-regulation.
Also involved in water management are aquaporins, which are expressed very variably in re-
sponse to drought stress [61]. Tonoplast intrinsic proteins (TIP1s) are usually found in the
lytic vacuole membrane [62]. Hence, TIP1-1 is probably up-regulated during drought periods
to allow better access to the water stored in the vacuole. Chloroplastic beta-amylase 1 is in-
volved in the breakdown of leaf starch [63]. During daytime, plants store glucose as starch in
chloroplasts and access this energy during nighttimes via starch breakdown. Up-regulation of
BAM1 is most likely a response to the down-regulation of metabolic processes and especially
photosynthesis during drought periods (Fig 1). Analogous to “regular” nighttimes, metabolism
with reduced photosynthesis can only be maintained by breaking down the energy storage, e.g.
starch. Accordingly, sugar transport proteins, which transport hexoses through cellular mem-
branes, are necessary for metabolism but may also play a role in distributing osmolytes
throughout the plant. The down-regulation of XTH6 and XTH7 indicates limited cell growth
during drought periods, since xyloglucan endotransglucosylase/hydrolases are involved in cell
enlargement and restructuring [64]. Protein kinases add phosphate groups to a substrate, while
protein phosphatases remove them, thus either activating or deactivating enzymes [65]. Both
protein kinases and phosphatases are key factors in signal transduction as response to drought
stress, by regulating enzyme activity. E3 ubiquitin-protein ligase RHA2A functions in an ABA-
mediated signaling pathway during early seedling development, positively regulating the plants
response to osmotic stress [66]. The fact that RHA2A is part of the subset of both up- and
down-regulated candidate genes highlights the necessity for a distinction between possibly dif-
ferent protein isoforms for all genes. Late embryogenesis abundant (LEA) proteins play a pro-
tective role against desiccation-damage during drought periods, presumably by suppressing
protein aggregation [67]. Dehydrins were initially categorized as “Group II LEA proteins” and
indeed protect plant cells from desiccation-damage but are also involved in pathogen resistance
[68]. Galactinol synthases are induced by drought, cold and ABA [69] and are interesting from
the perspective of adaptation. Taji et al. [70] found that genes encoding galactinol synthase in
transgenic Arabidopsis improved drought stress tolerance, which might be attributable to the
role of galactinol synthase in the biosynthesis of “raffinose family oligosaccharides”. The result-
ing accumulation of galactinol and raffinose may enhance drought stress tolerance via osmo-
protection. Chitinase 8, the acidic isoform of glucan endo-1,3-beta-glucosidase and zeamatin
are all involved in pathogen defense response, mainly against fungi [71–73] and in the case of
probable disease resistance protein At4g33300 against bacteria [74]. Reason for the up-regula-
tion of pathogen-resistance genes in silver fir in response to drought might be that forest trees
are especially prone to drought-disease interactions, mainly involving fungi [21]. Glutathione
S-transferases are most notably detoxification enzymes with many other, still unknown, in-
volvements hypothesized in plant stress response [75]. As such, they are classified as early re-
sponsive to dehydration (ERD), i.e. genes that are activated swiftly in response to drought
stress, a group that also contains dehydrins [76].
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A group of gene products that stands out are the putative uncharacterized proteins (PUPs)
inferred from the transcriptome sequencing of Picea sitchensis [77]. PUP1 belongs to the dehy-
drin family, PUP2 to the NAC domain and PUP4 as well as PUP5 to the family of UDP glyco-
syltransferases (UGT), according to the UniProt Protein Knowledgebase (http://www.uniprot.
org/). All PUPs identified in this study seem to play an important role in the drought stress re-
sponse of silver fir and should be focused on in further studies. Correspondingly, further re-
search should focus on the DE transcripts that did not have a database hit, since these genes are
not yet described for any plant species and are most likely involved in drought stress response.
As such, they might possibly be specific to the Pinaceae family or conifers in general.

In conclusion our study provides first insights into the drought stress response of A. alba at
the transcriptome level and offers a set of candidate genes for use in future studies. The majori-
ty of these candidates are yet unknown or lack a proper assignment and add to the growing ge-
nomic resources available for non-model conifer species. Such resources will be increasingly
important for investigating the adaptive potential of long-lived organisms such as trees in the
face of rapid climate change.
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Abstract

Air pollution, especially containing sulfur dioxide (SO2), is suspected to be the main contributor

to the foliar damage and dieback of silver fir (Abies alba Mill.) populations in the 1970s and

1980s in Germany. In combination with an increased sensitivity to drought, caused by SO2, this

led to a marked decrease in radial growth in many silver fir trees. This growth depression pe-

riod is archived in the annual tree-ring data, which is usually studied on the population level. We

derived ’dendrophenotypes’ that characterize resistance, resilience and recovery during the depres-

sion period based on individual tree-ring widths of silver fir trees from stands at two elevations in

the Bavarian Forest National Park in Germany. Our goal was to associate genetic variation, in the

form of SNPs, with variation in the dendrophenotypes to identify candidate genes for potentially

adaptively relevant stress responsive traits in silver fir. Using feature selection techniques based

on the machine learning algorithm random forest, we could identify 15 candidate genes whose

products are mostly involved in photosynthetic or chloroplast development and some in drought

response. This shows that individual-level dendrophenotypes are a valuable measure for genetic

association studies in forest trees and can strongly increase our understanding of the genetic basis

of environmental stress response, specifically to extreme episodic events.

Keywords: Air pollution, silver fir, candidate genes, random forest, SO2
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Introduction

In plants, genetic association studies often focus on reactions to environmental stress events. Ex-

treme episodic stress events, such as drought, are of particular interest as they are expected to

increase significantly during the 21st century due to human-induced global climate change (IPCC,

2014). In Germany, past environmental stress events have caused growth reduction and severe for-

est diebacks in many forest tree species (McLaughlin, 1985; Krause et al., 1986). One remarkable

example were the diebacks in the 1970s and 1980s, where many forest stands, in particular silver

fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.), showed severe foliar damages and

dieback. Initially this was attributed to drought alone but the rapid spread of the disease led to

the consideration of an interactive effect of multiple agents, including air pollution and particularly

sulfur dioxide (SO2) and ozone (O3) emissions (McLaughlin, 1985; Krause et al., 1986). This was

further substantiated by the fact that the increase in SO2 emissions in Europe correlated quite well

with an observed decrease in radial growth in silver fir and Norway spruce for more than 20 years

prior to the dieback events (McLaughlin, 1985).

For many surviving silver fir trees, the growth depression is well documented in the tree-ring

width (TRW) during this episode (Büntgen et al., 2014). Further, there are indications that the

physiological reactions to air pollution (especially SO2) led to an increased sensitivity to drought

stress in silver fir during this period (Elling et al., 2009). Thus, a number of particularly dry years

in the 1970s and 1980s affected silver fir even in areas where drought is usually not a problem.

Since then, silver fir has recovered and shows a strong growth increase in many areas. While the

ultimate cause for the depression, as well as the recent increase in growth remain unclear, the latter

has been attributed to the reduction in pollutants, the less dense forest structure after the dieback,

as well as the elevated nitrogen availability and increasing temperature (Wilson and Elling, 2004;

Büntgen et al., 2014).

A study from the Carpathian mountains found that two silver fir lineages differed in their reac-

tion during the depression period and in subsequent growth increase (Bosela et al., 2016), and it

seems reasonable to assume a genetic background for varying predispositions to air pollution. In

addition, a number of progeny tests and common garden experiments documented that reactions

to climatic extremes are influenced by the trees’ genetic background at the level of provenances.

King et al. (2013) accounted for that by adding a genetic component to Cook’s (1985) linear ag-

gregate model of TRW, and argued that the genetic component that influences the response to

climatic conditions is of particular interest for local adaptation. However, most dendrochronologi-

cal studies focus on mean signals at the level of stands or – in the case of common garden trials –

of provenances while individual fluctuations are disregarded as noise (Carrer, 2011). We suggest

that in genetic association studies this ’noise’ can be seen as relevant signals of individual growth

reactions.

A few studies have already jointly analyzed genetic and dendroecological data using molecular

markers, and related basic genetic parameters such as heterozygosity (Babushkina et al., 2016),

pairwise relatedness (King et al., 2013) or single amplified fragment length polymorphisms (AFLPs)

(Pluess and Weber, 2012) with growth parameters. None of the studies found a strong genetic

signal in their growth related parameters, which could either be attributed to stronger effects of

the environmental signals compared to the genetic influence on growth processes, or to a lack of
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adequate genetic data (e.g. loci that are relevant for the considered phenotypic traits).

In this study we utilize the fact that trees as long-lived organisms, archive their own physiolog-

ical history in their annual growth rings (Cook and Kairiukstis, 2013). In the context of extreme

environmental stress events, we focus on the individual reactions of trees, characterized by a num-

ber of measures derived from TRW data. We define all direct and derived measures that are based

on TRW data as ’dendrophenotypes’ in this study. In particular, we are interested in identifying

whether differences in individual reactions are associated with genetic variation among individu-

als.

For this purpose, we derived dendrophenotypes for 193 silver fir trees and associated them

with 130 SNPs in candidate genes mainly related to stress reactions and particularly to drought

(Roschanski et al., 2015). Specifically, we focused on data of annual increment, characterizing the

depression period in the 1970s and 1980s. For this purpose, we referred to the resilience concept

applied to tree growth by Lloret et al. (2011). As growth is a quantitative trait, which is likely

influenced by many genes, we not only used a single-locus approach for the genetic association,

but supplemented them with random forest analyses to capture both the marginal effect of a SNP

on a phenotype, as well as effects of multiple SNPs on a phenotype. Thereby we seek to determine

the genetic basis of the observed dendrochronological patterns. This would support the utility of

dendrophenotypes as an entry point to further explore the genetic basis of growth decline and

resilience in stress scenarios in the context of climate change.

Material and Methods

Study site

Silver fir trees were sampled and monitored at two sampling sites in the Bavarian Forest National

Park, Germany. Commercial forest management has been abandoned there since the foundation

of the national park in 1970. The park covers 24,217 ha and its elevation ranges from 650 to

1,450 m a.s.l. Mean annual temperature varies between 3.8°C and 5.8°C with an annual precip-

itation total of around 1,200 mm to 1,800 mm. Our sampling sites were located at 770 m a.s.l.

