Substrat-spezifische Induktion der anaeroben Abbauwege von aromatischen Verbindungen in *Aromatoleum aromaticum* EbN1

Dissertation

Zur Erlangung des Doktorgrades der Naturwissenschaften

(Dr. rer. nat.)

dem Fachbereich Biologie vorgelegt von

Lina Clermont

aus Leverkusen

Marburg (Lahn) 2016

Die Untersuchungen zur vorgelegten Arbeit wurden von Juli 2013 bis Juni 2016 am Fachbereich Biologie der Philipps-Universität Marburg unter der Leitung von Herrn Prof. Dr. Johann Heider durchgeführt.

Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation am ______ angenommen.

Erstgutachter: Prof. Dr. Johann Heider Zweitgutachter: Prof. Dr. Martin Thanbichler

Tag der mündlichen Prüfung: _____

Im Rahmen dieser Arbeit entstandene Publikation:

Muhr, E., Schühle, K., Clermont, L., Sünwoldt, K., Kleinsorge, D., Seyhan, D., Kahnt, J., Schall, I., Cordero, PR., Schmitt, G., Heider, J. (2015). Enzymes of anaerobic ethylbenzene and *p*-ethylphenol catabolism in '*Aromatoleum aromaticum*': differentiation and differential induction. Arch Microbiol 197(9):1051-62.

Für Robert

Inhaltsverzeichnis

I.	Zusammenfassung	10
II.	Summary	12
1.	Einleitung	13
	Mikrobieller Abbau von umweltbelastenden Aromaten	13
1.1	DER MODELLORGANISMUS <i>AROMATOLEUM AROMATICUM</i> EBN1 BAUT AROMATIS KOHLENWASSERSTOFFE UND PHENOLISCHE VERBINDUNGEN ANAEROB AB Anaerober Abbau von Ethylbenzol	3CHE 14 15
	Anaerober Abbau von Toluol	16
	Anaerober Abbau von Phenol	16
	Anaerober Abbau von 4-Ethylphenol	16
	Abbau von Benzoat	17
1.2	Das Genom von Aromatoleum aromaticum EbN1 impliziert eine hohe Spezifität in der Regulation der anaeroben Abbauwege σ^{54} -abhängige Regulation	20 20
	Zweikomponenten-Systeme	22
1.3 2.	ZIELSETZUNG DER ARBEIT Material und Methoden	25 26
2.1 2.2	STÄMME, PLASMIDE UND OLIGONUKLEOTIDE NÄHRMEDIEN Medien für <i>Aromatoleum aromaticum</i> EbN1	26 29 29
	Medien für Escherichia coli	29
	Kohlenstoffquellen	31
	Antibiotika	31
	Kultivierungsbedingungen und Stammhaltung	32
	Wachstumstests	32
2.3	MOLEKULARBIOLOGISCHE METHODEN Plasmidpräparation	32 32
	Restriktion und Ligation	33
	Agarose-Gelelektrophorese und Isolierung von DNA	33
	Polymerase – Kettenreaktion (PCR)	34

	DNA-Sequenzierung	35
	Präparation chromosomaler DNA aus Aromatoleum aromaticum EbN1	35
	Konstruktion von Insertionsmutanten	36
2.4	Molekularbiologische Techniken Transformation von <i>E. coli</i>	36 36
	Herstellung kompetenter E. coli	37
	Konjugation	38
	Extraktion der gesamten RNA aus Aromatoleum aromaticum	39
	Anreicherung und Konzentrierung der mRNA	39
	Primer-Extension	39
	Erstellung einer cDNA Library für Illumina Sequenzierung	41
	Konzentrationsbestimmung mit Qubit® 2.0 Fluorometer	41
	Qualitätsüberprüfung der RNA und cDNA mit Experion Analyzer	41
2.4	PROTEINBIOCHEMISCHE METHODEN	41
	ODO-1 Olyaci yamid-Gelelektrophorese (ODO-1 AGE)	
	Immunoblott	41
3.	Immunoblott	41 42 44
3. 3.1 3.2	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph	41 42 44 44 45 enol-
3. 3.1 3.2	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon	41 42 44 45 enol- 45
3. 3.1 3.2 3.3 3.4 3.5	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon DIE ZELLEN VON ACSA-MCHERRY LEUCHTEN NICHT <i>AROMATOLEUM AROMATICUM</i> PPSA-MCHERRY LEUCHTET BEI WACHSTUM AUF PHENOL. DISRUPTIONEN DER GENE <i>ETPR</i> UND <i>PDER</i> Konstruktion einer Integrationsmutante zur Disruption von <i>etpR</i>	41 42 44 45 enol- 45 45 47 50 50
3. 3.1 3.2 3.3 3.4 3.5	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE. REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon DIE ZELLEN VON ACSA-MCHERRY LEUCHTEN NICHT <i>AROMATOLEUM AROMATICUM</i> PPSA-MCHERRY LEUCHTET BEI WACHSTUM AUF PHENOL. DISRUPTIONEN DER GENE <i>ETPR</i> UND <i>PDER</i> Konstruktion einer Integrationsmutante zur Disruption von <i>etpR</i> Die Mutante <i>Aromatoleum aromaticum</i> IM <i>etpR</i> wächst nur in besonderen F	41 42 44 45 enol- 45 45 47 50 50 50 50
3. 3.1 3.2 3.3 3.4 3.5	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon DIE ZELLEN VON ACSA-MCHERRY LEUCHTEN NICHT <i>AROMATOLEUM AROMATICUM</i> PPSA-MCHERRY LEUCHTET BEI WACHSTUM AUF PHENOL DISRUPTIONEN DER GENE <i>ETPR</i> UND <i>PDER</i> Konstruktion einer Integrationsmutante zur Disruption von <i>etpR</i> Die Mutante <i>Aromatoleum aromaticum</i> IM <i>etpR</i> wächst nur in besonderen F auf 4-Ethylphenol	41 42 42 44 45 enol- 45 45 47 50 50 50 ällen 52
3. 3.1 3.2 3.3 3.4 3.5	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE. REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon DIE ZELLEN VON ACSA-MCHERRY LEUCHTEN NICHT <i>AROMATOLEUM AROMATICUM</i> PPSA-MCHERRY LEUCHTET BEI WACHSTUM AUF PHENOL DISRUPTIONEN DER GENE <i>ETPR</i> UND <i>PDER</i> Konstruktion einer Integrationsmutante zur Disruption von <i>etpR</i> Die Mutante <i>Aromatoleum aromaticum</i> IM <i>etpR</i> wächst nur in besonderen F auf 4-Ethylphenol Konstruktion einer Integrationsmutante zur Disruption von <i>pdeR</i>	41 42 42 44 45 enol- 45 45 47 50 50 50 50 52 55
3. 3.1 3.2 3.3 3.4 3.5	Immunoblott Ergebnisse <i>AROMATOLEUM AROMATICUM</i> EBN1 WÄCHST AEROB UND ANAEROB MIT 4- ETHYLPHENOL ALS EINZIGER KOHLENSTOFFQUELLE REPORTERGEN-STUDIEN MIT MCHERRY Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Ph Operon DIE ZELLEN VON ACSA-MCHERRY LEUCHTEN NICHT <i>AROMATOLEUM AROMATICUM</i> PPSA-MCHERRY LEUCHTET BEI WACHSTUM AUF PHENOL DISRUPTIONEN DER GENE <i>ETPR</i> UND <i>PDER</i> Konstruktion einer Integrationsmutante zur Disruption von <i>etpR</i> Die Mutante <i>Aromatoleum aromaticum</i> IM <i>etpR</i> wächst nur in besonderen F auf 4-Ethylphenol Konstruktion einer Integrationsmutante zur Disruption von <i>pdeR</i> <i>Aromatoleum aromaticum</i> IM <i>pdeR</i> wächst nicht auf Phenol	41 42 42 44 45 enol- 45 47 50 50 50 50 50 52 55 56

Inhaltsverzeichnis

3.7	ETABLIERUNG VON TRANSKRIPTOM-STUDIEN IN AROMATOLEUM AROMATICUM EBN1.
	Aromatoleum aromaticum EbN1 induziert die verantwortlichen Operons für die
	verschiedenen Substrate65
	Die Gencluster für anaeroben und aeroben Abbau von Benzoat werden bei
	allen Kulturen auf den verschiedenen Substraten induziert
	Die Thiolase EbA5319 aus dem Phenylpropionat-Abbauweg ist am Ethylbenzol- und Acetophenon-Abbau beteiligt und produziert Benzoyl-CoA 71
	Aromatoleum aromaticum EbN1 induziert die 4-Hydroxybenzoat-CoA-Ligase und die 4-Hydroxybenzoyl-CoA-Reduktase beim Abbau von 4-Ethylphenol73
	Ein Gencluster, das für eine NADH:Ferredoxin-Oxidoreduktase kodiert, ist in Kulturen auf 4-Ethylphenol induziert
	Bei Wachstum auf Ethylbenzol ist ein Gencluster induziert, das Genduplikate aus Abbauoperons für Ethylbenzol, 4-Ethylphenol und Phenol besitzt
	Das Gen etpR ist in Kulturen auf 4-Ethylphenol hochreguliert
	Zweikomponenten-Systeme in <i>Aromatoleum aromaticum</i> EbN1 sind in zwei Untergruppen einteilbar83
	Das Zweikomponenten-System EdiRS ist spezifisch und hoch-signifikant in Kulturen auf Ethylbenzol induziert
4.	Diskussion91
4.1	4-ETHYLPHENOL ALS KOHLENSTOFFQUELLE FÜR AROMATOLEUM AROMATICUM EBN1
	Abbauwegs?
4.2	DIE LETZTE UNGEKLÄRTE LÜCKE IM ETHYLBENZOL-STOFFWECHSEL: MÖGLICHE BEDEUTUNG DER INDUKTION DES 3-PHENYLPROPIONAT-OPERONS BEI WACHSTUM AUF ETHYLBENZOL
4.3	DIE REGULATION DER AROMATISCHEN VERBINDUNGEN ALS NETZWERK
	Die Regulation des Abbaus von Phenol97
	Die Zweikomponenten-Systeme EdiRS und AdiRS98
	Neue Kandidaten, die regulativ in die Abbauwege von Ethylbenzol,
	Acetophenon, 4-Ethylphenol und Benzoat eingreifen könnten

Inhaltsverzeichnis

4.4	RNA- SEQUENZIERUNG ALS NEUE METHODE FÜR AROMATOLEUM AROMATICUM EBN1	.103
III.	Literaturverzeichnis	.106
IV.	Anhang	.118
V.	Abkürzungsverzeichnis	.127
VI.	Danksagung	.129
VII.	Erklärung	.130
VIII.	Lebenslauf	.131

I. Zusammenfassung

Das denitrifizierende Bakterium Aromatoleum aromaticum EbN1 kann aromatische Kohlenwasserstoffe sowie phenolische Verbindungen anaerob über verschiedene Abbauwege metabolisieren. Diese distinkte Degradierung war im Vergleich zu aeroben Abbauern wie Pseudomonas putida überraschend und weckte das Interesse. den Abbau dieser umweltschädigenden Verbindungen in den tiefliegenden, anaeroben Bodenschichten verstehen. Die genetische zu Zugänglichkeit von Aromatoleum aromaticum EbN1 macht es zu einem guten Modellorganismus, um diese Stoffwechselwege besser nachvollziehen zu können. Außerdem sind die Abbaumechanismen der chemisch sehr ähnlichen Verbindungen Toluol, Ethylbenzol, Phenol und 4-Ethylphenol alle separat reguliert. Basierend auf zuvor gemachten Beobachtungen, Seguenzvergleichen und Vergleichen zu anderen Kohlenwasserstoffabbauenden Organismen wurden putative Regulatoren für die jeweiligen Abbau-Operons ermittelt. Es wurde postuliert, dass der Abbau von Toluol, Ethylbenzol und Acetophenon unter der Kontrolle von verschiedenen Zweikomponenten-Systemen steht, die jeweils durch die Gene tdiRS, ediRS und adiRSkodiert werden. Andererseits sind wahrscheinlich σ^{54} -abhängige Regulatoren verantwortlich für die Aktivierung des Abbaus von 4-Ethylphenol (EtpR) und Phenol (PdeR). Alle postulierten Regulatoren sind dabei direkt neben den bekannten Abbau-Operons kodiert. In dieser Arbeit wurden die Funktionen von EtpR und PdeR näher untersucht. Dafür wurden zwei Disruptions-Mutanten erstellt und auf ihren Wachstumsphänotyp getestet. Die Ergebnisse unterstützen die These, dass die Gene etpR bzw. pdeR für Aktivatoren kodieren, die die anliegenden Gencluster induzieren. Außerdem wurden erste Studien zur Bestimmung möglicher Induktoren der 4-Ethylphenol- und Phenol-Operons, sowie Analysen von transkriptionellen Startpunkten und Operator-Bindestellen, gestartet.

