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Abstract 

Drug discovery and design is a tedious and expensive process whose small chances of success 
necessitates the development of novel chemoinformatic approaches and concepts. Their common goal 
is the efficient and robust identification of promising chemical matter and the reliable prediction of its 
properties. Computer-aided drug discovery and design (CADDD) and its multifarious installments 
throughout the different phases of the drug discovery pipeline contribute significantly to the expansion 
of the hits, the understanding of their structure-activity relationship and their rational diversification. 
They alleviate the development’s costs and its time-demand thus support the search for the needle in 
the haystack – a potent hit. The HTS-driven brute-force nature of current and of the decades’ past 
discovery and design strategies compelled researchers to develop ideas and algorithms in order to 
interfere with the pipeline and prevent its frequent failures. In the introduction, I describe the drug 
discovery and design pipeline and point out interfaces where CADDD contributes to its success. 

In Part 1 of this thesis, I present a novel methodology that supports the early-stage hit discovery 
processes through a fragment-based reduced graph similarity approach (RedFrag). It is a chimeric 
algorithm that combines fingerprint-based similarity calculation with scaffold-hopping-enabling graph 
isomorphism. We thoroughly investigated its performance retro- and prospectively. It uses a new type 
of reduced graph that does not suffer from information loss during its construction and bypasses the 
necessity of feature definitions. Built upon chemical epitopes resulting from molecule fragmentation, 
the reduced graph embodies physico-chemical and 2D-structural properties of a molecule. Reduced 
graphs are compared with a continuous-similarity-distance-driven maximal common subgraph 
algorithm, which calculates similarity at the fragmental and topological levels. 

The second chapter, Part 2, is dedicated to PrenDB: A digital compendium of the reaction space of 
prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. Their catalytical 
transformations represent a major skeletal diversification step in the biosynthesis of secondary 
metabolites including the indole alkaloids. DMATS enzymes thus contribute significantly to the 
biological and pharmacological diversity of small molecule metabolites. The attachment of the prenyl 
donor to lead- or drug-like molecules renders the prenyltransferases useful in the access of chemical 
space that is difficult to reach by conventional synthesis. In PrenDB, we collected the substrates, 
enzymes and products. We then used a newly developed algorithm based on molecular fragmentation 
to automatically extract reactive chemical epitopes. The analysis of the collected data sheds light on the 
thus far explored substrate space of DMATS enzymes. We supplemented the browsable database with 
algorithmic prediction routines in order to assess the prenylability of novel compounds and did so for a 
set of 38 molecules. 

In a case study, Part 3, we investigated the regioselectivity of five prenyltransferases in the presence 
of unnatural prenyl donors. Detailed biochemical investigations revealed the acceptance of these 
dimethylallyl pyrophosphate (DMAPP) analogs by all tested enzymes with different relative activities 
and regioselectivities. In order to understand the activity profiles and their differences on a molecular 
level we investigated the interaction within the enzyme-prenyl donor-substrate system with molecular 
dynamics. Our experiments show that the reactivity of a prenyl donor strongly correlates with the 
distance of its electrophilic, reactive atom and the nucleophilic center of the substrate molecule. It 
renders the first step towards a better mechanistic understanding of the reactivity of prenyltransferases 
and expands significantly the potential usage and rational design of tryptophan prenylating enzymes as 
biocatalysts for Friedel–Crafts alkylation. 

Lastly, in Part 4, we present the synergistic potential of combined ligand- and structure-based drug 
discovery methodologies applied to the β2-adrenergic receptor (β2AR). The β2AR is a G protein-coupled 
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receptor (GPCR) and a well-explored target. By the joint application of fingerprint-based similarity, 
substructure-based searches and docking we discovered 13 ligands – ten of which were novel – of this 
particular GPCR. Of note, two of the molecules used as starting points for the similarity and substructure 
searches distinguish themselves from other β2AR antagonists by their unique scaffold. Thus, the usage 
of a multistep hierarchical or parallel screening approach enabled us to use these unique structural 
features and discover novel chemical matter beyond the bounds of the ligand space known so far and 
emphasize the intrinsic complementarity of ligand- and structure-based approaches. The molecules 
described in this work allow us to explore the ligand space around the previously reported molecules in 
greater detail, leading to insights into their structure-activity relationship. In addition, we also 
characterized our hits with experimental binding and selectivity data and discussed it based on their 
putative binding modes derived by docking. 
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Zusammenfassung 

Die Wirkstoffentwicklung ist ein mühsamer und teurer Prozess, dessen geringe Erfolgsaussichten die 
Entwicklung von neuartigen chemoinformatischen Ansätzen und Konzepten erfordern. Ihr 
gemeinsames Ziel ist die effiziente Identifizierung von vielversprechender chemischer Materie and die 
verlässliche Vorhersage ihrer Eigenschaften. Die computergestützte Wikstoffentwicklung und ihre 
vielseitigen Einsatzmöglichkeiten innerhalb der verschiedenen Phasen des Entwicklungsprozesses 
eines Wirkstoffs trägt signifikant zur Erweiterung der bekannten Hits, zum Verständnis ihrer Struktur-
Aktivitäts-Beziehung und zu ihrer rationalen Diversifizierung bei. Sie senkt die Entwicklungskosten, 
verkürzt die Entwicklungszeit und unterstützt dabei die Suche nach der Nadel im Heuhaufen – einem 
potenten Hit. Die von dem Hochdurchsatz-Screening bestimmten Strategien der heutigen und 
ehemaligen Wirkstoffentwicklungskampagnen machen die Entwicklung von Konzepten und 
Algorithmen erforderlich, die mit dem Wikstoffentwicklungsprozess inteferieren und sein häufiges 
Scheitern verhindern. In der Einleitung beschreibe ich diesen Prozess und führe an, an welchen Stellen 
und wie computergestützte Methoden zum Erfolg einer Kampagne beitragen können. 

Im ersten Teil dieser Arbeit stelle ich eine neue Methode vor (RedFrag), die in der frühen Phase der 
Wirkstoffentwicklung zur Entdeckung weiterer Hits eingesetzt werden kann. Dabei handelt es sich um 
einen chimären Algorithmus, der fragmentbasierte Abstraktion oder Reduktion von Molekülen und eine 
auf Fingerprints basierende Ähnlichkeit mit graphtheoretischen Konzepten kombiniert. Dadurch wird 
die Entdeckung neuer chemischer Grundgerüste (Scaffolds) ermöglicht. RedFrag übersetzt Moleküle 
in ihre reduzierte Form, die im Gegensatz zu verwandten Methoden den Informationsverlust während 
der Reduktion gering hält und darüberhinaus ohne die aufwendige und rigide Kodierung von 
chemischen Epitopen, Substrukturen, auskommt. Die fragmentbasierte Reduktion der Moleküle stellt 
sicher, dass physikochemische Eigenschaften der Fragmente in Form von Fingerprints erhalten bleiben 
und die relative zweidimensionale Orientierung der Fragmente zueinander in die Berechnung der 
Ähnlichkeit einbezogen wird. 

Der zweite Teil beschäftigt sich mit PrenDB. Dabei handelt es sich um eine Zusammenstellung des 
Reaktionsraumes von Prenyltransferasen aus der Familie der Dimethylallylsynthasen (DMATS). Die 
Prenyltransferasen katalysieren die Anknüpfung eines Prenylrestes an kleine Moleküle und stellen 
dabei einen wichtigen Diversifizierungsschritt des molekularen Gerüsts dar. Dadurch spielen sie eine 
elementare Rolle in der Biosynthese einer Vielfalt von sekundären Metaboliten, einschließlich von 
Indolalkaloiden. Der katalytische Transfer von Prenylresten an wirkstoffähnliche Moleküle verleiht den 
Prenyltransferasen eine besondere Signifikanz in Hinblick auf ihren Einsatz in der Diversifizierung von 
Molekülen und dem Zugang zur neuartiger Chemie, jenseits des Kanons der medizinal-chemischen 
Synthese. In PrenDB habe ich die Substrate, Produkte, Cofaktoren (Prenylrest-Donatoren) und Enzyme 
zusammengetragen und katalogisiert. Durch speziell entwickelte Algorithmen wurden die 
enzymatischen Reaktionen analysiert und die reaktiven chemischen Epitope identifiziert. Diese wurden 
verwendet, um mittels Substruktursuche neuartige Substrate für Prenyltransferasen vorherzusagen, den 
bestehenden Substratraum zu kategorisieren und ihn dem Benutzer, über eine Web-Oberfläche, 
zugänglich zu machen. 

Der dritte Teil dieser Arbeit umfasst eine Fallstudie, in der die Regioselektivität von fünf 
Prenyltransferasen bezüglich unnatürlicher Prenylrest-Donatoren untersucht wurde. Eine detaillierte 
biochemische Untersuchung offenbarte, dass sowohl die Umsatzraten als auch die Anknüpfungspunkte 
der verschiedenen Dimethylallylpyrophosphat-Analoga von der Kombination aus der jeweils 
eingesetzten Prenyltransferase und dem Prenylrest-Donator abhingen. Um die Ursachen dieser 
Abhängigkeit auf der atomistischen Ebene zu verstehen, habe ich Molkulardynamik-Simulationen 
eingesetzt und die zeitliche Entwicklung der Trajektorien der Enzym-Substrat-Prenyl-Donator-Systeme 
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untersucht. Ich konnte zeigen, dass ein einfaches abstandbasiertes Model die Reaktivität der elektro- 
und nukleophilen Zentren eines Substrat-Prenyl-Donator-Paars und so die Regioselektivität der 
Reaktion erklärt. Diese Analyse stellt auch einen ersten Schritt dar, die Reaktivität der 
Prenytransferasen mechanistisch zu verstehen und unterstreicht den potentiellen Nutzen dieser 
Enzymfamilie als Biokatalysatoren für Friedel–Craft-Alkylierung. 

Im letzten Teil stelle ich am Beispiel des β2-adrenergen Rezeptors (β2AR) den synergetischen Einsatz 
von ligand- und strukturbasierten chemoinformatischen Methoden vor. Die Kombination aus 
fingerprintbasierter molekularer Ähnlichkeit, substrukturbasierter Suche und Dockingstudien 
ermöglichte uns 13 Liganden für diesen guterforschten Rezeptor zu identifizieren. Diese Liganden, von 
denen zehn im Vergleich zur bekannten Ligaden als neu eingestuft werden können, wurden auf 
Grundlage von zwei in einer früheren Studie beschriebenen Liganden gefunden, die beide über ein 
einzigartiges Grundgerüst verfügten. In diesem Licht wird der erfolgreiche, aufeinander folgende oder 
auch parallele Einsatz von verschiedenen, sich konzeptionell unterscheidenden Screeningmethoden 
unterstrichen und der intrinsische komplementäre Charakter von ligand- und strukturbasierten 
Konzepten offensichtlich.
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Preface 

Sah früh von des Schloßhofes Runde hoch über die Dächer ins Land, 
Wo rings durch die Auen im Grunde die Lahn flicht ihr silbernes Band. 
Und feierlich wogte im Tale der Glocken tiefdröhnende Flut, 
Verklingend im Dankeschorale! Alt-Marburg, wie bin ich dir gut! 

aus Alt-Marburg, wie bin ich dir gut!, Text und Musik: Otto Janson, 
1927 

Keine langwierige Recherche, kein Abwägen des Für und Wider, keine Auskünfte, keine 
Studienberatung, keine Rundfahrten durch die Republik. Die Entscheidung für Marburg war eine 
spontane, eine Bauchentscheidung. Geh‘ nach Marburg, dort ist es schön! hieß es. Und das stimmt! 
Was die Wahl der Studienrichtung anging, so stand die Entscheidung für Chemie seit der Lektüre von 
Faust fest. Wenn man doch begreifen möchte, was die Welt im Innersten zusammenhält, bietet die 
Chemie eine einzigartige Möglichkeit, die große und die kleine Welt zu sehen. Vom Makroskopischen 
ins Mikroskopische und zurück. Vom Organischen ins Anorganische, über das Theoretische bis ins 
Physikalische.  

Doch es reichte nicht eine Studienrichtung zu wählen. Während des Studium musste ich noch eine 
weitere Entscheidung im Hinblick auf die chemische Disziplin treffen. Denn seit Goethe ist viel 
Geschehen und die Naturwissenschaften im Allgemeinen, und die Chemie im Besonderen, sind zu 
einem interdisplinären Geflecht aus sich überschneidenden Teilbereichen geworden, die in ihrer Tiefe 
und Komplexität kaum überschaubar, geschweige denn in der Gänze begreifbar sind. Früher oder 
später, doch oft spätestens dann, wenn man sich auf die Suche nach einer geeigenten Arbeitsgruppe für 
die Anfertigung der Bachelorthesis macht, muss die chemische Disziplin gewählt werden. So entschied 
ich mich für die computergestützte Wikstoffentwicklung – die für mich rückblickend uneingeschränkt 
richtige Wahl.  

Doch zunächst wusste ich nur, was ich nicht tun wollte: Organische und anorganische Synthese, 
beides prominente Betätigungsfelder Marburger Chemiker und durchaus spannend und reizvoll, jedoch 
hinter physikalischer und theoretischer Chemie, was mein persönliches Interesse anbelangte, 
zurückbleibend. Erst im Herbst 2009, kurz vor dem Ende des Hauptstudiums, kam es für mich zu einer 
wegweisenden Begegnung. Im Zuge der Vorlesung zur Theoretischen Chemie besuchte ich das 4th 
Rhein-Main Molecular Modelling Meeting, welches von Prof. Guido Germano organisiert wurde. Dort 
hörte ich die Vorträge von Prof. Gerhard Klebe und Prof. Gernot Frenking, die sich zwar in ihrer 
Thematik unterschieden – Vorhersage von Affinität von Protein-Ligand Komplexen auf der einen und 
Moleküle mit ungewöhnlichen Bindungsverhältnissen auf der anderen Seite – mir jedoch auf eine 
spannende und faszinierende Art zeigten, dass komplexe Fragestellungen der modernen theoretischen 
und medizinisch-pharmazeutischen Chemie mit Hilfe des Computers erforscht werden können. Ein 
wahrlich horizonterweiterndes Erlebnis für einen Studenten, der nach Marburger Manier die meiste Zeit 
im Labor verbrachte. 

Prof. Klebes Vortrag und die Tatsache, dass die Wechselwirkungen von Proteinen und kleinen 
Molekülen computergestützt untersucht und modelliert werden können – und das stets im Kontext des 
größeren Bildes der Wirkstoffentwicklung – fesselten mich sofort. Es war fortan mein Wunsch, auf dem 
Gebiet der computergestützten Wirkstoffentwicklung zu lernen und zu forschen. Umso erfreuter war 
ich, als ich meine Bachelorarbeit im Arbeitskreis von Prof. Klebe und dort unter der Betreuung von 
Tobias Craan anfertigen durfte. Es waren sehr lehrreiche und produktive Wochen, während dieser meine 
Begeisterung für Biochemie, Pharmazie und Strukturbiologie weiter stieg. Ich möchte hier Tobias für 
seine Geduld und hingebungsvolle Unterstützung meiner Tätigkeit in einer für mich völlig neuen 
Arbeitsumgebung danken. Die Bachelorarbeit war in vielerlei Hinsicht für meinen weiteren 
akademischen Werdegang bestimmend: Es war mir klar, dass ich der Wirkstoffentwicklung am 
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Computer treu bleiben würde und dass ich meine Masterarbeit ebenfalls auf diesem Gebiet anfertigen 
würde. Die Verflechtung der in vitro und in silico Welten zu einem sich ergänzenden und 
unterstützenden synergetischen Zusammenspiel stellte für mich schon damals ein attraktives 
Betätigungsfeld dar. Ganz im Sinne der faust’schen Freude am Osterspaziergang – Hier bin ich Mensch, 
hier darf ichs sein – erfüllte mich die Arbeit auf diesem Gebiet mit immerwachsender Neugier und 
Begeisterung. 

Es war nur logisch, dass ich auch mein ganzes Masterstudium nach diesem Thema ausrichten wollte. 
So begegnete ich Personen, die meine Begeisterung für Strukturbiologie und Computerchemie weiter 
anfachten. Ich führte in den Arbeitsgruppen von Prof. Mohamed Marahiel und Prof. Gernot Frenking 
Forschungspraktika durch, die mich zusammen mit den begleitenden Vorlesungen zur Biochemie, 
Biokatalyse und Theoretischer Chemie auf die Arbeit mit Proteinen, kleinen Molekülen und natürlich 
Computern bestens vorbereiteten. Erste Gehversuche auf dem Gebiet des Programmierens sollten sich 
ebenfalls als vorteilhaft herausstellen. Im Spätherbst 2011, zwei Jahre nach dem ersten Kontakt mit 
Prof. Klebe, schrieb ich ihn nochmals an. Diesmal mit der Anfrage nach einem Platz zur Anfertigung 
einer Masterarbeit. Meine Enttäuschung war zunächst groß, als Prof. Klebe mir keinen freien Platz 
anbieten konnte und ich mangels Alternativen ziemlich nervös wurde. Doch Prof. Klebe ließ mich nicht 
einfach ziehen. Er verwies auf einen jungen Nachwuchswissenschaftler, der damals im Begriff war, 
seine Arbeitsgruppe aufzubauen, und auch Interesse an einem Masteranden hatte. Ich sollte doch kurz 
bei ihm vorbeischauen und mich vorstellen. Und so klopfte ich an die Tür von Dr. Peter Kolb, den 
Betreuer meiner Masterarbeit und späteren Doktorvater. 

Zwei Doktoranden, ein Post-Doc und zwei Büroräume. Das waren die Kennzahlen der 
Arbeitsgruppe Kolb, als ich im Frühjahr 2012 zur Anfertigung meiner Masterarbeit dazustieß. Vom 
ersten Tag an war Peter mehr als nur ein Betreuer, der meine wissenschaftliche Arbeit beaufsichtigte. 
Er gab mir alle Freiheiten, meine Projekte während der Masterarbeit und später als Doktorand 
selbstständig zu entwickeln, eigene Ideen einzubringen und sie auch kritisch zu hinterfragen. Von 
unschätzbarem Wert waren auch seine eigenen Ideen und Hilfestellungen, gerade dann, als ein Projekt 
in einer vermeindlichen Sackgasse steckte. Es ist Peters Gabe, das größere Bild zu sehen. Dieser Blick 
über den Teller- oder (besser) Bildschirmrand half mir oft, aus einer verfahrenen Situation 
herauszukommen. Seine Weitsicht hat mich neben seiner Geduld, großen Kreativität, steten 
Aufmerksamkeit und persönlichem Engagement tief beeindruckt und nachhaltig geprägt, fachlich wie 
auch persönlich. Ich kann mich nur für alle seine zukünftigen Doktoranden freuen. Ich bin mir sicher, 
dass derer noch viele folgen werden. Vielen Dank Peter. 

Dank gebührt selbstverständlich auch meinem Zweitgutachter Prof. Shu-Ming Li, ohne den meine 
Arbeit nicht hätte entstehen können. Besonderen Dank möchte ich ihm für die allzeit angenehme und 
effektive Zusammenarbeit aussprechen, die Grundlage des Gelingens meiner Forschungsprojekte war. 
Nicht zuletzt sein Enthusiasmus für computergestützte Methoden und unsere in zahlreichen 
Diskussionen entwickelten Gedanken befähigten mich, meine Ideen in praktische Anwendungen 
umzusetzen. Im Zuge dessen danke ich auch allen meinen Kollaborationspartnern, die mit mir auch 
über meine Promotion hinaus an mannigfaltigen Projekten beteiligt sind. Der durchweg fruchtbare 
Austausch von Ideen und Anregungen, die unvoreingenommene Sicht auf die Wirkstoffentwicklung 
mit Hilfe des Computers sowie das reibungslose Zusammenspiel von computergestützter Vorhersage 
und dem experimentellen Beweis war und ist maßgeblich für den Erfolg meiner wissenschaftlichen 
Arbeit. Im Einzelnen möchte ich meinen Dank richten an Jillian Baker, Jean-Louis Reymond, Daniel 
Rosenbaum, Katja Backhaus und Peter Gmeiner. Es bereitete mir eine große Freude, interdisziplinär 
und international Wissenschaft zu betreiben, mich mit ihnen auf Konferenzen zu treffen, auszutauschen 
und zu vernetzen und Projekte gemeinsam voranzubringen.  

Ich möchte an dieser Stelle meinen herzlichen Dank an Prof. Klebe richten, der mein Interesse für 
die Chemoinformatik weckte und mir den Start in das wissenschaftliche Arbeiten ermöglichte. Auch 
später, im Zuge meiner Master- und Doktorarbeit, unterstützte er mich bei meinem Werdegang als 
Wissenschaflter, sei es durch den stets geförderten wissenschaftlichen Austausch oder ehrliche und 
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konstruktive Kritik. Nicht zuletzt möchte ich Prof. Klebe für das mir entgegengebrachte Vertrauen 
danken, auf dessen Grundlage er mir die Bekanntschaft mit Peter ermöglichte. An gleicher Stelle 
möchte ich herzlich Lydia Hartleben danken für ihre Hilfe bei allen administrativen und 
organisatorischen Fragestellungen, die mir während meiner Tätigkeit am Fachbereich begegneten. Ich 
danke ihr für ihre Geduld und Hilfsbereitschaft, die sie mir und meinen Fragen, Formularen, 
Abrechnungen und Anträgen stets entgegenbrachte. 

Arbeit in einer Forschungsgruppe kann nur von Erfolg gekrönt sein, sofern die Arbeitsatmosphäre 
und der kollegiale Zusammenhalt stimmen. In dem Zusammenhang kann ich mich nur glücklich 
schätzen, dass ich mit so zuvorkommenden, freundlichen, hilfsbereiten und gleichermaßen 
professionellen Kollegen zusammen arbeiten durfte. Ich danke Maria Martí-Solano, Anja Flöser, 
Magdalena Scharf, Denis Schmidt, Florent Chevillard, Corey Taylor, Matthäus Drabek, Peter 
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Introduction
 

This chapter of my thesis is meant to outline the drug discovery and design process that can be found 
in a more or less conserved form throughout the pharmaceutical industry. I decided to exploit this 
long, expensive, multi-phase process as a stage for the presentation of the chemoinformatic 
methodology that I heavily used in all of the projects described in this thesis. 

In this introduction I describe selected methods, their conceptual design and how they impact the 
early drug discovery and design stages. It is my intention to not only emphasize strengths of tools 
such as molecular docking and molecular similarity but also to allude to their weaknesses and, 
eventually, to lead over to alternative approaches I developed and which form a major part of this 
thesis. 



 

19 
 

Computer aided drug discovery and design 

There are many aspects of drug discovery that can be addressed to increase its lower than 
expected productivity. 

György M. Keserű and David C. Swinney, A personal Foreword to 
Thermodynamics and Kinetics of Drug Binding, 2015 Wiley-VCH 

In this short statement Keserű and Swinney laid out the real nature of the drug discovery and design 
process: It can be seen – from its early beginning to its very end – as a multidimensional optimization 
problem. A problem whose many aspects, facets and questions – dimensions – can rarely be dealt with, 
understood or answered one-by-one. On the contrary, the inter-dependency of the properties of a 
chemical entity such as a molecule or an antibody, in the context of its desired action in the human 
body, compels the researchers to simultaneously work on a variety of properties. Not uncommonly, 
these properties are inter-connected in such a way that one feature can only be improved by impairment 
of a different one. Thus, the overall success rate of a drug discovery and design campaign depends 
strongly on the starting chemical entity, its initial set of properties and whether they can be further 
adjusted to yield a desired state. 

This choice of the initial entity, a promising molecule, a needle in a haystack, is crucial. Even more 
so, considering that the process of bringing a new drug from discovery to market takes many years 
(12-14 years), up to $1.2-$2.6 billion dollars (1,2) and fails with a probability of over 90 %. (2) The 
high chance of failure, the ever-incrementing costs during the campaign, peaking at the very last stages 
of clinical development (3), necessitates robust and reliable methodology for the identification of the 
aforementioned needle already at the beginning of the long process. In this early stage of drug discovery 
and design, but not exclusively there, in silico methods can truly shine and deliver on the identification 
and optimization of promising starting points. (4,5,6,7) Among many methods and concepts in 
computer-aided drug discovery and design (CADDD), molecular similarity and molecular docking are 
widely and successfully applied to the search for the needle within a vast chemical space. In addition, 
developments with respect to chemical reactions, predictions of reactivity and applicability of 
chemoenzymatic reactions open new avenues to optimization of hit matter – novel approaches to a 
yet-to-be uncovered chemical space. 

1. CADDD along the drug discovery and 
design pipeline 

The long and costly process of bringing a new 
drug to the market consists of a multitude of 
sequential discovery and design phases, decision 
points and milestones (Figure 1). The general 
layout of the drug discovery and design pipeline 
is conserved throughout the pharmaceutical 
industry. Within the pipeline, there are many 
opportunities for bio- and chemoinformatic 
methodology to constructively contribute to the 
overall success of the campaign. (8,9,10) Indeed, 
the process of drug discovery has undergone 
revolutionary changes since the advent of 
technologies such as genomics, proteomics, 
bioinformatics, (11) combinatorial chemistry, 

virtual screening and in silico prediction of 
absorption, distribution, metabolism, excretion 
and toxicity end-points (ADMET). (12) 

1.1. The concept phase 

In its earliest stage – the concept phase – the 
molecular target has to be identified. The target, 
in a simple case a single protein, often an enzyme, 
has a key function within a metabolic or signaling 
pathway. The inhibition of this key function by a 
small chemical entity blocks the corresponding 
pathway and propagates all the way to the desired 
phenotypic effect. An example is the inhibition of 
the DNA damage repair machinery in tumor cells 
which eventually sensitizes them to radio- and 
chemo-therapy. Target identification mainly falls 
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within the domain of Biology, where a particular 
pathway is characterized. Mining of available 
biomedical data driven by bioinformatics has led 
to a significant increase in identified targets. 
Patents, gene expression data, proteomics, 
examining of mRNA synthesis and protein 
expression levels and phenotypic screens 
contribute to the large data pool from which novel 
targets can be elucidated. (13) 

The linking of a target – and its inhibition by 
a small molecule – to a therapeutic effect in a 
disease state is a necessary condition for target 
identification. Thus, target validation, the usage 
of orthogonal experimental approaches to prove 
the target’s therapeutic significance and its 
cellular function prior to a screening campaign, is 
a crucial requirement. Still, of similar importance 
is the target’s druggability: its potential to be 
modulated by a yet-to-be-discovered drug 
molecule that upon binding triggers the desired 
biological response in vitro and eventually in 
vivo. In this respect chemoinformatics 
contributes early on in the process. Based on 
available structural data, if necessary based on 
homology models in case no X-ray data is 
available, putative binding pockets can be 

analyzed. Based on the curvature of the proteins’ 
surface, its depth and enclosure, relative number 
of polar, apolar and ionizable amino acids within 
detected cavities and number and nature of 
putative hotspots contribute to the estimation of 
the propensity of ligand binding. (14) A variety 
of algorithms has been developed for that 
purpose, e.g., DoGSite (15), FTMap (16), 
SiteMap (17) and MOE SiteFinder (18). 

1.2. The discovery phase 

Once a target is identified and validated, i.e. its 
significance for a pathway and therefore an 
indication is proven, chemoinformatic 
methodology plays a distinct role prior to high-
throughput screening (HTS): The main 
contribution is the feasibility assessment and the 
design of targeted libraries or of large-scale pre-
screens of molecular databases. These early 
screen and design steps can be accomplished by 
a virtual high-throughput screening (vHTS). 
Here, based on available information about the 
target’s structure, its known ligand space, or data 
derived from analogous systems, entities from 
multi-million-sized databases of chemical matter 

Figure 1: CADDD in perspective with the early drug discovery and design pipeline. Bioinformatics-supported target
identification (Target ID) and characterization (green). Literature-based tailored library design and virtual screening prior to
HTS, front-loading (FL). Hit-matter-based secondary virtual screening – hit expansion (HE) via analog-by-catalog approach.
Hit diversification (HD) via novel chemistry routes, e.g., chemoenzymatic transformation leading to optimized hit-matter (Hit
Opt) (orange). Understanding of the SAR allows for rationale design. Lead optimization (Lead Opt) and development
candidate entering the clinical development phase (blue). Red circles: entry points for molecular similarity approaches, e.g.,
RedFrag. Green circles: Chemical space exploration with reactivity prediction tools, e.g., PrenDB and SAR-by-Enzyme. 
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can be probed for their likelihood of interacting 
with the underlying target.  

Virtual screening techniques are not only 
applicable prior to the large-scale HTS. Given a 
set of molecules – dozens or even hundreds of 
hits from the HTS – a second round of vHTS can 
be conducted. This analog-by-catalog approach, 
where experimentally verified hits that features 
molecular characteristics beneficial for 
bioactivity are exploited and used as query for 
screening, is a fast and efficient method for the 
discovery of low-hanging fruits and an 
opportunity for early hit expansion.  

As the number of identified hits and the 
amount of experimental data grows, 
chemoinformatic methodology proves to be 
helpful in order to analyze structure-activity 

relationships (SAR) of the hits and build binding 
models and activity hypotheses. These models 
are essential for a guided, rational design of novel 
molecules. Their testing in vitro, the reevaluation 
of the experimental data, its incorporation into 
new models, and design of further molecules 
resembles an iterative hit optimization and hit 
expansion cycle. Eventually, a hit molecule, often 
containing a characteristic chemical scaffold, 
emerges from the hit optimization cycle: Its 
favorable properties, e.g., high affinity and 
selectivity towards the target, award it lead status.  

1.3. The optimization phase 

A lead compound is a chemical entity which 
evolved during the discovery phase from among 
several hundreds of hits. It prevailed because of 
its unique set of properties: affinity towards the 
target in the nanomolar range, a balanced 
solubility and permeability profile, promising 
efflux ratio and low (calculated or modeled) off-
target affinity, to name a few. In the lead 
optimization process properties like metabolic 
stability, pharmacodynamic and pharmacokinetic 
profile, potency and selectivity are further and 
thoroughly improved. The goal of the 
optimization phase is a compound or compound 
family that fulfills the requirements of being 
tested in vivo and becoming a development 
candidate (DC). 

2. Ligand- and structure-based drug design 

The multi-step drug discovery and design 
pipeline – target identification and validation, hit 
discovery and optimization, lead identification 
and optimization, candidate selection – offers a 
variety of entry points and opportunities for 
chemoinformatic in silico methodologies. 

Already at the early stage, shortly after target 
identification and characterization and before the 
HTS, ligand- and structure-based approaches 
play an important part in increasing the chance to 
discover promising hits. Depending on the 
available information, structural data of the 
target, size of its ligand space, existence of 
analogue systems, a multitude of orthogonal 
methods and – beneficially – its combination can 
be applied (Figure 2). Molecular similarity 

Figure 2: According to available data, CADDD
methodology can be used to supplement a project with novel
chemical matter: Given only a reference compound, 2D
molecular similarity in its different flavors can be used. With 
gathering of structural information, the spectrum of
available methods grows. Three-dimensional shape
comparison and structure-derived pharmacophore searches
(hybrid methods of LB- and SBDD) and eventually docking
becomes possible. 
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methods and molecular docking are fast and 
robust methods that can supplement the 
discovered hits with additional compounds, both 
of which require little information about the 
system of interest. Similarly, the field of 
quantitative structure-activity relationship 
(QSAR) and its predictive tools help to predict 
physico-chemical endpoints based on 2D and 3D 
structural information of the so-far-explored 
chemical space. Pharmacophore models – 
knowledge-based binding hypothesis filters – 
incorporate the three-dimensional arrangement of 
chemical epitopes crucial for binding, allow for 
fast compound classification but also requires 
elaborated data. 

All of them have in common that they can be 
used to screen proprietary, commercially 
available and public domain databases of small 
molecules, thus reducing the available chemical 
space (several hundred thousands to many 
millions compounds in size) to a fraction of mere 
thousands of putative binders or virtual hits. 
Popular resources for screening compounds are, 
among others, the ZINC database curated 
selection of commercially available 
compounds (19); the National Cancer Institute 
Library (NCI); the ChEMBL database of small 
molecules and their reported binding functional 
effects to macromolecular targets (20); and the 
PubChem database maintained by the National 
Center for Biotechnology Information 
(NCBI) (21). 

The usage of ligand- and structure-based 
methodology in drug discovery and design is not 
limited to large-scale virtual screenings (VS). 
Within the discovery and design pipeline, there 
are many interfaces where molecular similarity 
and/or docking can be beneficially applied. Most 
importantly they contribute to the understanding 
of the SAR. Once a ligand-receptor complex 
structure has been solved and a sufficient number 
of closely related analogs has been synthesized 
and their affinity towards the target determined, 
molecular modelling can be used to correlate the 
observed affinity values with structural 
information. Even without an existing ligand-
receptor complex, molecular docking can be used 
to generate a binding mode hypothesis that serves 
as seed for the posing of a ligand series into the 
receptor and the analysis of their interactions.  

2.1. Molecular similarity 

Within the ligand-based method family, 
molecular similarity and its vast – and still 
growing – number of different incarnations is a 
very popular screening technique. (22) Indeed, it 
is one of the most heavily explored and exploited 
concepts in chemical informatics. (23,24,25) 

Molecular similarity and the underlying 
similarity property principle (SPP), which states 
that similar compounds should have similar 
properties and most of all similar biological 
activity (26), seems intuitive and simple, but only 
at the first glance. Figure 3 shows four geometric 
shapes which, to the human eye and to different 
extents, share similar properties: Obviously, the 
hexagon and the square share identical surface 
and outline color. The same is true for the circle 
and the triangle. Concerning the number of 
angles, the triangle is more similar to the square 
than the hexagon and the circle is least similar to 
the other three figures. On the contrary, the 
relative high number of angles in the hexagon 
resembles the shape of the circle more accurately. 
Finally, all shapes are identical with respect to 
their surface area. 

This example illustrates the complexity of the 
question how similar objects are and based on 
which properties and features of a given set of 
objects similarity can be argued about. These 
questions get more and more intricate the more 
abstract and complex an object set becomes. 
Potentially bioactive molecules, a set as large as 
1060 objects (27,28), assembled from a dozen of 
chemical elements and connected by a handful of 
bond types, pose delicate case where concepts of 
similarity are as indispensable as they are 
multifarious.  

They are indispensable because otherwise 
navigation through the chemical space that we 
have explored so far, both synthetically and 
virtually, would be limited to the closest analogs 

Figure 3: Similarity depends on the properties that serve as 
basis for comparison. Color, shape, surface area, number of 
angles are only a few, based on which the similarity of the 
four geometric shapes can be assessed. 
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for a given query compound. Small, systematic 
modifications of the molecular skeleton, which 
lie in the reach of medicinal chemists, would 
predominate the chemical space built around a 
given hit or parent structure. Larger leaps into – 
measured by human intuition – more distant 
chemical environments are only possible if an 
automated and fast method for similarity 
assessment is invoked. Such a method compares 
a molecule with millions of other chemical 
entities calculates the similarity between them 
and fetches the most similar – or 
dissimilar – according to pre-defined criteria. 

The simple example with squares and 
triangles showed that similarity assessment is not 
straightforward and even less so if computers, 
intuition-free devices, are entrusted with the task. 
Similarity calculation has many flavors and the 
pool of molecular similarity methods is steadily 
growing, as is natural for a concept that deals with 
objects as complex as molecules. Furthermore, 
researches constantly modify and extend present 
methods and add new concepts to the field. Given 
also the fact that a computer knows nothing about 
similarity but is very efficient in evaluating 
formulae, the manifold concepts of similarity 
have to be translated into mathematical fabric, 
which in turn is many-faceted and thus prone to 
creative interference. 

Manifestations of molecular similarity are 
diverse. Conceptually, one could differentiate 
between one, two- and three-dimensional 
methods. One-dimensional similarity or chemical 
similarity relies primarily on physico-chemical 
characteristics of molecules, e.g., solubility, 
lipophilicity, molecular weight, etc. Properties 
that can be derived from the chemical formula but 
in some cases also necessitates the molecular 
structure. In many cases these properties 
themselves are subject to calculations based on 
the molecular structure: LogP values, dipole 
moments, kinetic and thermodynamic solubility 
and further pharmacokinetic and 
pharmacodynamic end points to name a 
few.  (22) Two-dimensional similarity relies on 
information derived from the molecular 
graph (29), i.e., the plain structure of the 
molecule, e.g., shared substructures, composition 
of ring systems, distribution of torsional angles, 
topological arrangement of chemical epitopes, 

etc. A direct comparison of molecular graphs or 
parts of it – graph and subgraph 
isomorphism – are computationally demanding 
and not as widely spread as other 
implementations of 2D similarity. Still, 
substructure searches, where a prominent part of 
the molecular graph – often the scaffold – is used 
as query and is searched within a large number of 
target molecular graphs, is very popular, 
especially in the analog-by-catalog hit expansion 
approach. More widely applied are fingerprint-
based methods that use precalculated vector 
representations of molecules such as extended-
connectivity or circular fingerprints (ECFP (30), 
FCFP (31)) In a fingerprint, information about 
chemical constitution and structural features (32) 
of a molecule can be stored (mostly in a binary 
fashion of on and off bits). (32,30) Absence or 
presence of distinct structural features, rings, 
functional groups, H-bond donor and acceptor 
functionalities, are encoded in the fingerprint, 
effectively abstracting the molecular graph into a 
one-dimensional bit-string. Fingerprints, 
conceptually, are used to calculate the global 
similarity of a pair of molecules, i.e., by means of 
the SPP, a compound that resembles a potent 
query molecule structurally and physico-
chemically should show similar bioactivity. 
Additionally, and in contrast to pharmacophore-
based local similarity approaches, fingerprint-
derived similarity does not rely on specific 
knowledge about structural features important for 
activity. Thus, they are applicable where only 
little is known about the target and its ligand 
space. However, although fingerprint-based 
methods are efficient in screening large 
databases, they lack the ability to efficiently 
retrieve compounds with different scaffolds – key 
or core structural motifs. (33,34) A similarity 
calculation based on such bit-strings along with 
their creation is handled efficiently by computers. 
Together with a variety of similarity 
coefficients – mathematical formulae that 
evaluates the numerical similarity based on two 
input fingerprints – large chemical spaces can be 
screened and explored. 

Three-dimensional similarity (35) in 
comparison with 2D similarity and its 
fingerprint-based abstraction seems, at the first 
glance, more intuitive: Molecules are three-
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dimensional arrangements of atoms, thus to 
discard information about their 3D shape has to 
be disadvantageous in light of the SPP. Indeed, 
comparison of molecules in 3D can lead to more 
accurate similarity assessment, even more so 
through the fact that two compounds with high 
2D similarity do not necessarily occupy similar 
conformational states in a biologically relevant 
scenario. Still, 3D similarity assessment has at 
least three major drawbacks that renders its 
application limited: i) In order to obtain 
reasonable results, the 3D conformation of the 
query molecule in its biologically active state has 
to be known. This is only rarely the case, 
especially in the early stages of the drug 
development and discovery. ii) The necessary 
overlay of structures in three dimensions is 
computationally far more demanding than in 2D 
and necessitates the enumeration of 
conformations of the target molecules. iii) 
Chemists are trained on the basis of plain 
molecular graphs and in general more 
comfortable with 2D-driven analyses. (22) 

Nevertheless, three-dimensional similarity 
assessment methods – pharmacophores, ROCS 
analysis, etc. – bear the desired potential of 
scaffold hopping. (36) A scaffold hop is 
considered to have occurred when a molecule 
differs in its characteristic core chemical epitope, 
scaffold or substructure, from the query or parent 
molecule but still resembles the spatial 
arrangement of decorative (crucial in terms of 
function) substituents. Scaffold hops are of great 
importance in pharmaceutical industry in terms 
of intellectual property (IP) and the related 
strategy of patent breakage. From this point of 
view 3D similarity methods seems attractive and 
– vice versa – scaffold hopping-capable 2D-
based similarity concepts. Part 1, a chimeric 
similarity approach that combines fingerprint-
based and graph isomorphism-driven 
methodology, describes such a concept called 
RedFrag. There, the holistic view of compounds 
is abondoned as they are abstracted to their 
reduced, fragment-featured local representation 
and compared thereafter. In contrast to other 
feature-, fragment- or structural motif-based 
molecule abstraction, RedFrag does not require a 
large pre-defined dictionary of, e.g., SMARTS-
encoded substructures or features. It relies solely 

on the definition of only a few bonds that separate 
structural motifs within a molecule. 

2.2. Molecular docking 

Methodology that makes use of three-
dimensional structural information gathered from 
biological targets – via X-ray crystallography or 
by nuclear magnetic resonance (NMR) – is a 
prominent and widely applied component of hit 
discovery and design throughout the early and 
middle stages of the discovery and design 
pipeline. Structure-based design – and there 
molecular docking specifically – benefits from 
the large and steadily growing number (more than 
100,000) of resolved structures of 
macromolecular drug targets. (37) Molecular 
docking, its large-scale application in virtual 
screening campaigns, and molecular dynamics 
(to a smaller extent due to its computationally 
demanding nature) are popular and frequently 
applied. (38) 

Since its advent in the 1980s, molecular 
docking became an essential tool in drug 
discovery. (39) Its ability to predict the 
conformation of a small-molecule ligand within 
the binding site of the receptor renders it uniquely 
useful for understanding ligand-receptor 
interactions. In order to screen the 
conformational space of the ligand within the 
context of the binding site of the receptor, 
docking tools employ two strategies: i) In a 
systematic manner the structural parameters of a 
compound, e.g., torsional, rotational, 
translational degrees of freedom, are 
incrementally varied and the resulting 
conformation is scored at each step. (40) ii) 
Rather than systematically, the structural 
parameters can be modified randomly or 
stochastically. (41) In this case, the algorithm 
generates conformational ensembles and thus 
covers a wide range of the conformational space. 
In comparison to the systematic approach, 
stochastic sampling is more likely to find a 
conformation corresponding to a global energy 
minimum. On the contrary, the systematic 
approach, due to the limited coverage of the 
energy landscape, can be trapped in a local 
energy minimum. Still, the more extensive 
sampling of the former comes with a higher 
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computational demand. Exemplarily for 
systematic conformational sampling are tools 
such as FRED and HYBRID (42), DOCK (43), 
GLIDE (44) and FlexX (45). Stochastic searches 
are conducted, among others, by GOLD (46), 
MOE (47) and AutoDock (48). 

In addition, molecular docking algorithms 
also execute quantitative estimations of binding 
energetics commonly known as scoring. (39,49) 
This score – generally a probability that a created 
pose is likely to resemble the true binding 
geometry – allows for ranking of docked 
compounds according to their likelihood of 
binding to the target. The corresponding scoring 
functions are mathematical formulae that 
evaluate the most important physico-chemical 
phenomena involved in ligand-target binding, 
e.g., intermolecular interactions (polar, charge-
assisted, dispersion interactions, etc.), protein and 
ligand desolvation and entropic effects. (50) 

Docking, viewed from the present and 
considering the steadily growing computational 
resources at our disposal, became one of the fast 
and cheap virtual screening methods. Its usage is 
only limited by the availability of structural data. 
However, the lack of structural information about 
the target can – to some degree – be compensated 
by homology modeling. It is therefore not 
surprising that docking supplemented the studies 
reported within this thesis: In Part 2, docking 
featured in the last step of a hierarchical screening 
cascade, reducing the pool of putative 
prenyltransferase substrates to those compatible 
with the active sites of the selected enzymes. In a 
related study on the regioselectivity of 
prenyltransferases, docking-generated poses 
were used as seeds, starting geometries, for 
molecular dynamics simulations (Part 3). Lastly, 
in Part 4, a combined fingerprint similarity, 
substructure search and docking study helped us 
to find novel ligands for the β2-adrenergic 
receptor.  

3. Diversification and expansion of hits 

In the early stages of the drug discovery and 
design pipeline – shortly after the HTS – it is one 
of the major tasks of the joint team of medicinal 
chemists and chemoinformaticians to increase the 
number of hits. Firstly, the understanding of the 

SAR is crucial for a guided, rationale design of 
new compounds. Chemical entities with small 
modifications that are used as probes for the 
exploration of the binding site of the target are 
designed. Their design is based on both intuition 
of medicinal chemists and, more 
methodologically, is driven by ligand- and 
structure-based chemoinformatic tools. The 
aforementioned molecular similarity and 
molecular docking are widely applied in an 
analog-by-catalog or de novo fashion at this 
inflationary expansion stage. Secondly, by small 
alteration of the scaffolds of hits and iteration of 
their decorations, a continuous effort is made to 
modify the compounds’ properties into their 
desired state.  

In this seamlessly inter-connected phase of hit 
expansion, diversification and optimization the 
limiting factor on what can be synthetically 
achieved and/or easily retrieved from, e.g., 
vendor databases, depends on the chemical space 
spanned by the variety of known chemical 
reactions: Within this chemical reaction space, 
arylation and alkylation of heteroatoms, acylation 
in general, C-C bond formation (Figure 4) and 
reduction chemistry are predominantly used in 
the pharmaceutical industry (they cover almost 
75% of all analyzed reactions). Among the C-C 
bond formation reactions (11 %), cross-coupling 
reactions (62 %) and there the Suzuki-Miyaura 

Figure 4: Three exemplary C-C bond formation reactions. 
A Mukuiyama aldol addition. B Horner-Wadsworth-
Emmons reaction. C Suzuki-Miyaura coupling reaction. 
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reaction (40 %) takes a preponderant 
position. (51) 

Various studies and thorough analyses 
described the content of the chemical space 
spanned by this chemical reaction repertoire: It 
has been shown that the chemical matter 
synthesized (ChEMBL database) and vast 
databases of computer-enumerated molecules 
(GDB) (52) store linear concatenations of 
building blocks resulting in a rod-like shaped 
chemical space with limited three-
dimensionality. (53) It seems therefore important 
– even necessary – to expand our toolkit of 
chemical reactions, thus allowing for alternative 
chemistry, hit diversification in the direction of 
three-dimensionality, higher structural diversity 
and richness of molecular properties. Enzymes 
and their unique ability of conduct complex 
chemical transformations under mild conditions 
open a promising avenue in that direction. Efforts 
in understanding biocatalysts were undertaken in 
a study described in Part 3 of this thesis. Joint 
application of docking and molecular dynamics 
helped us to elucidate how regioselectivity in 
reactions catalyzed by prenyltransferases is 
controlled. In order to use prenyltransferases as 
biocatalysts and diversifiers of chemical matter, 
we performed a thorough literature search and 
compiled the extracted data into a database of 
prenyltransferase reactions supplemented with 
predictive algorithms (Part 2). 

