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ABBREVIATIONS 

ABBREVIATIONS 

 
Hmd    H2-forming methylene-tetrahydromethanopterin  

dehydrogenase or [Fe]-hydrogenase 

FeGP cofactor  Iron-guanylylpyridinol cofactor 

TosMIC   Toluenesulfonylmethyl isocyanide 

GP    Guanylylpyridinol 

SAM    S-Adenosylmethionine 

SAH    S-Adenosyl-L-homocysteine 

Pyridinol substrate  6-Carboxymethyl-5-methyl-4-hydroxy-2-pyridinol 

Pyridinol product  6-Carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol 

H4MPT   Tetrahydromethanopterin 

Methenyl-H4MPT+  Methenyl-tetrahydromethanopterin 

Methylene-H4MPT  Methylene-tetrahydromethanopterin 

MPD    2-Methyl-2,4-pentanediol 

MALDI-TOF-MS  Matrix-assisted laser-desorption/ionization time-of-flight  

mass spectrometry 

LC-MS   Liquid-chromatography-mass-spectrometry  
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ABSTRACT 

ABSTRACT 

[Fe]-hydrogenase (Hmd) catalyzes the reduction of methenyl-H4MPT+ to methylene-

H4MPT using H2 as electron donor in the hydrogenotrophic methanogenic pathway. 

The production of Hmd was upregulated when the cell was grown under Ni-limiting 

environment. Hmd is composed of homodimer; the active sites are located at the cleft 

formed by the N-terminal domain and central domain. The N-terminal domain binds an 

iron-guanylylpyridinol (FeGP) cofactor, which is prosthetic group of this enzyme. The 

FeGP cofactor is composed of a low spin FeII ligated with two CO, an acyl-C and 

pyridinol-N; in addition, Cys-S and a solvent are bound to the iron site in the enzyme. 

The pyridinol ring is substituted with GMP moiety and two methyl groups. Genome 

analysis indicated that there are seven conserved genes which is named hcg gene 

cluster containing hcgAG and hmd genes. Therefore, it was predicted that the hcg 

cluster is responsible for biosynthesis of the FeGP cofactor. From the hcg genes 

sequences, we could not deduce the function of the proteins. However, using the 

“structure to function” strategy and biochemical assays, we could identify the function 

of some Hcg proteins. In this thesis, I describe the function of HcgC based on crystal 

structure and biochemical analyses. The isotope-labeling experiment indicated that the 

C3 methyl group comes from methionine, probably via S-adenosylmethionine (SAM). 

Structure comparisons of HcgC with other proteins suggested similarity of HcgC to 

SAM-dependent methyltransferases. Co-crystallization of HcgC and SAM revealed 

that SAM binds to the active site of HcgC. Docking simulation with a possible methyl-

acceptor pyridinol suggested that the binding site of the pyridinol. The predicted 

substrate pyridinol was chemically synthesized and the enzyme activity was 

determined. The structure of the HcgC-reaction product was determined by NMR, 

which confirmed that HcgC transfer the methyl group from SAM to C3 of pyridinol. In 

order to analyze the catalytic mechanism of HcgC, co-crystallizaiton of HcgC, pyridinol, 

SAM or SAH was performed. The substrate binding site structure showed that seven 

water molecules connected pyridinol to protein. The only interaction of pyridinol with 

amino acid side chain was Thr179-OH. The C3 of pyridinol was close to the sulfur of 

SAH. In the crystal structure, there was no amino acid, which functions as general base 

of the typical methyl-transfer reaction. We proposed that the water molecules stabilize 

the deprotonated form of pyridinol by resonance effect, which increases the 

nucleophilicity of C3. Mutation analysis supported the essential contribution of the 

water molecules.
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ZUSAMMENFASSUNG 

 

Die [Fe]-Hydrogenase Hmd katalysiert die Reduktion von Methenyl-H4MPT+ zu 

Methylen-H4MPT unter Nutzung von H2 als Elektrondonor in der hydrogenotrophen 

Methanogenese. Die Produktion der Hmd war erhöht, wenn die Zellen unter Ni-

limitierten Bedingungen kultiviert wurden. Hmd ist ein homodimeres Enzym, in dem die 

aktiven Zentren in einer Spalte zwischen den N-terminalen Domänen und den 

zentralen Domänen lokalisiert sind. Die N-terminale Domäne bindet einen Eisen-

Guanylylpyridinol- (FeGP-) Cofaktor als prosthetische Gruppe. Der FeGP-Cofaktor 

besteht aus einem low-spin FeII, ligandiert durch zwei CO, einem Acyl-C und eine 

Pyridinol-N. Zusätzlich ist das Eisenzentrum durch ein Cys-S und ein Wassermolekül 

im Enzym koordiniert. Der Pyridinol-Ring ist mit einem GMP-Rest und zwei 

Methylgruppen substituiert. Genom-Analysen deuteten auf einen Cluster aus sieben 

konservierten Genen hin, der sowohl die hcgAG Gene als auch das hmd-Gen umfasst. 

Aufgrund dessen wurde angenommen, dass die hcg-Gene für die Biosynthese des 

FeGP-Cofaktors verantwortlich sind. Von den Gensequenzen selbst konnten jedoch 

keine Funktionen für die entsprechenden Proteine abgeleitet werden. Sowohl eine 

„Struktur-zu-Funktion“-Strategie, als auch biochemische Charakterisierungen wurden 

genutzt, um die Funktionen einiger Hcg-Proteine aufzuklären. In der vorliegenden 

Studie wird die Funktion von HcgC, anhand seiner Kristallstruktur und biochemischer 

Analysen beschrieben. Isotopenmarkierungen wiesen darauf hin, dass die C3-

Methylgruppe des Pyridinol-Rings aus Methionin stammt und wahrscheinlich in einer 

S-Adenosylmethionin- (SAM-) abhängigen Reaktion übertragen wird. 

Strukturvergleiche zwischen HcgC und anderen verwandten Proteinen deuteten auf 

Ähnlichkeiten zu SAM-abhängigen Methyltransferasen hin. Co-Kristallisation von 

HcgC und SAM zeigte, dass SAM tatsächlich im aktiven Zentrum von HcgC bindet. 

Docking-Simulationen mit einem möglichen Methylakzeptor-Pyridinol zeigten eine 

wahrscheinliche Bindestelle für das Pyridinol auf. Das vorhergesagte Substrat-

Pyridinolderivat wurde chemisch synthetisiert und die Enzymaktivität der HcgC wurde 

bestimmt. Die Struktur des Reaktionsproduktes der HcgC wurde mit NMR aufgeklärt 

und es wurde bestätigt, dass die Methylgruppe tatsächlich von SAM auf das C3 des 

Pyridinols übertragen wurde. Um den Katalysemechanismus näher zu untersuchen, 

wurde HcgC mit Pyridinol und SAM oder S-Adenosylhomocystein (SAH) co-

kristallisiert. Es zeigte sich, dass sieben Wassermoleküle an der Bindung des 
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Pyridinols im aktiven Zentrum beteiligt waren. Die einzige direkte Interaktion des 

Pyridinols und einer Aminosäureseitenkette war mit der Hydroxylgruppe von Thr179. 

Das C3 des Pyridinols lag in Nähe zum SAH-Schwefelatom. Die Kristallstruktur wies 

auf keine Aminosäure hin, die als generelle Base in der Reaktion hätte dienen können. 

Es wird vorgeschlagen, dass die koordinierenden Wassermoleküle die deprotonierte 

Form des Pyridinols über einen Resonanzeffekt stabilisieren, welcher die Nucleophilie 

des C3 erhöht. Mutationsstudien konnten die essentielle Rolle der Wassermoleküle in 

der Reaktion untermauern. 
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INTRODUCTION  

 

Methane, in the earth troposphere, was steadily increasing since the last century [1]. 

Methane could absorb the long wavelength radiation, which emitted from the planet 

surface [2]. It is great concern because methane is an important greenhouse effect gas 

next to carbon dioxide [3]. Most of the methane are produced by microbial reaction 

process, more exactly, by methanogenic archaea. About 30% of methane are derived 

from non-microbial sources: mining, biomass combustion, fossil fuel or chemical 

production from plant material [4]. It is estimated that approximately 70 Gt biomass are 

produced per year. A small part of the biomass (2%) are anaerobically degraded into 

carbon dioxide and molecular hydrogen, acetate and the other organic acids by 

bacteria, protozoa, fungi and syntrophic bacteria [5, 6]. Methanogens utilize acetate, 

carbon dioxide and hydrogen, and C1 compound like methanol, methylamine and 

methylthiol to produce methane [7]. The total amount of methane produced was 

approximately 1 Gt per year. When methane was diffused to atmosphere, most of them 

(more than 80 %) are photo-oxidized by the reaction with OH radical [4]. The other two 

sinks are microbial oxidation and diffusion to stratosphere. Under the oxic condition, 

methane produced by methanogens is oxidized to carbon dioxide by aerobic 

methanotrophic bacteria. Under anaerobic condition, methane is oxidized by anaerobic 

methanotrophic archaea coupled with the sulfate and nitrate as electron acceptor [8, 

9]. Anaerobic bacteria can also oxidized methane to carbon dioxide coupled with nitrite 

reduction [10].  

 In the three domains of life, bacteria, eukaryote and archaea, all the 

methanogens belong to the domain archaea. Methanogens are classified into six 

orders in Euryarchaeota: Methanopyrales, Methanococcales, Methanobacteriales, 

Methanomassiliicoccales, Methanomicrobiales and Methanosarcinales (Figure I-1). In 

the deepest root of evolution of methanogens, Methanopyrales branch off first, 

followed by the order of Methanococcales and Methanobacteriales. Recently, 

metagenomic analysis revealed two new lineages of possible methanogenic archaea, 

Bathyarchaeaota [11] and Verstraetearchaeota [12], which are phylogenetically distant 

from Euryarchaeota. The last branch are Methanomicrobiales and Methanosarcinales 

[13]. Among the six orders of methanogens, only Methanosarcinales has cytochromes 

and utilize acetate as methanogenic substrate [14-16]. In addition, many methanogens 
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belonging to Methanosarcinales can utilize all the methanogenic substrate such as 

acetate, C1 compounds, and carbon dioxide and hydrogen [17]. The members of other 

five orders are lack of cytochromes and reduce carbon dioxide and hydrogen to 

methane [18]. Some of methanogens without cytochromes produce methane from 

formate, and H2 and methanol [13, 19]. Methanoculleus thermophilus utilize 2-propanol 

as electron donor for methane formation [20]. 

 

 

Figure I-1. Phylogenic tree of methanogens in Euryarchaeota. Gene sequences were 

downloaded from the National Center for Biotechnology Information (NCBI) database. 

Sequence alignment and phylogeny tree construction were performed by the MEGA 

program. Desulfurobacterium thermolithotrophum as an out group. 

 

 Most of the methanogens could form methane from carbon dioxide and 

hydrogen, namely hydrogenotrophic methanogenic pathway (Figure I-2) [13]. In this 

pathway, carbon dioxide is activated and bound to a C1 carrier methanofuran (MFR) 

and formed formyl-MFR; this reaction is catalyzed by formyl-MFR dehydrogenase [21]. 

Then the formyl group is transferred to the next C1 carrier tetrahydromethanopterin 

(H4MPT) to form formyl-H4MPT [22, 23]. Methenyl-H4MPT cyclohydrolase catalyzes 

the conversion of formyl-H4MPT to methenyl-H4MPT+ [24-26]. The methenyl group is 

reduced to methylene-H4MPT catalyzed by two types of methylene-H4MPT 

dehydrogenases: H2-forming enzyme ([Fe]-hydrogenase or Hmd, see below) [27] and 

F420-reducing enzymes (Mtd) [28, 29]. F420 is an electron carrier of this metabolism. 

 Methanosarcina barkeri
 Methanosaeta concilii

 Methanospirillum hungatei
 Methanoplanus limicola
 Thermoplasma acidophilum

 Methanothermobacter marburgensis
 Methanobrevibacter smithii

 Methanobrevibacter wolinii
 Methanocaldococcus jannaschii
 Methanocaldococcus infernus

 Methanotorris igneus
 Methanothermococcus thermolithotrophicus

 Methanococcus maripaludis
 Methanopyrus kandleri

 Desulfurobacterium thermolithotrophum

0.050
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The reduced form of F420 is regenerated by F420-reducing hydrogenase (Frh) [7]. When 

the cells grow under Ni-limiting condition, Frh is downregulated and Hmd and Mtd are 

upregulated [30]. The reduction of methylene-H4MPT is catalyzed by F420-dependent 

methylene-H4MPT reductase (Mer), which forms methyl-H4MPT [31]. Next, the methyl 

group is transferred to coenzyme M (CoM-SH) forming methyl-S-CoM. This reaction is 

catalyzed by methyl-H4MPT: CoM-SH methyltransferase, [32, 33]. This methyltransfer 

reaction is coupled with sodium ion translocation [34, 35]. Finally, methyl-CoM and 

coenzyme B are reacted into methane and heterodisulfide (CoM-S-S-CoB), which is 

catalyzed by methyl-S-CoM reductase [36]. Heterodisulfide is reduced to coenzyme M 

and coenzyme B using electrons from H2; this reaction is catalyzed by heterodisulfide-

reductase/hydrogenase complex, which couples the reduction of ferredoxin and CoM-

S-S-CoB by flavin-based electron-bifurcation mechanism [37-39].  

Methanogens, which utilize acetate as substrate for forming methane, produce 

methane via acetyl-CoA in the methanogenic pathway [17]. In methanogens belonging 

to Methanosarcina, acetate is activated by acetate kinase and phosphotransacetylase 

[40, 41]. In the former reaction, acetate is activated by phosphorylation and in the later 

reaction acetyl-phosphate is ligated to acetyl-CoA. In methanogens belonging to 

Methanosaeta, acetyl-CoA synthetase ligates acetate to CoA [42-44]. Carbon 

monoxide dehydrogenasesacetyl-CoA synthase (CODH-ACS) complex catalyzes the 

cleavage of methyl group and carbon monoxide from acetyl-CoA and methyltransfer to 

tetrahydrosarcinapterin (H4SPT) forming methyl-H4SPT [17]. Carbon monoxide 

dehydrogenase part catalyzes oxidation of the CO moiety to CO2, from which two 

electrons are used for reduction of ferredoxin. In the next step, integral membrane 

methyltransferase catalyzes the methyl group transfer from methyl-H4SPT to CoM-SH. 

This methyltransfer reaction is coupled with sodium ion translocation [34, 35].  

Methanogens utilizing C1 compounds (e.g. methanol) as the growth substrate 

contain methyltransferase, which catalyze methyltranfer from the C1 compound to 

coenzyme M [45]. One molecule of methyl-CoM is oxidized to CO2 by the reverse 

reactions of hydrogenotrophic methanogenic pathway. Three molecules of methyl-

CoM are converted to methane, which is catalyzed by methyl-CoM reductase. Six 

electrons required for the production of three molecules of methane are provided by 

oxidation of one methyl-S-CoM. The conversion of methylamine and methylthiol is 

almost same with the methanol metabolism. However, the methyltransferase reactions 
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are catalyzed by different type of the enzymes, which is specific for the C1 compounds 

[46, 47].  

 

 

 

Figure I-2. Methanogenic pathway. (A) Methanogenic pathway of methanogens with 

cytochromes. (B) Methanogenic pathway of methanogens without cytochromes. The 

abbreviation are described in the text. MP/MPH2: oxidized and reduced 

methanophenazin. 

 

Methanogens with cytochromes have considerably high growth yield (up to 7 g 

per mole of methane) and H2 threshold concentration (generally over 10 Pa), which 

are higher than the values of methanogens without cytochromes: 3 g per mole of 

methane and lower than 10 Pa H2, respectively [48]. The reason of such difference is 

attributed to the different metabolic system involved in the energy conservation of 

methanogens with cytochromes and without cytochromes [5]. Energy conservation in 

methanogens with cytochromes involve two membrane associating enzymes. Integral 

membrane methyltransferase (MtrA-H) that transfer the methyl group from H4MPT to 

CoM-SH is sodium-ion pump. This chemiosmotic gradient is used for ATP synthesis 

catalyzed by ATP synthase [34]. Heterodisulfide is reduced by membrane-associated 

heterodisulfide reductase (HdrDE), which uses reduced methanophenazine as 

electron donor. Membrane-associated hydrogenase (VhtACG) regenerates reduced 

methanophenazine. This HdrDE-VhtACG system builds up an electrochemical 
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potential for the ATP synthase reaction [49-51]. In methanogens without cytochromes, 

the integral membrane MtrA-H system is the same with that of methanogens with 

cytochromes. However, heterodisulfide reduction is catalyzed by soluble enzyme 

system other than membrane protein. The soluble heterodisulfide reductase HdrABC 

is complex with a hydrogenase (MvhADG) [38]. This HdrABC-MvhADG complex 

reduces heterodisulfide and ferredoxin with four electrons from H2 by using electron 

bifurcation mechanism and the reduced ferredoxin is used for the first CO2 reduction 

[39, 52].  

 Electron bifurcation is firstly proposed by Peter Mitchell to explain the reduction 

of cytochrome b, which results in the establishment of Q cycle [53]. In this cycle, the 

two electron from ubiquinone (QH2) are delivered to two different energy levels 

acceptor [54]. Recently, the flavin-based electron bifurcation is proposed by Wolfgang 

Buckel and Rudolf K. Thauer [55]. In the last step of methanogenic pathway, the 

reduction of heterodisulfide with molecular hydrogen is associated with the reduction 

of ferredoxin, which catalyzed by hydrogenase-heterodisulfide reductase complex 

(MvhADG-HdrABC). Hdr subunits contain numerous [4Fe-4S] cluster and one FAD in 

the subunit HdrA, while Mvh also contain [4Fe-4S] clusters and one [2Fe-2S] cluster. 

The E0’ of ferredoxin pair, H2/H+ and CoM-S-S-CoB/ HS-CoM and HS-CoB are 500 

mV, 414 mV and 140 mV, respectively. H2 is activated by hydrogenase and the 

electrons are channeled to FAD, then two electrons are used for the oxidized ferredoxin 

and the other two electrons are used for the reduction of heterodisulfide (Figure I-3) 

[39, 52]. 

 

Figure I-3. Schematic presentation of electron bifurcation of MvhADG-HdrABC 

complex from Methanothermobacter marburgensis obtained from review [55, 56]. 
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There are three types of hydrogenases that activate molecular hydrogen: [NiFe-

hydrogenase, [FeFe]-hydrogenase and [Fe]-hydrogenase (Figure I-4). Among these 

three hydrogenases, [NiFe]-hydrogenase and [Fe]-hydrogenase are found in the 

methanogenic archaea [38, 57]. There are four different [NiFe]-hydrogenases in 

methanogenic archaea; F420-reducing hydrogenase and the heterodisulfide 

reductase–associated hydrogenase are cytoplasmic protein, while energy converting 

hydrogenases and methanophenazine-reducing hydrogenase are membrane proteins. 

The energy converting hydrogenases are assumed to obtain energy from the proton 

or sodium gradient to reduce ferredoxin (E’ = 500 mV) with H2 (E0’ = 414 mV). The 

reduced ferredoxin is used for the reduction of CO2 [52, 58]. The F420-reducing 

hydrogenases in methanogens are unique since the small subunit contains three [4Fe-

4S] clusters. This cytoplasmic hydrogenase catalyzes the reversible reduction of F420 

with H2.  

 

 

Figure I-4. The active center of the three types of hydrogenases. X: solvent-binding in 

the crystal structures of [Fe]-hydrogenase, which is proposed to be open for binding of 

hydride in the active state enzyme. In the case of [NiFe]- and [FeFe]-hydrogenases, 

hydride is bound between Ni and Fe, and on the iron site near the dithiomethylamine 

bridge nitrogen. 

 

  [NiFe]-hydrogenase maturation includes at least six proteins namely Hyp 

proteins (HypABCDEF) [59, 60]. In the first step, HypF catalyzes formation of HypE-

thiocarboxamide at the C-terminal cysteine residue of HypE (HypE-Cys-S-CONH2) 

using carbamoylphosphate and ATP [61]. Then the thiocarboxamide on HypE is 

dehydrated to thiocyanate by a ATP dependent reaction, releasing HypF [61, 62]. 

Secondly, a small iron chaperon HypC could be involved in iron-trafficking in the 

maturation step [63]. It is also proposed that HypC is involved in the nickel insertion 

step to maintain the conformation of large subunit of hydrogenase. Formation of the 
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CO ligand in the active center is still not clear. Recently, mutation and isotope-labeling 

experiments indicated that Ralstonia eutropha synthesizes the CO ligands using HypX, 

which is a member of the hyp gene cluster found only in (micro) aerophilic 

microorganisms.  The indirect evidence indicated that HypX catalyzes CO formation 

from formyl-tetrahydrofolate (formyl-H4F), which is an intermediate of T4F-based one-

carbon metabolism [64]. The HypCD complex receives the cyanide ligands from HypE, 

which results in production of the inorganic Fe(CN)2CO complex and HypE is released. 

The HypCD complex with the iron complex is bound to the large subunit, while the 

HypD is released [65]. In the next step, HypA and HypB are involved in the nickel 

insertion to the iron complex in the large subunit-HypC complex [66, 67]. Finally, the 

C-terminus of the large subunit is cleaved by an endopeptidase, which induces the 

change of protein conformation and forms the correct active site structure [68]. 

Different from the [NiFe]-hydrogenases, [FeFe]-hydrogenase active center (H 

cluster) harbors a [4Fe-4S] cluster, which connected to the binuclear [FeFe] unit [69]. 

[FeFe]-hydrogenase maturation requires association of three proteins HydEFG. HydE 

and HydG are members of the radical SAM enzyme family [70, 71]. HydE is proposed 

to catalyze the formation of dithiomethylamine bridge between two irons (see Figure 

4) [72-74]. HydG has a high similarity with ThiH, which is involved in the thiamine 

pyrophosphate synthesis [75, 76] and as observed in ThiH, HydG utilizes tyrosine as 

substrate [77, 78]. HydG harbors two [4Fe-4S] clusters on the N- and C-terminal 

domains [79, 80]. The first [4Fe-4S] cluster catalyzes formation of CO and CN from 

tyrosine using radical SAM [79, 81, 82]. The second [4Fe-4S] cluster contributes to 

formation of Fe(CN)2(CO) unit using an external Fe and cysteine [83]. HydF is an iron-

sulfur cluster protein, which has GTPase activity and functions as [FeFe] center 

insertion into HydA. HydA is [FeFe]-hydrogenase structure protein, which contains a 

[4Fe-4S] cluster [71, 84].  

[Fe]-hydrogenase (Hmd) is functionally important in methanogens without 

cytochromes when the cells grow under Ni-limiting condition [30]. Hmd catalyzes the 

reversible transfer of hydride from H2 to Methenyl-H4MPT+, which is reduced to 

methylene-H4MPT (Figure I-5B). Facing the changing concentration of nickel in the 

environment, methanogens regulate the production of Hmd, F420-dependent 

methylene-H4MPT dehydrogenase (Mtd) and F420-reducing [NiFe]-hydrogenase (Frh). 

Hmd and Mtd are upregulated in Ni-limiting condition, while Frh is downregulated [30, 
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85]. In the Ni-limiting condition, the Frh reaction was substituted by a coupled reaction 

of Hmd and Mtd, which regenerates F420H2 using H2 as a hydride donor.  

 

Figure I-5. (A) Structure of Hmd from Methanocaldcoccus jannaschii binding the FeGP 

cofactor and (B) the stereo-specific hydride-transfer reaction catalyzed by Hmd. 

 

Most of microorganisms including methanogens have high-affinity nickel-uptake 

transporters [86]. Therefore, it is long time overlooked that nickel is an essential 

element for most of organisms [38]. How the regulation response to the nickel 

concentration in environment is still unknown. Bacteria contain Ni-dependent 

regulators NikR and RcnR, which regulate gene expression positively and negatively. 

Most of methanogens harbor NikR homologs but do not have RcnR [38]. However, at 

least in Methanothermobacter marburgensis, negative nickel response regulator like 

RcnR should exit because Hmd production is negatively regulated in the higher 

concentration of nickel in the medium. 

The structure of Hmd from Methanocaldcoccus jannaschii has been reported on 

2008 (Figure I-5A) [87, 88]. The homodimeric enzyme is composed of three folding 
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units. The N-terminal domains consist of a Rossmann-like fold, which can be 

subdivided into a classical Rossmann fold and an -helix part. The two C-terminal 

domains of the Hmd homodimer intertwine and form the central domain [87, 89, 90]. 

X-ray crystal structure indicated that the holoenzyme is in an open conformation 

respect to the active-site cleft between the N-terminal and central domains. On the 

contrary, the apoenzyme is open conformation in the crystal structure. This enzyme 

contains the iron-guanylylpyridinol (FeGP) cofactor as a prosthetic group. In the iron 

center of this cofactor, a low spin Fe(II) is coordinated with pyridinol-N, two CO ligands, 

an acyl group and thiolate of cysteine in the N-terminal domain. An iron coordination 

site is occupied with a solvent molecule (Figure I-6B). The 2-pyridinol is substituted 

with 3,5-methyl, 4-GMP and 6-acylmethyl groups. [90-92]. The FeGP cofactor can be 

isolated from Hmd in the extraction solution containing 60% methanol, 1 mM 2-

mercaptoethanol and 1% ammonia. In the extracted FeGP cofactor, 2-

mercaptoethanol-sulfur and -oxygen substitute the cysteine-sulfur and solvent ligand. 

The FeGP cofactor can also be extracted by 50% acetic acid; in this case acetate 

bonds to the iron-center as a bidentate ligand [91]. By mixing the extracted cofactor 

and Hmd apoenzyme heterologously produced in E. coli reconstitute the active 

holoenzyme. 

Methanogens harboring the hmd gene always have hmd-occurring genes 

(hcgA-G) (Figure I-6A). Furthermore, in many methanogens, these seven hcg genes 

are clustered near the hmd gene. This observation led to a hypothesis that the seven 

hcg genes are involved in the biosynthesis of FeGP cofactor [38]. At first, biosynthesis 

of the FeGP cofactor in methanogens was tested using isotope labeling [93]. 

Methanogens were cultivated in the medium containing isotope labeled compounds 

(e.g. acetate, pyruvate and CO2) and the cofactor was analyzed by NMR and Mass 

spectrometry [93].  

To analyze the function of the hcg genes, a unique “structure to function strategy” 

method is applied in the group of Seigo Shima since there is no indication about the 

function based on the primary structure analysis. Firstly, the gene was over-expressed 

in the Escherichia coli strain and the protein was purified. Secondly, the purified protein 

was crystallized and the structure was solved. The protein structure is used as the 

model for the similarity search in the database. Once the similar protein in the database 

found, the possible enzyme function are predicted from the function of the structural 

homologs. Co-crystallization of the Hcg proteins with possible ligands was performed 
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to check the affinity of the ligands. Finally, the enzyme activity was tested using the 

possible substrates which is commercially available, or synthesized chemically or 

biologically to confirm the predicted reaction.  

 

 

Figure I-6. (A) The hcg gene cluster for the FeGP cofactor biosynthesis and (B) 

structure of the FeGP cofactor. 

 

By using this methods, the function of hcgB, hcgD, hcgE and hcgF has been 

elucidated. The structure of HcgB is similar with nucleoside triphosphatase (NTPase) 

that cleave off the pyrophosphate from nucleosidetriphosphates. From this information, 

HcgB was predicted as guanylyltransferase, which ligate the GMP moiety and pyridinol 

ring forming the guanylylpyridinol part. The prediction is confirmed by the enzyme 

reaction [94].  

The structure of HcgD showed that it is a member of Nif3-like protein. A Nif3-

like protein is first identified in yeast two hybrid system; this type of enzyme is  involved 

in the transcriptional regulation and human disease but the exact physiological function 

is still unknown [95-97]. HcgD structure organized in the hexameric form, which is a 

trimer of a compact dimer. Like the other Nif3 protein, HcgD has a two iron-binding site, 

in which Fe1 is more easily to be washed out by chelating agent like EDTA than Fe2 

site. Based on the structure and properties, HcgD is proposed to have iron trafficking 

function [98]. 
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The primary structure of HcgE shows similarity with E1-like ubiquitin-activating 

enzyme, which activate the C-terminal carboxy group of ubiquitin or ubiquitin like 

proteins [99, 100]. The crystal structure of HcgE was solved. The structure comparison 

indicated that the HcgE structure shares the same structure with E1 like ubiquitin 

enzyme including ATP binding site. However, ubiquitin-binding site was not conserved 

in HcgE. Based on this finding, it was predicted that HcgE catalyzes the adenylylation 

of carboxy group of guanylylpyridinol. This hypothesis was confirmed by co-

crystallization with ATP and guanylylpyridinol but lacking divalent cation like Mg2+ [98]. 

The enzyme reaction product was detected by mass spectrometry and the enzyme 

reaction was kinetically assayed using pyrophosphate production from ATP and 

guanylylpyridinol [101]. 