Neuste Ergebnisse haben eine komplexe Interaktion zwischen den Abbauwegen von 4-Ethylphenol und Ethylbenzol und ihren vorhergesagten Regulationssystemen gezeigt. Um ein besseres Verständnis dafür zu bekommen, wurde *Aromatoleum aromaticum* EbN1 mit verschiedenen Kohlenstoffquellen kultiviert und eine Methode zur Transkriptom-Sequenzierung über reverse Transkription und Hochdurchsatz-Sequenzierung angereicherter mRNA etabliert. Dadurch wurden viele neue Einblicke in das komplexe Regulationsnetzwerk des anaeroben Abbaus aromatischer Kohlenwasserstoffe und phenolischer Verbindungen gewonnen und zusätzlich ergaben sich Hinweise auf ungeklärte Schritte in den jeweiligen Abbauwegen.

II. Summary

The facultative anaerobic denitrifying bacterium Aromatoleum aromaticum EbN1 is able to distinctively degrade aromatic hydrocarbons and phenolic compounds anaerobically. This trait was surprising in comparison to aerobic degraders like Pseudomonas putida and revealed the interesting field of anoxic degradation of environmental pollution deep soil. The genetic accessibility in makes Aromatoleum aromaticum EbN1 a desirable model organism for the understanding of distinct anaerobic metabolism. Even more, the anoxic degradation of the very similar compounds toluene, ethylbenzene, phenol, and *p*-ethylphenol is separately regulated for each substrate. Based on earlier experiments, sequence alignments and similarities to other hydrocarbon degrading organisms, putative regulators have been assigned to the different degradation clusters. It was proposed that toluene, ethylbenzene, and acetophenone degradation in Aromatoleum aromaticum EbN1 are under the control of the two component systems *tdiRS*, *ediRS* and *adiRS* respectively. In contrast, σ^{54} dependent regulators are probably responsible for the activation of the degradation of 4-ethylphenol (EtpR) and phenol (PdeR). All of these proposed regulators are coded in genes directly adjacent to the respective degradation operon. In this study the proposed functions of EtpR and PdeR were investigated. Thereby, two disruption mutants were designed and examined in their growth phenotyp. It seems that the proposed thesis is correct and the genes etpR and pdeR code for activators of the respective operons. Furthermore, first studies were started to determine the inductors of 4-ethylphenol- and phenol operon as well as to identify transcriptional starts and operator binding sites.

Recent results show a complex network of interactions between the distinct pathways to degrade 4-ethylphenol and ethylbenzene and their postulated regulation systems. To gain further insight into the matter, *Aromatoleum aromaticum* EbN1 was cultivated with different carbon sources and the method of RNA-Sequencing using reverse transcription was established. The isolated and enriched mRNA from these cultures was analyzed in this high-throughput approach by Illumina sequencing. Not only was new light shed on the complexity of the regulation network, but also new hints were given concerning the unknown steps in the different degradation pathways.

1. Einleitung

Industrialisierung und Fortschritt haben im Laufe der Jahre vieles für den Menschen erleichtert, aber bringen als Spätfolgen nicht nur den Klimawandel, sondern auch eine zunehmende Umweltverschmutzung mit sich (WHO-Studie: Tod durch Umweltverschmutzung). Einen Teil dieser Umweltverschmutzung stellen katastrophale Unglücke von Oltankern dar, von denen es 27 zwischen 1967 und 2012 gab und die in der Summe circa 2,5 Millionen Tonnen Öl in die Umwelt entließen (Greenpeace). Dabei ist die Explosion der Ölbohrstation "Deep Water Horizon" im Jahre 2010, bei der allein circa 670.000 Tonnen Erdöl ins Meer geflossen sind, nicht mitgerechnet (Camilli et al., 2010). Auch wenn nach solchen Katastrophen oft versucht wurde, sichere Schiffe zu bauen oder die Erdöl-Transporte an Land zu verlegen, zeigen die vergangenen Jahre doch, dass eine Lösung für die Beseitigung des ausgelaufenen Erdöls unabdingbar ist.

Mikrobieller Abbau von umweltbelastenden Aromaten

Die toxischen Verbindungen der BTEX-Gruppe (Benzol, Toluol, Ethylbenzol und Xylol) machen bis zu 80 % des Rohöls aus und schädigen die Umwelt zusätzlich als Teil von Industrieabfällen, Lösungsmitteln und Treibstoffen (Koch & Wagner, 1989). Die hohe Toxizität kommt zum Beispiel durch die Interaktion mit biologischen Membranen und DNA (Dean, 1985; Sikkema et al., 1994). Die Bedrohung wird verstärkt durch die hohe Löslichkeit in Wasser (Cline et al., 1991), die in einem Petroleum- verseuchten Gebiet bei circa 1 mg/l für Ethylbenzol und Toluol liegen kann (Gulensoy & Alvarez, 1999). Auch die strukturell sehr ähnlichen phenolischen Verbindungen stellen durch ihre Umweltfreisetzung durch zum Beispiel industrielle Abwasser eine gesundheitliche Gefahr dar (Berne & Cordonnier, 1995). Es ist schon lange bekannt, dass Mikroorganismen in der Lage sind, aromatische Kohlenwasserstoffe und damit auch die schädlichen Verbindungen der BTEX-Gruppe aerob mit Hilfe von Oxygenasen abzubauen (Jindrova et al., 2002). Bakterien, wie Pseudomonas putida und Pseudomonas stutzeri, können mithilfe von Sauerstoff, der von den Oxygenasen benötigt wird, den inerten Ring spalten und den vorhandenen Kohlenstoff nutzbar machen (Powlowski & Shingler, 1994; Williams & Sayers, 1994). In den 1980ern stellte sich die Frage, was mit diesen Stoffen in tiefer liegenden, anaeroben Schichten

passiert und ob Mikroorganismen einen alternativen anaeroben Abbauweg mit einer völlig anderen Enzymklasse gefunden haben. Über Anreicherungsexperimente konnten solche Organismen identifiziert und charakterisiert werden (Ball et al., 1996; Kniemeyer et al., 2003; Rabus & Widdel, 1995). Über die Jahre wurde die Charakterisierung vertieft und es haben sich verschiedene Typen anaerober Kohlenwasserstoff-abbauender Bakterien herauskristallisiert. Es wird nun nach Sulfat-Eisen(III)-Reduzierern, Reduzierern. Mangan-Reduzierern Nitrat-Reduzierern, Protonen-Reduzierern und phototrophen Arten klassifiziert (Beller et al., 1996; Zengler et al., 1999). Dazu gehören zum Beispiel Desulfococcus oleovorans Hxd3, Georgfuchsia toluolica G5G6 oder Bakterien der Gattung Azoarcus oder Thauera (Aeckersberg et al., 1998; Hurek & Reinhold-Hurek, 1995; Weelink et al., 2009). Erstere sind z.B. obligat anaerobe Proteobakterien, die fähig sind, nicht nur Alkohole und Fettsäuren abzubauen, sondern auch langkettige Alkane und Alkene bis zu CO2 zu oxidieren (So & Young, 1999). Nahe verwandt zu den Gattungen Azoarcus und Thauera ist auch die Art Aromatoleum aromaticum EbN1, der als erstes β-Proteobakterium, welches aromatische Verbindungen anaerob abbauen kann, dessen Genom als erstes sequenziert und genetisch manipuliert wurde (Rabus et al., 2005) und deshalb als wichtiger Modellorganismus für die Rhodobacterales fungiert.

1.1 Der Modellorganismus Aromatoleum aromaticum EbN1 baut aromatische Kohlenwasserstoffe und phenolische Verbindungen anaerob ab

Aromatoleum aromaticum EbN1 (früher *Azoarcus sp.* EbN1) ist ein fakultativ anaerobes denitrifizierendes β-Proteobakterium (Rabus & Widdel, 1995). Es wurde aus schlammigem Frischwasser isoliert und wegen seiner Besonderheit, Ethylbenzol und Toluol anaerob abbauen zu können, weiter untersucht. Über die Jahre hat sich herausgestellt, dass *Aromatoleum aromaticum* EbN1 nicht nur auf diesen beiden aromatischen Kohlenwasserstoffen, sondern auch auf phenolischen Verbindungen wie z.B. Phenol, 4-Cresol und 4-Ethylphenol und vielen weiteren aromatischen Verbindungen wachsen kann (Rabus *et al.*, 2005; Wöhlbrand *et al.*, 2008). Auch wenn der Abbau dieser Stoffe vorzugsweise anaerob unter Nitrat-Atmung geschieht, ist

Aromatoleum aromaticum EbN1 in der Lage, einige aromatische Verbindungen wie Benzoat und Acetophenon auch aerob zu nutzen (Gescher et al., 2002; Rabus, 2005; Wöhlbrand et al., 2007). Im Gegensatz zum lange bekannten aeroben Abbau von Kohlenwasserstoffen in Bakterien wie *Pseudomonas* und anderen Modellsystemen, die oft mehrere verwandte Substrate über unspezifische Enzyme eines gemeinsamen Abbauwegs umsetzen, zeigte sich für die anaerobe Kohlenwasserstoff-Umsetzung, dass diese Bakterien für fast jedes Substrat individuelle Abbauwege und damit einhergehend individuelle Regulationssysteme entwickelt haben (Champion et al., 1999; Kuhner et al., 2005). Da er genetisch zugänglich und im Vergleich zu verwandten Organismen gut kultivierbar ist, gilt Aromatoleum aromaticum EbN1 als Modellorganismus für diese Studien (Rabus et al., 2005; Wöhlbrand & Rabus, 2009). Interessant ist außerdem, dass er im Gegensatz zu anderen anaeroben Organismen wie Thauera aromatica oder Geobacter sulfurreducens eine vergleichbar hohe Toleranz gegenüber Ethylbenzol, Toluol und phenolischen Verbindungen zeigt wie sie auch bei Pseudomonaden beobachtet wurde (Duldhardt et al., 2007; Trautwein et al., 2008).

Anaerober Abbau von Ethylbenzol

In *Aromatoleum aromaticum* EbN1 wird Ethylbenzol über (*S*)-1-Phenylethanol zu Acetophenon abgebaut, katalysiert von der Ethylbenzol-Dehydrogenase (EbDH) und der Phenylethanol-Dehydrogenase (Ped) (Knack *et al.*, 2012; Kniemeyer & Heider, 2001a; Kniemeyer & Heider, 2001b; Muhr *et al.*, 2015b). Die Acetophenon-Carboxylase (Apc1-5) katalysiert dann die weitere Reaktion zu Benzoylacetat (Jobst *et al.*, 2010), welches mithilfe der Benzoylacetat-CoA-Ligase (Bal) zu Benzoylacetyl-CoA umgesetzt wird und mithilfe einer unbekannten Thiolase über Benzoyl-CoA in den zentralen anaeroben Stoffwechsel eintritt (Abbildung 1). Die Enzyme sind dabei in zwei Genclustern kodiert, dem *ebd-ped* und dem *apc-bal* Operon (Rabus *et al.*, 2002). Diese Operons enthalten dabei jeweils die Gene der ersten beiden Enzyme des Ethylbenzol- bzw. des Acetophenon-Abbaus, allerdings kein Gen für das postulierte letzte Enzym des Stoffwechselwegs, eine Benzoylacetyl-CoA Thiolase. Während die Ethylbenzol-Dehydrogenase sauerstofflabil ist und deshalb Ethybenzol nur anaerob abgebaut wird, können die weiteren Abbau-Schritte sowohl unter aeroben wie anaeroben Bedingungen ablaufen.

Anaerober Abbau von Toluol

Die chemisch sehr ähnliche Verbindung Toluol wird in *Aromatoleum aromaticum* EbN1 über eine Fumarat-addierende Reaktion mithilfe des Glycyl-Radikal-Enzyms (*R*)-Benzylsuccinat-Synthase BSS abgebaut (Beller & Spormann, 1998; Coschigano *et al.*, 1998; Leuthner *et al.*, 1998). Dieses Schlüsselenzym ist in einem Operon kodiert, das sich direkt neben dem *bbs*-Operon befindet, welches für die weiteren Enzyme des Abbaus von Benzylsuccinat kodiert, unter anderem für eine Succinyl-CoA:(*R*)-Benzylsuccinat-CoA-Transferase, die eine β -Oxidations-Sequenz von Benzylsuccinat zu Benzoyl-CoA einleitet (Kube *et al.*, 2004; Leuthner & Heider, 2000).

Anaerober Abbau von Phenol

Phenolische Verbindungen, die in dieser Arbeit von Bedeutung waren, sind Phenol und 4-Ethylphenol, welche unabhängig voneinander abgebaut werden (Schmeling & Fuchs, 2009; Wöhlbrand *et al.*, 2008) (Abbildung 1). Phenol wird, katalysiert durch die Phenylphosphat-Synthase (PpsABC), zu Phenylphosphat aktiviert, das dann mithilfe der Phenylphosphat-Carboxylase (PpcABCD weiter zu 4-Hydroxybenzoat umgesetzt wird. Beide Enzyme wurden im verwandten Organismus *Thauera aromatica* K172 ausgiebig charakterisiert und zeigen in *Aromatoleum aromaticum* EbN1 so hohe Ähnlichkeit, dass man von identischen biochemischen Eigenschaften ausgehen kann (Lack & Fuchs, 1992; Schmeling *et al.*, 2004; Schühle & Fuchs, 2004). 4-Hydroxybenzoat wird anschließend durch die 4-Hydroxybenzoat-CoA-Ligase (HbcL-1) zu 4-Hydroxybenzoyl-CoA aktiviert, welches dann mittels einer Reduktion durch die 4-Hydroxybenzoat-Reduktase (HcrCAB) weiter zum zentralen Intermediat Benzoyl-CoA umgesetzt wird (Biegert *et al.*, 1993; Brackmann & Fuchs, 1993; Breese & Fuchs, 1998).