(Filzwald, 48.929°N, 13.406°E) and 1,120 m a.s.l (Rachelsee, 48.975°N, 13.400°E) on the South-

ern slope of Mt. Rachel (Fig. 1). Both sampling sites were chosen because of the relatively high

abundance of mature silver fir trees within a mixed mountain forest (Fagus sylvatica, Abies alba and

Picea abies), which is the typical forest composition for elevations below 1,150 m in the region. As

silver fir has rarely been planted by forestry, and given that some of the trees have a confirmed age

of more than 300 years, we are confident that the sample population is autochthonous.

At both sampling sites, 100 adult silver fir trees were geo-referenced and permanently marked

with numbered tags. Temperature and humidity were recorded at both sampling sites with data

loggers (DK320 DM HumiLog, Drießen & Kern, Bad Bramstedt, Germany) starting in spring 2014.

The low elevation sampling site at Filzwald (hereafter referred to as ’low site’) is characterized by

flat terrain and subjected to accumulating cold air from higher elevations, which leads to frequent

late and early frost events in spring and autumn, respectively. In contrast, the sampling site at

Rachelsee (hereafter referred to as ’high site’) is located on a steep slope surrounding the Rachel

lake. The lake influences the local climatic conditions by buffering cold temperatures. Therefore,
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early fall and late spring frost events are less frequent and maximum temperatures are lower at

the high site compared to the low site. Mean temperature, however, did not significantly differ

between sites during our study period (Table S1).

Figure 1. Study area in the Bavarian Forest National Park with the sampling sites Rachelsee (1,120 m a.s.l.)
and Filzwald (770 m a.s.l.)

Genotyping

For genotyping, we used 267 polymorphic and functionally annotated SNPs (Roschanski et al.,

2015). Out of these, 241 could be successfully genotyped in our samples using KASP assays (LGC

Genomics, Middlesex, United Kingdom). The dataset was first roughly filtered by removing SNPs

with more than 80% missing data. In a second step, individuals and SNPs with more than 10%

missing data, as well as monomorphic SNPs (i.e. SNPs with only a single genotype) were re-

moved. We selected only SNPs with a minor allele frequency > 3%. All SNPs were tested for

pairwise linkage disequilibrium (LD) using the Genome Variation Server 147 v. 12.00 (National

Heart, Lung, and Blood Institute, http://gvs.gs.washington.edu/GVS147/index.jsp) and for SNP

pairs with a coefficient of determination r2=1 (i.e. SNPs that carried identical information), one of

the SNPs, which were always located within the same contig, was removed. With this set of SNPs,

we imputed missing genotypes using Beagle 4.1 (Browning and Browning, 2016) without using a

reference sequence. After imputation, the dataset was cleaned again using the same filtering steps

as described above. Finally, all SNPs with less than five individuals per SNP genotype were removed

from the dataset to ensure sufficient replication, resulting in 130 SNPs within 103 genes from 193

individuals.
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Phenotypes from wood cores

To obtain data on tree-ring width (TRW), we extracted two wood cores per tree at breast height

with an increment borer. If trees grew on slopes, they were cored at a 90° angle to the slope to avoid

compression wood. After drying, intact or slightly fractured wood cores were cut with a microtome

(WSL, Birmensdorf, Switzerland) to obtain a smooth surface. The contrast between earlywood and

latewood was enhanced with chalk. Cores that had several fractures (21 out of 275 cores) were

mounted on wooden holders and smoothed with grid paper. TRW was measured with a precision

of 0.01 mm using a LINTAB digital positioning table whose movements were transmitted to the

TSAP-Win Scientific Software (Rinntech, Heidelberg). We constructed a master series for each plot

using COFECHA (Grissino-Mayer, 2001) and each series was cross-dated against this master series

to avoid mis-dating due to missing rings. We obtained reliable data from a total of 275 cores from

193 trees.

All TRW data was then detrended (standardized) to a dimensionless tree-ring index (TRI) with

a mean value of one (Fritts, 2001) using the detrend function with method="Mean" in the dplR

package (Bunn, 2008) in the statistical software R (R Core Team, 2016). Detrending is necessary

since TRW is not only a function of past climate but also of ’noisy’ biological effects, e.g. decreasing

growth with increasing age, that have to be removed from the data prior to the analyses of climatic

effects on growth (Cook and Peters, 1981).

The previously described growth decline became visible in our tree-ring chronology as early as

the 1880s and peaked around the late 1970s and early 1980s (Fig. S1). The strong decline in TRI

from the year 1973 to 1974 was clearly visible in the large majority of the trees, and also in the

stand chronology (Fig. 2 and 3) and coincides with the peak in SO2 levels (compare Elling et al.

(2009)). Throughout this text, we will refer to this period as ’depression period’ and based on the

existing data assume that the main driver of the growth decline was air pollution, in particular

SO2. On average, the depression period lasted until the mid-1980s, after which many trees showed

a strong increase in TRI.

To characterize this depression period for each single tree and to obtain numerical measures

(dendrophenotypes) that characterize the reaction of individual trees, we followed the definitions

of Lloret et al. (2011) to determine the resistance, recovery and resilience of the trees to air

pollution (Fig. 2). Within this framework, resistance describes the relation of TRI during vs. before

the extreme event, recovery describes the ratio of TRI after vs. during the event, and resilience

describes the ratio of TRI after vs. before the event.

We then calculated the following dendrophenotypes: (1) the steepness of the start of the de-

pression period in 1974 as the slope of the TRI between the years 1973 and 1974, (2) the resistance

towards air pollution as the ratio between the average of ten TRIs from 1964 to 1973 and the av-

erage of the TRI during the depression period (1974-1983), (3) the recovery after the depression

period as the ratio between the average TRI in the ten years after 1983 and the average TRI during

the depression period (1974-1983), and (4) the end of the depression period (i.e. beginning of

the resilience phase) as the year when TRI surpassed the values prior to the growth depression. To

calculate the latter, we compared mean TRI after 1973 in a moving window of three years to the

mean growth in the years 1964-1973 as a reference period. We defined the end of the depression

as the year when the three-year mean first surpassed growth of the reference period.
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In addition, we focused on the year 1976, for which most trees showed a further decrease in

growth during the depression period (Fig. 2 and 3) and which has been identified as one of the

driest years for south-east England (Wigley and Atkinson, 1977) and Europe in general (Briffa

et al., 2009). Although we could not define this year as a so-called pointer year (Cropper, 1979),

likely because growth was already dramatically dropping during prior years, most trees showed

a marked growth decline in 1976. We used the res.comp function from the R package pointRes

(van der Maaten-Theunissen et al., 2015) to calculate (5) the recovery, (6) resilience and (7)

resistance for each tree towards the conditions in 1976. For the calculation, we considered a two-

year window to take into account the reduced growth in the two prior years that already fall within

the period of growth depression (Lloret et al., 2011).

For all dendrophenotypes the mean values and corresponding standard deviations (SD) for each

site were calculated. Significant differences between the means from the high and low site for each

dendrophenotype were tested using Welch’s unequal variances t-tests. For the genetic association,

all dendrophenotypes were centered and scaled within the two sites to exclude confounding effects

due to environmental and site conditions using the scale function with default parameters in the R

package base (R Core Team, 2016).

Year

M
ea

n 
TR

I

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

0.
4

0.
8

1.
2

1.
6

2.
0

Time

Rt
Rc

Rs
EndDep

Figure 2. Mean tree-ring index (TRI) of all individuals across both sites for each year in the period from
1950 to 2013. The insets (modified after Lloret et al. (2011)) graphically represent the dendrophenotypes
resistance (Rt), recovery (Rc), resilience (Rs) and end of depression period (EndDep) for the depression
period (solid box) and for the drought year 1976 (dashed box).

Population structure

Population stratification can lead to spurious associations (Lander and Schork, 1994) and the meth-

ods we used for genetic association are sensitive to population structure (Zhang et al., 2010; Zhao

et al., 2012). Thus, we applied two approaches to determine whether we could detect a genetic

structure within or between sampling sites. First, we used the Bayesian clustering algorithm im-

plemented in STRUCTURE 2.3.4 (Pritchard et al., 2000). We used the admixture model with
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correlated allele frequencies, set the burn-in to 105 iterations, followed by 5 x 105 Markov chain

Monte Carlo (MCMC) repetitions, and conducted 10 runs for each number of populations K from

1-6. Second, we performed a principal component analysis (PCA) with the SNP data. For this, we

first converted the SNP data into a binary format (0, 1 and 2, corresponding to the occurrence of

the respective minor allele of a SNP) using a custom R-script and then used the glPCA function of

the R package adegenet (Jombart and Ahmed, 2011).

Genetic association

For the association analysis of SNPs and dendrophenotypes, we used two approaches. First, we

applied a frequently used univariate approach, namely general linear models (GLMs) as imple-

mented in TASSEL v. 5.0 (Bradbury et al., 2007), with each SNP as the independent variable

and each dendrophenotype as the response variable. For each dendrophenotype we ran GLMs

with 10,000 permutations to obtain p-values independent of the data distribution and Bonferroni-

corrected the permutation p-values by only considering SNPs as significant with a permutation

p-value < 0.05/7 = 0.007 (permutation accounts only for multiple testing within each dendrophe-

notype and since we tested seven dendrophenotypes, we divided the significance-threshold by this

number of tests).

Apart from this single locus approach, we also applied the machine learning algorithm ran-

dom forest, which captures both marginal and interaction effects among SNPs. Random forest is

a nonparametric decision tree algorithm that assigns an importance value to each variable in a

dataset based on a vote over all the trees in the forest (Breiman, 2001). Each tree is grown using

a different bootstrap sampled subset of the original data. This process, called ’bagging’, results in

a fraction of the data that is not sampled and thus called ’out-of-bag’ (OOB) sample. Using the

bagged samples to predict the OOB samples gives a measure of prediction accuracy, the OOB er-

ror. The average increase over all trees in the OOB error of a variable, compared to its randomly

permuted counterpart, provides a measure of variable importance for this predictor (i.e. SNP).

This variable importance gives a measure for the comparison between SNPs within a given set but

does not provide a threshold to select truly relevant SNPs. For this purpose we used the feature

selection procedures as implemented in the R packages Boruta (Kursa and Rudnicki, 2010) and

VSURF (Genuer et al., 2015).