3.1. Chemoenzymatic reactions – Biocatalysis 

Biocatalysis is achieved by enzymes with the 
ability to bind and modify small molecules with 
regard to a determined chemical reaction. 
Enzymes, in contrast to other catalysts, act upon 
their substrates from within a mostly water-
excluded cavity, the active site, that allows for 
unique reaction environment: Shifts in both pKA 
values of the amino acids sidechains and the 
redox potentials of the surrounding enables 
enzyme to conduct complex chemical 
transformation under ambient conditions. (54,55) 
Moreover, they are asymmetric by design, thus 
allowing for high stereo-, chemo- and 
regioselectivity. (54) Biocatalysis is well aligned 
with principles of green chemistry: Atom- and 
energy efficiency, less hazardous chemical 
syntheses, renewable material source and 
prevention of waste are only few buzzwords that 
apply to enzymes and their use in synthetic 
chemistry. (56) 

Although biocatalysis shines with promising 
features, successful applications and case studies 
throughout the literature, there are limitations and 
weaknesses. Coherently reported are three: i) The 
development of biocatalysts is prone to chance, 
slow and does not follow a pre-defined set of 
rules. ii) Enzymes have a limited range of 
stability with respect to temperature, solvents, pH 
value, ionic strength to name a few. iii) The 
number of characterized biocatalysts is still low 
compared to chemical catalysts. (54) 

Figure 5: The enzymatic route for the synthesis of sitagliptin using an engineered amine transaminase. 
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In order to overcome these caveats a 
tremendous progress has been made throughout 
the decades since the dawn of recombinant DNA 
technology: Rational (or data-driven) protein 
design and combinatorial protein engineering 
synergistically contributed to the development of 
enzymes with desired properties. (57,58,59,60) 
Catalytic efficiency and thermal stability are of 
utmost importance for large-scale applications in 
chemical pharmaceutical industry and thus in 
focus of protein engineering research. In 
addition, enzymes with novel reaction profiles 
were discovered, some of them without a 
complement in chemistry, closing the gap to 
classical catalysis. For example, enzymes that 
catalyze named reactions such as Diels-Alder 
reaction (Diels-Alderase) (61), Morita-Baylis-
Hillman reaction (Michael additase) (62) and 
Kemp elimination (Kemp eliminase) (63) has 
been developed. 

Figure 5 shows one of many success stories 
of applied biocatalysis in pharmaceutical 
industry: The synthesis of the anti-diabetic 
compound sitagliptin necessitates in its last stage 
a rare heavy metal (Rh) catalyst in a multi-step 
reaction with an overall high level of waste and 
under harsh reaction conditions. The enzymatic 
route, on the contrary, applies an engineered 
amine transaminase, simplifies the overall 
reaction, increases the yield by more than 10 % 
and the productivity (kg/L per day) by 53 %, 
while still leading to an optically pure 
product. (64) 

3.2. Prenyltransferases 

Prenyltransferases catalyze the transfer of a 
prenyl moiety, e.g., a dimethylallyl 
pyrophosphate (DMAPP), to a variety of 
substrates: Trans- and cis-prenyltransferases 
catalytically attach a prenyl pyrophosphate 
molecule to an isopentenyl pyrophosphate 
substrate via an E- and Z-condensation 
reaction. (65,66) Cis- prenyltransferases are 
further subdivided into short- (C15), medium- 
(C50-55) and long-chain (C70-120) cis-
prenyltransferases. (65,66,67) The corresponding 
prenylation products, polyterpenes, are important 
entry points for the biosynthesis of a plethora of 
natural products and secondary metabolites, e.g., 
squalene and phytoene. Such metabolites show a 
wide spectrum of biological activities and are 
important resources for medicinal research and 
drug development. 

Prenyltransferases also transfer short-chained 
prenyl donors like geranyl (C20) and farnesyl 
(C15) pyrophosphate to a conserved cysteine 
residue in a CaaX motif of proteins and peptides 
affecting the mechanism of their regulation, 
localization and function. (68) 

Prenyl moieties are also transferred on a 
multitude of small-size aromatic molecules like 
phenols, phenolic acids, flavonoids, naphthalenes 
and indole derivatives. (69) All of which 
represent promising starting material for lead- 
and drug-like chemical matter. (70,71,72) In this 
respect, indole prenyltransferases play a critical 
role in the biosynthesis of structurally diverse 
indole alkaloids, which due the prenylation, are 

Figure 6: First step of the biosynthesis of ergotamine is conducted by the prenyltransferase FgaPT2. It attaches dimethylallyl
pyrophosphate (DMAPP) to L-tryptophan. The product, 4-L-dimethylallyltryptophan, is further enzymatically modified to
lysergic acid and eventually to ergotamine. Colored in orange and blue are the skeletons of the substrates of FgaPT2. Adapted
from ref. (76). 
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further diversified in their respective biosynthetic 
pathways. (69,73,74) Figure 6 illustrates the 
prenylation of L-tryptophan by the 
prenyltransferase FgaPT2 as starting point of the 
synthesis of ergotamine. (75) 

Indole prenyltransferases – members of the 
dimethylallyltryptophan synthase (DMATS) 
superfamily – are soluble proteins and were 
shown to be suitable for well-yielded 
overproduction and straightforward purification, 
rendering their applicability in biotechnological 
use. (76) They represent one of the most 
investigated class of prenyltransferases, that 
show a remarkable flexibility in the acceptance of 
their aromatic substrate (77,78) and to a smaller 
extent prenyl substrates. (79) In addition, the 
regioselectivity of the prenyl transfer reaction 
strongly depends not only on the indole 
prenyltransferase itself but also on the distinct 
combination of aromatic substrate and prenyl 
moiety donor (Figure 7). (80) An interesting 
conjuncture for in silico-driven investigations 
and protein engineering. A deep understanding of 
the driving forces behind substrate acceptance, 
regioselectivity and yield of the prenyl transfer 
reaction would enable prenyltransferases to be 
used as an enzyme library – a toolbox – for atom-
efficient and green-chemistry-conform hit 
diversification.  

In this respect, this thesis describes the 
evolution of prenyltransferases from a well-
studied player in the anabolic pathways of 
secondary metabolites to a systematically 
organized and algorithmically exploited 
biocatalysis and compound diversification 
system. In Part 2, I present PrenDB, a database 
of prenyltransferase reactions which – in contrast 
to databases such as BRENDA (81) or 
KEGG (82) – although by far not as 
comprehensive as the former, is more than a 
listing. By means of a combined fragmentation 
and subgraph isomorphism approach, it processes 
reactions conducted by prenyltransferases in an 
automated manner. Furthermore, it enables the 
prediction of prenylability of novel compounds 
based on the reactions deposited in the database. 

Figure 7: Chemo- and regioselectivity spectrum of indole
prenyltransferases. 
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Part  

 

Part 1 captures my first full article in which Peter and I present a new method for two-dimensional 
molecular similarity calculation. RedFrag combines two popular approaches in the field: Similarity 
calculation via holistic fingerprints and molecular pattern matching via graph isomorphism. Our 
approach exploits the idea of molecules being a construct of smaller chemical entities, fragments, 
simultaneously bypassing the necessity of defining sets of substructures, moieties or groups. The 
utilization of only a few – or even only one – fragmentation rules allows to look on molecule as a 
combination of fragments which are represented by a potentially infinite number of hues in the color 
space spanned by the underlying fingerprints. This enables RedFrag to discover similar molecules on 
their composition level, allows for fragmental diversity but still retains the molecular topology. 

The author list is the following (by contribution order): Gunera J, Kolb P. I was responsible for 
the development of RedFrag’s algorithm: The design and layout of the underlying code structure and 
the programming. I performed the retrospective validation study and parameter optimization as well 
as the prospective virtual screen for putative endothiapepsin ligands. 
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Abstract 

Fragment-based searching and abstract 
representation of molecular features through 
reduced graphs have separately been used for 
virtual screening. Here, we combine these two 
approaches and apply the algorithm RedFrag to 
virtual screens retrospectively and prospectively. 
It uses a new type of reduced graph that does not 
suffer from information loss during its 
construction and bypasses the necessity of 
feature definitions. Built upon chemical epitopes 
resulting from molecule fragmentation, the 
reduced graph embodies physico-chemical and 
2D-structural properties of a molecule. Reduced 
graphs are compared with a continuous-
similarity-distance-driven maximal common 
subgraph algorithm, which calculates similarity 
at the fragmental and topological levels. The 
performance of the algorithm is evaluated by 
retrieval experiments utilizing pre-compiled 
validation sets. By predicting and experimentally 
testing ligands for endothiapepsin, a challenging 
model protease, the method is assessed in a 
prospective setting. Here, we identified five novel 
ligands with affinities as low as 2.08 µM. 

1. Introduction 

In the past decades, ligand-similarity-based 
methods for virtual screening of large molecular 
databases have increased in importance. This is 
due to the steady and concomitant growth of 
databases holding small organic compounds (1) 
and experimentally validated ligands for a 
plethora of potential protein targets. (2) 
Similarity calculations and searches are based 

upon the similarity principle in medicinal 
chemistry, which states that similar molecules are 
likely to have similar biological effects. (3) 
While this certainly seems intuitive and has been 
shown by, e.g., Martin et al., (4) it immediately 
leads to the question of how to define similarity 
between molecules. Historically, this question 
has been answered by developments based on 
notions such as fingerprints and distances or 
similarity coefficients in order to quantify the 
extent to which two molecules can be considered 
similar. (5,6,7,8) Such classical concepts of 
similarity tend to focus on the global resemblance 
of a pair of compounds. 

The scope of similarity determination ranges 
from 2D methods such as substructure (9) and 
pharmacophore searching (10) to 3D methods 
such as molecular shape overlay (11) and the 
conceptually similar topomer similarity. (12,13) 
A common theme of the most frequently used 
approaches is the encoding of molecules via 
descriptors representing their structural and/or 
physico-chemical properties. In principle, such 
fingerprints can be constructed at different levels 
of granularity, ranging from atom counts to the 
occurrence of certain substructures. Fingerprints 
are usually fast and therefore attractive for 
screening large libraries. However, they can 
suffer from a drawback which is ingrained in their 
very nature: Since they focus on similarity, they 
will of course yield molecules that can be very 
similar to each other. This is especially 
bothersome when scaffold hops are desired (14), 
which is often the case when investigating well-
researched targets. Thus, fingerprint methods that 
have a slightly different view of what similarity 
means and that do not focus on the precise atom 
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arrangement are desirable. Of course, 3D 
pharmacophore searches or docking could be 
employed to that end, too, but they have their own 
drawbacks when it comes to the generation of 
conformations and speed. 

At the low-resolution end of the spectrum of 
similarity methods, feature trees have been 
developed. (20,21) They reduce functional 
groups of a molecule to nodes of different type, 
simplifying the graph of a molecule by going 
from individual atoms as nodes to cycle-free trees 
with nodes as higher-order features. Commonly 
used implementations exploit several levels of 
graph reduction. (22) These are then combined 
with a pre-defined, limited number of colors (or 
labels) that represent different chemical 
features. (23) 

Depending on the underlying granularity of 
node detection and the color space applied during 
the node coloring process, information is lost and 
thus becomes unavailable for comparison 
procedures. Moreover, by using a finite and pre-
defined set of colors, the user will unavoidably 
exert an influence on the amount of novelty that 
can be expected. 

In an effort to further develop the concept of 
ligand similarity based on reduced graphs, we 
have developed a fragment-based approach that 
uses an infinite, i.e., label free, color space, while 
retaining the efficiency of the original concept. 
We keep another important notion of feature 
trees, which is the straightforwardness with 
which the features (in our case: fragments) can be 
recognized as sensible chemical entities by a 
chemist. To cater to different tastes of different 
chemists, three fragmentation rules have been 
implemented, expandable by the user. By 
combining these concepts with a reduced graph 
similarity approach developed earlier by, e.g., 
Gillet et al. (22) and Barker et al.  (24), we also 
achieve independence from the way in which the 
fragments are connected to each other. This 
enables the algorithm to explore a broader range 
of similarities and also introduces the potential 
for scaffold hops. 

A scaffold hop is encountered when a 
compound is similarly active, but shows 
significant structural differences in either 
topological arrangement of chemical features 
(epitopes) or the exchange of core or peripheral 

structural motifs compared to a reference 
compound. (25,26,27,28) The capability of a 
similarity method to identify scaffold hops has 
recently become a very popular topic in the 
community. (29,30) It is important to not only 
predict close analogs or homologs of known 
active compounds but to also discover novel 
structural themes. Bioisosterism, i.e., the 
replacement of functional groups or larger 
chemical epitopes by physico-chemically similar 
groups, is a common way to achieve structural 

Figure 1: Fragmentation of an example molecule (E1) from 
the MUV S1P1R sample: A Molecular structure of 
compound E1. B Fragment pattern after RECAP cleavage. 
Every fragment is highlighted in a different color. C After 
RFGraph-characterization, connectivity perception and 
compression, the fragments are assigned to fingerprint 
objects. D Complete RFGraph ready for entering the scoring 
algorithm. 
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diversity while retaining bioactivity. In order to 
assess the usefulness of looking at chemical 
similarity in a fragment-based way, we have 
tested the algorithm on three levels, which is 
mirrored in the structure of this manuscript. First, 
we applied it to a non-trivial test set for ligand-
based methods, the Maximum Unbiased 
Validation data sets (MUV) by Rohrer et al. (31); 
Second, we evaluated its scaffold enrichment 
performance based on a scaffold distance defined 
by Li et al. (32); Third, we predicted and 
experimentally verified novel ligands for 
endothiapepsin, an aspartic protease, which 
commonly is regarded as a challenging target in 
terms of the identification of small-molecule 
binders. 

2. Materials and Methods 

2.1. RedFrag package 

Our strategy for label-free fragment-based 
similarity searching builds on a combination of 
classical graph isomorphism-driven and 
fingerprint-supported similarity calculations to 
retain benefits from fragment-based drug 
discovery on the one hand and overcome the 
necessity of pre-defined fragment dictionaries on 
the other. REDuced graph FRAGment based 

similarity search tool (RedFrag) has been 
developed as a python package designed to i) read 
molecules from the most common file formats; ii) 
decompose them according to fragmentation 
rules such as RECAP (33), BRICS (34), 
DAIM (19) and user-defined patterns; and, iii) 
abstract these molecules to reduced fragment-
based graphs (RFGraphs) and evaluate a 
similarity score between pairs of RFGraphs using 
seven different fingerprints. All programming 
involving molecule file reading, fingerprint 
generation and similarity calculation was done 
using the RDKit open source toolkit for 
chemoinformatics. (35) RFGraph creation and 
manipulation utilizes the NetworkX 
package. (36) In more detail, we implemented 
and tested the seven fingerprints listed in 
Table 1. This allowed us to unambiguously 
assess the value added by fragmentation. 

The way in which a molecule is fragmented 
affects the resulting reduced graph in terms of 
size and complexity. Instead of relying on pre-
defined fragment or functional group definitions, 
bonds of a molecule are cleaved to yield 
chemically reasonable fragments in our 
approach. A fragment is thus defined as a set of 
atoms connected by unbreakable bonds, and 
physico-chemical descriptors can readily be 
derived for such fragments. The topology of the 

Table 1: Seven fingerprints used in this study for encoding chemical epitopes. 

Full name  Abbreviation  Description 

Topological 
Fingerprint 

 topo  identifies and hashes topological paths in the molecule, an RDKit 
reimplementation of the Daylight fingerprint 

MACCS Keys  maccs  SMARTS-based implementation of the 166 public MACCS Keys 

Atom Pairs 
Fingerprint 

 apairs  based on atom types derived from each chemical environment and the 
topological distance between each pair of atoms (15) 

Topological 
Torsions 
Fingerprint 

 torsions  fingerprint consists of hashed quartets of atoms typed by their chemical 
environment (16) 

Morgan/Circular 
Fingerprint 

 ecfp  based on circular neighborhood for each atom within a given radius (17) 

Morgan/Circular 
Fingerprint 

 fcfp  its feature-based variant where SMARTS encoded structural properties 
are taken into account (18) 

DAIM Fingerprint  daim  based on atom and property counts as described by Kolb and Caflisch (19) 
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parent molecule is preserved by retaining the 
connectivity of the individual fragments and 
converting detected fragments into nodes of the 
RFGraph. Importantly, each of these nodes of a 
reduced graph contains the complete chemical 
identity of the fragment it represents in the form 
of a SMILES (37) string and the corresponding 
fingerprint. 

Thus, the color of the label of each chemical 
epitope comes from a color space with an infinite 
number of hues rather than a pre-defined and thus 
limited color dictionary. To avoid noise from 
nodes representing very small fragments, e.g., 
methylene groups, a subsequent graph 
compression step removes such adjacent nodes 
from the graph. During the last step of graph 
reduction, the compressed RFGraphs are 
transformed into complete graphs by connecting 
all nodes of the graph with each other. Edges are 
weighted with the topological distance between 
pairs of nodes, resulting in a labeled and weighted 
graph (Figure 1A-D). 

2.2. Reduced-graph fragment-based similarity 
search 

Scoring the similarity of two molecules R and T 
(for reference and target molecule, e.g., E1 and 
E2 in Figure 2) in our approach is subdivided 
into four distinct steps: First, the molecules are 
reduced to their complete RFGraphs, ܴሺ ோܸ,  ோሻܧ
and ܶሺ்ܸ ,  being the sets of nodes ܧ ሻ, ܸ and்ܧ
and edges, respectively. Second, the 
correspondence graph ܩܥோ்ሺ ோܸൈ்ܸ ሻ, a product 
of both sets of RFGraph nodes, is constructed. 
Each node of the correspondence graph ൣ݊௜, ௝݊൧ 
consists of a matched pair of a reference and 
target RFGraph node. Such a match occurs only 
when the Tanimoto similarity between the nodes 
exceeds a certain threshold ݐ, i.e., the node colors 
are within a given color interval: For ݊௜ ∈ ோܸ and 

௝݊ ∈ ்ܸ , ൣ݊௜, ௝݊൧ ∈ ஼ܸீோ் if ஽ܶሺ ௜݂ , ௝݂ሻ ൒  with ,ݐ

஽ܶ being the Tanimoto similarity (6,38), ݊௜, ௝݊ 
nodes (fragments) of reference and target 
RFGraph, ௜݂, ௝݂ being their corresponding 

fingerprints, and ஼ܸீோ் the node-set of the 

correspondence graph, respectively (Figure 2A). 
Third, the nodes of matched fragment pairs are 
connected. An edge between two nodes ൣ݊௜, ௝݊൧ 

and ሾ݊௞, ݊௟ሿ within the correspondence graph 
exists if the topological distance ݓሺ݊௜, ݊௞ሻ 
between the two nodes corresponding to the 
reference graph, equals the topological distance 
ሺݓ ௝݊, ݊௟ሻ between the two corresponding nodes 

Figure 2: Schematic of the RedFrag algorithm: A
Correspondence graph creation based on the reduced graphs 
of compounds E1 and E2. B Nodes of the correspondence 
graph are connected according to the condition mentioned in 
the text. C Highlighted in black is the clique of maximum 
size of the correspondence graph. It corresponds to the 
maximum common subgraph of the underlying RFGraphs 
within a given similarity threshold. 
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within the target RFGraph: Edge 
൛ൣ݊௜, ௝݊൧, ሾ݊௞, ݊௟ሿൟ ∈ ,ሺ݊௜ݓ ஼ீோ் ifܧ ݊௞ሻ ൌ
ሺݓ ௝݊, ݊௟ሻ (Figure 2B), ܧ஼ீோ் being the edge-set 

of the correspondence graph. If the 
correspondence graph exists, a maximum clique 
detection algorithm is invoked, where the 
maximum clique ܥܯோ் corresponds to the 
maximum common subgraph of the reference and 
target graphs (Figure 2C). (39,40,41) By 
deconvolution of the maximum common 
subgraphs back onto the reference and target 
molecules, the maximum overlapping set of 
common substructures (here fragments) can be 
obtained. (42) In the final step, the resulting 
clique is scored per scoring function (eq 1), which 
consists of two parts: i) the graph similarity ்ܩ, 
which reflects the overall topological congruency 
of the two input reduced graphs (eq 2) and ii) the 
fragment similarity ்ܨ, where the quality of all 
fragment-to-fragment matchings is taken into 
account (eq 3). In order to be able to tune the 
relative importance of the two terms ்ܩ and ்ܨ 
with respect to each other, we introduce two 
weighting parameters ܩ஼ and ܨ஼. This allows to 
emphasize either graph congruency or chemical 
similarity in the final score: 

 
ܵሺܴ, ܶሻൌ 

஼ܩ ∙ ,ሺ்ܴܩ ܶሻ ൅ ஼ܨ ∙ ,ሺ்ܴܨ ܶሻ
஼ܩ ൅ ஼ܨ

(1)

 
,ሺ்ܴܩ ܶሻൌ 

|ோ்ܥܯ|
|ܴ| ൅ |ܶ| െ |ோ்ܥܯ|

  (2)

 
,ሺ்ܴܨ ܶሻൌ 

1
|ோ்ܥܯ|

෍ ஽ܶሺሾ ோ݂, ்݂ ሿ௜ሻ

|ெ஼ೃ೅|

௜ୀଵ

  (3)

Where |ܥܯோ்|, |ܴ| and |ܶ| are the sizes of the 
maximum clique, the reference and the target 
RFGraph, respectively. ஽ܶ is the Tanimoto 
distance between a fragment of graph ܴ and 
graph ܶ based on the corresponding fingerprints 

ோ݂ and ்݂ , ሾ ோ݂, ்݂ ሿ௜ being a fingerprint-pair 
corresponding to the ݅th composite node of the 
maximum clique ܥܯோ். 

2.3. Validation data set 

We validated and optimized our method against 
the Maximum Unbiased Validation data sets 
(MUV). (31) The MUV contains 17 activity 

classes, and each class encompasses 30 actives 
that have been determined via a highly reliable 
experimental method. Each set of actives is 
accompanied by 15,000 decoys (see Table S1). 

2.4. Validation procedure 

We investigated the capability of RedFrag to 
separate active molecules from decoys when 
passing a single active molecule as reference. 
First, one active was selected randomly from the 
set of 30 actives of an activity class. Then, the 
remaining actives were mixed into the set of 
15,000 decoys and the fragment-based reduced-
graph similarity search was invoked. The 
resulting ranked list of target molecules was 
visualized by plotting receiver operating 
characteristic (ROC) curves. As a measure of 
retrieval performance, the area under the curve 
(AUC) value was calculated. As we chose to 
investigate a total of three fragmentation patterns 
(BRICS, RECAP, DAIM), seven fingerprints 
(apairs, topo, maccs, torsions, ecfp, fcfp, daim, 
Table 1), nine different similarity thresholds 
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and seven 
distinct combinations of scoring function 
coefficients ܩ஼ and ܨ஼ (0.5-3.5, 1.0-3.0, 1.5-2.5, 
2.0-2.0, 2.5-1.5, 3.0-1.0, 3.5-0.5), a total of 
674,730 (30·17·3·7·9·7) calculations had to be 
run and analyzed. 

2.5. Analysis of results 

In order to investigate the effectiveness of our 
algorithm and simultaneously handle the large 
number of individual calculations, we decided to 
average the outcomes of the retrieval experiments 
at the level of a single MUV activity class. For 
each combination of fingerprint, similarity 
threshold and scoring function coefficients, the 
mean and median AUC value of all 17 activity 
classes was calculated, representing the overall 
performance of the method with the respective 
parameters. RedFrag’s potential to perform 
scaffold hops was assessed by first calculating an 
average scaffold distance (32) between each 
active compound and the remaining actives 
within an activity class. Based on the average 
scaffold distance, we defined, for each activity 
class, a set of distant scaffolds, i.e., actives with 
an average scaffold distance to all other actives 
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greater than 0.56 (this number being the average 
distance within a library of distinct scaffolds as 
described in ref. (32)). Subsequently, we 
analyzed the retrieval experiments with respect to 
the number of distant scaffolds successfully 
enriched in the top 10 % of the scoring list. 
Furthermore, we analyzed the similarity between 
our virtual hits and the query molecules we used 
for virtual screening based on ECFP4 (17) 
fingerprints. 

2.6. Virtual screen of the ZINC database 

In order to prospectively validate our algorithm, 
we wanted to find endothiapepsin binders in a 
screen of the DrugsNow subset of the ZINC 
database. (1,43) As queries, we chose 67 
compounds with known activity towards 
endothiapepsin from three different sources: i) 
the ChEMBL database (44) (11 compounds), ii) 
a recent publication by Mondal et al. (45) (7 
compounds) and 49 compounds from an SAR 
study of aspartic proteases. (46) Each of these 67 
compounds was used in a RedFrag search and 
scored with equation 1. For comparison, we used 

two distinct sets of parameters: i) 
RECAP|maccs|0.1|0.5-3.5 and ii) 
RECAP|maccs|0.2|3.5-0.5 reflecting the two 
best-performing parameter sets from the 
retrospective study and including either emphasis 
on fingerprint similarity or graph congruency. 
For each run, the top 10,000 scores were further 
processed by sphere exclusion clustering (47) in 
order to reduce the number of compounds to be 
visually inspected. 

2.7. Endothiapepsin functional assay 

To investigate the biological activity of the 
selected compounds, we performed inhibition 
studies based on a fluorometric assay adapted 
from the HIV-Protease assay described by Toth 
and Marshall (48). The assays were carried out as 
described earlier in ref. (45). Stock solutions 
(50 mM in DMSO) were prepared for all 
molecules subjected to the assay. As substrate, 
Abz-Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2 
(Bachem, Basel) was used. The assay was 
performed in flat-bottom 96-well microplates 
(Greiner Bio-One, Frickenhausen) and 

Figure 3: The effectiveness of the underlying method is shown for three fragmentation patterns: RECAP, BRICS and DAIM 
and seven fingerprints: A Each block consists of 63 (7 fingerprints and 9 similarity thresholds) averaged calculation series 
represented as colored squares. The more reddish a square, the higher the AUC value averaged over all 17 activity classes and 
30 retrieval experiments each, thus the better the performance. Blueish squares correspond to worse than random averaged 
performance. Each square corresponds to 510 retrieval experiments (30 actives in each of the 17 activity classes). B In the 
same arrangement as in A, averaged lengths of scoring lists are represented as shaded squares. A darker square corresponds 
to a longer scoring list, thus to a larger number of successful scoring events. 
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fluorescence resulting from cleaved product was 
recorded in a Synergy Mx microplate reader at an 
extinction wavelength of 337 nm and an emission 
wavelength of 414 nm. The Km of the substrate 
towards endothiapepsin was determined to be 
1.6 µM. (49) The assay buffer (0.1 M sodium 
acetate, pH 4.6, 0.001 % Tween 20) was 
premixed with substrate and potential inhibitors, 
while endothiapepsin was added directly before 
measurements commenced. The final reaction 
volume was 200 µL, containing 0.4 nM 
endothiapepsin, 1.8 µM substrate and 500 µM 
compound. In the same way, blanks were 
prepared using DMSO instead of compound 
stock solution. Each compound was measured in 

duplicate, results reported herein are the average 
of both measurements. 

3. Results 

3.1. Retrospective study 

3.1.1. Parameter optimization using the MUV 
data sets 

The effectiveness of our fragment-based reduced 
graph approach RedFrag at retrieving active 
compounds from mixed active-decoy sets was 
investigated using the MUV data sets (17 activity 
classes, 30 experimentally validated active 
compounds and 15,000 decoys per class). In a 
first step, the retrieval rate was used to assess the 

Table 2: Comparison of scores of example pairs of molecules.a 

 Reference structure  Target structure  ECFP4b  PFb  LINGOc  MACCSc  RedFragd

R1e T1e  0.545  0.928  0.692  0.848  0.930 

R2f T2f  0.432  0.640  0.285  0.800  0.728 

R3g T3g  0.223  0.597  0.270  0.606  0.337 

R4h T4h  0.565  0.625  0.636  0.820  0.860 

R5i T5i  0.294  0.452  0.273  0.546  0.635 

aSimilarities were calculated as Tanimoto coefficients. 
bImplementation based on the ChemAxon API for Java (PF: Pharmacophore fingerprint). (50) 
cImplementation based on the OpenEye OEChem and OEGraphSim TK API for Python. (51) 
dCalculation based on the top performing RECAP|maccs|0.1|0.5-3.5 parameter set. 
eSuvorexant (R1), dual orexin receptor antagonist approved insomnia drug, and its analog T1. 
fAlmorexant (R2), dual orexin receptor antagonist, and its pre-optimized scaffold T2. 
gOrexin 1 receptor antagonist R3 developed by GSK and orexin 2 receptor selective analog T3 developed by Merck. 
hL-Tryptophan (R4) and its prenylated analog T4. 
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influence of the few high-level choices and 
parameters that are available, viz., fragmentation 
patterns and type of fingerprint used, as well as 
the similarity threshold and scoring function 
coefficients. This resulted in 674,730 retrieval 
experiments, which are shown in Figure 3A and 
B in a compressed way. Each colored square 
corresponds to the averaged AUC value 
originating from 510 retrieval experiments 
partitioned over 17 activity classes. The AUC 
value is reflected in the color of a square: deep 
red squares reflect better-than-random and blue 
squares worse-than-random performance, 
respectively. White squares show random 
performance. The highest averaged AUC value 
over all activity classes, were systematically 
achieved when employing the RECAP 
fragmentation rules. The numerically best 
performance coincided with a low ܩ஼ vs. ܨ஼ ratio 
for daim and maccs fingerprints and high ܩ஼ vs. 
 ஼ ratio for apairs, ecfp, fcfp and topoܨ
fingerprints, respectively. The ratio of the scoring 
function coefficients emphasizes either the 
topological congruency (eq 2) of reference and 
target graph or the Tanimoto similarity of their 
fragments (eq 3). In order to relate to a specific 

set of parameters and RedFrag’s corresponding 
performance, we will use a tag consisting of the 
fragmentation pattern, fingerprint, similarity 
cutoff, scoring function coefficients and the 
average AUC value in this order and separated by 
vertical bars and a double colon, e.g., 
RECAP|maccs|0.1|0.5-3.5::0.59 corresponds to a 
retrieval experiment performed with the RECAP 
fragmentation rules, the fragments encoded with 
MACCS Keys fingerprint, a relaxed similarity 
criterion for fragment-to-fragment matching, and 
a scoring function with an emphasis on the 
fingerprint term, resulting in a performance of 
0.59. 

3.1.2. Comparison of fingerprint metrics 

In order to facilitate understanding of the 
RedFrag score prior to a detailed analysis of its 
retrospective performance, we compare it to 
commonly used fingerprint metrics here. Table 2 
shows five example molecule pairs and their 
corresponding similarities derived from their 
fingerprint representations. The molecules were 
selected per the high prominence of their targets 
and their holistic and fragment or epitope 
similarity. Although, despite numerical 

Figure 4: Shown are distributions of AUC values for each activity class as box-plot representations. Each AUC distribution 
corresponds to 30 retrieval experiments. Black data correspond to the OOPS while red data show the fixed parameter set.
Solid curves emphasize the trend of the medians. Black and gray asterisks show the level of statistical significance of the AUC 
distributions within an activity class as calculated by the t-test and Kolmogorov-Smirnov-test, respectively. (∗∗∗→ ݌ ൏ 0.01, 
∗∗→ ݌ ൏ 0.05, ∗→ ݌ ൏ 0.10). 
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differences, the trend of the scores changes in a 
unidirectional manner, each representation 
results in different similarity estimates and 
varying similarity differences, further illustrating 
the vagueness of what similarity is (see also 
Figure S1).  

3.1.3. Descriptive analysis of Figure 3 

As can be seen in Figure 3A, our algorithm is 
sensitive to both the choice of fingerprint as well 
as the set of fragmentation rules. This results in a 
rather complex mosaic of averaged median 
performances. Still, distinct patterns with respect 
to individual fingerprints or fragmentation rules 
can be derived: Common to all three 
fragmentation rules is a poor performance of the 
Topological Torsions fingerprint, independent of 
similarity threshold or scoring function 
coefficients. A slightly better-than-random 
performance can only be found for 
DAIM|torsions|0.1|3.5-0.5::0.51. Especially in 
case of the RECAP rules – where the best 
performing sets of parameters were 
discovered – the performance of Topological 
Torsions is consistently low (best: 
RECAP|torsions|0.1|3.5-0.5::0.47). RedFrag’s 
low retrieval rates with the Topological Torsions 
fingerprint are congruent with short scoring lists, 
i.e., the number of molecules classified as similar, 
as depicted in Figure 3B. For Topological 
Torsions, on average, our algorithm leads to 
7,995 scorings (RECAP|torsions|0.1) and less 
than 3,000 scorings for similarity thresholds 
greater than 0.1, respectively. In contrast to 
RECAP, the BRICS and DAIM fragmentation 
rules allow for a higher rate of scoring events for 
Topological Torsions: 11,195 and 11,893, 
respectively. In the range of 0.6-0.9 of the 
similarity thresholds, both fragmentation rules 
show successful retrieval rates one order of 
magnitude higher than RECAP 
(BRICS/DAIM/RECAP|torsions|0.9: 2,294, 
3,116 and 216, respectively), but still the lowest 
values across all fingerprints involved. A further 
point of note is the highest similarity threshold for 
which a better-than-random performance is 
achieved. For all binary fingerprints involved, 
this similarity-stringency-point is located 
between DAIM|torsions|0.1 and 

DAIM/BRICS|topo|0.4. Greater similarity 
thresholds, i.e., more stringent matching criteria, 
lead to a drop in performance and the number of 
successful scoring events. This is not necessarily 
correlated: Among a low number of scoring 
events, many actives can be present, thus a high 
retrieval can be obtained. It becomes clear from 
that picture that the fuzziness of an RFGraph 
comparison (and thus the size of the 
correspondence graph) is limited to a narrow 
interval of similarity thresholds. When 
employing stringent similarity criteria, fuzziness 
is almost eliminated and the correspondence 
graphs become sparse or non-existent, hence the 
shortness of the corresponding scoring lists. Of 
note, the DAIM fingerprint achieves successful 
scoring events at the highest similarity thresholds 
(RECAP/BRICS/DAIM|daim|0.9: 8,032 13,315 
12,200, scoring list length, respectively) with a 
better-than-random performance at the maximum 
similarity threshold of BRICS|daim|0.8. 
Seemingly, its non-binary, continuous-valued 
nature is responsible for this extended capability 
of successful scoring events. 

Numerically, our algorithm performed best at 
RECAP|maccs|0.1|0.5-3.5 with an averaged 
median AUC value (over 17 activity classes and 
30 retrieval runs per class) of 0.59 (Figure 4, red 
data). In the parametrical vicinity of this best 
performance, there are other well-performing 
parameter combinations. All of them are located 
at the bottom left corner of the data block, 
corresponding to a high value of ܨ஼ and low value 
of ܩ஼, hence an emphasis on the fingerprint 
similarity term of the scoring function. The same 
is true for the DAIM fingerprint but not for the 
other fingerprints, as they show increasing 
performance when the graph congruency term of 
the scoring function is emphasized. 

Best performances for BRICS and DAIM 
fragmentation rules are lower than when using 
RECAP rules, BRICS|topo|0.2|3.5-0.5::0.55 and 
DAIM|topo|0.2|3.5-0.5::0.57, respectively. 
Furthermore, high performances, i.e., red 
squares, appear less often for BRICS and DAIM 
fragmentation rules. This can be connected to two 
topological properties of the corresponding 
RFGraphs as depicted in Figure S2. According 
to the trend lines of median graph size and mean 
molecular weight of its fragments, RECAP 
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fragmentation on average produces smaller 
RFGraphs consisting of larger chemical epitopes 
than BRICS and DAIM, the latter working in 
similar ways. With this fact, we can substantiate 
the known sensitivity of 2D similarity methods 
towards higher molecular weights as they 
correspond to higher property/descriptor richness 
which in turn allows more discriminative 
comparisons. Thus, increasing the number of 
chemical epitopes and simultaneously decreasing 
their size, i.e., increasing the granularity, reaches 
a limit where there is no adequate amount of 
available information for a reasonable similarity 
calculation. On the contrary, the abandonment of 
fragmentation, thus regarding a molecule on the 
whole, is accompanied with the loss of 
topological and chemical diversity among 
molecules considered similar. In the following, 
we present and discuss the value of fragmentation 
as a middle course between atomistic and holistic 
molecular view.  

3.2. Detailed results of the MUV retrieval runs 

3.2.1. Impact of fragmentation rules on 
retrieval performance 

With an optimal set of parameters for screening 
each MUV data set, RedFrag achieves an 
averaged median AUC value of 0.64 (we will 
refer to this parameter set as Overall Optimal 
Parameter Set [OOPS]) (Figure 5, black data). 

Restricting the choice of parameters to 
fingerprint, similarity threshold and scoring 
function coefficients, thus being only 
fragmentation rule dependent (hereafter Rule 
Optimal Parameter Set [ROPS]) the 
performances between the different 
fragmentation rules were 0.62, 0.59 and 0.60 for 
RECAP, BRICS and DAIM respectively 
(Figure 6). Inspecting Figure 6, there are notable 
differences between the retrieval rates for each 
fragmentation pattern: RECAP performs 
significantly better on the S1P1 receptor, SF1 
receptor (SF1I) and HSP 90 ligands, whereas 
BRICS has a higher retrieval rate on HIV RT-
RNase ligands and DAIM on SF1 receptor 
agonists (SF1A). All three fragmentation patterns 
have their peak performances with the 

Figure 5: Comparison of RedFrag performance and fingerprint performance without our algorithmic graph reduction 
(Globals). For both, RedFrag and Globals the top performances for each activity class were selected (OOPS). Black and gray 
asterisks show the level of statistical significance of the AUC distributions within an activity class as calculated by the t-test 
and Kolmogorov-Smirnov-test, respectively. (∗∗∗→ ݌ ൏ 0.01, ∗∗→ ݌ ൏ 0.05, ∗→ ݌ ൏ 0.10). 

0.
7

0.
9

0.
5

0.
3

0.
5

A
U

C

G
lo

ba
ls

R
ed

Fr
ag

S1
P1

R

PK
A

SF
1I

R
K2

H
IV

EP
H

A4

SF
1A

H
SP

90

ER
AI

ER
BI

ER
AP

FA
K

C
AT

G

FX
IA

FX
IIA

D
1R

M
1R



 

47 

 

ligands/decoy sets of the coagulation factors 
FXIa and FXIIa (FXIa::0.71/0.75/0.78 and 
FXIIa::0.76/0.68/0.72 for RECAP, BRICS and 
DAIM, respectively). Lowest retrieval rates can 
be observed for Eph receptor A4, ER-α- and ER-
β-coactivator binding inhibitors 
(EPHA4::0.54/0.56/0.55, ERAI::0.56/0.52/0.55, 
ERBI::0.58/0.54/0.55). In summary, at the level 
of single activity classes, no connection between 
RedFrag’s performance and the properties of 
RFGraphs as depicted in Figure S2 can be 
deduced. The outcome of a retrieval experiment 
is apparently highly dependent on the 
composition of an activity class with respect to 
actives and decoys and the fragmentation rule in 
use. 

3.2.2. Impact of fingerprint and scoring-term 
weighting on the retrieval performance 

RedFrag operates consistently well over a broad 
range of similarity thresholds, scoring function 
coefficients and fingerprints, as shown by the 
areas densely occupied by reddish squares in 
Figure 3A. The best performance for a single set 
of parameters can be observed at 
RECAP|maccs|0.1|0.5-3.5::0.59 (red data, 
Figure 4). If we look for peak performances for 

each class across all fragmentation rules, 
fingerprints, similarity cutoffs and scoring 
function coefficients, the overall performance 
increased to 0.64 (black data in Figure 4). 
Especially the S1P1 receptor, SF1 receptor 
inhibitors and agonists (SF1I and SF1A), HIV 
RT-RNase and – to a minor extent – ER-α-
coactivator binding inhibitors (ERAI) were 
positively influenced by adapting parameters. As 
described before, most peak performances are 
obtained with RECAP fragmentation rules and 
can be found within the maccs data block. Among 
the significantly better performances, a transition 
from highly emphasized fingerprint term to 
highly emphasized graph congruency term of the 
scoring function can be observed. A focus on the 
topological graph similarity is apparently 
advantageous for these activity classes. 

3.2.3. The value of fragmentation 

With the MUV data sets, we included not only the 
idea to evaluate the retrieval effectiveness of 
actives from a mixed actives-decoys data set, but 
also wished to investigate whether our algorithm 
could compete with highly optimized commonly 
used 2D fingerprints. We compared retrieval 
performances with and without graph reduction, 

Figure 6: Comparison of RedFrag performance and fingerprint performance without our algorithmic graph reduction 
(Globals). For both, RedFrag and Globals the top performances for each activity class were selected (OOPS). Black and gray 
asterisks show the level of statistical significance of the AUC distributions within an activity class as calculated by the t-test 
and Kolmogorov-Smirnov-test, respectively. (∗∗∗→ ݌ ൏ 0.01, ∗∗→ ݌ ൏ 0.05, ∗→ ݌ ൏ 0.10). 
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thus determining the value of fragmentation. In 
order to make for a comparable and fair approach, 
for each fingerprint we performed the same 
validation cycle as in case of RedFrag: Over 17 
activity classes with 30 retrieval runs per each 
class, an averaged median AUC value was 
calculated for each fingerprint listed in Table 1. 
The results of the unaltered fingerprints 
(Figure 3A), denoted as Globals, show a 
moderate to good performance for Atom Pairs 
and Topological Torsions fingerprints, the latter 
being surprising, as it performed worst when 
employed within our algorithm. However, we 
speculate that the poor performance of RedFrag 
with the Topological Torsions fingerprint can be 
partially understood given the fact that 
fragmentation occurs at rotatable bonds, thus 
effectively reducing the amount of descriptive 
information defined by successively connected 
atom quadruples. Hence, the information density 
of the Topological Torsions fingerprints of the 
corresponding fragments is reduced, i.e., 

lowering its discriminative capabilities. In 
contrast, for MACCS Keys, substructural motifs 
remain mostly intact even after fragmentation 
allowing reasonable similarity calculations. A 
close look at Figure S3 – where the AUC 
distributions of all seven fingerprints for each 
activity class are plotted – shows similar complex 
performance fluctuations dependent on 
fingerprint and activity class. As already 
indicated by the numerical values, Atom Pairs 
and Topological Torsions fingerprints show the 
highest retrieval effectiveness for most activity 
classes, Atom Pairs being at a peak in 8 and 
Topological Torsions in 5 out of 17 cases. 
Figure 5 shows the comparison of peak 
performances of RedFrag and fingerprints 
without algorithmic graph reduction (both 
methodologies at OOPS). From the trends of the 
median AUC values, a significantly better 
performance of RedFrag can be seen for the S1P1 
receptor, SF1 receptor agonists and D1 receptor 
ligands. In 7 out of 17 activity classes, RedFrag 

Figure 7: Each activity class was analyzed according to the scaffold distance distribution of the active compounds. Golden
circles represent active compounds with an average scaffold distance to any other active greater than the scaffold distance
threshold (0.56). Colored bars show the relative retrieval performance of golden scaffolds for RedFrag and without our 
algorithmic graph reduction (Globals) both at OOPS. 
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performed equally well as the unmodified 
fingerprints. In only two cases, HSP 90 and ER-
α-coactivator binding potentiators, raw 
fingerprints outperformed RedFrag. Of note, 
RedFrag performs better than the MOE 
molecular properties descriptor (Molecular 
Operating Environment, 2007.09; Chemical 
Computing Group: Montreal, Canada, 2007) 
(MOE::0.54) and the SESP descriptor (53) 
(SESP::0.51) in terms of overall retrieval 
performance. Both descriptors were used in a 
virtual screening in order to assess the utility of 

the compiled MUV data sets in the original 
publication. (31) 

3.2.4. Diversity of enriched compounds 

Figure 7 shows the relative retrieval rate of 
distant scaffolds for each activity class at OOPS 
compared with retrievals done without 
algorithmic graph reduction, at OOPS as well. 
Similar retrieval rates were achieved when using 
RECAP, BRICS and DAIM decomposition rules 
as well as experiments without decomposition 

Table 3: IC50 values, calculated Ki values and ligand efficiencies LE for six experimentally validated hits identified as 
inhibitors of endothiapepsin. 