Anaerober Abbau von 4-Ethylphenol

Neben den Kohlenwasserstoffen Toluol und Ethylbenzol und dem strukturell ähnlichen Phenol baut *Aromatoleum aromaticum* EbN1 auch die phenolischen Verbindungen 4-Cresol und 4-Ethylphenol ab. Obwohl die Abbauwege beider Verbindungen wie der anaerobe Phenol-Abbau in 4-Hydroxybenzoyl-CoA münden und somit formal dieselben Abbauwege wie für Toluol und Ethylbenzol genutzt werden könnten, werden durch beide Substrate wiederum separate und eigenständige Abbauwege induziert. Bei 4-Cresol findet eine zweistufige Oxidation der Methylgruppe über ein Flavocytochrom, die 4-Cresol-Methylenhydroxylase statt, und das generierte Aldehyd wird weiter zu 4-Hydroxybenzoat oxidiert (Bossert & Young, 1986; Londry et al., 1999; Rudolphi et al., 1991), während der Abbauweg bei 4-Ethylphenol durch ein sehr ähnliches aber distinktes Enzym, die Ethylphenol-Methylenhydroxylase PchCF eingeleitet wird (Muhr et al., 2015b; Wöhlbrand et al., 2008). Die zugehörigen Gene sind in einem Cluster zu finden, das für 13 weitere Gene kodiert, die offenbar für den 4-Ethylphenol-Abbau notwendig sind. Ein Abbauweg wurde postuliert, bei dem 4-Ethylphenol zunächst zu 1,4-Hydroxyphenylethanol hydroxyliert wird, das dann mithilfe zweier stereospezifischer Alkohol-Dehydrogenasen ChnA und EbA309 zu 4-Hydroxyacetophenon umgewandelt wird, welches auch als alleinige Kohlenstoffquelle in Aromatoleum aromaticum EbN1 fungieren kann (Abbildung 1). Es wird angenommen, dass 4-Hydroxyacetophenon dann von einem neuen Typ Carboxylase weiter verstoffwechselt wird. Diese Carboxlase wird als XccBCA bezeichnet, ist Biotinabhängig und konnte spezifisch in Kulturen von Aromatoleum aromaticum EbN1auf 4-Ethylphenol nachgewiesen werden (Muhr et al., 2015b; Rabus et al., 2014; Wöhlbrand et al., 2008). Ob XccBCA tatsächlich die Carboxylierung von 4-Hydroxyacetphenon zu 4-Hydroxybenzoylacetat katalysiert, konnte jedoch bisher nicht im Detail nachgewiesen werden. Es ist jedoch weiter davon auszugehen, dass die im selben Operon kodierten Enzyme AcsA (Acetoacetyl-CoA-Synthetase), TioL (Thiolase) und EbA305 (eventuell eine kleine Untereinheit der Thiolase) auch eine Rolle bei der weiteren Umsetzung dieses Intermediats zu 4-Hydroxybenzoyl-CoA spielen. Dieses würde dann auch mittels der 4-Hydroxybenzoyl-CoA-Reduktase über Benzoyl-CoA in den zentralen Stoffwechsel eintreten und damit eine weitere Überschneidung zum Phenol-Abbau darstellen (Abbildung 1).

Abbau von Benzoat

Der weitere Abbau von Benzoyl-CoA findet sich in allen hier behandelten Substraten wieder und zeigt gleichzeitig den Abbauweg von Benzoat als alleiniger Kohlenstoffquelle. *Aromatoleum aromaticum* EbN1 hat, genauso wie die meisten

anderen verwandten β-Proteobakterien, jeweils für den aeroben und den anaeroben Benzoat-Abbau separate Abbauwege, die an unterschiedlichen Stellen im Genom in zwei unabhängigen Operons mit jeweils einem eigenen Regulator kodiert sind (Rabus et al., 2005; Valderrama et al., 2011; Wöhlbrand et al., 2007). Zur Aktivierung von Benzoat zu Benzoyl-CoA sind im Genom von Aromatoleum aromaticum EbN1 zum Beispiel zwei Gene zu finden, die jeweils für eine "aerobe" und eine "anaerobe" Benzoat-CoA-Ligase (BcIA) kodieren. Die jeweiligen Genloci sind ebA5301, welcher sich in direkter Nähe zu den anaeroben Benzoat-Abbaugenen befindet, und ebA2757, welcher wiederum direkt neben den Genen für den aeroben Benzoat-Abbau liegt (Wöhlbrand et al., 2007). Im Organismus Magnetospirillum sp. TS-6 gibt es dagegen nur eine Benzoat-CoA-Ligase für beide Wachstumsbedingungen (Kawaguchi et al., 2006), wohingegen der nahverwandte Organismus Thauera aromatica K172 ebenfalls zwei BclA-Enzyme besitzt, von denen eines unter aeroben und das andere unter anaeroben Bedingungen genutzt wird (Schühle et al., 2003). Das gebildete Benzoyl-CoA wird nach dieser Aktivierung dann entweder anaerob oder aerob abgebaut (Abbildung 1). Beim anaeroben Abbau wird der aromatische Ring zu einem nicht mehr aromatischen Cyclohexadien-System reduziert, das anschließend über eine modifizierte β-Oxidation weiter umgesetzt und schließlich hydrolytisch gespalten wird (Boll & Fuchs, 1995; Boll et al., 2000; Harwood et al., 1998). Der aerobe Abbau verläuft über den gut aufgeklärten Weg der Anlagerung von molekularem Sauerstoff über eine spezielle Benzoyl-CoA-Oxygenase, die zunächst ein Epoxid-Derivat von Benzoyl-CoA produziert (Boll & Fuchs, 1995; Boll et al., 2000; Breese et al., 1998; Fuchs et al., 2011). Da Benzoyl-CoA das gemeinsame zentrale Intermediat beim Abbau der meisten aromatischen Substrate darstellt und die weiteren Enzyme des Abbauwegs immer vorhanden sein müssen, ist eine Benzoat-abbauende Kultur für Experimente zur Induktion der Abbauwege anderer aromatischer Verbindungen eine ideale Kontrolle.

Beschriftung auf der nächsten Seite

Abbildung 1: Darstellung der Abbauwege, deren Regulation im Fokus dieser Arbeit steht. Verbindungen, die in blau dargestellt sind, wurden als alleinige Kohlenstoffguelle zum Wachstum für Aromatoleum aromaticum EbN1 verwendet. Grün hinterlegt: anaerober Stoffwechsel, weiß hinterlegt: aerober Stoffwechsel. EbN1 ist fähig Acetophenon aerob und anaerob abzubauen. Chemische Verbindungen: 1: Benzoat, 2: Benzoyl-CoA, 3: Cyclohex-1,5-dien-1-Carbonyl-CoA, 4: 6-Hydroxycyclohex-1-en-1-Carbonyl-CoA, 5: 6-Oxocyclohex-1-en-Carbonyl-CoA, 6: 3-Hydroxypimelyl-2,3-Dihydroxy-4,6-dien-Cyclohexylcarbonyl-CoA, 8: 2-Oxo-3-hydroxy-5-en-CoA, 7: Cyclohexylcarbonyl-CoA, 9: β-En-Adipyl-CoA, 10: Ethylbenzol, 11: (S)-1-Phenylethanol, 12: Acetophenon, 13: Benzoylacetat, 14: Benzoylacetyl-CoA, 15: 4-Ethylphenol, 16: 1.4-Hydroxyphenylethanol, 17: 4-Hydroxyacetophenon, 18: 4-Hydroxybenzoyl-CoA, 19: Phenol, 20: Phenylphosphat, 21: 4-Hydroxybenzoat. Enzyme: EbDH: Ethylbenzol-Dehydrogenase, Ped: (S)-1-Phenylethanol-Dehydrogenase, Apc: Acetophenon-Carboxylase, Bal: Benzoylacetat-CoA-Ligase, PchCF: 4-Ethylphenol-Methylenhydroxylase, ChnA und EbA309: stereospezifische Alkohol-Dehydrogenasen, Pps: Phenylphosphat-Synthetase, Ppc: Phenylphosphat-Carboxylase, HbcL-1: 4-Hydroxybenzoat-CoA-Ligase, HcrCAB: 4-Hydroxybenzoyl-CoA-Reduktase, BcIA: Benzoat-CoA-Ligase (EbA5301: anaerob, EbA2767: aerob), BcrCBAD: Benzoyl-CoA-Reduktase, Dch: Cyclohexa-1,5-dien-1-Carbonyl-CoA-Hydratase, Had: 6-Hydroxycyclohex-1-en-1-carbonyl-CoA-Dehydrogenase, Oah: 6-Oxocyclohex-1-en-1-Carbonyl-CoA-Hydrolase, BoxAB: Benzoyl-CoA-Oxygenase, BoxC: Enoyl-CoA-Hydratase/Isomerase, BoxZ: Aldehyd-Dehydrogenase

1.2 Das Genom von Aromatoleum aromaticum EbN1 impliziert eine hohe Spezifität in der Regulation der anaeroben Abbauwege

σ^{54} -abhängige Regulation

Für die in dieser Arbeit relevanten Abbauwege sind zwei Arten von Regulationssystemen interessant: Einmal die σ^{54} -abhängige Regulation und zum anderen Zweikomponenten-Systeme.

Die Abbauwege für phenolische Verbindungen werden mit Einkomponenten-Systemen, die σ^{54} -abhängig sind, assoziiert. Direkt neben den Operons, die für Proteine für den Abbau von Phenol und 4-Ethylphenol kodieren, befindet sich jeweils ein Gen, das für klassische XylR-ähnliche Regulatoren kodiert (Abbildung 2). Die Gene sind hier als *pdeR* (*phenol degradation regulator*) und *etpR* (*ethylphenol degradation regulator*) annotiert. Zur Transkription von mRNA wird neben der RNA-Polymerase einer von mehreren möglichen σ -Faktoren benötigt, die zusammen ein Holoenzym bilden (Burgess, 1969; Burgess *et al.*, 1969). Diese σ -Faktoren bewirken bei der Transkription durch verschiedene Promotoren unterschiedliche Spezifitäten zur Bindung der jeweiligen DNA-Sequenzmotive (Gourse et al., 2006). Es gibt mehrere Hauptklassen für σ -Faktoren. Zum einen gibt es darunter die Klasse der σ^{70} -Faktoren, die mit der Transkription der Haushaltsgene assoziiert wird (Kazmierczak et al., 2005), zum anderen die wesentlich kleinere Klasse der σ^{54} -Faktoren, welche grob als Stressund Mangel-Faktoren umschrieben werden können (Model et al., 1997; Reitzer & Schneider, 2001). Die σ^{54} -Faktoren unterscheiden sich von σ^{70} -Faktoren vor allem durch den Mechanismus der Transkriptionsinitiation. Zur Bindung des Holoenzyms (RNA-Polymerase + σ^{54}) an den Promotor, der allgemein mit einem -24(GG)/-12(GC)-Motiv konserviert ist, muss dieser zunächst geöffnet werden, was nicht ohne einen Aktivator funktioniert (Johnston & Downie, 1984; Vidangos et al., 2013). Der Aktivator, der ein Substrat erkennt (z.B. sensiert der Regulator XvIR aus Pseudomonas putida m-Xylol), bindet an die UAS (upstream activating sequence) und öffnet die Region des Promotors unter ATP-Hydrolyse (Inouye et al., 1985). Diese Gruppe von Regulatoren besteht hauptsächlich aus drei Domänen (Studholme & Dixon, 2003) (Anhang: Abbildung 30). Die Sensor-Domäne erkennt und bindet das Substrat, die ATPase-Domäne wird nach Bindung des Substrats und anschließender Konformationsänderung des Proteins frei und wirkt aktivierend und die Helix-Turn-Helix (HTH)-Domäne ist schließlich für die DNA-Bindung an die UAS wichtig.

Es wurde parallel zu dieser Arbeit gezeigt, dass eine Deletion des Gens *etpR* neben dem 4-Ethylphenol-Abbauoperon zum Verlust der Fähigkeit von *Aromatoleum aromaticum* EbN1 führt, auf 4-Ethylphenol und 4-Hydroxyacetophenon zu wachsen (Büsing *et al.*, 2015a). Zweikomponenten-Systeme scheinen hingegen als Regulationssysteme für den Abbau aromatischer Kohlenwasserstoffe in *Aromatoleum aromaticum* EbN1 zu fungieren.