Boruta is an all-relevant feature selection algorithm and attempts to identify all significantly

important predictors (in our case SNPs). As a wrapper algorithm for the R package randomFor-

est (Liaw and Wiener, 2002), Boruta creates shadow attributes for each predictor by randomly

shuffling the original values. A random forest model is applied to the extended dataset and the

importance of each predictor is assessed in the form of Z scores. These are calculated based on

the mean accuracy loss upon permutation of the predictor over all trees in the forest, divided by

the corresponding standard deviation. The maximum Z score among the shadow attributes is then

compared with the Z score for each predictor. Predictors with significantly (α = 0.05) higher Z

scores are deemed ’important’ while such with significantly lower Z scores are deemed ’unimpor-

tant’. This process is repeated until all predictors are evaluated or the user-defined limit of runs

is reached, at which point all remaining predictors are deemed ’tentative’. To account for possibly

high fluctuations in the Z scores when there are many predictors, Boruta first runs three rounds
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with more relaxed criteria in which only rejection but no confirmation of predictors takes place.

Boruta was executed with 2000 trees in each forest and a maximum of 5000 runs to ensure that all

SNPs were classified as either important or unimportant.

VSURF can conduct both an all-relevant, as well as a minimal-optimal feature selection (Genuer

et al., 2015). While the former has the same objective as Boruta - namely the identification of all

relevant predictors, including redundancies, that are associated with a variable (dendrophenotype)

- the latter is aimed at selecting the smallest set of predictors that explains most of the variation in

a given variable. Since we were interested in identifying all relevant SNPs for biological interpreta-

tion, as opposed to the most accurate prediction of a dendrophenotype based on some set of SNPs,

we only employed the first approach. For this, VSURF removes unimportant predictors from the

dataset based on the standard deviations of their variable importance averaged over 50 random

forests. The remaining predictors are used for variable selection to identify all relevant predictors.

OOB error rates from nested random forests are calculated starting with only the most important

predictor and stepwise including the next best predictor until all predictors that were selected in

the previous step are included. The predictors from the model with the smallest OOB error are then

chosen as the set for interpretation. VSURF was implemented with default settings which includes

2000 trees in each forest.

Although SNPs were already annotated for a previous publication (Roschanski et al., 2015), we

repeated this step, as the information in the NCBI database in constantly growing. All SNPs that

could be associated with the dendrophenotyopes with more than one of the above mentioned meth-

ods were compared to known sequences from NCBI’s GenBank non-redundant protein database

(NR) using the translated BLAST algorithm (blastx v. 2.6.1+, Altschul et al., 1997). The best hit,

based on the Expect value that provided a functional annotation was selected for each gene and the

corresponding biological process keywords were retrieved from the Gene Ontology (GO) database

(UniProtKB; The UniProt Consortium, 2015).

Results

Dendrophenotypes

We obtained data on dendrophenotypes for 98 and 95 individuals from the high and low site,

respectively. Overall, trees from high elevations showed a more pronounced and uniform reaction

during the depression period and to the conditions in 1976 than trees from the low site (Fig. 3). At

high elevations, 96.8% of the trees showed a decline in growth as expressed in the resistance to air

pollution, while only 79.6% of the trees at the low site showed this reaction.

On average, the dendrophenotypes differed between sites (Fig. 4 and Table 1). While the

individuals on the high site showed a steeper drop into the depression period and had, on average,

a lower resistance to air pollution, the recovery from the pollution was stronger when compared to

the low site. All mentioned differences were significant (Table 1). Regarding the drought year 1976,

the individuals from the low site consistently showed higher mean values, which were significantly

different from the high site for resistance and resilience but not for recovery. The end of depression

only differed by one year and was not significantly different between sites.
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Table 1. Summary statistics for the dendrophenotypes from both sites (Low and High) and results of the
Welch’s t-tests between the two sites for each dendrophenotype.

Slope
1973-

74

Resistance to
air pollution

Recovery from
air pollution

End of
depression

period

Re-
silience
1976

Resis-
tance
1976

Recov-
ery

1976

Low
(mean ±

SD)

-0.15 ±
0.13

0.82 ± 0.67 1.66 ± 1.11 1986.49 ±
11.21

1.37 ±
0.41

0.97 ±
0.30

1.59 ±
1.76

High
(mean ±

SD)

-0.30 ±
0.20

0.58 ± 0.21 1.96 ± 0.89 1987.48 ±
6.57

0.95 ±
0.30

0.76 ±
0.22

1.41 ±
1.37

t -5.98 -3.33 2.01 0.72 -7.92 -5.44 -0.81
df 169 109 179 146 171 173 176

p-value <0.001 0.0012 0.04616 0.4721 <0.001 <0.001 0.4813

SD: Standard deviation, t: t-statistic, df: degrees of freedom

Population structure

Neither the STRUCTURE analysis, nor the PCA provided any indication for population substructure.

The visual inspection of the bar plots in STRUCTURE clearly showed that almost all individuals

were assigned to both clusters in a scenario with K = 2 without any apparent pattern (Fig. S2), and

Ln P(D) declined steadily with increasing K (Fig. S3). In accordance, point clouds resulting from

the PCA showed no apparent difference between sampling sites (Fig. S4).

Genetic association

The different association methods resulted in largely different numbers of SNPs associated to the

dendrophenotypes (Table 2). VSURF identified 10 to 22 SNPs for every dendrophenotype with

the exception of Recovery 1976, for which VSURF only found one SNP. Boruta detected a lower

number of SNPs, ranging from zero to six, which were also detected by VSURF in most cases. The

GLM in TASSEL yielded no significant results (permutation p-value < 0.007). In total, 15 SNPs

were jointly identified by at least two approaches. Most of these SNPs are located in genes that

code for membrane proteins related to transport and stress reactions (Table 3).

Table 2. Overview of the results of the different association methods (TASSEL GLM, VSURF and Boruta) for
each dendrophenotype. Values in cells indicate the number of SNPs identified by each method for a given
dendrophenotype.

Method Slope
1973-

74

Resistance to
air pollution

Recovery from
air pollution

End of
depression

period

Re-
silience
1976

Resis-
tance
1976

Recov-
ery

1976

GLM 0 0 0 0 0 0 0
VSURF 22 10 18 11 17 13 1
Boruta 1 4 6 1 3 6 0
VSURF

+ Boruta
1 3 5 0 3 6 0
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Discussion

We present the first association study that links the reaction of individual trees to environmental

stresses that are archived in tree-rings with SNPs in candidate genes, putatively related to such

stresses. Specifically, we characterized the strong growth decline of silver fir during the 1970s and

early 1980s, which can be related to the peak in SO2 emissions and a series of dry years. Starting

in the mid-1980s, silver fir growth increased and surpassed pre-depression growth levels, which

has been related to the decrease in air pollution, competition release caused by forest dieback,

as well as an increase in air temperatures and atmospheric fertilization (Büntgen et al., 2014).

More importantly, besides the population level signal, we derived measures for resilience and re-

sistance of individual trees towards these stresses. When we tested for associations between these

individual dendrophenotypes and the SNP data from 103 candidate genes, we could identify 15

genes related to drought and general stress pathways, suggesting a genetic background for individ-

ual differences in the response to the conditions during the depression period. While the historic

levels of air pollution probably remain a unique stress episode, there are indications that growth

decline was enhanced by an increased drought sensitivity due to a physiological response to SO2

(Elling et al., 2009). Thus, the observed individual differences in resilience potentially play a role

in adaptation to future drought events. The major advancement of our study thereby is the use

of dendrophenotypes to derive information on individual tree reaction to episodic and complex

stresses. Furthermore, dendrophenotypes have the major advantage that they can be collected for

large numbers of trees which are required for genotype-phenotype association studies in natural

populations. This discussion deals with the ecological, genomic and methodological implications.

Dendrophenotypes

As expected, we found pronounced population level growth declines in the 1970s and 1980s, and

population level recovery thereafter as described earlier for silver fir in the whole of Southern

Germany (Elling et al., 2009). While our data is limited to surviving trees, inventory data from

the area showed that silver fir dieback was substantial in the 1970s and 1980s. For example, some

forest stands lost more than 75% of their 80–120 year old silver firs (unpublished inventory data,

draft of the National Park Plan 1992).

Further, we found that the drought year of 1976 had a strong negative effect on the growth of

the silver fir stands. In contrast, dry years that did not coincide with the depression period (e.g.

1959, 1972, 1982 and 2003) did not have a strong effect on silver fir growth (Fig. 3). This is in line

with Elling et al. (2009), who argued that SO2 pollution not only causes direct harm to silver fir

trees by impeding photosynthesis and leading to the shedding of needles but that it also increases

sensitivity to drought, which might be attributable to damages of the fine-root system.

In general, we observed that trees at high elevations were affected more severely, as reflected by

the generally lower resistance and resilience. However, since there are no on-site measurements of

SO2 concentrations, we can only speculate that the high site might have been more severely affected

by SO2 emissions, or alternatively, that the effect was aggravated by site-specific conditions around

lake Rachel.

As was shown before, the growth after the depression period exceeds prior levels, which is usu-
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ally attributed to a combination of less dense forest structure and elevated nitrogen supply (Pinto

et al., 2007; Elling et al., 2009; Büntgen et al., 2014). It has also been speculated that tropo-

spheric ozone (O3) might be a major contributor to forest decline (Krause et al., 1986; Schmieden

and Wild, 1995). However, since tropospheric O3 concentrations increased well into the 1980s,

our data does not directly indicate a major influence on growth in silver fir stands in Southern

Germany.

Dendrophenotype-genotype association

In total, 15 out of 130 SNPs were associated by two methods with one of the dendrophenotypes,

and are thus supported in their status as ’candidate’ genes for the reaction towards extreme environ-

mental stress. The investigated candidate genes were selected as they either had drought-related

Gene Ontology terms, or were previously detected to be associated with adaptive processes and/or

stress response (Roschanski et al., 2013, 2015). Interestingly, the vast majority of genes we found

in association with dendrophenotypes were membrane proteins of the chloroplast, mitochondria

or tonoplast, and thus, tightly linked to photosynthesis or chloroplast development. For exam-

ple, SNPs in contigs 716 and 14580, which are associated to the resistance and recovery during

the depression period, respectively, encode for a heat shock 70 kDa protein and a proteolytic sub-

unit of the ATP-dependent Clp protease which are both involved in protein folding with effects on

chloroplast development and function (Sjögren et al., 2006; Latijnhouwers et al., 2010). Since SO2

pollution likely has negative effects on photosynthesis (Silvius et al., 1975), genes involved in these

pathways could potentially determine how individual trees cope with these extreme conditions.