ID Hit structure  Query structure  IC50 [µM]  Ki [µM]b  LEc 

1 

 

  

4.42 ±0.14 

 

2.08 ±0.07 

 

0.35 

2 

 

  

200.4 ±13.77 

 

94.31 ±6.48 

 

0.22 

3 

 

  

257.2 ±43.87 

 

121.0 ±20.64 

 

0.18 

4 

 

  

301.9 ±81.80 

 

142.1 ±38.49 

 

0.23 

5 

 

  

340.9 ±452.2a 

 

160.4±212.8a 

 

0.25a 

6 

 

  

354.8 ±100.0 

 

166.9 ±47.08 

 

0.18 

aIC50 measurements did not reach plateau. Thus, corresponding values are unreliable and the compound is considered to be a weak binder. 
bKi values were calculated using the Cheng-Prusoff equation. (52) 
cLE is the ligand efficiency, where N is the heavy atom count. [LE] = kcal mol-1 N-1
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(denoted as Globals). Moreover, in all cases 
identical distant scaffolds were retrieved using 
different fragmentation rules and fingerprints. Of 
note, however, in the case of SF1 receptor 
inhibitors (SF1I), Cathepsin G (CATG) and D1 
receptor (D1R), respectively, RedFrag retrieved 
two or one more distant scaffold than fingerprint-
only enrichment. As for the retrieval performance 
in general, RECAP fragmentation presents itself 
as an advantageous choice for the enrichment of 
structurally diverse actives. 

3.3. Prospective study 

A pre-inspection of the cluster representatives 
followed the sphere exclusion clustering of the 
initial virtual screen. This resulted in a set of 48 
compounds. The number of cluster 
representatives was reduced by removing 
molecules that were considered trivial matches or 
were based on incorrect input structures. Further 
selection based on diversity considerations 
reduced this set to 20 compounds which were 
purchased and tested for their activity towards 
endothiapepsin. 

3.3.1. The endothiapepsin system 

Endothiapepsin is involved in a wide range of 
diseases such as hypertension and malaria. (54) It 
belongs to the family of pepsin-like aspartic 
proteases and has been used as a model enzyme 
for not only mechanistic studies (55,56,57), but 
also for the development of renin (58) and β-
secretase (59) inhibitors. 

3.3.2. Experimental validation of virtual hits 

Three out of twenty predicted compounds inhibit 
endothiapepsin with IC50 values in the range of 
4.42 to 257 µM. The most potent inhibitor, 1, a 
close analog to one of our query molecules, Q4 
(Table S42), features an IC50 value of 4.42 µM. 
Three more compounds showed inhibition in the 
three-digit µM-range, one of them without 
reaching a plateau, and thus without a reliable 
IC50 value, Table 3. 

3.3.3. Diversity and scaffold hopping analysis 

Figure S4 shows the similarity matrix based on 
the ECFP4 fingerprint between our 20 selected 
virtual hits and the query molecules employed for 
the virtual screening. Among the six 
experimentally validated hits, only one 
compound (1) shows a high ECFP4 Tanimoto 
similarity to two of the queries. Our hit shares a 
leucine-hydrazone-moiety with the queries and 
differs by a larger quinazoline moiety, whereas 
the query molecules contain a trifluorotoluene- 
and pyridyne moiety at this position, 
respectively. Interestingly, a closely related 
virtual hit (17) with a methoxyquinoline moiety 
did not show any inhibition towards 
endothiapepsin. Figure S5 shows the scaffold 
similarity matrix between the virtual and 
validated hits and the query molecules. 
Compound 2 shows moderate activity and high 
ECFP4 and scaffold similarity to only one query 
molecule (Q24) which is due to the naphthyl 
moiety. Compound 6, which is only a weak 
binder to endothiapepsin, is a dissimilar 
compound measured by both ECFP4 and scaffold 
similarity. The most active compound along with 
its inactive but close analog (1 and 17) reveal a 
close distance to queries Q4 and Q5 by means of 
ECFP4 and, interestingly, to Q11 based on 
scaffold similarity. According to the latter, 
compound 1 can be considered a scaffold hop, 
due to mediocre graph similarity and high 
chemical diversity. Compound 3, which is again 
a moderate binder, shows neither ECFP4 nor 
scaffold distance relationship to any of the query 
molecules, leading to a true scaffold hop, as is 
true for compound 6. 

4. Discussion and conclusions 

RedFrag is based in the premise that fragment-
based searches with infinite colors are a fast, 
flexible and intuitive similarity measure that is 
also capable of recognizing chemically 
equivalent, yet topologically different fragments 
in two molecules. We have tested this method 
retrospectively on the MUV data sets, to avoid 
distortion of the performance due to trivial 
separations of actives and decoys. Going beyond 
retrospective analysis, we also applied our 
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method to predict binders for the aspartic 
protease endothiapepsin. RedFrag performed at 
the same level as the other methods investigated 
on the MUV data set. In some cases, existing 
algorithms were surpassed while a certain level 
of underperformance has to be noted in a few 
others. Strikingly, and within rather broad limits, 
the performance of RedFrag does not depend on 
the parameters chosen. We can thus conclude that 
the parameters selected for the final screen likely 
did not suffer from training set bias, as similar 
parameters would have been obtained going out 
from a different molecule set. Figure 3A and B 
allow us to draw another interesting conclusion: 
despite the simplicity of the DAIM fingerprint, 
the performance of RedFrag does not deteriorate 
substantially, which again argues for the stability 
of the general approach. One can also speculate 
why the RECAP fragmentation pattern performs 
best: It generates the largest fragments of the 
three fragmentation patterns. Especially in cases 
where the molecules contain many potential 
fragments, this could help by generating feature-
rich fragments, which then means that matches 
involving such fragments have a relatively larger 
weight. Nevertheless, BRICS and DAIM 
fragmentation patterns are justified as they 
partially cover an orthogonal set of disconnection 
sites, allowing for the decomposition of 
chemically diverse and optimized compounds in 
the field of medicinal chemistry. Particularly for 
DAIM decomposition rules, where rotatable 
bonds are cut independent of retrosynthetic 
considerations, deviating topology or single 
bioisosteric replacements of functional groups 
should not be an insurmountable challenge. 
RedFrag also has the potential to retrieve 
scaffolds distant from the query, i.e. perform 
scaffold hops. This can be gleaned from 
Figure 7, where the propensity of RedFrag to 
retrieve unusual scaffolds is comparable to other 
methods. This ability of RedFrag is also nicely 
demonstrated in the prospective screen, where the 
second and third most potent compounds are 
distant from the known ligand space of 
endothiapepsin, as evaluated by ECFP4 
fingerprints. At the same time, the prospective 
screen also yielded a very potent molecule, which 
at 4 µM is one of the more potent binders of 
endothiapepsin. While it cannot be described as 

novel when compared to the molecules that were 
used as query, it is a clear improvement on the 
compound series published earlier 
(Mondal et al. (45)). Further comparison 
between the similarity matrices in Figure S4, 
Figure S5 and Figure S6 shows that the answer 
to what is similar given by the RedFrag approach 
is different from that given based on the ECFP4 
fingerprint or derived from scaffold frameworks. 
Thus, it seems likely to find a higher overall 
number of actives by applying different search 
algorithms. 

Of note, RedFrag is also fast: The screen of 
the 7.3 million molecules in the ZINC library 
took less than 8 hours on a single core CPU. Such 
a speed is of the same order as other fingerprint-
based methods, but an order of magnitude faster 
than currently possible with docking calculations. 

In conclusion, we demonstrated that RedFrag 
is an intuitive, fast and unbiased algorithm for 2D 
molecule searches while it only has two main 
parameters and needs little optimization. The 
performance in both retrospective and 
prospective studies is in line with existing 
methods, but often yields different answers, 
adding it to the repertoire of suitable approaches 
for large-scale screenings. Most importantly, we 
abolished the need for pre-defining a color space 
without a loss in performance. This means that 
our algorithm is applicable to all sets of 
molecules without restrictions. At the same time, 
RedFrag is “plug and play” in the sense that 
future decomposition rules or fingerprints can be 
effortlessly integrated in the basic approach. 
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Part 

 

Part 2 encloses the full article which is intended to be the prelude to our SAR-by-Enzyme study, 
where we exploit the biochemically and medicinal-chemically interesting catalytic property of 
dimethylallyltryptophan synthases: An enzyme family which throughout species plays a key role in 
the diversification of secondary metabolites. In order to use these enzymes as biocatalytic tools for 
chemical transformation of lead- or drug-like chemical matter we firstly collected reaction data from 
public domain and cast it into a database of prenyltransferase reactions. This database not only 
contains detailed information about the reaction of a specific prenyltransferase but also it enables the 
user to predict putative substrates for a prenylation reaction.  

The author list is the following (by contribution order): Gunera J., Kindinger F., Li S.M. and 
Kolb P. I was responsible for the design and layout of the database, the automated analysis of reaction 
data extracted from literature, its integration into the database, programming of the predictive 
subroutines therein and the hierarchical virtual screen of putative substrates. Florian, who equally 
contributed to this study, designed and performed the validation enzyme assays, analyzed the 
prenylation results, extracted reaction products and elucidated their structure. 
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Abstract 

Prenyltransferases of the 
dimethylallyltryptophan synthase (DMATS) 
superfamily catalyze the attachment of prenyl or 
prenyl-like moieties to diverse acceptor 
compounds. These acceptor molecules are 
generally aromatic in nature and mostly indole or 
indole-like. Their catalytical transformation 
represents a major skeletal diversification step in 
the biosynthesis of secondary metabolites 
including the indole alkaloids. DMATS enzymes 
thus contribute significantly to the biological and 
pharmacological diversity of small molecule 
metabolites. Understanding the substrate 
specificity of these enzymes could create 
opportunities for their biocatalytic use in 
preparing complex synthetic scaffolds. However, 
there has been no framework to achieve this in a 
rational way. Here, we report a chemoinformatic 
pipeline to enable prenyltransferase substrate 
prediction. We systematically cataloged 32 
unique prenyltransferases and 167 unique 
substrates to create possible reaction matrices, 
and compiled these data into a browsable 
database named PrenDB. We then used a newly 
developed algorithm based on molecular 
fragmentation to automatically extract reactive 

chemical epitopes. The analysis of the collected 
data sheds light on the thus far explored substrate 
space of DMATS enzymes. To assess the 
predictive performance of our virtual reaction 
extraction tool, 38 potential substrates were 
tested as prenyl acceptors in assays with three 
prenyltransferases, and we were able to detect 
turnover in more than 61 % of the cases. 
The database, PrenDB 
(www.kolblab.org/prendb.php), enables the 
prediction of potential substrates for 
chemoenzymatic synthesis through substructure 
similarity and virtual chemical transformation 
techniques. It aims at making prenyltransferases 
and their highly regio- and stereoselective 
reactions accessible to the research community 
for integration in synthetic workflows. 

1. Introduction 

Prenylated primary and secondary metabolites 
including indole alkaloids, flavonoids, 
coumarins, xanthones, quinones and 
naphthalenes are widely distributed in terrestrial 
and marine organisms. They exhibit a wide range 
of biological activities including cytotoxic, 
antioxidant, and antimicrobial activities. (1,2,3) 
Compared to their non-prenylated precursors, 
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these compounds usually demonstrate distinct 
and often improved biological and 
pharmacological activities, which makes them 
promising candidates for drug discovery and 

development. (1,2,4,5,6) These compounds 
could be considered hybrid molecules of prenyl 
moieties of different chain lengths (n·C5, where 
n is an integer number) and aromatic skeletons 

Figure 1: A Exemplary transformation of brevianamide F (E1) to tryprostatin B (E3). B Regiochemistry of the nucleophilic 
attack on the prenyl moiety (E2). For regular prenylation, bond formation occurs between C2 and the carbon adjacent to the 
pyrophosphate group. An attack of C2 on the tertiary carbon of DMAPP leads to the reversely prenylated product. C
Illustration of the SMIRKS-like notation derived from A (generated by SMARTSviewer) (23). GA = general prenyl moiety 
acceptor; GD = general prenyl moiety donor; GB = general base; GP = general prenylation product; PP = pyrophosphate; 
PGB = protonated general base. D (left) A reactive epitope indicated around the reactive atom ([cH1:1]) with the atomic
properties given in SMARTS nomenclature (brackets). D (right) Reactive epitope as generated by SMARTSviewer. (23) 
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originating from various biosynthetic 
pathways. (7,8) Prenyl transfer reactions, i.e., the 
connections of prenyl moieties to the aromatic 
nucleus, are catalyzed by a diverse family of 
prenyltransferases. Interestingly, this step usually 
represents the key transformation in the 
biosynthesis of such compounds. A prenyl 
moiety can be attached by prenyltransferases via 
its C1 (regular prenylation) or C3 (reverse 
prenylation) to C-, O- or N-atoms of an acceptor 
(Figure 1A and B). (7,8) Together with the 
observed regiospecific prenylations at different 
positions of an acceptor molecule, 
prenyltransferases contribute significantly to the 
structural and biological diversity of natural 
products. (7) 

Based on their amino acid sequences, 
biochemical and structural characteristics, 
prenyltransferases are categorized into different 
subgroups. (7) In the last decade, significant 
progress has been achieved with the members of 
the DMATS (dimethylallyltryptophan synthase) 
superfamily and more than 40 enzymes of this 

group were identified and characterized by 
mining of fungal and bacterial genomes. (7) 
These enzymes catalyze transfer reactions of a 
prenyl moiety from prenyl pyrophosphate, e.g., 
dimethylallyl pyrophosphate (DMAPP), to 
diverse acceptors such as tryptophan, tyrosine, 
tryptophan-containing cyclic dipeptides, 
xanthones, tricyclic or tetracyclic aromatic 
moieties or even non-aromatic compounds. 
Among the acceptors, indole derivatives 
including tryptophan and tryptophan-containing 
cyclic dipeptides are substrates of most of the 
DMATS enzymes investigated so far. (7,9) 

The DMATS enzymes have already been 
demonstrated to display high substrate and 
catalytic promiscuity. They catalyze not only 
prenylation of their substrates and closely related 
compounds, but also use structurally quite 
different compounds as prenyl acceptors. (10) 
Therefore, these enzymes were successfully used 
for production of a large number of prenylated  

Figure 2: Schematic of the underlying workflow. A Reactions of prenyltransferases were digitalized and stored in PrenDB.
The reactive atoms were detected algorithmically and reconstituted to reactive epitopes (repitopes). Prenylation candidates
were selected by a multi-step virtual screening approach and their transformation potentials were evaluated experimentally
on selected prenyltransferases. B Multi-step virtual screening of database compounds (colored triangles). i) Repitope-based 
substructure search based on the substrate space covered in PrenDB; ii) One-dimensional property and three-dimensional 
shape comparison with known substrates and iv) docking screen on three promiscuous prenyltransferases with available
crystal structures. 
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Figure 3: Illustrative interpretation of the analysis of PrenDB: 32 enzymes contribute to the entirety 
of digitalized reactions (upper histogram). The reactions can be further subdivided into categories
based on the chemistry of the transformation (middle). Each subgroup corresponds to one or more
enzymes (lower histogram). *The contribution of the enzyme with the highest contribution to a 
particular group was set to 100. 
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derivatives including prenylated tryptophan and 
tyrosine analogs, tryptophan-containing cyclic 
dipeptides and derivatives thereof, 
hydroxyxanthones, hydroxynaphthalenes, 
flavonoids, indolocarbazoles and 
acylphloroglucinols. (10) For example, N1-, C4-, 
C5-, C6- and C7-prenylated tryptophan and N1-, 
C2-, C3-, C4- and C7-prenylated tryptophan-
containing cyclic dipeptides and derivatives were 
obtained by using DMATS enzymes as 
biocatalysts. (9,10)  

One of the problems to discover and use 
DMATS enzymes as biocatalysts in a rational and 
targeted manner is the prediction of the 
acceptance of a putative substrate. On the one 
hand, the enzymes share similar structures, albeit 
often at low sequence identities, and catalyze, in 

many cases, similar reactions. On the other hand, 
different enzymes with similar natural substrates 
accepted further non-native aromatic substances 
with clearly different activities. (7) Therefore, 
bioinformatic and chemoinformatic approaches 
for the prediction of the catalytic activity of these 
enzymes are welcome and necessary in order to 
harness the full biosynthetic potential of this 
enzyme class. 

We describe in this work the creation and 
evaluation of a database that catalogs and stores 
prenyltransferase reaction information. Because 
storage of the reactions is automated, the database 
is not static, but will grow with each new reaction 
described in the literature. Furthermore, we 
present an application of PrenDB where we 

Table 1: Cluster size and substrate space coverage derived from hierarchical clustering. 

cluster representative  clusters  size  substrate 
space 
coverage [%]

 description 

 

 

1, 2, 3 

 

38 

 

22 

 

unsubstituted indole moieties and 
tryptophan-containing cyclic 
dipeptides 

 

 

4, 5 

 

13 

 

8 

 

derivatives of tyrosine: 
modifications on benzene ring, 
homologs 

 

 

6, 7, 8 

 

45 

 

27 

 

derivatives of xanthone, 
naphthalene, quinone and flavonoid 

 

 

9 

 

18 

 

11 

 

tyrosine derivatives with 
modifications on benzene ring 

 

 

10, 11, 
12, 13, 
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predict and validate putative substrates for 
prenyltransferases (Figure 2). 

2. Results 

2.1. PrenDB Statistics 

Digitalization and chemoinformatic encoding of 
enzymatic reactions of the DMATS superfamily 
allows for a deep analysis of their substrate space 
and reactivity towards distinct chemical epitopes 
(Figure 3). In total, 32 unique enzymes were 
found throughout the inspected literature. The 
three most prominent prenyltransferases in terms 
of the number of annotated transformations are 
7-DMATS, FgaPT2 and SirD, accounting for 15, 
14 and 13 % of the reactions in the database, 
respectively. At the other end of the spectrum, 
there are seven enzymes for which only a single 
reaction has been published. With respect to 
promiscuity, the number of unique reactive 
epitopes – molecular substructures centered 
around the reactive atom and henceforth called 
repitopes in this work – was used as a descriptor 
(cf. Figure 1D for an exemplary repitope): The 
enzymes 7-DMATS, FgaPT2 and AnaPT transfer 
prenyl moieties onto the broadest range of 
chemical epitopes. Together, these three enzymes 
contribute more than 65 % to the repitope space. 
The knowledge of the reactive atom and its 
surroundings makes a further distinction of 
enzymatic transformations possible: The Sankey 
diagram in Figure 3 shows how the cataloged 
reactions can not only be linked to their 
prenyltransferases, but also subdivided into types 
per the reactive atom. The clear majority of 
reactions (87 %) corresponds to the regular type 
of prenyl moiety transfer (Figure 1B, right), 
where the thermodynamically more stable 
regioisomer is formed. 

In 73 % of all reactions and in all reverse 
attachments, the reactive atom is a member of a 
ring system (endo). Only a small part of regular 
prenylations occur at exocyclic atoms (exo, 
26 %). There, prenyl moieties are transferred 
onto oxygen and nitrogen atoms of tyrosine and 
aniline-like moieties by SirD, FtmPT2 or 
4-DMATS. Reverse prenylation can be observed 
at carbon and nitrogen atoms only. They are 
incorporated in aromatic ring systems, less 

frequently also in alicyclic moieties such as 
benzoquinones. More than 60 % of all reactions 
occur at aromatic carbon atoms: Derivatives of 
indole, including tryptophan, are the most 
frequent repitopes in this largest reaction 
subclass. Much rarer are prenylations at nitrogen 
(8 %) or at exocyclic oxygen atoms (23 %). By 
comparison, 5 % (33 entries) of reactions of 
tryptophan-like moieties (e.g., at atom position 
C2 in brevianamide F (E1) (Figure 1A) lead to 
formation of compounds with a fused ring 
system, where the atomic environment of the 
reactive atom becomes dearomatized during the 
reaction (FtmPT1, Fur7, 4-DMATS).  

2.1.1. Substrate space 

Throughout the analyzed literature – 44 articles 
from 17 journals – 167 unique substrates were 
found. In order to analyze the substrate space 
diversity of prenyltransferases, a similarity 
matrix based on the pairwise ECFP4 (11) 
fingerprint molecular similarity was calculated 
(Figure 4, Table 1 and Table S1), followed by a 
hierarchical clustering. This allows the grouping 
of substrates based on their chemical structure. 
From the corresponding dendrograms and 
supported by the reorganized distance matrix, 
five substrate classes distributed over 14 clusters 
can be deduced: i) Unsubstituted indoles, 
derivatives of tryptophan and proline-tryptophan 
cyclic dipeptides; ii) Derivatives of tyrosine with 
modifications on benzene and aliphatic atoms; 
iii) Naphthalene, quinone and flavonoid 
derivatives; iv) Side chain modified tyrosines and 
v) side chain modified and multiply prenylated 
tryptophans. More than 50 % of the substrate 
space is covered by indole-containing 
compounds. Molecules with tyrosine and 
flavonoid or xanthone motifs contribute 18 % and 
26 % to the substrate space, respectively. 
Furthermore, the space spanned by the fragments 
obtained via bond cleavage during the 
fragment-based subgraph isomorphism 
perception process (cf. Materials and Methods) is 
covered to an extent of 64 % by tryptophan and 
diketopiperazine epitopes. This predominance of 
indoles can be explained by tryptophan and 
indole derivatives being the native substrates for 
78 % of the enzymes in PrenDB. This, combined 
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with the DMATS bias in the literature, eventually 
leads to strongly indole-biased data. 

Figure S1 shows the knowledge about 
prenyltransferase reactions, as digitalized and 
stored within PrenDB, in terms of catalyzed 
transformations – combinations of a particular 

substrate and an enzyme – and the corresponding 
yield achieved. In the top left corner of the 
matrix, transformations of the most abundant 
substrates (tryptophan, tyrosine, cyclic dipeptides 
and their derivatives, respectively) together with 
the most promiscuous enzymes (7-DMATS, 
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FtmPT1, CdpNPT, SirD and FgaPT2) can be 
found. At the same time, the matrix is sparse, i.e., 
contains a lot of blanks. This sparsity is the result 
of the availability of data and thus represents the 
research focus in the prenyltransferase field in the 
past. It presents a challenging starting situation 
for model building.  

2.1.2. Repitopes 

For each of the 665 cataloged reactions – each 
defined as a unique triplet of a substrate, product 
and enzyme – a repitope (reactive epitope; cf. 
Materials and Methods for complete definition) 
was extracted using the reactive atom detection 
and repitope reconstitution routines of the 
algorithm developed in this work (cf. Materials 
and Methods). Each repitope comprises four 
reconstitution depths (from 2 to 5 bond 
distances). Over all repitope depths, 276 unique 
repitopes, defined by their unique SMARTS 
string, were extracted. A SMARTS string is a 
one-dimensional encoding of chemical 
substructures and an efficient way to store a 
complete definition of each repitope (cf. 
Materials and Methods). A reconstitution depth 
of 5 delivered the largest contribution to the 
repitope space with 135 (49 %) members. This is 
consistent with expectation, as larger depths will 
lead to more diverse descriptions. Depths 2, 3 and 

4 account for 25 (9 %), 69 (25 %) and 94 (34 %) 
repitopes, respectively. Interestingly, the sum 
over all amounts of each reconstitution level is 
greater than the total number of unique repitopes. 
This means that distinct combinations of the 
substrate molecule, its reactive atom and the 
depth level are not mutually exclusive, thus 
resulting in duplicate entries. Figure S2 shows 
the distribution of repitopes for the various depth 
levels of reconstitution, underlining the 
relationship between repitope size and diversity. 
Although the largest class of repitopes 
contributes the most to repitope space, also 
smaller, more general and ambiguous repitopes 
are among the top ten most frequent repitopes: 
Substructures of tyrosine, benzene and indole 
moieties are at ranks 3, 5, 6, 7 and 9, respectively, 
whereas complete and extended indole and 
tyrosine moieties are at ranks 1, 2, 4 and at the 
bottom, 8, 10 and 11.  

2.2. Prediction of novel substrates via a multi-
step screening procedure 

In a sequential application of virtual screening 
tools (Figure 2), beginning with prenylation 
prediction through repitopes stored in PrenDB 
and concluding with docking into three 
prenyltransferases with known crystal structures 
(FgaPT2, FtmPT1 and CdpNPT), 38 virtual hits 

Figure 5: Molecular features extracted from poses of the selected virtual hits. A Red spheres indicate H-bond acceptors and 
the yellow discs aromatic moieties. The majority of acceptor functionalities can be found around the basic residues R255 and
H279. B Blue spheres indicate H-bond donors. They are located around the highly conserved glutamate (E89/102/116) and in 
the vicinity of backbone carbonyls (omitted for clarity). 
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were selected through the following procedure: i) 
A compound was considered as a virtual hit if any 
PrenDB repitope could be found within its 
molecular framework at least once. Table S2 
shows the number of repitopes matching a 
particular hit, with a high repitope hit rate 
indicating promiscuous compounds, i.e., 
molecules that are classified as substrates of 
multiple enzymes. Using repitopes based on a 
reconstitution depth of three, 168,906 compounds 
were selected in this first step. ii) Comparison of 
molecular properties with those of known 
substrates and removal of molecules outside the 
respective ranges (Table 2), reduced the number 
of virtual hits to 90,559. By going beyond 1D and 
2D molecular descriptors and ensuring that the 
iii) three-dimensional shape (judged by a high 
score in the OEChem shape congruency tool, cf. 
Materials and Methods) matched between 
putative and known substrates, lead to a selection 
of 451 compounds. This repitope-, property- and 
shape-based determination of prenylation 
potential of the selected compounds was further 
condensated by the iv) docking results: For each 
compound, an optimal enzyme structure for 
docking was selected based on a compound’s 
structural overlap with the co-crystallized 
substrate. The amount of this overlap was 
quantified by the same shape congruency 
methodology mentioned above, but was 
automatically invoked from within the docking 
application HYBRID (cf.  Materials and 
Methods). The generated poses, from which 38 
molecules were selected for experimental 
validation, show a distinct geometrical consensus 
of the key interactions with the enzymes 
(Figure 5): first, polar interactions with the 
general base E89/102/116, second, occupation of 
the apolar indole-subpocket and H-bond 
interactions in the vicinity of the opening of the 
active site – residues H279 and R244.  

2.3. Novel substrates for prenyltransferases 
FgaPT2, FtmPT1 and CdpNPT 

In order to assess the predictive performance of 
our virtual screening, the 38 potential substrates 
were tested as prenyl acceptors in enzyme assays 
with the tryptophan prenyltransferase FgaPT2 
and the two tryptophan-containing cyclic 

dipeptide prenyltransferases FtmPT1 and 
CdpNPT. The selected substances clearly differ 
structurally from the substrates for the DMATS 
prenyltransferases reported previously. (7,10)  

Figure 6: Transformation rates of virtual hits relative to 
L-tryptophan obtained for the three examined enzymes 
FtmPT1, CdpNPT and FgaPT2. Horizontal bars indicate the 
mean, vertical bars the standard deviation, orange interval 
the standard error of the mean and colored circles the data 
points, respectively. 
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Figure 7: Similarity matrix between the selected compounds and known substrates for prenyltransferases extracted from
PrenDB. Left ECFP4 fingerprint similarity. Middle RedFrag scores calculated with ECFP4 fingerprints. Color coding (top), 
green, yield > 50%; yellow, yield between 1 and 50 %; gray, no transformation. Right magenta and brown bars indicate 14 
detected clusters. Black vertical lines on the leaves of the dendrogram indicate the number of molecules grouped together. 
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The reaction mixtures were analyzed with LC-
MS in order to detect the formation of prenylated 
products. As shown in Table S2 and Figure 6, 23 
of these substances were accepted by FtmPT1, 22 
by FgaPT2 and 25 by CdpNPT. In relation to the 
number of hits selected from our virtual screen, 
this corresponds to a hit rate of 60.5 % for 
FtmPT1, 57.9 % for FgaPT2 and 65.8 % for 
CdpNPT. Product yields of more than 50 % were 
observed for 12 substrates with FtmPT1, 7 with 
FgaPT2 and 10 with CdpNPT, respectively. The 
prenylated products can be detected in a 
straightforward manner as signals in their 
corresponding mass spectra: Their [M+H]+ ions 
are shifted by 68 Daltons relative to their educts. 
Overall, we thus obtained high hit rates and yields 
higher than 50 % in case of 29 reactions (25 % of 
all attempted reactions).  

2.3.1. Similarity analysis of known substrates 
and selected compounds 

In order to assess the novelty of the 38 selected 
compounds, the similarity with the substrate 
space cataloged within PrenDB (167 substrates) 
was calculated and visualized by generating a 
similarity matrix based on the ECFP-fingerprint-
based Tanimoto similarity (Figure 7 left panel). 
The matrix shows an overall low similarity score 
between our selection and the known substrate 
space. This points towards the potential to access 
truly novel substrate space by employing 
repitopes. Of note, the similarity is higher in 
columns corresponding to compounds that were 
successfully prenylated in our assays by at least 
two of our test enzymes. The right panel of 
Figure 7 shows similarity scores as calculated by 
our in-house fragment-based method 
RedFrag (12): In contrast to ECFP4, RedFrag 
compares the fragmental composition of 
molecules and the 2D arrangement of fragments. 
RedFrag accentuates the commonalities and 
differences between known substrates and our 
selections. Compound 1, a tryptophan-homo-
proline-diketopiperazine (94.1 % yield on 
FtmPT1), shows high similarity scores with 
tryptophan, its indole-core derivatives and, 
expectedly, with tryptophan-tryptophan-, 
tryptophan-alanine-, tryptophan-glycine- and 
tryptophan-proline-diketopiperazines from 

clusters 1, 2 and 3, respectively. Of note, RedFrag 
emphasizes the similarity of compound 1 and 
cluster 3 based on the presence of the indole 
scaffold. In contrast, ECFP4 emphasizes the 
dissimilarity of this compound originating from 
the absence of the diketopiperazine motif in the 
same cluster. Compounds 12, 26 and 32 show 
high similarity with substrates from cluster 3 
(also 9, 10 and 11). Compounds 12 and 32 are 
regioisomers of a brominated tryptophan 
derivative. They show distinctly different yields: 
14.4 and 8.5 % for 12 on CdpNPT and FtmPT1; 
47.5 and 44.7 % for 32 and FtmPT1 and FgaPT2, 
respectively. It is evident that the position of the 
bromine atom has a major impact on the role of 
such compounds as substrates. The influence of 
regiochemistry of indole-core substitutions or 
single-atom-replacements at this core is further 
exemplified by compound 26. Its benzothiophene 
moiety (replacing the nitrogen atom in an indole 
by a sulfur atom) is not accepted as a substrate by 
any of the three test enzymes. 

Selected compounds with low similarity, but 
remarkable yields, indicate novel substrate 
classes or motifs: Compound 16 shows a good 
yield in FtmPT1 and moderate yields in FgaPT2 
and CdpNPT (68.8, 34.8 and 29.7 %, 
respectively). Its conjugated indole-4-
imidazolin-2-one motif has no similar 
counterparts within the known substrate space. 
This is also true for compound 30 (yields: 60.1, 
59.4 and 96.1 %, respectively) and its benzylated 
hydroxyl-indole structure. Compound 27 – a 
pyrimidine-indole – shows excellent yield in 
FgaPT2 (82.9 %). Further examples with high 
yields but RedFrag similarity scores lower than 
0.6 are compounds 11, 13, 20, 23 and 33.  

2.3.2. Structure elucidation of the products of 
compounds 21 and 30 

To investigate at which position within a given 
substrate the prenylation occurred, we carried out 
exemplary FtmPT1 incubations with two indole 
derivatives, indole 3-ethylamine 
ethylsufonamide (21) and 6-benzyloxyindole 
(30), which were very well (98.6 % yield) and 
moderately (60.1 % yield) accepted by this 
enzyme, respectively (Figure 8 and Table S2). 
As shown in Figure S3A, a single dominant peak 
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was observed in the LC-MS chromatograms of 
the incubation mixtures, which were isolated on 
a Multospher 120 RP-18 column for structure 
elucidation. 1H NMR data revealed, surprisingly, 
the presence of two compounds in each reaction 
mixture. 21a and 21b originated from 21 in a ratio 
of 1:1 from the reaction mixture, and 30a and 30b 
in a ratio of 1:0.85 from that of 30. Further 
purification resulted in four pure products. 
Through NMR and MS analyses, the structure of 
21a was subsequently elucidated as a regularly 
N1-prenylated derivate. The second product, 21b, 
was identified as a reversely C3-prenylated 
derivative with a simultaneous cyclization of C2 
of the indole with the nitrogen atom of the side 
chain located at C3, resulting in the formation of 

a 6/5/5 fused ring system. Compounds 30a and 
30b were proven to be regularly C2- and C5-
prenylated derivatives, respectively. These 
results unequivocally proved specific 
prenylations at the indole ring without or with 
additional modifications such as cyclization. 
Detailed studies of the relationships of enzymes, 
substrates listed in Table S2, and their products 
are under further investigation.  

A comparison of the elucidated structures of 
the products 21a, 21b, 30a and 30b with the 
PrenDB-predicted prenylation sites of their 
corresponding educts reveals that the prenylation 
site was correctly predicted in two of four cases. 
However, the responsible enzyme, FtmPT1, was 
only proposed for the prenylation of 21 to yield 

Figure 8: Transformations of virtual hits 21 and 30 by FtmPT1. A Indole 3-ethylaminine ethylsulfonamide (21) was regularly 
prenylated at position N1 leading to 21a and reversely prenylated at position C3 with a simultaneous formation of a 6/5/5 
fused ring system (21b). Typically for C3-prenylation at indole substructures, a dearomatization and intra-molecular 
cyclization accompanies the prenylation reaction. B 6-benzyloxyindole (30) was regularly prenylated at positions C2 and C5.
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21a. In case of 30, the product 30b was predicted 
to originate from the enzymes CdpNPT or 
FgaPT2.  

3. Discussion and conclusions 

This study demonstrates the power of 
systematically organizing and analyzing diverse 
and disparate experimental enzymatic data by 
means of chemoinformatic methods. Besides a 
comprehensive repository of the existing 
knowledge about prenyltransferase reactions, the 
determination of repitopes allowed us to predict 
novel substrates that are distinctly different from 
the ones that have been identified previously, 
both natural and synthetic. Moreover, we 
achieved an overall high hit rate of 71 % in terms 
of molecules that were accepted by at least one 
prenyltransferase. However, it has to be noted 

that the repitopes stored in PrenDB are not yet 
accurate enough in all cases to precisely predict 
the correct enzyme and/or the correct reactive 
atom. This shortcoming is presumably correlated 
with the comparatively small number of instances 
in the database. Although the existing body of 
literature clearly represents a considerable 
experimental effort, chemistry and the 
biochemical reactivity of enzymes are so diverse 
that even higher numbers of substrate-enzyme-
product triplets would be necessary to obtain 
more complete repitopes that also account for the 
different reactivity of certain substructures. The 
chemoinformatic strategy that we employed in 
this work is certainly flexible enough to 
accurately model more fine-grained patterns.  

At the same time, a database such as PrenDB 
can provide excellent help in determining which 
reactions and substrates would be worthwhile to 

Figure 9: A Substrate-based subgraph isomorphism. The substrate structure matches the product as a whole. The intersection
of atom overlaps between substrate and prenyl moiety delivers the reactive atom (orange arrows, index 9). B Fragment-based 
subgraph isomorphism. Substrate structure is fragmented into smaller epitopes preserving the substrate-fragment atom 
matchings. By matching fragments onto the product and analyzing the intersection with the prenyl moiety, the reactive atom
can be found within the structure of the substrate (orange arrows, index 1). 

H
N

O
HN

N
O

12
34

5
6 7

8
9

10 11

12

13

HN
H
N

O

N
O

23
45

6
7 8

9
1

2

1

3

H
N O

N
N

O

4
5

67
8

9 10
11 12

3 2

13

1

1514

17
18

16

21

4
5

6

3
[1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

[1, 2, 3, ...]

substrate

product

fragments

prenyl moiety

[1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

substrate

product

prenyl moiety

H
N

O

HN
N

O
12

34
5

6 7
8

9

10 11

12

13

H
N

O
HN

N
O

12
34

5
6 7

8
9

10 11

12

13

14
16

18
17

15

21
4

56
3A

B



 

72 
 

test next. On a basic level, one could simply be 
guided by the number of reactions already 
described for each enzyme and focus on the 
underrepresented ones. But also, more 
sophisticated approaches can be envisioned: 
Enzyme phylogenetic trees could be based not on 
amino acid sequence, but on substrate similarity. 
Further exploration would thus focus on filling in 
the missing links. Ultimately, such strategies 
might merge with machine learning approaches, 
where the algorithm itself would suggest which 
enzyme-substrate pairs to test next based on the 
maximum information gain of each investigation. 

Yet, despite some shortcomings, our database 
and resulting prediction algorithm are already 
useful for correctly predicting a large number of 
substrates and thereby aiding in the creation of 
novel chemical matter. The imprecisions could 
also be taken as a strength in this context, as they 
allow for serendipitous discoveries, e.g., the 
reverse prenylation of 21 to 21b by FtmPT1. 

Lastly, it has to be emphasized that the 
concept of repitopes and their fragment-based 
determination can easily be extended to other 
enzymatic reactions. The automatic processing of 
potentially large numbers of reactions and the 
concomitant conversion into the reaction 
principles (i.e., repitopes) will lead to facile 
systematizations and gain of knowledge from the 
analyses of the emerging data. 

The high hit rates (58 - 66 %) for each enzyme 
and the fact that one fourth of the reactions had a 
yield of 50 or more percent demonstrates the 
excellent performance of our knowledge-based 

repitope approach. The combination of PrenDB 
and its ligand-based approach with protein-
structure-based tools such as docking therefore 
seems to constitute a powerful combination of 
strategies. Furthermore, these results prove the 
potential usefulness of the tested enzymes to 
produce prenylated derivatives.  

4. Materials and Methods 

The prenylation reaction as conducted by the 
enzymes of the DMATS superfamily formally 
corresponds to a substitution reaction occurring 
on carbon, oxygen and nitrogen atoms of small 
metabolites through the transfer of small apolar 
moieties (denoted as dma [short for dimethyl 
allyl] in the following example). The leaving 
group is always a pyrophosphate (PPi) and a 
formal proton accepted by a general base. The 
reaction can be written in a symbolic way 
(SMIRKS notation (13), see below): The atoms 
taking part in the chemical transformation are 
arranged in a one-line notation showing the bond 
cleavages and formations.  

[C,O,N:1][H:2] + dma[C:3][O:4]PPi + [gB:5]

→

[C,O,N:1][C:3]dma + [O:4]PPi + [gB:5][H:2]

Square brackets enclose individual atoms and 
adjacent atoms are taken to be linked by covalent 
bonds. Letters denote elements, gB is the general 
base and PPi pyrophosphate, commas represent a 
logical OR and numbers are arbitrary labels to 

Figure 10: A Fragmentation rule expressed as SMARTS string. The rule consists of two atom definitions and a bond
definition. Enclosed in square brackets (green and purple) are atoms connected by any bond type except a ring bond (orange).
The atom on the left-hand side can be of any type but must be member of a ring system (hydrogen atoms are excluded
indirectly as they are not allowed to form ring systems). On the right-hand side, the atom must not be a terminal atom 
(hydrogen atoms are excluded indirectly as they are always terminal). D1 represents atoms with only one neighbor. B
Breakable bonds (orange) as defined by the fragmentation rule and atoms color coded based on the scheme in A for substrates 
21 and 30 and their corresponding prenylation products 21a and 30a. 
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allow for unambiguous tracking of each atom. In 
the above example, it can be seen that the 
hydrogen atom with label 2 ([H:2]) is substituted 
by the dma group and moves from its adjacent 
carbon, oxygen or nitrogen atom (labeled 1) to 
the general base (label 5). Figure 1A illustrates 
this general transformation in a 2-dimensional 
way exemplarily for the reaction between 
brevianamide F (E1) and DMAPP (E2) catalyzed 
by FtmPT1. With this symbolic notation and 
common chemoinformatic tools in hand, it is 
possible to virtually transform, for example, any 
carbon atom [C:1] bearing a hydrogen atom [H:2] 
(GA in Figure 1C) into the prenylated product 
GP, at the same time generating a protonated 
general base PGB and pyrophosphate (PP) as 
byproducts. Although feasible in silico, a 
chemical transformation based solely on the 
position of the reactive atom is unreasonable and 
ambiguous – in reality, only carbon, nitrogen and 
oxygen atoms located within the correct atomic 
surroundings can undergo prenylation. Thus, the 
entire molecule, or at least a crucial motif within 
it, is necessary to completely characterize a 
reactive environment., We call such a set of 
atoms consisting of the reactive atom – to which 
the transferred moiety will be attached – and its 
neighboring atoms a reactive epitope (repitope 
for short). In the case of the transformation of E1, 
the corresponding repitope is shown in 
Figure 1D. The specification of the carbon atom 
can now be extended to its full repitope notation: 

[cH0][nH][cH1:1][cH0]([CH2])[cH0] 

Where small letters denote membership of an 
atom in an aromatic system, HX states the 
presence of X adjacent hydrogen atoms and 
parentheses indicate branching of the molecular 
framework. From this notation, it can be 
concluded that the reactive atom is aromatic and 
is bound to one hydrogen atom; its direct 
neighbors are an aromatic nitrogen and another 
aromatic carbon without any attached hydrogen 
atoms. The second neighbor shell consists of two 
aromatic and one aliphatic carbon atoms. This 
convenient one-line notation of chemical 
environments is called SMARTS (one-line 
molecular patterns) (13) and is widely used in the 
field of chemoinformatics – especially for 

substructure searches: Atoms, their properties 
and binding characteristics are encoded with 
alphanumeric characters. Multiple molecule 
SMARTS together with the information about 
bond breakage and formation yield the SMIRKS 
of a reaction. With a repitope, such as the one 
described above, and the enzymatic 
transformation encoded in SMIRKS notation, it 
is possible to virtually transform any substrate 
molecule into its corresponding prenylation 
product or to easily search for putative substrates 
by invoking substructure-based virtual screens in 
publicly available vendor databases.  

The corresponding SMARTS notation for 
each repitope could in principle be deduced by 
hand given the chemical structures of the 
substrate and product molecules. In order to 
achieve an efficient handling of several hundreds 
of enzymatic transformations – with only the 2D 
structures of substrate, product, and the 
transferred moiety as input – an automated 
procedure for the extraction of transformation 
SMARTS, and thus repitopes, appears to be as 
indispensable as it is difficult to accomplish. A 
fully specified repitope requires the knowledge of 
the reactive atom as well as its surroundings. 
Repitope deduction can be accomplished by 
applying subgraph isomorphism-based 
algorithms followed by the reconstitution of the 
chemical environment. Both steps – reactive 
atom perception and repitope 
reconstitution – will be described in detail below. 
All coding was done in python. For 
chemoinformatic calculations, the python 
wrappers of the RDKit (15) library were utilized. 
Fingerprint-based similarity calculation was 
carried out with the OEChem toolkit. (16) 

4.1. Perception of the reactive atom 

In case of a simple linear substitution reaction as 
depicted in Figure 1A, the reactive atom can be 
found by mapping the molecular structure of the 
substrate molecule onto the molecular structure 
of the product. For non-symmetric molecules, 
this leads to a unique match with an atom-to-atom 
correspondence between substrate and product. 
As the number of atoms in the product is always 
greater than the number in the substrate, the 
substrate is a substructure of the product, i.e., its 



 

74 
 

complete molecular skeleton can be found within 
the one of the product. With the same approach, 
the atom-to-atom correspondence between the 
transferred moiety (i.e., the prenyl group) and the 
product molecule can be obtained. The 
intersection of the atom-to-atom matched sets of 
the substrate and the transferred moiety consists 
of only one atom – the reactive atom 
(Figure 9A). If, however, the enzymatic transfer 
of a moiety is accompanied by a subsequent (or 
concerted) rearrangement of the molecular 
skeleton of the product (e.g., a cyclization), the 
substrate cannot be considered to be a direct 
substructure of the product anymore. Thus, the 
reactive atom can no longer be determined 
through the atom wise substrate-to-product 
mapping as described above. In such a case, a 
possible strategy for establishing a substructure 
correspondence, i.e., a subgraph isomorphism, 
would be to weaken atom or bond type matching 
criteria. The resulting atom-to-atom 
correspondences are allowed to be more general 
in that way but are often ambiguous at best. In 
order to circumvent this problem, we assumed 
that, although the entire substrate may undergo 
dramatic changes in its molecular skeleton, 
smaller structural motifs (molecular fragments) 
remain unaffected by such transformations and 

can therefore still be unambiguously mapped 
onto the substrate structure before and after the 
reaction. Figure 9B illustrates the consecutive 
steps in this fragment-based substructure 
isomorphism approach. In contrast to the 
aforementioned subgraph isomorphism based on 
the entire substrate structure, an additional 
fragmentation step has to be performed: 
Breakable bonds, (bonds connecting ring systems 
with other ring systems or with acyclic motifs [cf. 
Figure 10A and B for exemplary fragmentations 
and the breakable bond definition)] are cleaved, 
leading to a set of molecular fragments each 
substrate is constituted of. An intermediate filter 
step ensures that very small fragments (single 
atoms, linker moieties, terminal groups) are not 
considered further. The remaining fragments are 
mapped onto the product structure and their 
atom-to-atom correspondence is investigated for 
an intersection with the atom mappings of the 
transferred moiety and the product molecule. By 
preserving the atom-to-atom correspondences 
between the substrate molecule and its fragments, 
the reactive atom can be identified by finding the 
intersecting atom of one of the matching 
fragments in the substrate. 

Figure 11: A A repitope is generated by sequentially rebuilding the substrate molecule shell by shell with the reactive atom 
(index 1) as anchor point. Each iteration adds another neighbor shell to the repitope resulting in a fully defined depth-3 repitope
as depicted by SMARTSviewer (B). 
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4.2. Reconstitution of the reactive epitope 

As already mentioned, knowledge of the reactive 
atom alone is only of limited use for substructure 
searches or virtual transformations, because both 
methods yield ambiguous results when only a 
single atom is given as input. It is therefore 
necessary to rebuild the chemical environment of 
the reactive atom in order to obtain a description 
of a particular transformation that has 
discriminative power. To obtain such a 
description, the reactive atom is augmented with 
additional atoms from its first, second, third, 
(etc.) neighbor shells (Figure 11), i.e., by 
traversing the atomic neighborhood of the 
reactive atom up to a fixed distance (i.e., number 
of bonds). The traversed atoms are then extracted 
as a molecular subset and converted into a regular 
molecular object and, eventually, a SMARTS 
string. Different depths of reconstitution lead to 
either small and unspecific repitopes (݀ ൌ 1) or 
larger and more stringent ones for large depths 

(݀ ൐ 3). In extremis, at the largest possible depth, 
the repitope becomes identical to the molecule 
itself. Thus, a balance must be found and the most 
useful repitopes are able to represent reasonable 
chemical environments for a particular reaction, 
but still allow for certain flexibility and diversity 
in retrieving putative substrates.  