 σ^{54} - abhängige Regulation Substrat XyIR ATPase HTH Regulator σ^{54} Phenol 4-Ethylphenol DNA ppcBCAD ppsABC XCCBCA ppcY ppcX pchFC chnA ebA309 Zweikomponenten Systeme Substrat ΗK PAS Sensor Phosphorylierung RR HTH Acetophenon Ethylbenzol Regulator σ^{70} DNA ebdABCD apc12345 adiRS ediSR bal ped

Abbildung 2: verallgemeinerte Modelle für die σ^{54} -abhängigen Regulationen vom Abbau von Phenol und 4-Ethylphenol (oben) und für die Zweikomponenten-Systeme, die als Regulationssysteme für den Abbau von Ethylbenzol und Acetophenon (unten) postuliert wurden. Hellblau hinterlegt: putative und postulierte Gene, die für mögliche Regulatoren kodieren. XyIR: Substrat-Bindedomäne, die ähnlich zu der Bindedomände des gut untersuchten Regulators XyIR ist; ATPase: Domäne, die durch ATP-Verbrauch eine Aktivierung einleitet; HTH: Helix-Turn-Helix-Domäne, die spezifisch an DNA bindet; PAS: Sensor-Domäne; HK: Histidinkinase; RR: Antwort-Domäne. Die Einkomponenten-Systeme sind σ^{54} -abhängig; Zweikomponenten-Systeme sind σ^{70} -abhängig. Ein detailierterer Aufbau der einzelnen Regulatoren ist im Anhang in Abbildung 30 zu finden.

Zweikomponenten-Systeme

Erstmals wurde ein Zweikomponenten-System durch Ninfa and Magasanik (1986) beschrieben (Ntr-Regulon), nämlich das Regulationssystem der Antwort auf die Anwesenheit von Stickstoff in *Escherichia coli*. Dieses System war der Vorreiter

22

anhand dessen in anderen Bakterien, aber inzwischen auch in Eukaryoten Gene für Zweikomponenten-Systeme identifiziert werden konnten. Seitdem wurde einerseits gezeigt, dass E. coli mit mehr als 30 verschiedener solcher Systeme einen Großteil seiner Regulation bestreitet (Barakat et al., 2009) während andererseits Saccharomyces cerivisiae nur ein einziges Zweikomponenten-System dieser Art zu besitzen scheint (Brown et al., 1994). Ein einfaches Beispiel für ein Zweikomponenten-System ist das EnvZ-OmpR-System, das auf Veränderungen der Osmolarität reagiert (Pratt & Silhavy, 1995). Die Regulation erfolgt hier über zwei Proteine, die sich über Phosphorylierung beeinflussen. Das erste Protein EnvZ ist membranassoziiert und besitzt an seinem N-Terminus eine Sensor-Domäne, die Veränderungen in der Osmolarität in der Umgebung wahrnimmt. Je nach Situation wirkt die Sensor-Domäne auf die Autophosphorylierung der sich am C-Terminus befindenden Histidinkinase-Domäne ein. Diese Autophosphorylierung findet an einem Histidinrest statt, nutzt ATP als Phosphatdonator und ist namensgebend für die Proteinklasse. Die Phosphorylierung wird dann an einen Aspartatrest weitergegeben, der sich an der , Receiver'-Domäne des cytosolischen Regulationsproteins OmpR befindet. Die Phosphorylierung führt zu einer Konformationsänderung in der DNA-Bindedomäne (ein Helix-Turn-Helix-Motiv) und das Protein bindet spezifisch an die Promotorregion der regulierten Gene ompF und ompC. Diese kodieren für zwei Porine. An dieser Stelle muss gesagt werden, dass Zweikomponenten-Systeme natürlich nicht alle gleich sind und nicht exakt wie oben beschrieben funktionieren. Auch in diesem Fall hat sich später gezeigt, dass die Regulation weniger linear verläuft und viel mehr in ein komplexes Regulations-Netz integriert ist (lgo et al., 1989). Es gibt Beispiele, bei denen eine Histidinkinase in Zusammenhang mit mehreren Regulationsproteinen steht (CheA-CheY/CheB-System in *E. coli* (Bourret *et al.*, 1991)) und umgekehrt (CreC/PhoR-PhoB-System in *E. coli* (Wanner, 1994)). Außerdem ist nicht in jedem Zweikomponenten-System das Histidinkinase-Protein an die Cytoplasmamembran gebunden und manche der Kinasen besitzen eine Phosphatase-Aktivität (EnvZ in *E. coli* (Hsing & Silhavy, 1997)). Auch die klassische Form des Histidinkinase-Proteins muss nicht zwingend sein: Manche Organismen haben Hybridformen entwickelt, die eine mehrstufige Phosphorylierung vor der Phosphorylierung des Regulatorproteins vorsehen (Alvarez & Georgellis, 2010).

In Aromatoleum aromaticum EbN1 finden sich 38 putative Histidinkinasen und 49 putative Regulatorproteine (Barakat et al., 2009; Rabus et al., 2005), die eine

Verbindung zu einem Zweikomponenten-System haben könnten. Wie bei vielen verwandten Organismen, die ein bss-Operon enthalten, das für die Benzylsuccinat-Synthase kodiert und essentiell für den anaeroben Toluol-Abbau ist, sind auch bei Aromatoleum aromaticum EbN1 in umgekehrter Orientierung die Gene für ein Zweikomponenten-System, benachbartes putatives genannt TdiRS (toluene degradation inducer) zu finden (Achong et al., 2001; Coschigano et al., 1998; Heider & Rabus, 2008; Kube et al., 2004; Leuthner & Heider, 1998; Rabus, 2005; Rabus et al., 2005). Im Genom finden sich außerdem direkt zwischen den Genclustern für den Abbau von Ethylbenzol und Acetophenon zwei weitere putative Zweikomponenten-Systeme wieder, die für die Regulation der jeweiligen Abbauwege verantwortlich gemacht wurden und entsprechend als EdiRS (ethylbenzene degradation inducer) und AdiRS (acetophenone degradation inducer) bezeichnet wurden (Abbildung 2). In allen drei Fällen sind die Regulatorproteine TdiR, EdiR und AdiR strukturell gleich aufgebaut (Pfam 30.0, Anhang: Abbildung 30). Sie besitzen alle eine Antwort-Domäne und ein Helix-Turn-Helix-Motiv. Die Sensorproteine hingegen variieren in ihrem Aufbau (Anhang: Abbild 30). AdiS besitzt nur eine PAS-Domäne, wohingegen EdiS und TdiS jeweils zwei besitzen. Es wurde spekuliert, dass die zweite Domäne Sauerstoff sensiert und eine Induktion nur bei Abwesenheit einleitet, da Aromatoleum aromaticum EbN1 Toluol und Ethylbenzol strikt anaerob abbaut (Champion et al., 1999; Heider et al., 1998; Rabus & Widdel, 1995). Alle drei haben eine klassische Histidinkinase-Domäne. Die theoretische Hypothese hinter diesen Zweikomponenten-Systemen beinhaltet, dass das jeweilige abzubauende Substrat (Toluol, Ethylbenzol und Acetophenon) vom postulierten Sensor (TdiS, EdiS und AdiS) wahrgenommen wird und es zu einer Phosphorylierung des Regulatorproteins (TdiR, EdiR und AdiR) kommt Dieses aktiviert wiederum die Transkription (Abbildung 2). des jeweiligen Abbauoperons. Inwiefern diese postulierten Regulationssysteme wirklich für das jeweilige Operon zuständig sind, bleibt noch im Detail zu klären (Kraushaar, 2010; Muhr, 2016).

1.3 Zielsetzung der Arbeit

Ziel dieser Arbeit war es zum einen, die σ^{54} -abhängigen Regulationssysteme PdeR und EtpR näher zu charakterisieren. Es sollte gezeigt werden, dass der Abbau des jeweiligen Substrates (Phenol oder 4-Ethylphenol) durch diese beiden Regulatoren in Aromatoleum aromaticum EbN1 kontrolliert wird. Dazu sollten die zugehörigen Gene chromosomal integriert und somit das kodierte, funktionelle Protein unterbrochen werden. Zum anderen sollte die Regulation auf ihre Spezifität durch Reportergen-Studien und die transkriptionellen Startpunkte der Operons untersucht werden (Muhr et al., 2015a). Erste Studien des Zweikomponenten-Systems AdiRS durch Enrico Muhr (2016) lassen auf ein komplexes Regulationsnetzwerk schließen, das durchaus auf Uberschneidungen der Abbauwege zwischen den sehr ähnlichen Substraten hindeutet (Muhr et al., 2015b) und die zuvor postulierten, linearen Thesen in Frage stellt (Rabus et al., 2014). Auf Basis dieser Ergebnisse sollte als zweites Ziel die Methode der RNA-Sequenzierung etabliert werden. Ein Einblick in das globale Transkriptom von Aromatoleum aromaticum EbN1, welches auf verschiedenen Substraten kultiviert wurde, sollte weitere Information zur Regulation geben. Außerdem sollten damit neue Hinweise auf die Wirkung der Substrate auf den Organismus gewonnen werden.

2. Material und Methoden

2.1 Stämme, Plasmide und Oligonukleotide

Stamm	Genotyp/Phänotyp	Referenz
Escherichia coli		
DH5a <i>mcr</i>	F- endAl hsdRJ7 (r-, mit)	(Grant et al., 1990)
	supE44 thi-J ArecAl	
	gyrA96 relAI deoR	
	A(lacZYA-argF)- U169	
	480dlacZAM15	
WM3064	thrB1004 pro thi rpsL hsdS	(Dehio & Meyer, 1997)
	<i>lacZ</i> ⊿M15 RP4-1360	
	Δ (araBAD)567	
	∆dapA1341::erm pir(wt)]	
Aromatoleum aromaticum	ı EbN1	
WT	Wildtyp	(Rabus et al., 2005)
SR7	Spontane Mutante isoliert	(Wöhlbrand & Rabus,
	nach Wachstum auf	2009)
	Streptomycin	
IMetpR	Integrationsmutante von	Diese Arbeit
	etpR	
IMpdeR	Integrationsmutante von	Diese Arbeit
	pdeR	
AcsA-mCherry	SR7, chromosomale	Diese Arbeit
	Integration von pK19-	
	<i>ac</i> sAmChy'	
PpsA-mCherry	SR7, chromosomale	Diese Arbeit
	Integration von pK19-	
	<i>ppsA</i> mChy'	

Tabelle 1: verwendete Stämme und deren Genotyp/Phänotyp

Tabelle 2: verwendete Plasmide

Plasmid	Eigenschaft	Referenz
pK19 <i>mobsacB</i>	Km ^R ; pMB1ori <i>,</i> sacB lacZα, mob	(Schäfer et al., 1994)
	(oriTRP4)	
pK19-pdeR2-KI	Basierend auf pK19 <i>mobsacB</i> , mit 548	Diese Arbeit
	Bp langen Mittelstück aus etpR, mit	
	EcoRI in die MCS kloniert	
pK19-pdeR1-KI	Basierend auf pK19 <i>mobsacB</i> , mit 632	Diese Arbeit
	Bp langen Mittelstück aus pdeR, mit	
	BamHI in die MCS kloniert	
pK19CHY	Basierend auf pK19 <i>mobsacB</i> ,	(Muhr <i>et al.</i> , 2015a)
	zusätzlich mit mCherry (ohne	
	Startcodon) versehen	
pK19-PRacsAmChy	Basierend auf pK19ChY, mit HindIII	Diese Arbeit
	und Xbal die ersten 120 Bp von acsA	
	vor mCherry kloniert	
pK19-PRppsAmChy	Basierend auf pK19CHY, mit HindIII	Diese Arbeit
	und Xbal die ersten 120 Bp von <i>ppsA</i>	
	vor mCherry kloniert	
pEntry	Km ^R	IBA (Göttingen)
pEntry-bcr	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von <i>bcrC</i> kloniert	
pEntry-phe	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von <i>ppsA</i> kloniert	
pEntry-etp	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von acsA kloniert	
pEntry-Pex-ebA335	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von ebA335 kloniert	
pEntry-Pex-ebA5768	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von ebA5768 kloniert	
pEntry-Pex-ebA1936	Basierend auf pEntry, mit Lgul die	Diese Arbeit
	Promotorregion von ebA1936 kloniert	