Two of the genes that were exclusively associated with resistance and resilience in the drought

year 1976 can be directly related to drought stress response: aquaporin TIP2-1 and glucan-endo-

1,3-beta-glucosidase. Aquaporins are regularly involved in drought response (Maurel et al., 2008;

Hamanishi and Campbell, 2011) and a similar aquaporin (TIP1-1) has already been identified as

differentially expressed in response to drought stress in silver fir seedlings (Behringer et al., 2015).

Glucan-endo-1,3-beta-glucosidase was previously used as a drought stress candidate gene in Pinus
pinaster (Eveno et al., 2008) and was also differentially expressed in response to drought stress in

silver fir seedlings (Behringer et al., 2015).

Although, in general, biological functions have been described for Arabidopsis thaliana or other

flowering plants, there is evidence that many genes maintained their functions across the plant

kingdom (Groover, 2005). Still, the physiological function of these genes, and even more specif-

ically of the investigated SNPs, remains to be determined. In many cases, we found associations

with SNPs that are synonymous. Nevertheless, these mutations might impact gene expression, and

it has been shown that there is a codon bias in conifers which affects translational efficiency (Torre

et al., 2015).

For the genetic association analysis, we not solely relied on commonly used single locus ap-

proaches, but also applied a random forest based feature selection to identify SNPs that are likely

associated with certain dendrophenotypes. The Boruta algorithm provides significant results by

testing if the importance of a SNP for explaining a dendrophenotype is significantly (α = 5%)

higher than the importance of the most important shadow attribute, which, under the null hy-

pothesis is only associated by chance (Kursa and Rudnicki, 2010). In contrast, VSURF does not
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incorporate any formal statistical hypothesis-test, but selects the most important SNPs regarding

the association with a specific dendrophenotype (Genuer et al., 2015). However, this does not

imply a statistically significant association.

Both feature selection techniques are wrappers for the random forest algorithm and, as such,

the importance value is a measure for the marginal effect of a SNP, as well as the interaction effect

of all SNPs under consideration. It should be mentioned, however, that the relative contribution

of marginal and interaction effect cannot be directly determined (Boulesteix et al., 2012). Thus,

SNPs identified by random forest procedures do not represent a network and have to be viewed

independently. The benefit of such analyses is, however, that the influence of all other SNPs are

incorporated in the importance of any given SNP, which provides a much better representation,

given that in association studies in conifers a single SNP did not explain more than 5% in the

variation of a trait (e.g. Eckert et al., 2009; González-Mart́ınez et al., 2006, 2008).

Outlook: The future of dendrophenotypes in association studies

Episodic environmental extremes like droughts, storms, or calamities are predicted to increase in

both intensity and frequency due to global climate change (IPCC, 2014). While a better under-

standing of the response of trees to such extreme events is urgently needed, this is challenged by

the unforeseeable timing of these events, which makes it almost impossible to integrate them in

research projects with short funding periods. Further, forest geneticists are confronted with numer-

ous challenges that hamper meaningful association studies. While technical advances provided us

with a roadmap on how to move from forest genetics to forest genomics (Neale and Kremer, 2011),

next generation phenotyping for trees is still in its infancy. The ideal phenotype should be meaning-

ful in terms of fitness and easy to measure in a large number of trees in natural populations. Here,

the analysis of wood cores has a number of clear advantages. First, wood cores can be collected

with an acceptable investment of time and money in the field, (a well-trained person might collect

up to 30-40 cores per day). All subsequent steps can be conducted in the lab. Second, wood cores

provide data over long time series, and thus permit to characterize tree reaction to climate, as well

as to focus on particularly extreme events. Thereby, we can exploit the internal archive of trees and

study extreme episodes in their past which are not accessible directly using other measures and

cannot easily be integrated within short-term research grants (typically 3 to 5 year-long). Third,

the analysis is by far not limited to the mere measurement of tree-ring width but can be expanded

in various directions such as wood anatomical features, for example cell wall thickness or lumen

area, which are considered a proxy for physiological adaptations to external factors (Carrer et al.,

2010; Ziaco et al., 2016), as well as isotope measures, which, among other things, provide evi-

dence for the water use efficiency of a tree (Seibt et al., 2008). Microdensitometry can supplement

ring width data with information of wood density and thereby provide a more complete picture of

growth, for example during extreme events (e.g. Martinez-Meier et al., 2008). All these measures

can be conducted for time series of several years, or with a focus on particular years of interest.

A major challenge for wood core analysis is that the individual growth reactions integrate over

numerous signals such as age, microclimatic conditions, competition and health, in addition to

the reaction to climatic conditions. Thus, a characterization of micro-environmental conditions is

essential which remains notoriously difficult to determine at a scale which is relevant for individual
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trees in natural populations. This is also highly relevant for the study of adaptational processes,

which might occur at smaller spatial scales than previously considered (Scotti et al., 2015). A

few studies already provided evidence that local adaptation can occur at very small spatial scales,

contradicting the previous notion that this is impeded by gene flow in trees (e.g. Budde et al.,

2014; Eckert et al., 2015). Thus, with the goal of understanding the underlying mechanisms of

adaptational processes in forest trees, we should not solely rely on the major advances made in

sequencing technologies, but also broaden our focus to promising phenotyping approaches such

as provided by dendrochronology and dendroecology in combination with a more detailed view of

environmental conditions.
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Figure S1. All available mean tree-ring index (TRI) data (detrended tree-ring width data) for the silver fir
trees from both sites (High and Low). Also shown is the weighted mean between both sites (Mean).

Figure S2. Result from the STRUCTURE analysis of the SNP data for the two sampling sites (High and Low
elevation) with K = 2 clusters. Each bar represents one individual tree and the different colors correspond
to the membership coefficients for each cluster.
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Figure S4. First two axes of the principal component analysis of the SNP data from silver fir trees on the
two sampled sites (High and Low). There is no apparent genetic difference visible between the sites.

Table S1. Summary statistics for the temperatures in 2014 and 2015 from dataloggers on the two sites (Low
and High) and results of Welch’s t-tests between the two sites. The mean temperatures (Mean Temp) are not
significantly different between the sites, both for 2014 and 2015. The maximum temperatures (Max Temp),
on the other hand, differ significantly between sites in both years, with higher temperatures at the lower
site.

2014 2015

Mean Temp Max Temp Mean Temp Max Temp

Low (mean ± SD) 8.35 ± 5.78 13.33 ± 6.95 7.85 ± 7.28 12.78 ± 8.74
High (mean ± SD) 7.74 ± 5.50 10.67 ± 6.11 7.09 ± 7.40 10.01 ± 8.26

t 1.32 5.01 1.28 4.03
df 604 596 606 604

p-value 0.1873 <0.001 0.1999 <0.001

SD: Standard deviation, t: t-statistic, df: degrees of freedom
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Table S2. SNPs associated with scaled dendrophenotypes using three different association methods (TASSEL
GLM, Boruta=B, VSURF=V). Resistance=Rt, Recovery=Rc, Resilience=Rs, AP=air pollution, EndDep=End
of depression period.

SNP Rt to AP EndDep Rc 1976 Rc from AP Rs 1976 Rt 1976 Slope 1973-74

241.16
251.177 V
509.192 V
628.351 BV V
716.144 BV V
945.39 V
1113.563
1181.592 V
1455.289 V
1468.274 V
1468.511
1505.255 V
2088.183 V V
2161.199
2161.64
2190.239
2190.265 BV
2315.209 V
2387.318
2495.349
2831.313
2937.405 V
2937.651
2986.147
2986.327
3196.56 V
3765.215
3803.208 V
3908.414
3942.73
3942.88
4336.1071
4538.344
4538.47 V BV
4911.323
4921.779
5004.249 V
5004.671
5181.245
5306.661 V
5502.128
5502.167 V
5502.725
5566.13
5566.56
5945.417 V
6119.125
6331.174
6641.5
6757.46
6968.51 V V V
7067.53
7082.263
7082.314 V
7150.658
7377.148 V V
7377.313
8092.366 BV
8206.176
8206.228
8213.487
8213.555
8248.183
8255.1089
8649.617 V
8759.481
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SNP Rt to AP EndDep Rc 1976 Rc from AP Rs 1976 Rt 1976 Slope 1973-74

8815.372 V
8855.137 V BV
8855.98 V
9065.486
9065.715 V
9197.63 BV V
9263.403 V V
9373.1559 V
10568.484 V BV
11291.4439 V
12178.301 BV V V
12182.435
12900.345
14101.217 V
14311.903 V
14455.953
14514.32
14580.627 BV V
14623.303
14915.331
15135.469 V V
15256.604 BV V BV BV
15256.66 V V
15452.813 V V
15484.667
15484.725
15596.971 V
15944.276
15944.288
16332.419 BV
16356.332 V
16411.197 V BV
16430.504 BV BV
16727.97
16756.89 B
16774.46
16822.456 V
17540.195 V
18067.318 B V
18465.35 V
18599.28 V V
18599.772 V
18676.245 V
18676.31
18676.73
18762.199
19054.28 V V V
19173.238
20694.312
20694.92 V
21141.311
23660.1194 B V
23982.493
24318.117 V V V BV
24902.128
24902.464 V
24902.466 V
26572.464
26602.585 V
26764.484
27000.1448 V
30715.525
30715.72 V
31121.47 V
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Abstract

Random forest analyses in combination with feature selection techniques are increasingly used to

reduce high data dimensionality in genetic association studies. Often the goal is to find a small set of

variables that explains the largest portion of the variation in a given phenotype. Such approaches

are generally successful in selecting a highly predictive set of variables (e.g. single nucleotide

polymorphisms (SNPs)) but suffer from the fact that multiple, equally predictive sets are available.

Holliday et al. (2012) developed such an approach called ’backward purging’. Using the fact that

random forests capture both marginal and interaction effects of all predictors, they also presented

an approach to test for the interaction within a given set of SNPs. This study will show that

the backward purging approach produces non-unique results and that the interaction between

predictors is highly dependent upon the set of predictors under investigation. In combination,

both methods can produce statistically significant but diametrically different results based solely

on random sampling. As such, biological interpretation of the SNPs that are identified by backward

purging is heavily impeded and in most cases the interaction between predictors cannot be sensibly

evaluated. To obtain some useful information from the backward purging procedure an extension

of the method, called ’repeated backward purging’, is proposed.