4.3. Database of prenylation reactions 

With the algorithmic tools to deconstruct a given 
transformation catalyzed by a prenyltransferase 
into a reaction SMARTS and the corresponding 
repitopes in hand, investigation of as many 
transformations as possible can readily be 
conducted. Hence, we decided to create a 
database (PrenDB) storing the known 
transformations in an efficiently browsable and 
queryable manner. For this purpose, a literature 
search was performed to extract substrates, 
products, enzymes and available meta data (such 
as kinetics and yields) from 44 publications – full 

Figure 12: Design of PrenDB. The database tables are related to each other in a one-to-one (reactions and repitopes), one-to-
many (substrates and reactions) or many-to-many (substrates and fragments) relationship, reflecting their real-world 
correspondence. The central reaction dictionary holds the necessary data to encode a reaction based on substrate, product and
cofactor molecules, the enzyme and the resulting repitope. A reference table is added in order to supplement the database with 
meta-data and enhance its usability. Dashed lines indicate abstract inheritance. Solid wedged lines represent one-to-many 
relationships, e.g., a molecule can act as substrate in as many reactions as an enzyme. A repitope belonging solely to one 
particular reaction is indicated by a straight solid line (one-to-one relationship). 
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articles, reviews and communications – across 17 
journals. Each enzymatic reaction is represented 
by the SMILES strings of the product and 
substrate molecules, combined with the preferred 
name of the involved enzyme. The advantage of 
using SMARTS is that each reaction can be 
visualized and processed with common 
chemoinformatic software. Furthermore, each 
reaction entry contains multiple repitopes, 
generated with the aforementioned algorithm and 
different environmental depths (2 to 5 bonds 
around the detected reactive atom). This reaction 
table (a table is a collection of database entries 
that are semantically equal) is supported by and 
connected with further tables holding meta data 
extracted from the literature and/or calculated 
with chemoinformatic tools (Figure 12). The 
molecule dictionary table comprises all small 
molecules involved in the reaction: substrates, 
products, transferred moieties (such as DMAPP 
or benzyl pyrophosphate), and fragments. 
Additionally, each entry comes with a molecular 
properties table, where basic physico-chemical 

properties can be looked up. The reference table 
contains the literature used for data extraction 
together with hyperlinks to articles and entries on 
PubMed and UniProtKB. PrenDB can be 
browsed and extended with python scripts 
bundled with the algorithms for repitope 
generation described in this work (or more 
conveniently via a web interface) in a 
straightforward manner. Because of access speed 
and portability considerations, we decided to use 
the sqlite3 backend as the underlying database 
architecture and the Django python package for 
middleware and frontend. 

4.4. Virtual screen for putative substrates of 
prenyltransferases 

In order to predict novel substrates for 
transformation by a prenyltransferase, a multi-
step screening process was carried out with a 
subset of the ZINC database (17) which stores 
commercially available small molecules in ready-
to-be-processed formats (Figure 2B). First, the 

Table 2: Range limits of physico-chemical properties derived from the substrate space stored in PrenDB. 

physico-chemical property min  max 

molecular weight [Da]  140  515 

number of heavy atoms  11  37 

number of carbon atoms  8  27 

number of heteroatoms  1  10 

number of chiral centers  0  5 

H-bond acceptors  0  6 

H-bond donors  1  6 

number of atoms in a ring system  6  25 

number of rotatable bonds  0  6 

number of rigid bonds  9  40 

XLogP  -3.94  3.76 

minimal solubility attribute  poorlya   

2D polar surface area [Å2]  20.0  1125 

removal of known aggregators  trueb   

aSolubility categories (insoluble, poorly, moderately, soluble, very, highly) are derived from reparametrized atom-types from the XLogP 
algorithm. (16) 
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ZINC clean leads database, with a total of 5.1 
million compounds, was filtered for the presence 
of any of the extracted repitopes from PrenDB. 
The repitope depth was 3. The screening was 
carried out as substructure searches using the 
python wrappers of the OEChem toolkit. (16) 
Second, compounds were filtered utilizing the 
MolProp toolkit. (16) Only compounds with 
physico-chemical properties within the range 
spanned by known substrates cataloged in 
PrenDB were allowed (Table 2). The remaining 
compounds were subsequently submitted to the 
shape congruency analysis based on the OEChem 
API. (16) In short, for each compound a low-
energy conformer was generated and its 3-
dimensional overlay with each known substrate 
was optimized. Compounds with an overlay score 
greater than 0.9, reflecting excellent 3D-shape 
matching, were allowed for the next step. Fourth, 
the remaining compounds were docked into the 
three most promiscuous prenyltransferases for 
which a crystal structure has been determined, 
(FgaPT2, FtmPT1 and CdpNPT; PDB codes 
3I4X, 3O2K and 4E0U, respectively) employing 
the multi-target HYBRID (18) engine: For each 
compound, up to 200 conformers were generated 
with OMEGA (Hawkins et al. J. Chem. Inf. 
Model., 2010, 50, 572-584.). The ensemble of 
conformations of each molecule was then 
overlaid with the co-crystallized ligand in each of 
the three selected crystal structures in order to 
determine the best suited enzyme for the 
following exhaustive docking. The method for 
overlaying conformers is built directly into the 
HYBRID engine and is based on the same 
methodology as implemented in the OEChem 
API and the ROCS application (Hawkins et al., J. 
Med. Chem., 2007, 50, 74-82.). For the actual 
docking step – translational and rotational 
optimization of a compound conformer within 
the binding site of the protein – HYBRID scores 
for a given protein-ligand complex were 
calculated based on the shape and electrostatic 
complementarity of the ligand and protein’s 
binding site (Figure S4). Shape and electrostatic 
features are represented by Gaussian potentials. 
During optimization, the overlap between ligand 
and protein features is maximized. After docking, 
Calculated poses were visually inspected in order 
to remove those that form improbable 

interactions that are not sufficiently penalized by 
present-day scoring functions and the selected 
compounds were acquired from their respective 
vendors and experimentally tested. 

5. Experimental validation 

5.1. Chemicals, bacterial strains and culture 
conditions 

DMAPP was synthesized according to the 
method described for geranyl diphosphate 
reported previously. (19) The 38 tested substrates 
were purchased from Enamine Ltd, Kiev, 
Ukraine; ChemBridge Corporation, San Diego, 
USA; MolPort, Riga, Latvia; Vitas-M Ltd, 
Apeldoorn, Netherlands; Mcule, Inc, Budapest, 
Hungary. 

Escherichia coli strains XL1 Blue MRF’ 
(Stratagene, Heidelberg, Germany) and E. coli 
BL21 (DE3) (Invitrogen, Karlsruhe, Germany) 
were used for protein overproduction. The strains 
with expression plasmids were cultivated in 
lysogeny-broth (LB) or Terrific-Broth (TB) 
medium at 37 °C with 50 µg∙ml-1 carbenicillin or 
25 µg∙ml-1 kanamycin as selection marker. 
Overproduction of FtmPT1 with pAG012, 
FgaPT2 with pIU18 and CdpNPT with pHL5 
were carried out as reported 
previously. (20,21,22) 

5.2. Enzyme assays with recombinant proteins 

In the assays to determine the acceptance of the 
different substrates, the enzyme reaction 
mixtures contained 50 mM Tris-HCl, pH 7.5, 
10 mM CaCl2, 2 mM DMAPP, 2-7.5 % (v/v) 
glycerol, 1-2 % (v/v) dimethyl sulfoxide 
(DMSO), 1 mM aromatic substrate and 
0.4 mg∙ml-1 purified recombinant protein in a 
volume of 100 µl. The reaction mixtures were 
incubated at 37 °C for 16 h and terminated by 
addition of an equal volume of methanol. The 
reaction mixtures were brought to dryness by 
vacuum evaporation and subsequently 
resuspended in 100 µl methanol and centrifuged 
at 13,000 rpm for 15 min. Five µl of the 
supernatants were analyzed on LC-MS. 

For isolation of the enzyme products, the 
reaction mixtures were scaled up to 10 ml, 
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containing 50 mM Tris-HCl, pH 7.5, 10 mM 
CaCl2, 2 mM DMAPP, 2-7.5 % (v/v) glycerol, 1-
2 % (v/v) DMSO, 1 mM aromatic substrate and 
0.4 mg∙ml-1 purified recombinant protein, and 
incubated at 37 °C for 16 h. The reactions were 
terminated by addition of 10 ml methanol and 
brought to dryness by using a rotary evaporator at 
37 °C. The residues were resuspended in 1 ml 
methanol, centrifuged at 13,000 rpm for 15 min, 
and purified on an HPLC device. 

5.3. LC-ESI-HRMS analysis of the reaction 
mixtures 

The treated enzyme reaction mixtures (5 µl) 
mentioned above were analyzed on an Agilent 
1260 Infinity HPLC System (Böblingen, 
Germany) in combination with a photodiode 
array detector and a Bruker micrOTOF-Q III 
mass spectrometer. For separation, a Multospher 
120 RP-18 column (250×2 mm, 5 µm, 
CS-Chromatographie Service Langerwehe, 
Germany) with a flow rate of 0.25 ml∙min-1 was 
used. Water (solvent A) and MeCN (solvent B), 
both containing 0.1 % (v/v) formic acid, were 
used for a linear gradient of 5-100 % (v/v) solvent 
B in A in 40 min. Subsequently the column was 
washed with 100 % solvent B for 5 min and 
equilibrated with 5 % (v/v) solvent B for 10 min. 
The separations were monitored with the Bruker 
micrOTOF-Q III mass spectrometer using the 
positive-ion electrospray ionization (ESI). HPLC 
and MS data were processed by using Bruker 
Compass DataAnalysis Version 4.2 (Build 383.1) 
software. 

5.4. Isolation of enzymatic products 

Isolation of the enzyme products was performed 
on an Agilent HPLC series 1200. The separation 
was carried out on a MultoHigh Chiral AM-RP 
column (250×10 mm, 5 µm, 
CS-Chromatographie Service) with a flow rate of 
1 ml∙min-1 and different linear gradients of 
methanol in water. 

5.5. NMR analysis 

The isolated enzyme products were brought to 
dryness by using a rotary evaporator at 37 °C and 
dissolved in 0.7 ml CD3OD. NMR spectra were 

recorded on a JEOL ECA-500 MHz spectrometer 
(JEOL Germany GmbH, Munich, Germany). The 
signal of CD3OD at 3.31 ppm was used as 
internal reference for chemical shifts. Data 
processing was done by using MestReNova 
Version 6.0.2-5475 software. 

Compound 21a: 1H NMR (methanol-d4, 
500 MHz)  = 7.55 (dt, J = 8.0, 0.9 Hz), 7.30 (dt, 
J = 8.2, 0.9 Hz), 7.12 (td, J = 8.2, 7.0, 0.9 Hz), 
7.06 (s), 7.02 (td, J = 8.0, 7.0, 0.9 Hz), 5.35 (m), 
4.70 (d, J = 6.8 Hz) Approx. 3.33 (t, J = 7.3 Hz, 
signal overlapping with those of solvent), 2.9 (t, 
J = 7.3 Hz), 2.89 (q, J = 7.4 Hz), 1.85 (s), 1.76 
(s), 1.19 (t, J = 7.4 Hz); HR-ESI-MS: m/z = 
321.1647, calcd. for C17H25N2O2S, [M+H]+: 
321.1631. 

Compound 21b: 1H NMR (methanol-d4, 
500 MHz)  = 7.14 (d, J = 7.6 Hz), 7.05 (td, J = 
7.8, 7.6, 1.1 Hz), 6.70 (td, J = 7.6, 7.6, 0.9 Hz), 
6.60 (d, J = 7.6 Hz), 6.07 (dd, J = 17.4, 10.9 Hz), 
5.38 (s), 5.12 (dd, J = 10.9, 1.3 Hz), 5.08 (dd, J 
=17.4, 1.3 Hz), 3.54 (dd, J = 10.0, 8.4 Hz), 3.10 
(q, J = 7.4 Hz), 2.94 (ddd, J =11.5, 9.7, 5.3 Hz), 
2.40 (ddd, J = 12.1, 11.9, 7.9 Hz), 2.07 (dd, J 
=12.3, 5.3 Hz), 1.29 (t, J = 7.4 Hz), 1.10 (s), 0.98 
(s); HR-ESI-MS: m/z = 321.1642, calcd. for 
C17H25N2O2S, [M+H]+: 321.1631. 

Compound 30a: 1H NMR (methanol-d4, 
500 MHz)  = 7.46 (br d, J = 7.5 Hz), 7.37 (d, 
J = 8.6 Hz), 7.35 (br t, J = 7.5 Hz), 7.30 (br t, J 
= 7.5 Hz), 6.92 (d, J = 2.2 Hz), 6.81 (s), 6.73 (dd, 
J = 8.6, 2.2 Hz), 5.40 (m), 5.08 (s), 3.38 (d, 
J = 7.0 Hz), 1.76 (s), 1.74 (s); HR-ESI-MS: 
m/z = 292.1703, calcd. for C20H22NO, [M+H]+: 
292.1696. 

Compound 30b: 1H NMR (methanol-d4, 
500 MHz)  = 7.48 (br d, J = 7.5 Hz), 7.37 (br t, 
J = 7.5 Hz), 7.29 (br t, J = 7.5 Hz), 7.24 (s), 7.04 
(d, J = 3.2 Hz), 6.96 (s), 6.28 (dd, J = 3.2 Hz, 0.9), 
5.35 (m), 5.09 (s), 3.39 (d, J = 7.5 Hz), 1.72 (s), 
1.67 (s); HR-ESI-MS: m/z = 292.1704, calcd. for 
C20H21NO, [M+H]+: 292.1696. 

6. Acknowledgments 

Shu-Ming Li and Peter Kolb are members of the 
LOEWE center for synthetic microbiology 
SYNMIKRO which provided the funding for 
Jakub Gunera’s PhD thesis work. 



 

79 
 

Peter Kolb thanks the German Research 
Foundation DFG for Emmy Noether fellowship 
K04095/1-1. 

Shu-Ming Li also acknowledges the Deutsche 
Forschungsgemeinschaft for funding the Bruker 
microTOF-Q III mass spectrometer. 

We thank Frank Balzer for help with making 
PrenDB available online and Christian Raab for 
data processing during the implementation. 





 

81 
 

References 

1. Liu, A. H.; Liu, D. Q.; Liang, T. J.; Yu, X. 
Q.; Feng, M. T.; Yao, L. G.; Fang, Y.; Wang, 
B.; Feng, L. H.; Zhang, M. X.; and Mao, S. 
C. Caulerprenylols A and B, two rare 
antifungal prenylated para-xylenes from the 
green alga Caulerpa racemosa. Bioorg. Med. 
Chem. Lett. 2013, 23, 2491-2494. 

2. Oya, A.; Tanaka, N.; Kusama, T.; Kim, S. 
Y.; Hayashi, S.; Kojoma, M.; Hishida, A.; 
Kawahara, N.; Sakai, K.; Gonoi, T.; and 
Kobayashi, J. Prenylated benzophenones 
from Triadenum japonicum. J. Nat. Prod.
2015, 78 (258-264). 

3. Sunassee, S. N.; Davies-Coleman, M. T. 
Cytotoxic and antioxidant marine prenylated 
quinones and hydroquinones. Nat. Prod. 
Rep. 2012, 29, 513-535. 

4. Li, S.-M. Prenylated indole derivatives from 
fungi: structure diversity, biological 
activities, biosynthesis and chemoenzymatic 
synthesis. Nat. Prod. Rep. 2010, 27, 57-78. 

5. Wollinsky, B.; Ludwig, L.; Hamacher, A.; 
Yu, X.; Kassack, M. U.; Li, S.-M. 
Prenylation at the indole ring leads to a 
significant increase of cytotoxicity of 
tryptophan-containing cyclic dipeptides. 
Bioorg. Med. Chem. Lett. 2012, 22, 3866-
3869. 

6. Botta, B.; Vitali, A.; Menendez, P.; Misiti, 
D.; Delle, M. G. Prenylated flavonoids: 
pharmacology and biotechnology. Curr. 
Med. Chem. 2005, 12, 717-739. 

7. Winkelblech, J.; Fan, A.; Li, S.-M. 
Prenyltransferases as key enzymes in 
primary and secondary metabolism. Appl. 
Microbiol. Biotechnol. 2015, 99, 7379-7397.

8. Heide, L. Prenyl transfer to aromatic 
substrates: genetics and enzymology. Curr. 
Opin. Chem. Biol. 2009, 13, 171-179. 

9. Mai, P.; Zocher, G.; Ludwig, L.; Stehle, T.; 
Li, S.-M. Actions of tryptophan 

prenyltransferases toward fumiquinazolines 
and their potential application for the 
generation of prenylated derivatives by 
combining chemical and chemoenzymatic 
syntheses. Advanced Synthesis & Catalysis
2016, 358, 1639–1653. 

10. Fan, A.; Winkelblech, J.; Li, S.-M. Impacts 
and perspectives of prenyltransferases of the 
DMATS superfamily for use in 
biotechnology. Appl. Microbiol. Biotechnol.
2015, 99, 7399-7415. 

11. Rogers, D.; Hahn, M. Extended-
Connectivity Fingerprints. J. Chem. Inf. 
Model. 2010, 50 (5), 742-754. 

12. Gunera, J.; Kolb, P. Fragment-based 
similarity searching with infinite color 
space. Journal of Computational Chemistry
2015, 36 (21), 1597–1608. 

13. Daylight Chemical Information System, Inc. 
http://www.daylight.com/dayhtml_tutorials/
index.html (accessed March 16, 2016). 

14. Weininger, D. SMILES, a chemical 
language and information system 1: 
Introduction to methodology and encoding 
rules. J. Chem. Inf. Comput. Sci. 1988, 28
(1), 31-36. 

15. RDKit: Open source toolkit for 
chemoinformatics. http://www.rdkit.org 
(accessed March 16, 2016). 

16. OpenEye Scientific Software, Inc., Sante Fe, 
NM, USA. http://www.eyesopen.com. 

17. Irwin, J. J.; Shoichet, B. K. ZINC -- A Free 
Database of Commercially Available 
Compounds for Virtual Screening. J. Chem. 
Inf. Model. 2005, 45, 177-182. 

18. McGann, M. FRED and HYBRID docking 
performance on standardized datasets. 
Journal of Computer-Aided Molecular 
Design 2012, 26 (8), 897-906. 



 

82 
 

19. Woodside, A. B.; Huang, Z.; Poulter, C. D. 
Trisammonium geranyl diphosphate. Org. 
Synth. 1988, 66, 211-215. 

20. Grundmann, A.; Li, S.-M. Overproduction, 
purification and characterization of FtmPT1, 
a brevianamide F prenyltransferase from 
Aspergillus fumigatus. Microbiology 2005,
151, 2199-2207. 

21. Unsöld, I. A.; Li, S.-M. Overproduction, 
purification and characterization of FgaPT2, 
a dimethylallyltryptophan synthase from 

Aspergillus fumigatus. Microbiology 2005,
151, 1499-1505. 

22. Yin, W.-B.; Ruan, H.-L.; Westrich, L.; Li, 
S.-M. CdpNPT, an N-prenyltransferase from 
Aspergillus fumigatus: overproduction, 
purification and biochemical 
characterisation. ChemBioChem 2007, 8,
1154-1161. 

23. Schomburg, K.; Ehrlich, H.-C.; Stierand, K.; 
Rarey, M. From Structure Diagrams to 
Visual Chemical Patterns. J. Chem. Inf. 
Model 2010, 50 (9), 1529-1535. 



 

83 

 

NH

NH2

COOH5

6

Advanced Synthesis and Catalysis 2015, 357, 975-986. 



 

84 

 

Part 

 

Part 3 elaborates on the substrate selectivity and the regioselectivity of the prenyl transfer of five 
dimethylallyltryptophan synthases in the presence of unnatural prenyl donors. This investigation 
revealed a remarkable versatility of this enzyme family to not only accept different prenyl donors but 
also to transfer these moieties on different atoms within the acceptor molecule. With this study, we 
utilized a phalanx of in silico tools to elucidate the driving forces behind the observed 
regioselectivities and reaction yields. Thus, this work also contributes to a better understanding of 
prenyltransferases in general and to our SAR-by-Enzyme approach specifically. 

The author list is the following (by contribution order): Winkelblech J, Liebhold M, Gunera J, 
Xie X, Kolb P and Li S.M. Julia designed and carried out the enzyme kinetic and enzyme activity 
assays. Mike conducted structure elucidation of the prenylated molecules via NMR and preformed 
cloning experiments on DMATSSc. I was responsible for the generation of a homology model of 
5-DMATS, a dimethylallyltryptophan synthase. Furthermore, I conducted docking experiments in 
order to create initial geometries for Molecular Dynamics simulations and analyzed and interpreted 
the results thereof. Xiulan analyzed and interpreted the NMR data. 
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Abstract 

The behavior of four dimethylallyltryptophan 
synthases (DMATSs) (5-DMATS and 5-DMATSSc 
as tryptophan C5-prenyltransferases, and 
6-DMATSSa and 6-DMATSSv as 
C6-prenyltransferases) and one L-tyrosine 
prenyltransferase with a tryptophan 
C7-prenyltransferase activity was investigated in 
the presence of two unnatural alkyl donors 
(methylallyl and 2-pentenyl pyrophosphate) and 
one benzyl donor (benzyl pyrophosphate). 
Detailed biochemical investigations revealed the 
acceptance of these dimethylallyl pyrophosphate 
(DMAPP) analogs by all tested enzymes with 
different relative activities. Enzyme products with 
the allyl or benzyl moiety attached to different 
positions were identified in the reaction mixtures, 
whereby C6-alkylated or benzylated 
L-tryptophan was found as one of the main 
products. This observation demonstrates a 
preference of the five prenyltransferases toward 

C6 of the indole ring in the presence of unnatural 
DMAPP derivatives. Molecular dynamics 
simulation experiments with a homologous model 
of 5-DMATS explained well its reactions with 
methylallyl and 2-pentenyl pyrophosphate. 
Furthermore, this study expands significantly the 
potential usage of tryptophan prenylating 
enzymes as biocatalysts for Friedel–Crafts 
alkylation.  

1. Introduction 

Secondary metabolites with biological activities 
represent an important source for medicinal 
research and drug development. (1,2) They are 
widely distributed in nature, especially in plants 
and microorganisms. (1,2,3) Among 
microorganisms, fungi of Ascomycetes and 
bacteria of Actinomycetes are important 
producers of biologically active 
compounds. (3,4) Due to significant progress in 
genome sequencing and genome mining, a 
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number of gene clusters involved in the 
biosynthesis of such metabolites have been 
identified in recent years. (4,5,6,7,8) A large 
group of natural products comprises the 
prenylated aromatic substances derived from 
prenyl diphosphate and an aromatic scaffold from 
different pathways. (9,10) Prenyltransferases 
catalyze the linkage of these two residues and 
play an important role in the structural diversity 
of these compounds. Indole prenyltransferases 
belong to the dimethylallyltryptophan synthase 
(DMATS) superfamily, which catalyze the 
underlying prenylation reaction of indole 
derivatives in nature, and represent one of the 
most investigated class of 
prenyltransferases. (11) In the presence of the 
natural prenyl donor dimethylallyl 
pyrophosphate (DMAPP), most members of this 
superfamily usually show remarkable flexibility 
toward their aromatic substrates, but high 
regioselectivity of the prenylation position on the 
indole ring. (12,13,14,15) These characteristics 
were observed for fungal tryptophan 
prenyltransferases, e.g., FgaPT2, 5-DMATS and 

7-DMATS from different Aspergillus spp., which 
catalyze tryptophan C4-, C5- and C7-
prenylations, respectively (Scheme 1). Two 
bacterial enzymes, SCO7467 from Streptomyces 
coelicolor A3(2) and IptA from Streptomyces sp. 
SN-593, are tryptophan C5- and C6-
prenyltransferases, respectively. (12,16) IptA is 
involved in the biosynthesis of 6-
dimethylallylindole-3-carbaldehyde. (12,17) 

Recently, two further 6-DMATS enzymes, 
6-DMATSSa (SAML0654) from Streptomyces 
ambofaciens (S. ambofaciens) ATCC238 and 
6-DMATSSv (Strvi8510) from Streptomyces 
violaceusniger (S. violaceusniger) Tü4113 were 
identified and characterized biochemically. (18) 
These two 6-DMATS enzymes showed high 
flexibility toward their prenyl donor and 
acceptor. In contrast to other indole 
prenyltransferases, both DMAPP and geranyl 
pyrophosphate (GPP) were used by both 
enzymes. (18) Consequently, this flexibility 
makes them interesting candidates for further 
investigations on the acceptance of unnatural 
alkyl or benzyl donors. 

Scheme 1: Regiospecific prenylation of tryptophan by the five prenyltransferases used in this study in the presence of their
natural prenyl donor DMAPP. Origin of the enzymes: 6-DMATSSa from Streptomyces ambofaciens, 6-DMATSSv from 
Streptomyces violaceusniger, 5-DMATS from Aspergillus clavatus, 5-DMATSSc from Streptomyces coelicolor and TyrPT 
from Aspergillus niger. 
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Biochemical investigations on the tryptophan 
prenyltransferases FgaPT2 and 5-DMATS with 
methylallyl (MAPP) and 2-pentenyl 
pyrophosphate (2-pentenyl-PP or EAPP for 
ethylallyl pyrophosphate) showed that these 
enzymes also accepted such unnatural alkyl 
donors. The alkylation positions were shifted 
partially or completely to the neighboring 
position. (19) The tryptophan C4-
prenyltransferase FgaPT2 even accepted benzyl 
pyrophosphate (benzyl-PP or BENZYLPP) as 
substrate and catalyzed the regiospecific 
benzylation of L-tryptophan at position C5. (20) 
Our previous data on the reactions of tryptophan 
prenyltransferases with unnatural alkyl and 
benzyl donors were limited to enzymes which 
catalyzed the transfer reactions of the 
dimethylallyl moiety onto position C4 and C5 of 
the indole ring. (19,20) In a previous study, the 
behavior of the 7-DMATS from A. fumigatus 
could not be investigated in detail, due to its low 
activity in the presence of unnatural DMAPP 
analogs. (19) 

Fortunately, the recently identified L-tyrosine 
prenyltransferase TyrPT from Aspergillus niger 
showed a remarkable tryptophan 
C7-prenyltransferase activity (21) and can be 
considered as a tryptophan C7-prenylating 
enzyme in this study. As shown in Scheme 1, the 
five enzymes 5-DMATS (13), 5-DMATSSc (17), 
6-DMATSSa (18), 6-DMATSSv

 (18) and 
TyrPT (21) used in this study share the same 
substrates (tryptophan and DMAPP), but 
catalyzed regiospecific prenylations at different 
positions of the indole ring. After having the 
availability of the two tryptophan C6-
prenyltransferases 6-DMATSSa and 6-DMATSSv 
as well as of TyrPT in our laboratory, we initiated 
a study to prove their behavior toward MAPP, 
EAPP and BENZYLPP.  

2. Results 

2.1. C6-alkylated/benzylated derivates as 
unique enzyme products of the two 
C6-prenyltransferases 

The purified recombinant proteins 6-DMATSSa 
and 6-DMATSSv were firstly incubated with 
L-tryptophan in the presence of one of the three 
unnatural DMAPP analogs MAPP (I), 

EAPP (II), and BENZYLPP (III). HPLC 
analysis of the enzyme assays showed clear 
product formation in all of these reaction 
mixtures, with the highest conversions of 
91.3±0.07 % and 89.3±0.6 % observed in the 
presence of EAPP for 6-DMATSSa and 6-
DMATSSv, respectively (Figure 1 see the 
Supporting Information, Table S1). Lower 
conversion yields of 51.1±0.5 % and 37.6±0.3 % 
were observed in the incubation mixtures with 
MAPP, and 13.9±0.3 % and 8.2±0.3 % with 
BENZYLPP (Figure 1, Scheme 2, see the 
Supporting Information, Table S1). To 
determine the alkylation position, enzyme assays 
were prepared on a large scale. The enzyme 
products Ia – IIIa were isolated from both assays 
of 6-DMATSSa and 6-DMATSSv on HPLC and 
their structures were elucidated by MS and NMR 
analyses. For better understanding, we named the 
products by a combination of I (product from 
MAPP), II (EAPP) or III (BENZYLPP) with a 
(regular alkyl or benzyl at C6), b1 (regular alkyl 
at C7), b2 (reverse alkyl at C7), b (benzyl at C7) 
or c (regular alkyl or benzyl at C5). MS data 
confirmed the monoalkylation or benzylation of 
the isolated products. 1H NMR analysis (for 
structural elucidation see the Supporting 
Information) proved the regular attachment of the 
alkyl or benzyl residue onto position C6 of the 
indole ring in all of these cases (see the 
Supporting Information, Figures S9 and S10). 
This conclusion was drawn by comparison of the 
coupling patterns of the signals for aromatic 
protons with those of the published data for C6-
alkylated L-tryptophan. (18,19,20) In the 
presence of the natural prenyl donors DMAPP or 
GPP, 6-DMATSSa and 6-DMATSSv also catalyze 
a C6-prenylation. (18) Therefore, the alkylation 
position for both enzymes was proven to be 
independent of the used alkyl or benzyl donor.  
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2.2. C6-alkylated/benzylated derivates were 
main products of TyrPT reactions with 
DMAPP analogs 

Taking the data on 6-DMATSSa and 6-DMATSSv 
with the previous published results on FgaPT2 
and 5-DMATS (19,20,22) together, we have 
shown the behavior of tryptophan C4-, C5- and 

C6-prenyltransferases toward unnatural DMAPP 
analogs. It would be interesting to complete this 
series with C7-prenylating enzymes. A previous 
study showed that the tryptophan C7-
prenyltransferase 7-DMATS from A. 
fumigatus (23) accepted very poorly MAPP and 
EAPP. (19) Recently, CAK41583 from A. niger 
was identified as a tyrosine prenyltransferase 

Figure 1: HPLC analysis of the reaction mixtures of L-tryptophan with unnatural DMAPP analogs. 
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(TyrPT), catalyzing an O-prenylation at the 
phenolic hydroxy group of L-tyrosine. (21) As in 
the case of SirD from Leptosphaeria 
maculans, (24) TyrPT also catalyzed the transfer 
reaction of a dimethylallyl moiety from DMAPP 
to C7 of L-tryptophan and several derivatives 
thereof. (21) The broad substrate specificity of 
TyrPT led us to test its activity for DMAPP 
analogs in the presence of L-tryptophan. In 
analogy to 6-DMATSSa and 6-DMATSSv, TyrPT 
was incubated with L-tryptophan in the presence 
of MAPP, EAPP and BENZYLPP. Product 
formation was detected in all three incubation 
mixtures (Figure 1). However, the observed 
enzyme activities were much lower than those of 
the two 6-DMATS enzymes. Total product yields 
of 38.3±0.6, 17.7±0.2 and 8.5±1.0 % were 
calculated for EAPP, MAPP and BENZYLPP, 
respectively (Figure 1, Scheme 2, see the 
Supporting Information, Table S1). This is 
justified by the fact that L-tyrosine, but not 
L-tryptophan is the best accepted aromatic 
substrate by TyrPT, also in the presence of 
DMAPP. Interestingly, the ratio of the relative 
activities toward the three DMAPP analogs was 
similar to those of the two 6-DMATS enzymes. 
In contrast to the unique C7-prenylation of 
L-tryptophan by TyrPT in the presence of 
DMAPP, interpretation of the individual peaks of 
the 1H NMR spectra indicated the presence of 
more than one product each in the incubation 
mixtures with DMAPP analogs. Optimization of 
the HPLC conditions and the application of a 
Chiralpak Zwix (+) column (see the Supporting 
Information, Figure S 1) allowed a partial 
separation of these product mixtures. Although 
the compounds to be separated differ from each 
other by alkylation positions rather than by 
stereochemistry, they showed different behavior 
on the Chiralpak Zwix (+) column. It seems that 
the indole derivatives had different interactions 
with the column material.  

HPLC analysis of the incubation mixture with 
EAPP and interpretation of the NMR data led to 
the identification of three substances with a 
regular alkyl moiety attached to C6 (IIa), C7 
(IIb1) and C5 (IIc), respectively. Product yields 
of 21.5±0.4, 9.9±0.2 and 3.3±0.03 % were 
calculated for these products (Scheme 2, see also 
the Supporting Information). In addition, a T
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reversely C7-alkylated L-tryptophan (IIb2) was 
isolated with a product yield of 3.5±0.7 % 
(Scheme 2, see the Supporting Information, 
Figure S21). With MAPP as alkyl donor, 
regularly C6- (Ia) and C7-alkylated (Ib1) as well 
as reversely C7-alkylated derivatives (Ib2) were 
identified by interpretation of their NMR spectra 
(see the Supporting Information). Product yields 
of 5.9±0.08, 8.9±0.1 and 2.9±0.4 % were 
calculated for Ia, Ib1 and Ib2, respectively. 
Regularly C6-, C7- and C5-benzylated products 
(IIIa, IIIb, IIIc) with product yields of 5.7±0.7, 
1.9±0.2 and 0.9±0.1 % were identified in the 

reaction mixture of L-tryptophan with 
BENZYLPP. These results demonstrated clearly 
that C6-alkylated or benzylated derivatives were 
unique or one of two predominant products of 
TyrPT reactions in the presence of the unnatural 
donors (Scheme 2) and differed clearly from that 
of L-tryptophan with DMAPP. (21)  

Scheme 2: Alkylation/benzylation of L-tryptophan catalyzed by C5-, C6- and C7-prenylating enzymes in the presences of 
three DMAPP analogs: A methylallyl pyrophosphate (MAPP); B 2-pentenyl pyrophosphate (EAPP); C benzyl diphosphate 
(BENZYLPP). --: product yields < 0.3 %. The mean of the total conversion yields was measured in duplicate by HPLC and
the percentages for different products were calculated by using corresponding NMR data. 
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2.3. Comparison of bacterial and fungal 
alkylation/benzylation reactions by 
investigations on 5-DMATS and 5-DMATSSc 

As described above, the two 6-DMATS enzymes 
from bacteria catalyzed the regiospecific 
alkylation and only one product with the same 
position, i.e., C6, was identified, independent of 
DMAPP, GPP (18) or the DMAPP analogs 
MAPP, EAPP or BENZYLPP. In comparison, 
the fungal prenyltransferases FgaPT2 and 
5-DMATS catalyzed the regiospecific C4- and 
C5-prenylation in the presence of DMAPP, 
respectively. (13,14) But in the presence of the 
unnatural DMAPP analogs, the regioselectivity 
was partially or completely shifted. (19,20) In the 
presence of L‑tryptophan, the fungal L‑tyrosine 
O-prenyltransferase TyrPT also accepted 
DMAPP analogs as substrates. In the case of 
EAPP and BENZYLPP, C6-alkylated or 
benzylated L‑tryptophan was the predominant 
product. In the presence of MAPP, the 
C6-alkylated derivative was one of the two 
dominant products. It seems that in the presence 
of DMAPP analogs, C6 is the preferable 
alkylation position for enzymes which usually 
catalyzed the prenylation of L‑tryptophan at C5 
(like 5-DMATS), C6 (6-DMATS enzymes) and 
C7 (TyrPT). 

These results pose an important question on 
the possible reason for the decreasing 
regioselectivity of 5-DMATS and TyrPT. One 
plausible explanation could be the orientation of 
the DMAPP analogs in the binding sites of the 
enzymes, which make C6 to be the preferable 
alkylation position. However, it cannot be 
excluded that the observed regiospecific 
alkylation or benzylation of L‑tryptophan at the 
same position by 6-DMATSSa and 6-DMATSSv in 
the presence of DMAPP, GPP and DMAPP 
analogs is based on their bacterial origin. It could 
be speculated that bacterial prenyltransferases 
retain their regioselectivities independent of the 
used donors, while fungal enzymes exhibit 
relaxed selectivity in the presence of different 
alkyl donors. 5-DMATS and TyrPT are fungal 
enzymes and therefore showed different behavior 
regarding regioselectivity compared with 
6-DMATS enzymes. The latter hypothesis would 
also be supported by the fact that FgaPT2 

catalyzed tryptophan alkylation and benzylation 
in the presence of these unnatural alkyl and 
benzyl donors with partial or complete shift of the 
attachment positions. (19,20) 

To clarify the possible reason for this 
difference, we investigated the regioselectivity of 
the tryptophan C5-prenyltransferase SCO7467 
(5-DMATSSc) from the bacterium Streptomyces 
coelicolor A3(2) in the biosynthesis of 
5-dimethylallylindole-3-acetonitrile. (16,17) 

SCO7467 was overproduced in E. coli as 
reported by Ozaki (17), purified and investigated 
in the presence of MAPP, EAPP and 
BENZYLPP. For comparison, the behavior of the 
fungal 5-DMATS from A. clavatus (13), toward 
MAPP and EAPP (19) was reproduced in this 
study. In addition, this enzyme was assayed with 
BENZYLPP in the presence of L‑tryptophan.  

The previously reported data for 
5-DMATS (19) were reproduced in this study by 
identification of C5- and C6-alkylated products 
with MAPP, with products yields of 13.6±0.02 
and 45.3±0.05 %, respectively. In the presence of 
EAPP, the alkylation position was completely 
shifted from C5 to C6. Similar to those of MAPP, 
C5- and C6-benzylated products with yields of 
5.7±0.01 and 22.9±0.06 % were detected in the 
assay with BENZYLPP (Figure 1, Scheme 2). 
Again, C6-alkylated or benzylated L‑tryptophan 
represented the predominant product. 

HPLC analysis clearly revealed product 
formation in the reaction mixtures of 
L‑tryptophan with the recombinant 5-DMATSSc 
in the presence of all three DMAPP analogs 
(Figure 1). HR-MS data confirmed the 
attachment of one alkyl or benzyl residue on the 
substrate for all of the obtained products (see the 
Experimental Section). Structure elucidation by 
NMR indicated that the isolated product peaks 
consisted of more than one substance. C6-, C7- 
and C5-alkylated derivatives were identified with 
ratios of 3:3:1 for EAPP and of 4:4:1 for MAPP. 
By using a Chiralpak Zwix (+) column, the C7-
alkylated products were purified from these 
mixtures (Scheme 2, see the Supporting 
Information, Figure S1). With EAPP as alkyl 
donor, a product yield of 9.3±0.02 % was 
calculated for C5- (IIc) and 27.9±0.06 % each for 
C6- (IIa) and C7-alkylated (IIb1) L‑tryptophan 
(Scheme 2). In the case of MAPP, product yields 



 

92 
 

of 9.3±0.2, 9.2±0.2 and 2.3±0.05 % were 
determined for Ia, Ib1 and Ic, respectively. 
Inspection of the NMR spectra of the products 

obtained with BENZYLPP revealed the presence 
of 6-benzyl-L‑tryptophan (IIIa) with a product 
yield of 5.3±0.1 % and 7-benzyl-L‑tryptophan 
(IIIb) of 0.9±0.02 % (see the Supporting 
Information, Figures S11 and S22). In addition, 
signals of a C5-benzylated L‑tryptophan (IIIc) 
with a product yield of 0.4±0.009 % could also be 
observed (together with IIIa as a mixture, see the 
Supporting Information, Figure S2). 

The results obtained with the bacterial 
5-DMATSSc were distinguishable not only from 
those with the fungal 5-DMATS, but also from 
those of the two bacterial 6-DMATS enzymes. 
Formation of three different alkylated or 
benzylated products by 5-DMATSSc in all of the 
three incubations disproved the bacterial origin of 
the observed high regiospecificity for the two 
6-DMATS enzymes. These results confirmed the 
preference of the enzymes investigated in this 
study for C6 of the indole ring in the presence of 
the three unnatural DMAPP analogs. 

2.4. Kinetic parameters 

Determination of the kinetic parameters of the 
enzymes with the DMAPP analogs indicated that 
the observed reactions were consistent with 
Michaelis–Menten kinetics (Table 1). KM values 
in the range of 0.011 to 0.13 mM proved their 
relatively high affinity toward the tested DMAPP 
analogs. In contrast, the turnover numbers of the 
reactions with these DMAPP analogs were much 
lower than those with DMAPP. As observed in 
Figure 1 and given in Scheme 2, EAPP was 
accepted in most cases as the best unnatural alkyl 
donor. This was also confirmed by the kinetic 
parameters with an exception for TyrPT. Here the 
efficiencies toward MAPP and EAPP are almost 
identical, although higher relative activities 
toward EAPP were observed. The unnatural 
donor MAPP was also well accepted but to a 
lesser degree. BENZYLPP is a poor substrate for 
all enzymes, as verified by kinetic parameters. 

2.5. Homology modelling of 5-DMATS 

To get insights into the reduced regioselectivity 
of the tested enzymes in the presence of DMAPP 
analogs and to assess how the protein might be 
able to discriminate between the different 

Figure 2: Homology model of 5-DMATS (A). α-helices are 
colored in red, β-sheets in yellow and turns and loop in
green, respectively. The ABBA motif of
dimethylallyltryptophan synthases is reproduced in the
model, the Cα-RMSD between model and template being
0.1 Å. Active site residues of the model (orange) and
template (white) are shown (B and C). The corresponding
amino acids are labelled as pairs (FgaPT2/5-DMATS). 
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analogs, we homology modelled 5-DMATS. 
Four enzymes from the DMATS superfamily, 
FgaPT2 (25), FtmPT1 (26), CdpNPT (27) and 
AnaPT (28) could principally serve as templates. 
As expected, the structure of the tryptophan 
C4-prenyltransferase FgaPT2 is the most suitable 
for this purpose, owing to the sequence identity 
of 52 % with the target. As shown in Figure 2A 
and Figure S26 in the Supporting Information, 
our model of 5-DMATS consists of five αββα 
units, being similar to those of the known 
structures of the DMATS enzymes. Due to the 
low homology of only about 26 % or less on the 
amino acid level to proteins with known 
structures, no model with a sufficient level of 
detail for the approaches used in this study could 
be obtained for 5-DMATSSc, 6-DMATSSa, 
6-DMATSSv, or TyrPT.  

2.6. Docking experiments with DMAPP and 
analogs 

Initial docking experiments led to acceptor and 
donor poses consistent with the interactions 
observed for the respective molecules in the 
template X-ray structure. In particular, contacts 
with the conserved basic residues interacting with 
the pyrophosphate tail of the donor molecules are 
preserved. Yet, this static picture of protein 
acceptor – donor interactions did not allow us to 
formulate a hypothesis that was consistent with 

the experimental findings. Thus, we carried out 
molecular dynamics (MD) calculations to assess 
how the interactions might change over time. 

These MD studies (Supporting Information, 
Figure S27) showed that DMAPP resides in the 
cavity with a mean distance of 4.32 Å between its 
C1 and the C5 of the indole ring (Figure 3A). In 
contrast, the average distance between C1 and C6 
on L-tryptophan is significantly larger, thus 
providing a possible explanation for the 
formation of solely C5-prenylated tryptophan in 
the presence of DMAPP. In comparison, C1 of 
EAPP is predominantly close to C6 of the indole 
ring with a distance of 4.82 Å (compared to 
5.11 Å between C1 and C5; Figure 3B), so that 
an exclusive C6-alkylation is plausible. As shown 
in Figure 3C, C1 of MAPP is located at a shorter 
distance to C6 of the indole ring, which is also 
consistent with the formation of the 
predominantly C6-alkylated derivative for this 
donor. All these simulations were remarkably 
stable over the simulation time, as evidenced by 
the RMSD and RMSF plots in Figure S28 and 
S29 of the Supporting Information and the 
overlay of the starting structure and the final 
snapshot (Supporting Information, Figure S27). 
In contrast, the MD simulations with 
BENZYLPP became unstable shortly after the 
start of the unrestrained equilibration step 
(despite several repetitions), with an unusual 
edge-to-face orientation of benzyl pyrophosphate 
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Figure 3: For each donor molecule the distances between C1 atom of the donor and C5, and C6 atom of tryptophan were 
measured over 2,500 generated coordinates. Distance distributions are shown as box plots: Grey circles represent mean values,
white circles measurements outside the 95th percentile. Boxes span 50 % of the measurements, whiskers 95 %. White boxes 
correspond to distances between C1 and C5 atom, while shaded boxes show distances between C1 and C6 atom, respectively.
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with respect to L-tryptophan (Supporting 
Information, Figure S27). We were thus unable 
to use these data within the present study. We 
speculate that the reason for this behavior of the 
simulations could be that the binding sites for the 
prenyl donors in the structures of the DMATS 
enzymes were determined with linear DMAPP 
analogs, which have significantly different sizes 
and electron densities than benzyl 
pyrophosphate. 

It also seems intuitive that the donor-acceptor 
distance is a major factor determining the 
regioselectivity of alkylations: As evidenced by 
the experiments, the reactivities of both C5 and 
C6 can be considered as equal. Thus, the 
preference for prenylation at a certain position 
can be a direct effect of the number of times 
donor and acceptor come so close to each other 
that an activated complex can be formed.  