The primary structure of HcgF does not show any similarity with any know 

function protein. The structure of HcgF was solved and the structure was compared 

with that of proteins with known function [101]. This analysis indicated that HcgF is 

similar to nicotinamide mononucleotide (NMN) deaminase, but HcgF do not have NMN 

deaminase activity. As NMN has some similarities with structure of guanylylpyridinol, 

co-crystallization of HcgF with guanylylpyridinol was performed. In the complex 

structure, HcgF binds guanylylpyridinol. Interestingly, guanylylpyridinol bond to HcgF 

forms a covalent thioester bond between carboxyl group and protein Cys9. This 

observation and HcgE adenylylation reaction led to the hypothesis that HcgF forms the 

thiol-ester bond of guanylylpyridinol using adenylated guanylylpyridinol as the 

substrate. The enzyme reaction is finally performed to prove this hypothesis [101].  

The function of HcgA and HcgG are still not known. Blast search of the HcgA 

sequence shows that it belong to a radical SAM super family including HydG. HydG is 

a radical SAM enzyme involved in maturation of the [FeFe]-hydrogenase active site 

(H-cluster), which catalyzes the formation of CO and CN ligands (see above and the 

Discussion section) [79, 102]. However, HcgA lacks the typical sequence motif for 

[4Fe-4S] cluster, which is crucial for the radical SAM enzyme [103]. Blast search of 

HcgG shows that it belongs to a fibrillarin family, but there is no further indications. 

In my PhD project, I studied the structure and function of HcgC. We solved the 

structure of HcgC, which indicated that HcgC is similar to SAM dependent 

methyltransferases and NAD(P) dependent hydrogenase. To analyze the binding 

affinity of possible substrates, we performed co-crystallization experiments with SAM 

and NAD(P). This result indicated that HcgC is a SAM dependent methyltransferase. 
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We successfully confirmed the prediction by enzyme activity using chemically 

synthesized pyridinol. The enzyme reaction product was determined by NMR, which 

confirmed the position of methyl transfer. Furthermore, co-crystallization of HcgC with 

chemically synthesized pyridinol and SAH and mutation assay indicated possible 

catalytic mechanism of this enzyme. 
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MATERIALS AND METHODS 

1.Materials 

The following chemicals were purchased from Roth: sodium chloride (NaCl), 

potassium chloride (KCl), sodium hydroxide (NaOH), hydrogen chloride (HCl), 

potassium dihydrogenphosphate (KH2PO4), dipotassium hydrogen phosphate 

(K2HPO4), potassium hydroxide (KOH), ammonium sulfate ([NH4]2SO4), 

magnesium chloride (MgCl2), ammonia (NH3), calcium chloride (CaCl2), sodium 

hydrogen carbonate (NaHCO3), Iron(II) sulfate (FeSO4), sodium acetate, 

casamino acid, magnesium sulfate (MgSO4), ammonium chloride (NH4Cl), 

manganese(II) sulfate (MnSO4), zinc sulfate (ZnSO4), copper(II) sulfate 

(CuSO4), sodium dodecyl sulfate (SDS), Tris(hydroxymethyl)aminomethane, 3-

(N-morpholino)propanesulfonic acid, lysogeny broth (LB) medium, 

ethylenediaminetetraacetic acid (EDTA), Bradford reagent (Coomassie Brilliant 

Blue G250), imidazole, D2O, methanol, formaldehyde, , resazurin, cysteine-HCl,  

The following chemicals were from Sigma: nickel(II) chloride (NiCl2), 

cobalt(II) chloride (CoCl2), sodium molybdate dihydrate (NaMoO4∙2H2O), 

sodium selenite (Na2SeO3), sodium tungstate dihydrate (Na2WO4·2H2O), 

sodium sulfide (Na2S), dimethyl sulfoxide (DMSO), 2-mercaptoethanol, 

toluenesulfonylmethyl isocyanide (TosMIC), ammonium formate, 

ethanesulfonic acid, 2-Methyl-2,4-pentanediol (MPD), biotin, folic acid, 

pyridoxine-HCl, thiamine-HCl, riboflavin, nicotinic acid, D-calcium-pantothenate, 

Vitamin B12, p-aminobenzoic acid, lipoic acid.  

Isopropyl β-D-1-thiogalactopyranoside (IPTG) and Dithiothreitol (DTT) 

were from Thermo Science. 

6-Carboxymethyl-4-hydroxy-5-methyl-pyridinol was chemically 

synthesized by Xile Hu (Ecole polytechnique fédérale de Lausanne, EPFL). 

H4MPT was extracted from M. marburgensis and purified [104].  

 Gasses used for the cultivation of methanogens and anaerobic 

experiments were purchased from Messer.  
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2. Cultivation of microorganisms 

2.1 Methanothermobacter marburgensis 

The organism Methanothermobacter marburgensis (DSM2133) was purchased 

from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ). The 

culture medium contained NH4Cl 2.12 g/L, KH2PO4 6.8 g/L, Na2CO3 2.5 g/L, 

resazurin (0.2%) 0.3 mL/L and 1-mL trace element solution (MgCl2∙6H2O 4 g/L, 

FeCl2∙6H2O 1 g/L, CoCl2∙6H2O 20 mg/L, NiCl2∙6H2O 0.12 g/L, NaMo2O4∙6H2O 

20 mg/L). In medium used for the cultivation under Ni-limiting condition, the 

concentration of nickel (NiCl2∙6H2O) was decreased to 0.65 µM in the pre-

culture and excluded in the large-scale cultivation.  

M. marburgensis cultivated under Ni-limiting condition for the Hmd 

purification, while it was cultivated under the normal condition for the H4MPT 

purification. M. marburgensis was pre-cultivated in 360-mL medium in a 400-

mL glass fermenter with a plastic-coated magnetic stirrer bar at 400 rpm and 

continuous flow of a gas mixture H2/CO2/H2S (80%/20%/0.1%) at 100 mL min-

1 at 65 °C for 16 hours. Around 100-ml fresh pre-culture was inoculated into 10 

L nickel-free medium in 11 L glass fermenter. M. marburgensis was grown at 

65 °C under the continuous gas flow described above at a flow rate of 1.5 L∙min-

1 and the agitation speed of 1000 rpm.  When the optical density (578 nm) of 

the culture reached to 56, which takes around 21 hours, the culture was cooled 

down to 4 °C. The cell was harvested anaerobically under H2/CO2 (80%/20%) 

by continuous-flow centrifugation. For the normal nickel concentration 

cultivation, the pre-culture preparation could be omit. Around 100 mL M. 

marburgensis culture stored at 4 °C was inoculated into the 11 L glass 

fermenter. The cultivation condition was same with that of Ni-limiting condition 

described above.  

 

2.2 Methanococcus maripaludis 

Methanococcus maripaludis Mm901 strain was obtained from John Leigh 

(University of Washington). The strains Mm901Δhmd, Mm901Δhmdjhmd, 

Mm901ΔhmdjhmdΔhcgB and Mm901ΔhmdjhmdΔhcgC were prepared by 

Micahel Rother (Technische Universität Dresden) and Michael Schick (PhD 
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Thesis, 2012). The McA culture medium (1 L) contained 500 mL the general 

salts solution (KCl 0.67 g/L, MgCl2∙6H2O 5.5 g/L, MgSO4∙7H2O 6.9 g/L, 

CaCl2∙2H2O 0.28 g/L, NH4Cl 1.0 g/L), 5 g NaHCO3, 10 mL K2HPO4 solution (14 

g/L), 5 mL FeSO4 solution (1.9 g/L in 10mM HCl), 1 mL trace element solution 

(MnSO4∙2H2O 1 g/L, CoCl2 1 g/L, ZnSO4 1 g/L, CuSO4∙5H2O 0.1 g/L, 

Na2MoO4∙2H2O 1 g/L, NiCl2∙6H2O 0.25 g/L, Na2SeO3 2 g/L, Na2WO4∙2H2O 1 

g/L), 10 mL vitamin solution (Biotin 2.0 mg/L, folic acid 2.0 mg/L, pyridoxine-

HCl 10.0 mg/L, thiamine-HCl 5.0 mg/L, riboflavin 5.0 mg/L, nicotinic acid 5.0 

mg/L, D-calcium pantothenate 5.0 mg/L, vitamin B12 0.1 mg/L, p-aminobenzoic 

acid 5.0 mg/L, lipoic acid 5.0 mg/L), 1 ml resazurin solution, 1.4 g Na acetate,  

and 0.5 g cysteine∙HCl. In the case of genetic experiments, 2 g casamino acid 

was added to the 1 L medium (McCas medium). The medium was vacuumed 

for 1 min and then filled with N2 gas, which was repeated for 30 times using the 

gas exchanger (Siemens). Finally, the gas mixer (80% H2/ 20% CO2) was filled 

into the bottle with the pressure around +0.5 bar and 2-mM Na2S (final 

concentration) was added to the medium before the inoculation. The organism 

was grown at 37 ºC and the gas phase was exchange every 3 hours only in the 

day time. Optical density at 578 nm of the culture was measured to monitor the 

cell growth.   

 

2.3 Escherichia coli 

The hcgA, hcgB, hcgC and hcgG genes from several methanogenic archaea 

were synthesized with optimized codon usages by GenScript. The sequences 

are shown in the Appendix section at the end of this thesis.  The DNA fragments 

were digested by NdeI and another restriction enzyme (SalI/XhoI) and inserted 

into pET24b(+). E. coli BL21(DE3) (Novegen) was transformed with the 

constructed expression vectors. The recombinant E. coli strains harboring each 

of hcgB, hcgC and hcgG were cultivated in LB medium supplemented with 50 

µg/mL kanamycine at 37 ºC on the shaker (200 rpm). After 4-6-h induction with 

1.0-mM IPTG (final concentration), the E. coli cells were harvested. For HcgA 

production, the E. coli C41(DE3) strain, which harbors pRKISC and pCodonplus, 

was used. The pRKISC plasmid contains iron-sulfur cluster formation enzymes 

[105, 106]. The recombinant E. coli was cultivated in the Terrific Broth (TB) 



20 
MATERIALS AND METHODS 

medium, which contained 12 g/L tryptone, 24 g/L yeast extract, 4 mL glycerol, 

2.3 g/L KH2PO4, 12.5 g/L K2HPO4 [107]; for assisting the iron-sulfur cluster 

formation, 1mM cysteine, 1.3 mM ferrous sulfate, 0.8 mM ferric citrate and 0.75 

mM ferric ammonium citrate were supplemented and pH was adjusted to 7.3 

[105]. To keep the three plasmids, 50 µg/mL kanamycine, 25 µg/mL 

chloramphenicol and 10 µg/mL tetracycline were added to the medium for 

production of HcgA. The gene induction conditions are the same as the case of 

the other Hcg proteins. 

 

3. Gene mutation of M. maripaludis 

M. maripaludis is a model strain for the genetic experiments of methanogens. 

The complete genome sequence is available and the genetic methods are 

established. Moore and Leigh developed a M. maripaludis strain Mm901 from 

the S2 wildtype strain for markerless mutagenesis by deletion the upt gene 

encoding uracil phosphoribosyltransferase. The sensitivity of M. maripaludis to 

6-azauracil (an analog of uracil) takes the advantage of negative selection for 

homologous recombination [108, 109]. In this method, the target gene with 

more than 500-bp flanking sequences is synthesized and inserted into a 

plasmid pCRUPTNEO. The host cell M. maripaludis Mm901hmdjhmd was 

transformed with this plasmid and the transformants were selected by antibiotic 

(neomycine) resistance. The transformants’ colonies were picked up and 

cultivated on the McCas medium. Aliquots of this culture was plated on the agar 

medium with 6-azauracil for the second selection. Finally, incorporation of 

proper mutation was identified by PCR. Using this genetic manipulation, the 

hcgB and hcgC were deleted in M. maripaludis Mm901Δhmdjhmd (PhD Thesis, 

Michael Schick). 

 

4. Extraction and purification of coenzymes and the FeGP cofactor 

4.1 Tetrahydromethanopterin 

Tetrahydromethanopterin (H4MPT) was extracted from M. marburgensis cell. 

Frozen cell (140 g) stored in the brown serum bottle was resuspended in 150 
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mL Mops/KOH pH7.0 and incubated in water at 60 ºC for 10 min. Then in the 

anaerobic tent, 38-mL of 5% cetyltrimethylammoniumbromid (CTAB) solution 

was added. The cell extract solution was cooled on ice water after 6 min 

incubation at 18 °C. The cell extract was adjusted to pH 3.0 by adding 7.5-mL 

100% formic acid. The acidic solution was centrifuged using JA-25.50 rotor 

(Beckman) at 8,000 rpm for 30 min at 4 ºC and the supernatant was further 

ultracentrifuged with Ti45 rotor (Thermo) for 30 min at 30,000 rpm at 4 ºC. The 

supernatant was loaded onto the column Serdolit PADII, which equilibrated with 

500 mL of H2O/HCOOH containing 10 mM mercaptoethanol at pH 3.0 adjusted 

by NaOH (buffer A). After washing the column using 300 mL of buffer A, the 

target compound was eluted with buffer with 15 % methanol. Each of 100-ml 

fractions was checked by UV-Vis spectrum and all H4MPT containing fractions 

was pooled and lyophilized for around 15 hours. The dried powder was 

resuspended into 50 mL water and loaded onto the column Serdolit PAD I, 

which equilibrated with 500 mL buffer A. The pure H4MPT was eluted with 100-

mL buffer A containing 30 % methanol. Each fraction was checked by UV-Vis 

spectrum and the fractions containing H4MPT was lyophilized for around 15 

hours and stored at -80 ºC.  

To convert H4MPT to methylene-H4MPT, 40 l of 200 mM formaldehyde 

solution was anaerobically added to 1 ml of 2 mM H4MPT dissolved in 120 mM 

potassium phosphate buffer (pH 6.0). The mixer solution was evaporated to dry 

and the dried substance was re-dissolved in anaerobic water.  

 

4.2 The FeGP cofactor 

The FeGP cofactor was purified from Hmd, which was purified from M. 

marburgensis under anaerobic condition. Because of sensitivity of this cofactor 

to UV-A/blue light, the whole extraction and purification processes were 

performed under red or yellow light using ambar serum bottles to keep the 

cofactor intact. Cofactor extraction solution, containing 60 % methanol, 1 mM 

mercaptoethanol, 1 % ammonia, 2 mg/mL Hmd and water, was incubated in 40 

ºC water for 15 min. CaCl2 was added into the solution to the final concentration 

of 5 mM after the solution was cooled on the ice water. The precipitated protein 

aggregate in the solution was removed by centrifugation with JA-25.50 
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(Beckman) at 4500 rpm for 20 min at 4 ºC. Methanol was removed by short 

evaporation, then the rest of protein was removed using 10 kDa cut off filter 

(Millipore). The isolated cofactor was stored under 100 % N2 at 80 ºC. 

 

4.3 Preparation of the guanylylpyridinol moiety of the FeGP cofactor 

The guanylylpyridinol part of the FeGP cofactor, named GP, was obtained by 

light-induced decomposition of the FeGP cofactor. The FeGP cofactor was 

exposed to white light beamer (SCHOTT KL 2500, 3000 K) for 2 hours on ice. 

Then the decomposed cofactor solution was loaded onto the column (HiTrap Q 

HP, 5 mL, GE Health) equilibrated with water. GP was eluted with the linear 

gradient of from 0- to 500-mM NaCl. To remove salt, the eluted fraction was 

loaded onto the column SYNERGI Polar RP 80A (Phenomenex) equilibrated 

with H2O/HCl pH 4.0. The FeGP cofactor was eluted with methanol in a linear 

gradient elution and flowrate 1 mL/min. Salt was washed out at the beginning 

of the elution, while GP was eluted at around 10 % methanol. Methanol in the 

pooled fraction was removed by evaporation. The concentrated GP solution 

was stored under −80 ºC. The concentration of the GP was calculated using 

extinction coefficient at 300 nm (ɛ300 ~ 9.0 mM-1cm-1) [92].  

 

5. Purification of [Fe]-hydrogenase from M. marburgensis 

Hmd purification was performed under strictly anaerobic condition. Frozen M. 

marburgensis cell (~100 g) was resuspended in the 200 mL of 50 mM 

potassium phosphate pH 7.0 and disrupted by sonication using Ultrasonic 

Homoginizer (Bandelin HD200) with MS76 tip in the sonication vessel in ice 

water. Sonication was performed at 50 % cycle for 8 min; the treatment was 

repeated 6 times with 7 min pause. The cell extract was ultracentrifuged with 

Ti45 rotor at 40,000 rpm for 40 min at 4 ºC. Ammonia sulfate powder was added 

slowly into the supernatant to the final concentration of 2.5 M (60 % saturation) 

and the solution mixer was incubated with gentle stirring on ice for 20 min. 

Precipitated proteins were removed by centrifugation with JA-25.50 rotor at 

20,000 rpm for 20 min at 4 ºC. Hmd was precipitated by incubation for 20 min 

on ice with 3.7 M ammonium sulfate (90% saturation concentration). The 
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mixture solution was centrifuged at 20,000 rpm for 20 min at 4 ºC. The Hmd 

containing pellet was resuspended in 15 mL of 50 mM Mops/KOH pH 7.0 and 

dialyzed against 50 mM citric acid/NaOH pH 5.0 at 4 ºC for 18 hours. Then the 

dialyzed protein solution was centrifuged at 20,000 rpm using Ti45 rotor 

(Thermo) for 20 min at 4 ºC. The collected supernatant was loaded onto the 

column SOURCE 30Q equilibrated with 50 mM citric acid/NaOH pH 5.0. The 

column was washed with 250 mL equilibration buffer containing 200 mM NaCl 

to wash the contaminated protein. Hmd was eluted with linear gradient of NaCl 

from 200 mM to 500 mM in 500 mL buffer with the flow rate 7 mL/min-1 and 10 

mL fraction were collected. All fractions eluted at a protein peak around 300 

mM NaCl were combined and neutralized by adding of 10 mL 1 M MOPS/KOH 

pH 7.0 and 0.6 mL 1 M NaOH to avoid Hmd precipitated. Then the fraction was 

concentrated to 15 mL using ultrafiltration (30 KDa cut off, Millpore). To remove 

the salt, the concentrated protein solution was loaded onto column Sephadex 

G-25 (HiPrep 26  10) equilibrated with water. Hmd was eluted before salt and 

the pooled fractions was concentrated, which stored at −80 ºC. Protein 

concentration was measured using Bradford method using a dye reagent from 

Bio-Rad and bovine serum albumin as a standard [110].  

 

6. Purification of HcgB and HcgC produced in E. coli. 

M. maripaludis hcgB gene (MMP1497, GenBank accession number 

NP_988617.1) was expressed in E. coli. HcgB was purified under aerobic 

condition. The around 5-g frozen cells harvested from LB medium was 

suspended in 40 mL of 50 mM potassium phosphate pH7.0 containing 0.5 M 

KCl, 20 mM imidazole and and disrupted by sonication using Ultrasonic 

Homoginizer (Bandelin HD200) with MS76 tip in the sonication vessel in ice 

water. Sonication was performed at 50 % cycle for 1 min; the treatment was 

repeated 10 times with 1 min pause. The cell extract was centrifuged JA-25.50 

rotor at 18,000 rpm for 40 min at 4 ºC). The supernatant was loaded on the 

column HisTrap HP (5 mL, GE Healthcare) equilibrated with 50 mM potassium 

phosphate buffer pH 7.0. The column was washed with 25 ml of the 

equilibration buffer. The target protein was eluted with increasing concentration 

of imidazole from 20 mM to 500 mM in 60 mL buffer with flowrate 3 mL/min and 
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5 mL fractions were collected. All fractions of the eluted protein were pooled 

and the protein solution was concentrated by 10 kDa cut off filter (Millipore).  

The hcgC gene from M. maripaludis (MMP1498, GenBank accession 

number NP_988618.1) was heterologously produced in E.coli and the protein 

was purified as described for HcgB from M. maripaludis. 

The hcgC gene from M. jannaschii (MJ0489, GenBank accession 

number NP_247465) and M. maripaludis (MMP1498, GenBank accession 

number NP_988618.1) were expressed in E. coli. Purification of HcgC from M. 

jannaschii was performed under aerobic condition. The frozen cell was 

resuspended in 50 mM potassium phosphate buffer (pH 7.0) containing 0.5 M 

NaCl and disrupted by sonication as described above. The supernatant of cell 

extract was collected by centrifugation with JA-25.50 rotor at 18,000 rpm for 40 

min and at 4 ºC and the supernatant was incubated in water at 80 ºC for 20 min. 

The heat-treated solution in 50-ml tube was centrifuged with Thermo Megafuge 

16 at 4500 rpm for 15 min at 4 ºC. Ammonia sulfate was added into the 

supernatant to the final concentration of 1 M. The solution was filtered using 

0.45 μm filter and loaded onto column HiTrap Buty-S Fast Flow (5 ml, GE 

Healthcare), which equilibrated with 50 mM potassium phosphate buffer pH 7.0 

containing 1 M ammonia sulfate. The column was washed with at least 10 

column volumes of buffer. HcgC was eluted with a stepwise gradient of 

ammonium sulfate from 1 M to 0 M with the flow rate 3 mL/min and 5-mL 

fractions were collected. The HcgC fractions were pooled, concentrated by 10-

kDa cut off filter (Millipore) and loaded onto HiPrep Sephacryl S-200 column 

(GE Healthcare) equilibrated with 50 mM potassium phosphate buffer pH 7.0 

containing 0.3 M KCl. HcgC were eluted as two peaks; the second fraction was 

used for further experiments. The HcgC concentration was determined using 

the Bradford method.  

 

7. Production and purification of HcgA and HcgG in E.coli 

HcgA from different methanogens were expressed in E. coli. These 

organisms were Methanopyrus kandleri, Methanotorris igneus, 

Methanocaldcoccus fervens, Methanocaldcoccus infernus and 

Desulfurobacterium thermolithotrophum. Purification of HcgA was performed 
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under the anaerobic condition. Frozen cell (~4.5 g) was resuspended in the 20 

mM Tris/HCl pH 8.0, 0.5 M NaCl (buffer A) and 20 mM imidazole and disrupted 

by sonication as decribed above for the purification of HcgB and HcgC. The 

HcgA proteins were purified using HisTrap HP (5 mL, GE Healthcare) column 

equilibrated with buffer A. The HcgA proteins were eluted with increasing 

concentration of imidazole from 20 mM to 500 mM in 60 mL buffer with flowrate 

3 mL/min and 5 mL fractions were collected. The HcgC fractions were pooled, 

concentrated by 10-kDa cut off filter (Millipore) and loaded onto HiPrep 

Sephacryl S-200 column (GE Healthcare) equilibrated with 20 mM Tris/HCL pH 

8.0. The HcgA concentration was determined using the Bradford method.  

The iron concentration was measured by the colorimetric method using iron 

chelator 3-(2-Pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5’,5’’-disulfonic acid 

disodium salt (Ferene) [111]. Purified protein (50 µL) was acidified by 1 % HCl 

(final concentration) and incubated at 80 ºC for 20 min. Freshly prepared 50-µL 

0.1 M ascorbic acid was added into the protein solution after cooling. The 

protein was treated with 25 µL of 10 % SDS. Finally, 25-µL of 25 mM Ferene 

was added into the solution. The UV-Vis spectrum analyzed. 

 

8. Enzyme activity assay 

8.1 [Fe]-hydrogenase activity 

[Fe]-hydrogenase activity was determined under strictly anaerobic condition. 

The standard 0.7-mL reaction-solution containing 120 mM potassium 

phosphate pH 6.0, 1 mM EDTA and 20 µM methylene-H4MPT under 100 % N2 

gas phase in 1 mL quartz cuvettes (1 cm light pass), was incubated at 40 ºC for 

5 min. The reaction was started by the addition of 10-l of Hmd enzyme solution. 

The rate of reaction was determined by following the increase of methenyl-

H4MPT+ at absorbance of 336 nm [104].  

8.2. HcgB activity 

HcgB activity was determined by high-performance liquid chromatography 

(HPLC). The reaction solution, containing 10 mM Mops/KOH pH 7.0, 1 mM 

MgCl2, 1 mM GTP,  1 mM pyridinol and 1 µM HcgB, was incubated on 37 ºC 
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for different time. The reaction solution was filtered by 0.2 m filter (Millipore) 

and then loaded onto HPLC column Synergi 4 µ Polar-RP 80A (Phenomenex) 

equilibrated with 5 mM ammonia formate pH 5.0. HPLC peak was monitored at 

262 nm. The amount of product was calculated using the area of product based 

on the standard product curve which purified product. The reaction product was 

analyzed by Matrix-assisted laser-desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS) using positive mode.  

 

8.3. HcgC activity 

HcgC reaction product was analyzed by HPLC. The reaction solution, 

containing 10 mM Mops/KOH pH 7.0, 1 mM SAM, 1mM pyridinol and 1 µM 

HcgC, was incubated on 37 ºC for different reaction time. The product was 

loaded onto the column Synergi 4 µ Polar-RP 80A (Phenomenex) equilibrated 

with H2O/HCl pH 4.0 after filtered by 0.2 mm filter. The product was eluted with 

increasing linear gradient from 0−100 % methanol in 12.5 mL. The substrate 

and product were eluted at the 76 % and 80 % methanol concentrations, 

respectively. The enzyme activity was calculated based on the peak area of 

absorbance 288 nm.  

 

9. Crystallization and structural analysis 

Purified HcgC, which dissolved in potassium phosphate buffer, was diluted in 

the 10 mM MOPS/KOH pH 7.0 and concentrated. This dilution process was 

repeated several times to exchange the buffer. Crystallization was performed 

under 8 °C using Sitting Drop Vapor Diffusion method. Reservoir solution from 

crystal screening kit (JBScreen series and QIAGEN JCSG series) was added 

into the crystal plate (Jena Bioscience, 96 well or 24 well). Protein solution, 

containing ~5 mg/mL HcgC, 2 mM SAM or SAH, 2 mM pyridinol, was mixed 

with reservoir at the ratio of 1:1. The crystal grown under 8 °C. The first hits 

were obtained in a reservoir solution containing 100 mM Tris/HCl pH 8.5, 40% 

polyethylene glycol (PEG) 400 and 200 mM lithium sulfate (LiSO4) or 100 mM 

HEPES/NaOH pH 7.5, 0.2 M NaCl, and 35% MPD (2-Methyl-2,4-pentanediol) 

within several weeks. The cocrystallized HcgC with SAM and pyridinol crystals 
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come from a crystallization solution containing 50% v/v PEG 400, 100 mM 

NaAcetate pH 4.5, 200 mM LiSO4 and the cocrystallized HcgC with SAH and 

pyridinol crystal comes from a crystallization solution containing 40% v/v PEG 

400, 100 mM Tris/HCl pH 8.5 and 200 mM LiSO4. The freshly fished crystals 

(growth after 4 days and immediately fished) from a SAH and pyridinol 

cocrystallization appeared in 100 mM HEPES/NaOH pH 7.0, 0.1 M NaCl, and 

30% MPD. The crystals of HcgC apoenzyme were obtained from a solution 

containing 100 mM HEPES/NaOH pH 7.5, 0.1 M NaCl, and 33% MPD. The 

apoenzyme crystals were soaked overnight in the same crystallization solution 

which contained additionally 2 mM SAH and 3 mM pyridinol. 

The crystals were cryo-protected by soaking with 30 % glycerol (v/v) in 

the crystallization solution for 3-5 seconds. The diffraction experiments were 

performed at 100 K on beamline X10SA equipped with a PILATUS 6M detector 

at the Swiss Light Source (Villigen, Switzerland). The data was processed with 

XDS [112] and scaled with SCALA from the ccp4 suite [113]. The structure was 

solved using template of HcgC from M. jannaschii in complex with SAM (PDB: 

2JJF) with PHASER [114]. The model was manually constructed with COOT 

[115] and refined by PHENIX [114]. The final model was validated by using the 

MolProbity server (http://molprobity.biochem.duke.edu) [116]. Figures for the 

protein structures were made using PyMOL program.  

 

  

http://molprobity.biochem.duke.edu/
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1. Identification of HcgC as a SAM-dependent pyridinol methyltransferase in 

[Fe]-hydrogenase cofactor biosynthesis.  

Function of HcgC was elucidated by structure to function analysis. This section was 

published as an original paper in Angewandte Chemie International Edition. The paper 

is presented in this section.  

 

2. Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase 

cofactor and characterization of the semi-synthetic hydrogenase.  

The reaction sequence of HcgB and HcgC was determined by the HcgB-pyridinol 

complex structure and enzyme assay of HcgC. This section was published as an 

original paper in Faraday Discussion. The paper is presented in this section.   

 

3. Water-bridged H-bonding network contributes to the catalysis of a SAM-

dependent C-methyltransferase HcgC.  

A catalytic mechanism of HcgC was proposed based on the co-crystal structure of 

HcgC with SAH and the pyridinol substrate, and the mutation analysis. This part was 

submitted for publication as an original paper. 

 

4. The growth phenotype of the Δhcg mutants of M. maripaludis. 

The hcgB and hcgC deletion mutants did not reveal the Hmd activity, which confirmed 

importance of the genes in biosynthesis of the FeGP cofactor. The growth phenotype 

of the Δhcg mutants are discussed. 

 

5. Heterologous production of HcgA and HcgG genes in E. coli. 

HcgA and HcgG were heterologously over produced in E. coli. HcgA was purified as 

soluble protein and this enzyme appeared to contain iron-sulfur cluster. Crystallization 

of HcgA was tested. HcgG formed inclusion body.  