Keywords: Machine learning, single nucleotide polymorphism, dendrophenotype, Abies alba, Picea
sitchensis, epistasis

Introduction

Machine learning procedures are gaining traction in genetic association studies. This is largely

due to the high dimensionality of the data (often coined ’curse of dimensionality’ or ’large p, small

n problem’) (Bellman, 1957) and the resulting need for sufficient sample sizes (Bureau et al.,

2005; Cordell, 2009). Taking into account a large number of predictors and their interaction,

puts constraints on the applicability of univariate methods. Machine learning algorithms offer an

alternative approach to association analysis using datasets with a relatively low number of samples

(e.g. individuals) compared to the amount of predictors (e.g. single nucleotide polymorphisms

(SNPs)). Among the different machine learning algorithms, random forest procedures (Breiman,

2001) are heavily used in the life sciences and a large body of literature exists on the topic (e.g.
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Bureau et al., 2005; Goldstein et al., 2010; Chen and Ishwaran, 2012). Random forests consist

of a number of decision trees with the goal to find predictors that explain most of the variation

in a given response variable (e.g. some phenotype). Predictors are then ranked based on their

importance in explaining variation averaged over all trees. Usually, the next goal is to identify a

small set of predictors that explains a relatively large amount of variation. This feature selection

involves iteratively removing the least important predictor(s) and re-calculating the importance of

the remaining predictors (D́ıaz-Uriarte and Andrés, 2006). Variations of this approach are already

implemented in some R packages, for example varSelRF (D́ıaz-Uriarte and Andrés, 2006) and

AUCRF (Calle et al., 2011) but were intended for the use in microarray experiments and thus can

only handle classification-based problems, i.e. the response variable has to be factorial. Many

environmental and/or phenotypic variables are, however, numeric and necessitate a regression-

based approach.

Holliday et al. (2012) developed a feature selection procedure, called ’backward purging’,

that can handle numeric response variables. The approach was developed to associate SNPs with

phenological data in Sitka spruce (Picea sitchensis) and has been implemented in a number of

recent studies (Brieuc et al., 2015; Hornoy et al., 2015; Hess et al., 2016). The backward purging

procedure is a powerful tool but has a major caveat: each backward purging run usually results

in a slightly different set of predictors with comparable explanatory power. This is a common

problem of feature selection techniques aiming at identifying a set of predictors that yield the

minimal prediction error and considerably impedes the biological interpretation of the results. To

ameliorate this effect I propose an extension of the technique I call ’repeated backward purging’, to

filter for predictors that are part of most or even all sets. Using the fact that random forests account

for the interaction of the predictors, as well as for their marginal effects, Holliday et al. (2012)

further tested for possible epistatis (interaction) among the most important SNPs. As will be shown

in this paper, this approach is seriously biased by the predictors under investigation and thus, in

part, a function of the random selection of a set of the most important predictors. Consequently

the biological interpretation of the interaction results can be very problematic.

Materials and Methods

To demonstrate the possible problems with the backward purging procedure I used data from Hol-

liday et al. (2012) that was given as supplementary material. Since Holliday et al. (2012) do

not state how they processed their data and only supply genotypes for 251 SNPs (instead of the

339 SNPs they analyzed in their study), a real replication is not possible. Since random forest

cannot handle missing data and in order to retain as much SNPs as possible, I removed all indi-

viduals with missing values which resulted in 251 SNPs in 109 individuals from three different

populations. When substructure exists in the data, random forest can identify SNPs as significant

based on their allele frequencies between populations, even when there is no association with the

phenotype (Zhao et al., 2012). Thus, I only used the adjusted phenotypes for timing of budset

and cold hardiness. Additionally, I used data from Chapter 5 in which random forest procedures

were implemented to identify links between SNPs in candidate genes and certain dendropheno-

types associated with air pollution in silver fir (Abies alba) in the Bavarian Forest National Park.

The dataset consists of 130 SNPs and seven dendrophenotypes for 193 individuals located at two
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sites at elevations around 770 m a.s.l. and 1120 m a.s.l, respectively. No population structure is

present and the dendrophenotypes were centered and scaled among the sites. For comparison with

the Sitka spruce data I only analyzed two dendrophenotypes, the recovery from air pollution and

the resistance in the drought year 1976. However, this selection is arbitrary since this study only

attempts to highlight certain pitfalls in the backward purging approach and interaction analysis.

Random forest

Random forest is a machine-learning algorithm that grows multiple decision trees, which are closely

related to identification keys used to determine the species of a given organism. A forest, then,

consists of a collection of decision trees. The random part is introduced at two different levels:

bagging and random feature selection (Breiman, 2001). Bagging stands for Bootstrap aggregating,

meaning every tree that is grown in the forest gets a different bootstrapped sample of the data.

This new dataset has the same dimension as the original set and usually consists of around 63%

unique data and 37% duplicates. Random feature selection introduces randomness exclusively on

the level of the predictor (bagging applies to both samples and predictors), in order to prevent the

repeated selection of overly dominant predictors. For each tree a random subset of predictors is

chosen and evaluated which predictor splits the data best, i.e. has the clearest association with the

response variable. This process is repeated until the terminal nodes (leaves) contain only samples

from the same variable level (classification problems) or the entire dataset is covered (regression

problems). The results of all trees are then averaged over the entire forest.

Since every tree is grown based on roughly two-third of the data, the remaining one-third,

that were not bagged, hence ’out-of-bag’ (OOB) samples, can be used to estimate the accuracy

of the prediction. While growing the forest, at each bootstrap iteration the bagged samples are

used as training data to predict the OOB samples for the current tree (Liaw and Wiener, 2002).

The resulting OOB error (prediction accuracy for regression models) is then repeatedly calculated

while each predictor is randomized separately. For each predictor the differences between the ’real’

and the randomized OOB error are then averaged over all trees and normalized by the standard

deviation. This gives a measure of variable importance (VI) for each predictor in the set.

All random forest calculations presented in this paper were conducted in R (R Core Team, 2016)

with the randomForest package (Liaw and Wiener, 2002). Commented R-scripts and custom R-

functions for all used procedures as well as all datasets can be found on the data CD submitted

with this thesis.

Backward purging

Generally, the goal in genetic association studies is to find all predictors (e.g. SNPs) that are

significantly associated with a given phenotype (e.g. a disease state or a growth parameter). In

terms of machine-learning algorithms, the goal is to select all relevant features. This is generally

very hard to achieve (Nilsson et al., 2007). Finding a small set of predictors that explains most of

the variation in a given response variable, on the other hand, is easier to manage. Unfortunately,

these minimal-optimal approaches tend to result in non-unique sets of predictors with equally good

predictive power.
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The procedure in Holliday et al. (2012) is such a minimal-optimal feature selection approach and

is conducted as follows:

• Step 1: Select a number of SNPs based on previous analyses (I followed the procedure in

Holliday et al. (2012) and used the most important SNPs from a full random forest model).

• Step 2: Run three random forest procedures on the data and record the VI for each SNP, as

well as the average variance explained over the three models.

• Step 3: Calculate the mean VI for each SNP over the three random forest models and remove

the SNP with the lowest mean VI.

• Step 4: Rerun from Step 2 with the new data until there are only two SNPs left.

• Step 5: Pick the set of SNPs with the highest average variance explained.

While the predictive power of this set is maximized, different runs can result in somewhat different

sets of SNPs, each with comparable predictive power. To discern between predictors that would be

identified in almost each backward purging run and those that were only included based on the

random bootstrap samples, multiple runs have to be conducted.

To demonstrate this, I ran four backward purging procedures with the Sitka spruce data from

Holliday et al. (2012), as well as with the silver fir data from Chapter 5. The same top 20 SNPs,

based on the VI from one full random forest procedure for each variable, were used in the backward

purging runs. The number of trees to grow was set to 1500 in all cases.

Repeated backward purging

By conducting only one backward purging run, it is impossible to discern if a predictor would

be part of (almost) any run or is highly unique and thus relatively uninformative. In order to

determine this relationship I repeated the backward purging procedure multiple times and recorded

the occurrence of all predictors in the respective runs. Thus, it was possible to select only those

predictors that were present in the majority of runs.

To evaluate the effectiveness of this approach I compared the results from the repeated back-

ward purging procedure with the results from all-relevant feature selection techniques based on

random forest, implemented in the R packages Boruta (Kursa and Rudnicki, 2010) and VSURF

(Genuer et al., 2015). VSURF differentiates between variables identified for interpretation and

prediction. The latter are always a subset of the former and since the SNPs commonly identified

by repeated backward purging are not intended for prediction I used the larger interpretation set

for comparison. For the dendrophenotypes of the silver fir data I used the results in Chapter 5. For

the phenology data in Sitka spruce I ran Boruta with 2000 trees in each forest and VSURF with

the default settings, following the procedure in Chapter 5. SNPs were only considered as identified

when they were selected by both Boruta and VSURF since any real study will usually employ more

than one method and emphasize on SNPs that were detected based on more than one approach.

Since Holliday et al. (2012) did not provide their entire dataset for replication and the annota-

tion for many genes is missing (including annotated genes in which they discovered SNPs in their

study, e.g. xth1), a comparison between the results was not conducted.
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Interaction

To test for interaction within the set of most important SNPs, Holliday et al. (2012) iteratively

removed one SNP from the set and calculated the VI of the other SNPs and repeated this procedure

for the entire set. The exact steps of the procedure are conducted as follows:

• Step 1. Calculate the real VI for each SNP using a random forest model.

• Step 2. Repeat Step 1 multiple times (at least five times).

• Step 3. Remove one SNP and calculate the VI of all other SNPs and repeat this step for all

SNPs.

• Step 4. Repeat Step 3 multiple times (at least five times).

• Step 5. Perform Welch’s unequal variances t-test for each pair of real VI and changed VI upon

removal of another SNP (Holliday et al. (2012) used Student’s t-test but without checking

for homogeneity of variance Welch’s t-test is preferable).

• Step 6. Extract the mean changes in VI with the corresponding 95% confidence intervals and

p-values from the tests.

• Step 7. To control for the inflating alpha error due to multiple testing, adjust the p-values by

controlling the false discovery rate as described in Benjamini & Hochberg (1995).

I tested the interaction of the most important SNPs for the Sitka spruce and the silver fir data using

the results from the previous backward purging analyses with 20 repetitions and 2000 trees grown

in each forest.