3. Discussion and conclusions 

In conclusion, all the tested enzymes used 
methylallyl, 2-pentenyl and benzyl 
pyrophosphate as substrates and catalyzed 
Friedel–Crafts alkylation or benzylation 
reactions on the indole ring. The observed 
reactions differ from each other in relative 
activities and regioselectivity of the attached 
position. One to four alkylated or benzylated 
derivatives have been identified as enzyme 
products (Scheme 2). From Scheme 2, it is 
obvious that in the presence of unnatural DMAPP 
analogs, C6 of tryptophan was the preferable 
alkylation and benzylation position for 
tryptophan C5-, C6- and C7-prenylating 
enzymes. C6-Alkylated or benzylated derivatives 
were identified in all the reaction mixtures. It was 
found as a unique product in the cases of the both 
6-DMATS enzymes with all of the three DMAPP 
analogs or as one of two main products in the 
reaction mixtures of 5-DMATSSc with MAPP and 
EAPP. Such derivatives were predominant 
products in all other reaction mixtures. From 
Scheme 2, it is also clear that the tryptophan 
C5-prenyltransferases 5-DMATS and 
5-DMATSSc as well as TyrPT with a tryptophan 
C7-prenyltransferase activity also produced C5- 
or/and C7-alkylated or benzylated derivatives, 
indicating a shift of the alkylation or benzylation 

position from C5 to C7 and vice versa. By using 
the program MODELLER, a structural model 
was constructed for 5-DMATS from A. clavatus 
and used for docking and MD studies with 
DMAPP, MAPP and EAPP, leading to a 
distance-based explanation of their observed 
reaction preferences. Unfortunately, the MD 
simulations with benzyl pyrophosphate became 
unstable. It seems that the available structure 
information is still too limited for a universal 
interpretation or prediction of all possible 
enzyme reactions. Therefore, it will be interesting 
to have more protein structures elucidated in the 
near future, most importantly also as complexes 
with different acceptors and donors including 
unnatural DMAPP analogs. 

4. Materials and Methods 

4.1. Chemicals 

Synthesis of methylallyl-PP (MAPP), 2-
pentenyl-PP and benzyl-PP was carried out as 
described previously. (19,29) L-tryptophan was 
purchased from Roth (Karlsruhe, Germany). 

4.2. Overproduction and purification of the 
recombinant proteins 

Gene expression and subsequent protein 
purification of the recombinant 6-DMATSSa-
His6, His8-6-DMATSSv, His6-TyrPT and 5-
DMATS-His6 were carried out as described 
previously. (13,18,21) 

4.3. Cloning and expression of 5-DMATSSc 
(SCO7467) 

PCR amplification of SCO7467 from 
Streptomyces coelicolor A3(2) was carried out as 
described by Ozaki et al. (30) The expression 
vector pHis8 containing the coding sequence was 
termed pML10. E. coli BL21 [DE3] cells 
harboring pML10 were cultivated in 1 L liquid 
lysogeny broth (LB) medium supplemented with 
kanamycin (50 µg ml-1) till an absorption at 
600 nm of 0.6. For induction of gene expression, 
IPTG was added to a final concentration of 
0.5 mM. After further incubation at 30°C and 
220 rpm for 6 h, the recombinant protein was 
purified as routinely on Ni-NTA agarose. 
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4.4. Enzyme assays for determination of the 
activities and kinetic parameters 

The reaction mixtures (100 µl) for determination 
of the enzyme activities contained 1 mM 
L-tryptophan, 5 mM CaCl2, 2 mM alkyl 
diphosphate (DMAPP, MAPP (I), EAPP (II)) or 
BENZYLPP (III), 1.0-1.5% (v/v) glycerol, 
50 mM Tris-HCl (pH 7.5) and 7.5 µM of purified 
recombinant protein. The reaction mixtures were 
incubated at 37 °C for 16 h. For HPLC analysis, 
the reactions were terminated with 100 µL 
MeOH. Protein was then removed by 
centrifugation at 17,000 rpm for 15 min. HPLC-
measurements were carried out in duplicate on a 
RP-18 and a Chiralpak Zwix column (+). 

Enzyme assays for determination of the 
kinetic parameters for DMAPP and its analogs 
MAPP, EAPP and BENZYLPP contained 1 mM 
L-tryptophan, 5 mM CaCl2 for fungal or MgCl2 
for bacterial prenyltransferases, 0.15% (v/v) 
glycerol, 50 mM Tris-HCl (pH 7.5) and the 
respective alkyl or benzyl diphosphate in final 
concentrations of up to 0.5 mM or 1 mM in the 
case of 5-DMATS with BENZYLPP were 
incubated at 37 °C in duplicates. For 6-
DMATSSa, a protein amount of 5 µg and an 
incubation time of 30 min were used in the 
presence of EAPP. For incubation with MAPP or 
BENZYLPP, the protein amount and incubation 
time were 10 µg and 60 min. 1 µg 6-DMATSSv 
was assayed with DMAPP for 5 min and 10 µg 
with DMAPP analogs for 60 min. The assays for 
TyrPT contained 15 µg protein and were 
incubated for 60 min with EAPP and 90 min with 
MAPP or BENZYLPP. 10 µg 5-DMATSSc and 
an incubation time of 60 min were used for 
EAPP, 20 µg and 90 min for MAPP. For the 
reactions with BENZYLPP, 25 µg 5-DMATSSc 
and an incubation time of 90 min were used. 
Kinetic parameters of 5-DMATS were obtained 
from enzyme assays with 20 µg of purified 
protein and incubation time of 60 min. The 
reactions were terminated with 100 µL MeOH 
and the protein was removed by centrifugation at 
17,000 rpm for 15 min. Parameters of Michaelis-
Menten kinetics such as KM and turnover number 
(kcat) were determined by Lineweaver-Burk, 
Hanes-Woolf and Eadie-Hofstee plots. 

4.5. Enzyme assays for isolation and structure 
elucidation 

Assays for isolation of the enzyme products were 
carried out in large scales (10 mL) containing 
1 mM L-tryptophan, 2 mM MAPP, EAPP or 
BENZYLPP, 5 mM CaCl2, 0.0%-1.5% (v/v) 
glycerol, 50 mM Tris-HCl (pH 7.5) and with 2 to 
4 mg of purified recombinant protein. After 
incubation for 16 h at 37 °C, the reaction 
mixtures were terminated with 10 mL MeOH and 
precipitated protein was removed by 
centrifugation at 4,750 rpm for 15 min. The 
obtained supernatant was then concentrated on a 
rotating vacuum evaporator to 1 mL for injection 
in HPLC. 

4.6. HPLC analysis and isolation of the 
enzyme products for structure elucidation 

The enzyme products were analyzed on an 
Agilent series 1200 HPLC (Agilent Technologies 
Deutschland GmbH, Böblingen, Germany) with 
a Multospher 120 RP-18 column (250 x 4 mm, 
5 µm, C+S-Chromatography Service, 
Langerwehe, Germany) at a flow rate of 
1 mL min-1. Water (solvent A) and methanol 
(solvent B) were used as solvents for analysis and 
isolation of the enzyme products. For analysis of 
the alkylated tryptophan, a linear gradient of 40-
100% (v/v) solvent B over 15 min was used. The 
column was then washed with 100% solvent B for 
5 min and equilibrated with 40% solvent B for 
5 min. Detection was carried out on a photo diode 
array detector. 

By using the same HPLC equipment and a 
semipreparative Multospher 120 RP-18 column 
(250 x 10 mm, 5 µm, C+S-Chromatographie 
Service, Langerwehe, Germany), the enzyme 
products were isolated at a flow rate of 
2.5 mL min-1 and a gradient of 60-100% solvent 
B in 20-25 min. If necessary, an isocratic step 
with solvent B before the gradient was included 
for 5 min. After each run the column was washed 
with 100% solvent B and equilibrated with 60% 
solvent B for 5 min. 

A much better separation of the L-tryptophan 
derivatives with different alkylation positions on 
the indole ring was achieved by using a Chiralpak 
Zwix column (+) (150 x 3 mm, 3 µm, Chiral 
technologies Europe, Daicel Group, Illkirch 
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Cedex, France). This column was used for 
detailed investigations on the enzyme products in 
the incubation mixtures (Figure S1, Supporting 
Information) and for separation of the product 
mixtures, which were not separated by using the 
semipreparative Multospher 120 RP-18 column 
mentioned above. Analysis of the enzyme assays 
and isolation of the products were carried out at a 
flow rate of 0.5 mL min-1 with water (solvent A) 
and methanol (solvent B) as solvents. An 
isocratic run with 50% solvent B was used. 

4.7. NMR and MS analyses as well as structure 
elucidation 

NMR including two-dimensional HSQC and 
HMBC spectra were recorded on a JEOL 
ECA-500 (JEOL Germany GmbH, Munich, 
Germany) or Bruker Avance-600 spectrometer 
(Bruker Corporation, Billerica, USA), 
respectively. The spectra were processed with 
MestReNova 6.0.2. Chemical shifts were referred 
to the signals of CD3OD at H 3.31 and 
C 49.2 ppm. The isolated compounds were also 
analyzed by electrospray ionization (ESI-MS) or 
electron impact mass spectrometry (EI-MS) on a 
Q-Trap 2000 (Life Technologies Ltd, Paisley 
PA4 9RF, United Kingdom) and by high 
resolution electrospray ionization (HR-ESI-MS) 
or electron impact mass spectrometry (HR-EI-
MS) on an Auto SPEC (Waters MS Technology 
Centre, Manchester, United Kingdom). 

Compound Ia: 1H NMR (methanol-d4, 500 
MHz) δppm (coupling constant, assignment): 7.60 
(dd, J=8.1, 0.4 Hz, H-4), 7.15 (d, 0.7, H-7), 7.12 
(s, H-2), 6.89 (dd, J=8.1, 1.4 Hz, H-5), 5.60 (dtq, 
J=15.1, 6.6, 1.4 Hz, H-2’), 5.51 (dqt, J=15.1, 6.3, 
1.3 Hz, H-3’), 3.84 (dd, J=9.5, 4.0 Hz, H-11), 
3.49 (ddd, J=15.2, 4.0, 0.6 Hz, H-10), 3.37 (d, 
J=6.7 Hz, H2-1’), 3.11 (dd, J=15.2, 9.5 Hz, H-10), 
1.67 (dd, J=6.2, 1.4 Hz, H3-4’); ESI-MS: m/z 
(intensity) 517.30 [2M+H]+ (100), 539.3 
[2M+Na]+ (58), 297.10 [M+K]+ (47), 259.10 
[M+H]+ (31), 281.10 [M+Na]+(24); HR-EI-MS: 
m/z= 258.1322, calcd for C15H18N2O2 [M]+: 
258.1368. 

Compound IIa: 1H NMR (methanol-d4, 500 
MHz): 7.60 (d, J=8.2 Hz, H-4), 7.16 (d, J=0.6 Hz, 
H-7), 7.13 (s, H-2), 6.90 (dd, J=8.2, 1.4 Hz, H-5), 
5.63–5.50 (m, H-2’/H-3’), 3.84 (dd, J=9.5, 4.0 

Hz, H-11), 3.49 (ddd, J=15.1, 4.0, 0.6 Hz, H-10), 
3.38 (d, J=6.0 Hz, H2-1’), 3.12 (dd, J=15.2, 9.5 
Hz, H-10), 2.04 (m, H2-4’), 0.99 (t, J=7.5 Hz, H3-
5’); ESI-MS: m/z (intensity) 273.25 [M+H]+ 
(100), 295.14 [M+Na]+ (87), HR-EI-MS: m/z= 
272.1557, calcd. for C16H20N2O2 [M]+: 272.1525. 

Compound IIIa: 1H NMR (methanol-d4, 500 
MHz): 7.60 (dd, J=8.2, 0.6 Hz, H-4), 7.25–7.17 
(m, H-2’/H-6’, H-3’/H-5’), 7.18 (s, H-7, overlaid 
with H-2’/H-6´, H-3’/H-5’), 7.15–7.11 (m, H-4’), 
7.13 (s, H-2’ overlaid with H-4’), 6.93 (dd, J=8.2, 
1.5 Hz, H-5), 4.04 (s, H2-1’), 3.82 (dd, J=9.4, 4.0 
Hz, H-11), 3.48 (ddd, J=15.2, 4.0, 0.7 Hz, H-10), 
3.11 (dd, J=15.2, 9.4 Hz, H-10); ESI-MS: m/z 
(intensity) 295.20 [M+H]+ (100), 589.70 
[2M+H]+ (50), 316.92 [M+Na]+ (11); HR-EI-MS: 
m/z= 294.1368, calcd. for C18H18N2O2 [M]+: 
294.1362. 

Compound Ib1: 1H NMR (methanol-d4, 500 
MHz): 7.56 (dd, J=7.9, 1.0 Hz, H-4), 7.19 (s, H-
2), 7.00 (dd, J=7.9, 7.1 Hz, H-5), 6.93 (dd, J=7.1, 
0.6 Hz, H-6), 5.65 (dtq, J=15.1, 6.4, 1.4 Hz, H-
2’), 5.57 (dqt, J=15.1, 6.2, 1.2 Hz, H-3’), 3.85 
(dd, J=9.5, 4.0 Hz, H-11), 3.53 (d, J=5.2 Hz, H2-
1’), 3.51 (m, H-10, overlaid with H-1’), 3.14 (dd, 
J=15.4, 9.5 Hz, H-10), 1.66 (ddt, J=6.0, 1.4, 1.3 
Hz, H3-4’); ESI-MS: m/z (intensity) 259.30 
[M+H]+ (100), 281.10 [M+Na]+ (55.8), 539.23 
[2M+Na]+ (14), 517.32 [2M+H]+ (8), 297.00 
[M+K]+ (6); HR-ESI-MS: m/z= 281.1266, calcd. 
for C15H18N2O2 [M+Na]+: 281.1288. 

Compound IIb1: 1H NMR (methanol-d4, 600 
MHz): 7.55 (d, J=7.8 Hz, H-4), 7.19 (s, H-2), 7.00 
(t, J=7.5 Hz, H-5), 6.93, (d, J=7.0 Hz, H-6), 5.67–
5.58 (m, H-2’/H-3’), 3.84 (dd, J=9.3, 3.8 Hz, H-
11), 3.54 (d, J=3.3 Hz, H2-1’), 3.50 (dd, J=15.1, 
3.8 Hz, H-10), 3.13 (dd, J=15.1, 9.3 Hz, H-10), 
2.03 (m, H2-4’), 0.97 (t, J=7.5 Hz, H3-5’); 13C 
NMR (methanol-d4, 150 MHz, deduced from 
HSQC/HMBC): δppm=136.8, 134.1, 128.4, 127.9, 
125.1, 124.7, 122.2, 120.2, 117.1, 109.9, 56.5, 
35.0, 28.4, 26.1, 13.8; ESI-MS: m/z (intensity) 
295.10 [M+Na]+ (100), 273.14 [M+H]+ (29), 
545.35 [2M+H]+ (6), 567.39 [2M+Na]+ (6), 
311.10 [M+K]+ (3); HR-ESI-MS: m/z=295.1395, 
calcd. for C16H20N2O2 [M+Na]+: 295.1422. 

Compound IIIb: 1H NMR (methanol-d4, 500 
MHz): 7.58 (dd, J=8.1, 0.8 Hz, H-4), 7.26–7.20 
(m, H-2’/H-6’, H-3’/ H-5’), 7.18 (s, H-2), 7.14 
(m, H-4’), 7.01 (t, J=7.6 Hz, H-5), 6.92 (dd, 
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J=7.2, 0.4 Hz, H-6), 4.20 (s, H2-1’), 3.83 (dd, 
J=9.4, 4.0 Hz, H-11), 3.50 (dd, J=15.1. 4.0 Hz, 
H-10), 3.13 (dd, J=15.1, 9.4 Hz, H-10); ESI-MS: 
m/z (intensity) 316.90 [M+Na]+ (100), 295.2 
[M+H]+ (11.4). HR-EI-MS: m/z=294.1368, 
calcd. for C18H18N2O2 [M]+: 294.1339 (as a 
mixture with IIIa). 

Compound Ib2: 1H NMR (methanol-d4, 500 
MHz): 7.56 (dd, J=7.8, 1.1 Hz, H-4), 7.20 (s, H-
2), 7.03 (t, J=7.6 Hz, H-5), 6.98 (d, J=7.1 Hz, H-
6), 6.12 (ddd, J=17.2, 10.3, 6.3 Hz, H-2’), 5.12 
(dt, J=17.2, 1.6 Hz, H-1’), 5.04 (dt, J=10.3, 1.6 
Hz, H-1’), 3.89 (m, H-3’), 3.85 (dd, J=9.3, 4.1 
Hz, H-11), 3.51 (ddd, J=15.1, 4.1, 0.9 Hz, H-10), 
3.15 (dd, J=15.1, 9.3 Hz, H-10), 1.44 (d, J=7.0 
Hz, H3-4’); ESI-MS: m/z (intensity) 281.30 
[M+Na]+ (100), 259.16 [M+H]+ (63), 539.40 
[2M+Na]+ (12), 517.40 [2M+H]+ (8), HR-ESI-
MS: m/z=281.1255, calcd. for C15H18N2O2 
[M+Na]+: 281.1266. 

Compound IIb2: 1H NMR (methanol-d4, 500 
MHz): 7.55 (dd, J=7.8, 1.1 Hz, H-4), 7.16 (s, H-
2), 7.01 (t, J=7.5 Hz, H-5), 6.96 (d, J=7.5 Hz, H-
6), 6.06 (ddd, J=17.2, 10.2, 7.6 Hz, H-2’), 5.08 
(dt, J= 17.2, 1.5 Hz, H-1’), 4.99 (ddd, J=10.2, 1.9, 
1.0 Hz, H-1’), 3.71 (m, H-11), 3.59 (m, H-3’), 
3.41 (m, H-10), 3.04 (dd, J=14.9, 8.5 Hz, H-10), 
1.86 (m, H2-4’), 0.89 (t, J=7.4 Hz, H3-5’). 
Coupling constants of signals observed for H-11, 
H-3’ and H-10 were not determinable, due to low 
signal intensity; ESI-MS: m/z (intensity) 295.30 
[M+Na]+ (100), 273.34 [M+H]+ (18), 568.10 
[2M+Na]+ (5), 318.10 [M+2Na]+ (2); HR-ESI-
MS: m/z=295.1437, calcd. for C16H20N2O2 
[M+Na]+: 295.1422 

Compound Ic: 1H NMR (methanol-d4, 500 
MHz): 7.50 (s, H-4), 7.27 (dd, J=8.4, 0.6 Hz, H-
7), 6.96, (dd, J=8.5, 1.7 Hz, H-6). Signals at 
approx. 7.17-7-15 (H-2), 5.67-5.61 (H-2’), 5.54-
5.47 (H-3’), 3.86-3.82 (H-11), 3.52-3.48 (H-10), 
3,41-3.38 (H-1’) 3.12-3.06 (H-10) and 1.69-1.66 
(H-4’) are overlaid with those of Ia. ESI-MS: m/z 
(intensity) 281.04 [M+Na]+ (100), 259.11 
[M+H]+ (10), 517.26 [2M+H]+ (6), HR-EI-MS: 
m/z=258.1366, calcd. for C15H18N2O2 [M]+: 
258.1368 (in a mixture with Ia). 

Compound IIc: 1H NMR (methanol-d4, 500 
MHz): 7.50 (s H-4), 7.27 (d, J=8.2 Hz, H-7), 7.15 
(s, H-2), 6.97 (dd, J= 8.3, 1.6 Hz, H-6), 3,48 (dd, 
J=15.0, 4.6 Hz, H-10), 3.40 (d, J=6.6 Hz, H-1’). 

Signals at approx. 5.66–5.50 (H-2’ and H-3’), 
3.85-3.82 (H-11), 3.11-3.05 (H-10), 2.07-2.00 
(H-4’) and 1.00-0.96 (H-5’) are overlaid with 
those of IIa; ESI-MS: m/z (intensity) 295.08 
[M+Na]+ (100), 273.20 [M+H]+ (7), 567.58 
[2M+Na]+ (6), 545.39 [M+H]+(3); HR-ESI-MS: 
m/z=295.1433, calcd. for C16H20N2O2 [M+Na]+: 
295.1422 (in a mixture with IIa). 

Compound IIIc: 1H NMR (methanol-d4, 500 
MHz): 7.60 (dd, J=1.5, 0.7 Hz, H-4), 7.27 (dd, 
J=8.3, 0.5 Hz, H-7), 7.16 (s, H-2), 6.97 (dd, 
J=8.3, 1.6 Hz, H-6), 4.05 (s, H2-1’), 3.84 (m, H-
11), 3.51 (m, H-10). Signals at approx. 7.25–7.17 
(H-2’/H-6’, H-3’/H-5’), 7.14-7.10 (H-4’), 3.12-
3.06 (H-10), are overlaid with those of IIIa; ESI-
MS: m/z (intensity) 295.14 [M+H]+ (100), 589.19 
[2M+H]+ (31), 317.37 [M+Na]+ (6); HR-EI-MS: 
m/z=294.1368, calcd. for C18H18N2O2 [M]+: 
294.1339 (as a mixture with IIIa). 

4.8. Docking studies 

All calculations were carried out using FRED 
(34) and conformations of tryptophan and the 
four donor molecules were generated with 
OMEGA (OMEGA 2.5.1.4: OpenEye Scientific 
Software, Santa Fe, NM. 
http://www.eyesopen.com. Hawkins, P.C.D.; 
Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; 
Stahl, M.T.). For receptor preparation, the 
homology model of 5-DMATS was processed 
with the apopdb2receptor-tool (part of the FRED 
docking suite) in order to determine the docking 
volume. The five molecules, i.e., tryptophan and 
the four donor molecules DMAPP, MAPP EAPP 
and BENZYLPP, were docked independently, 
storing the best 10,000 poses of each for further 
processing. 

The first percentile of the stored poses was 
selected for visual inspection. Among these 
poses, the most reasonable ones by 
physicochemical criteria were selected as starting 
points for molecular dynamics (MD) simulations. 

4.9. Molecular dynamics studies 

The three-dimensional model structure of 5-
DMATS used for docking and the selected 
docking poses of pairs of substrate and donor 
were processed further using MOE (Molecular 
Operating Environment (MOE) 2010.10. 
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Quebec: Chemical Computing Group; 2010): 
Protonation states were calculated with the 
Protonate3D routine within MOE and visually 
inspected for plausibility. AMBER atom types 
were assigned to protein, substrate and donor 
atoms. 

The MD simulations were run with the 
Amber14 software suite (University of 
California, San Francisco). The force field 
parameters were determined using the 
antechamber program (within the Amber14 
suite). Amber coordinate, parameter and 
topology files were generated by xleap and an 
octahedral explicit water box (based on the TIP3P 
water model (35) was constructed 10 Å away 
from the protein. The resulting systems were 
minimized, heated from 100 K to 300 K over 
20 ps at constant number of particles, volume and 
temperate (NVT) and equilibrated at 300 K for 
100 ps at constant pressure (NPT) with 
unrestrained water molecules and restrained 
substrate and donor molecules. One more 
minimization step and subsequent heating from 
100 K to 300 K for 20 ps (NVT) followed by five 
separate equilibration steps (four steps of 100 ps 
each and a final step of 2 ns at 300 K (NPT)) were 
performed while lowering the restraints applied 
to protein, substrate and donor with each step 
(unrestrained system at the final equilibration 
step). The productive simulation was carried out 
for 5 ns at 300 K (NVT) and 2 fs time step, 
storing the coordinates every picosecond. All 
simulations were carried out with the 
pmemd.cuda module of the Amber14 suite on 
four GPUs. 

The simulations were visualized with 
VMD. (36) Dynamic trajectories analysis and 
geometric data extraction was performed with 
cpptraj (Amber14 suite). Graphical 
representations of the simulated complexes were 
prepared using PyMOL (The PyMOL Molecular 
Graphics System, Version 1.5.0.4 Schrödinger, 
LLC.). 
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Part 

Part 4 is composed of a joint study between the lab of Peter Kolb and Jillian Baker, where we 
combined the popular three- and two-dimensional ligand discovery approaches – substructure and 
similarity search and docking – in order to expand the chemical matter around previously described 
novel scaffolds for the β2-adrenergic receptor. In this study, we describe the discovery of analoguous 
compounds via a large scale high-throughput virtual screening cascade and their thorough 
experimental characterization in alignment with the SAR derived from their putative binding 
geometries. 

The author list is the following (by contribution order): Schmidt D., Gunera J, Baker J. G. and 
Kolb P. Peter did the original similarity and substructure searches and docking calculations. Denis 
and I acquired compounds, prepared the assay-ready formats and supervised initial affinity 
measurements. Jillian performed the pharmacological experiments and data analysis. Peter, Denis 
and I discussed the data in accordance to the generated putative binding geometries in order to 
establish an SAR profile. 
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Abstract 

The β2-adrenergic receptor (β2AR) is a G protein-
coupled receptor (GPCR) and a well-explored 
target. Here, we report the discovery of 13 
ligands – ten of which are novel – of this 
particular GPCR. They have been identified by 
similarity- and substructure-based searches 
using multiple ligands – which were described in 
an earlier study – as starting points. Of note, two 
of the molecules used as queries here distinguish 
themselves from other β2AR antagonists by their 
unique scaffold. The molecules described in this 
work allow us to explore the ligand space around 
the previously reported molecules in greater 
detail, leading to insights into their structure-
activity relationship. We also report 
experimental binding and selectivity data and 
putative binding modes for the novel molecules. 

1. Introduction 

The membrane receptors of the G protein-
coupled receptor (GPCR) family are flexible 
heptahelical bundles transferring signals from the 
outside to the inside of a cell. This is achieved by 
a conformational change of the receptor upon 
binding of a signaling molecule to a cavity 
located at the extracellular end between the seven 
helices. GPCRs are expressed in almost all 

tissues (1), and it is thus not surprising that 
approximately 1/3 of present-day drugs interact 
with a GPCR. (2) Among these receptors, the 
β2-adrenergic receptor (β2AR) is considered a 
prototypical representative, and has been 
investigated for more than 60 years. It was also 
the first pharmacologically relevant GPCR to 
succumb to crystallization in 2007. (3,4) 

In a previous work (5), we have identified six 
ligands (originally labeled 1-6, and referred to as 
Q1-Q6 in this work to avoid confusion, 
Chart S1) of the β2AR through in silico docking 
studies, with affinities ranging from 9 nM to 
3.2 µM. Notably, these included two molecules 
(5 and 6 in (5), denoted as Q5 and Q6, 
respectively, in the following) that did not follow 
the classical adrenaline-based scaffold. (6) This 
was remarkable, as nobody had discovered these 
scaffolds earlier, despite more than six decades of 
medicinal chemistry in this area. Building upon 
the discovery of the six ligands, we wanted to 
expand chemical space around them. In 
particular, we wanted to investigate the two 
ligands with unusual scaffolds by employing in 
silico similarity and substructure searches in the 
ZINC (7) database. Candidate molecules 
identified in either way were then docked into the 
β2AR, in order to ascertain that their binding 
modes were consistent. Here we report the results 
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of this combined ligand- and structure-based 
screen, which also provides insights into the 
structure-activity relationship (SAR) of 
molecules Q5 and Q6 and their derivatives.  

2. Results 

The similarity screen amongst the 8.5 million 
molecules of the ZINC database resulted in 6,363 
molecules, which were distributed across the six 
query molecules as shown in Table S1. From the 
substructure-based screen, approximately 
653,000 hits emerged. Duplicates were removed 
from both sets. After docking, 5,838 and 587,099 
molecules remained, respectively, and the top-
scoring 500 of each run were visually inspected. 

After weeding out molecules with artificially 
inflated scores due to the absence of corrective 
terms in present-day scoring functions, e.g., 
unfavorable desolvation contributions or 
unsatisfied hydrogen-bond donors, during this 
inspection, we were left with eight and nine 
molecules from the similarity and substructure 
searches, respectively. These were acquired from 
their respective vendors for further experimental 
testing (Table S5). Three compounds (1, 2, and 
3) contained a biaryl moiety and a charged amine 
and thus resembled the classical motif of a 
β2-binder. Indeed, a thorough literature search 
revealed that these compounds had been 
described before (Table 1; by the time of 
selection, these compounds had not been 

Figure 1: Inhibition of [3H](-)CGP 12177 whole cell binding to A, B CHO-β1 cells and C, D CHO-β2 cells in response to A , 
C 3 and 1 and B, D ICI 118551, 10 and 11. Bars represent total and non-specific binding and data points are mean ± SEM of 
triplicate determinations. The concentration of [3H](-)CGP 12177 used in these experiments was A, C 0.58 nM and B, D
0.44 nM and they are representative of A 4, B 5, C 5 and D 5 separate experiments. 
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annotated in ChEMBL (8)). To analyze the 
selectivity of the compounds, we also evaluated 
them against the closely related β1AR. The 
efficacy of all compounds was further evaluated 
in a functional assay.  

Several of the compounds identified in this 
work inhibited [3H](-)CGP 12177 whole cell 
binding (Table 1; see Supporting Information for 
assay validation and Table S3 for inactive 
compounds). This assay also demonstrated that 
compound 3 had very high affinity (pKD 9.01 at 
β1AR and pKD 10.45 at β2AR) and was therefore 
28-fold β2-selective (Figure 1A and C, Table 1). 
While the remaining compounds had relatively 
poor affinity in comparison to 3, many of them, 
e.g., 1, 2, 10, 11 and 13, inhibited 
[3H](-)CGP 12177 binding to yield measurable 
affinity values (Figure 1B and D, Table 1).  

Next, characteristics of ligands were 
examined in a functional assay, namely CRE-
gene transcription. The ability of ligands to 
stimulate a response (intrinsic efficacy) was 
assessed but also, given that the affinity of many 
of the ligands to inhibit [3H](-)CGP 12177 
binding were at the very limit of the binding 
assay, the ability of ligands to inhibit functional 
responses was also evaluated, thus giving a 
totally independent measure of affinity from that 
achieved in the binding assay.  

Except for compound 3, no other compound 
stimulated a measurable response (n=4-5 for each 
compound) in this assay (see Supporting 

Information for more details and assay 
validation). However, several compounds 
antagonized the cimaterol response to give a 
parallel shift of the cimaterol concentration 
response curve and thus yield measurable 
KD values (Figure S1, Table S2). For some 
compounds, e.g., 1, 2, and 13, this gave 
selectivity values similar to those obtained in the 
binding assay. For other compounds, e.g., 16 and 
17, no rightward shift of the cimaterol response 
was observed, suggesting no inhibition at the 
maximum concentration possible (100 µM in 
each case). For few of the ligands, the highest 
concentration possible caused a marked fall in 
CRE-SPAP production to below basal in a 
manner more consistent with toxicity, cell death 
or assay interference, rather than receptor-
mediated inverse agonism (see Supporting 
Information for full details). In these instances, 
compound concentrations used to inhibit 
cimaterol responses were reduced until such a 
time as the reduction in basal was minimal. An 
example of this was compound 10, which reduced 
basal at the maximum concentration of 20 µM 
but not at 2 µM (see Supporting Information). At 
2 µM, 10 was still able to cause a rightward shift 
of the cimaterol concentration response curve at 
the β2AR, but not the β1AR, consistent with its β2-
selectivity. The fall from maximum of the 
concentration response to cimaterol (most likely 
because the assay is at the limit of its capability) 
means that an apparent KD is reported (calculated 

Chart S2: The eight substructures, based on the ligands of ref. (5), used for screening in this study. 
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from the shift of the lower part of the curve where 
the lines are parallel), this apparent KD is however 
similar to the KD values obtained from the 
binding assay, confirming that this is receptor-
mediated and β2-selective. 

Compound 3 on its own stimulated a partial 
agonist response at both the β1- and β2AR. This 
response was inhibited by CGP 20712A in the 
CHO-β1-cells with high affinity and by 
ICI 118551 in the CHO-β2-cells (Figure S2, 
Table S4). Furthermore, 3 was able to inhibit the 
cimaterol responses in both cell lines in a manner 
consistent with that of a partial agonist 
(Figure S2, Table S2). Finally, 3 inhibited the 
response to fixed concentrations of cimaterol in 
both cell lines in a manner consistent with 
competition at a single receptor conformation (9) 
(Figure S1 and Supplementary Procedures for 
full details).  

Altogether, the high affinity of CGP 20712A 
and ICI 118551 for the CHO-β1 and CHO-β2 cells 
confirm the presence of the β1- and β2AR in the 
respective cell lines. Several of the compounds 
(e.g., 16 and 17) did not interact with the 
receptors in either the binding assay or functional 
assay up to the maximum concentration possible 
for the compounds (20-100 µM). Of the 
molecules with novel scaffolds, 10 and 11 show 
the highest affinities at pKD values of 6.05 and 
5.31, respectively, for the β2AR and are thus in a 
range comparable to those of the established 
compounds 1 and 2. These compounds did not 
induce a functional response in the receptor and 
are therefore neutral antagonists. However, we 
emphasize that the outcome of a virtual screening 

campaign in the manner conducted here is the 
prediction of binding, not efficacy. Of the novel 
compounds, 13 exhibited affinity in the binding 
as well as in the functional assay with low 
micromolar activity.  

Figure S5: Docking poses for selected compounds. The β2AR is shown in gray stick representation. Residues discussed in 
the text are labeled and shown with colored heteroatoms. Selected residues in TM6 and TM7 (including Phe2896.51 and 
Phe2906.52) are hidden for clarity. Ligands are shown in orange stick representation. Perspective as in ref. (5) for comparability. 
A 3, B 11, C 7. 
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Table 1: Affinity (pKD values) and β2-selectivity for compounds as measured by [3H](-)CGP 12177 whole cell binding to 
CHO-β1 and CHO-β2 cells. Values are mean ±	SEM of n separate experiments. 

ID  Structure  β2AR pKD  n  β1AR pKD  n  β1/β2
a 

1c 

 

 

 

5.42 ±0.14 

 

5 

 

4.34 ±0.07 

 

4 

 

12.0 

2c 

 

 

 

5.58 ±0.06 

 

6 

 

4.56 ±0.06 

 

6 

 

10.5 

3d 

 

 

 

10.45 ±0.05 

 

8 

 

9.01 ±0.04 

 

5 

 

27.5 

4 

 

 

 

4.63 ±0.07 

 

5 

 

4.01b ±0.05 

 

5 

 

4.2 

5 

 

 

 

4.41 ±0.08 

 

3 

 

3.59b ±0.1 

 

3 

 

6.6 

6 

 

 

 

4.76 ±0.09 

 

5 

 

4.58 ±0.03 

 

5 

 

1.5 

7 

 

 

 

4.66 ±0.16 

 

5 

 

4.35 ±0.04 

 

4 

 

2 

8 

 

 

 

4.60 b ±0.11 

 

4 

 

4.33 b ±0.05 

 

4 

 

1.9 

9 

 

 

 

4.84 b ±0.13 

 

4 

 

4.42 b ±0.11 

 

4 

 

2.6 

10 

 

 

 

6.05 ±0.11 

 

6 

 

5.51 ±0.07 

 

6 

 

3.5 

11 

 

 

 

5.31 ±0.12 

 

6 

 

4.86 ±0.05 

 

5 

 

2.8 

N
H2OH

O

O

O
S
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12 

 

 

 

4.75b ±0.12 

 

5 

 

n.c.  

 

4 

 

 

13 

 

 

 

5.26 ±0.06 

 

6 

 

4.45 ±0.04 

 

5 

 

6.5 

 
ICI 118551 

 
9.61 ±0.05 

 
5 

 
6.74 ±0.01 

 
5 

 
741 

 
CGP 20712A 

 
5.84 ±0.10 

 
5 

 
8.96 ±0.13 

 
4 

 
0.0008 

aSelectivity: β1/β2=KD(β1)/KD(β2) 
bapparent KD values: here the maximum concentration of the compound was not sufficient to fully inhibit specific binding; however, the 
majority of specific binding was inhibited allowing an apparent measure of affinity. 
n.c.For ligands with less than 50% inhibition of specific binding, the IC50 value could not be determined and thus a KD value could not be 
calculated (n.c.) 
cUS 20090163545 
dAntiarrythmic pharmaceutical (Bipranol/Berlafenone), Arzneimittel-Forschung 1992, 42, 289-291.

 
The more traditional biaryl compounds 1, 2, and 
3 display the highest affinities at the β2AR, as was 
to be expected. In particular, compound 3 was 
confirmed as a very high affinity partial agonist 
at both receptors, but with some β2AR selectivity. 
At the β2AR, the affinity measured by binding 
(pKD 10.45) and the affinity measured as 
antagonism of the cimaterol response 
(pKD 10.74) are very similar, confirming the very 
high affinity ligand-receptor interaction. The 
partial agonist was itself antagonized by 
ICI 118551 (yielding a similar pKD for 
ICI 118551 as that for antagonism of the 
cimaterol response), confirming that signaling is 
indeed occurring via the β2AR. Compound 3 is 
therefore a very high affinity, weak partial 
agonist of the human β2AR. Moreover, 3 was 
found to be a partial agonist of the β1AR, with the 
agonist response occurring through the primary 
catecholamine conformation of the receptor (see 
Supplementary Results). 

These three molecules, 1, 2 and 3, were 
selected by similarity to compounds Q2, Q3, and 
Q4, all of which contain a biaryl moiety. Not 
unexpectedly, these hits not only show high 
affinities but also highest similarities to known 
(again exclusively biaryl-containing) compounds 
that are annotated in the ChEMBL database 

(Table S6). This is encouraging with respect to 
the performance of similarity screening methods 
and the value of docking in identifying such 
compounds. However, it also strongly 
emphasizes the need for methods that allow for 
scaffold-hopping to fully explore the ligand space 
of a target.  

By reducing the biaryl scaffold to a 2-ethoxy-
ethylamine (S6 in Chart S2) for the substructure 
search, two more substances, 4 and 14, were 
identified. Compound 4 showed two-digit 
micromolar affinity, whereas the inhibition by 14 
was so weak that no reliable affinity value could 
be calculated. Interestingly, in 14 the nitrogen 
matched in the substructure search is the one in 
the benzoxazine portion, not the exocyclic amine. 

Turning to the hits derived from reference 
molecules Q5 and Q6, we note that they show a 
much lower Tanimoto similarity of 
approximately 0.3 and below (when compared to 
molecules from the ChEMBL database using 
ECFP4 fingerprints) than the other hits reported 
in ref. (5) (Table S6). This is in line with the fact 
that these compounds are not based on the 
classical propanolamine scaffold and underlines 
the structural novelty of these two scaffolds.  

Starting from the benzothiazole-based 
compound Q5, four molecules were identified 
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with benzothiazole (5, 10, 11, 15) and two with 
benzimidazole (16, 17) motifs. Of these, all 
benzothiazole-containing molecules except 15 
show affinity towards the β2AR in the 
micromolar range. Docking poses indicate that 
the orientation of the benzothiazole ring is 
comparable to the one of Q5, with a polarized 
methyl group interacting with Asp1133.32 
(Figure S5, Figure S6). The benzimidazole and 
benzoxazole compounds 16 and 17 show no 
activity in our assay. These compounds might be 
more sterically hindered in the vicinity of the 
positively charged nitrogen atom, in particular 
compound 16. Furthermore, the different polarity 
of the ring system, owing to the variation of the 
heteroatoms, might render the predicted 
interaction with Asp1133.32 less likely.  

Six additional compounds could be identified 
on the basis of the parent molecule Q6. All these 
molecules (6, 7, 8, 9, 12, and 13) share a 
benzofuran-based moiety, independent of 
whether they originated from the substructure or 
the similarity search. This moiety, namely, a 
3-oxo-4-methyl-6-hydroxy-benzofuran, is 
present in the parent molecule Q6, too, and can 
thus be considered a “stable scaffold” in terms of 
SAR. All molecules display affinity, with pKD 
values varying between 5.26 and 4.6. 
Interestingly, 8, which is the substance with the 
weakest affinity in this set, differs from 7 only by 
a methoxy group, which is absent in 8. This 
methoxy group could act as an acceptor, which is 
also present in all remaining molecules of this 
series as (benzo-)furan or methoxy group. The 
role of this group is not clearly evident from the 
docking predictions, but an interaction with 
Thr195ECL2 seems to be the most likely 
explanation (Figure S5, Figure S6). 
Furthermore, the docking poses indicate a 
binding mode of this scaffold, which resembles 
the key interactions seen in biaryl-based 
compounds. The benzofuran scaffold forms 
interactions with Phe19345.52, Phe2896.51, 
Phe2906.52, and Val1143.33. The hydroxy group at 
position 6 forms an additional hydrogen bond to 
Asp1133.32, while the ketone serves as acceptor 
for a hydrogen bond from Ser2035.42. A second 
aromatic moiety is attached at position 2, 
interacting with Tyr1995.38, Tyr3087.35, and, 
presumably, Thr195ECL2. An increased size of the 

aromatic system appears to be detrimental for 
affinity (methoxyphenyl in 13 vs benzofuran in 
9). The charged amine in the pyrrolidine moiety 
is expected to form a salt bridge with Asp1133.32.  

3. Materials and Methods 

Substructure queries (Chart S2) were manually 
derived from the original hits.  Substructure and 
similarity searches were run on the ZINC (7) 
database and docked to the β2AR (PDB 2RH1), 
as previously described. (5) [3H](-)CGP 12177 
whole cell binding and CRE-SPAP production 
assays were run using CHO-K1 cells expressing 
either the human β1AR or the human β2AR as 
previously described. (10,11) See Supporting 
Information for detailed descriptions of 
experimental procedures.  

4. Discussion and conclusions 

We have elaborated on six previously identified 
novel binders of the β2AR through 
SAR-by-catalog. Using similarity and 
substructure searches followed by a docking 
assessment of the interactions of each compound 
and the receptor, 13 ligands of the β2AR were 
verified experimentally. Ten of these molecules 
are indeed novel ligands for the receptor, while 
the remaining three turned out to have been 
described before. Based on this data, several 
conclusions can be drawn. 

First, the benzofuran scaffold of compound 
Q5 and the benzothiazole scaffold of compound 
Q6 in ref. (5) indeed constitute novel chemotypes 
with derivatization potential for this receptor. 
Especially the benzofuran series showed a 
consistent SAR that is in agreement with the 
predicted binding modes. This study can thus also 
provide retrospective evidence that the predicted 
binding modes are indeed very likely correct. The 
affinities of the novel compounds are not 
comparable with those of highly optimized 
adrenaline- or biaryl-based scaffolds. The latter 
are exemplified by Q1 with an affinity of 9 nM 
and 3 with its pKD of 10.74. However, the novel 
compounds can serve as unprecedented starting 
points for further optimization. 

Second, that the combination of similarity- 
and substructure-based searches with protein-
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structure-based docking constitutes a powerful 
combination. This is manifest in the quite high hit 
rate (more than 75 % of the molecules bind with 
an affinity below 100 µM) and the fact that we 
(re)discovered a molecule with an affinity of only 
35 pM. This compound is also known as bipranol 
or berlafenone – an anti-arrythmia drug. 

In terms of selectivity, most of the compounds 
displaying an affinity are mildly selective 
towards the β2AR. Again, 3 takes the lead here at 
28-fold selectivity for the β2AR. While other 
compounds such as 1 and 2 still have at least 
ten-fold preference towards the β2AR, all values 
are far below 100-fold, which is considered a 
ratio that is significant enough to call a compound 
“selective”. Moreover, highly optimized 
compounds such ICI 118551 show affinity ratios 
that are closer to 1000-fold. Interestingly, the top 
three compounds in terms of selectivity all belong 
to the biaryl cluster of molecules. 

Not unexpectedly, most of the compounds 
with measurable affinity (with the exception of 
3), turned out to be neutral antagonists in the 
functional assay. This is consistent with what we 
have seen in our previous study (5) and the fact 
that we have been docking to an inactive 
conformation of the receptor. (3,4)  

Future studies will show to which affinities 
the novel scaffolds can be optimized. It is also 
encouraging to have confirmed that unbiased 
computational methods can present us with novel 
molecules, even for target proteins as well-
investigated as the β2AR. 
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Novel tools for computer-aided drug discovery and design 

Corpora non agunt nisi fixata. 

Paul Ehrlich, 1854-1915 

Paul Ehrlich, a German physician, scientist and Nobel-Prize laureate (1908), reasoned that a substance 
is not biologically active unless it is bound to a biological macromolecule. In the present days, this 
maxim seems trivially obvious: The drug discovery and design pipeline, the evolution of a drug 
molecule, starts with the identification of a target – the biological macromolecule. A compound is then 
searched for that binds to this macromolecule both tightly and selectively and, equally importantly, 
efficaciously, i.e. showing the desired effect. In the days of Paul Ehrlich, without the knowledge gained 
from over 100,000 crystal structures, without isothermal calorimetry and mass spectroscopy, this 
maxim exudes a great intuition and pioneering understanding of Nature. It is therefore not surprising 
that affinity, activity, potency, free energy of binding, or simply the tightness of binding of a small 
molecule ligand to its target macromolecule is one of the key figures of drug development efforts. 

The tools and concepts presented in this thesis are not capable of calculating or predicting this figure 
explicitly. They are not meant to do so. In case of molecular similarity and RedFrag the tightness of 
binding is abstracted to a probability or score value which is assigned to a given molecule based on the 
similarity towards a potent, tightly binding, query compound. The exploitation of the similarity dogma 
– similar molecules share similar bioactivity – replaces the rigorous calculation of binding affinity. 

Even more abstractly, but still along the same reasoning of ligand-receptor binding, PrenDB, was 
developed to predict if and at which position a molecule can be prenylated, in other words diversified. 
Prenylated molecules are meant to be entry points of chemical space only sparsely occupied by reaction 
products of conventional chemical synthesis, eventually resulting in more diverse and more potent 
compounds. The prenyl moiety itself can lead to an increase of the binding affinity of the molecule as 
it increases the lipophilicity of the compound. This molecular obesity, although discouraged in the light 
of the more favorable enthalpic optimization, opens new routes to hit discovery and optimization. 