 

6. The FeGP cofactor from M. maripaludis and its precursors.  

Structure of the FeGP cofactor from M. maripaludis was estimated based on the 

structural analysis of the FeGP cofactor from M. jannaschii and comparison between 

the crystal structures of HcgB and HcgC from M. maripaludis and M. jannaschii.  
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Materials and methods 
 

Materials 

All commercially available chemicals were used without further purification. PEG8000, 

PEG300, pentaerythritol propoxylate 5/4 PO/OH (PEP426), ethylene glycol, sodium cacodylate 

trihydrate, magnesium acetate tetrahydrate, sodium hydroxide, potassium hydroxide, S-(5’-

adenosyl)-L-methionine (SAM) chloride dihydrochloride, S-(5’-adenosyl)-L-homocysteine 

(SAH) and 3,6-dimethyl-4-hydroxy-2-pyridinol were purchased from Sigma-Aldrich. 

Magnesium chloride, thiamine, lithium sulfate and magnesium chloride were purchased from 

Merck. L-(+)-Selenomethionine (SeMet) was purchased from Acros Organics. The following 

reagents were obtained from Roth: methanol, ethanol, kanamycin sulfate, 3-(N-

morpholino)propanesulfonic acid (MOPS), 3-(Cyclohexylamino)-1-propanesulfonic acid 

(CAPS), 4-(2-hydroxyethyl)piperazine-1- ethanesulfonic acid (HEPES), hydrochloric acid, 

potassium chloride, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, 

ammonium chloride, ammonium sulfate, L-(+)-methionine, sodium chloride, sodium 

dihydrogen phosphate, disodium hydrogen phosphate, hydrochloric acid, potassium chloride, 

potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tris(hydroxymethyl)amino 

ethane (Tris), dithiothreitol (DTT), D-(+)-glucose, FeCl3·6H2O. Isopropyl β-D-

thiogalactopyranoside (IPTG) was purchased from Fermentas.  

The light decomposition product 1 was prepared from the FeGP cofactor extracted 

from [Fe]-hydrogenase (Hmd) from Methanothermobacter marburgensis[1]. For co-

crystallization, pyridinol 3, [6-Carboxymethyl-3,5-dimethyl-4- hydroxyl-2-pyridinol] was 

prepared by cleavage of 1 with phosphodiesterase I from Crotalus atrox (Sigma-Aldrich), 

followed by purification with a JASCO HPLC system in the same conditions as reported 

previously[1]. (3,6-Dimethyl-4-hydroxy-2-pyridinol)-GMP-conjugate was prepared by HcgB-

catalyzed reaction using GTP and 3,6-dimethyl-4-hydroxyl-2-pyridinol[2]. Methenyl-

tetrahydromethanopterin (methenyl-H4MPT+) and methylene-tetrahydromethanopterin 

(methylene-H4MPT) were prepared from M. marburgensis as described previously[3]. 

 

 

Construction of an expression system for HcgC 

The Methanocaldococcus jannaschiihcgC gene (MJ0489, GenBank accession number 

NP_247465) was amplified by PCR from genomic DNA of M. jannaschii strain 

DSM2661 using as forward primer 

5ʹGGCATATGGGGTGTGGAATTATGAAGTATGGAATAACTG-3ʹ and as reverse primer 

5ʹ- CCCTCGAGTTAAAGCTCCTCAACAAAAGAATAGATGAG-3ʹ to generate NdeI and 
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XhoI restriction sites (underlined). The PCR product was cloned into the pCR-Blunt vector 

using T4 DNA ligase (Invitrogen). The cloned M. jannaschiihcgC gene was inserted into 

expression vector pET24b(+) (Novagen) at NdeI and XhoI restriction sites and the generated 

expression vector was used for transformation of the E. coli BL21(DE3)Star strain 

(Invitrogen). For preparation of SeMet-labeled HcgC (SeMet-HcgC), E. coli B834 (DE3) 

(Novagen) cells were transformed by using the same expression plasmid for HcgC. 

The hcgC gene from Methanococcus maripaludis S2 (MMP1498, GenBank 

accession number NP_988618.1), of which the codon usage was optimized, was synthesized 

by GenScript, 

5ʹCATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAA

AATCAAAGATATTGTGTCCGATGTGGTGGAAAAGAAAGCGAACGCCATCAAATA

TTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTGTCA

GGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGG

ACATTCAGCCGCATCTGAAAGATATTCTGTTCAACGACGGTATCAAATTCATGGA

TCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCCGGATCTG

GTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCA

ATCCGAAAGTTCTGATCGTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCT

CTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCGAAAAAAGGTGTTC

TGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGT

GGTGGATATTATCATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTG

TATACCATCCCGAATCTGAAATACTTTGAGGGTACGGTCTTCCATGAGAAAAACG

TGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGA

TCACGTCGAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGA

CTCGTTCGTGAAAGAATTTGTCGAC-3ʹ, and cloned into pET24b(+) expression vector 

cut with NdeI and SalI to introduce C-terminal His tag. E. coli BL21(DE3) was transformed 

with the vector. 

 

Construction of an expression system for HcgB from M. maripaludis 

The hcgB gene from Methanococcus maripaludis S2 (MMP1497, GenBank accession number 

NP_988617.1), of which the codon usage was optimized, was synthesized by GenScript, 

5ʹCATATGAACATTGAAAATACCATTAAATCCGCATACGAAGAATCGCTGAATAAC

GCTCGCTTTGGTGATAAAATCGAAGAAATTGACGCAATTCAGAGTACCATCAAAT

CCGCGAAAAACGTCACCGTGGCCACGTCAAATGAGAAAAAATTCAAAGTGGTTT

CAGATATCATCTCGCGTATTACGGACGCGAACATCAGCATGCTGGAAATTCCGAC
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CAATTCTGCGGATCTGACGCGCATGCCGGCCCTGAACAAAGGCCTGATCGCAGTT

GACAGCTCTGATGCTGACCTGATTATCACCCGTGGCCGCCTGGGTATTCCGGGCT

CAGGTTCGCTGCTGCTGATCATGGATAAAAAAGGCCGTATTCTGACGGGTAGCGT

CTCTCCGAGTTCCATTATCCATAAAAATCCGATCGATAAAACGGTTGAACTGGAA

CTGATTACGGCACTGGAACGCATCGGTATTGTGGTGAAAAAACTCGAG-3ʹ, and 

cloned into pET24b(+) expression vector cut with NdeI and XhoI to introduce C-terminal His 

tag. E. coli BL21(DE3) was transformed with the vector. 

 

Expression and purification of HcgC 

The E. coli cells were transformed with the expression plasmid containing the M. 

jannaschiihcgC gene and grown at 37°C in LB medium supplemented with 50 μg/mL 

kanamycin to an OD600 = 0.8–1.0. After addition of 1 mM IPTG for HcgC expression the cells 

were grown for 4–6 h. Then the cells were harvested by centrifugation and stored at –80 °C 

before further use. Purification of HcgC except for heat treatment at 80 °C, were performed on 

ice or at 4 °C. The frozen cells were resuspended in 50 mM potassium phosphate buffer pH 7.0 

containing 0.5 M potassium chloride and disrupted by sonication. The supernatant of the cell 

extract was collected by centrifugation and then heated at 80 °C for 20 min and then centrifuged 

to remove the precipitate. Subsequently, the resulting supernatant was mixed with ammonium 

sulfate to a concentration of 1 M. The ammonium sulfate-containing supernatant was then 

filtrated with a 0.45 μm filter and loaded onto a HiTrap Butyl-S FF column (GE Healthcare 

Life Sciences) equilibrated with 50 mM potassium phosphate buffer pH 7.0 containing 1 M 

ammonium sulfate (buffer A). The column was washed with at least 15 column volumes of 

buffer A and bound HcgC was subsequently eluted with a stepwise gradient of ammonium 

sulfate from 1 M to 0 M in 50 mM potassium phosphate buffer pH 7.0. The HcgC fractions 

were pooled, concentrated by a centrifuge 10-kDa cut off filter (Millipore) to ca. 10 mL and 

loaded onto a HiPrep Sephacryl S-200 column (GE Healthcare Life Sciences) equilibrated with 

50 mM potassium phosphate buffer pH 7.0 containing 0.3 M KCl. Two fractions of HcgC were 

recorded in the gel filtration profile; the latter larger fraction corresponding to a HcgC dimer 

was used for further experiments. The HcgC concentration was determined using the Bradford 

method. For purification of SeMet-HcgC, the transformed B834(DE3) cells were grown in M9 

medium supplemented with 2.5 mM MgSO4, 2% (w/v) D-(+)-glucose, 0.01% (w/v) thiamine, 

0.025 mM FeCl3, 50 μg/mL L-selenomethionine, and 50 μg/mL kanamycin at 37 °C to an OD600 

of 0.5. SeMet-HcgC was purified as described for HcgC, except that all buffers contained 1 

mM DTT.  
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Cell extract of HcgC from M. maripaludis was prepared as described for HcgC from 

M. jannaschii. The supernatant of 18,000 ×g centrifugation was loaded on HiTrap Chelating 

HP (GE Healthcare, 5 ml) equilibrated with 0.1 M NiCl2. After washing the column with 20 

mM potassium phosphate buffer pH 7.0 with 0.5 M KCl, proteins were eluted increasing linear 

gradient (20500 mM imidazole). The flow rate was 2.0 ml/min. HcgC was eluted at 

approximately 500 imidazole concentration. The fractions containing HcgC were pooled and 

the purity was checked with SDS-PAGE. The purified HcgC protein was washed with 50 mM 

potassium phosphate buffer pH 7.0 and concentrated to 24 mg/ml by a centrifuge 10-kDa cut 

off filter (Millipore). 

 

Expression and purification of HcgB from M. maripaludis 

HcgB from M. maripaludis was purified as described above for HcgC from M. maripaludis. 

The purified HcgB protein was washed with 50 mM potassium phosphate buffer pH 7.0 and 

concentrated to 7.0 mg/ml by a centrifuge 10-kDa cut off filter (Millipore). 

 

Crystallization of HcgC from M. jannaschii 

All crystals were grown by the sitting drop vapor diffusion method. A 1 μL aliquot of HcgC 

(3.8 mg/mL) in 10 mM MOPS/KOH (pH 7.0) was mixed with 1 μL of a reservoir solution 

composed of 27 % (v/v) PEG400, 45 mM Tris-HCl pH 8.5, 45 mM sodium sulfate, 45 mM 

lithium sulfate and 0.2 M 2,2,2- trifluoroethanol. Crystals of HcgC in the space group P1 

appeared at room temperature within 2 months. Crystals of SeMet-HcgC grew in two space 

groups, P212121 and P1. For obtaining crystal form P1, an aliquot of 1.6 μL of SeMet-HcgC 

(8.3 mg/mL) in 10 mM MOPS/KOH buffer pH 7.0 containing 1 mM DTT was mixed with 0.4 

μL of 22.5 % (w/v) PEP426, 90 mM HEPES-NaOH pH 7.5, 45 mM magnesium chloride and 

0.2 M 2,2,2-trifluoroethanol. Crystals were obtained at room temperature within 2 months. For 

crystallization of SeMet-HcgC in form P212121, a 1 μL aliquot of HcgC (8.0 mg/mL) in 50 mM 

MOPS/KOH pH 7.0 was mixed with 1 μL of a reservoir solution composed of 25% (w/v) 

PEP426 and 100 mM Tris-HCl pH 8.5. Crystals grew at 8 °C within 2 weeks. For crystallization 

of SAM-bound HcgC, an aliquot of 1 μL of HcgC (4.4 mg/mL) in 10 mM MOPS/KOH pH 7.0 

was mixed with 0.2 μL of 50 mM SAM and 1.2 μL of 0.5 M Li2SO4 solution containing 2 % 

(w/v) PEG8000. Crystals were obtained at 8 °C within one week. For co-crystallizing HcgC 

with SAH- and artificial guanylylpyridinol (made by the HcgB catalyzed reaction from GTP 

and 3,6-dimethyl-4-hydroxy-2-pyridinol), 1 μL of HcgC (8.0 mg/mL) in 10 mM MOPS/KOH 

pH 7.0, 0.2 μL 10 mM SAH, 0.5 μL 5 mM artificial guanylylpyridinol(to a final concentration 
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of 0.73mM) was mixed with 1.7 L of 0.5 M Li2SO4 solution containing 2 % (w/v) PEG8000. 

Then the crystals obtained within one month were soaked inside the crystallization drop 

containing 2.5 mM artificial guanylylpyridinol with the aim to increase the occupancy of the 

artificial guanylylpyridinol in the HcgC crystals.  

 

X-ray data collection and refinement 

Crystals of HcgC, SAM-bound HcgC, SAH- and artificial guanylylpyridinol-bound HcgC and 

SeMet-HcgC from M. jannaschii were frozen under a cryo-stream of N2 at 100 K without 

adding a cryoprotectant. Diffraction data were collected on beamline X10SA equipped with a 

PILATUS 6M detector at the Swiss-Light Source (Villigen, Switzerland) at 100 K. Data were 

processed using XDS[4]. To determine the HcgC structure, multiple anomalous dispersion 

(MAD) data sets were measured at the selenium edge of SeMet-HcgC crystals. Selenium atom 

sites were detected with SHELX C/D.[5] The selenium sites were refined and the phase was 

determined using the program SHARP and improved by the solvent flattening procedure of 

SOLOMON [6] implemented in SHARP.[7] Automatic model building was performed using 

Autosol[8] and Buccaneer[9]. Further modeling and refinement of form P212121 SeMet-HcgC 

was performed using COOT,[10] REFMAC5,[11] and PHENIX.[12] X-ray structures of HcgC and 

SeMet-HcgC in crystal form P1, SAM-bound HcgC and SAH-artificial guanylylpyridinol-

bound HcgC were determined by molecular replacement with Molrep[13] or Phaser[14] using a 

monomer of the solved SeMet-HcgC structure of formP212121 as a search model. The resulting 

structures were established at resolutions of 2.7 Å for HcgC (PDB: 5D5O), of 2.4 Å for SeMet-

HcgC with P1 space group (PDB: 5D5T), of 2.9 Å for SeMet-HcgC fromwith P212121 space 

group (PDB: 5D4T), of 2.0 Å for SAM-bound HcgC (PDB: 5D4U), and of 1.6 Å for SAH- and 

artificial guanylylpyridinol-bound HcgC (PDB: 5D4V). Data collection and refinement 

statistics are summarized in Table S4. All the protein figures were generated using PyMOL 

(Version 1.3r1, Schrödinger, LLC). All superpositions were done with the program 

SUPERPOSE[15]and visualized with PyMOL. 

 

Structural search for HcgC homologues 

HcgC structural homologues were identified with the Dali server[16] using the crystal structure 

of HcgC from M. jannaschii. In the list of the highly similar structures, NAD(P)+-dependent 

oxidoreductases like shikimate dehydrogenase or SAM-dependent methyltransferases are 

ranked first, which provided information about potential ligand candidates for HcgC in co-
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crystallization experiments. For superposition with HcgC we have chosen shikimate 

dehydrogenase AroE (PDB code:2HK9)[17]and SAM-dependent methyltransferases like RumA 

(PDB code: 2BH2).[18] 

 

Amino acid sequence comparison of HcgC 

The amino acid sequences of HcgC from M. jannaschii, Methanothermobacter marburgensis, 

Methanopyrus kandleri, Methanococcus maripaludis, Methanobrevibacter smithii, and 

Methanocorpusculum labreanum were aligned with Clustal W2.[19] and depicted with 

ESPript3.[20] 

 

Docking simulation of potential substrates to SAM-bound HcgC 

Molecular docking of pyridinol 3 to SAH-bound HcgC was performed with AutoDock 

Vina.[21] Due to the limited size of the cavity besides SAH only a pyridinol compound but not 

guanylylpyridinol could be placed. Pyridinol 3 was initially placed. The calculation was 

converged in an orientation of the 3-methyl group of the guanylylpyridinol-derived pyridinol 

towards the sulfur of SAH. Furthermore, the pyridinol 3-docked structure of SAH- and 

artificial guanylylpyridinol-bound HcgC was superimposed with the structure of SAM-bound 

HcgC using the SUPERPOSE program. This superposition revealed the methyl group of 

SAM at a proper position for the methyl transfer to the C3-carbon of the pyridinol (Figure 1c). 

 

Chemical synthesis of pyridinol 2  

Compound P1 was synthesized following the literature.[22] 

Step 1: To the mixture of compound P1 (for structure, see Figure S6) (0.69 g, 5 

mmol) in DMF (25 mL) was added NaH (60% w/w, 0.22 g, 1.1 eq) at 0oC. The solution was 

stirred for 1hr at 0oC and another 1hr at room temperature. Then chloromethyl methyl ether 

(MOMCl, 0.48 g, 1.2 eq) was added at 0oC. The mixture was stirred at room temperature for 
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another 8 h and again NaH (60% w/w, 0.24 g, 1.2 eq) was added at 0oC. After stirring for 1hr 

at 0 oC and another 1hr at room temperature, MOMCl (0.56 g, 1.4 eq) was added at 0 oC and 

the reaction was stirred at room temperature overnight. Water was added to quench the reaction 

and extracted with DCM. After purification by silica column chromatography using 

hexane/EtOAc (5:1, Rf 0.5) as the eluent, compound P2 (for structure, see Figure S6) was 

obtained as an oil (0.86 g, 76%). [1H NMR (400 MHz, CDCl3, 25°C): δ 6.34 (s, 1H), 5.46 (s, 

2H), 5.20 (s, 2H), 3.50 (s, 3H), 3.46 (s, 3H), 2.37 (s, 3H), 2.07 (s, 3H) ppm. 13C NMR (100 

MHz, CDCl3, 25°C): δ 163.6, 161.0, 154.7, 114.6, 93.9, 92.7, 91.7, 56.9, 56.3, 22.5, 10.7 ppm. 

HRMS: m/z (ESI) calculated [M+H]+: 228.1236, measured: 228.1236.]  

Step 2: Compound P2 (0.86 g, 3.8 mmol) was dissolved in dry THF (10 mL) and 

cooled to -78oC. For deprotonation of the 6-methyl group, lithium diisopropylamide (LDA) (2 

M in THF, 5.5 mL, 2.9 eq) was added slowly and the mixture was stirred at this temperature 

for 2hrs. Then dimethyl carbonate (0.41 g, 1.2eq) in THF (3 mL) was added dropwisely. The 

reaction was stirred for another 25 mins following by quenching with water. After extraction 

with Et2O and purification by silica column chromatographyusing hexane/EtOAc (5:1, Rf 0.3) 

as the eluent, the product P3 (for structure, see Figure S6) was obtained as an oil (0.53 g, 49%). 

[1H NMR (400 MHz, CDCl3, 25°C): δ 6.31 (s, 1H), 5.46 (s, 2H), 5.21 (s, 2H), 3.76 (s, 2H), 3.71 

(s, 3H), 3.50 (s, 3H), 3.47 (s, 3H), 2.08 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3, 25°C): δ 

171.1, 164.0, 161.2, 150.2, 115.8, 94.0, 91.8, 57.0, 56.3, 51.9, 41.5, 10.6 ppm. HRMS: m/z 

(ESI) calculated [M+H]+: 286.1291, measured: 286.1290.]  

Step 3: NaOH (30 mg, 5 eq) in H2O (1 mL) was added to the solution of compound 

P3 (44 mg, 0.088 mmol) in MeOH/THF (2 mL / 1 mL). The mixture was stirred at room 

temperature for 5h and TLC showed that the starting material disappeared. Aq. HCl (~3 N) was 

added until a pH of ca. 1 was reached. Then concentrated to dry in vacuo. MeOH/EtOAc (5 mL 

/ 5 mL) was added and filtered to remove some dissolved salts. After concentration to dryness, 

DCM (1 mL) was added. Then CF3COOH (1 mL) was added at 0oC and stirred for 2h. The 

mixture was stirred at room temperature for another 5 h and then concentrated to dryness. 

MeOH (0.1 mL) and Et2O (3 mL) was added. After stirring for 30min at room temperature, the 
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product P4 (for structure, see Figure S6. In Scheme 2 in the main text, its pyridinol form (2) is 

drawn.) was obtained as white solid after filtration (18 mg, 64%). [1H NMR (400 MHz, D6-

DMSO, 25°C): δ 12.54 (bs, 1H), 10.94 (bs, 1H), 10.63 (s, 1H), 5.56 (s, 1H), 3.51 (s, 2H), 1.77 

(s, 3H) ppm. 13C NMR (100 MHz, D6-DMSO, 25°C): δ 170.3, 165.1, 163.2, 106.4, 97.2, 93.9, 

56.3, 9.6 ppm. HRMS: m/z (ESI) calculated [M+H]+: 184.0610, measured: 184.0605]. 

 

Characterization of the SAM-dependent methyl-transfer reaction by HcgC 

The standard reaction mixture contained 1 μM HcgC from M. maripaludis, 1 mM SAM, 

pyridinol compound 2 of different concentrations and10 mM MOPS/KOH pH 7.0. The reaction 

was performed at 37 °C and the reaction mixtures were analyzed on the HPLC system equipped 

with the Polar-RP column, Synergi 4µ Polar RP 80A (250 mm × 4.6 mm (Phenomenex). The 

sample passed through the column equilibrated with water pH 4.0 (HCl) by applying a liner 

gradient of methanol (0100% in 12.5 ml; 0.5 ml/min flow rate). The production of the 

methylated pyridinol 3 was confirmed by MALDI-TOF-MS. The substrate 2 and product 3 

were eluted at approximately 74% and 76% methanol, respectively (Figure S10). 

 

Characterization of the GTP dependent guanylyltransfer reaction by HcgB 

The standard reaction mixture contained 0.4 μM HcgB from M. maripaludis, 1 mM GTP, 1 

mM MgCl2, pyridinol compound 3 of different concentrations and10 mM MOPS/KOH pH 7.0. 

The reaction was performed at 37 °C. The production of the methylated pyridinol 3 was 

confirmed by MALDI-TOF-MS (Figure S8). For kinetic assays, the reaction mixtures were 

analyzed on the HPLC system equipped with the HiTrap Q HP column (1 ml). The sample 

passed through the column equilibrated with 10 mM 2-(N-morpholino)ethanesulfonic 

acid/NaOH pH 6.0 by applying a liner gradient of NaCl (01 M in 12.5 ml; 0.5 ml/min flow 

rate). The guanylylpyridinol product was eluted at approximately 0.5 M NaCl concentration.  

 

Mass spectrometry 

Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-

MS) was performed using a 4800 Proteomics Analyzer (Applied Biosystems/MDS Sciex) with 

α-cyano-4-hydroxycinnamic acid in 70% (v/v) acetonitril and 0.1% (v/v) trifluoroacetic acid as 

matrix. 

 

NMR analysis 
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The sample was dissolved in dimethyl sulfoxid-d6 and filled into Wilmad 3 mm NMR tubes 

(Rototec Spintec). 1H13CHMBC experiments were performed on a Bruker Avance III 500 

MHz spectrometer equipped with a 5 mm N2-cryo-probe Prodigy BBO. The 1D 13C spectra 

were acquired with 65 536 data points and 32000 transients, while the 2D HMBC spectra were 

collected with 4096 points and 32 transients in the F2 dimension and 512 increments in the F1 

dimension. Chemical shifts of 1H and 13C spectra were referenced to the solvent signal. The 

spectra were processed by Bruker Topspin 3.1. 

 

Mutation analysis of the functions the hcgB and hcgC genes in M. maripaludis 

M. maripaludis is a hydrogenotrophic methanogen, and many strategies are available to target 

the mutation of specific genes.[23]The study of the FeGP cofactor biosynthetic genes by knock-

out-mutation is possible because active [Fe]-hydrogenase (Hmd) is not essential for growth 

under nickel-sufficient growth conditions.[24] One disadvantage of using M. maripaludis is that 

the Hmd activity in cell extracts is not reproducibly detectable. To overcome this problem, aM. 

maripaludis strain was generated, in which the native hmd gene was replaced by that from the 

hyperthermophilic M. jannaschii. The resulting strain exhibited thermostable Hmd activity and 

was used for the deletion analysis of the hcgB and hcgC genes (Table S1 and S2, and Figure 

S1). The Hmd enzyme activity assay indicated that the M. maripaludis strains lacking either 

hcgB or hcgC gene did not exhibit Hmd activity (Table S3). This result together with the 

biochemical studies revealed that HcgB and HcgC are involved in the FeGP cofactor 

biosynthesis and that no other genes in the genome of M. maripaludis substitute the hcgB and 

hcgC genes.  

 

Disruption and replacement of the hmd gene in M. maripaludis 

Plasmids for knock-out mutation of the hmd gene of M. maripaludis were constructed using the 

pNPAC plasmid[25]and are listed in Table S1. (The M. maripaludis strains used in this study are 

listed in Table S2.) The hmd gene in M. maripaludis Mm901 was disrupted by using 

pNPACΔhmd, resulting in the loss of Hmd activity. The generated M. maripaludis strain 

Mm901∆hmd grew to an OD578 of 1.6, and the generation time was about 5 h, which was the 

same as the parental strain (data not shown). Plasmid pNPACΔhmdjhmd was used to generate 

M. maripaludis Mm901∆hmdjhmd, which also grew indistinguishably from the wild type (data 

not shown). The correct insertion of the DNA fragments in the chromosome of strain Mm901 

was confirmed by PCR (data not shown). The Hmd activity in the cell extract from the 

Mm901∆hmdjhmd strain was stable for 20 min at 70 °C.  

 



44 
RESULTS/PUBLICATIONS 

Disruption of the putative FeGP cofactor biosynthesis genes 

The knock-out constructs of the FeGP biosynthesis genes hcgB and hcgC are listed in Table S1. 

Markerless in-frame deletion of the hcgB and hcgC genes was accomplished using a plasmid 

pCRUPTNEO (Table S1)[23]; the M. maripaludis mutant strains were designated as 

Mm901M∆hmdjhmd∆hcgBand Mm901∆hmdjhmd∆hcgC. To verify the deletion of the hcgB 

and hcgC genes, PCR was performed using the chromosomal DNA from the M. maripaludis 

strains as template and the oligonucleotide primers for the upstream and downstream regions 

of the target gene (Figure S1). The size of the PCR products derived from the 

strainscorresponded to the expected sizes of the DNA fragments of the gene deletions.  

 

Hmd activity assay of the mutated M. maripaludis strains 

Cell extracts from the M. maripaludis strains were subjected to the Hmd activity assay under 

the standard assay conditions described below. Strains Mm901∆hmdjhmd∆hcgBand 

Mm901∆hmdjhmd∆hcgC exhibited no Hmd activity, like the mutant lacking Hmd, 

Mm901∆hmd (Table S3).  

 

Cultivation of M. maripaludis and the enzyme assay 

The strains of M. maripaludis were cultivated in McCas medium containing 5g/l NaHCO3, 22 

g/l NaCl, 1.4 g/l Na acetate, 500 ml/l general salts solution, 5 ml/l FeSO4 solution, 10 ml/l 

vitamin solution, 10 ml/l K2HPO4 solution (14 g/l), 1 ml/l trace elements solution, 0.5 ml 1 mM 

NiCl2 solution, and 1ml/l resazurin solution (1 g/l). General salt solution contains 0.67 g/l KCl, 

5.5 g/l MgCl2·6H2O, 6.9 g/l MgSO4·7H2O, 0.28 g/l CaCl2·2H2O, 1.0 g/l NH4Cl. Trace elements 

solution contains 21 g/l Na3 citrate·2H2O, 5 g/l MnSO4·2H2O, 1 g/l CoCl2·6H2O, 1 g/l 

ZnSO4·7H2O, 0.1 g/l CuSO4·5H2O, 0.1 g/l AlK(SO4)2, 0.1 g/l H3BO3, 1 g/l Na2MoO4·2H2O, 2 

g/l Na2SeO3, 0.1 g V(III)Cl3, and 0.033 g/l Na2WO4·2H2O. FeSO4 solution contains 1.9 g/l (10 

mM HCl). Cultivation was performed in a 2-l glass bottle sealed with a rubber stopper and a 

plastic screw-cap at 37 °C with shaking at 120 rpm, in which 500 ml medium was contained 

under the gas phase of H2/CO2 (80/20, vol/vol). All experiments were performed in strictly 

anoxic conditions in an anaerobic chamber (Coy, Grasslake, Michigan) containing H2/N2 (5/95, 

vol/vol) or under N2. Cells were harvested in late-exponential growth phase (optical density of 

the culture at 600 nm was approximately one). The cells (approximately 1.5 g) were harvested 

by centrifugation at 5,000 ×g for 30 min at 4 °C, and suspended in 5 ml of 50 mM phosphate 

buffer pH 7.0. The cells were disrupted on ice by ultrasonication (Sonopuls GM200, Ti73 tip, 

Bandelin) for 12 min with 50 % cycle and 60 % power. Intact cells and cell debris were removed 



45 
RESULTS/PUBLICATIONS 

by centrifugation at 7,500 ×g for 20 min at 4 °C. The supernatant was ultra-centrifuged to 

remove the membrane at 115,000 ×g for 30 min at 4 °C. The supernatant was designated as the 

cell extract. Protein concentration of the cell extract was determined with Bradford method 

using dye solution from Bio-Rad. The protein standard was bovine serum albumin from Bio-

Rad. The Hmd enzyme assay was performed as described previously;[26] in the 0.7 ml assay 

mixture in 1-ml quartz cuvette (1 cm light path), which contained 120 mM potassium phosphate 

pH 6.0, 1 mM EDTA and methylene-tetrahydromethanopterin (methylene-H4MPT) (final 

concentrations = 20 µM) under N2. The enzyme reaction was started by addition of 10 µl cell 

extract. Formation of methenyl-H4MPT+ from methylene-H4MPT was monitored at 80 °C by 

measuring the increase of absorbance at 336 nm. The Hmd enzyme activity was calculated 

using the extinction coefficient of methenyl-H4MPT+ (ε336 nm = 21.6 mM-1cm-1). 
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Figure S1. Confirmation of the hcgB and hcgC deletions in M. maripaludis. 