Bezeichnung	Sequenz	
pdeR1-BamHI-for	AAA <u>GGATCC</u> GCAGGACATGACCGACATG	
pdeR1-BamHI_rev	AA <u>GGATCC</u> ACCAGCGGACGGTC	
pdeR2-EcoRI_rev	AA <u>GAATTC</u> GAACAAGACAGTAGCGT	
pdeR2-EcoRI-for	AAA <u>GAATTC</u> CTGTCCGCGCTGTACAAGGC	
PRppsA-mChy-HindIII-	AAA <u>AAGCTT</u> GGGTGCGCACGAGTTCGG	
for		
PRppsA'-Xbal-rev	AAA <u>TCTAGA</u> GCGCTGCGGGTCGTCGGTG	
PRacsA-mChy-HindIII-	AAA <u>AAGCTT</u> GCATAATCGCCAAG	
for		
PRacsA'-Xbal-rev	AAA <u>TCTAGA</u> CGCAAATTTCAGCTTACGGG	
pdeR2-BamHI-for	AA <u>GGATCC</u> GCCACTTGGCGATT	
PdeR2short_rev	AA <u>GCTCTTCACCC</u> AAGTCGAATAGGGTACAC	
pdeR2_Lgul_for	AA <u>GCTCTTCAATG</u> ATAAAGAACAAGGACAGGGC	
pdeR2_Lgul-rev	AA <u>GCTCTTCACCC</u> ACTCTCGCCTTCAGCGAGCTTG	
pdeR1-HindIII_for	A AAGCTT ACAAGCTCCAAGACGTG	
PdeR1short_rev	AA <u>GCTCTTCACCC</u> AATATTGATCGGGTAGGCGT	
pdeR_Lgul_for	AA <u>GCTCTTCA</u> ATGACCAAAGCTCCAAGACGTGAG	
pdeR_Lgul_rev	AA <u>GCTCTTCACCC</u> AGATTCGACGCTCCCCGGCTC	
pEntry_rev	CCCCTGATTCTGTGGATAACCG	
pHyb(Nde)rev	GGTTTTCCCAGTCACGACG	
Pex-bcr- for	AAGCTCTTCAATGGTGTCACCGGTCGTGCCAGC	
Pex-bcr- rev	AA <u>GCTCTTCACCC</u> GGCAATCAGCAATTCCTCGGCAG	
Bcr-rev-Label	(DY-781)-CATCGAACTATCTCCTCTGATTTATC	
Pex-etp-for	AA <u>GCTCTTCAATG</u> CGAAATGTCTCCTGAACCCTG	
Pex-etp- rev	AA <u>GCTCTTCACCC</u> GCACGAGGGCGCTGCCGATGC	
Etp-rev-label	(DY-781)-CGCGTTCGTTACCCAGTCGGCG	
Pex-phe- for	AAGCTCTTCAATGGATCGCTTGTTCTACGCGTCGC	
phe_Lgul-rev	AA <u>GCTCTTCACCC</u> CCTTCTCGTACTGGTTGCGCT	
Phe-rev-Label	(DY-781)-GCTCCCAGCCTTCGGTCCCCG	
PexEbA1936-Lgul-for	AA <u>GCTCTTCAA</u> TGTCGTTTGTGATCAGACCATC	
ebA1936-Lgul-rev	AA <u>GCTCTTCACCC</u> CTGAAGATCACGGCGATGAG	

Tabelle 3: verwendete Oligonukleotide. Unterstrichen und Fett: Sequenz der Schnittstellen

ebA1936-Label-rev	GTAGAGAATTGGCTTCACTG
ebA335-Lgul-rev	AA <u>GCTCTTCACCC</u> CGACACGCCAGCTCGCATTG
ebA335/5768-Lgul-for	AA <u>G CTC TTC ACC C</u> CG ACACGCCAGCTCGCATTG
ebA335-Label-rev	(DY-781)-GTTGTTATTTGCCCTTTAG
ebA5768-Lgul-for	AA <u>GCTCTTCA</u> GCAGCTACGCATCCATATAC
ebA5768-Label-rev	(DY-781)-GGATGGCCGGGTCAATGAAC

2.2 Nährmedien

Medien für Aromatoleum aromaticum EbN1

Aromatoleum aromaticum EbN1 wurde auf zwei verschiedenen Minimalmedien kultiviert. Das erste Medium hat eine Carbonat-Pufferung und wird in dieser Arbeit mit MM abgekürzt. Dieses Medium ist das Standardmedium für alle Wachstums- und Kultivierungsbedingungen. Da Carbonat jedoch schnell unter aeroben Bedingungen als CO₂ aus dem Medium entweicht, wurde für die Kultivierung auf Festmedium und die Konjugationen ein Kaliumphosphat-gepuffertes Medium verwendet. Dieses Medium wird hier mit NM abgekürzt. (Tabelle 4)

Medien für Escherichia coli

E. coli wurde in LB (*lysogeny broth*)-Medium (Trypton: 10 g/l,Hefeextrakt: 5 g/l, NaCI: 10 g/l) (Bertani, 1951). Diesem Medium wurden 15 g/l Agar (AppliChem, Darmstadt) für die Herstellung von Festmedium zugesetzt.

MM (Mineralsalz-Medium)		NM (Normal-Medium)	
KH2PO4	0,5 g/l	Na2SO4	0,23 g/l
NH4CI	0,3 g/l	NaCl	1 g/l
MgSO ₄	0,5 g/l	NaNO ₃	2,55 g/l
CaCl ₂	0,1 g/l	NH4	1,6 g/l
		CI	
NaNO ₃	0,29 g/l	Für Platten: Agar (Applichem)	20 g/l
Paraffinöl (abhängig von der	2 %	Für Mating-Agar: Trypton	10 g/l
Kohlenstoffquelle)			
	Nach dem A	utoklavieren	I
NaHCO ₃	40 mM	K2HPO4 [1 M]	16 ml/l
HCI	Auf pH 7	KH2PO4 [1 M]	4 ml/l
	einstellen		
Spurenelemente SL10	1 ml/l	MgCl2 [1,6 M]	1 ml/l
(1000-fach)			
Vitamine VL7 (1000-fach)	1 ml/l	CaCl ₂ [0,2 M]	1 ml/l
		Spurenelemente SL10 (1000-	1 ml/l
		fach)	
		Vitamine VL7 (1000-fach)	1 ml/l
		Selen-Wolfram-Lösung [1 M]	1 ml/l
		Für Mating-Agar:	Jeweils
		Pyruvat [1 M]	5 ml/l
		Acetat [1 M]	

Tabelle 4: Zusammensetzung der Medien zur Anzucht von Aromatoleum aromaticum EbN1

Spurenelemente SL10		Vitamine VL7	
Na ₂ -EDTA	5,2 mg/l	4- Aminobenzoesäure	80 mg / I
		(Vitamin H₁)	
FeSO4 · 7H2O	2100 mg/l	Ca-D (+) - Pantothenat	100 mg / I
H3BO4	30 mg/l	Cyanocobalamin (Vitamin	100 mg / I
		B12)	
MnCl ₂ · 4H ₂ O	100 mg/l	D (+)- Biotin	20 mg / l
CoCl ₂ · 6H ₂ O	190 mg/l	Nikotinsäure	200 mg / I
NiCl2 · 6 H2O	24 mg/l	Pyridoxamin · HCI (Vitamin B6)	300 mg / I
CuSO4 · 5 H2O	29 mg/l	Thiamindichlorid (Vitamin B1)	200 mg / I
ZnSO4 · 7 H2O	144 mg/l		
Na2MoO4 · 2 H2O	36 mg/l		

Kohlenstoffquellen

Von den verschiedenen Kohlenstoffquellen wurden Stammlösungen angefertigt, die autoklaviert wurden. Dazu gehörten 1 M Benzoat, 1 M Phenol, 40 mM 4-Ethylphenol, 0,5 M 4-Hydroxyacetophenon, 0,5 M 4-Hydroxybenzoat. Die aromatischen Kohlenwasserstoffe Ethylbenzol, Acetophenon und Toluol wurden direkt eingesetzt (Lösungen sind ca. 8 M). Die Endkonzentration betrug für Benzoat bis zu 4 mM und für alle anderen Substrate bis zu 1 mM. Das Medium wurde mit 2 % Paraffinöl überschichtet, wenn das Substrat eine toxisch ist.

Antibiotika

Den Medien wurde das jeweils benötigte Antibiotikum aus einer Stocklösung (1000 x) zugesetzt. In den Antibiotika-Stocks wurde das Antibiotikum in Wasser gelöst und steril filtriert, mit Ausnahme von Chloramphenicol, welches in 70 % Ethanol gelöst wurde. Die Stammlösungen lagerten bei -20 °C.

Antibiotikum	Endkonzentration
Kanamycin	50 μg/ml
Chloramphenicol	bis zu 30 µg/ml
Streptomycin	50 μg/ml
Ampicillin	100 μg/ml

Tabelle 6: verwendete Antibiotika mit Endkonzentration verwendet für Aromatoleum aromaticum EbN1 und Escherichia coli

Kultivierungsbedingungen und Stammhaltung

Die Kultivierung von *E. coli* erfolgte bei 37 °C, die von *Aromatoleum aromaticum* EbN1 bei 28 °C. Flüssigkulturen wurden bei ~125 rpm geschüttelt. Die Zelldichte konnte durch die Lichtstreuung bei einer Wellenlänge von 578 nm (OD₅₇₈) bestimmt werden, wofür das Spektrometer Cary 60 UV-Vis (Agilent, Santa Clara, Kalifornien, Vereinigte Staaten) benutzt wurde.

Wachstumstests

Zur Charakterisierung von Wachstumsphänotypen mit verschiedenen Substraten wurde die zu testende Kultur auf MM angeimpft und auf eine Start-OD₅₇₈ von 0,01 eingestellt. Jede Kultur wurde nur einmal zu Anfang mit dem jeweiligen Substrat versetzt und danach kein weiteres Substrat mehr zugegeben. Über einen Zeitraum von mehreren Stunden bzw. Tagen wurde die optische Dichte bestimmt. Die Kulturen wurden unter sanftem Schütteln und bei 28 °C inkubiert.

2.3 Molekularbiologische Methoden

Plasmidpräparation

Die Isolierung von Plasmid-DNA aus *E. coli* wurde mit Hilfe des GeneJet Plasmid Miniprep Kit (Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) durchgeführt. Dazu wurde eine 3 ml LB-Vorkultur *E. coli*, die über Nacht bei 37°C geschüttelt worden war, genutzt. Diese Methode kombiniert die alkalische Lyse der Bakterienzelle nach Birnboim and Doly (1979) mit der Aufreinigung der Plasmid-DNA durch Bindung an eine Kieselgel-Matrix, die sich in einer kleinen Säule befindet. Die Präparation erfolgte nach Herstellervorgaben. Die auf diese Weise erhaltene DNA konnte für weitere Experimente einschließlich der Sequenzierung verwendet werden.

Restriktion und Ligation

Der enzymatische Verdau der DNA wurde durch Restriktionsendonukleasen der Firma Thermo Fisher Scientific (Waltham, Massachusetts, Vereinigte Staaten) in dem mitgelieferten Puffer durchgeführt. Bei der analytischen Spaltung von Plasmiden und PCR-Fragmenten wurden 100-500 ng DNA-Fragment oder Plasmid und 10-20 U Restriktionsenzym eingesetzt. Die Ansätze wurden bei 37 °C für 5-30 min inkubiert und über ein 1 %-iges Agarose-Gel bei 5 V/cm (Sambrook *et al.*, 1989) in TAE-Puffer (40 mM Tris-Acetat, 1 mM EDTA; pH 8,3) aufgetrennt.

Für die Ligation wurden die gewünschte Menge Insert und linearisiertes Plasmid (Verhältnis: 5:1) zusammengegeben und in dem SpeedVac Concentrator (früher: Savant; Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) getrocknet. Die getrocknete DNA wurde in 14,5 µl H2O gelöst und mit 2 µl ATP (10 mM), 2 µl 10x Ligase-Puffer und 1,5 µl T4 DNA Ligase (Thermo Fisher Scientific Waltham, Massachusetts, Vereinigte Staaten) versetzt. Der Ansatz wurde entweder für 2 Stunden bei RT oder ÜN bei 16 °C inkubiert. Anschließend wurde die DNA mit 500 µl 1-Butanol gefällt. Dazu wurde das Gemisch 30 Minuten bei 4°C und 130000 Fresco 17 Centrifuge, Thermo rpm (Heraeus Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) zentrifugiert. Anschließend wurde das Pellet mit 500 µl eiskaltem Ethanol (70 %, v/v) gewaschen und in einem SpeedVacConcentrator (früher: Savant; Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) getrocknet. Das in 8 µl H2O resuspendierte Pellet wurde vollständig in eine Elektroporationsreaktion eingesetzt.

Agarose-Gelelektrophorese und Isolierung von DNA

Zur Präparation von DNA und für Restriktionsanalysen wurde die DNA in TAE-Agarosegelen aufgetrennt (Sambrook *et al.*, 1989). Die Spannung bei der elektrophoretischen Auftrennung betrug 5 V/cm. Die Proben wurden mit einem 10x Gel-Beladungspuffer (0,25 % Bromphenol Blau, 40% (w/v) Saccharose in Wasser) vermischt und auf das Gel aufgetragen. Als Größenstandard diente in der Regel der GeneRuler DNA Ladder Mix (Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten), von dem ca. 5 µl aufgetragen wurden. Danach wurde das Gel für 10 Minuten in einer wässrigen Lösung mit Ethidiumbromid (1 µg/ml) inkubiert. Die DNA wurde unter einer GelDoc EZ Imager (Bio-Rad) nachgewiesen und bei Bedarf mithilfe des NucleoSpin® Gel und PCR Clean-up Kits (Macherey- Nagel, Düren) nach der Anleitung der Hersteller aus dem Agarosegel isoliert.

Polymerase - Kettenreaktion (PCR)

Zur Amplifizierung von DNA wurde die Polymerase-Kettenreaktion eingesetzt. Die Amplifizierung von DNA-Fragmenten zur Kontrolle von Genotypen, sowie zur Amplifizierung von Fragmenten für den Einbau in Plasmide wurde mit einer selbsthergestellten Phusion-Polymerase durchgeführt. Von biomers.net GmbH (Ulm) wurden die benötigten Oligonukleotide bezogen. Diese wurden auf eine Konzentration von 100 pmol/µl eingestellt und daraus Arbeitskonzentration von 1/10 hergestellt.