1. Do we need yet another molecular similarity 
method? 

Well, absolutely yes! Truly, there are many 
concepts and methods that exploit the molecular 
similarity in one way or another, always under the 
assumption that the similarity dogma – similarity 
property principle – is valid. But, since the 
molecular similarity, and similarity in general, 
lies in the eye of the beholder, there are many 
possibilities how “similarity” can be established 
and put into numbers. The variety of available 
fingerprints, e.g., ECFP, FCFP, MACCS keys, 
OpenEye’s Lingo fingerprint, RDKit’s 
topological torsions and atom-pair fingerprint, 
shows that molecular similarity is an inspiring 
and eclectic concept. However, the prospect of 
finding a compound of similar or better affinity 
is, although certainly useful, not entirely 
satisfying. It seems much more attractive to find 

a compound that is different from the query and 
of similar or better affinity. RedFrag was 
designed with this idea of scaffold hopping in 
mind.  

Our idea and central pivot point within the 
RedFrag framework was to abolish the 
requirement of pre-defined dictionaries of 
chemical motifs, e.g., functional groups, ring 
systems, synthesis artifacts such as amide bonds, 
etc. We pictured the available approaches that are 
based closely or loosely on chemical features 
(implementations of MACCS keys, FCFP or 
early graph reduction concepts by Gillet et al. and 
Barker et al.) as molecular graph coloring with a 
quite limited palette of colors. The number of 
colors, reflecting the number of different 
chemical epitopes or features, eventually 
determines the flexibility or fuzziness of the 
similarity assessment and thus impacts the 
method’s capability of finding something new 
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(Figure 1). RedFrag escapes this finite-color-
space by exploiting the fragmentation of 
molecules as intuitive source of molecular 
features and chemical epitopes. The requirement 
of predefining these features is, within the context 
of RedFrag, transferred to a handful of breakable 
bond definitions: The definition of breakable 
bonds is of course not straightforward. Care must 
be taken if a reasonable and chemically sane 
fragmentation result is desired. However, bond 
definitions as defined by the RECAP or BRICS 
rules, reflect to some degree retrosynthetic routes 
and deliver sensible results. In extremis, a single 
bond definition can be applied in RedFrag: 

[R]!@[!D1] 

This SMARTS string shows the golden rule of 
fragmentation. The rule consists of two atom 
definitions and a bond definition. Enclosed in 
square brackets (green and purple) are atoms 
connected by any bond type except a ring bond 
(orange). This ensures the integrity of ring 
systems whose cleavage seems unreasonable 
from a chemist’s point of view. This bond 
connects a ring atom (green) with an atom with 
two or more neighbors (purple). Acting upon a 
compound, this rule separates ring systems with 

their decoration still attached from linking 
moieties, eventually leading to an intuitive 
fragmentation pattern. The resulting fragments 
are then not encoded by colors from a limited 
color space (dictionaries) but described by a 
fingerprint. Molecular properties of each 
fragment such as its size, number of rotatable 
bonds, number of H-bond donor and acceptor 
functionalities and even further substructural 
motifs are – depending on the fingerprint in 
place – preserved and determine the color of the 
fragment. The color space defined in such a way 
is only limited by the resolution of the fingerprint 
and is in general much larger than the commonly 
used dictionaries of chemical motifs (Figure 1). 

RedFrag introduces the infinite color space in 
terms of rule-based fragmentation and fingerprint 
encoding, thus allows for fuzzier similarity 
assessment. This translates to an increased 
variability of fragment-to-fragment comparisons 
and eventually allows for a more prominent motif 
exchange or replacement. Bioisosterism and 
scaffold hopping, for RedFrag, these concepts are 
within reach and without the need of 
conformational data. 

We have tested RedFrag retrospectively on 
the MUV data sets. This choice ensures that the 

Figure 1: RedFrag encodes the fragments originating from a molecule fragmented at the RECAP bonds (top, orange) with
fingerprints (bottom right). In this case, the accessible color space is larger than the one spanned by a limited number of pre-
defined dictionaries of chemical features (bottom left  and illustrated by the 4-color cycle to the left and the continuous color 
palette to the right).  
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observed performance is not distorted by trivial 
separations of actives and decoys, as often seen if 
self-compiled datasets, e.g., from ChEMBL, are 
used for validation purposes. RedFrag performed 
at the same level as the other methods 
investigated on the MUV data set. Furthermore, a 
comparison between RedFrag and holistic, and 
highly optimized fingerprint-based similarity 
concepts, e.g., ECFP, at their optimized 
parameter sets, show an on-par performance, 
overall. Interestingly, but not entirely 
unexpectedly, the performance of all investigated 
methods fluctuated throughout the validation set 
and the different target classes. It shows that the 
ultimate answer to the molecular similarity 
problem, as far as it exists at all, is not yet found. 
Going beyond retrospective analysis, we also 
applied RedFrag to predict binders for the 
aspartic protease endothiapepsin and tested our 
predictions in vitro. 

RedFrag also has the potential to retrieve 
scaffolds distant from the query, i.e., perform 
scaffold hops. This can be gleaned from 
Figure 7, Part 1, where the propensity of 
RedFrag to retrieve unusual scaffolds is 
comparable to other methods. This ability of 
RedFrag is also nicely demonstrated in the 
prospective screen, where the second and third 
most potent compounds are distant from the 

known ligand space of endothiapepsin, as 
evaluated by ECFP4 fingerprints. At the same 
time, the prospective screen also yielded a very 
potent molecule, which at 4 µM is one of the 
more potent binders of endothiapepsin. While it 
cannot be described as novel when compared to 
the molecules that were used as query, it is a clear 
improvement on the compound series published 
earlier.  

In conclusion, we demonstrated that RedFrag 
is an intuitive, fast and unbiased algorithm for 2D 
molecule searches. The performance in both 
retrospective and prospective studies is in line 
with existing methods, but often yields different 
answers, adding it to the repertoire of suitable 
approaches for large-scale screenings. Most 
importantly, we abolished the need for 
predefining a color space without a loss in 
performance. This means that our algorithm is 
applicable to all sets of molecules without 
restrictions. RedFrag has only two main 
parameters, i.e., choice of fragmentation pattern 
and fingerprint type: A well-chosen 
fragmentation pattern should decompose a query 
molecule into at least two, better into three 
fragments. This ensures that RedFrag topological 
replacement of fragments within the framework 
of a reduced graph can actually occur. Figure 2 
shows the distribution of the number of fragments 
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Figure 2: Distribution of molecular size in respect to the number of fragments in the reduced graph representations and the
underlying fragmentation pattern. GOLDEN corresponds to the single-SMARTS rule mentioned in the main text. Orange line 
indicates a recommended minimum number of fragments per molecule. Red lines: median values; green lines: mean values of
the distributions. Molecular database used for decomposition was the Chemical Component Dictionary (CCD): small 
molecules extracted from PDB entries (Westbrook et. al., Bioinformatics, 2015, 31 (8), 1274-1278). 
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in respect to a fragmentation rule: Clearly, the 
fragmentation rule has a large impact on the 
complexity of generated reduced graphs and thus 
on the outcome of the similarity assessment. 
However, although also dependent on the 
molecular database used for screening, a general 
recommendation for DAIM and BRICS rules can 
be given, as they produce reduced graphs with a 
median size of four fragments. The choice of a 
fingerprint can be made based on a similar 
reasoning: the larger the number of fragments, the 
smaller they are. It is thus that an atomistic 
(ECFP) rather than a feature-based fingerprint 
(MACCS or FCFP) is the better choice.  

2. Future of PrenDB: on the road to SAR-by-
Enzyme 

The PrenDB project involved a thorough 
literature search, the design and programming of 
novel data structures and the collection of 
experimental data. And yet, it is only the prelude 
to the main feature, which is SAR-by-Enzyme 
(SARbyE). The idea behind SARbyE is simple: 
Instead of using the standard medicinal-chemical 
diversification repertoire, e.g., adding a methyl 
group, capping hydroxy groups or attaching 
phenyl groups to the hit compound, why not let 
enzymes do the job? Enzymes catalyze chemical 
reactions under ambient conditions, at room 
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Figure 4: Concept of SAR-by-Enzyme. With PrenDB, the substrate space of prenyltransferases has been expanded and used
by the SEAsearch algorithm to predict a suitable target. The iteration of in silico predictions and experimental validation 
resembles the SARbyE cycle, which delivers the SAR data for prenylated – diversified compounds. 
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temperature, in a buffered aqueous solution. They 
convert molecules under stringent stereo- and 
regioselective control and fulfil the criteria of 
green chemistry, which becomes ever more 
important and acknowledged.  

Biocatalysis – the actual use of enzymes to 
accelerate chemical reactions in an academic or 
industrial setting – is not new but it gains 
popularity and applicability since the dawn of 
modern enzyme engineering techniques. 

In SARbyE, we want to exploit a promiscuous 
enzyme family, the dimethylallyltryptophan 
synthase family (DMATS), in order to establish 
an alternative and attractive route to compound 
diversification and optimization. 
Prenyltransferases, an extensively studied 
enzyme class and member of the DMATS family, 
catalyze such an attractive reaction (Figure 3): 
Prenyl moieties are small apolar, flexible groups 
that by increasing the lipophilicity of the 
compound and the lack of the necessity of 
directionality, increase the binding affinity of the 
compound and open additional routes for further 
diversification.  

In order to use prenyltransferases as a 
biocatalytic toolkit in the prospects envisioned in 
SARbyE, the development of PrenDB was a 
necessary step: PrenDB is a catalog of 
prenyltransferase reaction which were extracted 
from primary literature and compiled into a 

browsable format. Moreover, it is capable of 
predicting the prenylability of compounds by 
investigating the compound’s chemical epitopes 
and comparing them with stored repitopes from 
known substrates. Within the larger picture of 
SARbyE (Figure 4) PrenDB plays an important 
role: After the initial virtual screening and the 
experimental validation of the putative binders to 
the selected target, predictive routines of PrenDB 
are responsible to evaluate the prenylability of the 
hits. Putative substrates are then subjected to 
actual prenylation and later their binding towards 
the initial target is revaluated and the SAR 
established. 

In PrenDB we demonstrated the power of 
systematically organizing and analyzing 
experimental enzymatic data by means of 
chemoinformatic methods. It is a comprehensive 
repository of the existing knowledge about 
prenyltransferase reactions. With our algorithmic 
determination of what we called repitopes 
(reactive epitopes) we were able to predict novel 
substrates. In a symbiotic manner, we used these 
predictions to identify a potential test target for 
the SARbyE concept (Figure 4, bottom left). We 
identified the serotonin receptor 5-HT2B as 
promising target with a ligand space comparable 
to the substrate space of prenyltransferases 
(Figure 5).  

However, the repitopes stored in PrenDB are 
not yet accurate enough in all cases to precisely 
predict the prenylability. This shortcoming is 
presumably correlated with the comparatively 
small number of instances in the database. 
Although the existing body of literature clearly 
represents a considerable experimental effort, 
chemistry and the biochemical reactivity of 
enzymes are so diverse that even higher numbers 
of substrate-enzyme-product triplets would be 
necessary to obtain more complete repitopes that 
also account for the different reactivity of certain 
substructures.  

At the same time, a database such as PrenDB 
can provide excellent help in determining which 
reactions and substrates would be worthwhile to 
test next. On a basic level, one could simply be 
guided by the number of reactions already 
described for each enzyme and focus on the 
underrepresented ones. But also, more 
sophisticated approaches can be envisioned: 
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Figure 5: Comparison of tryptophan, natural substrate for
several prenyltransferases (top row), and 5-
hydroxytryptamine (5-HT or serotonin), the natural ligand
of the serotonin receptor 5-HT2B (bottom row). 
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enzyme phylogenetic trees could be based not on 
amino acid sequence, but on substrate similarity. 
Further exploration would thus focus on filling in 
the missing links. Ultimately, such strategies 
might merge with machine learning approaches, 
where the algorithm itself would suggest which 
enzyme-substrate pairs to test next based on the 
maximum information gain of each investigation. 

Lastly, it must be emphasized that the concept 
of repitopes and their fragment-based 
determination can easily be extended to other 
enzymatic reactions. The automatic processing of 
potentially large numbers of reactions and the 
concomitant conversion into the reaction 
principles will lead to facile systematizations and 
gain of knowledge from the analyses of the 
emerging data. 

3. How can we understand regioselectivity of 
chemoenzymatic reactions? 

In our vision of SARbyE, PrenDB, in addition to 
its storage and retrieval functions of 
prenyltransferase reactions, is a knowledge-based 
prediction backend designed to derive reactive 
epitopes (repitopes) from reaction data and use 
them in a substructure-based search for novel 
substrates for prenyltransferases. Its predictive 
power relies on the amount of data stored within 
and the novelty of the predictions depends on the 
chemical diversity of the compounds prenylated 
so far. It seems thus intuitive and important to 
expand the reaction space of prenyltransferases 
by experimentally testing a variety of compounds 
and chemical scaffolds. In addition to prenyl 
acceptors, e.g., L-tryptophan and brevianamide F 
(E1, Figure 1, Part 2), a diversification in the 
reaction space can be gained from unnatural 
prenyl donors. In Part 3 of this thesis, we 
presented five prenyltransferases and 
investigated their acceptance of not only 
dimethylallyl pyrophosphate (DMAPP) but 
additional three unnatural prenyl donors: 
Methylallyl, 2-pentenyl and benzyl 
pyrophosphate, MAPP, EAPP and BENZYLPP, 
respectively. L-tryptophan was used as the prenyl 
acceptor. 

We observed a total of eleven prenylation 
products with fluctuating conversion rates 
throughout the deck of prenyltransferases 

(Scheme 2, Part 3). The multitude of different 
regioselectivities and yields raised the question 
how the enzymatic prenyl transfer is controlled at 
the atomistic level and whether the unique 
constellation of the active site residues of a 
prenyltransferase, the electro-sterical properties 
of the prenyl donors and the presumably 
comparable reactivity of the prenyl acceptor can 
be put into agreement with the observed 
experimental data. 

Knowledge gained from the mechanics of the 
prenylation reaction can be transferred into 
mutant models that allow for the engineering of 
prenyltransferases into more efficient, more 
promiscuous and more widely applicable 
molecular diversification machines as envisioned 
by the SARbyE concept. Thus, we decided to use 
molecular dynamics simulations in order to 
pursue the interactions of enzyme, prenyl donor 
and acceptor with each other and their relative 
orientation to each other.  

By using the program MODELLER, a 
structural model was constructed for 5-DMATS 
from A. clavatus and used for docking and 
molecular dynamics studies with DMAPP, 
MAPP, EAPP and BENZYLPP, leading to a 
distance-based explanation of their observed 
reaction preferences (Figure 3, Part 3). 
Furthermore, we were able to extract system 
properties such as root-mean-square fluctuations 
(RMSF) of the atom positions of L-tryptophan 
induced by the presence of the prenyl donors 
(Figure 5, top row): It shows that benzyl 
pyrophosphate deteriorates the position of the 
prenyl acceptor more strongly than other donors 
(blue line) which is in accordance to the overall 
instability of the simulation conducted with 
benzyl pyrophosphate (Figure 6, middle row) 
and in accordance with the experimental data 
reported in Scheme 2, Part 3. However, it is 
apparent that this stochastic approach is not 
accurate enough to explain the observed data 
universally or to be used prospectively, i.e. for 
prediction of reactivity and regioselectivity of a 
prenyltransferase and a prenyl donor/acceptor 
pair. In order to elucidate the different aspects of 
prenylation reactions, three modifications of, or 
extensions to, the molecular dynamics 
simulations protocol used in our study can be 
made: i) Under the assumption that reactivity of 



 

121 
 

a given prenyl acceptor correlates with its binding 
affinity to the enzyme-prenyl-donor complex, 
free energy perturbation (FEP) calculations can 
be conducted. There, a prenyl acceptor, e.g., 
DMAPP, is alchemically transformed during the 
simulation into another one, e.g., MAPP. This 
transition of chemical species, which is an 
application of the more general thermodynamic 
integration approach (TI), allows for the 
estimation of relative free-energy of binding 
(ΔΔG values). From these values, it can be 
judged whether a distinct combination of prenyl 
donor and acceptor (and possible mutations in the 
active site) are favorable in terms of energy and 
thus more reactive. Of note, FEP, driven by 
classical molecular mechanics, is not able to 
render the actual enzymatic reaction. Bond 
cleavage and formation, thus reallocation of 
electrons can accurately be captured by quantum 
mechanics, only. The combined approach, 
quantum mechanics/molecular mechanics 
molecular dynamics (QM/MM MD), is resource-
demanding and rarely applied. ii) The reactivity 
of chemical matter in an enzymatic setup is not 
only controlled by thermodynamics, e.g., 
interaction energy and entropic effects, but also 
by kinetics. A substrate has to associate rapidly 
with the enzyme, stay long enough in active site 
to be transformed into the product and dissociate 
fast in order to free the active site for the next 
substrate molecule. Association and dissociation 
rates, kon and koff, respectively, cannot be 
captured by methods such as FEP. In order to 
estimate these values by molecular dynamics the 
association of a compound to the target – its 
translation from bulk solvent to the interior of the 
targets binding or active site – has to be 
simulated. Albeit acceleration techniques such as 
hyperdynamics, parallel replica dynamics, 
temperature accelerated dynamics and steered 
molecular dynamics, estimation of kon and koff is 
very demanding in computational time and not 
yet applicable for a large number compounds in a 
predictive screening scenario. 

4. Synergistic triad of molecular similarity, 
substructure search and docking 

Throughout this thesis and the studies described 
therein, three methodological pillars of computer 

Figure 6: Analysis of molecular dynamics simulation data 
of prenyltransferase complexes. Top row shows root-mean-
square fluctuations (RMSF) of L-tryptophan (TRP) in 
complex with different donor molecules. Blue: TRP and 
benzyl pyrophosphate; green: TRP and 2-pentenyl 
pyrophosphate; yellow: TRP and dimethylallyl 
pyrophosphate; red: TRP and methylallyl pyrophosphate. 
Middle row shows the root-mean-square deviation (RMSD) 
of the coordinates of the TRP molecule (red) and benzyl 
pyrophosphate (black) during each step of the simulation 
indicated by white and gray background, respectively. 
Bottom row shows complexes of the prenyltransferase 
5-DMATS with L-tryptophan and benzyl pyrophosphate. 
Colored in orange and cyan is the equilibrated complex 
before the productive molecular dynamics run. Colored in 
white and magenta is the complex after 5 ns productive 
simulation run. 
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aided drug discovery and design have been in 
focus: i) Fingerprint-based similarity, 
ii) substructure-based searches and iii) molecular 
docking. These concepts were used as standalone 
tools or were combined into a hierarchical 
screening cascade in order to fetch promising 
compounds from vast molecular databases – to 
find the needle in the haystack. Moreover, the 
conceptual basis of molecular similarity and 
substructure-based search (graph isomorphism) 
was the inspiring starting point for the 
development of novel tools and methods. In 
either way, end-user application of, e.g., 
commercial docking tools and highly optimized 
fingerprints, or the design of new algorithms and 
the combination of robust and well-understood 
concepts, the synergistic relationship of these 
tools, ideas, methods is, although often 
unintentionally, ubiquitous. 

One example for this hidden 
synergy – contextually also complementarity or 
orthogonality – is given by the screening study 
described in Part 4 of this thesis. There, a novel 
class of structural motifs, a novel scaffold, was 
exploited as a seed for the expansion of the ligand 
space of the β2-adrenergic receptor (β2AR). In 
particular, the screening conducted in this study 
was a combination of a horizontal and vertical 
one (e.g., Figure 7). The fingerprint-based 
similarity search on the one hand and the 
substructure-based search on the other efficiently 
reduced the compound database from millions to 
several hundred thousand partly overlapping 
compound sets. Indeed, the partial overlap is the 
key here, as both methods deliver to some extent 
orthogonal answers, i.e., molecules considered 
similar to the query but also unique for the given 
retrieval method. This orthogonality or 
complementarity seems irritating at the first 
glance because both methods work under the 

RedFrag PrenDB Docking

compound database

compound database
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Figure 7: A Horizontal or orthogonal screening approach. A
compound database is ranked or scored independently by
multiple screening methods, e.g., RedFrag’s 2D-similarity, 
PrenDB substructure-based search and molecular docking.
The output is then combined based on the consensus score:
A mathematical formula incorporating the individual scores
and/or weighting coefficients giving the horizontal
selection. B Vertical or hierarchical screening cascade
starting with fast but less accurate methods (fingerprint-
based or pharmacophore searches) and concluding with slow
but most accurate methods (docking, molecular dynamics).



 

123 
 

premise to retrieve entities with similar properties 
(e.g., similar bioactivity). Hence, intuitively, the 
overlap of compounds across different methods 
should be large and method-exclusive 
compounds the exception. However, the reality is 
just the contrary of the human’s intuitive mind 
and the discrepancy between the retrieval is even 
more pronounced for structure-based methods 
such as docking, where the score – the likelihood 
of the generated geometry to be the correct 
bioactive one – correlates only poorly or not all 
across docking algorithms and tools. How to use 
the output of a horizontal screening then? A 
widely-applied approach is the calculation of a 
consensus score. A score that reflects the quality 
of a compound estimated by each of the used 
methods. It emphasizes compounds that were 
highly ranked, scored or favored by multiple 
methods and deprioritizes compounds that were 
well-scored only occasionally. In such a way, it 
seems possible to extract molecules with an 
enhanced confidence being, e.g., active. 

Alternatively, the vertical screening approach 
seems to be more reasonable: It is a cascade of 
the sequential invocation of screening tools 
where the output of a method, e.g., most similar 
compounds as determined by fingerprint-based 
similarity, is subjected as input to the next 
method, e.g., pharmacophore search. This 
approach reduces the number of compounds that 
has to be screened from method to method and 
thus allows for the usage of more time-
demanding tools and accurate algorithms further 
down in the screening cascade. At the end of this 
hierarchical screening a vertical set of 
compounds emerges that caries the best estimates 
of binding affinity or related quantity of the 
whole set of invoked methods. Similar to the 

horizontal set, these compounds show an 
enhanced confidence in their estimated property 
as they were repeatedly well-scored from the top 
to the bottom of the screening cascade. However, 
there is major difference: The vertical set of 
compounds is in its composition strongly biased 
by the first method used at the top of the cascade. 
Thus, in dependence of the method in place, the 
outcome of the vertical screen, more precise its 
diversity, is limited to the capability of detecting 
diverse chemical matter of the method used. It is 
thus crucial to design the initial screening step 
wisely, e.g., allowing for scaffold-hoping-
enabled methods early in the cascade and still 
maintaining the calculation speed. RedFrag 
screening, for 2D-based, and ROCS analysis or 
pharmacophore search for 3D-based methods are 
reasonable choices as demonstrated in Part 2 
(PrenDB) of this thesis. 

Given the example of the β2AR-screening 
presented in Part 4, the combination of 
horizontal and vertical screening and, eventually, 
their beneficial combination is well described: 
Fingerprint-based similarity and substructure-
based search are concluded by a consensus 
calculation, being in this case a simple unification 
of the two compound sets. The consensus 
compound set was than subjected to a docking 
algorithm, which narrows down the number of 
molecules further. The second and last step in the 
vertical approach was the visual inspection of the 
generated geometries. This introduced the human 
intuition and knowledge into the screening and 
culminated the estimation of the likelihood of the 
compounds to behave similarly as the query 
compounds used at the beginning of the 
screening. 
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Grow old along with me!
The best is yet to be,

The last of life, for which the first was made:
Our times are in His hand

Who saith “A whole I planned,
Youth shows but half; trust God: see all, nor be afraid!”

from Rabbi Ben Ezra by Robert Browning, † 1889.
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Fragment-based similarity searching with infinite color space 

Jakub Gunera1 and Peter Kolb1 

1Department of Pharmaceutical Chemistry, Philipps-University, Marburg, Hesse, 35032, Germany 

1. Maximum Unbiased Validation data sets (MUV) 

The 17 activity classes were designed with aim to minimize both artificial enrichment as well as 
analogue bias. Further filters were employed to remove aggregators and unspecific binders. Table S1 
categorizes the activity classes by the target class and the mode of interaction of the underlying active 
molecules. 

Table S1: Composition of the Maximum Unbiased Validation data sets (MUV). 

Tag Target Mode of interaction Target class 
S1P1R S1P1 receptor agonists GPCR 
PKA PKA inhibitors kinase 
SF1I SF1 receptor inhibitors nuclear receptor 
RK2 Rho-Kinase2 inhibitors kinase 
HIV HIV RT-RNase inhibitors ribonuclease 
EPHA4 EPH receptor A4 inhibitors protein-tyrosine kinase 
SF1A SF1 receptor agonists nuclear receptor 
HSP90 HSP 90 inhibitors chaperone 
ERAI ER-α-coactivator binding inhibitors protein-protein interaction
ERBI ER-β-coactivator binding inhibitors protein-protein interaction
ERAP ER-α-coactivator binding potentiators protein-protein interaction
FAK FAK inhibitors kinase 
CATG Cathepsin G inhibitors protease 
FXIA FXIa inhibitors protease 
FXIIA FXIIa inhibitors protease 
D1R D1 receptor allosteric modulators GPCR 
M1R M1 receptor allosteric inhibitors GPCR 
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2. Comparison of fingerprint metrics 

 
Figure S1: Radar plot representations of similarity distances calculated with five metrics (ECFP4, Pharmacophore fingerprint 
[PF], MACCS Keys, LINGO and RedFrag) for five molecule pairs (R1-T1 – R4-T5). A Molecule-pair-wise projection of 
similarity distances. B Metric-wise projection of similarity distances. 

 
3. Properties of RFGraphs 

 
Figure S2: RFGraph size distributions and average fragment molecular weights for each activity class according to RECAP, 
DAIM and BRICS fragmentation rules. Solid lines emphasize the trend of median values of the underlying distributions. 
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4. Performance of fingerprints without fragmentation algorithm 

 
Figure S3: Shown are distributions of AUC values for seven fingerprints and for each activity class as box-plot 
representations. Solid curves emphasize the trend of the medians. 
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5. ECFP4 similarity of query molecules and virtual hits 

 
Figure S4: Similarity matrix of selected virtual hits (black bar), query compounds from a recently published ETP inhibitor 
design study (45), from ref. (46) and extracted from the ChEMBL database (44) (in this order of grayish bars). Yellow squares 
indicate experimentally validated hits (Table 2). Green squares indicate virtual hits with a high Tanimoto similarity (close 
analogues or homologues) to a known ETP inhibitor but without biological activity.  

  

similarity1.00.50.0
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6. Scaffold similarity of query molecules and virtual hits 

 
Figure S5: Scaffold similarity matrix of selected virtual hits (black bar), query compounds from a recently published ETP 
inhibitor design study (45), from ref. (46) and extracted from the ChEMBL database (44) (in this order of grayish bars). Yellow 
squares indicate experimentally validated hits (Table 2). Green squares indicate virtual hits with a high Tanimoto similarity 
(close analogues or homologues) to a known ETP inhibitor but without biological activity.  

   

similarity1.00.50.0
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7. RedFrag similarity of query molecules and virtual hits 

 
Figure S6: RedFrag similarity matrix of selected virtual hits (black bar), query compounds from a recently published ETP 
inhibitor design study (45), from ref. (46) and extracted from the ChEMBL database (44) (in this order of grayish bars). Yellow 
squares indicate experimentally validated hits (Table 2). Green squares indicate virtual hits with a high Tanimoto similarity 
(close analogues or homologues) to a known ETP inhibitor but without biological activity. The matrix was generated with 
RECAP|maccs|0.1|0.5-3.5 parameter set. 

   

similarity1.00.50.0
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8. Endothiapepsin bioactivity assay 

 
Figure S7: Dose response curves for hits identified in this study. 
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9. Retrospective MUV screening: Average median AUC values 

9.1. RECAP 

Table S2: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Atom Pairs. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5630 0.4506 0.3034 0.1450 0.0981 0.0596 0.0505 0.0467 0.0467 

3.0-1.0 0.5623 0.4502 0.3024 0.1451 0.0981 0.0596 0.0505 0.0467 0.0467 

2.5-1.5 0.5620 0.4509 0.3024 0.1449 0.0980 0.0595 0.0505 0.0467 0.0467 

2.0-2.0 0.5611 0.4506 0.3015 0.1448 0.0978 0.0595 0.0505 0.0467 0.0467 

1.5-2.5 0.5561 0.4496 0.2998 0.1448 0.0978 0.0595 0.0505 0.0467 0.0467 

1.0-3.0 0.5499 0.4465 0.2985 0.1447 0.0978 0.0596 0.0505 0.0467 0.0467 

0.5-3.5 0.5394 0.4419 0.2977 0.1445 0.0977 0.0595 0.0505 0.0467 0.0467 

Table S3: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and DAIM fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5325 0.5342 0.5395 0.5422 0.5474 0.5477 0.5392 0.5061 0.4108 

3.0-1.0 0.5327 0.5346 0.5404 0.5425 0.5475 0.5470 0.5383 0.5059 0.4108 

2.5-1.5 0.5354 0.5371 0.5416 0.5468 0.5503 0.5468 0.5379 0.5059 0.4104 

2.0-2.0 0.5449 0.5462 0.5473 0.5534 0.5539 0.5510 0.5379 0.5063 0.4098 

1.5-2.5 0.5579 0.5589 0.5587 0.5594 0.5583 0.5506 0.5377 0.5053 0.4095 

1.0-3.0 0.5641 0.5628 0.5604 0.5603 0.5537 0.5456 0.5355 0.5067 0.4096 

0.5-3.5 0.5663 0.5641 0.5598 0.5531 0.5456 0.5341 0.5276 0.5002 0.4077 

Table S4: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and ECFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5353 0.3517 0.1516 0.0903 0.0655 0.0477 0.0467 0.0467 0.0467 

3.0-1.0 0.5374 0.3500 0.1517 0.0902 0.0654 0.0477 0.0467 0.0467 0.0467 

2.5-1.5 0.5368 0.3491 0.1519 0.0902 0.0654 0.0477 0.0467 0.0467 0.0467 

2.0-2.0 0.5363 0.3476 0.1519 0.0902 0.0654 0.0477 0.0467 0.0467 0.0467 

1.5-2.5 0.5344 0.3461 0.1520 0.0902 0.0654 0.0477 0.0467 0.0467 0.0467 

1.0-3.0 0.5310 0.3438 0.1518 0.0903 0.0654 0.0477 0.0467 0.0467 0.0467 

0.5-3.5 0.5220 0.3416 0.1518 0.0903 0.0654 0.0477 0.0467 0.0467 0.0467 
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Table S5: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and FCFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5520 0.5534 0.4383 0.3025 0.2069 0.1082 0.0739 0.0607 0.0559 

3.0-1.0 0.5519 0.5534 0.4363 0.3022 0.2068 0.1082 0.0740 0.0607 0.0559 

2.5-1.5 0.5523 0.5499 0.4346 0.3015 0.2067 0.1081 0.0739 0.0606 0.0559 

2.0-2.0 0.5528 0.5462 0.4325 0.3013 0.2066 0.1081 0.0739 0.0606 0.0559 

1.5-2.5 0.5521 0.5402 0.4308 0.3007 0.2068 0.1080 0.0739 0.0606 0.0559 

1.0-3.0 0.5522 0.5329 0.4293 0.2995 0.2068 0.1080 0.0739 0.0606 0.0559 

0.5-3.5 0.5472 0.5235 0.4255 0.2979 0.2068 0.1078 0.0737 0.0606 0.0559 

Table S6: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and MACCS keys fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5478 0.5705 0.5584 0.4650 0.3282 0.1958 0.1181 0.0719 0.0553 

3.0-1.0 0.5511 0.5732 0.5594 0.4607 0.3267 0.1954 0.1178 0.0717 0.0553 

2.5-1.5 0.5592 0.5782 0.5591 0.4582 0.3264 0.1952 0.1175 0.0717 0.0552 

2.0-2.0 0.5685 0.5820 0.5571 0.4560 0.3261 0.1949 0.1175 0.0717 0.0552 

1.5-2.5 0.5758 0.5817 0.5543 0.4557 0.3255 0.1945 0.1174 0.0717 0.0552 

1.0-3.0 0.5846 0.5802 0.5526 0.4550 0.3247 0.1944 0.1172 0.0715 0.0552 

0.5-3.5 0.5864 0.5772 0.5489 0.4537 0.3239 0.1942 0.1172 0.0715 0.0552 

Table S7: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5538 0.5599 0.5579 0.4864 0.1846 0.1008 0.0657 0.0522 0.0476 

3.0-1.0 0.5548 0.5590 0.5572 0.4857 0.1840 0.1005 0.0657 0.0522 0.0476 

2.5-1.5 0.5577 0.5598 0.5557 0.4827 0.1837 0.1005 0.0657 0.0522 0.0476 

2.0-2.0 0.5618 0.5595 0.5541 0.4796 0.1833 0.1006 0.0657 0.0522 0.0476 

1.5-2.5 0.5624 0.5598 0.5510 0.4768 0.1831 0.1006 0.0657 0.0522 0.0476 

1.0-3.0 0.5563 0.5527 0.5435 0.4721 0.1826 0.1005 0.0648 0.0522 0.0476 

0.5-3.5 0.5462 0.5375 0.5255 0.4644 0.1822 0.1004 0.0655 0.0522 0.0476 

Table S8: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological torsions fingerprint . 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.4665 0.2318 0.1304 0.0782 0.0607 0.0487 0.0339 0.0279 0.0270 

3.0-1.0 0.4633 0.2315 0.1300 0.0781 0.0606 0.0487 0.0339 0.0279 0.0270 

2.5-1.5 0.4594 0.2311 0.1298 0.0781 0.0606 0.0486 0.0339 0.0279 0.0270 

2.0-2.0 0.4571 0.2306 0.1297 0.0780 0.0606 0.0486 0.0339 0.0279 0.0270 

1.5-2.5 0.4533 0.2305 0.1297 0.0780 0.0606 0.0486 0.0339 0.0279 0.0270 

1.0-3.0 0.4500 0.2303 0.1294 0.0780 0.0606 0.0486 0.0339 0.0279 0.0270 

0.5-3.5 0.4484 0.2301 0.1291 0.0777 0.0606 0.0486 0.0339 0.0279 0.0270 
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9.2. BRICS 

Table S9: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Atom Pairs torsions fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5460 0.5184 0.4858 0.4384 0.4271 0.4098 0.4085 0.4079 0.4079 

3.0-1.0 0.5409 0.5123 0.4810 0.4372 0.4274 0.4099 0.4085 0.4079 0.4079 

2.5-1.5 0.5306 0.5030 0.4741 0.4358 0.4286 0.4096 0.4085 0.4079 0.4079 

2.0-2.0 0.5216 0.4965 0.4684 0.4337 0.4274 0.4098 0.4084 0.4079 0.4079 

1.5-2.5 0.5124 0.4900 0.4632 0.4326 0.4269 0.4098 0.4085 0.4079 0.4079 

1.0-3.0 0.5036 0.4863 0.4614 0.4297 0.4259 0.4091 0.4085 0.4079 0.4079 

0.5-3.5 0.4966 0.4823 0.4589 0.4278 0.4242 0.4088 0.4085 0.4079 0.4079 

Table S10: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and DAIM fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5224 0.5165 0.5122 0.5231 0.5167 0.5134 0.5157 0.5026 0.4812 

3.0-1.0 0.5237 0.5188 0.5179 0.5243 0.5179 0.5135 0.5149 0.5017 0.4818 

2.5-1.5 0.5266 0.5232 0.5256 0.5263 0.5206 0.5150 0.5130 0.5009 0.4812 

2.0-2.0 0.5273 0.5276 0.5271 0.5260 0.5231 0.5164 0.5133 0.5015 0.4814 

1.5-2.5 0.5242 0.5267 0.5274 0.5255 0.5201 0.5158 0.5131 0.5034 0.4832 

1.0-3.0 0.5232 0.5270 0.5285 0.5224 0.5164 0.5125 0.5080 0.5040 0.4904 

0.5-3.5 0.5272 0.5271 0.5260 0.5181 0.5128 0.5100 0.5043 0.5002 0.4894 

Table S11: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and ECFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5263 0.4894 0.4341 0.4180 0.4163 0.4082 0.4078 0.4078 0.4076 

3.0-1.0 0.5212 0.4904 0.4353 0.4183 0.4163 0.4082 0.4078 0.4078 0.4076 

2.5-1.5 0.5158 0.4877 0.4371 0.4186 0.4159 0.4082 0.4078 0.4078 0.4076 

2.0-2.0 0.5103 0.4868 0.4367 0.4175 0.4145 0.4082 0.4078 0.4078 0.4076 

1.5-2.5 0.5058 0.4842 0.4352 0.4169 0.4134 0.4082 0.4078 0.4078 0.4076 

1.0-3.0 0.5022 0.4818 0.4345 0.4172 0.4135 0.4082 0.4078 0.4078 0.4076 

0.5-3.5 0.4970 0.4770 0.4337 0.4163 0.4126 0.4082 0.4078 0.4078 0.4076 
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Table S12: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and FCFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5271 0.4932 0.4752 0.4661 0.4625 0.4351 0.4345 0.4347 0.4358 

3.0-1.0 0.5221 0.5009 0.4832 0.4706 0.4658 0.4365 0.4353 0.4354 0.4358 

2.5-1.5 0.5198 0.5053 0.4869 0.4728 0.4687 0.4375 0.4357 0.4358 0.4358 

2.0-2.0 0.5181 0.5037 0.4861 0.4718 0.4673 0.4375 0.4359 0.4359 0.4358 

1.5-2.5 0.5132 0.4999 0.4847 0.4707 0.4662 0.4380 0.4367 0.4367 0.4358 

1.0-3.0 0.5050 0.4980 0.4821 0.4680 0.4643 0.4382 0.4372 0.4371 0.4358 

0.5-3.5 0.5002 0.4952 0.4799 0.4658 0.4615 0.4377 0.4362 0.4361 0.4358 

Table S13: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and MACCS keys fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5315 0.5392 0.5255 0.4914 0.4769 0.4417 0.4333 0.4143 0.4073 

3.0-1.0 0.5343 0.5368 0.5181 0.4922 0.4744 0.4410 0.4322 0.4143 0.4074 

2.5-1.5 0.5365 0.5335 0.5191 0.4941 0.4744 0.4425 0.4313 0.4142 0.4074 

2.0-2.0 0.5348 0.5285 0.5137 0.4929 0.4716 0.4413 0.4311 0.4145 0.4075 

1.5-2.5 0.5344 0.5229 0.5076 0.4894 0.4678 0.4380 0.4300 0.4148 0.4076 

1.0-3.0 0.5365 0.5180 0.5017 0.4863 0.4627 0.4329 0.4287 0.4150 0.4076 

0.5-3.5 0.5352 0.5168 0.4978 0.4840 0.4610 0.4324 0.4272 0.4152 0.4079 

Table S14: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5422 0.5543 0.5523 0.5125 0.4349 0.4187 0.4106 0.4077 0.4078 

3.0-1.0 0.5437 0.5497 0.5466 0.5069 0.4351 0.4185 0.4106 0.4077 0.4078 

2.5-1.5 0.5435 0.5443 0.5417 0.5026 0.4370 0.4201 0.4105 0.4079 0.4079 

2.0-2.0 0.5445 0.5396 0.5308 0.5005 0.4379 0.4209 0.4103 0.4078 0.4079 

1.5-2.5 0.5457 0.5339 0.5237 0.4935 0.4390 0.4216 0.4106 0.4079 0.4079 

1.0-3.0 0.5444 0.5240 0.5166 0.4893 0.4390 0.4220 0.4100 0.4077 0.4079 

0.5-3.5 0.5404 0.5132 0.5047 0.4864 0.4389 0.4225 0.4102 0.4080 0.4079 

Table S15: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological torsions fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5134 0.3582 0.2778 0.2547 0.2452 0.2388 0.2192 0.2155 0.2129 

3.0-1.0 0.5032 0.3565 0.2777 0.2549 0.2452 0.2389 0.2193 0.2155 0.2129 

2.5-1.5 0.4984 0.3549 0.2775 0.2550 0.2453 0.2389 0.2192 0.2155 0.2129 

2.0-2.0 0.4947 0.3531 0.2771 0.2549 0.2453 0.2388 0.2192 0.2155 0.2129 

1.5-2.5 0.4901 0.3521 0.2766 0.2544 0.2451 0.2386 0.2192 0.2155 0.2129 

1.0-3.0 0.4873 0.3520 0.2766 0.2545 0.2450 0.2386 0.2192 0.2155 0.2129 

0.5-3.5 0.4829 0.3517 0.2766 0.2545 0.2450 0.2386 0.2192 0.2155 0.2129 
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9.3. DAIM 

Table S16: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Atom Pairs fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5558 0.5246 0.4847 0.3973 0.3730 0.3346 0.3305 0.3298 0.3291 

3.0-1.0 0.5494 0.5221 0.4780 0.3962 0.3726 0.3344 0.3303 0.3298 0.3291 

2.5-1.5 0.5398 0.5134 0.4715 0.3946 0.3715 0.3345 0.3303 0.3298 0.3291 

2.0-2.0 0.5280 0.5050 0.4678 0.3929 0.3715 0.3342 0.3303 0.3298 0.3291 

1.5-2.5 0.5222 0.5003 0.4670 0.3917 0.3707 0.3338 0.3303 0.3298 0.3291 

1.0-3.0 0.5159 0.4985 0.4643 0.3902 0.3707 0.3337 0.3303 0.3298 0.3291 

0.5-3.5 0.5094 0.4961 0.4612 0.3886 0.3701 0.3337 0.3303 0.3298 0.3291 

Table S17: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and DAIM fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5113 0.5139 0.5150 0.5275 0.5343 0.5345 0.5174 0.5165 0.4834 

3.0-1.0 0.5143 0.5181 0.5194 0.5281 0.5353 0.5346 0.5188 0.5164 0.4851 

2.5-1.5 0.5168 0.5220 0.5250 0.5315 0.5320 0.5327 0.5205 0.5158 0.4871 

2.0-2.0 0.5226 0.5295 0.5309 0.5327 0.5312 0.5297 0.5222 0.5160 0.4865 

1.5-2.5 0.5291 0.5344 0.5344 0.5307 0.5288 0.5264 0.5212 0.5161 0.4873 

1.0-3.0 0.5355 0.5391 0.5340 0.5304 0.5233 0.5204 0.5195 0.5134 0.4869 

0.5-3.5 0.5361 0.5374 0.5339 0.5279 0.5173 0.5133 0.5147 0.5046 0.4794 

Table S18: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and ECFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5377 0.4996 0.3946 0.3487 0.3410 0.3269 0.3260 0.3260 0.3259 

3.0-1.0 0.5316 0.4963 0.3935 0.3479 0.3409 0.3268 0.3259 0.3259 0.3259 

2.5-1.5 0.5268 0.4919 0.3932 0.3478 0.3407 0.3268 0.3259 0.3259 0.3259 

2.0-2.0 0.5200 0.4880 0.3922 0.3478 0.3409 0.3268 0.3259 0.3259 0.3259 

1.5-2.5 0.5139 0.4868 0.3919 0.3479 0.3409 0.3269 0.3259 0.3259 0.3259 

1.0-3.0 0.5074 0.4855 0.3910 0.3478 0.3409 0.3269 0.3260 0.3259 0.3259 

0.5-3.5 0.5002 0.4838 0.3899 0.3473 0.3409 0.3269 0.3260 0.3259 0.3259 
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Table S19: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and FCFP fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5358 0.5357 0.5169 0.4666 0.4466 0.3829 0.3730 0.3724 0.3654 

3.0-1.0 0.5382 0.5310 0.5090 0.4659 0.4471 0.3818 0.3723 0.3718 0.3654 

2.5-1.5 0.5342 0.5221 0.4995 0.4654 0.4457 0.3808 0.3714 0.3711 0.3654 

2.0-2.0 0.5297 0.5171 0.4987 0.4648 0.4447 0.3806 0.3711 0.3706 0.3654 

1.5-2.5 0.5250 0.5113 0.4931 0.4655 0.4445 0.3806 0.3710 0.3704 0.3654 

1.0-3.0 0.5199 0.5056 0.4860 0.4641 0.4445 0.3801 0.3707 0.3701 0.3654 

0.5-3.5 0.5150 0.5008 0.4840 0.4622 0.4432 0.3799 0.3705 0.3699 0.3654 

Table S20: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and MACCS keys fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.5385 0.5382 0.5385 0.5129 0.4614 0.3977 0.3712 0.3374 0.3260ܨ - 

3.5-0.5 0.5397 0.5399 0.5359 0.5110 0.4611 0.3988 0.3710 0.3377 0.3261 

3.0-1.0 0.5410 0.5388 0.5319 0.5075 0.4603 0.3991 0.3703 0.3376 0.3262 

2.5-1.5 0.5384 0.5382 0.5265 0.5024 0.4548 0.3958 0.3692 0.3378 0.3263 

2.0-2.0 0.5405 0.5343 0.5211 0.4989 0.4503 0.3910 0.3673 0.3377 0.3264 

1.5-2.5 0.5375 0.5309 0.5165 0.4949 0.4456 0.3893 0.3660 0.3378 0.3264 

1.0-3.0 0.5329 0.5288 0.5118 0.4905 0.4435 0.3880 0.3655 0.3363 0.3262 

0.5-3.5 0.5385 0.5382 0.5385 0.5129 0.4614 0.3977 0.3712 0.3374 0.3260 

Table S21: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5299 0.5663 0.5564 0.5231 0.3843 0.3453 0.3354 0.3299 0.3291 

3.0-1.0 0.5319 0.5636 0.5533 0.5227 0.3831 0.3454 0.3356 0.3300 0.3291 

2.5-1.5 0.5381 0.5521 0.5499 0.5199 0.3821 0.3453 0.3357 0.3301 0.3291 

2.0-2.0 0.5407 0.5529 0.5439 0.5073 0.3816 0.3443 0.3357 0.3301 0.3291 

1.5-2.5 0.5463 0.5431 0.5382 0.5147 0.3809 0.3432 0.3351 0.3301 0.3291 

1.0-3.0 0.5502 0.5345 0.5306 0.5105 0.3801 0.3431 0.3352 0.3302 0.3291 

0.5-3.5 0.5474 0.5250 0.5197 0.5063 0.3796 0.3432 0.3353 0.3302 0.3292 

Table S22: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
with RECAP fragmentation rules and Topological torsions fingerprint. 

 similarity threshold 

஼ܩ  ஼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ܨ - 

3.5-0.5 0.5080 0.3872 0.3113 0.2846 0.2751 0.2694 0.2448 0.2448 0.2442 

3.0-1.0 0.5015 0.3858 0.3113 0.2845 0.2755 0.2697 0.2448 0.2448 0.2442 

2.5-1.5 0.4942 0.3815 0.3111 0.2845 0.2756 0.2698 0.2448 0.2448 0.2442 

2.0-2.0 0.4900 0.3793 0.3111 0.2847 0.2758 0.2699 0.2448 0.2448 0.2442 

1.5-2.5 0.4857 0.3780 0.3110 0.2846 0.2756 0.2698 0.2448 0.2448 0.2442 

1.0-3.0 0.4841 0.3780 0.3104 0.2846 0.2756 0.2698 0.2448 0.2448 0.2442 

0.5-3.5 0.4821 0.3778 0.3101 0.2844 0.2754 0.2696 0.2448 0.2448 0.2442 
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9.4. Globals 

Table S23: Average median AUC values derived from AUC-distributions obtained from 30 retrieval runs per activity class 
without our algorithmic graph reduction. 

fingerprint average median AUC 

apairs 0.6298 
daim 0.5272 
ecfp 0.5838 
fcfp 0.5651 
maccs 0.5600 
topo 0.5440 
torsion 0.6224 

9.5. Length of scoring lists 

Table S24: Average median length of scoring lists obtained from 30 retrieval runs per activity class with Atom Pairs 
fingerprint. 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 13411 8212 4084 1696 1088 664 568 551 551 
BRICS 14627 13931 12113 9947 9616 8989 8941 8930 8929 
DAIM 14530 13230 11424 7401 6979 5602 5521 5505 5498 

Table S25: Average median length of scoring lists obtained from 30 retrieval runs per activity class with DAIM fingerprint. 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 15027 15027 15027 15022 14970 14681 13810 11963 8032 

BRICS 15027 15027 15026 15019 14990 14897 14674 14145 13315 

DAIM 15027 15027 15027 15025 15010 14949 14704 13964 12200 

Table S26: Average median length of scoring lists obtained from 30 retrieval runs per activity class with ECFP fingerprint. 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 13429 5942 2027 1010 716 560 555 551 546 

BRICS 14750 13845 10060 9171 9038 8888 8887 8887 8887 

DAIM 14680 13163 7809 6352 5916 5460 5445 5445 5444 

Table S27: Average median length of scoring lists obtained from 30 retrieval runs per activity class with FCFP fingerprint. 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 14963 13759 8880 4643 2910 1278 782 683 604 

BRICS 14973 14582 13029 12040 11589 10107 9997 9995 9877 

DAIM 15010 14765 13564 11666 10423 7311 7097 7075 6860 
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Table S28: Average median length of scoring lists obtained from 30 retrieval runs per activity class with MACCS Keys 
fingerprint. 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 15026 14720 12174 7807 4422 2338 1464 892 629 

BRICS 15026 14917 14346 13574 12082 9954 9567 9057 8917 

DAIM 15027 14947 14099 12393 9765 7588 6892 5666 5464 

Table S29: Average median length of scoring lists obtained from 30 retrieval runs per activity class with Topological 
fingerprint (corresponds to Error! Reference source not found.B (topo)). 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 15027 15025 14959 11313 2670 1063 774 627 561 

BRICS 15027 15026 14979 13652 10226 9514 9018 8960 8930 

DAIM 15027 15024 14976 13358 7106 5904 5624 5571 5508 

Table S30: Average median length of scoring lists obtained from 30 retrieval runs per activity class with Torsions fingerprint 
(corresponds to Error! Reference source not found.B (torsions)). 

 similarity threshold 

rule 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RECAP 7995 2808 1175 651 487 333 243 219 216 

BRICS 11195 6428 4383 3557 3399 3226 2428 2399 2294 

DAIM 11893 7158 5228 4422 4149 4004 3185 3141 3116 

 
9.6. Statistical significance of RedFrag runs at OOPS and run at best single parameter set 

Table S31: Statistical significance of best performances for each activity class calculated for AUC distributions resulting from 
RedFrag runs at OOPS and the best single parameter set (ks-test: Kolmogorov-Smirnov test).  