PCR was performed using the primer pairs for the regions flanking the hcgB and hcgC genes. 

A) PCR products from the hcgB gene region. PCR primers: 1, GCGGAACTATTGATGGCG 

(forward); 2, CATGGTCTATCGAACTTACAG (reverse). Predicted size of the PCR products 

from the wild type and ∆hcgB strains are 1790 bp and 1412 bp, respectively. B) PCR products 

from the hcgC gene region. PCR primers: 1, GGACTTACAGATATCCGTG (forward); 2, 

CAAATTCAGCTAACCGGTC (reverse). Predicted size of the PCR products from the wild 

type and ∆hcgC strains are 1986 bp and 1372 bp, respectively. Chromosomal DNA from strain 

S2 (wild type) (lanes 2 and 5), Mm901∆hmdjhmd (lanes 3 and 6), 

Mm901∆hmdjhmd∆hcgB(lane 4), and Mm901∆hmdjhmd∆hcgC(lane 7) were used as templates. 

The DNA size standards are in lane 1. The size of PCR products obtained from the ∆hcgB and 

∆hcgCmutants (lanes 4 and 7) corresponded to the expected sizes of the markerless hcgB and 

hcgC gene disruptions. 
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Figure S2. Crystal structure of HcgC from M. jannaschii. a) HcgC homodimer; two monomers 

are shown with pink and cyan cartoon models. The N-and C-termini and some important 

residues are indicated (carbon in orange). b) Superposition of HcgC with SAM-bound HcgC. 

HcgC homodimer was shown as pink and cyan cartoons, while SAM-bound HcgC homodimer 

was shown as green and white cartoons. SAM was shown as a magenta stick model. The 2Fo-

Fc electron density map was contoured at 1σ. The α-helix indicated by a red arrow was flexible 

in the absence of SAM but becomes rigidified upon binding of SAM. In addition, two α-helices 

located at the entrance of SAM-binding are shifted towards the rigidified α-helix after binding 

of SAM.  
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Figure S3. Structural comparison between the Rossmann-like domains of HcgC and its 

structural homologues. a) The monomer of SAM-bound HcgC b) Shikimate dehydrogenase 

AroE (PDB code: 2HK9),[17] c) SAM-dependent methyltransferase RumA (PDB code: 

2BH2)[18] and d) Pyridinol 3-docked HcgC with SAH. The Rossmann-like domains of HcgC 

with SAM, AroE, RumA and pyridinol 3-docked HcgC with SAH were highlighted by green, 

light steel blue, pink and yellow, respectively. The ligands and the [4Fe-4S] cluster were 

represented as stick models. The amino acid sequence identity between HcgC and AroE and 

RumA are 13% and 8%, respectively. While the Rossmann-like domains exist in all three 

enzymes, the fold of the domains binding shikimic acid in AroE and the [4Fe-4S] cluster in 

RumA differ.  
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Figure S4. Amino acid sequence alignments of HcgC from Methanocaldococcus jannaschii, 

Methanothermobacter marburgensis, Methanopyrus kandleri, Methanococcus maripaludis, 

Methanobrevibacter smithii, and Methanocorpusculum labreanum. White letters on a red 

background indicated strictly conserved amino acid residues. Red letters in blue boxes indicated 

well-conserved amino acids or similar amino acids. Symbols above the blocks of sequences 

correspond to the secondary structures of HcgC from M. jannaschii: helices, strands, and turns 

are symbolized by spirals, arrows, and the letter T, respectively. Amino acid sequence 

alignments were performed using Clustal W2.[19] The figure of the alignments was generated 

with ESPript3.[20] 
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Figure S5. Crystal structure of S-adenosylhomocysteine (SAH)- and (3,6-dimethyl-2-

pyridinol)-GMP (artificial guanylylpyridinol)-bound HcgC. To gain information about the 

natural methyl acceptor, co-crystallization experiments were performed between HcgC, soaked 

with demethylated product of SAM, S-adenosylhomocysteine (SAH), and pyridinol derivatives 

(3,6-dimethyl-4-hydroxy-2-pyridinol, 6-methyl-4-hydroxy-2- pyridinol, 4-hydroxy-2-
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pyridinol and 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2- pyridinol (3)) or guanylylpyridinol 

synthesized from GTP and 3,6-dimethyl-4-hydroxy-2-pyridinol by the HcgB catalyzed reaction. 

A crystal structure at 1.6 Å resolution (Table S4) was obtained from HcgC soaked with SAH 

and the artificial guanylylpyridinol.a) The HcgC homotetramer in the asymmetric unit. The 

2Fo-Fc electron density map was contoured at 1σ. SAH and the artificial guanylylpyridinol were 

shown as green and orange stick models, respectively. SAH is bound at the equivalent position 

on the Rossmann-like domain. On the other hand, the artificial guanylylpyridinol is not bound 

to the cavity beside SAH, but an extra electron density was visible at the interface between the 

dimers of the HcgC homotetramer (in the crystal), into which the artificial guanylylpyridinol 

was tentatively modeled. b) SAH-binding site. SAH was fixed by specific polar interactions 

with conserved amino acid residues such as Asp77, Lys34 and Glu139. The N-terminal 

conserved residues, i.e. Gly9, Ile10 and Thr11 (shown as cyan sticks), were only visible in the 

HcgC –SAH–artificial guanylylpyridinol complex structure, determined at 1.6 Å resolution, but 

not in the other HcgC structures determined at lower resolution. The rigidified residues from 

the partner monomer cover the largely accessible cavity beside SAH which restricts the binding 

site of the secondsubstrate and therefore also their size of a potential substrate. c) The possible 

artificial guanylylpyridinol-binding site. Electron density at the dimer interface was observed 

for the GMP moiety of the artificial guanylylpyridinol (3,6-dimethyl-2-pyridinol)-GMP, but 

not for the pyridinol part. The guanine ring was sandwiched between two Tyr156 phenol rings 

from both monomers. Polar interactions are formed between the guanine base and Tyr156-OH 

and Glu266-COO- of both monomers. Additionally, one sulfate is located in the cavity between 

the guanine-ring and Lys142 and Lys172. In contrast, the ribose, phosphate and the pyridinol 

of the artificial guanylylpyridinol are exposed to bulk solvent and showed no specific 

interactions to the polypeptide. The binding of the artificial guanylylpyridinol may not be 

functionally important because HcgC is a dimer in solution as derived from gel filtration 

profiles.  
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Figure S6. Chemical synthesis of pyridone 2 and product analysis by NMR data. Method of 

the chemical synthesis was described in the methods section. The compounds P4 and 2 appear 

to present in pyridone and pyridinol tautomeric forms in the solvents dimethyl sulfoxide and 

water, respectively. 

P4 P1 P2 P3

a)

b) 1H-NMR of P4

c) 13C-NMR of P4
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Figure S7. D2O exchange experiment of the HcgC product (pyridinol 3). The HcgC product 

was purified with HPLC described in the method section. Ten µl purified sample was mixed 

with 10 µl of the matrix solution and dried. The dried sample was suspended in 25 µl of D2O 

and then incubated for 20 min. This treatment was repeated for three times. The final dried 

sample was suspended in 5 µl acetonitril and 5 µl D2O and drastically mixed by vortex for 30 

seconds and analyzed by MALDI-TOF-MS. Increase of 4 Da indicated that the HcgC product 

contains three exchangeable protons on account of an additional D+ for protonation to produce 

positively charged species [3 + D]+ (See schemes in the left panel).  

 

 

 
Figure S8. HcgB enzyme assay using the pyridinol 3 produced by the HcgC reaction as 

substrate. The 0.1 ml reaction mixture contained purified pyridinol 3, 1 mM GTP, 1 mM MgCl2, 
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1 µM HcgB from M. maripaludis and 10 mM MOPS/KOH pH 7.0. After incubation at 37 °C, 

the reaction was finished by addition of 0.01% HCl (final concentration) and analyzed by 

MALDI-TOF-MS or HPLC. (a) The reaction mixture contained 0.03 mM purified pyridinol 3. 

Before starting the HcgB reaction, guanylylpyridinol was not detected by MALDI-TOF-MS. 

(b) Most of the substrate was converted to corresponding guanylylpyridinol (1) (calculated m/z 

= 543.124072) within 2 h. (c) HPLC assay indicated that the apparent kcat was 15 ± 0.7 min-1 in 

the presence of 150 µM of 3 and 1 mM GTP at pH 7. The error bar indicates standard deviations 

of duplicated measurements.   
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Figure S9. Two dimensional 1H13CHMBC correlation NMR spectrum of the substrate and 

product of the HcgC catalyzed reaction in dimethyl sulfoxid-d6 at 300 K highlighting the 

connectivity within the pyridone ring. The two panels of each sample show the 1H13C 

connectivity of H(g) (left) and the methyl groups (i) and/or (j) (right). For labeling of atoms of 

the pyridinols, see scheme 2 in the main text. 
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Figure S10. HPLC analysis of the HcgC reaction assay. The assay mixtures containing 0.2 mM 

substrate were incubated for 0.5, 1.0 and 2.0 h at 37 °C. MALDI-TOF-MS indicated that the 

23.3 min peak fraction contained the substrate (m/z = 184) and the 24-min peak fraction the 

product (m/z = 198).  
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Table S1. Plasmid for site-directed mutagenesis of Methanococcus maripaludis. 

The DNA fragments were prepared by PCR or DNA synthesis and inserted into the plasmid 

pNPAC or pCRUPTNEO and then used for recombination experiments. 

 

Plasmid PCR primers and the sequence regions of the 

synthesized DNA in the genome for preparation  

of the DNA fragments 

Restriction 

sites 

Reference

s 

pNPAC 

 

  [25] 

pNPACΔhmd 

 

Up-stream of hmd (606 nt) 

5`Forward primer: cGGATCCttctgggattcctgcttcttttg 

5`Reverse primer: 

ccGAATTCgctgttggaatagactgctgttc 

 

BamHI 

EcoRI 

 

This 

study 

 Down-stream of hmd  (618 nt) 

5`Forward primer: 

ccAAGCTTttaccaaaacttctaaattggatgctg   

5`Reverse primer: 

gACTAGTgcagacagcatgtgctttggtc 

 

HindIII 

SpeI 

 

This 

study 

pNPACΔhmdjhm

d 

 

Up-stream of hmd 

134690..135490 (800nt) + jhmd gene (1077nt)  

BamHI 

EcoRI 

This 

study 

 Down-stream of hmd: (801 nt) 

5`Forward primer: 

ccAAGCTTgttaaacacggttttattcgtagtttcaagattac 

5`Reverse primer: 

ggACTAGTctcacagatcttagatttaatgagaaacgaaggc 

 

HindIII 

SpeI 

 

This 

study 

pCRUPTNEO 

 

  [23] 

pCRUPTNEO 

ΔhcgB 

 

Upstream of hcgB: 1457980..1458579 (600nt) 

Downstream of hcgB: 1458958..1459558 (601nt) 

KpnI,  

BamHI 

This 

study 

pCRUPTNEO 

ΔhcgC 

 

Upstream of hcgC: 1458483..1459085 (603nt) 

Downstream of hcgC: 1459701..1460317 (617nt) 

KpnI,  

BamHI 

This 

study 

 

Table S2. Methanococcus maripaludis strains used in this study 

M. maripaludis 

Strains 

Plasmid used for 

recombination 

in this study 

Genotype Source or 

reference 

S2  Wild type [24] 

Mm901  S2∆upt [23] 

Mm901∆hmd pNPACΔhmd 

 

S2∆upt∆hmd This study 

Mm901∆hmd jhmd pNPACΔhmdjhmd 

 

S2∆upt∆hmd::jhmd This study 

Mm901∆hmd jhmd∆hcgB pCRUPTNEOΔhcgB S2∆upt ∆hmd::jhmd ∆hcgB This study 

Mm901∆hmd jhmd∆hcgC pCRUPTNEOΔhcgC S2 ∆upt ∆hmd::jhmd ∆hcgC This study 
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Table S3. Hmd activity of the cell extracts from the M. maripaludis strains.  

One unit (U) of the enzyme is the amount catalyzing 1 µmol methenyl-H4MPT+ per minute 

from methylene-H4MPT at standard assay condition. Each sample was measured at least three 

times. 

 

Strains Specific activity (U/mg) 

Mm901∆hmd < 0.01 

Mm901∆hmd jhmd 3.6 ± 0.1 

Mm901∆hmd jhmd∆hcgB < 0.01 

Mm901∆hmd jhmd∆hcgC < 0.01 
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Table S4. Data collection and refinement statistics of HcgC structures 

 

 

 

 
aThe values in parentheses are for the highest resolution shell. 
bRsym = ΣΣ|I–<I>|/ΣI, where I is the intensity of each reflection. 

 

 

SeMet-

HcgC 
(MAD 

peak) 

SeMet-

HcgC 
(MAD 

inflection) 

SeMet-

HcgC 
(MAD 

remote) 

SeMet-

HcgC 
in P1 form 

HcgC 
 

SAM-

bound 

HcgC 

SAH- and 

artificial 

GP-bound 

HcgC 
Data collection        

Temperature (K) 100 100 100 100 100 100 100 

Wavelength (Å) 0.979 0.979 0.971 0.980 1.000 1.000 1.000 

Space group P212121 P212121 P212121 P1 P212121 P21 P21 

Resolution (Å) 50–2.9 

(3.0–2.9) 
50–3.5 

(3.6–3.5) 
50–3.5 

(3.6–3.5) 
50–2.4 

(2.5–2.4) 
50–2.7 

(2.8–2.7) 
50–2.0 

(2.1–2.0) 
50–1.6 

(1.7–1.6) 
Cell dimensions        

a, b, c (Å) 141.4, 

145.0, 

150.6 

141.4, 

145.0, 

150.6 

141.4, 

145.0, 

150.6 

52.6, 78.0, 

153.7 
142.3, 

143.3, 148.3 
86.3, 70.5, 

91.2 
86.1, 70.5, 

91.8 

α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 105.2, 

90 
90, 105.2, 

90 
Completeness 

(%)a 
99.9 

(100.0) 
99.2 (96.7) 99.8 (99.8) 95.8 (94.3) 92.7 (95.7) 99.6 (99.2) 99.8 (99.7) 

Rsym (%)a, b 13.0 

(159.0) 
6.6 (33.7) 9.8 (54.0) 9.4 (41.5) 12.5 (81.8) 9.8 (78.2) 4.8 (80.2) 

I/σI
a 11.5 (1.6) 14.2 (2.9) 12.6 (3.3) 9.5 (2.7) 7.7 (1.6) 12.7 (2.3) 16.0 (2.3) 

Redundancya 7.4 (7.6) 3.9 (2.4) 4.7 (4.8) 3.5 (3.2) 2.7 (2.7) 3.9 (3.8) 4.5 (4.4) 

        

Refinement 

statistics 
       

Resolution (Å) 50.0–2.9 

(2.94–2.90) 

  50.0–2.4 

(2.46–2.40) 
50.0–2.7 

(2.73–2.70) 
50.0–2.0 

(2.03–2.00) 
50.0–1.6 

(1.62–1.60) 

No. of monomers/ 

asymmetric unit 
8   4 8 4 4 

No. of ligands/  
asymmetric unit 

0   0 0 20 24 

No. of waters/ 
asymmetric unit 

11   373 34 438 934 

Rwork/Rfree (%)c,d 
22.7/25.6 

(35.7/38.3) 
  20.5/25.1 

(28.3/34.2) 
21.7/26.3 

(33.9/39.9) 
19.8/22.8 

(32.5/36.0) 
17.1/20.8 

(29.8/32.7) 
rmsd bond length 

(Å)e 
0.015   0.004 0.008 0.003 0.013 

rmsd bond angle 

(°)e 
1.663   0.840 1.254 0.797 1.446 
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cRwork = Σ||Fo|–k|Fc||/Σ|Fo|, where Fo and Fc are the observed and calculated structure factor 

amplitudes, respectively.  
dRfree was calculated as the Rwork for 5% of the reflections that were not included in the 

refinement. 
ermsd, root mean square deviation. 
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3. Water-bridged H-bonding network contributes to the catalysis of 
a SAM-dependent C-methyltransferase HcgC  

 

Abstract  

[Fe]-hydrogenase contains the iron-guanylylpyridinol (FeGP) cofactor, which is 

composed of a pyridinol ring substituted by GMP, two methyl groups and an 

methyl acyl ligated with the pyridinol-N, two CO and a cysteine thiol to the 

catalytically active low spin FeII. HcgC, an enzyme of FeGP biosynthesis, 

catalyzes the methyl transfer from S-adenosylmethionine (SAM) to C3 of 6-

carboxymethyl-5-methyl-4-hydroxy-2-pyridinol.  Here, we report on the structure 

of HcgC in complex with the demethylated product of SAM, S-

adenosylhomocysteine (SAH) and the pyridinol substrate at 1.7 Å resolution. 

The proximity of C3 of pyridinol and S of SAH indicates a catalytically productive 

geometry. The 2- and 4-hydroxy and the carboxy groups of pyridinol are 

primarily fixed by a series of water-mediated hydrogen-bonds to polar and a few 

protonable groups including Glu209 and the ammonium group of SAH. These 

interactions stabilize the deprotonated state of the hydroxy group and a 

pyridone state of the pyridinol substrate by which the nucleophilicity of C3, 

attacking the SAM methyl group, is increased by resonance effects. 

Complemented by mutational analysis a structure-based catalytic mechanism 

was proposed. 

 

SAM-dependent methyltransferases, found in all three domains of life, catalyze 

methyltransfer reactions to diverse substrates of all sizes, which are involved in 

secondary metabolism, transcriptional regulation, signal-transduction and 

modifications of the active sites of enzymes [117, 118]. They are classified into O, N, 

C and S-methyltransferases dependent on the methyl-accepting atom of the substrates. 

C-methyltransferases are further subdivided into canonical SAM dependent enzymes 

[119-123] and radical-SAM dependent enzymes [124, 125]. They catalyze the methyl 

transfer to a nucleophilic carbon via the SN2 mechanism and to the electrophilic sp2 

hybridized carbon, respectively. Notably, SAM-dependent methyltransferase have 

attracted attention as synthetic tool for biotechnological applications [126]. 
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[Fe]-hydrogenase is involved in the methanogenic pathway from H2 and CO2 

and catalyzes the reversible hydride transfer from H2 to methenyl-

tetrahydromethanopterin [88, 91, 127]. The active site of [Fe]-hydrogenase hosts an 

iron-guanylylpyridinol (FeGP) cofactor. The low spin FeII is coordinated to two CO, one 

cysteine thiolate and furthermore, by the nitrogen and the methyl acyl substituent of 

the pyridinol ring (Figure 3-1A). The pyridinol ring is further substituted with one 

guanosine monophosphate (GMP) and two methyl groups [87, 92, 128]. 

 

Figure 3-1. (A) Structure of the FeGP cofactor and (B) the HcgC catalyzed reaction.  

 

According to isotope-labeling analysis, the 3-methyl group of pyridinol is 

originated from the methyl group of methionine, indicating the participation of a SAM 

dependent methyltransferase [93]. Recently, Fujishiro et al. have reported on the 

structure-based functional analysis of several biosynthetic enzymes for the FeGP 

cofactor, which are encoded in the hcg gene cluster [94, 98, 101]. They also 

determined the crystal structures of HcgC from Methanocaldococcus jannaschii. 

Structural comparison detected significant similarities between HcgC and the 

Rossmann-fold SAM-binding domain of methyltransferase RumA although the Blast 

search did not show any relationship. Biochemical experiments finally demonstrated 

that HcgC catalyzes the methyl transfer to C3 of 6-carboxymethyl-5-methyl-4-

dihidroxy-2-pyridinol using SAM as a methyl donor (Figure 3-1B) [129]. In the reported 

HcgC-SAM complex structure, SAM binds in front of the C-terminal loop of the central 

parallel β-sheet of the N-terminal domain in line with group I SAM dependent 

methyltransferases characterized by a Rossmann-type αβ fold. Docking simulation 
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convincingly suggested pyridinol binding in a pocket near the methyl group of SAM in 

HcgC. However, co-crystallization experiments between HcgC and the methylated 

pyridinol product were unsuccessful. Here, we report on the crystal structure of HcgC 

from M. maripaludis in complex with SAH and pyridinol substrate. Complemented with 

the kinetic analysis of several enzyme variants with site-specifically exchanged amino 

acids adjacent to the methyl acceptor, a catalytic mechanism for this methyltransferase 

was proposed. 

His-tagged HcgC from M. maripaludis was heterologously produced in E. coli, 

purified using nickel-affinity chromatography and crystallized in the presence of the 

pyridinol substrate and SAH, as well as the pyridinol substrate and SAM. The HcgC-

SAH-pyridinol structure determined at 1.7 Å resolution (Figure 3-2) reveals a dimer of 

homodimer architecture in analogy to the HcgC structure from M. jannaschii.  

 

 

Figure. 3-2 The 1.7-Å crystal structure of HcgC complexed with SAH and the pyridinol 

substrate. The substrates are depicted with sticks. (A) Overall structure of the 

tetrameric form. (B) The active-site cleft with bound SAH (carbon in green) and 

pyridinol (carbon in purple). The 2Fo−Fc map was contoured at 1.0 σ. Upon binding of 

pyridinol, the disordered N-terminal loop (highlighted without transparency) of the other 

monomer (green) is fixed to close the cleft from all sides. Pyridinol is bound to the 

predicted active-site pocket near SAH. 

Each of the four active sites of the tetramer contains SAH and two of them 

contain pyridinol in the electron density (Figure 3-3). However, pyridinol in one of the 

active sites appears to be partly broken and is superimposed in the electron density 

with an unknown linear compound (Figure 3-4). The fourth monomer showed only 

electron density of SAH and water molecules.  

a

b

a

b
A B
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Figure 3-3. Active site of the four monomers in the HcgC homotetramer. (A) The active 

site binding SAH and a linear compound, (B) that binding SAH and pyridinol, (C) that 

binding SAH and a mixture of pyridinol and linear compound and (D) that binding only 

SAH. 

  

Figure 3-4. The linear compound found in one of the active site of the tetrameric 

HcgC. The chemical structure was estimated from the structure of pyridinol and the 

interactions with amino acids. The 2Fo-Fc map is contoured at 1.5 σ. 

A B

C D
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To prevent the degradation of pyridinol during crystallization, we soaked crystals 

of the HcgC apoenzyme with pyridinol and SAH. In addition, HcgC was co-crystallized 

with SAH and pyridinol within less than two days. The X-ray structures based on rapidly 

grown and soaked crystals (2.0 and 2.05 Å resolution, respectively), revealed a full 

occupancy of the four active sites with SAH and the intact pyridinol substrate (Figure 

3-5B and 3-5C). As their binding mode is identical to that of the 1.7 Å structure, the 

latter was consequently applied for further analysis. 

 

Figure 3-5. Active site structure of HcgC from M. maripaludis in complex with SAH and 

pyridinol. The four active sites of the dimer of homodimer (chain A-D) are shown in the 

panels. (A) Structure of the complex crystallized slowly (1.7 Å resolution). (B) Structure 

of the crystal rapidly-grown within less than two days (2.0 Å resolution). (C) Structure 

of HcgC crystal soaked with the substrates (2.05 Å resolution).        

A

B

C
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The binding of SAM or SAH was already described in detail in the previous 

report [129].  Pyridinol is bound to the predicted active-site pocket near SAH located 

between two subunits of the dimer. Comparison between the HcgC-SAH-pyridinol and 

the HcgC-SAM structures indicate a rigidification of residues 1-12 upon pyridinol 

binding which largely shields the substrate from bulk solvent and participate in its 

binding and in catalysis. The planar pyridinol ring is clamped between Ile115, Leu199 

and Ile5’, Val9’ and SAH (amino acids of another monomer are shown with apostrophe) 

that adjusts the pyridinol-SAH orientation and the distance of 4.2 Å between their C3 

and sulfur.  

 Pyridinol is primarily anchored to the polypeptide by its methylcarboxy group 

which is hydrogen-bonded to Thr179-N and –OG positioned at the positively charged 

N-terminal end of helix 178-194. In addition, W5 bridges the carboxymethyl group of 

pyridinol with Met178 NH and SAH-COO- and W6 with Tyr51-OH, respectively. Except 

for Ile115-N, the 2-OH, 4-OH and 1-N groups are connected by a series of solvent 

mediated interactions (Figure 3-6). The 2-OH group of pyridinol is linked via W1 with 

Ile5’-NH and Glu209-COO- and via W2 with Thr6’-OG and Ile115-CO and the 4-OH 

group via W3 itself coordinated via W7 with Thr175-OG, Glu134-COO- and the SAM-

NH4
+ group. W4 bridges the pyridinol-N with Ser233’-OH and Glu209-COO-. Note that 

two monomers and SAH are involved in binding the pyridinol and that the residues 

connecting the water molecules with pyridinol are fully conserved (Figure 3-7).  

 

 

Figure 3-6. Water molecules that stabilize and activate the pyridinol. Pyridinol and 

SAH are shown in stick models with carbon in cyan and green, respectively. 
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Figure 3-7. Comparison of primary structure of HcgC. 
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The X-ray structure at 1.8 Å resolution determined from crystals grown in the 

presence of HcgC, the pyridinol substrate and SAM only contains SAH in the four sites 

at the same position and conformation as in the HcgC-SAH-pyridinol complex but with 

a disordered N-terminal loop and thereby an open active-site pocket (data not shown). 

We assumed that under the crystallization conditions, pyridinol and SAM reacted to 

the methylated pyridinol and SAH, which was subsequently confirmed using MALDI-

TOF-MS for identifying the methylated pyridinol product. This finding suggests a 

weaker binding of the HcgC-SAH complex to the methylated pyridinol product than to 

pyridinol, which is compatible with a collision between the 3-methyl group of pyridinol 

product in the planar pyridinol form and the main chain of Ile115. 

To assess the role of the individual amino acids and indirectly of the water 

molecules on catalysis, mutational analysis were performed. Thr179 is the only amino 

acid, whose side-chain is directly coordinated with pyridinol. After its mutation to valine 

the enzyme variant exhibited no enzyme activity (Figure 3-8, Table 3-1), which 

emphasizes the crucial function of the carboxy group as anchor for substrate binding. 

Mutation of Thr6’, Ser233 and Glu209, linked via one water molecules to pyridinol, to 

valine, alanine and glutamine resulted in drastic decrease of kcat/KM or the complete 

inactivity of the latter residue which demonstrated the importance of the water 

molecules W1, W2 and W4. In contrast, the exchange of Ser175 to alanine and Tyr51 

to phenylalanine only show a minor effect perhaps because they do not form a 

hydrogen bond to water molecules directly involved in binding of the 2-OH and 4-OH 

groups.  

The ternary HcgC-SAH-pyridinol structure and the kinetic characterization of 

enzyme variants allowed the postulation of a catalytic mechanism. In principle, SAM-

dependent methyltransferase reactions are based on two catalytic strategies: 1) the 

proximity and desolvation mechanism to adjust an optimal geometry between the 

reaction groups and to avoid side reactions and 2) the general acid/base or the metal-

based mechanism to increase the nucleophilicity of the methyl accepting atom. In 

HcgC, the two bulky compounds SAM and pyridinol are properly oriented for 

performing the SN2 methyl transfer reaction. The distance below 2.7 Å between the 

methyl group of SAM and the C3 of pyridinol, based on the modeling of SAM into the 

HcgC-SAH-pyridinol complex and superposition of the HcgC-SAM onto the HcgC-

SAH-pyridinol complex structure in the active site suggests a transiently strained 

conformation in the ternary complex. An energy-rich state prior to the methyl transfer 
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created by substrate binding energy would reduce the activation energy of the 

nucleophilic attack. Rigidification of residues 1-12 of the partner monomer enclosing 

the substrate from all sides might play an important role in this process, the active-site 

cleft is in majority closed and isolated from the solvent. 

 

 

Figure 3-8. Kinetics data of the wild and mutated enzyme. Standard error of at least 

three measurements were calculated with the Standard Error Calculator. The assay 

mixture contained 1 mM SAM, the variable concentration of substrate pyridinol. 

 

Table 3-1. Catalytic activity of the mutated enzymes.  