PCR-Ansatz:

	Einsatz	Endkonzentration
5x Phusion-GC-Puffer	4 µl	1x
10 mM dNTPs	0,4 µl	200 µM
10 µM Forward-Primer	1 µl	0,5 μM
10 µM Reverse-Primer	1 µl	0,5 µM
DNA	konzentrationsabhängig	Bis zu 250 ng
DMSO	0,6 µl	3 %
Phusion-DNA-	0,2 µl	~1 U/50 µl PCR Ansatz
Polymerase		
H ₂ O	Auffüllen auf 20 µl	

Tabelle 7: Standard-PCR Ansatz, der als Grundlage für alle PCRs verwendet wurde

Die "*annealing*"-Temperatur für die PCR-Amplifikation ergab sich aus der Sequenz der jeweiligen Primer. Die PCR wurde in den Thermocyclern VWR Gradient (VWR, Radnor, Pennsylvania) oder in der TPersonal (Biometra, Göttingen) durchgeführt. PCRs wurden zunächst basierend auf Tabelle 7 angesetzt und mit dem Standard-Programm (Tabelle 8) durchgeführt. Falls nötig, wurde beides variiert und angepasst.

Temperatur [°C]	Zeit	Zyklen
98	2 min	1
98	30 s	
50-72	20 s	25-35
72	15 s/kb	
72	5 min	1
10	×	

Tabelle 8: Standard-PCR Programm, das als Grundlage für alle PCRs verwendet wurde

DNA-Sequenzierung

Die Sequenzierungen wurden durch Seqlab (Göttingen) ausgeführt. Die entsprechenden Chromatogramme wurden mit Hilfe des Programms Chromas (Version 2.01, Technelysium Pty Ltd., Southport, Queensland, Australia) ausgewertet, der Vergleich der Sequenzen wurde mit dem Programm Multalin (Corpet, 1988) ausgeführt.

Präparation chromosomaler DNA aus Aromatoleum aromaticum EbN1

Zur Extraktion der chromosomalen DNA aus *Aromatoelum aromaticum* EbN1 wurden 10 ml Kultur via Zentrifugation bei 4°C und 5000 rpm für 10-30 Minuten geerntet. Nach Entfernen des Überstands wurde das Zellsediment in 1 ml SET-Puffer (50 mM Tris-EDTA, pH 7,6; 20 % Saccharose (w/v)) resuspendiert und 0,1 Volumen 10 % SDS (w/v) zugegeben. Nach vorsichtigem Mischen wurde 0,1 Volumen Proteinase K (1 mg/ml) hinzugefügt und für zwei Stunden bei 55 °C inkubiert. Nach der Zugabe von 1/3 Volumen gesättigter NaCI-Lösung und erneutem Mischen, wurden die Proteine mit

1 Volumen Phenol/Chloroform/Isoamylalkohol (25:24:1, Carl Roth, Karlsruhe) in einer halben Stunde unter ständigem Schwenken gefällt. Anschließend wurden die Phase in einem zehnminütigen Zentrifugationsschritt (13000 rpm, RT) getrennt, damit die wässrige abgenommen werden konnte. wurde 1 Volumen obere Dazu Chloroform/Isoamylalkohol (24:1, Carl Roth, Karlsruhe) gegeben und erneut zentrifugiert. Die obige Phase wurde erneut abgenommen und mit 20 µl RNAse-Lösung versetzt. Dies wurde für 30 Minuten bei 37 °C inkubiert. Es wurde 1,3 Volumina eiskaltes Isopropanol zugegeben und die DNA konnte entweder abzentrifugiert oder mit einer Pasteurpipette extrahiert werden. Die DNA wurde mit 70 % Ethanol (v/v) gereinigt, in einem SpeedVac Concentrator (früher: Savant; Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) getrocknet und in TE-Puffer (10 mM Tris-EDTA, pH 8) ÜN bei 4 °C gelöst.

Konstruktion von Insertionsmutanten

Insertionsmutanten wurden konstruiert, um Gene spezifisch zu unterbrechen. Es wurden zunächst Oligonukleotide hergestellt, die innerhalb des Gens binden können. Nach einer PCR wurde das entstandene Fragment in den Vektor pK19*mobsacB*ligiert, der ein Kanamycin-Resistenzgen enthält. Nach der Amplifikation des Vektors in *E. coli* DH5α und Bestätigung der Sequenzen durch Testverdau und Sequenzierung wurde das Plasmid mithilfe von chemischer Transformation in *E. coli* WM3064 gebracht. Dieses Bakterium wurde zur Konjugation von *Aromatoleum aromaticum* SR7 genutzt welcher durch homologe Rekombination dann das Fragment mit dem Plasmid ins Genominseriert und infolgedessen seine Resistenz erhielt. Durch Disruption der Gensequenz durch das Plasmid sollte aufgrund des fehlenden Startcodons die Lesbarkeit verloren gehen.

2.4 Molekularbiologische Techniken

Transformation von E. coli

Es wurden 1-5 µl der Plasmid-DNA zu bei -80 °C gelagerten, chemisch kompetenten *E. coli-*Stämmen (100 µl) gegeben. Diese wurden zuvor auf Eis aufgetaut. Dieser Ansatz wurde für 30 Minuten auf Eis inkubiert, bevor die Zellen für 45 s einem
Hitzeschock bei 42 °C unterzogen wurden und im Anschluss 800 µl LB-Flüssigmedium hinzugefügt wurde. Es folgte eine weitere Inkubation für 60-90 min bei 37°C unter Schütteln. Die Selektion der Plasmid-tragenden Klone erfolgte mithilfe von antibiotikahaltigen LB-Festmedium.

Für Ligationsansätze wurden elektrokompetente *E. coli* verwendet, um eine hohe Ausbeute zu gewährleisten. Dazu wurden die Zellen auf Eis aufgetaut, mit dem Ligationsansatz versetzt und 1 Minute auf Eis inkubiert. Danach wurden sie einer Elektroporation in einer 0,2 µm Elektroporationsküvette (peqlab, Erlangen) mit 2,5 kV im MicroPulser (Bio-Rad, Hercules, Kalifornien, Vereinigte Staaten) unterzogen. Zu den Zellen wurden direkt 800 µl LB-Medium gegeben und sie wurden für 60-90 Minuten (abhängig vom Antibiotikum) bei 37 °C geschüttelt. Es wurde auch hier mit antibiotikahaltigen LB-Festmedium selektiert.

Herstellung kompetenter E. coli

Die Herstellung chemisch kompetenter Zellen erfolgte nach von Sambrook *et al.* (1989). Dabei wurden 5 ml LB-Medium mit den Zellen des jeweiligen Stammes angeimpft und über Nacht bei 37°C unter schütteln inkubiert. Am nächsten Tag wurden 250 ml SOB-Medium (20 g/l Trypton, 5 g/l Hefeextrakt, 0,5 g/l NaCl, 10 mM KCl und 40 mM MgCl₂ nach dem autoklavieren zugegeben) mit einer OD₅₇₈ von 0,05 inokuliertund bis zu einer Dichte von 0,4-0,6 unter Schütteln zunächst bei Raumtemperatur und im Anschluss für 10 Minuten auf Eis inkubiert. Nach Zentrifugation (5000 rpm, 4°C, 10 Minuten) wurde das Zellsediment in 80 ml eiskaltem TB-Puffer (10 mM PIPES, 15 mM CaCl₂, 250 mM KCl, 55 mM MnCl₂, pH 6,7) aufgenommen. Daraufhin folgte eine weitere Inkubation für 10 Minuten auf Eis. Nach erneuter Zentrifugation wurde das Pellet in 10 ml eiskaltem TB-Puffer resuspendiert und tropfenweise DMSO (7 %) zugegeben. Die aliquotierte Zellsuspension wurde in flüssigem Stickstoff eingefroren und bei -80°C gelagert.

Elektrokompetente *E. coli-*Zellen wurden für Ligationsansätze hergestellt. Dazu wurde eine ÜN-Kultur auf LB-Medium kultiviert und am nächsten Morgen eine Hauptkultur auf dYT-Medium (16 g/l Trypton, 10 g/l Hefeextrakt, 5 g/l NaCl) mit OD₅₇₈ 0,1 angeimpft. Die Kultur wurde bei RT bis zu einer OD₅₇₈ ~ 0,4 geschüttelt. Nach

Erreichen dieser OD wurde sie auf vorgekühlte 50 ml Gefäße verteilt und 30 Minuten im Eisbad inkubiert. Die Kultur wurde 10 Minuten bei 4°C und 3000 rpm (Universal 320R, Hettich, Tuttlingen) zentrifugiert und das Zellsediment in 50 ml eiskaltem Wasser resuspendiert. Die Zentrifugation wurde wiederholt und das Sediment in 5 ml eiskaltem Wasser aufgenommen. Dabei wurde die Anzahl der 50 ml-Reaktionsgefäße reduziert. Der Zentrifugationsschritt und der Waschschritt wurden wiederholt und das Zellsediment nach einer weiteren Zentrifugation (4°C, 5000 rpm, 5 Minuten) in 1 ml eiskaltem Glycerin (10 %, w/v) resuspendiert. Dies wurde in jeweils 50 µl aufgeteilt und entweder direkt eingesetzt oder in flüssigem Stickstoff schockgefroren und bei - 80 °C gelagert.

Konjugation

Für die Konjugation wurde der jeweilige E. coli-Stamm, der das zu zu transferierende Plasmid enthält, in 5 ml LB-Medium kultiviert. Als A. aromaticum – Akzeptorstamm wurde der Stamm SR-7 mit einer Streptomycinresistenz verwendet, der zur Konjugation auf NM-Medium mit Benzoat adaptiert und am Vortag frisch angeimpft Stämmen (1:100)wurde. Um zwischen den WM3064 und SR7 ein Konjugationsereignis zu erreichen, wurden die beiden Stämme in verschiedenen Verhältnissen gemischt und zehn Minuten bei 10000 rpm zentrifugiert. Der Überstand wurde verworfen, das Sediment zwei Mal mit jeweils 500 µl supplementiertem NM-Medium gewaschen und bei 10000 rpm für zehn Minuten zentrifugiert. Das Sediment nach dem zweiten Waschschritt wurde in 20 µl NM-Medium resuspendiert und die erhaltene Zellsuspension als Klecks auf eine NM-Mating-Agarplatte gegeben. Die Agarplatte wurde mit dem Deckel nach oben für ca. 16 Stunden bei 28 °C inkubiert und der Zellklecks anschließend mit einer Impföse von der Platte gekratzt. Die an der Impföse haftenden Zellen wurden in ein 1,5 ml-Reaktionsgefäß gegeben, in das zuvor 1 ml NM-Medium vorgelegt wurde. Nach der Resuspension der Zellen erfolgte eine vierstündige Inkubation bei 28 °C mit leichter Agitation (400 rpm). Von dieser Zellsuspension wurden verschiedene Verdünnungsstufen auf NM-Agar ausplattiert und 8 – 12 Tage bei 28 °C anaerob inkubiert. Die Trennung der verschiedenen Bakterienarten wurde einmal durch Zugabe von Streptomycin (SR7 hat eine chromosomal bedingte Resistenz) und durch Weglassen von 2,6Diaminopimelinsäure (DAP) erreicht. *E. coli* WM3064 ist DAP auxotroph (Dehio & Meyer, 1997).

Extraktion der gesamten RNA aus Aromatoleum aromaticum

Um eine optimale Ausbeute an mRNA zu bekommen, wurden die Kulturen möglichst in der exponentiellen Wachstumsphase geerntet. Dazu wurden zweimal 2 ml Kultur bei 13000 rpm und 4°C (Biofuge fresco, Heraeus) für zehn Minuten zentrifugiert. Das Zellsediment wurde in 100 µl TE-Puffer (100 mM, pH 8) mit 1mg/ml Lysozym resuspendiert und für zehn Minuten bei 37°C inkubiert. Die weiteren Schritte erfolgten nach den Angaben der Anleitung des NucleoSpin® RNA Kits (Macherey-Nagel, Düren). Die Gesamt-RNA wurde in 50 µl H₂O eluiert und die Konzentration mit dem Qubit® Fluorometer in einer 1:10 Verdünnung gemessen.

Anreicherung und Konzentrierung der mRNA

Die mRNA wurde angereichert, indem mit Hilfe von magnetischen Beads die ribosomale RNA aus der Lösung der Gesamt-RNA herausgezogen wurde. Hierzu wurde das Ribo-Zero[™] Magnetic Kit (Bacteria) von Illumina (San Diego, Kalifornien) benutzt. Für die Anreicherung wurde das Protokoll der *Individual washing procedure* angewendet, wie in der Anleitung beschrieben und immer 2 µg Gesamt-RNA eingesetzt.

Die mRNA wurde in 90 µl H₂O eluiert und mit dem RNA Clean up & Concentrator Kit von ZyMo (Paderborn) konzentriert. Nach Bestimmung der Konzentration mit dem Qubit® Fluorometer, wurde die Qualität der mRNA mit dem Experion Analyzer von Bio-Rad (Hercules, Kalifornien) überprüft.