Results

Backward purging

For both the Sitka spruce and the silver fir data, the four repeated backward purging procedures

resulted in some SNPs that were part of every identified set, while some SNPs were only part of

a subset of runs (Fig. 1). The different sets for the budset phenotype (Fig. 1 A) contained seven

to 11 SNPs with an average explained variance ranging from 32.2% to 35.4%. For cold hardiness

(Fig. 1 B), the sets consisted of nine to 14 SNPs with 40.5% to 42.9% average explained variance.

The silver fir data showed a similar fluctuation in identified SNPs over all sets, consisting of 10 to

14 SNPs for the recovery from air pollution (Fig. 1 C) and 10 to 15 SNPs for the resistance in 1976

(Fig. 1 D). Accordingly, the average explained variance ranged from 17.9% to 20.2% and 15.2%

to 19.9%, respectively. While the majority of identified SNPs in a single run was part of every

backward purging result for the recovery from air pollution, this was not the case for the resistance

in 1976, budset timing or cold hardiness.
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Figure 1. Venn diagrams for the results of four different backward purging runs with SNP data and the
phenotypes A) budset and B) cold hardiness from Holliday et al. (2012) and C) the recovery from air
pollution and D) the resistance in 1976 from Chapter 5. Each run identifies a different set of SNPs as most
predictive with unique SNPs for each run. Some SNPs are commonly identified in all runs and could be
selected by the repeated backward purging procedure.

Repeated backward purging

The three different feature selection methods showed a relatively large overlap for budset timing

in the Sitka spruce data (Table 1). Repeated backward purging identified four SNPs that were also

selected by Boruta and VSURF but failed to find two other SNPs. However, repeated backward

purging had one SNP in common with VSURF that Boruta did not select and found another SNP

that was not identified by the other methods. For cold hardiness the overlap was less distinct.

Only two SNPs were commonly identified by all methods while repeated backward purging did not

identify three SNPs that were selected by Boruta and VSURF. Also, repeated backward purging and

VSURF commonly selected two SNPs that were not identified by Boruta.

The SNPs that were commonly identified by all backward purging runs in the dendronphe-

notypes of the silver fir data included some, but not all, SNPs that were identified in Chapter 5

(Table 2). Using Boruta and VSURF, Chapter 5 identified five SNPs as important for the recovery

from air pollution and six for the resistance in 1976. Repeated backward purging found all SNPs

for the recovery from air pollution and three of six for the resistance in 1976. Thus, repeated back-

ward purging lacked to identify three SNPs that were found with other methods for the resistance

in 1976 and none for the recovery from air pollution but found three SNPs that were not identified

by other methods for the recovery from air pollution.
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Table 1. SNPs identified by Boruta, VSURF and repeated backward purging (repBackPurge) for the two
phenotypes in Sitka spruce from Holliday et al. (2012). Four SNPs are commonly identified by all methods
for budset timing and two SNPs for cold hardiness.

SNP Budset timing Cold hardiness

258 207 S - Boruta, VSURF
162 350 S Boruta, VSURF, repBackPurge Boruta, VSURF, repBackPurge
19 567 S Boruta, VSURF, repBackPurge -

237 231 S VSURF, repBackPurge -
169 375 NS - VSURF, repBackPurge
114 144 S Boruta, VSURF, repBackPurge -
162 39 S repBackPurge -

232 195 S - Boruta, VSURF
62 359 NS - VSURF, repBackPurge
257 105 S Boruta, VSURF -
266 573 S Boruta, VSURF, repBackPurge Boruta, VSURF
162 289 S Boruta, VSURF Boruta, VSURF, repBackPurge

Table 2. SNPs identified by Boruta, VSURF and repeated backward purging (repBackPurge) for the two
dendrophenotypes in silver fir from Chapter 5. Five SNPs are commonly identified by all methods for the
recovery from air pollution and three SNPs for the resistance in 1976.

SNP Recovery from air pollution Resistance in 1976

04538.470 - Boruta, VSURF
08092.366 Boruta, VSURF, repBackPurge -
08855.137 Boruta, VSURF, repBackPurge -
09197.63 - Boruta, VSURF

14580.627 Boruta, VSURF, repBackPurge -
15256.604 - Boruta, VSURF, repBackPurge
15256.660 repBackPurge -
16411.197 - Boruta, VSURF
16756.89 repBackPurge -

24318.117 - Boruta, VSURF, repBackPurge
05945.417 repBackPurge -
10568.484 Boruta, VSURF, repBackPurge -
16430.504 Boruta, VSURF, repBackPurge Boruta, VSURF, repBackPurge

Interaction

Repeated tests for interaction within one SNP set yielded relatively stable results. This can be

seen by the 95% confidence intervals for the mean of 20 repetitions (Fig. 2 and 3). However,

the interaction between different predictors was clearly influenced by the selection of SNPs under

investigation, both for the Sitka spruce data (Fig. 2) and the silver fir data (Fig. 3). Some pairwise

SNP combinations showed positive interaction (the mean VI of one SNP was reduced upon the re-

moval of the other SNP) in one set and negative interaction (the mean VI of one SNP was increased

upon the removal of the other SNP) in another set. In many cases the interaction was statistically

significant at the α = 0.05 level. For example SNP 62 359 NS upon removal of SNP 169 375 NS

for cold hardiness in the Sitka spruce data (Fig. 2 C). For both SNPs the 95% confidence intervals
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did not overlap with zero and even after adjusting for multiple testing the effect was still significant

(adjusted p-values << 0.001). The same inconsistency could be observed in the silver fir data, for

example for the resistance in 1976 (Fig. 3 C). Removing SNP 15256.604 resulted in an increase in

importance of SNP 24318.117 in one run and a decrease in another but equivalent run. Again, the

mean shift in VI was statistically significant within each run (adjusted p-values << 0.001). Con-

sequently two different studies, both conducting one backward purging run with identical data,

would have drawn a statistically significant yet diametrically different conclusion.
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Figure 2. Changes in mean variable importance (VI) and corresponding 95% confidence intervals (CI) for
all SNPs that are part of the selection in all previously conducted backward purging runs for (A and B) cold
hardiness and (C and D) budset timing when (A) SNP 169 375 NS and (B) SNP 162 289 S is removed and
(C) SNP 19 567 S and (D) SNP 237 231 S is removed. Depending on the partly arbitrary selection in each
run, some SNPs show positive interaction in one run (black) and negative interaction in another, equivalent
run (white) and vice verca.
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Figure 3. Changes in mean variable importance (VI) and corresponding 95% confidence intervals (CI) for
all SNPs that are part of the selection in all previously conducted backward purging runs for (A and B) the
recovery from air pollution and (C and D) the resistance in 1976 when (A) SNP 10568.484 and (B) SNP
15256.660 is removed and (C) SNP 15256.604 and (D) SNP 16430.504 is removed. Depending on the
partly arbitrary selection in each run, some SNPs show different interactions depending on the run (black
and white).

Discussion

Backward purging is a powerful tool and certainly manages to identify a small set of predictors that

explains a large portion of the variation in any variable. However, it can also tempt the investigator

to falsely interpret the results. With its sole purpose being the maximization of prediction accuracy,

the backward purging procedure as described in Holliday et al. (2012) should not be nonchalantly

used for interpretation. With only one run performed, a single set of SNPs cannot be labeled as

important regarding a certain phenotype. Because if this set is deemed important, why not the

set from the second run, or the third? All backward purging can do, is approximate the potential

number of predictors that can explain most of the variation in a given variable.

As the analyses presented in this paper show, many runs identify the same SNPs as most im-

portant. Such SNPs should be more trustworthy, since their VI seems independent of bootstrap
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sampling. Thus, it stands to reason that among most backward purging sets are some truly impor-

tant predictors, mixed in with a number of weakly interacting predictors whose selection is due to

random sampling. Repeating the backward purging procedure multiple times and selecting only

commonly identified predictors can help to identify SNPs for interpretation. However, the repeated

backward purging procedure gives mixed results when compared with other all-relevant feature

selection techniques, ranging from a 50/50 to a complete overlap. Given that repeated backward

purging is a reduction of the minimal-optimal backward purging approach, a lack in overlap with

all-relevant feature selection techniques is to be expected. To stress this point, repeated backward

purging should not be able to identify all relevant features and rather tend to identify predictors

with a large marginal effect.

In any case, four repetitions are certainly not enough to reliably discern between SNPs, although

they give a small level of confidence, especially when filtering for SNPs that are part of every run.

The number of repetitions necessary is hard to assess and seems to be heavily reliant upon the

dataset under investigation. While the Sitka spruce and silver fir data will surely show further

variation beyond the four replications that were presented in this study, other datasets might not

deviate substantially from the findings in a few repetitions. The ’Ozone’ data (Lichman, 2013), for

example, is rather low-dimensional (one dependent variable with 203 entries and 12 predictors)

and running the backward purging procedure 100 times gives the same eight predictors in 92% of

the runs (data not shown). The remaining 8% of the runs result in six and once in seven predictors

that are all part of the other runs.

It should be noted that commonly identified SNPs have, as a set, lower predictive accuracy than

the previously identified backward purging sets. This can be directly derived from the backward

purging procedure. Since all commonly identified SNPs are part of each backward purging run

they represent a reduction of the set with the largest variance explained. Reducing this set will

inevitably lead to lower prediction accuracy (Fig. S1).

As a minimal-optimal feature selection technique, backward purging is a sound approach for

identifying sets of SNPs for the prediction of a given phenotype. The lack of uniqueness, however,

casts doubt on the applicability of the results since multiple, equally good sets are available. A

possible solution could be the approximation of the most predictive set by repeating the backward

purging procedure multiple times and filtering for the set with the largest variance explained.

The major drawback here is the dimensionality of the data. A large number of runs with a high

dimensional dataset would take a very long time to process and the difference in variance explained

might be so minuscule between sets that this approach seems unrewarding.

Even given the apparent drawbacks, especially the lack of biological interpretability, backward

purging still produces relatively straightforward results. The interaction analysis in Holliday et al.

(2012), on the other hand, is more problematic. Holliday et al. (2012) argued that interaction

can be detected by the change in VI of all SNPs upon removing one SNP at a time. As was shown

in this study, by removing one SNP and re-calculating the VI of all other SNPs, the interaction

between the removed SNP and all other members of the SNP set can indeed be quantified relatively

reliably. This interaction, however, is highly dependent upon the SNPs under investigation. Applied

to a system with a fixed set of predictors, the interaction analysis can be used to quantify the

interaction of all these predictors. Given a system with a variable number of predictors that can
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change in composition, on the other hand, will inevitably lead to different conclusions. Genomic

datasets generally consist of a large number of predictors that usually only represent a fraction of

all existing predictors. Any study designed to associate SNPs with phenotypes will consequently

be undersampled. Further, association studies try to reduce dimensionality in the data to select

the predictors that are most strongly associated with a phenotype. Such a selection will very

often produce variable results since different methods are employed and no single approach is

trustworthy on its own. Backward purging is such an approach and the instability of the results

was presented. However, other methods fare equally and will always show variation in the results.