Mutation1 Apparent kcat (min-1)2 Apparent KM (μM)2 kcat/KM 

Wild 2.3 ± 0.3 5.8 ± 8.7 0.40 

T6V 0.35 ± 0.07 120 ± 45 0.0029 

Y51F 0.27 ± 0.03 4.4 ± 3.4 0.061 

S175A 1.4 ± 0.2 7.5 ± 8.4 0.19 

T179V −3 − − 

E209Q −  − − 

S233A 0.34 ± 0.02 30 ± 5.4 0.011 

1The mutated amino acid residues are fully conserved in HcgC (Figure 7). 
2The concentration of SAM was 1 mM. 
3The activity was too low to determine kcat and KM value. 

 



94 
RESULTS/PUBLICATIONS 

In comparison to other SAM dependent methyltransferases HcgC contains 

neither a metal ion nor a protonable amino acid adjacent to the C3 of pyridinol, which 

excludes a metal-based and a catalytic acid/base mechanism (Figure 3-9). HcgC uses 

a special strategy thereby exploiting the chemical structure of pyridinol. Its 2-OH and 

4-OH groups are ideally positioned for localizing formally an electron pair on C3 by 

resonance effects.  Thus, the reaction starts from the pyridone form by a nucleophilic 

attack of the electron pair on C3 onto the positively charged methyl group of SAM. The 

subsequent pyridone/pyridinol tautomerization implicates a release of the acidic proton 

on C3. Proton at the C3 of the catalytic intermediate can be easily transferred out 

through the surrounding water molecules, perhaps to W2, which is 3.4 Å apart and 

adjacent to bulk solvent. The water molecules, W1, W2 and W3 might be ideally suited 

to exquisitely balance between deprotonation/protonation and pyridinol/pyridone 

mesomeric structures to maximize the probability electron density on C3.  

 

 

Figure 3-9. Water molecules that stabilize and activate the substrate pyridinol. (A) 

Schematic presentation of the water molecules for activation of C3 and resonance of 

deprotonate 2- and 4-hydroxy groups. For clarity, water molecules W5, W6 and their 

coordinating residue and SAH are not depicted in panel A. The 2- and 4-OH groups of 

the methyl acceptor pyridinol are mainly fixed with the polypeptide chain by a series of 

mostly water-mediated hydrogen-bonds. Solely, Thr179-O, Thr179-N and Ile115-N are 

directly hydrogen-bonded with the carboxy group and the 4-OH group of pyridinol, 

respectively. (B) Proposed catalytic mechanism of the SAM dependent methyltransfer 

reaction of HcgC. 

Based on structural and mutational data we presented a unique water-assisted 

activation strategy of a methyl acceptor by which keto/enolate resonance effects 

activate the methyl acceptor C3. In addition, we learned from this study why nature 
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use the pyridinol substrate as precursor for 3-methylation in biosynthesis of the FeGP 

cofactor before conjugation with guanosine monophosphate catalyzed by HcgB. 

Methyl transfer to C3 of the 4-guanylyl-2-pyridinol is definitely more difficult than that 

of 4-hydroxy-2-pyridinol. 
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4. The growth phenotype of the Δhcg mutants of M. maripaludis 

 

Abstract 

M. maripaludis Mm901Δhmdjhmd strain has previously been made as the wild 

strain. In the wild strain, the endogenous hmd is deleted and hmd from 

hyperthermophilic Methanocaldococcus jannaschii was inserted (PhD thesis of 

M. Schick, 2012) [129].  No Hmd activity was detected in the cell extract of the M. 

maripaludis ΔhcgB and ΔhcgC mutants. These results revealed that hcgB and 

hcgC are crucial for production of active Hmd. In this section, the growth 

phenotype of the mutants are described. 

  

Leigh et al. have reported the growth phenotype of the hcg mutants of M. maripaludis 

before our study [130]. They deleted each hcg gene and compared the growth 

phenotype with the Mm901 strain with the ∆frc∆fru background [130]. The Δhcg 

mutants has longer lag phase than that of the wild-type strain although the growth rate 

of the mutants were only slightly slower than that of the wild type. Similar lag phase 

was also observed in the case of the Δhmd mutant. From these findings, the authors 

concluded that the hcg genes are required for Hmd function. Unfortunately, their 

conclusion was not confirmed by the Hmd activity assay. To check the effects the 

∆hcgB and ∆hcgC mutations, the Hmd activity of the mutants were measured in 

present work using the new M. maripaludis Mm901 strains with Δhmdjhmd back 

ground.  

Because the Hmd activity of the cell extract of M. maripaludis is unstable 

(Diploma thesis of Anne Kaster, 2011), in the Mm901Δhmdjhmd strain, the 

endogenous hmd gene was replaced by the hmd gene from M. jannaschii, which 

resulted in the strain Mm901∆hmdjhmd. Based on this constructed wild type strain, the 

hcgB and hcgC genes were deleted for the analysis of the Hmd activity and the growth 

phenotype. All M. maripaludis strains have been prepared Mm901 by Michael Schick 

(Diploma thesis of Michael Schick, 2012). 

At first, temperature dependency of the Hmd activity of the cell extract of M. 

maripaludis Mm901Δhmdjhmd was determined (Figure 4-1). The optimum 

temperature of the Hmd activity of this strain was 80 °C, which was consistent with the 

growth temperature optimum of the hyperthermophile M. jannaschii (85 °C). This result 

indicated that the Mm901Δhmdjhmd produced thermophilic Hmd from M. jannaschii. 
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In the presence of toluenesulfonylmethyl isocyanide (TosMIC), which is a specific 

inhibitor of Hmd, the Hmd activity was not observed at the temperature higher than 

80 °C. However, at lower temperature (e.g. 40 °C), substantial Hmd-like activity was 

detected even in the presence of TosMIC. This observation indicated that at near the 

growth temperature of M. maripaludis, there are some Hmd-like activity in the cell 

extract. The enzyme responsible for this Hmd-like background activity is not 

investigated; however, it might be a coupled reaction catalyzed by F420-dependent 

methylene-H4MPT dehydrogenase (Mtd) and F420-reducing hydrogenase (Frh). Frh 

and Mtd should be contained in the cell extract from mesophilic Methanococcus strains 

[131]. Due to relatively large amounts of the cell extract (7 μl) was injected into the 

assay solution (700 μl), which could support such coupled reactions. These data 

indicated that Mm901Δhmdjhmd has an advantage to detect only real Hmd 

holoenzyme activity at 80 °C. 

 

Figure 4-1. Hmd activity of the cell extract from M. maripaludisΔhmdjhmd.  

 

The ΔhcgB and ΔhcgC mutants revealed no activity at 80 °C, which confirmed 

that the hcgB and hcgC genes are crucial for production of active Hmd. The cell extract 

of M. maripaludis obtained from nickel-limiting condition revealed higher activity than 

that obtained from nickel-sufficient culture, which was in agreement with the previous 

studies (Diploma thesis of Anne Kaster, 2011) (Table 4-1) [30].  
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Table 4-1. Activity test of M. maripaludis and mutants 

 Enzyme activity U/mg 

 Ni-sufficient condition Ni-limiting condition 

 40 ℃ 80 ℃ 40 ℃ 80 ℃ 

 -TosMIC +TosMIC -TosMIC +TosMIC -TosMIC +TosMIC -TosMIC +TosMIC 

jhmd 0.15 - 0.28 - 1.2 - 3.6 - 

∆hmd 0.16 0.17 - - 0.12 0.08 - - 

∆hcgB 0.20 0.21 - - 0.14 0.13 - - 

∆hcgC 0.22 0.19 - - 0.14 0.08 - - 

 

The growth phenotype was studied using the media containing two different 

nickel concentrations (1 μM or 50 nM) (Figure 4-2A). The growth rate of the strains are 

slightly higher in the nickel-sufficient (1 μM nickel) than that of nickel-limiting conditions 

(50 nM nickel) but the difference is not so large that observed in the case of 

Methanothermobacter marburgensis. When the medium did not contain nickel, both 

the wild type and mutants did not grow. The wild type (Mm901Δhmdjhmd), and the 

ΔhcgB and ΔhcgC mutants showed similar growth phenotype (Figure 4-2B,C) 

independent on the nickel concentrations. This finding contradicts with the observation 

of Leigh et al. [130]. The plausible reasons of the different growth properties could be 

attributed to the genetic background of the M. maripaludis strains. Leigh’s group used 

Mm901∆frc∆fru background, in which two isoenzymes of F420-reducing [NiFe]-

hydrogenases (frc and fru) are deleted. As mentioned in the Introduction section, Hmd 

and Mtd together catalyze a coupled reaction, which is the same reaction that Frc and 

Fru catalyze. When the Hmd activity was deleted in the Mm901∆frc∆fru background, 

there is no known enzyme system for F420H2 regeneration in the mutated strains. In 

principle, such mutants are not able to grow on H2 and CO2. However, after relatively 

long lag-phase, the mutants started to grow with similar growth rate of the wild-type. 

This observation indicated that M. maripaludis Mm901 contains another H2-dependent 

F420-regenerating system other than Frc/Fru and Hmd-Mtd. Induction of the third F420-

regenerating enzyme might be observed as the lag-phase of the ΔhcgB and ΔhcgC 

strains of M. maripaludis strains with ∆frc∆fru background. In the case of our strain, 

Frc and Fru were not disrupted; therefore, we did not observe the lag-phase. 
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Figure 4-2. Growth curve of M. maripaludis wild type strain and mutants ∆hmd, and 

∆hcgB ∆hcgC, which showed in black, red, blue and green, respectively. The 

cultivation medium used for this measurement was McA medium, which was described 

in the methods section. (A) Growth curve of Mm901 under different nickel 

concentration. (B) Growth curve of wild type strain and mutants cultivated under 1 µM 

nickel. (C) Growth curve of wild type strain and mutants cultivated under 50 nM nickel. 
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5. Over-expression of HcgA and HcgG in E. coli 

 

Abstract 

The function of HcgA and HcgG are still unknown. To use the “structure to 

function” strategy like as the other Hcg proteins, we need to solve the crystal 

structure of the Hcg proteins. The hcgA gene from six methanogens were 

expressed in the E. coli and the over-produced proteins were purified. The 

purified HcgA proteins were soluble and showed a brown color of the iron-sulfur 

cluster bound to the protein. HcgA was tried to be crystallized without substrates 

and also in complex with SAM but no crystal was observed. HcgG from 

seventeen methanogens were expressed in E. coli, they formed inclusion body 

and no soluble protein was observed in the cell extract.  

 

 HcgA are a member of the radical SAM enzyme super-family, which includes 

biotin synthase (BioB), and [FeFe]-hydrogenase maturation proteins HydE and HydG. 

The hcgA gene from methanogens was synthesized by Genscript. The synthesized 

DNA was inserted into expression vector pET24b(+) and transformed into E. coli, which 

contained an iron-sulfur cluster plasmid pRKISC and charperon pCodonplus [106]. The 

over-produced HcgA proteins with His-tag were purified using nickel-affinity column. 

Determination of iron in the protein preparation indicated that 3.8 molecules of Fe was 

bound per protein. This Fe content was consistent with that HcgA contains a [4Fe-4S] 

cluster in the monomer. The buffer of purified HcgA was exchanged with 10 mM 

MOPS/KOH, and the protein was concentrated around 10 mg/mL for the crystallization. 

HcgA apoenzyme was crystallized using different screening kit (JBScreen series and 

QIAGEN JCSG series). Since HcgA is a possible radical SAM enzyme, crystallization 

of HcgA in complex with SAM was also tried. However, no crystal was observed. In the 

future, the crystallization condition must be optimized. As aggregation of protein was 

observed when it was concentrated, the protein concentration could be decreased to 

the half to avoid the aggregation. Changing temperature might be help for crystal 

growth. More crystal-screening kit should also be tried.  

 

 

 

 



101 
RESULTS/PUBLICATIONS 

 

Table5-1. Methanogens used for heterologous expression of HcgA 

No. Methanogens 
Optimum growth 
temperature (°C) 

1 Methanopyrus kandleri 
 

98 

2 Methanotorris igneus 
 

70 

3 Methanocaldcoccus fervens 
 

85 

4 Methanocaldcoccus infernus 
 

85 

5 
Desulfurobacterium 
thermolithotrophum 

 
 

70 
 

 

 

Table5-2. Methanogens used for heterologous expression of HcgG 

No. Methanogens 
Optimum 
growth 

temp. (°C) 
No. Methanogens 

Optimum 
growth 

temp. (°C) 

 
1 

Methanobrevibacter 
ruminantium 

37 10 Methanococcus vannielii 35 

2 
Methanobrevibacter 
oralis 

35 11 Methanococcus aeolicus 37 

3 
Methanobrevibacter 
wolinii 

- 12 
Methanobacterium 
formicicum 

37 

4 
Methanocaldococcus 
fervens 

85 13 
Methanospirillum 
hungatei 

37 

5 
Methanocaldococcus 
villosus 

80 14 
Methanolacinia 
petrolearia 
 

37 

6 
Methanocaldococcus 
vulcanius 

80 15 Methanoregula formicica 30 

7 
Methanocaldococcus 
infernus 

85 16 Methanotorris formicicus 70 

8 
Methanothermococcus 
thermolithotrophicus 

65 17 
Desulfurobacterium 
thermolithotrophum 

70 

9 
Methanothermococcus 
okinawensis 

65    
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Figure 5-1. (A). Over-expression of HcgA. Line M: protein ladder marker. Line 1: HcgA 

from Methanopyrus kandleri. Line 2: HcgA from Methanotorris igneus. Line 3: HcgA 

from Methanocaldcoccus infernus. Line 4: HcgA from Methanocaldcoccus fervens. 

Line 5: HcgA from Desulfurobacterium thermolithotrophum. Line CE: cell extract of E. 

coli. (B) UV-Vis spectrum of the purified HcgA protein from Methanopyrus kandleri. 

The absorbance at 400-500 nm revealed the presence of iron-sulfur clusters. [74, 132].  

 

The hcgG gene was synthesized and inserted into expression plasmid 

pET24b(+) and transformed into E. coli BL21(DE3). Over-production of HcgG was 

performed in LB medium. This 55 kD protein formed inclusion body in the cell under 

the normal cultivation condition (37 ºC, 1 mM IPTG, 4-6 hours induction) (Figure 5-2). 

HcgG from 17 methanogens were tested. No protein was found in the soluble fraction. 

Lower temperature and different IPTG concentration were tested to optimize the 

expression but HcgG still formed inclusion body in the cell. The cell extract containing 

HcgG from the hyperthermophilic methanogen Methanocaldcoccus jannaschii, which 

grows at 85 ºC, was incubated at 65 ºC for 20min and centrifuged to remove the E. coli 

proteins. Then the supernatant was concentrated but not visible in SDS-PAGE. To 

improve the solubility of HcgG, the expression system and host should be changed, 

for example, the yeast system. Additionally, as the primary structure analysis 

suggested that HcgG might contain an iron-sulfur cluster, co-expression with iron-

sulfur chaperon might be another way to obtain the soluble protein (see the Discussion 

section).  
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Figure 5-2. SDS-PAGE analysis of heterologously produced HcgG in E. coli. The 

samples in the top three gel pictures contained supernatant of the cell extracts, while 

the bottom three pictures showed the precipitated fractions. The arrow indicates the 

samples come from the same cell extracts. The numbers on the lanes in the top 

panels indicates the methanogenic archaea listed in the Table5-2. Inclusion body of 

HcgG proteins is visible between 40−55 kDa in SDS-PAGE of the precipitated 

fractions. 
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6. The FeGP cofactor from M. maripaludis and its precursors 

 

Abstract  

The structure and properties of the FeGP cofactor of Hmd from M. marburgensis 

has been extensively studied. Nevertheless, the FeGP cofactors from other 

methanogenic archaea were not well characterized yet.  The model organism of 

the genetic experiments of hydrogenotrophic methanogenic archaea is M. 

maripaludis, which belongs to the family Methanococcales. To study the 

functions of the hcg genes using this methanogen, chemical structure of the 

FeGP cofactor from M. maripaludis should be demonstrated. Mass 

spectrometric analysis of the FeGP cofactor from Hmd, which was partially 

purified from M. maripaludis, did not exhibit the mass peaks of the 

guanylylpyridinol part of known FeGP cofactor. To obtain information of the 

FeGP cofactor in Methanococcales, the FeGP cofactor was isolated from Hmd 

from M. jannaschii. Mass spectroscopic analysis indicated that M. jannaschii 

contains the same guanylylpyridinol part with that from M. marburgensis. Three-

dimensional structure of the enzyme-substrate complexes of HcgB and HcgC 

from M. maripaludis and the counterparts of M. jannaschii were compared. This 

analysis indicated that the binding site of guanylylpyridinol in HcgB and the 

pyridinol in HcgC are fully conserved in the enzymes. This finding suggested 

that the guanylylpyridinol part of the cofactor in M. jannaschii and M. maripaludis 

are identical. Metabolome analysis of M. maripaludis strains and of M. 

marburgensis were performed using liquid-chromatography-mass-spectrometry 

(LC-MS). The results suggested that there is a plausible precursor, which exists 

in both methanogens.  

 

The structure and function of the FeGP cofactor have been elucidated by using 

that from M. marburgensis. Active Hmd can be reconstituted from the FeGP cofactor 

of Hmd from M. marburgensis and the apoenzymes from M. maripaludis, M. jannaschii 

and other methanogens and the reconstituted enzymes are fully active; therefore, the 

structure of the FeGP cofactor from the other methanogens is believed to be identical 

to that of the FeGP cofactor from M. marburgensis. However, it cannot be excluded 

that there are some variations of the structure of the FeGP cofactor. The iron complex 

structure appears to be crucial for activity but the organic part of the FeGP cofactor 
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might not be strictly restricted. For example, the GMP moiety could be exchanged with 

other nucleotides. The 3- and 5-methyl groups on the pyridinol affect the electronic 

properties of the pyridinol ring; however, at least one methyl group could be removed.  

Here, we predicted the structure of the FeGP cofactor from the guanylylpyridinol 

structure of the FeGP cofactor from M. jannaschii and comparison of the enzyme-

substrate complex structures of HcgB and HcgC from M. jannaschii and M. maripaludis. 

Moreover, to determine the structure of the precursors of the FeGP cofactor, LC-MS 

analysis was performed.  

Hmd was partially purified from M. maripaludis Mm901 strain. The FeGP 

cofactor was extracted with the standard method using 60% methanol, 1 mM 2-

mercaptoethanol and 1% ammonia and analyzed by MALDI-TOF-MS. Several mass 

peaks were observed but the typical peak of the guanylylpyridinol (m/z = 543) was not 

observed. The possible mass peaks [m/z = 529 (lacking one methyl), 527 (GMP was 

exchanged with AMP), 503 (with CMP), 501 (with TMP) and 504 (with UMP)] were also 

not detected.  

We tried to isolate from the FeGP cofactor from Hmd, which was partially 

purified from M. jannaschii cell extract. MALDI-TOF-MS indicated the presence of the 

peak of the guanylylpyridinol (m/z = 543) and its Na+ adduct (m/z = 565). In addition, 

the decarboxylated derivative (m/z = 499) and its Na+ adduct (m/z = 521) was detected 

(Figure 6-1). This peak patterns were always observed when the FeGP cofactor of M. 

marburgensis was analyzed by MALDI-TOF-MS. This result indicated that the cofactor 

extracted from Hmd from M. jannaschii is identical with that of M. marburgensis.  

 

 

Figure 6-1. MALDI-TOF of FeGP cofactor extracted from M. jannaschii.  

 

Crystal structure of HcgB and HcgC from M. jannaschii and M. maripaludis are 

solved. The HcgB-guanylypyridinol complex and HcgC-SAH-pyridinol complex 

structure were solved using the enzymes from M. jannaschii and M. maripaludis, 

respectively. Structure comparison of these enzymes and enzyme complexes 
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indicated that the amino acid residues interacting with substrates in M. jannaschii and 

M. maripaludis were completely conserved (Figure 6-2). In the structure of HcgB-

guanylylpyridinol complex using M. jannaschii enzyme, the amino group of the GMP 

moiety was bond to the protein via the peptide oxygen of Glu137. The carboxyl group 

of pyridinol ring bond to S132 and the pyridinol nitrogen, hydroxyl group, phosphate 

bond to residues Asp23, Arg20, Lys50, respectively. These amino acid residues are 

conserved in HcgB from the M. maripaludis. In the structure of the HcgC-SAH-pyridinol 

complex, the carboxyl group of the pyridinol was bond to Thr179. The pyridinol 

substrate was mainly connected via water molecules to the protein (not shown in 

Figure 6-2). The residues contacting to the water molecules were conserved in the M. 

jannaschii HcgC. This finding strongly suggested that the substrates of HcgB and HcgC 

reactions in two organisms were identical. In the two methanogenic archaea, the same 

pyridinol and guanylylpyridinol are involved in biosynthesis of the FeGP cofactor. 

To investigate the biosynthetic precursors of the FeGP cofactor M. maripaludis, 

the metabolites was analyzed using LC-MS (Table 6-1). The metabolites were 

extracted from the cell extract in 60 % methanol. In the cell extract of M. marburgensis, 

the m/z values corresponding to the 3-methylated pyridinol (compound 2 in Table 1) 

and the guanylylpyridinol precursor (compound 5) were detected. The m/z peak at 

198.0414 could be 3-hydroxy-pyridinol (compound 3). In the cell extract of M. 

maripaludis Mm901ΔhmdΔjhmd strain, the m/z peak of the guanylylpyridinol was not 

detected but those of 3-non-methylated pyridinols (compound 1), 3-methylated 

(compound 2) and 3-hydroxy-pyridinol (compound 3) were detected. The presence of 

the mass peak corresponding to the compound 3 in the cell extracts from M. 

marburgensis and M. maripaludis is of interest. The compound 3 could be a precursor 

of the FeGP cofactor (see Discussion section). 
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Figure 6-2.  The active site structure of HcgB (A) and HcgC (B). The amino acids in 

the active site were conserved in the enzymes from M. jannaschii and M. maripaludis. 

(A) Superposition of the HcgB-guanylylpyridinol complex structure from M. jannaschii 

(green stick model of active-site residues and gray cartoon) and HcgB from M. 

maripaludis (light blue stick model of the active-site residues and light blue cartoon). 

Guanylylpyridinol is shown with magenta stick model. (B). Superposition of the HcgC-

SAH-pyridinol structure from M. maripaludis (light blue stick model of the active-site 

residues and light blue cartoon) and HcgC from M. jannaschii (green stick model of 

active-site residues and gray cartoon). Pyridinol and SAH are shown with orange and 

magenta stick models.   
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Table 6-1. LC-MS analysis (negative mode) of possible precursors in methanogen’s 

cell extract 
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DISCUSSION 

 

Hydrogenases are important for the energy metabolism in numerous microorganisms. 

They catalyze the reversible activation of molecular hydrogen and reduction of 

electron/hydride carriers. Molecular hydrogen is not highly reactive because the 

covalent bond of H−H is very strong (+436 kJ/mol) [133]. Chemical cleavage of H−H 

bond needs high temperature and pressure even in the presence of platinum as 

catalyst. Hydrogenases are biological hydrogen-activating catalysts, which can work 

at room temperature under low pressure; therefore, attract attentions in industrial 

applications in the future. Among the three types of hydrogenases, [FeFe]-

hydrogenase is considered to be applied for the H2 production system due to its higher 

reaction turnover rate for H2 production [134]. In contrast, most of [NiFe]-hydrogenases 

are better catalyst for reduction of substrates using electrons from H2. Application of 

[NiFe]-hydrogenase on the bio-fuel cell is expected to be a high efficient use of H2 as 

a new energy carrier [135]. [Fe]-hydrogenase catalyzes reversible activation of H2 and 

hydride transfer to methenyl-H4MPT+. Difference from the other two types of 

hydrogenases is that [Fe]-hydrogenase catalyzes hydrogenation reaction. Therefore, 

the [Fe]-hydrogenase model compounds are expected to be used for new types of 

hydrogenation catalysts [136]. All hydrogenases harbor metal centers in the active site. 

[NiFe]- and [FeFe]-hydrogenases contain the dinuclear metal center containing at least 

one iron-sulfur cluster. Current researches indicate that the metal centers are 

biologically synthesized by a complicated enzyme systems. Nature develops a smart 

pathway to synthesize these unique cofactors using toxic carbon monoxide and 

cyanide as precursors. The study on biosynthesis of the hydrogenase metal centers 

may stimulates the synthesis of H2-activation hydrogenase mimic catalysts [137].  

The maturation of [NiFe]-hydrogenase and [FeFe]-hydrogenase are studied 

extensively by many groups around the world. However, biosynthesis of [Fe]-

hydrogenase cofactor has only been investigated in the last decade in Shima group in 

Max Planck Institute for Terrestrial Microbiology. The [Fe]-hydrogenase cofactor, 

namely the FeGP cofactor has two carbon monoxide ligands, an acyl-Fe and a highly 

substituted pyridinol ring. This unique cofactor is found only in [Fe]-hydrogenase of 

methanogens. Therefore, the study of the FeGP cofactor is scientifically interesting 

from the biological and inorganic chemistry viewpoints.   
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History of the [NiFe]- and [FeFe]-hydrogenases’ maturation processes 

In the case of [NiFe]-hydrogenase maturation, gene mutation analysis was initiated  by 

the group of Böck [138]. They deleted the hypA−F operon, which resulted in 

inactivation of hydrogenase-3 in E. coli. Based on nickel-complementation studies 

using the hypB mutant, they obtained the first evidence of the specific function of HypB 

that incorporates nickel to the hydrogenase protein [139]. Subsequently, studies using 

sequence similarities, enzyme reactions, protein interactions, isotope-labeled 

compound incorporation and site-directed mutagenesis were performed by the groups 

of Böck, Friedrich and the others [59, 140, 141].  

The study of the [FeFe]-hydrogenase maturation was also initiated by mutation 

analysis by the group of Seibert; gene deletion experiments of Chlamydomonas 

reinhardtii suggested that three genes, hydEFG are responsible for maturation of 

[FeFe]-hydrogenase [70]. The maturation functions of hydEFG were verified by 

production of active [FeFe]-hydrogenase in E. coli, which contains hydEFG and the 

hydA structural gene by the same group [70]. Further researches of the hyd genes 

were mainly performed based on sequence similarity search, enzymological 

characterization of the heterologously produced enzymes, in vitro biosynthesis 

experiments of the active center metal H-cluster and X-ray crystal structure analysis of 

[FeFe]-hydrogenase [77, 142, 143]. The overall functions of each maturation gene 

were described in the introduction section. 

 

Structure to function strategy 

The clue of the FeGP cofactor biosynthesis was the finding of the hcg gene cluster 

(hcgA−G), which was identified near the hmd gene of some methanogens. This finding 

led speculation that the hcgA−G genes could be the genes responsible for biosynthesis 

of the FeGP cofactor because the hyp genes in E. coli locate near the [NiFe]-

hydrogenase structural genes [59]. According to the [NiFe]- and [FeFe]-hydrogenase 

maturation studies, knock-out mutation of the hcg genes appeared to be a promising 

methods to identify the function of the hcg genes. However, unfortunately, genetics 

experiments of methanogens without cytochromes are not straightforward due to 

instability of the vector; recombination of the vector with and without inserted DNA was 

often observed by unknown reasons. It is one of the reasons why we could prepare 

only the deletion mutants of hcgB and hcgC in M. maripaludis in relatively late stage of 

this project. 
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Function of proteins is defined by the three-dimensional structure of the protein. 

Therefore, from structure of the protein, we should be able to predict the function. This 

is one of the core idea of the structural genomics projects [144]. To analyze the function 

of the Hcg proteins, we used a “structure to function” strategy for the analysis of the 

Hcg proteins. In this method, proteins were firstly heterologously produced in E. coli, 

purified and crystallized. X-ray crystal structure of the protein was solved. Then the 

crystal structure was used as model for structural similarity search. The function of 

protein was predicted based on information from the similar proteins with known 

function. The function of the protein is tested by docking simulation, co-crystallization 

and enzyme reaction. By using this method, the functions of HcgB, HcgD, HcgE and 

HcgF were elucidated.  

Generally, prediction of function from pure three-dimensional structure is very 

difficult. Only few proteins’ function have been annotated by structural genomics 

projects [97]. The following reasons could explain why structure to function analysis of 

Hcg proteins was successful: (1) it was assumed that the hcg gene cluster are involved 

in the FeGP cofactor biosynthesis; (2) the possible substrates and the catalyzed 

reactions were predicted from the structure of the FeGP cofactor and the isotope-

labeling analysis, and (3) commercially unavailable substrate was successfully 

synthesized.  

 

Function of HcgC 

The HcgC protein structure was solved and we found that the three-dimensional 

structure of HcgC was similar with NAD(P)-dependent dehydrogenase and SAM-

dependent methyltransferase. This result suggested the possible function of HcgC. To 

find the ligand bound to HcgC, co-crystallization of HcgC with NAD(P) or SAM was 

performed.  Only SAM bound to HcgC in the crystal structure. In addition, our previous 

stable-isotope labeling experiments have shown that the 3-methyl group of pyridinol 

ring is obtained by a SAM dependent methyltransfer reaction. The information strongly 

suggested that HcgC is a SAM-dependent methyltransferase. Docking simulation 

indicated the possible binding site of the pyridinol. In order to test the prediction of the 

HcgC catalyzed reaction, the substrate pyridinol was chemically synthesized in 

collaboration with Xile Hu (EPFL). Enzyme activity was tested using this substrate and 

SAM. As expected, the methylated product was observed by mass spectrometry and 

NMR spectroscopy. The NMR data indicated that the methylation was occurred on the 
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C3 of pyridinol, which was consistent with the isotope labeling experiment. This part of 

results was described in the Results section 1 [129]. 