Primer-Extension

Zur Bestimmung des transkriptionellen Startpunktes wurde die Promotorregion vor dem zu testenden Operon mittels PCR amplifiziert und in pEntry ligiert (Schnittstelle: Lgul). Zur Herstellung des Markers für das Sequenziergel wurde das DNA Sequencing Kit von Analytik Jena nach Herstellerangaben verwendet (basierend auf der Methode der Sanger-Abbruch-Sequenzierung). Extrahierte RNA (Einsatz: 1-2 μ g) wurde mit 2 μ l des passenden Oligonukleotids (10 pmol/ μ l, mit einer 5'-DY-781-Modifikation) und Wasser auf ein Volumen von 13,5 μ l gebracht, fünf Minuten bei 65 °C inkubiert und bei Raumtemperatur langsam abgekühlt. Anschließend wurden in der angegebenen Reihenfolge 4 μ l 5x Reaktionspuffer, 0,5 μ l RiboLock RNAse Inhibitor (Thermo Fischer Scientific), 1 μ l dNTP-Mix (20 mM) und 1 μ l Reverse Transkriptase (*Moloney Murine Leukemia Virus Reverse Transcriptase*, Thermo Fischer Scientific) zugegeben und eine Stunde bei 44 °C inkubiert. Die Reaktion wurde bei 70 °C für zehn Minuten gestoppt und anschließend mit 4 μ l Stoppuffer aus dem DNA Sequencing Kit (Analytik Jena) versetzt. Bis zur Auftragung auf das Gel konnten die Proben bei -20 °C gelagert werden.

Zur Analyse der transkritionellen Startpunkte wurde ein Sequenziergel mit einer Dicke von 0,25 mm und einem Haizahn-Kamm gegossen und über mindestens vier Stunden bei RT polymerisieren gelassen. Zusammensetzung des Gels (6 %):

16,8 g Urea

4,8 g LongRanger (50 %, Biozym)

4,8 g (10x) TBE-Puffer (108 g/l Tris, 55 g/l Borsäure, 7,44 g/l Na₂EDTA)

Mit Wasser auf 45 g aufgefüllt

→ 20 Sekunden in der Mikrowelle erhitzt

→ 20-30 Minuten im Kühlschrank abgekühlt

Lösung wurde durch einen 0,45 µmFilter gedrückt

27 µl TEMED

270 µI APS (10 % w/v)

Das ausgehärtete Gel wurde in den Licor Sequenzierer eingesetzt und für 20 Minuten äquilibriert. Als Puffer für den Lauf wurde 1x TBE verwendet. Nach der Probenauftragung lief das Gel über Nacht.

Erstellung einer cDNA Library für Illumina Sequenzierung

Die cDNA Library wurde aus qualitativ hochwertiger mRNA hergestellt. Dazu wurde das Kit Next® Ultra[™] Directional RNA Library Prep Kit for Illumina von New England Biolabs (Frankfurt am Main) eingesetzt. Nach Erstellung der Library wurde die Konzentration bestimmt und die Qualität mit dem Experion analyzer sichergestellt.

Konzentrationsbestimmung mit Qubit® 2.0 Fluorometer

Die Konzentrationsbestimmung erfolgte in speziellen Gefäßen, in denen entweder 199 µI RNA HS Buffer oder dsDNA HS Buffer vorgelegt wurden. Dazu wurde 1 µI der zu messenden Probe gegeben und gemischt. Anschließend wurde 1 µI entnommen und mit 1 µI des jeweiligen fluoreszierenden Farbstoffs komplementiert. Es wurde gründlich gemischt und zentrifugiert (Tischzentrifuge), um die Flüssigkeit am Boden des Gefäßes zu sammeln. Die Konzentration wurde im Qubit® 2.0 Fluorometer gemessen. Die Reagenzien und das Fluorometer sind von Life Technologies (Carlsbad, heute: Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten).

Qualitätsüberprüfung der RNA und cDNA mit Experion Analyzer

Hierzu wurden die beiden Kits Experion[™] RNA HighSens Analysis und Experion[™] DNA 12K (Bio-Rad, Hercules, Kalifornien, Vereinigte Staaten) Analysis nach Anweisung benutzt.

2.4 Proteinbiochemische Methoden

SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Zur Auftrennung von Proteinen nach apparenter Molekülmasse wurde die Methode der diskontinuierlichen SDS-PAGE genutzt (Laemmli, 1970). Die Proben wurden mit 4-fach SDS Ladepuffer (400 mM Tris, 20 % (w/v) Glycerin, 4 % (w/v) SDS, 0,004 % (w/v) Bromphenolblau) gemischt und für 5 Minuten bei 95°C gekocht und somit denaturiert. Die Proteine wurden auf Polyacrylamid-Gele mit Konzentrationen

zwischen 11,5 und 17 % aufgetragen und separiert. Als Laufpuffer diente ein Puffer mit 25 mM Tris, 190 mM Glycin und 0,1 % (w/v) SDS. Als Marker wurde der PageRuler[™] Prestained Protein Ladder (Thermo Fisher Scientific, Waltham, Massachusetts, Vereinigte Staaten) verwendet. Die Gele wurden im Anschluss entweder mit Coomassie-Lösung (Sambrook & Russel, 2001) gefärbt oder zum Immunoblotten weiterverwendet.

Immunoblott

Die mit der SDS-PAGE aufgetrennten Proteine wurden auf eine Nitrocellulose Membran (Amersham[™]Protran[™]0,2µm NC, GE Healthcare Life Science, Little Chalfont, Vereinigtes Königreich) übertragen. Hierzu wurde ein Drei-Puffer-System verwendet. Im Anoden-Puffer I (36,3 g/l Tris, 20 % (v/v) Methanol) wurden die zwei unteren Filterpapiere getränkt. Darüber kamen ein getränktes Filterpapier und die Membran in Anoden-Puffer II (3.04 g/I Tris, 20 % (v/v) Methanol) und auf dem Gel lagen drei im Kathoden-Puffer (5,2 g/l 6-Aminocapronsäure, 20 % (v/v) Methanol) getränkte Filterpapiere. Die beblottete Membran wurde entweder eine Stunde bei RT oder ÜN bei 4°C mit PBST-Milch-Puffer (4 mM KH2PO4, 16 mM Na2HPO4, 115 mM NaCl, pH 7,4, 0,1 % (v/v) Tween 20, 5 % (w/v) Milchpulver) blockiert. Danach wurde die Membran dreimal mit PBST gewaschen (5 Minuten, RT, schwenken) und anschließend eine Stunde mit dem zu testenden Antikörper bei RT und Schwenken inkubiert. Die Konzentration des Antikörpers hing von der Detektionsmethode und dem Antikörper selbst ab (Tabelle 9). Der Waschschritt wurde wiederholt und eventuell wurde die Membran mit einem zweiten Antikörper wie zuvor inkubiert. Vor der Detektion wurde zweimal mit PBS-Puffer (4 mM KH2PO4, 16 mM Na2HPO4, 115 mM NaCl, pH7,4) gewaschen. Gebundener Antikörperwurde entweder mit 3 % (w/v) 4-Chloro-1-Naphtol (in Methanol) und 30 % (v/v) H2O2 oder mithilfe des ChemiDoc MP Imaging System (Bio-Rad, Hercules, Kalifornien, Vereinigte Staaten) detektiert (Jung et al., 2015).

Tabelle 9	e: verwendete	Protein Anti	ikörper mit	Konzentration	und	Detektionsmet	hode
-----------	---------------	--------------	-------------	---------------	-----	---------------	------

Antikörper	Konzentration		
Avidin Horseradish Peroxidase (eBioscience)	1:750 (immer mit 4-Chloro-1-		
	Naphtol detektiert)		
Monoclonal Anti-mCherry antibody produced	Für ChemiDoc: 1:10000		
in mouse (Sigma Aldrich, St. Louis, Missouri,	Für 4-Chloro-1-Naphtol: 1:5000		
Vereinigte Staaten)			
Anti-Rabbit IgG (Goat), HRP-labeled	Für ChemiDoc: 1:20000		
(PerkinElmer)	Für 4-Chloro-1-Naphtol: 1:10000		

3. Ergebnisse

3.1 Aromatoleum aromaticum EbN1 wächst aerob und anaerob mit 4-Ethylphenol als einziger Kohlenstoffquelle

Es wurde bereits hinreichend gezeigt, dass *Aromatoleum aromaticum* EbN1 in der Lage ist, 4-Ethylphenol als einzige Kohlenstoffquelle unter anaeroben Wachstumsbedingungen zu nutzen (Wöhlbrand *et al.*, 2008). Neueste Ergebnisse zeigen nun, dass der Abbau auch aerob funktioniert. *Aromatoleum aromaticum* EbN1 wurde jeweils einmal auf Benzoat und 4-Ethylphenol mit Nitrat als Elektronenakzeptor in der Atmungskette und einmal mit Sauerstoff als Akzeptor adaptiert. Diese Kulturen wurden genutzt, um das Medium für den Wachstumsversuch zu inokulieren (Abbildung 3).

Abbildung 3: **Wachstum von Aromatoleum aromaticum EbN1.** Die Kulturen wurden auf MM (s. 2.2 Medien für Aromatoleum aromaticum EbN1) ohne Paraffinöl mit entweder Nitrat oder Sauerstoff als Elektronenakzeptor der Atmungskette kultiviert. Von dem jeweiligen Substrat wurde 1 mM zugesetzt und die Kulturen (wurden) unter Agitation bei 28°C inkubiert. Zum Animpfen der jeweiligen Bedingungen wurde eine adaptierte Vorkultur verwendet. ■: Anaerob auf Benzoat, ▲: Aerob auf Benzoat, ▼: Anaerob auf 4-Ethylphenol, ◆: Aerob auf 4-Ethylphenol.

Aromatoleum aromaticum EbN1 wuchs sehr schnell und ohne Lag-Phase auf dem Substrat Benzoat an (Abbildung 3, .). Die anaerobe Kultur auf Benzoat hat nach 22

ihre End-OD₅₇₈ erreicht und ging in die stationäre Phase über Stunden (Wachstumsrate: 0,1526 h⁻¹, Verdopplungszeit: 4,5 h, End-OD₅₇₈ ~0,3). Unter aeroben Bedingungen wurde die stationäre Phase ebenfalls nach 22 Stunden erreicht, aber mit einer geringeren OD₅₇₈ (~0,2), wobei es so aussieht, als ob die Kultur nach 76 Stunden erneut zu wachsen begann und letztlich die gleiche End-OD₅₇₈ erreicht wurde (A). Die wuchs mit einer Wachstumsrate von 0,1247 h⁻¹ und einer aerobe Kultur Verdopplungszeit von 5,5 Stunden generell etwas langsamer. Es wurde deutlich, dass Aromatoleum aromaticum EbN1 unter anaeroben Bedingungen auf 4-Ethylphenol eine Lag-Phase hat und mit einer Wachstumsrate von 0,0688 h⁻¹ und einer Verdopplungszeit von 10 Stunden etwa halb so schnell wie auf Benzoat wuchs (V, •). Die Lag-Phase war bei der aeroben 4-Ethylphenol-Kultur noch länger und auch das Wachstumsverhalten war nochmal langsamer als das (von) der anaeroben Kultur auf 4-Ethylphenol (Wachstumsrate: 0,0431 h⁻¹, Verdopplungszeit: 16 h). Die End-OD₅₇₈ von ~0,3-0,4 erreichten letztlich alle Kulturen.

3.2 Reportergen-Studien mit mCherry

Konstruktion von Reporter-Stämmen für das 4-Ethylphenol- und das Phenol-Operon

Da die klassischen Reportergen-Studien mit *lacZ* in *Aromatoleum aromaticum* EbN1 bisher erfolglos waren, wurde eine Studie mit dem rot-fluoreszierenden Protein mCherry (Fluorophor aus *Discosoma sp.*(Shaner *et al.,* 2004)) entwickelt (Muhr *et al.,* 2015a). Mit dieser für *Aromatoleum aromaticum* EbN1 neu etablierten Methode konnte eine Zeit- und Konzentrationsabhängigkeit der Induktion der Gene der Acetophenon-abbauenden Enzyme vom Substrat Acetophenon, sowie eine Spezifität für mögliche Induktoren aufgeklärt werden. Diese erfolgreiche Methode einer Reportergen-Studie sollte hier für die Operons der Enzyme des anaeroben 4-Ethylphenol- und Phenol-Abbaus genutzt werden. Dazu wurde in den modifizierten Vektor pK19-mChy' mit den Restriktionsenzymen HindIII und XbaI die Stromaufwärts-Region des jeweiligen Operons (Ethylphenol-Operon: 350 Bp, Phenol-Operon: 600 Bp) und ein kleiner Abschnitt des ersten Gens (*acsA* und *ppsA* jeweils 111 Bp) kloniert. Diese Plasmide wurden mittels Konjugation aus *E. coli* WM3064 in *Aromatoleum aromaticum* EbN1

SR7 eingebracht. Das Plasmid integrierte in Tandem neben dem jeweils zu untersuchenden Operon ins Genom, ohne den eigentlichen Stoffwechselweg zu stören. Wenn der Stoffwechselweg induziert ist, wird ein Fusionsprotein aus den ersten 37 Aminosäuren ersten im Operon kodierten Proteins und mCherry gebildet. Der Erfolg der Integration wurde durch PCR-Analysen bestätigt (Daten nicht gezeigt).