 MACCS|0.1|0.5-3.5 RedFrag at OOPS   

target median mean median mean p-value (t-test) p-value (ks-test) 

S1P1 receptor                            0.570 0.567 0.682 0.669 0.0000 0.0000 

PKA                                      0.650 0.656 0.657 0.635 0.3930 0.5372 

SF1 inhibitors                           0.501 0.496 0.596 0.583 0.0000 0.0000 

Rho-Kinase2                              0.607 0.600 0.607 0.600 1.0000 1.0000 

HIV RT-RNase                             0.513 0.495 0.632 0.586 0.0001 0.0000 

EPH receptor A4                          0.542 0.526 0.558 0.550 0.1446 0.1088 

SF1 agonists                             0.529 0.532 0.665 0.641 0.0000 0.0000 

HSP 90                                   0.597 0.591 0.626 0.600 0.7750 0.5372 

ER-α-coactivator binding inhibitor   0.499 0.499 0.557 0.531 0.0574 0.0259 

ER-β-coactivator binding inhibitor    0.519 0.523 0.583 0.539 0.4484 0.1088 

ER-α-coactivator binding potentiator 0.605 0.596 0.628 0.600 0.8363 0.5372 

FAK                                      0.581 0.564 0.628 0.538 0.3938 0.0046 

Cathepsin G                              0.661 0.658 0.661 0.660 0.9094 0.7600 

FXIa                                     0.708 0.695 0.780 0.721 0.3989 0.0259 

FXIIa                                    0.748 0.705 0.762 0.713 0.7923 0.7600 

D1 receptor                              0.583 0.553 0.630 0.570 0.5972 0.0046 

M1 receptor                              0.556 0.533 0.571 0.531 0.9541 0.5372 
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9.7. RedFrag performance at OOPS 

Table S32: Best performing sets of parameters for each activity class from the MUV data sets. 

target median mean fingerprint fragmentation 
similarity 
threshold 

஼ܩ  ஼ܨ - 

S1P1 receptor                            0.682 0.669 topo RECAP 0.2 3.5-0.5 

PKA                                      0.657 0.635 maccs DAIM 0.1 1.5-2.5 

SF1 inhibitors                           0.596 0.583 topo RECAP 0.3 3.5-0.5 

Rho-Kinase2                              0.607 0.600 maccs RECAP 0.1 0.5-3.5 

HIV RT-RNase                             0.632 0.586 topo DAIM 0.2 3.5-0.5 

EPH receptor A4                          0.558 0.550 apairs DAIM 0.1 3.0-1.0 

SF1 agonists                             0.665 0.641 daim BRICS 0.1 3.5-0.5 

HSP 90                                   0.626 0.600 maccs RECAP 0.2 3.5-0.5 

ER-α-coactivator binding inhibitor   0.557 0.531 daim RECAP 0.3 0.5-3.5 

ER-β-coactivator binding inhibitor    0.583 0.539 maccs RECAP 0.1 3.5-0.5 
ER-α-coactivator binding 
potentiator 

0.628 0.600 maccs RECAP 0.2 2.0-2.0 

FAK                                      0.628 0.538 topo BRICS 0.3 3.0-1.0 

Cathepsin G                              0.661 0.660 maccs RECAP 0.2 0.5-3.5 

FXIa                                     0.780 0.721 topo DAIM 0.2 3.5-0.5 

FXIIa                                    0.762 0.713 maccs RECAP 0.1 1.0-3.0 

D1 receptor                              0.630 0.570 torsions BRICS 0.1 3.5-0.5 

M1 receptor                              0.571 0.531 maccs RECAP 0.3 1.0-3.0 

       

9.8. Statistical significance of performance restricted to different fragmentation rules 

Table S33: Statistical significance of best performances for each activity class calculated for AUC distributions resulting from 
RECAP and DAIM fragmentation rules (ks-test: Kolmogorov-Smirnov test). 

 RECAP DAIM   

target median mean median mean p-value (t-test) p-value (ks-test) 

S1P1 receptor                            0.682 0.669 0.532 0.525 0.0000 0.0000 

PKA                                      0.654 0.650 0.657 0.635 0.5783 0.7600 

SF1 inhibitors                           0.596 0.583 0.538 0.529 0.0000 0.0000 

Rho-Kinase2                              0.607 0.600 0.599 0.576 0.2829 0.2003 

HIV RT-RNase                             0.536 0.513 0.632 0.586 0.0005 0.0000 

EPH receptor A4                          0.542 0.543 0.558 0.550 0.6560 0.7600 

SF1 agonists                             0.558 0.540 0.584 0.576 0.0083 0.0259 

HSP 90                                   0.626 0.600 0.534 0.514 0.0019 0.0001 

ER-α-coactivator binding inhibitor   0.557 0.531 0.548 0.527 0.7916 0.5372 

ER-β-coactivator binding inhibitor    0.583 0.539 0.550 0.539 0.9964 0.0259 

ER-α-coactivator binding potentiator 0.628 0.600 0.598 0.608 0.6147 0.3420 

FAK                                      0.602 0.575 0.552 0.531 0.0094 0.0006 

Cathepsin G                              0.661 0.660 0.622 0.576 0.0003 0.0002 

FXIa                                     0.712 0.696 0.780 0.721 0.4230 0.0550 

FXIIa                                    0.762 0.713 0.723 0.669 0.1692 0.0046 

D1 receptor                              0.598 0.541 0.626 0.588 0.0951 0.2003 

M1 receptor                              0.571 0.531 0.570 0.539 0.7873 0.9360 
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Table S34: Statistical significance of best performances for each activity class calculated for AUC distributions resulting from 
DAIM and BRICS fragmentation rules (ks-test: Kolmogorov-Smirnov test). 

 DAIM BRICS   

target median mean median mean p-value (t-test) p-value (ks-test) 

S1P1 receptor                            0.532 0.525 0.521 0.514 0.4539 0.1088 

PKA                                      0.657 0.635 0.623 0.599 0.1789 0.5372 

SF1 inhibitors                           0.538 0.529 0.545 0.532 0.8215 0.9360 

Rho-Kinase2                              0.599 0.576 0.570 0.563 0.4368 0.3420 

HIV RT-RNase                             0.632 0.586 0.544 0.528 0.0430 0.0550 

EPH receptor A4                          0.558 0.550 0.552 0.530 0.2888 0.5372 

SF1 agonists                             0.584 0.576 0.665 0.641 0.0000 0.0000 

HSP 90                                   0.534 0.514 0.576 0.557 0.1514 0.0550 

ER-α-coactivator binding inhibitor   0.548 0.527 0.521 0.513 0.4664 0.3420 

ER-β-coactivator binding inhibitor    0.550 0.539 0.536 0.525 0.2182 0.0550 

ER-α-coactivator binding potentiator 0.598 0.608 0.593 0.582 0.1266 0.3420 

FAK                                      0.552 0.531 0.628 0.538 0.8358 0.0006 

Cathepsin G                              0.622 0.576 0.636 0.629 0.0115 0.0259 

FXIa                                     0.780 0.721 0.745 0.680 0.2918 0.0046 

FXIIa                                    0.723 0.669 0.676 0.628 0.2616 0.1088 

D1 receptor                              0.626 0.588 0.630 0.570 0.5588 0.5372 

M1 receptor                              0.570 0.539 0.540 0.534 0.8301 0.0259 

Table S35: Statistical significance of best performances for each activity class calculated for AUC distributions resulting from 
RECAP and BRICS fragmentation rules (ks-test: Kolmogorov-Smirnov test). 

 RECAP BRICS   

target median mean median mean 
p-value (t-
test) 

p-value 
(ks-test)

S1P1 receptor                            0.682 0.669 0.521 0.514 0.0000 0.0000 

PKA                                      0.654 0.650 0.623 0.599 0.0682 0.3420 

SF1 inhibitors                           0.596 0.583 0.545 0.532 0.0001 0.0000 

Rho-Kinase2                              0.607 0.600 0.570 0.563 0.0839 0.1088 

HIV RT-RNase                             0.536 0.513 0.544 0.528 0.5681 0.0020 

EPH receptor A4                          0.542 0.543 0.552 0.530 0.4853 0.5372 

SF1 agonists                             0.558 0.540 0.665 0.641 0.0000 0.0000 

HSP 90                                   0.626 0.600 0.576 0.557 0.2023 0.0259 

ER-α-coactivator binding inhibitor   0.557 0.531 0.521 0.513 0.3096 0.2003 

ER-β-coactivator binding inhibitor    0.583 0.539 0.536 0.525 0.4084 0.0006 

ER-α-coactivator binding potentiator 0.628 0.600 0.593 0.582 0.3477 0.2003 

FAK                                      0.602 0.575 0.628 0.538 0.2134 0.0046 

Cathepsin G                              0.661 0.660 0.636 0.629 0.0415 0.0550 

FXIa                                     0.712 0.696 0.745 0.680 0.6380 0.3420 

FXIIa                                    0.762 0.713 0.676 0.628 0.0190 0.0002 

D1 receptor                              0.598 0.541 0.630 0.570 0.4321 0.0550 

M1 receptor                              0.571 0.531 0.540 0.534 0.9022 0.0259 
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9.9. Best performances of fingerprints without graph reduction 

Table S36: Best performing fingerprints without algorithmic graph reduction for each activity class from the MUV data sets. 

target median mean fingerprint 

S1P1 receptor                            0.594 0.574 apairs   

PKA                                      0.710 0.693 apairs   

SF1 inhibitors                           0.630 0.623 apairs   

Rho-Kinase2                              0.607 0.598 torsions 

HIV RT-RNase                             0.615 0.607 torsions 

EPH receptor A4                          0.643 0.622 torsions 

SF1 agonists                             0.561 0.554 apairs   

HSP 90                                   0.735 0.705 torsions 

ER-α-coactivator binding inhibitor   0.558 0.548 torsions 

ER-β-coactivator binding inhibitor    0.560 0.550 apairs   

ER-α-coactivator binding potentiator 0.742 0.728 apairs   

FAK                                      0.647 0.643 torsions 

Cathepsin G                              0.686 0.681 maccs    

FXIa                                     0.790 0.776 apairs   

FXIIa                                    0.757 0.745 apairs   

D1 receptor                              0.574 0.578 topo     

M1 receptor                              0.589 0.558 ecfp     

 
9.10. Best performances of RedFrag restricted to a single fragmentation rule 

Table S37: Best performing sets of parameters for each activity class from the MUV data sets corresponding to the RECAP 
fragmentation rules. 

target median mean fingerprint similarity threshold ܩ஼  ஼ܨ - 

S1P1 receptor                            0.682 0.669 topo  0.2 3.5-0.5 

PKA                                      0.654 0.650 maccs 0.2 0.5-3.5 

SF1 inhibitors                           0.596 0.583 topo  0.3 3.5-0.5 

Rho-Kinase2                              0.607 0.600 maccs 0.1 0.5-3.5 

HIV RT-RNase                             0.536 0.513 topo  0.2 2.0-2.0 

EPH receptor A4                          0.542 0.543 maccs 0.2 0.5-3.5 

SF1 agonists                             0.558 0.540 daim  0.6 0.5-3.5 

HSP 90                                   0.626 0.600 maccs 0.2 3.5-0.5 

ER-α-coactivator binding inhibitor   0.557 0.531 daim  0.3 0.5-3.5 

ER-β-coactivator binding inhibitor    0.583 0.539 maccs 0.1 3.5-0.5 

ER-α-coactivator binding potentiator 0.628 0.600 maccs 0.2 2.0-2.0 

FAK                                      0.602 0.575 topo  0.3 2.0-2.0 

Cathepsin G                              0.661 0.660 maccs 0.2 0.5-3.5 

FXIa                                     0.712 0.696 maccs 0.1 1.0-3.0 

FXIIa                                    0.762 0.713 maccs 0.1 1.0-3.0 

D1 receptor                              0.598 0.541 daim  0.4 2.0-2.0 

M1 receptor                              0.571 0.531 maccs 0.3 1.0-3.0 
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Table S38: Best performing sets of parameters for each activity class from the MUV data sets corresponding to the DAIM 
fragmentation rules. 

target median mean fingerprint similarity threshold ܩ஼  ஼ܨ - 

S1P1 receptor                            0.532 0.525 daim     0.7 0.5-3.5 

PKA                                      0.657 0.635 maccs    0.1 1.5-2.5 

SF1 inhibitors                           0.538 0.529 topo     0.3 3.5-0.5 

Rho-Kinase2                              0.599 0.576 daim     0.3 0.5-3.5 

HIV RT-RNase                             0.632 0.586 topo     0.2 3.5-0.5 

EPH receptor A4                          0.558 0.550 apairs   0.1 3.0-1.0 

SF1 agonists                             0.584 0.576 daim     0.1 3.0-1.0 

HSP 90                                   0.534 0.514 daim     0.5 0.5-3.5 

ER-α-coactivator binding inhibitor   0.548 0.527 topo     0.3 3.5-0.5 

ER-β-coactivator binding inhibitor    0.550 0.539 topo     0.3 3.5-0.5 

ER-α-coactivator binding potentiator 0.598 0.608 apairs   0.1 3.5-0.5 

FAK                                      0.552 0.531 topo     0.2 3.5-0.5 

Cathepsin G                              0.622 0.576 maccs    0.4 2.5-1.5 

FXIa                                     0.780 0.721 topo     0.2 3.5-0.5 

FXIIa                                    0.723 0.669 topo     0.2 3.5-0.5 

D1 receptor                              0.626 0.588 maccs    0.3 3.0-1.0 

M1 receptor                              0.570 0.539 torsions 0.1 3.5-0.5 

 

Table S39: Best performing sets of parameters for each activity class from the MUV data sets corresponding to the BRICS 
fragmentation rules.  

target median mean fingerprint similarity threshold ܩ஼  ஼ܨ - 

S1P1 receptor                            0.521 0.514 topo     0.3 3.5-0.5 

PKA                                      0.623 0.599 maccs    0.1 2.5-1.5 

SF1 inhibitors                           0.545 0.532 topo     0.2 2.5-1.5 

Rho-Kinase2                              0.570 0.563 fcfp     0.1 3.5-0.5 

HIV RT-RNase                             0.544 0.528 topo     0.3 3.5-0.5 

EPH receptor A4                          0.552 0.530 daim     0.2 0.5-3.5 

SF1 agonists                             0.665 0.641 daim     0.1 3.5-0.5 

HSP 90                                   0.576 0.557 apairs   0.1 3.5-0.5 

ER-α-coactivator binding inhibitor   0.521 0.513 topo     0.2 3.5-0.5 

ER-β-coactivator binding inhibitor    0.536 0.525 daim     0.4 3.5-0.5 

ER-α-coactivator binding potentiator 0.593 0.582 fcfp     0.2 3.5-0.5 

FAK                                      0.628 0.538 topo     0.3 3.0-1.0 

Cathepsin G                              0.636 0.629 maccs    0.1 0.5-3.5 

FXIa                                     0.745 0.680 apairs   0.2 3.5-0.5 

FXIIa                                    0.676 0.628 apairs   0.1 3.5-0.5 

D1 receptor                              0.630 0.570 torsions 0.1 3.5-0.5 

M1 receptor                              0.540 0.534 daim     0.5 3.5-0.5 
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9.11. Statistical significance of RedFrag performance at OOPS and best Globals 

Table S40: Statistical significance of best performances for each activity class calculated for AUC distributions resulting from 
RedFrag runs and calculations without algorithmic graph reduction (Globals) (ks-test: Kolmogorov-Smirnov test).  

 RedFrag Globals   

target median mean median mean p-value (t-test) p-value (ks-test) 

S1P1 receptor                            0.682 0.669 0.594 0.574 0.0000 0.0000 

PKA                                      0.657 0.635 0.710 0.693 0.0144 0.0259 

SF1 inhibitors                           0.596 0.583 0.630 0.623 0.0047 0.0006 

Rho-Kinase2                              0.607 0.600 0.607 0.598 0.9276 0.7600 

HIV RT-RNase                             0.632 0.586 0.615 0.607 0.2920 0.2003 

EPH receptor A4                          0.558 0.550 0.643 0.622 0.0002 0.0017 

SF1 agonists                             0.665 0.641 0.561 0.554 0.0000 0.0000 

HSP 90                                   0.626 0.600 0.735 0.705 0.0006 0.0006 

ER-α-coactivator binding inhibitor   0.557 0.531 0.558 0.548 0.3041 0.5372 

ER-β-coactivator binding inhibitor    0.583 0.539 0.560 0.550 0.5578 0.5372 

ER-α-coactivator binding 
potentiator 

0.628 0.600 0.742 0.728 0.0000 0.0000 

FAK                                      0.628 0.538 0.647 0.643 0.0008 0.0113 

Cathepsin G                              0.661 0.660 0.686 0.681 0.2463 0.3420 

FXIa                                     0.780 0.721 0.790 0.776 0.0482 0.5372 

FXIIa                                    0.762 0.713 0.757 0.745 0.2665 0.1088 

D1 receptor                              0.630 0.570 0.574 0.578 0.7629 0.0006 

M1 receptor                              0.571 0.531 0.589 0.558 0.2463 0.3420 
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10. Virtual hits and query compounds 

Table S41: Virtual hits with 2D depiction of the molecular structure, the CXSMILES string as built by ChemAxon’s 
MarvinSketch, molecule title used throughout the main document. 

Structure CXSMILES Molecule Title Original Title 

CC(C)C[C@@H]([NH3+])C(=O)N\N=C\c1ccc2nccn
c2c1 

1 K00JG014 

C([NH+]1CCN(CC1)\N=C\c1cccc2ccccc12)c1ccccc1 2 K00JG001 

Cc1[nH+]nc(SCC(=O)Nc2sc3CCCCc3c2C#N)n1Cc1
ccccc1 

3 K00JG013 

COc1ccc(Cl)cc1N1CC[C@@H](C1)[NH2+]Cc1ccnc
c1 

4 K00JG004 

CC(C)CCN1CNC(NS(=O)(=O)c2ccccc2)=[NH+]C1 5 K00JG018 

O=C(C[NH+]1CCC[C@H](C1)C(=O)c1ccc2OCOc2
c1)N1CCCCCC1 

6 K00JG003 
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[NH3+][C@H](C(=O)N1CCC(O)(CC1)c1cccc(c1)C(
F)(F)F)c1ccccc1 

7 K00JG002 

CCN(CC)c1ccc(cc1)C(=O)N\N=C\c1ccc(C)o1 8 K00JG004 

O=C(CCc1ccccc1)Nn1c[nH+]c2ccccc12 9 K00JG009 

COc1cccc(NC2CC[NH+](Cc3ccncc3)CC2)c1 10 K00JG007 

Fc1ccc(CSc2nnc(NC(=O)c3cccc(c3)C(F)(F)F)s2)cc1 11 K00JG008 

CO[C@H]1C[NH2+]C[C@@H]1NC(=O)c1cccc(Br)
c1C 

12 K00JG009 



 

157 
 

C[C@@H](N1CC[NH+](Cc2nc3ccccc3s2)CC1)C(=
O)Nc1sccc1C#N 

13 K00JG010 

C[C@H]1CCC[NH+](CC(=O)N2CCCCC2)C1 14 K00JG011 

COC[C@H](O)C[NH+]1CCC(CC1)NC(=O)c1cscc1
C 

15 K00JG012 

N=C(NOC(=O)CCC1CCCC1)c1ccccn1 16 K00JG015 

COc1ccc2nc(\C=N\NC(=O)[C@@H]([NH3+])CC(C)
C)ccc2c1 

17 K00JG016 

Oc1ccc2ccccc2c1\C=N/NS(=O)(=O)CCc1ccccc1 18 K00JG017 
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COc1ccc(NC(=O)c2cc(c[nH]2)S(=O)(=O)N2CCCCC
2)cc1OC 

19 K00JG019 

C[C@@H]1C[C@@H](C)C[NH+](C1)[C@@H]1C
CCC[C@@H]1NS(=O)(=O)c1ccc(Cl)cc1 

20 K00JG020 
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Table S42: Query compounds with 2D depiction of the molecular structure, the CXSMILES string as built by ChemAxon’s 
MarvinSketch, molecule title used throughout the main document. 

Structure CXSMILES Molecule Title Original Title 

[NH3+][C@@H](C(=O)N\N=C\c1cccc(c1)C(F)(
F)F)c1ccccc1 

Q1 R_H3_A1 

Cc1cc(C)c(\C=N\NC(=O)[C@H]([NH3+])c2cccc
c2)c(C)c1 

Q2 R_H3_A4 

[NH3+][C@@H](C(=O)N\N=C\c1ccc(O)c2ccccc
12)c1ccccc1 

Q3 R_H3_A5 

CC(C)C[C@H]([NH3+])C(=O)N\N=C\c1cccc(c1
)C(F)(F)F 

Q4 S_H1_A1 

CC(C)C[C@H]([NH3+])C(=O)N\N=C\c1ccccn1 Q5 S_H1_A3 

[NH3+][C@H](C(=O)N\N=C\c1cccc(c1)C(F)(F)
F)c1ccc(F)cc1 

Q6 S_H2_A1 
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Cc1cc(C)c(\C=N\NC(=O)[C@@H]([NH3+])Cc2
c[nH]c3ccccc23)c(C)c1 

Q7 S_H4_A4 

O=C(C[NH2+]CCc1c[nH]c2ccccc12)Nc1scc(c1C
(=O)NCc1ccccc1)-c1ccccc1 

Q8 RB91 

[NH3+]c1ccc(CN(CC2C[NH2+]CC=C(COC(=O)
c3ccc(Br)cc3)C2)C(=O)Cc2ccc([NH3+])cc2)cc1 

Q9 NC239 

NC(=[NH2+])SCc1ccccc1Cl Q10 F306 

NC1=[NH+]Cc2ccccc12 Q11 F005 

CC[NH+](CC)c1ccc(cc1)C(=O)NN Q12 F109 
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NC(=O)c1ccc(cc1)S(=O)(=O)N(Cc1ccc(cc1)C(F)
(F)F)[C@H]1C[NH2+]C[C@@H]1N(Cc1ccc(cc
1)C(F)(F)F)S(=O)(=O)c1ccc(cc1)C(N)=O 

Q13 AB111 

[NH3+]c1ccc(CN(CC2C[NH2+]CC=C(COC(=O)
c3ccc(Br)cc3)C2)C(=O)Cc2ccccc2)cc1 

Q14 ST231 

OC(COCc1ccccc1F)C[NH+]1CCCC1 Q15 F284 

[O-
][N+](=O)c1ccc(CN(CC2C[NH2+]CC=C(COC(=
O)c3ccc(Br)cc3)C2)C(=O)Cc2ccc(cc2)[N+]([O-
])=O)cc1 

Q16 NC230 

[O-
][N+](=O)c1ccc(CN(CC2C[NH2+]CC=C(COC(=
O)c3ccc(Br)cc3)C2)C(=O)Cc2ccccc2)cc1 

Q17 NC231 

CCOC(=O)c1c(NC(=O)C[NH2+]Cc2ccc([NH3+]
)cc2)scc1-c1ccccc1 

Q18 RB51 
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C=C(Cc1cn2ccccc2[nH+]1)Nc1ccccc1 Q19 F255 

NC(=[NH2+])SCc1ccc(Cl)cc1 Q20 F290 

[O-
][N+](=O)c1ccc(C[NH+](CC2C[NH2+]CC=C(C
OC(=O)c3ccc(Br)cc3)C2)Cc2ccc(cc2)[N+]([O-
])=O)cc1 

Q21 NC229 

C[NH2+]Cc1ccc(Oc2ccccc2)o1 Q22 F063 

CCOC(=O)c1c(NC(=O)C[NH2+]Cc2cccc([NH3
+])c2)scc1-c1ccc(Cl)cc1 

Q23 RB57 

O=C(Cc1cccc2ccccc12)O[C@H]1C[NH2+]C[C
@@H]1OC(=O)Cc1cccc2ccccc12 

Q24 ST47 
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O=C(C[NH+]1CCOCC1)Nc1sc2CCCCc2c1C(=
O)NCc1ccccc1 

Q25 SH40 

CCOC(=O)c1c(NC(=O)C[NH2+]Cc2cccnc2)scc1
-c1ccccc1 

Q26 RB50 

Ic1ccc(CN([C@H]2C[NH2+]C[C@@H]2N(Cc2
ccc(I)cc2)S(=O)(=O)c2ccccc2)S(=O)(=O)c2cccc
c2)cc1 

Q27 AB88 

CCOC(=O)c1c(NC(=O)C[NH2+]CCc2c[nH]c3cc
ccc23)scc1-c1ccccc1 

Q28 RB49 

CCOC(=O)c1c(NC(=O)CNCC[NH2+]Cc2ccccc2
)scc1-c1ccccc1 

Q29 RB48 

CC(C)=CCN([C@H]1C[NH2+]C[C@@H]1N(C
C=C(C)C)S(=O)(=O)c1ccccc1)S(=O)(=O)c1cccc
c1 

Q30 AB102 
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NC(=O)c1ccc(cc1)S(=O)(=O)N(Cc1ccccc1)[C@
H]1C[NH2+]C[C@@H]1N(Cc1ccccc1)S(=O)(=
O)c1ccc(cc1)C(N)=O 

Q31 AB99 

O=C(Cc1ccccc1)Nn1c[nH+]c2ccccc12 Q32 F148 

C([NH2+]c1ccc2OCCOc2c1)c1ccncc1 Q33 F291 

O=C(C[NH+]1CCCCC1)Nc1ccc2OCOc2c1 Q34 F041 

CCOC(=O)c1c(NC(=O)C[NH2+]Cc2ccccc2)scc1
-c1ccc(Cl)cc1 

Q35 RB30 

NC(=[NH2+])c1ccc(cc1)C(F)(F)F Q36 F216 
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CCOC(=O)c1c(NC(=O)C[NH2+]Cc2cccc3ccccc
23)scc1-c1ccc(Cl)cc1 

Q37 RB34 

C=CCN([C@H]1C[NH2+]C[C@@H]1N(CC=C)
S(=O)(=O)c1ccccc1)S(=O)(=O)c1ccccc1 

Q38 AB100 

O=C(C[NH+]1CCOCC1)Nc1sc2CCCCc2c1C(=
O)N1CCCC1 

Q39 SH33 

O=C(C[NH+]1CCOCC1)Nc1sc2CCCc2c1C(=O)
N1CCCC1 

Q40 AM16 

NC(=O)c1c(NC(=O)C[NH+]2CCOCC2)sc2CCC
Cc12 

Q41 SH42 

CC(C)NC(=O)c1c(NC(=O)C[NH+]2CCOCC2)sc
2CCCCc12 

Q42 SH43 
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O=C(C[NH+]1CCOCC1)Nc1sc2CCCc2c1C(=O)
N1CCCCC1 

Q43 AM7 

CC(C)NC(=O)c1c(NC(=O)C[NH+]2CCOCC2)sc
2CCCc12 

Q44 AM18 

O=C(C[NH+]1CCOCC1)Nc1sc2CCCCc2c1C(=
O)N1CCCCC1 

Q45 SH36 

CCOC(=O)c1c(NC(=O)C[NH2+]CCc2ccc(C)cc2
)scc1-c1ccc(F)cc1 

Q46 RB33 

[O-
]C(=O)c1c(NC(=O)C[NH+]2CCOCC2)sc2CCCc
12 

Q47 AM6 

O=C(C[NH+]1CCOCC1)Nc1sc2CCCc2c1C(=O)
NC1CCCCC1 

Q48 AM8 
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CC(C)CN([C@H]1C[NH2+]C[C@@H]1N(CC(
C)C)S(=O)(=O)c1ccccc1)S(=O)(=O)c1ccccc1 

Q49 AB115 

COC(=O)c1ccsc1NC(=O)C[NH2+]CCc1c[nH]c2
ccccc12 

Q50 RB73 

CCOC(=O)c1c(NC(=O)CSCc2cccc(c2)[N+]([O-
])=O)scc1-c1ccccc1 

Q51 RB66 

CCOC(=O)c1c(NC(=O)C[NH2+]Cc2ccccc2)scc1
-c1ccc(F)cc1 

Q52 RB31 

CC(C)(C)NC(=O)c1c(NC(=O)C[NH+]2CCOCC
2)sc2CCCCc12 

Q53 SH41 

Brc1ccc(CN([C@H]2C[NH2+]C[C@@H]2N(Cc
2ccc(Br)cc2)S(=O)(=O)c2ccccc2)S(=O)(=O)c2cc
ccc2)cc1 

Q54 AB86 
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CC(C)CCN([C@H]1C[NH2+]C[C@@H]1N(CC
C(C)C)S(=O)(=O)c1ccccc1)S(=O)(=O)c1ccccc1 

Q55 AB116 

[O-
][N+](=O)c1ccc(cc1)S(=O)(=O)N(Cc1ccccc1)[C
@H]1C[NH2+]C[C@@H]1N(Cc1ccccc1)S(=O)(
=O)c1ccc(cc1)[N+]([O-])=O 

Q56 AB83 

NC(=[NH2+])SCc1ccccc1Cl Q57 CHEMBL1229095 

NC(=[NH2+])SCc1ccc(Cl)cc1 Q58 CHEMBL1229097 

CC[NH+](CC)c1ccc(cc1)C(=O)NN Q59 CHEMBL1358859 

C([NH2+]c1ccc2OCCOc2c1)c1ccncc1 Q60 CHEMBL1533396 
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O=C(Cc1ccccc1)Nn1c[nH+]c2ccccc12 Q61 CHEMBL1560712 

NC1=[NH+]Cc2ccccc12 Q62 CHEMBL1617729 

O=C(C[NH+]1CCCCC1)Nc1ccc2OCOc2c1 Q63 CHEMBL1921970 

C[NH2+]Cc1ccc(Oc2cccnc2)o1 Q64 CHEMBL1921971 

NC(=[NH2+])c1ccc(cc1)C(F)(F)F Q65 CHEMBL1921972 

O=C(Cc1cn2ccccc2[nH+]1)Nc1ccccc1 Q66 CHEMBL1921973 
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OC(COCc1ccccc1F)C[NH+]1CCCC1 Q67 CHEMBL1921974 
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1. Substrates within PrenDB 

Table S1: List of substrates with their PrenDB ID, SMILES string and cluster membership (C) 

ID PrenDB ID SMILES C 

S1 PTDBSUB00695 O=C1NC(Cc2c[nH]c3ccccc23)C(=O)N2CCC[C@@H]12 1 

S2 PTDBSUB00027 O=C1N[C@H](Cc2c[nH]c3ccccc23)C(=O)N2CCC[C@H]12 1 

S3 PTDBSUB00022 O=C1N[C@H](Cc2c[nH]c3ccccc23)C(=O)N2CCC[C@@H]12 1 

S4 PTDBSUB00001 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N2CCC[C@@H]12 1 

S5 PTDBSUB00017 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N2CCC[C@H]12 1 

S6 PTDBSUB00286 O=C1N[C@H](Cc2c[nH]c3ccccc23)C(=O)Nc2ccccc21 2 

S7 PTDBSUB00392 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)Nc2ccccc21 2 

S8 PTDBSUB00049 C[C@@H]1NC(=O)[C@@H](Cc2c[nH]c3ccccc23)NC1=O 2 

S9 PTDBSUB00044 C[C@H]1NC(=O)[C@@H](Cc2c[nH]c3ccccc23)NC1=O 2 

S10 PTDBSUB00032 C[C@@H]1NC(=O)[C@H](Cc2c[nH]c3ccccc23)NC1=O 2 

S11 PTDBSUB00039 C[C@H]1NC(=O)[C@H](Cc2c[nH]c3ccccc23)NC1=O 2 

S12 PTDBSUB00012 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1ccccc1 2 

S13 PTDBSUB00005 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1ccc(O)cc1 2 

S14 PTDBSUB00412 O=C1N[C@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1ccc(O)cc1 2 

S15 PTDBSUB00059 O=C1CNC(=O)[C@H](Cc2c[nH]c3ccccc23)N1 2 

S16 PTDBSUB00072 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1c[nH]c2ccccc12 2 

S17 PTDBSUB00054 O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1cnc[nH]1 2 

S18 PTDBSUB00064 CC(C)C[C@@H]1NC(=O)[C@H](Cc2c[nH]c3ccccc23)NC1=O 2 

S19 PTDBSUB00103 [NH3+][C@@H](Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S20 PTDBSUB00173 [NH3+][C@H](Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S21 PTDBSUB00186 C[C@@]([NH3+])(Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S22 PTDBSUB00189 C[C@]([NH3+])(Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S23 PTDBSUB00179 [NH3+]CCc1c[nH]c2ccccc12 3 

S24 PTDBSUB00415 O=C([O-])Cc1c[nH]c2ccccc12 3 

S25 PTDBSUB00491 O=C([O-])C(=O)Cc1c[nH]c2ccccc12 3 

S26 PTDBSUB00297 O=C([O-])CCc1c[nH]c2ccccc12 3 
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S27 PTDBSUB00496 O=C([O-])CCCc1c[nH]c2ccccc12 3 

S28 PTDBSUB00676 CC(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(C)=O 3 

S29 PTDBSUB00317 CC(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S30 PTDBSUB00423 CC(=O)N[C@H](Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S31 PTDBSUB00183 C[NH2+][C@@H](Cc1c[nH]c2ccccc12)C(=O)[O-] 3 

S32 PTDBSUB00192 O=C([O-])[C@@H](O)Cc1c[nH]c2ccccc12 3 

S33 PTDBSUB00195 O=C([O-])[C@H](O)Cc1c[nH]c2ccccc12 3 

S34 PTDBSUB00176 [NH3+][C@H](CC(=O)[O-])Cc1c[nH]c2ccccc12 3 

S35 PTDBSUB00418 [NH3+][C@@H](CC(=O)[O-])Cc1c[nH]c2ccccc12 3 

S36 PTDBSUB00139 [NH3+][C@@H](Cc1c[nH]c2ccccc12)C(=O)NCC(=O)[O-] 3 

S37 PTDBSUB00488 [NH3+][C@H](Cc1c[nH]c2ccccc12)C(=O)NO 3 

S38 PTDBSUB00499 COC(=O)[C@H]([NH3+])Cc1c[nH]c2ccccc12 3 

S39 PTDBSUB00593 [NH3+][C@@H](C(=O)[O-])[C@@H](O)c1ccc(O)c(O)c1 4 

S40 PTDBSUB00722 [NH3+][C@@H](C(=O)[O-])C(O)c1ccc(O)c(O)c1 4 

S41 PTDBSUB00689 Cc1ccc(C[C@@H]2NC(=O)[C@H](Cc3ccc(O)cc3)NC2=O)cc1 5 

S42 PTDBSUB00571 O=C([O-])[C@@H](O)Cc1ccc(O)cc1 5 

S43 PTDBSUB00574 O=C([O-])[C@H](O)Cc1ccc(O)cc1 5 

S44 PTDBSUB00554 [NH3+][C@@H](C(=O)[O-])c1ccc(O)cc1 5 

S45 PTDBSUB00551 [NH3+][C@@H](CC(=O)[O-])c1ccc(O)cc1 5 

S46 PTDBSUB00718 [NH3+]C(CC(=O)[O-])c1ccc(O)cc1 5 

S47 PTDBSUB00376 CC([NH3+])(Cc1ccc(O)cc1)C(=O)[O-] 5 

S48 PTDBSUB00578 C[C@@]([NH3+])(Cc1ccc(O)cc1)C(=O)[O-] 5 

S49 PTDBSUB00467 O=C(CCc1ccc(O)cc1)c1c(O)cc(O)cc1O 5 

S50 PTDBSUB00079 O=C([O-])C(=O)Cc1ccc(O)cc1 5 

S51 PTDBSUB00568 O=C([O-])CCc1ccc(O)cc1 5 

S52 PTDBSUB00666 Oc1cc2ccccc2cc1O 6 

S53 PTDBSUB00652 Oc1ccc2ccccc2c1 6 

S54 PTDBSUB00289 Oc1ccc2ccc(O)cc2c1 6 

S55 PTDBSUB00613 Oc1ccc2cc(O)ccc2c1 6 

S56 PTDBSUB00647 Nc1cccc2ccc(O)cc12 6 

S57 PTDBSUB00448 COc1cccc2ccc(O)cc12 6 

S58 PTDBSUB00451 CCOc1cccc2ccc(O)cc12 6 

S59 PTDBSUB00656 Oc1ccc(O)c2ccccc12 6 

S60 PTDBSUB00661 Oc1cccc2c(O)cccc12 6 

S61 PTDBSUB00399 Oc1ccc2c(O)cccc2c1 6 

S62 PTDBSUB00596 Oc1cccc2ccccc12 6 

S63 PTDBSUB00445 Cc1ccc2cccc(O)c2c1 6 

S64 PTDBSUB00601 Oc1ccc2cccc(O)c2c1 6 

S65 PTDBSUB00088 
COc1ccc2c3c4n(c2c1)[C@@H](C=C(C)C)OOC(C)(C)C[C@@H]4N1C(=O)[C@@
H]2CCCN2C(=O)[C@]1(O)[C@H]3O

6 

S66 PTDBSUB00082 
COc1ccc2c3c([nH]c2c1)[C@H](C=C(C)C)N1C(=O)[C@@H]2CCCN2C(=O)[C@]1
(O)[C@H]3O 

6 

S67 PTDBSUB00085 
COc1ccc2c3c(n(CC=C(C)C)c2c1)[C@H](C=C(C)C)N1C(=O)[C@@H]2CCCN2C(=
O)[C@]1(O)[C@H]3O

6 

S68 PTDBSUB00094 Cc1cc2oc3cccc(=O)c-3c([O-])c2cc1O 6 

S69 PTDBSUB00100 Cc1c([O-])c(C)c2c(O)c3c(=O)cccc-3oc2c1C 6 

S70 PTDBSUB00091 Cc1cc2oc3cccc(=O)c-3c(O)c2c(CO)c1[O-] 6 
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S71 PTDBSUB00097 Cc1cc2oc3cccc(=O)c-3c(O)c2c(C)c1[O-] 6 

S72 PTDBSUB00479 COc1ccc(-c2coc3cc(=O)cc(O)c-3c2[O-])cc1 6 

S73 PTDBSUB00472 O=c1cc2oc(-c3ccc(O)cc3)cc([O-])c-2c(O)c1 6 

S74 PTDBSUB00343 O=c1cc2oc3cc(O)cc([O-])c3c([O-])c-2c(O)c1 6 

S75 PTDBSUB00339 O=c1cc2oc3ccc(O)cc3c([O-])c-2c(O)c1 6 

S76 PTDBSUB00351 O=c1cc2oc3cc(O)ccc3c([O-])c-2c(O)c1 6 

S77 PTDBSUB00292 O=C1C=C([O-])c2c([O-])cc(O)cc2C1=O 6 

S78 PTDBSUB00606 O=C(O)c1cc2cccc([O-])c2cc1O 6 

S79 PTDBSUB00610 O=C(O)c1cc2cc(O)ccc2cc1[O-] 6 

S80 PTDBSUB00483 O=C1C[C@H](c2ccccc2)Oc2cc(O)ccc21 6 

S81 PTDBSUB00454 Cc1cc([O-])c2c(c1)O[C@H](c1ccc(O)cc1)CC2=O 6 

S82 PTDBSUB00460 COc1ccc([C@@H]2CC(=O)c3c([O-])cc(C)cc3O2)cc1O 6 

S83 PTDBSUB00464 
COc1cc([C@H]2Oc3cc([C@H]4Oc5cc(O)cc([O-
])c5C(=O)[C@@H]4O)ccc3O[C@@H]2CO)ccc1O

6 

S84 PTDBSUB00457 Cc1cc(O)c2c(c1)O[C@H](c1ccc(O)c(O)c1)CC2O 6 

S85 PTDBSUB00475 Oc1ccc(C2=COc3cc(O)cc(O)c3C2O)cc1 6 

S86 PTDBSUB00367 Cn1c(O)c2c3c(c4c(c2c1O)=c1ccccc1=N4)N=c1ccccc1=3 6 

S87 PTDBSUB00144 COc1c(O)c(=C2C=Nc3ccccc32)c(OC)c(O)c1=C1C=Nc2ccccc21 6 

S88 PTDBSUB00396 O=C([O-])c1cccc2c1Nc1ccccc1N2 6 

S89 PTDBSUB00385 
CC(=O)O[C@H]1[C@@H](C)C[NH+](C)[C@@H]2Cc3c[nH]c4cccc(c34)[C@@H]
12 

7 

S90 PTDBSUB00388 
CC(=O)O[C@H]1[C@H](C)C[NH+](C)[C@@H]2Cc3c[nH]c4cccc(c34)[C@@H]1
2 