This fact alone makes the interaction analysis, at best, questionable in the context of association

studies. Combined with the backward purging approach, the results are all but guaranteed to be,

in part, a product of random sampling.

In conclusion, backward purging should be used with caution, especially regarding the inter-

pretation of the results. Repeated backward purging might be a rough fix to extract some biological

information but should always be combined with other methods. Interaction between predictors

should only be studied in systems where the selection of predictors will not lead to variable out-

comes, as is the case for most genetic association studies.
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resistance in 1976 in the silver fir data from Chapter 5. This plot can be produced by setting Plot=T in the
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A short recapitulation

In this thesis two approaches to candidate gene selection were presented. First, an experimental

approach attempted to set up a highly controlled environment (Chapter 2) to capture the gene

regulatory response of silver fir seedlings to drought stress (Chapter 4). As such, gene expression

represents the phenotypic reaction of the plants towards water shortage. The association between

the differentially expressed genes and the water status is straightforward, with the assumption

of a cause-effect relationship between drought stress and consequent regulation of the necessary

genes to cope with the situation. Apart from the obvious caveat of missing biological replication,

the experimental setup is a viable approach towards functional candidate gene selection. Since

no pre-selection of genes is necessary and the entire transcriptome is sampled, novel insights into

previously unknown genes are possible. An obvious example are the putative uncharacterized

proteins (Chapter 4) that are differentially expressed as a reaction to drought stress in silver fir

seedlings but are not yet described in the literature. This opens up the possibility to find genes in

non-model organisms that might not be accessible in model organisms. For example, orphan genes

that are unique to particular groups (Tautz and Domazet-Lošo, 2011) could be identified in such

an approach. This is especially interesting since many stress-inducible genes are shared between

model organisms, such as rice and Arabidopsis (Rabbani et al., 2003).

Highly controlled environments are very complicated to set up and maintain. Confounding

factors have to be controlled for while ensuring the necessary conditions to reduce any stress for the

subject that is not the goal of the study. Depending on the organism this can be virtually impossible

to achieve. Forest trees are such an example where experimental setups will mostly be unfit for

adult individuals. Seedlings on the other hand can easily be managed in a laboratory and thus used

in experimental studies. As the terahertz monitoring shows, this allows for a very tight control

over the plant water status and consequent phenotyping (Chapter 2). As such, the experimental

approach necessitates a rather complicated and resource-intensive setup prior to data collection.

Any influence of other factors on the measured signal, for example changing chlorophyll content

(Chapter 3), has to be accounted for. The collection of data itself is then relatively straightforward

and the data are ’easy’ to analyze (Chapter 4).

Observational studies on the other hand cannot highlight cause-effect relationships but are nec-

essary to gain a much more ’realistic’ picture. Since experimental studies are highly controlled, they

necessarily do not represent the actual situation of living organisms and especially adults. There,

positive and negative interactions both with other organisms such as mycorrhiza or bacteria as well

as habitat specific abiotic factors, shape the genomic reaction of every individual. As such, the

setup and sampling for an observational study are relatively straightforward, especially studying

large, sessile organisms such as forest trees. Due to the myriad of confounding factors, however,

any conclusion must be interpreted with caution. Further, since conifer genomes are very large

and reference sequences are usually unavailable, financial and organizational restrains warrant a

pre-selection of genes under investigation. This inevitably small subset of the much larger genome,

in combination with an unknown number of unaccounted, confounding factors, shifts the burden

of the observational approach towards data analysis. As could be shown, more computationally

intensive approaches, such as random forest, can be more powerful and fitting than classical sta-

tistical calculations like simple linear models (Chapter 5). However, these approaches introduce
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new problems and pitfalls, mainly increased difficulty in biological interpretation of the results

(Chapter 6).

Limitations and outlook

Functional candidate genes

Terahertz spectroscopy is a highly useful technology to monitor water status, especially in conifer-

ous species where optical assessment is very hard. The condition of this approach to be conducted

in a laboratory environment, however, limits the generalization of the results. Since only seedlings

could be monitored, the functional candidate genes identified in Chapter 4 do not necessarily have

to be involved in the drought stress response of adult individuals. The case can be made for pre-

viously annotated genes that have been shown to be involved in drought stress response in model

organisms but less so for previously unknown genes. This, however, does not imply that the ap-

proach is not very promising. Especially silver fir faces many threats particularly during earlier life

stages, such as browsing by deer (Wolf, 2003), and consequently the seedling stage is a focus of

interest.

A further limitation regarding the generalization of the functional candidate genes concerns the

source material. Since the transcriptome analysis was only conducted on needles, the differentially

expressed genes are candidates for drought stress response within this part of the seedlings. Mi-

croarray studies on Arabidopsis suggest that stress responsive gene regulation differs between roots

and leaves (Kreps et al., 2002) and as such, further research into the drought stress response within

below-ground material in silver fir seedlings is clearly necessary. If this can be properly conducted

using the terahertz approach remains to be seen. An easy first solution would be to repeat the

experiment as described in Chapter 2 and harvest the seedlings’ roots for transcriptome analysis.

However, a more sophisticated approach would include measuring the water content in the roots

directly but this might be technically challenging.

The identified functional candidate genes correspond to a specific phase of the drought stress

response. Terahertz monitoring allowed to ensure that all seedlings within one group had the

same amount of water loss and thus approximately the same level of stress. Given that stress

response has different phases, however, it is possible, and even likely, that each phase leads to

just slightly or even major differences in the molecular response. Again, in Arabidopsis, stress has

been shown to first induce a general response and upon duration of the stress a shift towards a

more specific response (Kreps et al., 2002). This suggests the possibility that the candidate genes

identified in Chapter 4 are either general stress response genes, specific drought stress response

genes or a mixture of both, depending on the phase of stress response of the seedlings. Next steps

should thus include the resolution of gene regulation in time. This would include monitoring the

water status and harvesting needles at different, but comparable, stress levels. Since the loss of

needles will inevitably induce further stress for the plant, this approach should be conducted on

older individuals that still comfortably fit inside a laboratory but have enough needles in order to

limit the amount of additional stress. Given that in the course of this thesis functional drought

stress candidate genes have been identified already, the time-resolving approach could be limited

to studying genes that were pre-selected based on the results of Chapter 4. This would have the
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benefit of using cheaper and less extensive methods such as microarrays or reverse-transcription

quantitative real-time PCR.

While the identification of functional drought stress responsive candidate genes is a legitimate

scientific pursuit, some general criticism is warranted. This concerns the applicability of the results

regarding actual populations. Gradually analyzing the genetic architecture of stress response in

forest trees should be focused on understanding the role of genes for functional and regulatory

proteins with the aim of predicting the fate of populations in the face of rapidly changing environ-

ments. This includes the interaction of multiple stresses and the influence of associated organisms,

such as pathogens or mycorrhiza. Terahertz monitoring could be implemented in this context in

different ways. For example, the influence of interacting stressors such as drought and sulfur diox-

ide (SO2) on the gene regulatory response would necessitate setting up a closed-chamber system to

fumigate seedlings with specific concentrations of SO2 gas, while simultaneously applying specific

levels of drought stress. An even more complex design could incorporate the presence and absence

of different mycorrhizal species, competing plants and pathogens, as well as different soil nutrient

concentrations, light availability and temperature. Lastly, seedlings from different provenances,

potentially adapted to different climates, could be incorporated. This is an important aspect since

the identified candidate genes in Chapter 4 could be the result of local adaptation to the specific

conditions of the seed material.

Gradually, a habitation model could be constructed for silver fir seedlings, aiding in the un-

derstanding of the influence and interaction of different factors on gene expression. This could

also add to the growing knowledge of the effect of genotypic interaction (G x G) between different

organisms in plant-soil feedback systems (Whitham et al., 2006; Van Nuland et al., 2016). Since

an experimental setup allows to control environmental factors and terahertz monitoring can en-

sure comparable water content, the effect of plant genotypes on the expression of genes in the

soil community (the ’extended phenotype’ of the plant genes; Dawkins, 1982), and vice versa,

can be studied in isolation. Using different provenances might also shed light on locally adapted

genotypes, shaping the extended phenotype (Gugerli et al., 2013).

However, this approach has clear limitations. Terahertz monitoring relies on the fact that the

plant material does not grow significantly during the measuring period. While this makes silver fir

better suited for this technique than other fast-growing plants, it limits the observable phenotype.

In Chapter 4 the only phenotypic variation that was measured was the gene expression, i.e. the

amount of transcripts. Yet, regarding the fate of individual trees in populations under changing

climatic conditions, gene expression might not be a very useful phenotype. Information on the

functional association of a gene to a specific stress alone does not directly provide information

about the biological relevance of this gene. Further information is necessary, such as the impact

of this gene or its variation (e.g. SNPs within the gene) on a tree’s performance, e.g. growth,

pathogen resistance or seed size. Association with these performance traits must be conducted in a

different type of experiment.

Polymorphic candidate genes for trait variation

Associating variation in candidate genes, in the form of SNPs, with trait variation, offers the ability

to identify genes whose variants might influence the phenotype of its carrier. As such, the genes
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identified in the approach in Chapter 5 of this thesis show variation that is associated with po-

tentially adaptively relevant traits. The dendrophenotypes are derivatives of tree-ring width and

a measure of stress coping capability. However, this approach has a number of drawbacks. As

mentioned earlier, no direct cause-effect relationships can be established as a consequence of the

observational nature of the study. The identified SNPs could in fact be the cause for the varia-

tion in the dendrophenotypes but they could also be markers for this variation because they are

physically close to the true causal genetic variant. There could also be confounding factors whose

influence could result in phenotypic variation. This introduces the problem that variation in a den-

drophenotype is not caused by a SNP but by an environmental factor dis-proportionally influencing

individuals with a specific SNP genotype.