Co-crystallization of HcgC with the pyridinol substrate and SAH showed that 

both substrates were bound to the cleft between N- and C-terminal domains. There 

were several water molecules near the pyridinol, which connect the pyridinol and 

protein residues. These water molecules stabilized the binding of substrate in active 

site. However, none of the water molecules appeared to work as a general base as 

observed in other SAM-dependent methyltransferases. The general-base mediated 

methylation is a common mechanism for many SAM-dependent methyltransferases, 

but this is not the case for HcgC. This contribution of water for methylation should be 

a new type of mechanism in the SAM-dependent methyltransferases. This part of 

results was described in the Results section 3. 

 

Reaction sequence of HcgB and HcgC 

The reaction of HcgC in the FeGP cofactor biosynthesis pathway was identified. 

However, the reaction sequence of HcgB and HcgC in the biosynthesis was not clear 

because HcgB is able to catalyze guanylylation reaction using both 6-carboxymethyl-

2,4-dihydroxy-5-methyl-pyridinol and 6-carboxymethyl-2,4-dihydroxy-3,5-dimethyl-

pyridinols. Therefore, we could not draw conclusion whether pyridinol or guanylylated 

pyridinol is the methyl acceptor of the HcgC reaction. We found that HcgC was not 

able to utilize the non-3-methylated guanylylpyridinol, which was made by HcgB. This 

experiment indicated that pyridinol was first 3-methylated and then HcgB conjugate 

GMP to the 3-methylated pyridinol. This part of results was described in the Results 

section 2 [145]. 

 

Proposed FeGP cofactor biosynthesis pathway. 

Based on the results of the functions of Hcg proteins, the FeGP cofactor biosynthesis 

pathway was proposed [145]. HcgC catalyzes the methylation on C3 of pyridinol. HcgB 

catalyzes the conjugation of GMP and methylated pyridinol. HcgE catalyzes the 

adenylylation of carboxy group of guanylylpyridinol (the HcgB product). Then HcgF 

catalyzes the formation of thioester bond of guanylylpyridinol and HcgF Cys9. HcgD 

was proposed to be an iron-trafficking protein, which transfer an iron for the iron center 

formation. Next, HcgA, HcgG or some unknown proteins catalyze the formation of acyl-
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and CO-ligands. Once the iron center was formed, the intact cofactor is transferred to 

apoenzyme producing the active Hmd (Figure D-1). 

 

Figure D-1. Proposed FeGP cofactor biosynthesis pathway. The HcgA−G proteins are 

shown by arrows with different colors.  

 

Analysis of HcgA and HcgG 

To complete the pathway, the function research of HcgA and HcgG is required. I tried 

to solve the protein structures of these two proteins and find the functions by the same 

way used for the other Hcg proteins. HcgA can be expressed and purified from E. coli, 

but no crystal was obtained. HcgG always formed only inclusion body in the E. coli cell. 

Here, I discuss the potential functions of HcgA and HcgG. 

The sequence similarity showed that HcgA belongs to the radical SAM 

superfamily. HcgA is similar with biotin synthase BioB, which was involved in the biotin 

biosynthesis, and [FeFe]-hydrogenase maturation protein HydE and HydG. HydG is 

responsible for synthesis of the CO and CN ligands of [FeFe]-hydrogenase and HcgE 

was proposed to catalyze the formation of dithiomethylamine bridge of the H cluster. 

HcgA has a CX5CX2C motif (Figure D-2), which is similar with the CX3CX2C motif for 

[4Fe-4S] cluster-binding found in radical SAM enzymes including HydE and HydG 

[103]. Because of the differentiation of the cysteine motif in HcgA, conservation of the 

[4Fe-4S] cluster in this protein should be verified. A homology model of HcgA from M. 

jannaschii was built using the structure of HydE (PDB: 3CIX) as template (Figure D-3). 

It indicated that HcgA is possible to harbor the [4Fe-4S] cluster using the three cysteine 

residues at the CX5CX2C motif.  
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Figure D-2. Sequences alignment of HcgA, HydE and HydG. The conserved amino 

acids were marked with red color. The CX5CX2C motif in HcgA and the CX3CX2C motifs 

in HydG and HydE are shaded in blue. 

Fe-S cluster-

binding
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Figure D-3. Homology model of HcgA. HcgA was showed in cyan and HydE was 

showed in pink. (A) Comparison of overall structures of HcgA and the template protein 

HydE. (B) The [4Fe-4S] binding site in HcgA and HydE. The iron-sulfur cluster was 

showed in brown (Fe) and yellow (S) stick model. The conserved cysteines of the iron-

sulfur binding site were showed in blue of HcgA and Green of HydE. Ehen the cysteine 

residues are fully overlapped, only blue color is shown. (C) [2Fe-2S] binding site in 

HydE. The cysteine was showed in blue. The cysteine residues were not conserved in 

HcgA. The homology model was made using SWISS MODEL. 

 

Recently, Nicolet et al. reported that HydE could catalyze the cleavage of SAM 

to produce radical intermediate directly on the sulfur atom instead of abstracting a 

hydrogen atom to form aliphatic carbon-sulfur bond. Carbon–sulfur bond formation at 

aliphatic positions is a challenging reaction that is performed efficiently by radical S-

adenosyl-L-methionine (SAM) enzymes. But function of the second [2Fe-2S] cluster 

was not reported. HydG synthesizes the CN and CO ligand for the H-cluster of [FeFe]-

hydrogenase. The crystal structure of HydG indicated that HydG harbors two [4Fe4S] 

clusters at the N-terminal and C-terminal regions. The first N-terminal [4Fe4S] cluster 

was bound to SAM, which produces 5’-deoxyadenosyl radical by one electron 

reduction of SAM. The 5’-deoxyadenosyl radical abstracts one hydrogen atom from 

tyrosine, which results in the CCß bond cleavage of tyrosine to form dehydroglycine 

and p-cresol radical. Dehydroglycine is the precursor of CO and CN ligands. Recent 
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studies showed that an extra Fe coordinated with homocysteine is bound between 

His265 and the second C-terminal [4Fe4S] cluster [83]. The Fe(CO)CN unit is finally 

produced from this intermediate. BioB catalyzes the sulfur insertion in biotin 

biosynthesis [146, 147]. In this enzyme, the second iron-sulfur cluster is [2Fe-2S] type 

and one of the inorganic sulfur is inserted into the precursor desthiobiotin to produce 

biotin [148].  

We could speculate that the function of HcgA could be similar with HydG 

because the iron center of FeGP cofactor also needs the coordination of CO ligands. 

However, isotope labeling experiments showed that the CO ligands in the FeGP 

cofactor was directly from CO2 instead of tyrosine, which does not fit to the function of 

HydG. In addition, the second iron-sulfur cluster involved in HydG, HydE and BioB is 

not conserved in HcgA. In conclusion, HcgA could be a radical SAM enzyme even 

through it has unusual iron-sulfur binding motif (Figure D-2 and D-3) and HcgA might 

generate a radical for unknown substrate. However, it is difficult to speculate the 

function of HcgA in this moment. Further work is required to understand the function of 

HcgA. 

I tried to heterologously produce seventeen distinct hcgG genes in E. coli as 

described in the result section. However, all formed inclusion body and even minor 

amount of soluble HcgG protein was not obtained. To solve this problem, I would 

change the expression system to such as yeast, which will be performed in 

collaboration with Professor Roland Lill (Philipps University Marburg). This yeast 

expression system could produce exogenous proteins using expression vector 

p426TDH with TDH promotor and high-level expression in yeast [149].  

Sequence analysis showed that HcgG has a CX3CX9C motif at the N-terminal 

region (Figure D-4), which might be responsible for iron-sulfur cluster binding although 

this motif is not one of the "typical" iron-sulfur-binding motifs. Proline and glycine 

residues are conserved near the cysteine rich motif of HcgG, which is often observed 

in the iron-sulfur-binding motif. Thus, the CX3CX9C motif could accommodate a [4Fe-

4S] cluster. The arginine or histidine residues near the cysteine-rich motif could be an 

additional ligand to the iron-sulfur cluster although the arginine ligand is rare. Therefore, 

it could be worth to produce the HcgG protein in the E. coli protein production system 

for iron-sulfur cluster proteins, which was used for heterologous expression of HcgA in 

E. coli.  
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Figure D-4. Comparison of HcgG in methanogens. The conserved cysteines was 

marked with yellow colour. The CX3CX9C motif and the conserved arginine and 

histidine residues near the motif are shaded in blue.  

 

Metabolome analysis of biosynthetic precursors of the FeGP cofactor 

Analysis of the FeGP cofactor from M. maripaludis and M. jannaschii was 

performed. The cofactor extracted from M. maripaludis was not detected, while the 

same guanylylpyridinol of the FeGP cofactor was found in the M. jannaschii. Since the 

M. jannaschii belongs to the same family with M. jannaschii, it was predicted that M. 

maripaludis harbor the same cofactor. Furthermore, the structural comparison of HcgB 

and HcgC showed that Hcg proteins in two organisms are highly conserved. I 

temporally concluded that M. maripaludis contains the FeGP cofactor, which has the 

same structure with that from M. marburgensis. 

Based on this result, metabolome analysis of M. marburgensis and M. 

maripaludis were performed using LC-MS measurement. The cofactor was extracted 

using 60% methanol, which is used for the cofactor extraction in M. marburgensis. A 
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compound (m/z = 198.0414 in the negative mode measurement) was found repeatedly 

in MS analysis. Interpretation of the exact mass is C8H9NO5 (199.0481 Da), which 

could be a 6-carboxymethyl-2,3,4-trihydroxy-5-methyl pyridinol. From the previous 

isotope labeling experiment, the possible precursor of the pyridinol formation was 

predicted as alanine and 2,3-dihydroxy-4-oxo-pentanoate, which was derived from 

aspartate and 6-deoxy-5-ketoallulose-1-phosphate, respectively (Figure D-5). In the 

PhD thesis of Michael Schick, a proposed reaction mechanism of a hypothetical 

enzyme with pyridoxal-5’-phosohate (PLP) as a cofactor was proposed.  In this 

proposed mechanism, aspartate and 2,3-dihydroxy-4-oxo-pentanoate (Figure D-6) are 

converted to a pyridinol with no hydroxyl group on C3. However, if dehydration reaction 

from compound 6 was omitted from the proposed reactions (see Figure D-6), the 

product 9 should have 3-OH group. Thus, this m/z = 198.0414 precursor might be an 

intermediate of the pyridinol formation enzyme system. In this case, dehydration 

enzyme is required to remove this hydroxyl group. 

 

 

Figure D-5. Proposed reactions of pyridinol formation based on the isotope labeling 

experiment.  
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Figure D-6. Proposed reaction mechanism of pyridinol formation of FeGP cofactor 

(Michael Schick PhD thesis 2012). This hypothetical enzyme contains PLP as the 

prosthetic group at the active site. 

 

Future work 

Study of biosynthesis of the FeGP cofactor was not completed yet. HcgA crystal 

screening should be tested using more conditions. Since HcgA belongs to the SAM 

dependent radical enzyme family, characterization of HcgA using SAM and possible 

substrate, such as guanylylpyridinol and pyridinol is worth to try. If HcgA synthesizes 

the CO and CN ligands, what are the possible direct substrates for the CO ligands and 

how does HcgA react with the substrates? Further experiments is require to answer 

these questions. Heterologous production of soluble HcgG should be tried as 

described above. 

HcgD was predicted as an iron-trafficking protein. This prediction also need to 

be confirmed. For instance, binding of CO and/or CO2 to the Fe site of HcgD should 

be tested using UV-Vis- and infrared-spectroscopy and other methods. Additional 

mutation analysis of M. maripaludis is possible, which could test importance of HcgD 

in iron-insertion. This can be tested by similar experiments performed by Böck et al. 

for the HypB function study [139]; iron supplementation to the M. maripaludis ΔhcgD 

stain is worth to try.  
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To understand the formation of iron center of the FeGP cofactor, in vitro 

biosynthesis is alternative. Our finding of HcgB and HcgC functions and chemical 

synthesis of the pyridinol precursor made it possible to prepare a large amount of the 

guanylylpyridinol precursor, which is an important for the in vitro biosynthesis 

experiment. The in vitro system could contain Hcg proteins, Hmd apoenzyme, 

guanylylpyridinol, iron, magnesium, ATP, CO/CO2 and reducing reagent. We can test 

the Hmd activity and the formation of some intermediates.  

Besides the iron center formation, how the pyridinol ring formed is also need to 

be studied. Isotope-labeling experiment indicated the possible precursors for the 

pyridinol ring formation. If we could chemically synthesize the possible substrate (i.e. 

2,3-dihydroxy-4-oxo-pentanoate), we can try to identify the pyridinol formation enzyme 

using cell extract or heterologously produced protein is possible.  

Hcg protein function was studied in vitro using structure to function strategy. To 

complete biosynthesis of the FeGP cofactor, many more reactions appear to be 

required, for example: (1) CO ligand formation and insertion, (2) acyl-C ligand 

formation from the carboxy group, and (3) pyridinol ring formation. In addition, there is 

a question where biosynthesis of the FeGP cofactor takes place (scaffold proteins)? 

The FeGP cofactor biosynthesis might require more enzymes other than the Hcg 

proteins. In this case, comparative genomic analysis might help to answer this question. 

In the Results section 3, we performed comparative genomics analysis using several 

methanogenic archaea but now much more genomes are available. It is worthwhile to 

try again using more genomes. Expression of the hcg and hmd genes is regulated by 

nickel concentration in the medium. The unknown genes responsible for the FeGP 

cofactor biosynthesis could also be under regulation of nickel concentrations. 

Proteome and/or transcriptome analysis depend on the nickel-concentration could give 

a hint of such new enzymes.  
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Table 1. Codon optimized sequence of hcgB, hcgC, hcgA and hcgG 

hcgB from M. maripaludis 

5’CATATGAACATTGAAAATACCATTAAATCCGCATACGAAGAATCGCTGAATAACGCTCGCTTTGGTGATAAAATCGAAG
AAATTGACGCAATTCAGAGTACCATCAAATCCGCGAAAAACGTCACCGTGGCCACGTCAAATGAGAAAAAATTCAAAGTG
GTTTCAGATATCATCTCGCGTATTACGGACGCGAACATCAGCATGCTGGAAATTCCGACCAATTCTGCGGATCTGACGC
GCATGCCGGCCCTGAACAAAGGCCTGATCGCAGTTGACAGCTCTGATGCTGACCTGATTATCACCCGTGGCCGCCTGG
GTATTCCGGGCTCAGGTTCGCTGCTGCTGATCATGGATAAAAAAGGCCGTATTCTGACGGGTAGCGTCTCTCCGAGTTC
CATTATCCATAAAAATCCGATCGATAAAACGGTTGAACTGGAACTGATTACGGCACTGGAACGCATCGGTATTGTGGTGA
AAAAACTCGAG3’ 

hcgC from M. maripaludis 

5ʹCATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTG
GTGGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCT
GTCAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAA
GATATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAA
TCCGGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTG
ATCGTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCG
CGAAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATT
ATCATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTAC
GGTCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACG
TCGAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC3ʹ 

hcgC from M. jannaschii 

5ʹCATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTG
GTGGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCT
GTCAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAA
GATATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAA
TCCGGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTG
ATCGTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCG
CGAAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATT
ATCATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTAC
GGTCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACG
TCGAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC3ʹ 

T6V mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTGTGGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGG
TGGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTG
TCAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGA
TATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATC
CGGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGAT
CGTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGC
GAAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATTA
TCATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTACG
GTCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACGT
CGAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 

Y51F mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGGT
GGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTTTCTGT
CAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGAT
ATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCC
GGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGATC
GTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCG
AAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATTAT
CATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTACGG
TCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACGTC
GAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 
 

S175A mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGGT
GGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTGT
CAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGAT
ATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCC
GGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGATC
GTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCG
AAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGGCGGGCACCATGACCCTGGTGGTGGATATTAT
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CATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTACGG
TCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACGTC
GAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 

T179V mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGGT
GGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTGT
CAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGAT
ATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCC
GGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGATC
GTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCG
AAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGGTCCTGGTGGTGGATATTAT
CATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTACGG
TCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACGTC
GAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 

E209Q mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGGT
GGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTGT
CAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGAT
ATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCC
GGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGATC
GTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCG
AAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATTAT
CATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTCAGGGTACGG
TCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTAGTTCCATCGATCACGTC
GAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 

S233A mutant of HcgCfrom M. maripaludis 

CATATGAACTACGGCATTACCGAAAGCGTGAAAACGACCCGCAGCAAAATCAAAATCAAAGATATTGTGTCCGATGTGGT
GGAAAAGAAAGCGAACGCCATCAAATATTTTCTGGAAGGCGAAGAATTTAAACAGGCAATTGTGTTTGGCGCTTACCTGT
CAGGTTCGTATATCGCGTACTCACTGCTGAAAGATTGCGAAGAAGTCATTATCGTGGACATTCAGCCGCATCTGAAAGAT
ATTCTGTTCAACGACGGTATCAAATTCATGGATCTGAACAAACTGCAACTGGAACTGCGTAACGGCACCAGCATCAATCC
GGATCTGGTGATTGACCTGACGGGTATCGGCGGTGTTAGTCCGGATCTGATTTCCAAATTCAATCCGAAAGTTCTGATC
GTCGAAGATCCGAAAGGCAACCACGACAAAGGTATCTCTAAAATCGATAACACCGACAAACGTCTGTGCGTGGGCGCG
AAAAAAGGTGTTCTGAAAACCTATCGCAGCTCTAAATTTAGCAAAACGTCTGGCACCATGACCCTGGTGGTGGATATTAT
CATGGACTCATGTCGCGAAATTAACGAACTGGATTCGGTTCTGTATACCATCCCGAATCTGAAATACTTTGAGGGTACGG
TCTTCCATGAGAAAAACGTGAAAAAATTCCTGACCGAACTGAATATGTCCGCCATTACCGTTGCGTCCATCGATCACGTC
GAATACGAACTGGAAGAAATCCTGTCAAAAAACATCAGCCGTGTGGACTCGTTCGTGAAAGAATTTGTCGAC 

hcgA from Methanopyrus kandleri 

5’CATATGCGTTTCAAGGATGCGCTGCGTGAAGTGCGTACCGACCGTAAACTGGCGGATACCGAAGCGACGTGCGTCTG
CTGAGCGCGAAGAGCGTGCGTGTTCACGACCTGTTCCGTGCGGCGCTGAGCGAGAAGCTGCACCACCGTGGTGAACT
GGTGAAACTGACCAGCACCATCCACGTTACCAACGAATGCCGTATTCGTCCGCGTTGCGCGTACTGCGGTTTTGCGGC
GGGTGCGAGCCCGGAGGGTTACTTCGAAGGCTTTACCCGTAGCTATGAGGAAATTGCGGAGGCGGCGAAGGCGATCG
AGGAAAGCGGTATTCCGCGTGTGAGCTGCAGCGGTGCGTATCGTGGCGACGGTGGCAAGCTGGCGGTGACCGCGGC
GCGTGCGGTTAAAGAGAACACCGACCTGGAACTGCTGATCAACTTCGGTCACGATCTGAGCGAGGAAACCATTGCGGA
GCTGGCGCGTCTGGATGTTGAAACCATCTGCTGCAACCTGGAGACCACCAACCGTGAGCTGTTCGAACGTCTGAAACC
GGGCGACAGCTTTGAGGAACGTGTGCGTGTTTGCGAAACCGTGTGCCGTTACGGTATCGATCTGAGCAGCGGCCTGCT
GGTTGGTATTGGCGAAGACTATCGTGATCGTGCGGAGCACCTGAAGTTCCTGGCGCGTTTTGAGACCCTGGCGGAAAT
CCCGATTATGGGTTTCAACCCGTATCCGGGTACCCTGATGGAACATGTGCCGCGTTGCCCGCTGCTGGAGCAGGCGAA
AGTGATGGCGGTTGCGCGTCTGATGTATCCGGATCTGATGATCACCGCGCCGACCCCGACCGTGGGTCCGGAGGAAG
TGGAAGTTGCGCTGATGGCGGGTGCGGACAACCTGGCGACCGTTATTCCGGATAACCACCCGCACGAGGTGAAGGGT
GTTGGCAACCCGCGTACCGGTAACCTGGACCGTGTGGTTGAGCTGATCGAAGGTTTTGGCCTGAAACCGGAGCTGCGT
GGCGATCGCGCGTGCAGCACCAGCTGCACCAAACTGGTTAATCGTAGCACCCAACGTAGCAGCTAACTCGAG3’ 

hcgA from Methanotorris igneus 

5’CATATGGTTTTTAAGAAGATTGAGGAGAACTTTGAGGAACTGAAGAAGGGTAACGAAGAATTTATTAAGTACGGTCTGA
TTGACAAAGAGGACGCGCTGAAGCTGTTCGAGATCAACCACTGGAGCGATTACCTGCGTCTGTTCAACATTGCGAGCAA
AGTGCGTGACTACTTCAAGAAAGAGATCGAAATCACCAGCACCATCCACATTACCAACATCTGCAAGGTTAACCCGAAAT
GCCACTATTGCGGTTTTGCGGCGGGTACCAGCCGTGAGGGTTACTATAAGCCGTTTCGTATCAGCGACGAAGATATTAA
GAAAAGCGCGATCGCGATTGAGGAAAGCGGTATCTGCCGTGTGAGCTGCAGCAGCGCGCATGGTTATGGTGGCCGTG
AAGTGCTGCGTGCGCTGAAGATTGTTAAAGAGAACACCAACCTGGAAGTGCTGGTTAACGCGGGTGCGGACCTGACCG
AGGAAACCATCAAAGAGATGAAGAAATATGGCATCGATACCATTTGCTGCAACCTGGAAACCACCAACGAGGAACTGTT
TAACAAGGTTAAACCGGGCGAGAAGCTGGAAGACCGTATCAAGGTGTGCAAACTGGTTCGTAAATACGATATTGAGCTG
AGCAGCGGCCTGCTGATCGGTATTGGCGAGAGCTACGAAGACCGTGTGGAACACCTGTTCTATCTGAAGGAGCTGGGT
GTTGGCGAAATCCCGATTATGGGTTTTAACCCGTACAAAGATACCCCGATGGAGAACCACCCGAAGTGCAGCGCGCTG
GAACAGGCGAAAACCATCGCGATTACCCGTCTGATCTTCCCGGACATCCGTATTACCAGCCCGACCCCGACCATTGGTG
CGGAGCTGGTGCAATTTGCGCTGCTGGGTGGCGCGAGCAACCTGGCGACCGTTATCCCGGATAACCACCCGATGAACA
TTAAGGGTGTGGGCAACCCGCGTACCGGCAACCTGAACGAAGTTATCAAAATGATTAGCGAACTGGGTCTGAAACCGAA
ACTGAACCTGAGCAAAATCAATAGCAAGAATTAACTCGAG3’ 

hcgA from Methanocaldcoccus fervens 

5’CATATGGTTTTTAAGAAGATCGAAGAGAATTTCAAGGAACTGAAGGACGGTAACAAGGAGTTTATTAAGAACGGTCTGA
TTGACAAGGATGAGACCCTGAAGCTGTTCAAAATCGACAAGTGGAAAGATTACCTGCAGCTGTTTCGTCTGGCGAGCGA
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AGTGCGTGACTTCTTTAAGAAAGAGATCGAAATTACCAGCACCATCCACATTACCAACATTTGCAAGGTTCACCCGAAAT
GCCTGTATTGCGGTTTCGCGGCGGGCACCAGCAAAGAGGGTTACTATAAACCGTTTCGTCTGACCGATGAGGAAATCAA
GAAAAGCGCGATCGCGATTGAGGAAAGCGGCATTCGTCGTGTGAGCTGCAGCAGCGCGCACGGTTACGGTGGCAAGG
AAGTGATCCGTGCGCTGAAGATTGTTAAAGAGAACACCAACCTGGAAGTGCTGGTTAACGCGGGTGCGGACCTGACCG
AGGAAGCGGTGAAGGAGCTGAAGAAATATGAAATCGATACCATTTGCTGCAACCTGGAGACCATCAACGAGGAACTGTT
CAAGAAAGTTAAACCGGGCGAGGAACTGGAGGACCGTATCCGTGTGTGCAAGCTGGTTAACAAATACGGTATTGAACTG
AGCAGCGGCCTGCTGATCGGTATTGGCGAGAGCTACGAAGATCGTGTGGAGCACCTGTTCTATCTGAAGAACGAGCTG
GAAGTTGGTGAAATCCCGATTATGGGCTTTAACCCGTATAAAGGTACCCCGATGGAGAACCACCCGAAGTGCAGCGCG
CTGGAACAGGCGAAAACCATCGCGATTACCCGTCTGCTGTTTCCGAACATCCGTATTACCAGCCCGACCCCGACCATTG
GTGCGGAACTGGTTCAATTCGCGCTGTTTGCGGGTGCGAGCAACATCGCGACCGTGATTCCGAAGAACCACCCGATCA
ACATTAAGGGTGTTGGCAGCCCGAAAACCGGTAACCTGGAGGAAGTGGTTAAAATGATCATGGACCTGGGTCTGAAACC
GAAACTGGACTGGGAGAAATTTGAGAACTACCTGAAAACCTACTAACTCGAG3’ 

hcgA from Methanocaldcoccus infernus 

5’CATATGATTGACGAGATCTACCGTCGCCTGGAGGATAAATACTTTCTGGAGAAGGGTCTGATTGACCGTGAAGAAGCG
CTGAAACTGTTCAGCATCGACAAAGTGCGTGATTACCTGGAGCTGTTCAAGATTAGCAGCCTGGTTCGTGACAAGTTTAA
AGAGAAGATCGAAATTACCAGCACCATCCACATTACCAACATCTGCAAAATTAGCCCGAAGTGCCTGTATTGCGGTTTTG
CGGCGGGTACCAGCGAGGAAGGTTACTATAAAGGCTTTCGTCTGAGCGATGAGGAAATCAAGCGTTGCGCGCTGGCGA
TCGAGGAAAGCGGCATTCGTCGTGTTAGCTGCAGCAGCGCGCACACCGAGCGTGGTGAAGTGGTTCGTGCGGCGCGT
ATCGTTAAAGAAAACACCAACCTGGAAGTGCTGGTTAACGCGGGCAGCGACCTGACCGAGGAACACATTAAGGAACTG
AAGAAACTGCGTGTGGAGACCGTTTGCTGCAACCTGGAAACCATCAACGAGGAAATTTTCAAACGTGTGAAGCCGGGC
GAGGAACTGGAGGATCGTATCAAAGTGTGCAAGCTGGTTAACAAATACGGTATTGAACTGAGCAGCGGCCTGCTGATCG
GTATTGGCGAGAGCTATGAAGACCGTGTTGATCACCTGTTCTTTCTGAAAGAGAACTTCGAAATCGGCGAGATCCCGAT
TATGGGCTTTAACCCGTACAAGGGTACCCCGATGGAACACTTCGAGAAATGCCACCCGCTGGAGCAGGGCAAGACCAT
CGCGATTACCCGTCTGATTTTTCCGAAGATCCGTATCACCAGCCCGAGCCCGACCATTGGTGCGGAAAACATTTACCTG
CCGCTGATGGCGGGTGCGAGCAACATCGCGACCGTGATTCCGAAAAACTATCCGCTGCTGGTGAAAGGTGTTGGCAAC
CCGAAGACCGCGAACCTGGAGGAAGTGGTTAAGACCATCGAAATGCTGAACCTGAAACCGAAGCTGGACCTGGAACGC
TTCCGTCGCTACTATGACCGCTACAATCGTGATGTGCAACGCTACTGGTAACTCGAG3’ 

hcgA from Desulfurobacterium thermolithotrophum 

5’CATATGATTGAGATTACCAGCACCATCCACGTTAGCAACTATTGCAGCTTTGAGCGTAAATGCGCGTATTGCGGCTTTG
CGGTTGGCACCAGCACCGAGGGTTACTTCTTTCTGACCGAAAAGAAAGAGAAAGAAATCATTACCGCGGCGAAGATCAT
TGAGGAAAGCGGCATCCGTCGTGTGAGCATTAGCGCGGGTTACGGCAACTTCTATAAGGTGCTGAAAGCGCTGGAGCT
GGTTAAGAAAAGCACCAGCCTGAAAGTGCTGATCAACATTGGTGGCGACCTGAACCGTGAGCGTATCCGTATGCTGAAG
AAAGCGGGTGTTGATACCATTTGCTGCAACCTGGAAACCACCAACAAGAACCTGTTCAAGAAACTGAAGCCGAGCGACA
GCTTTAAACACCGTCTGCACGTGTGCTATCTGGTTAAAGAGGAAGGTATCGAGCTGAGCAGCGGCATCCTGGTTGGTAT
TGGCGAGACCGAAAAGGATCGTGAGCAGCACATCGAAATTCTGAAGAAACTGGAACCGGAGGAAATCCCGGTGATGCG
TTTCATGCCGTACAAAGAGACCCCGATGGAAAGCGTTCCGCCGGCGAGCCTGAAGCTGCTGATCTACGTGATTAAGAAA
GTTAAGAAAGAGATCAAGAGCCTGAAACGTCTGACCGTGCCGTTTCCGACCATTAGCAAAGAAGACCTGATCAGCGTTA
TTAACGCGGGTGCGACCAACATCGCGACCGTGGTTCCGCAAAAGTACCCGCTGCTGATTAAAGGTGTGGGCAGCCCGA
AGGTTGGCATCCTGGAGGAAATTCTGGAGATTCTGAAACGTCATGGCATCGAAACCAATGTGCGTCGTGAAGTGCGTAC
CTTCTAACTCGAG3’ 