7 

S91 PTDBSUB00136 CC(=O)/C=C/c1c[nH]c2ccccc12 8 

S92 PTDBSUB00300 O=C([O-])/C=C/c1c[nH]c2ccccc12 8 

S93 PTDBSUB00359 O=C1NCc2c1c1c3ccccc3[nH]c1c1[nH]c3ccccc3c21 8 

S94 PTDBSUB00364 O=C1N[C@@H](O)c2c1c1c3ccccc3[nH]c1c1[nH]c3ccccc3c21 8 

S95 PTDBSUB00148 C=c1c(OC)c(-c2c(CC=C(C)C)[nH]c3ccccc23)c(=C)c(OC)c1-c1c[nH]c2ccccc12 8 

S96 PTDBSUB00151 C=CC(C)(C)n1cc(C2=C(OC)C(=O)C(c3c[nH]c4ccccc34)=C(OC)C2=O)c2ccccc21 8 

S97 PTDBSUB00703 [NH3+][C@H](Cc1cc(I)c([O-])c(I)c1)C(=O)[O-] 9 

S98 PTDBSUB00370 [NH3+][C@@H](Cc1cc(Br)c([O-])c(Br)c1)C(=O)[O-] 9 

S99 PTDBSUB00373 [NH3+][C@@H](Cc1cc(I)c([O-])c(I)c1)C(=O)[O-] 9 

S100 PTDBSUB00548 [NH3+][C@@H](Cc1ccc([O-])c([N+](=O)[O-])c1)C(=O)[O-] 9 

S101 PTDBSUB00706 [NH3+][C@H](Cc1ccc([O-])c([N+](=O)[O-])c1)C(=O)[O-] 9 

S102 PTDBSUB00106 [NH3+][C@@H](Cc1ccc(O)cc1)C(=O)[O-] 9 

S103 PTDBSUB00542 [NH3+][C@H](Cc1ccc(O)cc1)C(=O)[O-] 9 

S104 PTDBSUB00321 Nc1ccc(C[C@H]([NH3+])C(=O)[O-])cc1 9 

S105 PTDBSUB00545 Nc1ccc(C[C@@H]([NH3+])C(=O)[O-])cc1 9 

S106 PTDBSUB00587 [NH3+][C@H](Cc1ccc(O)c(I)c1)C(=O)[O-] 9 

S107 PTDBSUB00584 [NH3+][C@@H](Cc1ccc(O)c(F)c1)C(=O)[O-] 9 

S108 PTDBSUB00382 [NH3+][C@@H](Cc1ccc(O)c(I)c1)C(=O)[O-] 9 

S109 PTDBSUB00581 [NH3+][C@H](Cc1ccc(O)c(F)c1)C(=O)[O-] 9 

S110 PTDBSUB00112 [NH3+][C@@H](Cc1cccc(O)c1)C(=O)[O-] 9 

S111 PTDBSUB00565 [NH3+][C@H](Cc1cccc(O)c1)C(=O)[O-] 9 

S112 PTDBSUB00562 Nc1cc(C[C@@H]([NH3+])C(=O)[O-])ccc1O 9 

S113 PTDBSUB00379 [NH3+][C@@H](Cc1ccc(O)c(O)c1)C(=O)[O-] 9 

S114 PTDBSUB00590 [NH3+][C@H](Cc1ccc(O)c(O)c1)C(=O)[O-] 9 
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S115 PTDBSUB00161 Cc1ccc2c(C[C@H]([NH3+])C(=O)[O-])c[nH]c2c1 10 

S116 PTDBSUB00164 Cc1ccc2c(C[C@@H]([NH3+])C(=O)[O-])c[nH]c2c1 10 

S117 PTDBSUB00310 [NH3+][C@H](Cc1c[nH]c2cc(F)ccc12)C(=O)[O-] 10 

S118 PTDBSUB00441 [NH3+][C@@H](Cc1c[nH]c2cc(F)ccc12)C(=O)[O-] 10 

S119 PTDBSUB00516 [NH3+][C@H](Cc1c[nH]c2ccc(F)cc12)C(=O)[O-] 10 

S120 PTDBSUB00438 [NH3+][C@@H](Cc1c[nH]c2ccc(F)cc12)C(=O)[O-] 10 

S121 PTDBSUB00432 [NH3+][C@@H](Cc1c[nH]c2ccc(Br)cc12)C(=O)[O-] 10 

S122 PTDBSUB00435 [NH3+][C@H](Cc1c[nH]c2ccc(Br)cc12)C(=O)[O-] 10 

S123 PTDBSUB00167 COc1ccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c2c1 10 

S124 PTDBSUB00170 COc1ccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c2c1 10 

S125 PTDBSUB00155 Cc1ccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c2c1 10 

S126 PTDBSUB00158 Cc1ccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c2c1 10 

S127 PTDBSUB00429 [NH3+][C@@H](Cc1c[nH]c2ccc(O)cc12)C(=O)[O-] 10 

S128 PTDBSUB00511 [NH3+][C@H](Cc1c[nH]c2ccc(O)cc12)C(=O)[O-] 10 

S129 PTDBSUB00303 Cn1cc(C[C@@H]([NH3+])C(=O)[O-])c2ccccc21 11 

S130 PTDBSUB00109 [NH3+][C@@H](Cc1ccccc1O)C(=O)[O-] 11 

S131 PTDBSUB00558 [NH3+][C@H](Cc1ccccc1O)C(=O)[O-] 11 

S132 PTDBSUB00313 Cc1cccc2c(C[C@@H]([NH3+])C(=O)[O-])c[nH]c12 11 

S133 PTDBSUB00407 Cc1cccc2c(C[C@H]([NH3+])C(=O)[O-])c[nH]c12 11 

S134 PTDBSUB00120 Cc1cccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 11 

S135 PTDBSUB00306 Cc1cccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c12 11 

S136 PTDBSUB00123 COc1cccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 11 

S137 PTDBSUB00126 Nc1cccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 11 

S138 PTDBSUB00274 CC(C)=CCc1cc(C)cc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 12 

S139 PTDBSUB00276 CC(C)=CCc1cc(C)cc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c12 12 

S140 PTDBSUB00270 CC(C)=CCc1c(C)ccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 12 

S141 PTDBSUB00272 CC(C)=CCc1c(C)ccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c12 12 

S142 PTDBSUB00278 COc1ccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c2c1CC=C(C)C 12 

S143 PTDBSUB00281 COc1ccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c2c1CC=C(C)C 12 

S144 PTDBSUB00239 CC(C)=CCc1c(C)ccc2c(C[C@H]([NH3+])C(=O)[O-])c[nH]c12 12 

S145 PTDBSUB00242 CC(C)=CCc1c(C)ccc2c(C[C@@H]([NH3+])C(=O)[O-])c[nH]c12 12 

S146 PTDBSUB00233 CC(C)=CCc1cc(C)cc2c(C[C@H]([NH3+])C(=O)[O-])c[nH]c12 12 

S147 PTDBSUB00236 CC(C)=CCc1cc(C)cc2c(C[C@@H]([NH3+])C(=O)[O-])c[nH]c12 12 

S148 PTDBSUB00245 COc1cc(CC=C(C)C)c2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c2c1 12 

S149 PTDBSUB00248 COc1cc(CC=C(C)C)c2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c2c1 12 

S150 PTDBSUB00251 CC(C)=CCc1cccc2[nH]cc(C[C@H]([NH3+])C(=O)[O-])c12 13 

S151 PTDBSUB00253 CC(C)=CCc1cccc2[nH]cc(C[C@@H]([NH3+])C(=O)[O-])c12 13 

S152 PTDBSUB00266 CC(C)=CCc1cccc2[nH]cc(C[C@H](O)C(=O)[O-])c12 13 

S153 PTDBSUB00268 CC(C)=CCc1cccc2[nH]cc(C[C@@H](O)C(=O)[O-])c12 13 

S154 PTDBSUB00255 CC(C)=CCc1cccc2[nH]cc(C[C@H]([NH3+])CC(=O)[O-])c12 13 

S155 PTDBSUB00260 C[NH2+][C@@H](Cc1c[nH]c2cccc(CC=C(C)C)c12)C(=O)[O-] 13 

S156 PTDBSUB00257 CC(C)=CCc1cccc2[nH]cc(CC[NH3+])c12 13 

S157 PTDBSUB00262 CC(C)=CCc1cccc2[nH]cc(C[C@@](C)([NH3+])C(=O)[O-])c12 13 

S158 PTDBSUB00264 CC(C)=CCc1cccc2[nH]cc(C[C@](C)([NH3+])C(=O)[O-])c12 13 

S159 PTDBSUB00205 CC(C)=CCc1cccc2c(C[C@H]([NH3+])C(=O)[O-])c[nH]c12 14 
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S160 PTDBSUB00208 CC(C)=CCc1cccc2c(C[C@@H]([NH3+])C(=O)[O-])c[nH]c12 14 

S161 PTDBSUB00226 CC(C)=CCc1cccc2c(C[C@H](O)C(=O)[O-])c[nH]c12 14 

S162 PTDBSUB00229 CC(C)=CCc1cccc2c(C[C@@H](O)C(=O)[O-])c[nH]c12 14 

S163 PTDBSUB00211 CC(C)=CCc1cccc2c(C[C@H]([NH3+])CC(=O)[O-])c[nH]c12 14 

S164 PTDBSUB00217 C[NH2+][C@@H](Cc1c[nH]c2c(CC=C(C)C)cccc12)C(=O)[O-] 14 

S165 PTDBSUB00214 CC(C)=CCc1cccc2c(CC[NH3+])c[nH]c12 14 

S166 PTDBSUB00220 CC(C)=CCc1cccc2c(C[C@@](C)([NH3+])C(=O)[O-])c[nH]c12 14 

S167 PTDBSUB00223 CC(C)=CCc1cccc2c(C[C@](C)([NH3+])C(=O)[O-])c[nH]c12 14 
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2. Virtual hits 

Table S2: Structures, IDs, enzyme-related yields and number of matched PrenDB reactions. 

Substrate ID Product yield [%] Matched reactions 

  FtmPT1 FgaPT2 CdpNPT  

 

1 94.1 18.2 41.3 299 

 

2 81.3 80.1 29.5 299 

 

3 - 3.2 22.1 299 

 

4 - - - 6 

 

5 - - 0.9 33 

 

6 - - - 57 
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7 7.0 - 10.1 57 

 

8 - - - 6 

 

9 - 5.3 - 17 

 

10 40.8 28.9 99.7 233 

 

11 48.1 17.1 88.1 238 

 

12 8.5 - 14.4 299 

 

13 71.0 31.7 47.2 231 
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14 2.0 - 2.6 50 

 

15 - - - 58 

 

16 68.8 34.8 29.7 20 

 

17 - - - 14 

 

18 89.1 84.9 62.0 299 

 

19 76.4 6.2 46.9 233 

 

20 76.0 37.4 97.4 233 
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21 98.6 99.2 99.3 233 

 

22 - - - 231 

 

23 64.8 75.0 65.2 233 

 

24a - - - 50 

 

25 - - - 50 

 

26 - - - 33 

 

27 8.7 82.9 11.8 137 
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28 - - - 23 

 

29b - - - 6 

 

30 60.1 59.4 96.1 229 

 

31 - - - 50 

 

32 47.5 44.7 - 299 

 

33 99.5 99.1 87.2 233 

 

34 44.4 19.9 94.8 299 

 

35 35.5 16.3 94.1 299 
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36b - - - 77 

 

37 - - - 137 

 

38 - - - 235 

 

39b 3.8 - 2.8 33 

 

40 51.5 4.4 9.2 237 

 

41 9.9 22.5 13.5 325 

 

42 - 14.9 38.1 299 

a Compound 24 is the imidic acid tautomer of 25 and was thus excluded from further consideration in this work. Total and relative numbers 
throughout the manuscript reflect the number of unique compounds, i.e. 38. 
b These compounds could not be obtained as ordered and were excluded from further consideration in this work 
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1. Structure elucidation 

In the 1H-NMR spectra of Ia, signals of the indole moiety at 7.60 (1H, dd, 8.1, 0.4), 7.15 (1H, d, 0.7), 
7.12 (1H, s) and 6.89 ppm (1H, dd, 8.1, 1.4) superimposed with those for H-4, H-7, H-2 and H-5 of 
6-methylallyl-l-tryptophan, respectively.1 The signals of H-10 and H-11 as well as H-1’ and H-4’ of Ia 
were also overlapping almost completely (maximum shift 0.03 ppm) with those of 6-methylallyl-l-
tryptophan.1 This proved unequivocally the regular C6-alkylation of l-tryptophan with MAPP as alkyl 
donor in the presence of the tested prenyltransferases (6-DMATSSa, 6-DMATSSv, TyrPT, 5-DMATSSc 
and 5-DMATS). Comparing the 1H-NMR spectrum of IIa with that of C6-(2-pentenyl)-l-tryptophan1 
showed nearly identical chemical shifts and coupling patterns for all of the protons. This verified the 
regular alkylation of l-tryptophan at position C-6 of the indole ring by using 2-pentenyl-PP as alkyl 
donor. The aromatic protons of IIIa at 7.60 (1H, dd, 8.2, 0.6), 7.18 (1H, s), 7.12 (1H, s) and 6.93 ppm 
(1H, dd, 8.2, 1.5) showed the same coupling pattern and chemical shifts as observed for Ia and IIa. 
These signals also corresponded to those of C6-alkylated l-tryptophan derivatives1 and therefore proved 
the C6-benzylation of l-tryptophan. The chemical shifts observed for H-10 and H-11 at 3.48, 3.11 and 
3.82 ppm, also overlapped very well with those of the other C6-alkylated l-tryptophan derivatives. The 
five additional aromatic protons and two additional aliphatic protons observed in the 1H-NMR spectra 
of IIIa confirmed the presence of the benzyl moiety. 

From the incubation mixtures of TyrPT and 5-DMATSSc, the regular alkylated products Ib1 and 
IIb1 as well as the regular benzylated product IIIb were isolated. The 1H-NMR spectrum of IIb1 
showed one singlet at 7.19, two doublets at 7.55 and 6.93 and one triplet at 7.00 ppm for one proton 
each. This indicated an alkylation at position C-4 or C-7 of the indole ring. In the HMBC spectrum of 
IIb1 (Figure S16-S19), correlations between H-10 at 3.13  and C-2 at 124.7 ppm, C-11 at 56.5 ppm 
with two quaternary carbon atoms at 109.9 and 128.4 ppm were observed. Correlations between the 
proton at 7.00 ppm, which is either H-5 or H-6, and two quaternary carbon atoms at 128.4 and at 
125.1 ppm but not with that at 109.9 ppm were detected. Consequently, the quaternary carbons at 109.9 
and 128.4 ppm were assigned to C-3 and C-9, respectively. Therefore, the signal at 7.00 ppm was 
assigned to H-5. Further correlations were found between the doublet at 7.56 ppm and the quaternary 
carbons C-3, C-9 and another one at 136.8 ppm. These correlations are only possible, if the proton at 
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7.56 ppm is for H-4 and the carbons at 136.8 and 125.1 ppm are for C-8 and C-7, respectively. Thus, 
an alkylation at position C-7 was proven. This was further confirmed by correlations between H-1’ at 
3.54 ppm and the quaternary carbons at 125.1 and 136.8 ppm, but not with that at 128.4 ppm (C-9). In 
addition, the doublet at 6.93 ppm also correlated with the quaternary carbons at 125.1 and 136.8 ppm 
as well as the signal for H-1’. The signals at 125.1, 136.8 and 6.93 ppm were assigned to C-7, C-8 and 
H-6, accordingly. 

The chemical shifts of the protons in the tryptophan moiety of Ib1 at 7.56 (H-4), 7.19 (H-2), 7.00 
(H-5), 6.93 (H-6), 3.85 (H-11), 3.51 (H-10) and 3.14 ppm (H-10) almost completely overlapped with 
those of IIb1. Similar spectrum was obtained for IIIb. Therefore, the alkylation position in Ib1 and 
benzylation position in IIIb were assigned unequivocally to C-7 of the indole ring. 

In the presence of TyrPT, the additional products Ib2 and IIb2 were detected by using MAPP and 
2-pentenyl-PP as alkyl donor, respectively. The coupling patterns and chemical shifts of the aromatic 
protons of both compounds corresponded very well to those of Ib1 and IIb1, confirming a C7-alkylation 
of l-tryptophan (Slight shifts of approximate 0.05 ppm were observed). However, the signals of the 
alkyl residues of Ib2 and IIb2, displayed distinct chemical shifts and coupling patterns in comparison 
to those of Ib1 and IIb1. The coupling pattern for H-1’ at  5.12 (1H, dt, 17.3, 1.7) and 5.04 ppm (1H, 
dt, 10.3, 1.7) as well as for H-2’ at 6.12 ppm (1H, ddd, 17.3, 10.3, 6.3) in the spectrum of Ib2 showed 
clearly a reverse alkylation.2 The same was true for H-1’ at 5.08 (1H, dt, 17.2, 1.5) and 4.99 ppm (1H, 
ddd, 10.2, 1.9, 1.0) as well as for H-2’ at 6.06 ppm (1H, ddd, 17.2, 10.2, 7.6) in the spectrum of IIb2. 
This proved the reverse orientation of the alkyl residues of both compounds. Consequently, Ib2 and 
IIb2 were identified as 7-(3’-methylallyl-)-l-tryptophan and 7-(3’-pentenyl-)-l-tryptophan, 
respectively. From the 1H NMR spectra of Ib2 and IIb2, it was evident that only one of the two possible 
diastereomers was isolated. Unfortunately, the stereochemistry of these compounds at position C-3’ 
could not be determined in this study. 

Due to low conversion and unsuccessful separation on HPLC, Ic, IIc and IIIc were elucidated from 
the mixture with Ia, IIa and IIIa, respectively. The aliphatic signals of the indole moiety and those of 
the alkyl or benzyl residue for Ic were overlapped by those of Ia. The aromatic signals of the indole 
moiety were distinct from those of Ia, and could be used to identify the alkylation position. Comparison 
of the NMR data obtained in this study with those published previously 1,3 confirmed that Ic, IIc and 
IIIc to be 5-methylallyl-l-tryptophan, 5-(2-pentenyl)-l-tryptophan and 5-benzyl-l-tryptophan 3, 
respectively.  

Reference List 
1.  Liebhold, M.; Xie, X.; Li, S.-M. Org. Lett. 2012, 14, 4884-4885. 
2.  Liebhold, M.; Xie, X.; Li, S.-M. Org. Lett. 2013, 15, 3062-3065. 
3.  Liebhold, M.; Li, S.-M. Org. Lett. 2013, 15, 5834-5837. 
 

Table S1: Enzyme activities of several prenyltransferases toward l-tryptophan in the presence of DMAPP and its analogues 
MAPP, 2-pentenyl-PP and benzyl-PP. 

 DMAPP [%] 2-pentenyl-PP [%] MAPP [%] benzyl-PP [%] 
6-DMATSSa 99.9±0.2 91.2±0.07 51.1±0.5 13.9±0.3 
6-DMATSSv 99.4±0.9 89.3±0.6 37.6±0.3 8.2±0.3 
TyrPT 68.5±0.2 38.3±0.6 17.7±0.2 8.5±1.0 
5-DMATSSc 81.4±2.4 65.0±0.1 21.0±0.4 6.6±0.1 
5-DMATS 99.8±0.35 91.9±0.1 58.9±0.07 28.6±0.07 

The reaction mixtures contained 1 mM L-tryptophan and 2mM DMAPP, 2-pentenyl-PP, MAPP or 
benzyl-PP and were incubated with 7.5 μM of purified protein at 37°C for 16 h. Conversion yields are 
given as mean of two independent measurements. 
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Figure S1: HPLC analysis of the reaction mixtures of L-tryptophan with MAPP (I), 2-pentenyl-PP (II) and benzyl-PP (III) 
on a Chiralpak Zwix (+) column. The enzyme assays of 100 µL contained 1 mM L-tryptophan, 2 mM alkyl or benzyl 
diphosphate, 5 mM CaCl2 and 7.5 µM of purified protein were incubated at 37°C for 16 h. 
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Figure S2: Dependence of the product formation of the 6-DMATSSa reaction on the presence of 2-pentenyl-PP, methylallyl-
PP (MAPP) or benzyl-PP with L-tryptophan. 
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Figure S3: Dependence of the product formation of the 6-DMATSSv reaction on the presence of DMAPP with L-tryptophan. 
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Figure S4: Dependence of the product formation of the 6-DMATSSv reaction on the presence of 2-pentenyl-PP, methylallyl-
PP (MAPP) or benzyl-PP with L-tryptophan. 
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Figure S5: Dependence of the product formation of the TyrPT reaction on the presence of 2-pentenyl-PP, methylallyl-PP 
(MAPP) or benzyl-PP with L-tryptophan. 
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Figure S6: Dependence of the product formation of the 5-DMATSSc reaction on the presence of 2-pentenyl-PP, methylallyl-
PP (MAPP) or benzyl-PP with L-tryptophan. 
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Figure S7: Dependence of the product formation of the 5-DMATS reaction on the presence of benzyl-PP with L-tryptophan. 

 

Figure S8: HMBC connectivities of 7-(2-pentenyl-)-L-tryptophan (IIb1). 
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Figure S9: 1H-NMR spectrum of 6-methylallyl-L-tryptophan (Ia) in CD3OD. 
 

 
Figure S10: 1H-NMR spectrum of 6-(2-pentenyl-)-L-tryptophan (IIa) in CD3OD. 
   



 

193 
 

 
Figure S11: 1H-NMR spectrum of 6-benzyl-L-tryptophan (IIIa) in CD3OD. 
 

 
Figure S12: 1H-NMR spectrum of 7-methylallyl-L-tryptophan (Ib1) in CD3OD. 
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Figure S13: 1H-NMR spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
 
 

 
Figure S14: HSQC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
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Figure S15: HSQC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
 

 
Figure S16: HMBC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
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Figure S17: HMBC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
 

 
Figure S18: HMBC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
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Figure S19: HMBC spectrum of 7-(2-pentenyl-)-L-tryptophan (IIb1) in CD3OD. 
 

 
Figure S20: 1H-NMR spectrum of 7-(3’S or 3’R-but-1-enyl)-L-tryptophan (Ib2) in CD3OD. 
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Figure S21: 1H-NMR spectrum of 7-(3’S or 3’R-pent-1-enyl -)-L-tryptophan (IIb2) in CD3OD. 
 

Figure S22: 1H-NMR spectrum of 7-benzyl-L-tryptophan (IIIb) in CD3OD. 
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Figure S23: 1H-NMR spectrum of 6-methylallyl-L-tryptophan (Ia) and 5-methylallyl-L-tryptophan (Ic) in 
CD3OD. 

 
Figure S24: 1H-NMR spectrum of 6-(2-pentenyl-)-L-tryptophan (IIa) and 5-(2-pentenyl-)-L-tryptophan (IIc) in 
CD3OD. 
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Figure S25: 1H-NMR spectrum of 6-benzyl-L-tryptophan (IIIa) and 5-benzyl-L-tryptophan (IIIc) in CD3OD. 
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Figure S26: Homology model of 5-DMATS (orange) superimposed on the X-ray structure of FgaPT2 (white). L-
tryptophan and DMAPP are shown in magenta. A and C: Cartoon representations, B and D: Cα-trace 
representations of template and model, respectively. 
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Figure S27: Shown are complexes of 5-DMATS, L-tryptophan and A: DMAPP, B: 2-pentenyl-PP, C: MAPP and 
D: benzyl-PP, respectively. Colored in orange and cyan is the equilibrated complex before the productive 
molecular dynamics run. Colored in white and magenta are complexes after 5 ns productive simulation run. 
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Figure S28: Shown are running averages of the RMSD of pairs of L-tryptophan (red) and a donor molecule (black) 
during each step of the simulations indicated by white and grey background, respectively. Tryptophan with A: 
DMAPP, B: 2-pentenyl-PP, C: MAPP and D: benzyl-PP. 

 
Figure S29: Shown are root-mean-square-fluctuations RMSF of L-tryptophan (TRP) (left) and donor molecules 
(right) during the complete simulation runs. Color-code: blue: TRP and benzyl-PP complex, green: TRP and 2-
pentenyl-PP complex, yellow: TRP and DMAPP complex and red: TRP and MAPP complex. 
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1. Substructure searches 

Eight substructure queries (S1-S8), which are depicted in Chart S2, were manually derived from the six 
original hits (Chart S1). These queries were encoded as SMARTS and run against the complete ZINC 
database (1), which comprised 8.5 million molecules at that time. 

2. Similarity searches 

At the same time, FCFP4 fingerprints, as implemented in Pipeline Pilot, of the six query molecules Q1-
Q6 were used to screen the same database of 8.5 million entries for molecules with a Tanimoto 
similarity ≥ 0.45. 

3. Docking 

All molecules originating from the two searches were, after removal of duplicates, docked into the 
orthosteric pocket of the inverse-agonist bound X-ray structure of the β2AR (PDB 2RH1), as previously 
described. (2) Briefly, molecules were placed by DOCK, using guiding points inside the pocket that 
had been derived from carazolol, the inverse agonist bound to the β2AR in this X-ray structure. 

4. Cell culture 

CHO-K1 cells stably expressing either the human β1AR or the human β2AR and CRE-SPAP reporter 
gene were used (CHO-β1, CHO-β2 (3)) and grown in Dulbecco’s modified Eagle’s medium nutrient 
mix F12 (DMEM/F12) containing 10% foetal calf serum and 2 mM l-glutamine in a 37°C humidified 
5% CO2:95% air atmosphere. 

5. [3H](-)CGP 12177 whole cell binding 

Media was removed from confluent cells in white-sided 96-well plated and immediately replaced by 
100 µL of the ligand under investigation (diluted in serum-free media (sfm), DMEM/F12 containing 
2 mM l-glutamine only) followed immediately by 100 µL [3H](-)CGP 12177 (in sfm) to give a final 
[3H](-)CGP 12177 concentration of 0.44-1.12 nM. The plates were the incubated for 2 h at 37°C before 
being washed twice with 200 µL 4°C phosphate buffered saline. Microscint 20 (100 µL) was added to 
each well, a white base added to the plate, the plated left for a minimum of 8 h in the dark then counted 
on a TopCount. 
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KD values were determined from the IC50 values using the Cheng-Prusoff equation (see ref. (3) for 
details). For all ligands that completely inhibited specific binding, a pKD value is given. For ligands 
where significant specific binding was inhibited, but the maximum concentration of a ligand was not 
quite sufficient to completely inhibit specific binding, an apparent pKD value is given (based on the 
assumption that a higher concentration of the competing ligand would inhibit all specific binding). For 
ligands with less than 50% inhibition of binding, despite maximum concentration of ligand (maximum 
possible concentration of ligand ranged from 20-100 µM), no KD value is stated. Propranolol (10 µM) 
was used to determine non-specific binding and the KD values for [3H](-)CGP 12177 were 0.42 nM for 
the human β1AR and 0.17 nM for the human β2AR. (3) 

6. CRE-SPAP production 

Confluent cells (96-well plates) were serum starved with sfm for 24 h before experimentation. The 
media was then removed and replaced with 100 µL sfm or sfm containing final concentration of 
antagonist. Agonist (10 µL, diluted in sfm) was then added and the plates incubated for 5 h at 37°C.  

CRE-SPAP production was then measured as previously described. (4)The intrinsic efficacy of all 
ligands was assessed from 7-point concentration response curves. Isoprenaline (10 µM) was used as the 
positive control in all plates. Maximum responses and pEC50 values were obtained from sigmoidal dose 
response curves (see ref. (4) for full details). The affinity of antagonists was determined from a 
rightward shift of the agonist response using the Gaddam equation, and for the partial agonist 3, using 
the method of Stephenson (see ref. (4) or full details). 

7. Supplementary Results 

7.1. [3H](-)CGP 12177 whole cell binding and CRE-SPAP production validation 

[3H](-)CGP 12177 whole cell binding demonstrated that the known β1-selective antagonist 
CGP 20712A, as expected, had high affinity for the human β1AR (pKD 8.96±0.13, n=4) whilst the 
known β2-antagonist ICI 118551 had high affinity for the human β2AR (pKD 9.61±0.05, n=5, Table 1).  

Cimaterol stimulated a full agonist response at both receptors. At the β1AR, this response was 
3.3±0.5-fold over basal, 105±2% that of the isoprenaline maximum (n=12) and at the β2AR, the 
response was 4.4±0.1-fold over basal and 95±1% that of isoprenaline (n=9) (Table S3). As expected, 
CGP 20712A inhibited the CHO-β1 cimaterol response with high affinity, and ICI 118551 inhibited the 
CHO-β2 cimaterol response with high affinity to yield similar selectivities to those obtained from the 
binding assay (Table 2). 

7.2. Compound 3 acts through the primary catecholamine conformation of β1AR 

Compound 3 was clearly a partial agonist at both the β1 and β2-AR (Table S4, Figure S2). At the β2AR, 
this partial agonist response was inhibited by ICI 118551 to give a KD value for ICI 118551 very similar 
to that obtained in the presence of cimaterol (Table S4), confirming that this partial agonist response is 
indeed occurring through interaction with the β2AR. 

The β1AR, however, exists in at least two active agonist conformations: (4-8) a high affinity 
catecholamine conformation (through which cimaterol and catecholamines stimulate agonist responses, 
and for which CGP 20712A and CGP 12177 have high affinities), and a secondary conformation 
through which higher concentrations of CGP 12177 stimulate agonist responses (although these 
responses are relatively resistant to antagonism). The conformation through which 3 was stimulating β1 
partial agonist response was therefore assessed. 

The affinity measured by both the binding assay (pKD 9.01) and the functional assay (pKD 9.19) 
were very similar. The concentrations of [3H](-)CGP 12177 used in the binding assay would only 
measure binding to the catecholamine conformation. Compound 3 also inhibited the cimaterol response 
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(known to act through the catecholamine conformation, (4-7) with high affinity, again suggesting high 
affinity catecholamine conformation interaction. The partial agonist response (pEC50 8.80) is also very 
similar to the pKD values, again suggesting interactions with the catecholamine conformation. This 
therefore suggests that both the binding of 3 and the agonist response obtained in the functional assay 
are occurring through the same high affinity conformation of the β1AR. 

The partial agonist response of 3 in CHO-β1 cells was inhibited by CGP 20712A with high affinity, 
suggesting that the response is indeed β1AR-mediated. However, the KD value for CGP 20712A 
obtained was part-way between that of cimaterol (high affinity catecholamine conformation) and that 
of CGP 12177 (secondary conformation, Table S4). Thus, although the similarity of the KD and EC50 
values suggests single-site, high affinity conformation interactions, further evidence for which site of 
actions the response was occurring through was sought. When increasing concentrations of 3 were 
added to fixed concentrations of cimaterol (Figure S2), the cimaterol response was inhibited in a manner 
suggestive of competition at a single conformation (compare with Figure 1 of ref (5); Figure 4 of ref 
(6); Figure 8 of ref (7) and Figure 6 of ref (4)). Overall therefore, 3 is also a high affinity partial agonist 
of the human β1AR, with the agonist response occurring through the primary catecholamine 
conformation of the receptor. 

7.3. Dose response curves of the other ligands  

The dose response curve for several compounds showed no stimulation of either receptor (e.g. Figure 
S3, compound 1). For some ligands, e.g. 16 and 17, there was also no inhibition of [3H](-)CGP 12177 
binding and no shift of the cimaterol-induced concentration response curve.  These ligands were 
therefore found to not be interacting with either the β1 or β2AR at concentrations up to the maximum 
studies (100 µM for many). Other compounds, e.g. 1, although no stimulation occurred in response to 
the ligands alone, they did inhibit binding and cause a shift of the cimaterol-induced dose response. 
These compounds are therefore neutral antagonists. 

For some compounds, e.g. 10 and 11, the highest concentrations possible (20 µM for 10, 100 µM 
for 11) caused a marked fall to below basal (e.g. Figure S3). This pattern of CRE-SPAP production is 
consistent with toxicity (i.e. cell death, or major assay interference). In these instances, the concentration 
of compound used to antagonize cimaterol was reduced, until such a time as the reduction in basal was 
minimal or non-existent (i.e. for 10, reduced to 2 µM as this no longer caused a reduction in basal). The 
functional assay is far more sensitive to issues such as toxicity because the cells need to be living in 
order to generate responses, whereas in the binding assay, binding to the receptors can be measured 
even if the cells are dead. In some cases, this reduction in compound concentration still allowed a shift 
to be observed and thus a KD value to be measured. 

Receptor-mediated inverse agonism as an explanation for the marked fall in CRE-SPAP production 
is very unlikely as i) this gene transcription assay is relatively poor at detecting inverse agonism, 
including compound ICI 118551, which is known to be an inverse agonist in these cells; (9) ii) identical 
results were seen in both β1- and β2-cells despite the fact that the ligands e.g. 10 had different affinities 
for the two receptors (and therefore receptor mediated effects should have been observed at different 
doses); iii) the logIC50 of the apparent fall in CRE-SPAP production (e.g. for 10, 10µM at the β2AR) is 
not the same as the KD value obtained from the binding studies (1µM), again suggesting the fall is a 
non-receptor mediated issue and  iv) if the fall below basal was due to inverse agonism, there should 
still be a cimaterol concentration response in the presence of 20µM 10, that was further right shifted, 
than that at 2 µM (Figure S1). As can be seen in Figure S4, there is absolutely no cimaterol response in 
the presence of 20 µM 10 and the whole response is below basal. This strongly suggests a non-receptor 
mediated cause for the fall. 

7.4. Novel compounds 
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As well as a small fall in maximum cimaterol response, 10 causes a rightward shift in the cimaterol 
concentration response at the β2AR but not at the β1AR. This suggests that 10 is indeed interacting with 
the β2AR in this functional assay and it is showing some β2AR selectivity, with an apparent KD value 
that is similar to that obtained from the binding study. The lack of a rightward shift of the cimaterol-
concentration response in the presence of 2 µM 10 at β1AR are entirely as expected, given the KD value 
obtained from the binding studies (3 µM). Thus, despite the apparent toxicity issues at high 
concentrations in the functional assay, 10 appears to be a β2-selective ligand with an affinity of 300-
1000 nM in both the binding and functional assay. 

8. Supplementary Figures 

 

1 

 

a) 

c) 

 

1 

b) 

d) 

Figure S1: CRE-SPAP production in a) and b) CHO-β1 cells and c) and d) CHO-β2 cells in response to cimaterol in the 
absence and presence of a) and c) 100 µM 1, and b) and d) 2mM 10. Bars represent basal CRE-SPAP production and that in 
response to 10 µM isoprenaline and 100 µM 1 or 2mM 10 alone. Data points are mean ± sem of triplicate values and these 
individual experiments are representative of a) and c) 6 separate experiments and b) and d) 3 separate experiments. 
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Figure S2: CRE-SPAP production in CHO-β1 cells (a, c and e) and CHO-β2 cells (b, d and f). a and b) show response to 3
inhibited by CGP20712A in the β1 cells and inhibited by ICI 118551 in the β2 cells thus confirming the responses are mediated 
via the respective receptors. c and d) show inhibition of the cimaterol response by increasing concentration of 3 in a manner 
consistent with that of a partial agonist; e and f) show inhibition of the cimaterol response by 3 in a manner consistent with 
competition at a single site. Bars represent basal CRE-SPAP production and that in response to 10 µM isoprenaline or various 
concentrations of CGP 20712A, ICI 118551 or 3 alone. Data points are mean ± sem of triplicate values and these individual
experiments are representative of five or more separate experiments in each case. 
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Figure S3: CRE-SPAP production in a) and c) in CHO-β1 cells and b) and d) in CHO-β2 cells in response to 1 (a and b) and 
10 (c and d). Bars represent basal response and that to10 µM isoprenaline. Data points are mean ± sem of triplicate 
determinations and these individual experiments are representative of 4 separate experiments in each case. 
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 

1 

a) 

b) 

Figure S4: CRE-SPAP production in a) in CHO-β1 cells and b) in CHO-β2 cells in response to cimaterol in the presence and 
absence of 20µM 10. Bars represent basal response and that in response to 10µM isoprenaline or 20µM 10 alone. Data points 
are mean ±	sem	of	triplicate	determinations	and	are	representative	of	three	separate	experiments	in	each	case.  

Figure S5: Docking poses for selected compounds. The β2AR is shown in gray stick representation. Residues discussed in 
the text are labeled and shown with colored heteroatoms. Selected residues in TM6 and TM7 (including Phe2896.51 and 
Phe2906.52) are hidden for clarity. Ligands are shown in orange stick representation. Perspective as in ref. (5) for comparability. 
(a) 3, (b) 11, (c) 7. 
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Figure S6: 2D binding mode depictions for all compounds for which binding has been correctly predicted
(1,2,3,5,6,10,11,12,13,14,15,16,17). For comparison, the binding modes for Carazolol (PDB 2RH1) and adrenaline (PDB
4LDO) are shown. For new compounds, the depictions have been calculated based on binding mode predicted by docking. 
Depictions created using the Molecule Operating Environment (MOE). (10) 
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9. Supplementary charts 

 

   

O

O
Me

HO

HN

O

O

O
N
H

OH

O
N
H

N

N+

S
O

N

HO

O
O

O
N
H

O

Q1 Q2 Q3

Q4 Q5 Q6

Chart S1: The six query molecules from ref. (5) used for similarity search and the derivation of eight substructures. 

Chart S2: The eight substructures, based on the ligands of ref. (5), used for screening in this study. 

O

OHO

H2N

S1

HO O

O

S2

O

S3

O

O

OH

NH2

S4

N

S

S5

O

NH2

S6

O OH

NH2

S7

O

NH2

HO

S8



 

214 
 

 
10. Supplementary tables 

Table S1: Number of molecules resulting from the similarity search with TC ≥ 0.45 for each query molecule of ref. (2). The 
sum reflects the number of molecules after removing duplicates. 

Query Q1 Q2 Q3 Q4 Q5 Q6 Σ
NHits 1538 2381 946 1310 1053 284 6363

 

Table S2: Affinity (KD values) and β2-selectivity for compounds as measured by [3H](-)CGP 12177 whole cell binding to 
CHO-β1 and CHO-β2 cells. Values are mean ± sem of n separate experiments. 

ID Structure β2AR pKD n β1AR pKD n β2/β1
a

14-4 

 

n.c.  5 n.c.  5  

15-7 

 

n.c.  3 n.c.  3  

16-8 n.c.  5 n.c.  5  

17-9 

 

n.c.  6 n.c.  6  

aSelectivity: β2/β1=KD(β2)/KD(β1) 
n.c.For ligands with less than 50% inhibition of specific binding, the IC50 value could not be determined and thus a KD value could not be 
calculated (n.c.) 

Table S4: EC50 values and % isoprenaline maximum values for cimaterol, 3 and CGP 12177 as agonists and log KD values 
for CGP 20712A and ICI 118551 as antagonists of these agonist response in the CHO-β1 and CHO-β2 cells respectively, as 
determined from CRE-SPAP production. Values are mean ± sem of n separate determinations. 

Agonist 
pEC50 % isoprenaline 

maximum
n pKD n 

β1AR   CGP 20712A
cimaterol 8.81 ±0.02 104.7 ± 1.9 12 9.21 ±0.06 15 
3 8.80 ±0.06 45.0 ± 2.0 11 8.35 ±0.08 21 
CGP 12177 8.39 ±0.03 86.8 ± 2.8 7 7.47 ±0.04 14 
β2AR    ICI 118551  
cimaterol 9.71 ±0.02 94.9 ± 1.4 9 9.81 ±0.15 5 
3 9.94 ±0.1 22.0 ± 2.1 8 9.56 ±0.06 11 
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Table S5: Affinity (KD values) and β2-selectivity for compounds as measured by a parallel shift inhibition of cimaterol 
concentration responses in the CRE-SPAP assay in CHO-β1 and CHO-β2 cells. Values are mean ± sem of n separate 
experiments. 

ID β2AR pKD n β1AR pKD n β2/β1
a 

1c 5.63 ±0.06 6 4.81 ±0.07 6 6.6 
2c 5.73 ±0.06 4 4.85 ±0.05 5 7.6 
3b,d 10.74 ±0.03 4 9.19 ±0.04 10 35.5 
4-5 4.98 ±0.05 6 4.62 ±0.08 4 2.3 
5-6 n.c.  8 n.c.  4  
6-12 5.30 ±0.07 4 5.01 ±0.06 6 1.9 
7-13 5.30 ±0.06 4 5.02 ±0.07 6 1.9 
8-14 5.06 ±0.04 4 5.17 ±0.12 7 0.78 
9-15 n.c.  6 n.c.  6  
10 6.62 ±0.12e 3 n.c.  3  
11 n.c.  8 n.c.  6  
12-16 n.c.  8 n.c.  6  
13-17 5.58 ±0.1 6 4.82 ±0.08e 5 5.8 
14-4 n.c.  4 n.c.  4  
15-7 4.13 ±0.06 6 n.c.  4  
16-8 n.c.  8 n.c.  4  
17-9 n.c.  6 n.c.  4  
ICI 118551 9.81 ±0.15 5 7.16 ±0.07 6 447 
CGP 20712A 6.21 ±0.04 6 9.21 ±0.06 15 0.001 
aSelectivity: β2/β1=KD(β2)/KD(β1) 
bthe partial agonist method of Stephenson 1956 was used to calculate the KD value for 3. 
cUS 20090163545 
dAntiarrythmic pharmaceutical (Bipranol/Berlafenone), Arzneimittel-Forschung 1992, 42, 289-291 
eestimated KD. Here a shift and a small reduction of the maximum response obtained when incubated with cimaterol rather than an absolute 
parallel shift was obtained e.g. Figure 2d. The shift was calculated from a parallel response of the lower part of the curve (as per the 
Gaddam equation) but noted here as an estimated KD given the slight fall in maximum.

 

Table S4: SMILES codes, vendor information and ZINC ID for described compounds 

ID SMILES string Vendor Vendor ID ZINC ID
1b CN(C)CCOCCOc1ccccc1-c1ccccc1 Ambintera Amb8591782 2825338 
2b C=CCNCCOc1ccccc1-c1ccccc1 Ambintera Amb10982638 3001189 
3c CC(C)(C)NCC(O)COc1ccccc1-c1ccccc1 Innovapharmb STT-00320296 4353 
4-5 CN(C)CCOc1ccc2ccccc2c1C=O Otavac 7020663309 11992987 
5-6 C[n+]1c(C=CNc2ccccc2)sc2ccccc21 Enamined T0504-1129  
6-12 COc1cccc(C=C2Oc3c(c(C)cc(O)c3CN3CCN(C)CC3)C2=O)c1 IBSf STK854129 20573542 
7-13 COc1cccc(C=C2Oc3c(c(C)cc(O)c3CN(C)C)C2=O)c1 IBSf Amb807687 6764660 
8-14 Cc1cc(O)c(CN(C)C)c2c1C(=O)C(=Cc1ccccc1)O2 IBSf Amb800928 6670218 
9-15 Cc1cc([O-])c(C[NH+]2CCCC2)c2c1C(=O)C(=Cc1cc3ccccc3o1)O2 Ambintera Amb2448714 9575977 
10 CCOC(=O)c1cc(C=Cc2sc3ccccc3[n+]2C)c2sc3ccccc3n12 Otavac 107910005 15222345 
11 C[n+]1c(C=Cc2ccccc2Cl)sc2ccccc21 Otavac 107910003 4158946 
12-16 CCCC[NH+](C)Cc1c2c(c(C)cc1[O-])C(=O)C(=Cc1cc3cc(Br)ccc3o1)O2 Ambintera Amb2453954 9531929 
13-17 COc1cccc(C=C2Oc3c(c(C)cc(O)c3CN3CCCC3)C2=O)c1 Ambintera Amb804798 6759304 
14-4 CCOc1ccc(C=CC(=O)Nc2ccc3c(c2)N(CCN(C)C)C(=O)CO3)cc1OC Otavac 1082925 12082453 
15-7 C[n+]1c2ccccc2sc1C1=C(N)N(c2ccccc2)CC1=O Ambintera Amb471924 8394352 
16-8 Cc1n(-c2ccccc2)c2ccc(Cl)cc2[n+]1CCO Ambintera Amb8495562 3127921 
17-9 COc1ccccc1C(=O)C[n+]1c(C)n(C(F)F)c2ccccc21 Timetece ST51248084 5571431 
a Ambinter c/o Greenpharma, 3, allée du titane 45100 Orléans, FRANCE 
b Innovapharm Ltd., 42 Krasnotkatskaya Street, app. 111, Kiev – 02660, UKRAINE 
c OTAVA Ltd., 400 Applewood Crescent, Unit 100, Vaughan, Ontario, L4K 0C3, CANADA 
d SIA Enamine, Vestienas iela 2 B, V-1035 Riga, LATVIA 
e TimTec LLC, 301-A Harmony Business Park, Newark, DE 19711, USA 
f InterBioScreen Ltd., Institutsky Prospect, 7a, 142432 Chernogolovka, RUSSIA
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Table S6: Most similar molecules (ChEBML ID and structure) for each compound by Tanimoto ECFP4 similarity at the time 
of the investigation 

ID 
ChEMBL ID Structure Tanimoto 

ECFP4 

1a CHEMBL1626224 0.5870 

2a CHEMBL1626224 0.7270 

3a CHEMBL1626224 0.6220 

4-5 CHEMBL275742 0.3820 

5-6 CHEMBL1626224 0.3260 

6-12 CHEMBL2068762 

 

0.3150 

7-13 CHEMBL1622248 0.2990 

8-14 CHEMBL1622248 0.3960 

9-15 CHEMBL1083366 0.2180 
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10 CHEMBL357995 0.2540 

11 CHEMBL1626224 0.2700 

12-16 CHEMBL403296 0.2310 

13-17 CHEMBL1945294 

 

0.3200 

14-4 CHEMBL1242923 

 

0.2710 

15-7 CHEMBL433454 0.2900 

16-8 CHEMBL41113 

 

0.2890 

17-9 CHEMBL631 0.3500 

a Compounds are annotated in the latest ChEMBL version (ChEMBL 22) 
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