Apart from this general restriction, the study design in Chapter 5 lacks specificity regarding the

exact nature of the stress leading to the growth depression in the individual trees. The dendrophe-

notypes are measures for individual coping efficiency but it is not entirely clear what stressors

caused the depression period. Elling et al. (2009) distinctly identified SO2 pollution as the main

driver of the depression in silver fir and this fits the data in Chapter 5 rather well. Additionally, an

interaction with other stressors, mainly drought, are likely but since there is not sufficient local data

on SO2 concentration and water availability, the causal factors remain speculative. Interestingly,

most of the genes with an associated trait variation in Chapter 5 were related to photosynthesis

and only few to drought. This might indicate that SO2 pollution was the major driver of the de-

pression period and that drought played a minor role. It would be interesting to compare these

results with those from terahertz monitoring-differential expression experiments that incorporate

drought stress and SO2 fumigation. This could highlight if the identified SNPs lie within genes that

play a functional role in the combination of drought and SO2 stress response.

In any case, a low turnout in significant associations was to be expected, given the low pre-

selected, number of SNPs analyzed. Compared to the massive genome, this represents a tiny frac-

tion of possible options and thus a low probability of having selected the ’right’ genes. Further, for

SNPs causing small effect sizes in phenotypes, a large number of sampled individuals is necessary

to detect significant associations. Based on association studies in other conifer species such as Pi-
nus taeda (González-Mart́ınez et al., 2006, 2008) and Pseudotsuga menziesii var. menziesii (Eckert

et al., 2009), a single SNP explains less than 5% of the variation in a trait and this suggests that

most SNPs have polygenic effects. Consequently, a larger number of individuals would have likely

resulted in the significant identification of more, small-effect associations.

Also, the pre-selection of candidate genes should be partially based on results from experimental

studies, such as the terahertz-monitoring approach in Chapter 2 and 4. Using primarily functional

candidate genes will increase the likelihood of finding significant associations. Non-functional pre-

selection and low-dimensional datasets are often the reason for the inability to reproduce the results

of association studies with candidate genes, which has led to severe criticism of this approach

(Tabor et al., 2002).

Another major problem that association studies have to deal with is the reliance on the proper

statistical methods. Simple approaches, such as analysis of variance (ANOVA), are often not appli-

cable because the conditions of the test, namely normal distribution of the trait values within each

genotype, as well as equal variance (Balding, 2006a), are not met. Choosing alternative tests can
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be problematic, however, since there is little consensus among scientists and there is a plethora of

methods to choose from, ranging from frequentist (Balding, 2006b) over bayesian (Stephens and

Balding, 2009) to machine learning (Libbrecht and Noble, 2015) approaches. For genetic associa-

tion studies, machine learning procedures are gaining traction and are usually based on the random

forest algorithm. A major motivation for applying this approach is the increasing use of SNPs in

association studies and the desire to capture both their marginal, as well as their interaction effect

(Bureau et al., 2005). As could be shown in Chapter 6, however, some of these techniques can

lead to results that are not unique and thus might not have any biological meaning. This makes

the interpretation of the results very problematic and highlights the fact, that most random forest

procedures are intended for building predictive models. If any consistent prediction will ever be

possible based on such results remains to be seen. Stochasticity is ever present in natural tree

populations and can lead to discrepancies between model predictions and real outcomes (Aitken

et al., 2008). Hence, even if a model might have a relatively good fit and would predict a good

performance of a population under increasing temperatures, the warmer climate might also lead

to an increase in some herbivore who decimates the tree population.

Aside from the restrictions imposed on this type of study, dendrophenotypes are a promising

measure for genetic association. Wood cores provide relatively easily accessible data ranging over

long time periods, which is particularly useful for long-lived, sessile organisms, such as trees. Fur-

ther, dendrophenotypes, as derived measures for performance in response to extreme environmen-

tal stress, should arguably be of adaptational consequence. This in turn makes associated genes

valuable for further studies regarding selection processes in natural populations. It remains ques-

tionable, however, how variable dendrophenotypes are within an individual. Further research must

focus on the ratio of intra- and inter-individual variation to gauge the resolution and accuracy of

this novel phenotypic measure. Especially regarding association studies, precision in measuring the

phenotype is very important (Neale and Savolainen, 2004).

Concluding remarks

Identifying candidate genes for stress response in silver fir is a heavy task. Many of the most promis-

ing methodologies are not directly applicable and there is increasing need to develop techniques

that allow to unravel the complex genetic architecture of this important forest tree. The work

comprised in this thesis is aimed at providing a framework for the identification and analysis of

candidate genes for stress response in silver fir. It consists of bringing silver fir into the laboratory

for controlled experiments to identify functional candidate genes using a novel terahertz moni-

toring setup, as well as novel dendro-phenotypic measures for genetic association of potentially

adaptive traits within natural populations (Fig. 1).

Both approaches can and should be combined, for example by searching for variation within

functional candidate genes and using them in association studies. This will greatly be aided by

more and better reference sequences which are currently rare for silver fir (Roschanski et al., 2013).

Another option would be the comparison of results, which in the work for this thesis resulted in one

drought responsive gene being identified by both approaches (glucan-endo-1,3-beta-glucosidase,

Chapter 4 and 5), which adds to the credibility of the association.
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Figure 1. A framework for the selection and analysis of candidate genes for stress response in silver fir.
Functional candidate genes for drought stress response can be identified by differential gene expression in an
experimental setup using terahertz monitoring. This yields previously unknown genes that should be part of
the pre-selection of polymorphic candidate genes for which variations (SNPs) can be identified. These SNPs
can then be associated with dendrophenotypes, based on tree-ring width (TRW) data, in an observational
study to identify potentially adaptively relevant candidate genes for extreme environmental stress response
(e.g. air pollution and drought). Known genes, identified in both approaches, can be compared and used
in further studies, aimed at identifying adaptively relevant genes under selection (e.g. landscape genomic
studies).

Growing resources in the form of functional and potentially adaptively relevant candidate genes

will greatly benefit landscape genomic approaches that incorporate information of phenotype,

genotype and local environment across a landscape scale (Sork et al., 2013). While these stud-

ies can be of great value regarding forest management and conservation, they rely on knowledge

about genomic regions that shape locally adaptive phenotypes. Among other aspects, the lack of

knowledge regarding the genetic architecture underlying complex, adaptively relevant traits is one

of the main reasons for the low commonality in results of landscape genomic studies on forest trees

(Ćalić et al., 2015).

In conclusion, both approaches presented in this thesis are promising tools and should be fur-

ther integrated in the framework of candidate gene selection and analysis in silver fir and other

non-model conifer species, to hopefully contribute to better predict and manage the fate of popu-

lations in the face of ever more intensive land-use and rapid climate change.
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sendorfer, V. (2008), ‘Cytogenetic and molecular characterization of the Abies alba genome and
its relationship with other members of the Pinaceae’, Plant Biology 10(2), 256–267.

Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., Yoshiwara, K., Seki,
M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003), ‘Monitoring Expression Profiles of Rice
Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA
Microarray and RNA Gel-Blot Analyses’, Plant Physiol. 133(4), 1755–1767.

Rockman, M. V. and Kruglyak, L. (2006), ‘Genetics of global gene expression’, Nat Rev Genet
7(11), 862–872.

Roschanski, A. M., Fady, B., Ziegenhagen, B. and Liepelt, S. (2013), ‘Annotation and Re-Sequencing
of Genes from De Novo Transcriptome Assembly of Abies alba (Pinaceae)’, Applications in Plant
Sciences 1(1), 1200179.

Roth, R., Ebert, I. and Schmidt, J. (1997), ‘Trisomy associated with loss of maturation capacity in a
long-term embryogenic culture of Abies alba’, Theoretical and applied genetics 95(3), 353–358.

Sork, V. L., Aitken, S. N., Dyer, R. J., Eckert, A. J., Legendre, P. and Neale, D. B. (2013), ‘Putting
the landscape into the genomics of trees: approaches for understanding local adaptation and
population responses to changing climate’, Tree Genetics & Genomes 9(4), 901–911.

Stephens, M. and Balding, D. J. (2009), ‘Bayesian statistical methods for genetic association stud-
ies’, Nat Rev Genet 10(10), 681–690.

Tabor, H. K., Risch, N. J. and Myers, R. M. (2002), ‘Candidate-gene approaches for studying com-
plex genetic traits: practical considerations’, Nat Rev Genet 3(5), 391–397.
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Appendix

Data availability

All data for the published articles and unpublished manuscripts for this thesis can be found in
public repositories and on an attached data CD which is structured and labeled according to the
outline of the thesis by chapter name as follows:

Chapter 2 PDF document of the published paper, the supplemental data (one movie and one DOC
file) and the Master thesis of David Behringer (2013).

Chapter 3 CSV data and R-script to create all figures.

Chapter 4 PDF document of the published paper, the master thesis of Heike Zimmermann (2014).
All supporting information can be freely downloaded here:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124564.

FASTQ files from the two Illumina-based MACE libraries were deposited in the SRA (Short
Read Archive, NCBI) with the following accession: PRJNA266095.

Chapter 5 Sub-folder ’SNPsCleaning’: CSV files of the raw SNP data (AbiesSNPsRawData.csv),
R-script (SNPsCleaning.R) with all necessary custom R-functions to clean the SNPs as de-
scribed in the manuscript, the results from the linkage disequilibrium analysis (SNPsCle-
anedLDResults.txt) and the cleaned SNPs in different file formats.

Sub-folder ’SNPsPCA’: R-script (SNPsPCA.R) to re-run the analysis with the necessary custom
R-function (toLFMM.R) to convert the SNP data into a binary format based on minor allele
frequency.

Sub-folder ’TRW’: CSV files for the tree-ring width data for both sites including original data
for all cores (TRW.High/Low.csv) and detrendend mean data
(TRW.mean.growth.High/Low.detrended.csv).

Sub-folder ’Dendro’: Dendrophenotypes, unscaled (Dendro.csv) and scaled (Dendro.sc.csv)
and the temperature data for both sites in 2014 and 2015 (Tempsums.2014.2015.csv).

Sub-folder ’Tassel’: CSV files for the results of the TASSEL GLM analyses with estimates (Tas-
sel.GLM.geno.csv) and statistics (Tassel.GLM.stats.csv).

Chapter 6 CSV files for the Sitka spruce (SNPs and phenotypes: TableS3.csv) and the silver fir
(SNPs: SNPsSilverFir.csv, phenotypes: DendroScaled.csv) data and R-scripts (SitkaSpruce.R
and SilverFir.R) and necessary custom R-functions (in the subfolder ’RFunctions’) to repro-
duce the analyses.
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