hcgG from Methanobrevibacter ruminantium 

5’CATATGTACGAACTAATAAAAGAAAGTATAAACTCAGATGAAAGTGCTCTAGAACTAGCGAAGAGCAAGAAGGACGTGA
TTAGCGTGGTGGACGCGATCAGCGATCTGAGCTTCGAGGACACCATGAAGCTGGGCACCCGTTTCAAGAAATTTCCGAT
TGGTTGCGATCTGACCGAGGTGGTTGTGGGTACCTGCGCGAGCGACCTGGAAAAAATGGACCTGTTCGGTAACTGCAT
GCTGGCGAACATGATCGGCGCGCCGATTCACATCTGCGCGTACGCGTTTAGCGACATTGCGGAGAAGTATGGTCAACG
TGGCGTGGAAATCATGGAGGAAGTTTACAACATTACCGATGTGCCGCTGGACCTGGATCACTTCGGCAAGTATGGCGC
GATGCGTTTTCCGAAACACATCGTTGGTTGCGGTGGCGACTGCTACAACCAAGGTCCGAGCTTTACCGAGTGCCCGCG
TGGTCGTATTCACGAACGTCTGCTGGATAAGGAGAAAGCGGAACTGGACGATAAAGAGACCTGGGTTCAGCTGAGCAG
CAGCGTGGCGATCAACCTGAGCAGCGAACAATGCAACGATGGTCATGCGGCGCCGCTGGAGGAAGCGCAGGACCTGG
CGGATCTGGCGAAGAAATACGGCAAGGGCCTGGAGGCGATTATGTTCGTGGGTGACGGCTATGATGAACTGATCACCG
GCTTTACCAAAGCGATTGAGATGGGTGTTGACGTGTTCGTTATCGAAGGTGGCCCGTTTAACCGTTGCGAGAACACCAA
CGAAAGCTTCGCGAAGACCATTGCGATGAGCCGTGTTCTGTGCCCGGGCAAAGTTGTGGCGACCAACGGTGCGTACGA
GAGCGAATGCCGTGCGGGTCTGCGTAGCGGTCTGAACGTGATCATTACCGGTTTTCCGAAGAACCACCACGGTTATAT
GTGCGGTTTTGAACCGGGTACCGCGCGTCGTGGCAAGTTTGGCCTGCCGCGTGTTATTAAAATCATGAACGAGGAAATT
AGCGCGGGTCCGACCCGTGTGCCGGTTCAACGTGAGGAACTGCTGGCGCTGACCCATGCGGTGAAGCTGGCGGGTCC
GGAGAACATTTATCCGAAAACCATCGGCAGCTTCGCGATTGGTGACGCGCACTGGGCGACCATCCAGAACAGCAAGAT
GTACAAAGAAATGTATCTGCCGAAAACCCTGGAGGAAATTGCGGATAGCGTGAACGGCAACAGCGTTAGCCTGCACGG
TGGCCGTTTTGTGAGCTGGCTGGTTGCGAAGGAGCTGGACAAGAAAGGTATCGATGAAATCATTATCACCGACAGCAAC
CCGTGGGTTGAGAAAGTGAGCGTTGATAACCTGCAAGAGGAACTGAACGCGACCATTATCCGTGGTCACGCGGACGAT
AAGGGTGCGGGCATGATCGCGAAAGAAAGCATTGTGACCACCACCATCCCGAAAATCCACAATGCGATCAAGAGCAAA
ATCCCGCACGCGGTTAATATCATCTAAGTCGAC3’ 

hcgG from Methanobrevibacter oralis 

5’CATATGTTCGAACTAATAAAAGAAGCTATAACAGATGATACTGTAGCATTCGAATTGAGCAAGATGGATAAGGACGTGG
TTGAAGTGGTTGATGCGATCAGCGAACTGAGCCTGGAGGAAACCATGGCGCTGGGTATGAAATTCAAGAAATTTCCGCT
GGGCTGCGACCTGACCGAAGTGGTTGCGGGTACCTGCGCGAGCGACCTGGAGCTGAAGGATCTGATCGGCAACTGCC
GTCTGAGCGATATGATTGGTGCGCCGATCCACATTTGCGCGTACGCGTTCAGCGACATCGCGGAACACTTTGGCATGC
GTGGTATCGAGATTATGAAAATGGTTTATGACGCGGTGGATGTTCCGCTGGACCTGGATCACTTCGGCATCAACGGTCC
GATGCGTTTTCCGAAAAACATTAGCGGCTGCGGTGGCGAGTGCTACAACAAAGGTCCGGCGTTCACCGAGTGCCCGCG
TGAACGTATCCACGAGCGTCTGATTGATAAGGAAATGCTGGGCACCCCGGACAAAGAGGACTGGATCAAACTGAGCAG
CAGCGTGGCGGTTAACGTGACCAGCGAACAGACCGGTGATGGTCATGCGGCGCCGTACGAGGAAGCGAAAAACATTG
CGGAACTGGCGAAGAAATATAAGAAAGGTCTGGAGGCGATCATGTTCGTTGGCGACGGTTATGATGAGCTGATTACCG
GTTTTGAAAAGAGCCTGGAGCTGGGTGCGGATGTGTTTGTGGTTGGTGGCGGTCCGTTTAACCGTGCGGAAAACGCGA
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CCGAAGCGTACGCGAAAGCGATTGCGGCGAGCCGTATTCTGGCGCCGGGCAAGGTGGTTGCGACCAACGGCGCGTAT
GAGCACGAATGCCGTGTTGGCCTGCGTAGCGGTCTGAACATGATCATTACCGGTTTCCCGAAAAACCACCACGGCTACA
TGTGCGGTTATGAGCCGGGTACCGCGAAGCGTGGCCGTTTCGGTCTGCCGCGTGTGATCGAGATCATTAACGAGGAAT
TTCCGAACCGTGGCCTGCCGGTTCAGAAACATGACCTGCTGGCGATTGCGACCGCGGTGAAAATTGCGGGTCCGGATT
ACATCTATCCGCGTAAGATTGGTAGCTATCATGTTGGTGATGCGCACTGGGCGACCCTGACCCACAGCAAGATGTATAA
AAACCTGCAACTGAAACACACCCTGAACGATATCATTGAAAGCGTTAACGGTAACAGCGTGAGCCTGCACGGCGGTCGT
TTTATCAGCTGGGTTATTGCGAACGAACTGGACAAGCACGTGGATGAGATCTACATTAGCGACGTTGATCCGTGGGTGC
TGAACGCGACCGTGGACAACCTGCAGGAAGAGCTGAACGCGACCATCATTGCGAGCAACAGCGACAAAAGCTGCAGCA
GCCAAGCGGATAGCAGCATCATTAGCACCACCATGATCCAAGTGAAAAATAACATCCTGAAAAAGGTTCCGAATGCGCT
GACCCTGGTTTAAGTCGAC3’ 

hcgG from Methanobrevibacter wolinii 

5’CATATGTACGATCTAGTTAAAGAAGCTGTAAACGATATGGATGCTGCACTAGAATTGAGCAAGGCGAAGAAGGACGTG
ACCGGCGTGGTGGACGCGATCAGCCAGCTGCCGCTGGACGATGTTCTGAAACTGGGCAGCAACTTCAAGAAATTTCCG
CTGGGTTGCGATATCACCGAGGCGGTGGTTGGTACCTGCGCGAGCGACCTGGAGGAAATTGATCTGCTGGGTAACTGC
TACCTGGCGAACAAACTGGGCACCCCGATCCACATTTGCGCGTATGCGTTCGCGGACATCGGTGAACGTTTTGGCAAG
ACCGGCCTGGAAGTGATGCAAGAAGTGTACGACGCGGTGGATGTTCCGCTGGACCTGGATCACTTCGGTATCAACGGC
GCGATGCGTTTTCCGCGTCCGATTACCGCGTGCGGTGGCGATTGCTATAACGAGGGTCCGGGCTTCAAAGAATGCCCG
CGTGGTCGTATCCACGAGCGTCTGATTGACAAGGAACTGGCGCAGGCGGGCGATAAAGAGGAGTGGGTGAAACTGAG
CAGCAGCGTGGCGGTTAACGTGAGCATGCAACAAACCGGCGAGGCGCATGCGGCGCCGATCAGCGAAGCGCAAGACA
CCGCGAAACTGGCGAAGAAATACGGCAAGGGCCTGGAGACCATCATGTTCGTTGGTGACGGCTATGACGATGTGATTA
CCGGTTTTGAGGCGGCGATGGGTCTGGGCACCGATGTTTTCGTGATCGAAGGTGGCCCGTTTAACCGTGCGAAGGACA
CCACCGATGCGTACGCGCGTACCATTGCGGCGGCGCGTATTCTGACCCCGGGTGGCGTGGTTGCGACCAACGGTGCG
TATGAGCACGAATGCCGTATTGGTCTGCGTGCGGGCCTGAACATGATCATTACCGGCTTCCCGAAAAACCACCACGGTT
ACATGTGCGGTTATGAGCCGGGTACCGCGCGTCGTGGCAAGTTTGGCCTGCCGCGTATCCTGAAGATCATTAAAGAGG
AAGTTCCGAGCAGCTACGACCTGCCGATTGGTCGTAACGAAATGCTGAGCATCGCGCGTGCGGTTAAAATTGTGGGCC
CGGATAAGATCTACCCGAACAAAATTGGCGACTTCAAGCTGGGTGATGCGCACTGGGCGACCATGGTTAACGCGAAGA
TGTATAAAAACCTGAAGATCAAAGACGATGTGGAAGGTATTGCGAGCAAGGTTAACGGTAGCAACGTGGGTCTGCTGGG
TGGCCGTTTTGTTAGCTGGGCGCTGGCGCAGGAGCTGGACAAACAAGGCATCGATGAAATCACCATTAGCGACATCGA
TCCGTGGATTGAGAAAGTTAGCGTGGACAACCTGCAGAGCTGCCTGAACGCGAACATTCTGCCGGCGCACGGTAACGA
CAAAGCGATGGCGGAAAAGGTGGATACCAGCATCATTACCAGCACCATGCGCCCGATTCACGATGCGATGCTGCGTAG
CGTTCCGGATGCGATTACCCTGTTCTAAGTCGAC3’ 

hcgG from Methanocaldococcus fervens 

5’CATATGAGGGATCTAATAAAAGAAGCAGTAAACAACCTAGATGCTGCACTAGAACTACGTAAGATTGTGCTGAAGAAGA
TCAACGAGAAAAAGCTGAAAGAAAGCGATATCGTTGAGGTGGTTGACGCGGTTGACGATCTGAGCCTGGAGGAAATTCA
GAAACTGGGCAGCAACCTGCGTAAGTTCCCGATGGGTTGCGATCTGATCGAAATTGGTGTTGGTCCGTGCAGCAGCAG
CCTGACCCTGACCCAATTCATCGAGAACTGCATTCTGACCGATTACATGGGCTTTCCGATCCACATTTGCAGCTATGCG
GTTGCGGACATCGCGGAGAAAGAAGGTCTGAACCCGATTGATGTGCTGAAGATGGTTCTGGAAAACGTGGACGTTCCG
ATCGACATTGATCACTTCGGTAAATACGGCCCGATGCGTTTTCCGAAGGAGATCACCCACTGCTACGGTGATTGCTATTT
CAAAGGTCCGCCGTTTAAGGGTTGCCCGCGTGACCGTATCCACAAACGTCTGATTGAGAAGGAAAAAGAGCACGCGAA
CGAATTTGAGGACTGGGTGCGTCTGGCGAGCACCGTTTGCATCAACGTGGTTGAGGAACAGGGTGGCGAGGAACATGC
GGCGCCGCTGGATGAAATGGAAGTGGTTGCGGAAGCGGCGAAGAAATACGGTAAAGGCCTGGAGGGCATCTTCCACA
TTGGTGACGGCCACGACGATCTGATCACCGGTATTAAGGCGTGCATCGACCTGGATGTGGACGTTTTCGTGGTTGAAG
GTGCGCCGTTTAACCGTGCGAAGGATCGTCTGAAAGTGTTTGCGAAGGCGGTGGCGGTTAGCCGTATTCTGGTTAAGG
GTGGCGTGGTTGCGACCAACGGCGCGTATGAAGACGAGTGCCGTATCGGTCTGCGTAGCGGCCTGAACACCATTCTGA
CCGGTTTCCCGCTGAACCACCACGGTTACATGTGCGGCTATAGCCCGGGTACCGCGAAACGTGGTAACTTTGGCCTGC
GTCGTGTGATGCGTATCATTCGTGAGGAAATCAAGGCGGGTAACGTTAACGCGAGCTTCATCGATAAAGACGTGGTTAA
GGCGATTGCGCTGGGCAACCGTTTCCTGAACGGTAACATCTACCCGTATAGCATTGGTGGCTTTTACCTGGGCGATGCG
CACTGGGCGTGCATCAAAGAAAGCAACCTGTGCAAGAAACTGAACGTGAACAAAACCATCGACGATATTAGCGCGGAGA
AGGTTGGTCTGATTGGTGGCCGTTACATCAGCTGGGCGATTGCGGAAAAAGCGGAGGAAGCGTATATCAGCGATATTG
ACAGCTGGGTGGAGCGTGCGACCATCAAGATTCTGAACGACAACGGCATCAACGCGTACCCGTGCAACGGTGACGATA
AGAAAGCGGTTGAAAACAGCGAGAAGGCGTATATCACCACCTTTATTCCGAACATCGCGCTGAAGATTCTGGACCGTAT
CCGTGACAAAAAGGTTGAACTGCTGATTTAAGTCGAC3’ 

hcgG from Methanocaldococcus villosus 

5’CATATGAGGGATCTAATAAAGGAATCAATAAACAACCTAGATGCTGCACTAGAACTACGTAAGATCGTGCTGAATAAGA
TTCGTAACCGTAAGCTGAAAGAGAGCGACATCATTGAAATCCTGGATGCGATTGACGATCTGAGCCTGGAGGAAATCAT
TAAGCTGGGCAGCAACTTCCGTAAATTTCCGCTGGGTTGCGACCTGGTTGATATCGCGATTGGCCCGTGCGCGAGCAA
CCTGAGCATGCTGGAGCTGCTGGAAAACTGCATCCTGGCGGACTACATTGGTTATCCGATCCACATTTGCGCGTATGCG
ATCGCGGATATTGCGGAGAAGGAAGGCATCGAGACCATTGAACTGTTCAAGAAAATCATTGAGAACGTGGAAGTTCCGA
TCGACATTGATCACTTCGGCCAGTACGGCCCGATGCGTTTTCCGAAGGAGATCACCCACTGCTACGGTGAATGCTATTT
CAAAGGTTACTTTCGTGGCTGCCCGCGTAAACGTATCCACAAGCGTCTGATTGAGAAAGAAAAGAAAGAGCGTTTTGTG
GAAGACTACATCCGTCTGGCGAGCACCGTGTGCGTTAACGTGGTTGAAGAACAGGGTGCGGAGGAACATGCGGCGCC
GATTGAGGAAATGGAGATTGTTGCGAACCTGGCGAAGAAATATGGCAAGGGCCTGGAAGGTATCTTCCACGTGGGTGA
CGGCTACGACGATCTGATCGAGGGCATTAACGCGTGCCTGAAACTGGACGTGGATGTTTTCGTGATTGAGGGTGCGTG
CTTTAACCGTGCGAAGGATAAACTGAAGGCGTTTGCGAAGGCGGTTGCGATCAGCCGTATTCTGGTGAAAGGTGGCGT
GGTTGCGACCAACGGCGCGTATGAGAACGAATGCCGTATCGCGCTGCGTGCGGGCCTGAACACCATCATTACCGGTTT
CCCGTACAACCACCACGGTTATATGTGCGGTTACAGCCCGGGTACCGCGAAGCGTGGTAACTTTGGCCTGCGTCGTGT
TATGCGTATCATTAAAGAGGAAATCAAGGACCTGAACGTGAAACTGGCGGATAAGAACATCAACAAAGCGATTGCGATG
GGTAACAACTTCCTGAAAGACAAGATTTACCCGTATACCCTGGGCAGCTTCTTTCTGGGTGATGCGCACTGGCGTGCGT
TAAAGAAAGCAAGCTGATGAAATATAAGCCGGAGAAGACCATCGACGATATTAAAGAAGACAAGCTGGGTCTGATCGGT
GGCCGTTATATCGCGTGGGCGATTGCGGAGAAAGCGGAGGAAGTTTACATTAGCGACCGTGATCCGTGGGTGGAGAAG
GCGACCGTTAAAGTGCTGAACGAAAACGGCATCAACGCGTACCCGTGCAACGGTGACGATCGTGAAGCGCTGCGTTAC
AAAGGTTATATCACCACCTTTATTCCGGAGCTGGCGCTGAAGATTTACAAAAAACTGAAAGAATATAATAACATTGAACTG
CTGATTTAAGTCGAC3’ 
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hcgG from Methanocaldococcus vulcanius 

5’CATATGAGGGATCTAATAAAAGAAGCAGTAAACAGTCTAGATTCAGCTCTAGAACTACGTAAGCTGATCATCAAGAAAC
TGAACGAAGGTAAGCTGAAAGAGAGCGATATCATTGAAGTGGTTGACGCGGTGGACGATCTGCCGCTGGAGGAAATCC
AGAAACTGGGTAGCAACCTGCGTACCTTCCCGATGGGCTGCGATCTGGTGGAGATTGCGGTTGGTCCGTGCAGCAGCA
GCCTGACCCTGACCCAATTCATCGAAAACTGCATTCTGACCGATTACATGGGCTTTCCGATCCACATTTGCAGCTATGCG
GTTGCGGACATCGCGGAGCGTGAAGGTCTGAAACCGATTGAGGTGCTGAAGATGGTTCTGAACGAAGTGGACGTTCCG
ATCGACATTGATCACTTCGGCATGTACGGCGCGATGCGTTTTCCGAAGGAGATCACCCACTGCTACGGTGATTGCTATT
TCAAAGGTCCGCCGTTTAAGGGCTGCCCGCGTGACCGTATCCACAAACGTCTGATTGAGAAGGAAAAAGAGCACGAAG
ATGAGTTTGAAGACTGGATCAAGCTGGCGAGCACCGTGTGCGTTAACGTGGTTGAGGAACAGGGTGGCGAGGAACATG
CGGCGCCGCTGGAGGAAATGAAAATTGTGGCGGAGACCGCGAAGAAATACGGCAAGGGCCTGGAAGGCATCTTCCAC
ATTGGTGACGGCCACGACGATCTGATCAGCGGTATTAAAGCGTGCATCGACCTGGATGTGGACGTTTTCGTGGTTGAAG
GCGCGCCGTTTAACCGTGCGAAGGATCGTCTGAAAGCGTTTGCGAAGAGCATCGCTGTGAGCCGTATTCTGGTTAACG
GTGGCGTGGTTGCGACCAACGGCGCGTATGAGGACGAATGCCGTGTGGGTCTGCGTAGCGGCCTGAACACCATCCTG
ACCGGTTTCCCGCTGAACCACCACGGTTACATGTGCGGCTATAGCCCGAAGACCGCGAAACGTGGTAACTTTGGCCTG
CGTCGTGTTATGCGTATCATTAAAGAGGAGATTCGTGCGGGTAACGTGAACGCGAGCTTCGTTGATAAAGACATCATTAA
GGCGATCGCGCTGGGTAACAAGTTCCTGAAAGGCAACATTTACCCGCACAACGTTGGTGGCTTTTATCTGGGCGATGC
GCACTGGGCGGCGATCAAAGAGAGCAACCTGTGCCGCAAGCTGAAAGTGAACAAAACCATCGACGATATTAGCGCGGA
AAAGGTTGGTCTGATCGGTGGCCGTTACATCAGCTGGGCGATTGCGGAGAAGGCGGAGGAAGTGTATATTAGCGATGC
GGACAGCTGGGTTGAAAAAGCGACCATCAAGATTCTGAACGATGCGGACATCAACGCGTACCCGTGCAACGGTGACGA
TCGTAAAGCGCTGGAGGCGGACAAGGCGTATATCACCACCTTTATTCCGAACATCGCGCTGAAAATTCTGAACAAACTG
CGTGACGGCAAGGTTGAACTGCTGATCTAAGTCGAC3’ 

hcgG from Methanocaldococcus infernus 

5’CATATGGAAGATCTAATAAAGGAAACAGTAAAGAACAAGTTTGCTGGACTAGAATTACGTAAGATCATCCTGGATAAGA
TTGAGAAGGGCAAGCTGAAAGAGGAAGATATCATTAAGGTGGTTGATACCGTTGACAGCCTGAGCCTGGAGGAAATCAT
TAAACTGGGCAACAACCTGCGTACCTTCCCGCTGGGTTGCGATCTGGTGGACCTGGCGATTGGTCCGTGCAGCAGCAG
CCTGAGCCTGATTGAGCTGCTGGAAAACTGCATCCTGAGCGATTACATTGGCTTTCCGATCCACATTTGCGGTTATGCG
ATCGCGGACATTGCGGAAAAGGAGAACCTGACCCCGCTGGAAGTGTTCAAGAAAGTTTACGATACCGTTGAGGTGCCG
ATCGACATTGATCACTTTGGCAAGTATGGCCCGATGCGTTTCCCGAAAGAAATCGTGTTTTGCGGTGGCGACTGCTACA
ACCTGGGTCTGGCGCGTGAATGCCCGCGTGAGCGTATCCACAAACGTCTGATTGAAAAGGAGAAAGAATATGAGGAAG
AGTTCCTGGACTGGATCCGTCTGGCGAGCACCGTGTGCGTTAACGTGGTTGAAGAACAAGGTCGTGAAGAGCATGGTG
CGCCGATCGATGAGATGCGTGAAGTTGCGGAGGCGGCGAAGCGTTTCGGTAAAGGCGTGGAAGGTATCTTTCACATTG
GTGACGGCTACGACGATCTATCGAGGGCATTCTGGCGTGCATCGACCTGGATGTGGACGTTTTCGTGGTTGAGGGTGG
CCCGTTTAACCTGAAGGATCGTGTGAAAAACTTCGCGAAGGCGGTTGCGATCAGCCGTATTCTGGTGAAGGGTGGCGT
GGTTGCGACCACGGTGCGTATGAGGACGAACTGCGTATCGGTCTGCGTGCGGGCCTGAACACCGTGATTACCGGTTTT
CCGCTGAACCACCACGGTTACATGTGCGGTTATAGCCCGGGTACCGCGCGTCGTGGTAACTTCGGCCTGCGTCGTGTT
ATGCGTATCATTAAGGAAGAGGGCTTTAAACTGATGGGCAAGGAAATCGCGAAAGCGATTGCGATGAGCGGCAACTTCC
TGAAAGGCGAGATCTACCCGAGCCGTCTGGGCAGCTTTTATATCGGTGACGCGCACTGGCGTGCGATTTACGAAAGCA
AACTGAGCAACCTGAAGCCGAGCAAAAGCATCGAGGATATTGACGAAGAGAAGGTTGGTCTGCTGGGTGGCCGTTACA
TCAGCTGGAAAATTGCGGAACGTGCGGAAGAGGCGTATATCAGCGATAAGGACGAATTCGTGGAGCGTGCGACCATCC
GTATTCTGAACGAGAACAACATTAACGCGTACCCGTGCAACGGTGACGATAAGAAAGCGATCAGCGTTGGCAAAGCGTA
TATTACCAGCTTTATCCCGGAAATCGCGCTGAAACTGCTGAATAAATACAAAACCCTGGAAACCCTGTTCTAAGTCGAC3’ 

hcgG from Methanothermococcus thermolithotrophicus 

5’CATATGGAAGATCTAATAAAGAACGCAATAAAGGATCTAGATTGTGCTCTAGAACTACGTAAGCTGATTGTGAAGAAAC
TGAATAAGGGTAGCCTGAAGGAAAAAGATATCATTAACATCGTGGATACCGTTGACAGCCTGAGCATCGAGGACATTCA
GACCCTGGGTAGCAACCTGCGTAAATTCCCGCTGGGCTGCGATCTGATCGAAGTGGGTATTGGTCCGTGCGCGAGCAG
CCTGAGCCTGAGCCAATTCATCGAGAACTGCATGCTGACCGATTATATGGGTTTTCCGATTCACGTTTGCGCGTACGCG
CTGGCGGACATCGGCGAGAAGGAAGGCATTAGCCCGGTGGAAGTTATGAAGAAAGTGTATGAAAACACCGAGGTTCCG
CTGGACCTGGATCACTTCGGTAAATACGGCCCGATGCGTTTTCCGAAGGAGATCACCCACTGCGTGGGTGATTGCTACT
ATAACGGTCCGCCGTATAAGGGTTGCCCGAAAGGCCGTATCCACAAACGTCTGATTGAGAAGGAAAAAGAGTACAGCAA
CGAATTTGAGGACTGGATCAAGCTGAGCAGCACCGTTTGCATTAACGTGGTTGAGGAACAGGGTGGCGATGAACACGG
TGCGCCGCTGGACGAAATGAAAGTGGTTGCGGAGGCGGCGAAGAAATATGGCAAGGGCCTGGAAGGTATCTTCCACAT
TGGTGATGGCTACGAGGACCTGATCACCGGCCTGAAAAGCTGCATTGACTTTGATGTGGACGTTCTGGTGGTTGAGGG
TGGCCCGTTCAACCGTGCGAAGGACAACCTGAAAGCGTTTGCGAAGGCGATCGCTGTGAGCCGTATTCTGGTTAAGGG
TGGCGTGGTTGCGACCAACGGTGCGTATGAAAACGAGTGCCGTATCGGTCTGCGTAGCGGCCTGAACGTGATTCTGAC
CGGTTTCAGCGGCAACCACCACGGTTACATGTGCGGCTATAGCCCGAAAGATGCGCGTCGTGGTAACTTTGGCCTGCC
GCGTGTTCTGCGTATCATTAAAGAGGAAATCATGAACAACCCGGGTGCGCACATCATTGACAAGAGCCAACTGATTACC
CTGACCCGTAGCTGCAAATTCCTGAACTACAAGAACGAAAGCCTGATCTATCCGAAGACCTTTGGTGATTACCTGATTGG
CGACGCGCACTGGGTGAGCGTTCGTAACAGCAAACTGTACAACCGTCTGAACGTGGGCAAGACCCTGGACGATATCGA
GCGTGATTATGACTGCAAGAAACTGGGTCTGCTGGGTGGCCGTTACATCAGCTGGGGCCTGGTGGATGTTCTGAAACC
GGAGGAAGTGTATATTAGCGACGCGAACAGCTGGGTGGAGGAAAGCACCGTTAAGATCCTGAACGAAAACGGTATTAA
CGCGTACCGTTGCAACGGCAACGACAAAGAAGCGGTTAAGAACGCGGAGACCAGCTTCATCACCACCATGATGCCGGA
ACTGATTCTGAAAATTAAAAATAAGGTTGACGCGGAGAGCCTGATCTAAGTCGAC3’ 

hcgG from Methanothermococcus okinawensis 

5’CATATGAAGGATATAATAAAGAACGCTGTAAACGATCTAGATATATGTCTAGAATTACGCAAGGACGTGATCGAGAAGA
TTACCAAGAACAAGCTGAGCGAGAAAGAAATCATTGAGATTGTGGATGCGGTTGACGATCTGAGCATCGAGGAAATTCA
GAAGCTGGGTAGCAACTTCCGTAAATTTCCGCTGGGCTGCGACCTGGTGGAAATGGGTATTGGTCCGTGCAGCAGCAG
CCTGACCCTGACCGAGCTGATCGAAAACTGCATTCTGAGCGATTACATTGGTTTCCCGATCCACATTTGCGCGTATGCG
CTGGGTGACATCGCGGAGAAGGAAGGCATGACCCCGCTGGAAGTGTTTAAAACCATCCACAACGCGATTGAAGTTCCG
ATCGACCTGGATCACTTCGGCAAGTACGGCGCGATGCGTTTTCCGAAAGAGATCACCCACTGCATGGGTGACTGCTACT
ATAACGGTCCGCCGTTCAAGGGCTGCCCGAAAGATCGTATTCACAAGCGTCTGATCGACAAAGAGAAGAAATACAGCTA
TGAATTTGACGATTGGATCAAGCTGAGCAGCACCGTGTGCGTTAACGTGGTTCGTGAACAAGGTGGCGAGGAACATGC
GGCGCCGCTGGATGAGATGGAAATTGTGGCGGAGGCGGCGAAGAAATACGGCAAGGGCCTGGAAGGTATCTTCTACG
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TTGGTGACGGCTATGACGATCTGATTACCGGCCTGAAAAGCTGCATCGACCTGGATGTGGACGTTTTCGTGGTTGAGGG
TGCGCCGTTTAACCGTGCGAAGGATCGTCTGAAAGCGTTTGCGAAGGCGGTGGCGGTTAGCCGTATCCTGGTGAAAGG
TGGCGTGGTTGCGACCAACGGTGCGTATGAGGACGAATGCCGTATTGGTCTGCGTAGCGGCCTGAACGTTATCCTGAG
CGGTTTCCGTGGCAACCACCACGGTTACATGTGCGGCTATAGCCCGAAGACCGCGAAACGTGGTAACTTTGGCGTGCC
GCGTGTTCTGCGTATCATCAAAGAGGAGATCAAGAACAACAAACTGGATACCCACATCCTGAACCGTAACATTCTGAAAG
CGATCGCGCTGGGTAGCAAGTTCCTGAACTACAAAAACGAGAGCCTGATTTATCCGAACAGCCTGGGTGGCCACTTTAT
CGGCGATGCGCACTGGGTTGCGGCGAAGAACAGCAACCTGTACAACAACATCAACAACATCTACAACAAGACCATCGA
CGATATTGACAACTGCAGCAAACTGGGTCTGCTGGGTGGCCGTTACATTGCGTGGGGCATCGCGAAGGCGCTGAAACC
GGATGAGGTGTATATCAGCGACGCGAACAAATGGGTGGAAAAGGCGACCGTTAAAATTCTGAACGACGCGAAGATCAA
CGCGTACGGTTGCAACGGCAACGATAAGAAAGTTATGGAAAACGCGGACAAAAGCATCATTACCAGCTTCATCCCGGAA
ATCGTTCTGCGTATTAAAAACAAAATTGACGCGGAGAGCCTGATCTAAGTCGAC3’ 

hcgG from Methanococcus vannielii 

5’CATATGAAGGAACTAATAAAGTCAAGTCTAAACGATTTCGATTCAGCTATGGAACTACGTGAGATTGTGGTGAAAAAGA
TCAACGATAAGAAACTGACCGAGAGCGACATCATTGATATTGTGGACAGCGTTGACGATCTGAGCTTCGAGGAAATCCA
GAAACTGGGCAGCAACTTCCGTAAGTTTCCGCTGGGTTGCGACCTGCTGGAGATCGGCGTGGGTCCGTGCAGCAGCA
GCCTGAACCTGAGCCAATTTATTGAAAACTGCATCCTGACGATGCGATGGGCTACCCGATTCACCTGTGCACCTATGCG
CTGGCGGAATCGCGGAGAAAGAAGGTATCAACCCGATTGAGGTGATGAAGCAGGTTCACGAGAACGTGGAAGTTCCGC
TGGACATTGATCACTTCGGCCGTTTTGGTCCGATGCGTTTCCCGAAAGAAATCACCCACTGCATGGGCGATTGCTACTA
TAACGGTCCGCCGTATAAGGGTTGCCCGCGTGACCGTATTCACAAACGTCTGATCACCAAGGAGCGTGAACACTTCGA
GGAATTTAGCGACTGGATTAACCTGAGCAGCACCGTGTGCGTTAACGTGGTTGAGGAACAGGGTGGCGGTGATCACGG
TGCGGACATCAGCGAGATGGAAAACGTGAGCAAGGCGGCGCAAAAATATGGCAAGGGTATCGAGGGCATTTTTCACAT
CGGCGATGGTTACGACGATCTGATTAGCGGTCTGCGTGCGTGCAGCGAGCTGAACGTGGACGCGCTGGTTATCGAAG
GCGGTCCGTTCAACCGTAGCAAGAACAAACTGAAGGATTTTGCGAAAGCGGTGGCGGTTAGCCGTATTCTGGTTAAGG
GCGGTGTGGTTGCGACCAACGGTGCGTACGAGGATGAATGCCGTGTGGGCCTGCGTAGCGGTCTGAACGTTATCCTGA
GCGGCTTCAGCGGTAACCACCACGGCTACATGTGCGGTTATAGCCCGAAAGAAGCGCGTCGTAACAACTTTGGCCTGC
CGCGTGTGCTGAAAATTATGAAGGAAGAGGCGAGCAACATGGGTATCTGCATTGCGAACCGTGAGCTGCTGAAAATCCT
GGTTAAGAGCAGCCGTTTCCTGAACTACAACGGCAAGCACATGATTTATCCGGAAATGATCGGCAACTACTTTATGGGT
GACGCGCACTGGGTGAGCGTTAGCAACAGCAAAATGTACAACGCGCCGTATTTCGGCAAGACCCTGGATAGCCTGAGC
GAGGAACTGGACAGCAAGAAAATCGGCGTTCTGGGTGCGCGTTATATTAGCTGGGGTATTGCGAGCGCGCTGAACCCG
GAGGAACTGTATGTGAGCGACGTGGACCCGCTGGTTGAGTACGCGACCGTTAAAATTCTGAACGATAACGGCATCAAC
GCGTACGCGTGCAGCGGTAGCGATCGTAAAGCGCTGGAACAAGCGGACAAGAGCATCATTACCACCATGATCCCGGAG
ATTGCGCTGCGTATCAAAAACAAGTTCAATGCGATTAGCCTGATTTAAGTCGAC3’ 

hcgG from Methanococcus aeolicus 

5’CATATGCACGATATAATAAAGAGTGCAGTAAACGATCTAGATGCTTGTCTAGAACTACGTGGCCTGATTACCAATAAAC
TGACCAATAACAAACTGACCGAGGGCGACATCATTAGCGTGGTTGATGCGGTGGGCGAGCTGCCGATCGAAGACATTC
AGAAAATCGGCAGCAACCTGCGTAAGTTCCCGCTGGGTTGCGATCTGGTGGAGATCGGTATTGGTCCGTGCAGCAGCA
GCCTGACCATGCCGCAACTGGTTGAAAACAGCATGCTGAGCGATTACATGGGCTTCCCGATCCACATTTGCGCGTATGC
GCTGGGTGATATTGCGGAGCGTGAAAGCATCACCCCGCTGGAAGTGTTTAAGACCATTAGCGAGAGCGTGGAAGTTCC
GATCGACCTGGATCACTTCGGTAAATACGGCGCGATGCGTTTTCCGAAGGAGATCACCCACTGCGGTGGCGACTGCTA
TCGTATGGGTGCGCCGAGCGAAGGTTGCCCGCGTGGCCGTATTCACAAACGTCTGATCGACAAGGAGAAGGAATACAG
CTATGAATTCAACGATTGGATCAAGCTGAGCAGCACCGTGTGCATCAACGTGGTTGAGGAACAGGGTGGCGAGGAACA
TGGTGCGCCGCTGGAGGAAATGAAAATTGTTGCGAACGAGGCGCACAAGCACGGTAAAGGCCTGGAAGGTATTTTCCA
CATCGGTGATGGCTACGACGATCTGATCACCGGTCTGAAGAGCTGCGTGGACCTGGGCGTTGATGCGTTCGTGGTTGA
AGGTGCGCCGTTTAACCGTGCGAAGGACCGTCTGAAAACCTTTGCGAAGGCGATTGCTGTGAGCCGTATCCTGGTTAAA
GGTGGCGTGGTTGCGACCAACGGTGCGTACGAGGATGAATGCCGTATTGGTCTGCGTAGCGGCCTGAACATGATCCTG
AGCGGTTTCAGCGGCAACCACCACGGTTACATGTGCGGCTATAGCCCGGACACCGCGAAGCGTGGTAACTTTGGCGCG
CCGCGTGTGCTGCGTATCATCAAAGAGGAAATCGAGTACAACAAGCTGGATACCTGCCTGCTGACCAAACCGGTTCTGC
GTGCGCTGACCAAGAGCGCGAAATTCCTGAACTACGGTGGCAACAGCCTGATTTATCCGAACAAGATCGGTGACTTCTT
TACCGGCGATGCGCACTGGGTGGCGGTTAACAACAGCAACCTGGCGAACAACCTGCACACCAAAACCATTGACGATAT
CGAAAAGGTGGACAAAATTGGTGCGCTGGGTGGCCGTTACGTTGCGTGGGGTCTGATTGACGCGCTGAAGCCGGAGG
AAGTGTACATCAGCGATGCGAACAAATGGGTTGAGTATGCGACCATCAAGATTCTGAACGACGCGGGTATTAACGCGTA
TGGTACCGACGGCAACGATAAGAAAGTGATCGAACAAGCGGATAAAAGCTTCATTACCAGCTTTATCCCGGAAATTAAC
CTGAAAATCAAAAATCGCTACAATAAGGACGTTGAGAGCCTGATCTAAGTCGAC3’ 

hcgG from Methanobacterium formicicum 

5’CATATGTACGATATAGTAAAAGAAGCAGTTAACGATATGGATAGTGCACTAGAACTAAGCAAGGCGAATAAGAACGTGA
ACGACGTGGTTGATGCTGTGAGCGAACTGAGCACCGCGGAAGCGACCCAGCTGGGCATGAACTTCAAGAAATTTCCGA
TTGGTTGCGATCTGACCGAGATCGTTGTTGGTACCTGCGCGAGCGACCTGGGTCGTGATGAACTGATGGGTAACTGCA
TGCTGAGCAACATGCTGGGTGCGAGCATTCACGTTTGCGCGTACGCGTTTGCGGACATTGCGGAGGCGAACAACATGC
GTGGCATTGACATCCTGCGTGAGGTGCGCGAAGCGACCGATGTTCCGCTGGACCTGGATCACTTCGGTCGTTTTGGCG
CGATGCGTTTCCCGCGTGAGATTGTGAAGTGCCCGGGCCAGTGCTATAACCAAGGTCCGCCGTTTCAGGAATGCCCGC
GTGATCGTATCCACGCGCGTCTGGTTGACAAGGAAGAGGCGGCGCAAGATGAGCGTGAGGAATGGATTAAATGCAGCA
GCAGCGTGGCGATCAACGTTACCAGCGCGCAGGGTGGCGAAGGTCATGCGGCGCCGCTGGAGGAAGCGGAGGAAAT
TGCGAGCCTGGCGCAAGAGTACGGCAAGGGCGTGGAAGCGATTATGTTCATCGGTGACGGCTATGACGATCTGGTTAC
CGGCTTTAGCAAAGCGCTGGAGCTGGGTGCGGACATCTTCGTGCTGGAAGGTGGCCCGTTTAACCAAAGCAGCAACCG
TCTGGATAGCTTTGCGAAGGCGGTTGCGATGGCGCGTATTCTGGTGCCGGGCAAAATCGTTGCGACCAACGGTGCGTA
CGAGGATGAATGCCGTGTGGGTCTGCGTGCGGGTCTGAACGCGATCATTACCGGTTTCCCGAGCAACCACCACGGTTA
CATGTGCGGCTATAGCCCGGGTACCGCGAAGAAAGGTAACTTCGGCCTGCCGCGTGTGATCAAGATCATTAAAGAGGA
ACTGAAGCCGGGTCTGACCAACGTTCCGATTCAACGTGGCGAGCTGGAAGCGCTGGCGAGCAGCATCAAGGTGGTTG
GTCCGGAGAACGTGTACCCGCAAAAAATTGGCGAATTTACCCTGGGTGATGCGCACTGGGCGGTGGTTCCGAACAGCC
CGATCTATGAGAAGGTGGAAGTTCAGCGTACCATTCAAAGCATTCATGAAAGCCTGACCGGTAGCAGCGCGGCGCTGA
TCGGTGGCCGTTTTGTTAGCTGGGCGCTGGCGCGTGAGCTGAACAAAGACATGGATGAAATCATTATCAGCGACAAGG
ATCCGTGGGTGGAGAAAGTGACCGTTGACATTCTGAACCGTGAACTGCCGAGCACCGTTATCGGTGCGAGCAGCGACG
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ATAAACTGGCGAGCCAGAACGCGGATCACACCATTATCACCAGCACCATTCCGGGTCTGGTTCGTCGTATTAGCGGCAA
CCTGGATGGCGCGATTACCCTGATTTAAGTCGAC3’ 

hcgG from Methanospirillum hungatei 

5’CATATGCACGATCTAATAAGAAAGGCTATAAACGATCCCGATGCTGCATGGGAATTGAGCAAGATTGAGAAAGGCCCG
CGTGACGTGATTGATGCGGTGACCAGCCTGAACCGTGAGGAAGCGATCAAGCTGGGCAACACCTTCAAACGTTTTCCG
CTGGGTTGCGACCTGACCGAAATTCTGGTGGGTACCTGCGCGAGCGACCTGGAGAAGACCGATATTCTGGGTAACTGC
ATGCTGGCGGATAGCATTGGCGCGAGCATCCACGTTTGCGCGTACGCGTTCGCGGATATTGCGGAAGCGCACGGTATG
AAGGGCATCGACCTGCTGAAAGAGGTGCGCGAAATTACCGAGGTTCCGCTGGACCTGGATCACTTTGGTCGTTACGGT
CCGATGCGTCTGCCGCCGCAGATCATTGGTTGCAACGGCCAATGCTATAACGAGGGTCCGCCGTTTAGCGGTTGCCCG
CGTGATCGTATCCACAGCCGTCTGCTGGACGTGGAACAGGATGCGCTGAGCGACCGTGATGAGTGGGTTAAGATTAGC
AGCAGCGTGGCGGTTAACCTGACCTGCGTGCAGGGTGCGGATGGTCATGCGGCGCCGCTGGATGAAGCGCAAGAGGT
TGCGGACCTGGCGCGTAAGTACGGTAAAGGCATTGAAGCGATCATGTTCGTGGGTGACGGCTATGACGATCTGATCAA
AGGCTTTACCGCGGCGCTGGACATGGGTGTGGATGTTTTCGTGCTGGAGGGTGGCCCGTTTAACTGCAGCACCGATCG
TCTGACCGCGTTTGCGCGTGCGGTTGCGATTGCGCGTATCCTGGTGCCGGGCAAAATCGTTGCGACCAACGGTGCGTA
CGAGGACGAATGCCGTATTGGTCTGCGTGCGGGCCTGAACGCGATCATTACCGGTTTCCCGAAGAACCACCACGGTTA
CATGTGCGGCTATAGCCCGGGCAAGATCAAACGTGGTTATTTTGGCCTGCCGCGTATTCTGCAGATCATTAAAGAGGAA
GTTCGTGACCGTTGGACCCACACCCCGATCCAAAAAGGCGAGCTGGAAGCGCTGGCGCGTGCGGTGAAAGTGGTTGG
CATTGATACCGTTTACCCGCAAAAGATCCGTTACACCTATGTGGGTGATGCGCACTGGGCGTGCCTGCCGCACACCCC
GGTTTTCAGCCGTACCCACGTTCTGAAGACCGTGCAGGATATCGTTAGCATGGCGCTGGACGGTCAAATTGGTGATACC
GTGGCGCTGCTGGGTGGCCGTTTTGTTAGCTGGGCGATCGCGAAGAAACTGGACGGTGTGGTTGATAGCATCATTATC
AGCGACGTGGATCCGTGGATTGAACACGTTACCATCGACAACCTGCGTAGCGAACTGCACACCGAGATTAGCCCGGCG
AAAAGCAGCGATACCTATGCGCACGAGCACGCGGACACCAGCATTATCTGCAGCACCATGCCGGAACTGGTTCGTAAG
ATGAGCTGGAAATGCGGCGATGCGATTACCCTGATTTAAGTCGAC3’ 

hcgG from Methanolacinia petrolearia 

5’CATATGTACGATCTAGTTAAGAAAGCAGTACTAGATCCCTATGCTGCATGGGAACTAAGCAAGATGGATAAGAGCCCG
GCGGAGATCGTGGAGGCGGTTAGCCGTCTGGACCGTGATGAAGCGATGAAGCTGGGCATGAACTTCAAACGTTTTCCG
CTGGGTTGCGACCTGACCGAGATCCTGGTTGGCACCTGCGCGAGCGACCTGGATAAGATCGACATTCTGGGTAACAGC
ATTCTGAGCGATAGCATCGGCGCGAGCATTCACGTGTGCGCGTACGCGTTCGCGGACATCGCGGAAGCGAACGGTATG
CGTGGCATTGACCTGTTCCGTGAGGTTCGTGAAAACACCGAGGTGCCGCTGGACCTGGATCACTTCGGCAAGTTTGGC
CCGATGCGTTTCCCGAAAGATATCACCGGTTGCTGGGGCCAGTGCTATAACGAGGGTCCGCCGTTTGATGGTTGCCCG
CGTGATCGTATCCACAGCCGTCTGATTGACAAAGAGGAAGATGCGCTGGGTGAAAAGGACGAGTGGATCAAACTGAGC
AGCAGCGTGGCGATCAACCTGACCTGCATTCAAGGCGCGGAAGGTCATGCGGCGCCGCTGGATGAAGCGATTGAGGT
TGCGCAACTGGGTAAGAAATACGGCAAGGGCATCGAGGCGATTATGTTCGTGGGTGACGGCTATGAAGATCTGATCAA
AGGCTTTACCACCGCGATTGACATGGGTGTGGATGTTTTCGTGATCGAGGGTGGCCCGTTTAACCTGGCGGAAAACCG
TCTGGATGCGTTTGCGCGTGCGATTGCGATGGCGCGTATTCTGGTTCCGGGCAAGATCGTGGTTACCAACGGTGCGTA
CGAGGATGAATGCCGTGGGGTCTGCGTGCGGGTCTGAACGGCATCATTACCGGCTTCCCGAAAAACCACCACGGTTAC
ATGTGCGGTTATAGCCCGGGTACCGCGCGTCGTGGCAAGTTTGGCCTGCCGCGTATCATTCGTATCATTAAAGAGGAA
GTTCAGGAAGACCTGACCAAGGCGCCGATCCAAAAAGATGAGCTGGAAAGCCTGGCGCGTGCGGTGAAGGTGGTTGA
CCCGGTTAACGTGTACCCGCGTAAAATTGGCTTCGCGCCGGTTGGTGATGCGCATTGGGTGTGCCTGCCGAGCACCCC
GATCTATGAACGTGTTACCGTGAAGCGTACCGTTCACGACATTCGTAAGATGGCGGAGGAAGGTAAAATCGGCGATAGC
ATTGCGCTGCTGGGTGGCCGTTTTGCGAGCTGGGTTATCGCGAAAGAGCTGGAAGGTTATGTGGACCAGATCACCATT
AGCGACATCGATCCGTGGGTTGAAAAGATTAGCGTGGAGAACCTGCAAAGCGAACTGAAAGCGAACATCTACACCGGT
AACAGCGACGATAACGCGGCGTATAAGAACAGCGAGACCGCGATTGTGTGCACCACCATCCCGAGCATTAGCAATAAG
ATTAGCAAAAACCTGAACGACGCGATTACCCTGATTTAAGTCGAC3’ 

hcgG from Methanoregula formicica 

5’CATATGTCAGATATAGTAAGAGAAGCTGCAAGGAATGCTGATGCTGCATGGGAACTAAGCCGTATGAAGAAGGACCCG
GCGGAGATCGTGAGCGCGGTTAGCGAGCTGCACCGTGAGGAAGCGATTGCGCTGGGCAACAACTTCAAACGTTTTCCG
CTGGGTTGCGACCTGACCGAAATCTTCGTTGGCACCTGCGCGAGCGATATGGAGAAGATTGACATCCTGGGTAACTGC
CAGCTGAGCGATGCGATTGGTGCGAGCATCCATGTGTGCGCGTACGCGTTTGCGGACATTGCGGAAGCGCACGGTATG
AAAGGCATCGATCTGTATCGTGAGGTTCGTGAACTGACCGAGGTGCCGCTGGACCTGGATCACTTCGGTAGCTTTGGC
CCGATGCGTCTGCCGAAGGACATCATTGGTTGCCAGGGCCAATGCTACAACACCGGTCCGCCGTTCAGCGGTTGCCCG
CGTGATGTATCCACAGCCGTCTGCTGGACAAGGAGAAAGAAGCGATTGCGGATCGTGAGGAATGGGTTAAAATCAGCA
GCAGCGTGGCGGTTAACGTGAGCTGCGTGCAGGGTGCGCAAGGTCATGCGGCGCCGCTGGAGGAAGCGCGTGAAATT
GCGGAGCTGGCGATCAAGTTCGGTAAAGTGGTTGAAGCGATTCTGTTTGTTGGTGACGGCGATGAAGACCTGCTGCGT
GGCTTCACCGCGGCGCTGGAACTGGGTGCGGACGTTTTCGTGATCGAGGGTGGCCCGTTTAACTGCGCGAAAAACCGT
CTGGATGCGTTTGCGCGTGCGGTGGCGGCGGCGCGTATTCTGGCGCCGGGCAAGGTGGTTGCGACCAACGGTGCGTA
TGAGGACGAATGCCGTATCGGTCTGCGTGCGGGCCTGAACGCGATCATTACCGGTTTCCCGAAGAACCACCACGGTTA
TATGTGCGGTTATGCGCCGGGTACCGCGCGTCGTGGTAACTTTGGCCTGCCGCGTGTTCTGCGTATCATTCGTGAGGA
AGTGCGTGATGGTCAGACCCGTGCGCCGATCATGAAGGAAGAGGTGGAAGCGCTGGCGCGTGCGGTTAAAATTGTGG
GCCCGGAACACGTGTACCCGGAGAAGACGGCGATTGCGCGGTTGGTGATGCGCACTGGGTGTGCCTGCAAAGCACCC
CGCTGTATCACCGTGTTGGCATTAGCAAGACCGCGGCGGGTATCAGCAGCATGGCGAAAGAGGGTCTGCTGGGTGACA
CCGTGGCGCTGCTGGGTGGCCGTTTTGTTAGCTGGGTGCTGGCGCGTGAGCTGGAAGGTTACGTTGATCGTATCATTA
TCAGCGATACCGACCCGCGTGTGGAAAACGTTACCGTGGAGAACCTGCGTGTGCGCTGCGTATGGACATTGAACAAGG
TGGCAGCGACGATCGTCTGAGCGCGAGCCGTAGCGATGCGGCGATCGTGTGCAGCACCATCCCGAGCATTAACCGTA
AGATTAGCCTGGGCGTTCGTAACCCGATTAGCCTGCTGTAAGTCGAC3’ 

hcgG from Methanotorris formicicus 

5’CATATGAGGGAACTAATAAAGGATGCTATAAACGATCTAAATGCTGCACTAGAATTACGTAAGCTGATTATCAAGAAAC
TGAACGAGAATAAGATCAAAGAGAGCAACATCATTGAAATTGTTGATGCGGTGGACGATCTGAGCATCGAGGAAATTCA
GAAACTGGGCAGCAACCTGCGTAAGTTCCCGATGGGTTGCGACCTGGTTGAGGTGGTTGTTGGTCCGTGCGCGAGCAG
CCTGACCCTGAACCAATTCGTGGAAAACTGCATCCTGACCGATTACATGGGTTTTACCATTCATGCGTGCGCGTATGCG
CTGGCGGACATCGGCGAGAAAGAAGGCATCCCGCCGCTGGAAGTGATGAAGATGGTGTACGAAAACGTTGATGTGCCG
CTGGACCTGGATCACTTCGGCCAGTATGGCGCGATGCGTTTTCCGAAAGAGATCACCCACTGCATGGGTGAATGCTACT
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ATAAAGGTCCGCCGTACAAGGGTTGCCCGCGTAAGCGTATCCACAAACGTCTGATTGATAAGGAGAAAGAATATGCGCA
CGAGTTTGAAGACTGGATCAAGCTGGCGAGCACCGTTTGCATTAACGTTGTGGAGGAACAAGGTGGCGAGGAACATGC
GGCGCCGCTGGAGGAAATGGCGGTTGTGGCGAAAACCGCGAAGAAATACGGCAAGGGCCTGGAGGGTATCTTCCACG
TGGGTGACGGCTATGACGATCTGATCACCGGCCTGAAAAGCTGCATTGACTTTGATGTTGACGTGCTGGTTGTGGAAGG
TGCGCCGTTCAACCGTGCGAAGGATCGTCTGAAAGCGTTTGCGAAGGCGATCGGTGTTAGCCGTATTCTGGTGAAGGG
TGGCGTTGTGGCGACCAACGGCGCGTACGAGGACGAATGCCGTATCGGTCTGCGTAGCGGCCTGAACGTTATCATTAG
CGGTTTCAGCGGCAACCACCACGGTTACATGTGCGGCTATAGCCCGGGTACCGCGAAACGTGGTAACTTTGGCCTGCC
GCGTGTGATGCGTATCATCAAAGAGGAAATCAAGAACATGGATGTTACCCTGGTTAGCCGTCACGACCTGATCGCGATT
GCGCGTAGCAGCAAGTTCCTGGGTAACGTTGTGTACCCGGAGACCCTGGGTGGCATGTTTATCGGCGATGCGCACTGG
GTTGCGATTAAGAACAGCAAACTGCACGATAAAGTTGGTATCCGTAAGACCCTGGAGGACGTGGAGAACGAATACAACG
GCGAAAAACTGGGTTTCCTGGGTGGCCGTTATATCGCGTGGGGCATTGCGAAGAAACTGATGCCGGAGGAAGTTTATG
TGAGCGACGCGAACAAATGGGTTGAGGAAGCGACCGTGAAGATCCTGAACGAAGTGGGCATTAACGCGTACAAGTGCA
ACGGTAACGATGAGGAAGTTGTGAAAAACGCGGACAAGACCTATATCTGCAGCATGATCCCGGAGATTATTCTGAAGAT
TAAAAACAAAGTTGAGGCGGAGAGCCTGATGTAAGTCGAC3’ 

hcgG from Desulfurobacterium thermolithotrophum 

5’CATATGAAAGAACTAATATATAGAACAATACAAGGAGATATAAACAGTCAATACATACTGTATAAGAAGGCGAAAGAAG
AGATCCAGAAGCTGTTCGAGAACATTAAGAAACTGAGCGACGGTGAACTGATCGCGCTGGGCCAGCGTTTTAAAGAGTT
CCCGTTTGGTTGCGACCTGAACGAAATTATGGTGGATGTGGTTAGCCTGAAGCAAGAGATCGACGAAATTCGTGGTGGC
TTCCGTCTGGTGGATCGTCTGGGTTTTCCGATCCACGTTTGCAGCTACGTGGTTGCGGAGCTGGCGGAGCGTGAAGGC
AAAACCCCGCTGGAGCTGATGAAGGAACTGCGTGCGCTGACCAGCATGCCGATCGACATTGATCACTTCGGCCAGTTT
GGCCCGATGCGTTATCCGGAGGAAATCGCGAAATGCCCGGCGTACTGCTATCGTAGCGGCAAGCCGTTTAACGGTTGC
CCGCGTGGCCGTATTCACAAACGTCTGATCGAGAAGGAACGTTGCTTCGCGAAAGAGAAGGAAGGCTGGAGCGAACTG
GTGCAGAGCATTAGCGTTAGCCTGATGGCGTTTCAGAAGAACACCGTGCATGCGGCGAGCCCGGAGGAAACCCTGAAA
GTTATCGATTTCGCGAAGAGCAAGAAAAAGGGTGTGGGCGCGATCATTTGCGTTGGTAACGGCAAGGACGAGCTGCTG
CGTGGTCTGAAAGCGTGCATCAAGCACAGCATTGATGAGATCGTGATTGAAGGTGGCCCGTACAACACCGCGCCGAAC
CGTGTTCGTGCGTTTGGCGAAACCGTGGTTATGGCGCGTATCATTGCGCCGGGTAAAATCGTGGCGACCAACGGCCAG
TATGAGGACGAACTGCGTTTCGGTCTGAAGTGCGGCCTGAACAGCGTTATTAGCGGTTTTCCGGGCAACCACCACGCG
TACATGAGCGGTTATAAACCGGAGAAGGCGACCATCGATCGTTTCGGCCTGCCGAAAATCATTGAGCTGATGGCGCAA
GAACTGAAGGACAGCCCGTTTCCGATTCCGGCGGATCGTGAGAGCGCGATCGTGATTGCGAAAAGCGCGAAGTTCCTG
GGTAAAGAAACCATCTACCCGAACGGCAAGCTGGGCGACATCTATATTGGTGATGCGCACTGGTTCCTGCTGCTGAACA
GCCCGCTGGCGCAAGGCATCAACATTAAATGGAGCCTGGAGCTGCTGACCGAATTCATCCGTAAGAACAAGTTCAAAAA
GGTTGGTCTGCTGGGTGGCCGTTTCATCGCGTGGGGCATTGCGAAAGCGATCGACCCGTTTGTGAAGGAGATTCTGGT
TAGCGACAAAGATAAGCGTATCGAGAACACCACCGTGAAAGTTTTTAAGGAATACCTGAGCAGCAAAATCACCCGTTGC
AACGGTAACGACGATATGTGCATTAAGAACAGCGAAATCACCGTTCTGTGCAGCTTCATCCCGAGCTTCATCCGTAAGTT
CAAAGGTATTCAAAAGGTTATCACCCTGGAGAGCTAAGTCGAC3’ 
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