Eine ausgewählte Kolonie der jeweiligen hergestellten Reporter-Stämme wurde genetisch auf ihre Richtigkeit überprüft und auf verschiedenen Substrate adaptiert. Der Stamm, der eine Fusion mit dem ersten Gen aus dem 4-Ethylphenol-Operon trägt, wurde AcsA-mCherry genannt, derjenige mit der Fusion mit dem ersten Gen aus dem Phenol-Operon PpsA-mCherry. Beide Stämme wachsen unbeeinträchtigt auf allen Substraten. Wurde der Stamm AcsA-mCherry auf den Substraten 4-Ethylphenol, 4-Hydroxyacetophenon, Benzoat, Ethylbenzol und Acetophenon kultiviert, war auf dem Western-Blot nur ein mCherry-Signal mit den ersten beiden Substraten erkennbar (Abbildung 4). Schon hier wird die Spezifität der Induktion der einzelnen Abbauoperons bestätigt.

Interessanterweise kam es bei dem Stamm PpsA-mCherry nicht nur mit Phenol als Substrat, sondern auch mit 4-Hydroxybenzoat zu einem Western-Blot-Signal (Abbildung 4).

PpsA-mCherry

AcsA-mCherry

Abbildung 4: Western-Blot gegen mCherry, um die Induktion des Phenol-Operons (links) und des 4-Ethylphenol-Operons (rechts) mit verschiedenen Kohlenstoffquellen darzustellen. Die Stämme PpsA-mCherry und AcsA-mCherry wurden über mehrere Passagen auf den oben aufgeführten Kohlenstoffquellen adaptiert. Auf ein 12 % SDS-Gel wurden die Extrakte ganzer Zellen (mit SDS-Ladepuffer versetzt und gekocht) mit einer OD₅₇₈ von 10 aufgetragen, das Proteom aufgetrennt und anschließend auf eine Nitrocellulose-Membran übertragen.

Basierend auf der Publikation von Muhr et al. (2016) wurde nach demselben Prinzip eine translationelle Fusion der Promotorregion und des ersten Gens (acsA) des 4-Ethylphenol-Operons konstruiert. Es wurde bereits in dieser Arbeit gezeigt, dass dieser Stamm spezifisch das Protein mCherry bildete, wenn er auf den Substraten 4-Ethylphenol oder 4-Hydroxyacetophenon adaptiert wurde (Abbildung 4). Aufbauend auf diesem positiven Ergebnis wurden erste Versuche gestartet, die einerseits zeigen sollten, ob eine Zeit- und Konzentrationsabhängigkeit für die Induktion des 4-Ethylphenol-Operons besteht, andererseits die Spezifität der Induktion klären sollten (Abbildung 5). Zur Bestimmung der Zeit- und Konzentrationsabhängigkeit wurde der Stamm AcsA-mCherry auf Benzoat adaptiert. Eine frisch angeimpfte Kultur, die auf Benzoat wuchs, wurde für 24 Stunden inkubiert, um Zellmasse zu generieren. Nach der Inkubation wurde diese Kultur auf aerobe oder anaerobe Hungate-Röhrchen aufgeteilt und mit verschiedenen Konzentrationen von 4-Ethylphenol (0 µM,50 µM,100 µM, 250 µM, 500 µM,1000 µM) versetzt. Es wurden Proben für einen Western-Blot mit Anti-mCherry zu verschiedenen Zeitpunkten entnommen (0 h, 6 h, 12 h, 24 h, 48 h). Auf jeden Western-Blot wurde als Positivkontrolle dieselbe Probe aufgetragen, die auch in Abbildung 4 verwendet wurde, um eine Vergleichbarkeit zwischen den Western-Blots zu erzielen (Abbildung 5). Bereits nach 6 Stunden war in der anaeroben Kultur die Bildung von mCherry schon ab 50 µM zugegebenem 4-Ethylphenol sichtbar, wohingegen es bei der aeroben Kultur erst nach 24 Stunden und ab 250 µM 4-Ethylphenol zu einer Ausbildung des mCherry-Signals kam (Abbildung 5). Dieses Ergebnis passt zu der Beobachtung, dass Aromatoleum aromaticum EbN1 auf 4-Ethylphenol aerob wesentlich langsamer wächst als anaerob. Um dieses Experiment zu quantifizieren, müsste es wiederholt werden.

Abbildung 5: Zeit- und Konzentrationsabhängige Bildung vom Fusionsprotein AcsA-mCherry dargestellt auf einem Western-Blot. Aromatoleum aromaticum AcsA-mCherry wurde auf Benzoat adaptiert und 24 Stunden vor Aufteilung auf die verschiedenen Substrate auf MM (s. 2.2 Medien für Aromatoleum aromaticum EbN1) frisch angeimpft (Muhr et al., 2015a). Aus aeroben (links) und anaeroben (rechts) Kulturen mit verschiedenen Konzentrationen von 4-Ethylphenol (0 μ M, 50 μ M, 100 μ M) wurden nach 6, 12, 24 und 48 Stunden Proben für einen Anti-mCherry Western-Blot genommen. PK: Positivkontrolle; Das Proteom der Proben wurden über eine 13 %-ige SDS-PAGE aufgetrennt und anschließend auf eine Nitrocellulosemembran übertragen.

Um die Spezifität der Induktion zu bestimmen, wurde eine Reihe an Substrat-Analoga getestet (Abbildung 6A). Alle Substrate wurden mit einer Konzentration von 0,5 mM eingesetzt und unter anaeroben Wachstumsbedingungen getestet. Proben wurden nach 20 und nach 45 Stunden genommen und über einen Anti-mCherry Western-Blot mit der Software Image Lab (Bio-Rad) quantifiziert. Die Kultur mit 4-Ethylphenol als Induktor wurde als 100 % gesetzt und der Induktionsgrad der anderen Substrate relativ dazu bestimmt (Abbildung 6B). Nach 20 Stunden wurde mit 4-Hydroxyacetophenon ungefähr die Hälfte der Induktion durch 4-Ethylphenol beobachtet und erst nach 45 Stunden wurde die volle Induktion erreicht. Auch mit Acetophenon und Ethylbenzol kam es nach 45 Stunden zu einer prägnanten Induktion, die jedoch nicht über 30 % der Kontrolle hinausreichte. Als einziger weiterer schwacher Induktor (ca. 25 %) wurde 3-Ethylphenol identifiziert, da alle anderen getesteten Substrate (2-Ethylphenol, Phenol. 4-Cresol. 4-Hydroxybenzoat, 2-Hydroxyacetophenon, 3-Hydroxyacetophenon, Propiophenon, 2'-Chloroacetophenon, 2'-3'und 4'-Fluoroacetophenon, 2-Methylacetophenon, siehe Abbildung 6A) keine Induktion über

5 % auslösten. Auch wenn das Experiment wiederholt werden sollte, wird deutlich, dass die Induktion des 4-Ethylphenol-Operons zu einem hohen Grad substratspezifisch ist.

Abbildung 6: Bestimmung der Spezifität der Induktion des 4-Ethylphenol Operons mit dem Stamm *Aromatoleum aromaticum* AcsA-mCherry mit Substrat-Analoga. A: Getestete, mögliche Induktoren. B: Quantifizierung anhand von Western-Blots (Anti-mCherry) als relativer Wert in Bezug auf 4-Ethylphenol als 100 %-Grenze. Es wurden Proben aus anaeroben Röhrchen mit jeweils 0,5 mM Substrat nach 20 Stunden (grün) und nach 45 Stunden (rot) entmommen. Das Experiment wurde nach der Vorlage von Muhr *et al.* (2016) durchgeführt.

Die Methoden zur qualitativen und quantitativen Bestimmung des Proteins mCherry sollten durch Fluoreszenz-Mikroskopie und FACS-Analyse komplementiert werden. Leider war es bis heute nicht möglich, im Stamm AcsA-mCherry unter verschiedensten Bedingungen fluoreszierende Zellen zu finden. Zur Kontrolle wurde der Stamm genetisch überprüft und die erwartete Genanaordnung bestätigt (Daten nicht gezeigt).

3.4 Aromatoleum aromaticum PpsA-mCherry leuchtet bei Wachstum auf Phenol

Es wurden bereits erste Versuche mit dem Stamm PpsA-mCherry durchgeführt. Wie in Abbildung 4 zu sehen ist, spricht alles dafür, dass Phenol als Induktor für das Phenol-Abbauoperon fungiert. Zunächst wurden auch hier Western-Blot-Analysen mit verschiedenen Phenol-Konzentrationen nach unterschiedlichen Zeiten unter aeroben und anaeroben Bedingungen gemacht. Dabei zeigte sich auch nach 48 Stunden bei keiner Konzentration ein Signal. Wurde der Stamm jedoch anaerob eine Woche mit 1 mM Phenol unter den Standard-Kultivierungsbedingungen inkubiert, war Fluoreszenz mittels FACS-Analyse detektierbar (Kultur auf Benzoat/negativ Kontrolle: 4 a.u.; adaptierte Kultur auf Phenol/positiv Kontrolle: 143 a.u.; Kultur auf Phenol/Probe: 78 a. u). Allerdings unterlag dieses Ergebnis starken Schwankungen, die am besten durch die hohe Sensibilität von *Aromatoleum aromaticum* EbN1 gegenüber Phenol zu erklären sind. Wenn 4-Hydroxybenzoat als alleinige Kohlenstoffquelle genutzt wurde, war Fluoreszenz mittels FACS-Analyse in diesem Stamm sichtbar (43 a.u.).

3.5 Disruptionen der Gene etpR und pdeR

Konstruktion einer Integrationsmutante zur Disruption von etpR

Die Abbauwege der sehr ähnlichen aromatischen Verbindungen stehen unter der Kontrolle von verschiedenen Regulationssystemen und –typen. Direkt angrenzend an die Gene zum 4-Ethylphenol-Abbauweg befindet sich ein Gen, das für einen σ^{54} -abhängigen Regulator kodiert (EtpR). Es wurde im Rahmen dieser Arbeit eine

Disruptionsmutante von *etpR* erstellt. Dazu wurde mit den Oligonukleotiden pdeR2-EcoRI-for und pdeR2-EcoRI-rev ein Mittelstück von 548 Bp aus dem *etpR*-Gen amplifiziert. Dieses Amplifikat wurde mit dem Restriktionsenzym EcoRI geschnitten und in den linearisierten Vektor pK19*mobsacB*ligiert. Das entstandene Plasmid pK19pdeR2-KI wurde mithilfe von *E. coli* WM3064 in *Aromatoleum aromaticum* EbN1 SR7 konjugiert. Nach der Konjugation wurden die Zellen auf das eingebrachte Antibiotikum Kanamycin selektiert und die Disruption des Gens wurde per PCR verifiziert (Abbildung 7).

Abbildung 7: **Bestätigung der Mutante** *Aromatoleum aromaticum* **IMetpR** mittels PCR. A: schematische Darstellung des Genabschnitts *etpR* mit genomisch integriertem Plasmid pK19-pdeR2-KI. Die Pfeile zeigen die Oligonukleotid-Bindestellen an. Die Nummern verweisen auf die erwarteten Produktgrößen in der Tabelle. B: Benutzte Oligonukleotidpaare und erwartete Größen der PCR Produkte in jeweils *Aromatoleum aromaticum* EbN1 (WT) und IM*etpR* (IM*etpR*). C: Verifizierung der Mutante durch PCR, Bp: Basenpaare.

Zur Bestätigung der erwünschten Mutation wurden zwei Oligonukleotide gewählt, die nur auf dem Plasmid binden (pEntry-rev und pHyb(Nde)rev) und mit zwei Oligonukleotiden kombiniert, die nur in der flankierenden Sequenz des Genoms binden (pdeR2-BamHI-for und pdeR2-short-rev). Zusätzlich wurde ein Oligonukleotidpaar ausgewählt, das unter Standard-PCR-Bedingungen nur dann ein Produkt ergeben sollte, wenn das Gen *etpR* noch intakt ist. Die verschiedenen Paare wurden mit genomischer DNA von *Aromatoleum aromaticum* IM*etpR* und EbN1 (WT) getestet. Wie bei einer korrekten Disruption erwartet, ergaben sich nach der PCR DNA-Stücke in den Größen 1199 Bp (Paar: pEntry-rev und pdeR2-BamHI-for) und 1015 Bp (Paar: pHyb(Nde)rev und pdeR2-short-rev) und kein Produkt, wenn das Paar verwendet wurde, das das gesamte Gen im WT amplifiziert (Abbildung 7C).

Die Mutante Aromatoleum aromaticum IMetpR wächst nur in besonderen Fällen auf 4-Ethylphenol

Nach erfolgreicher Disruption von *etpR* wurde die Mutante *Aromaroleum aromaticum* IM*etpR* auf ihren Wachstumsphänotyp überprüft. Dazu wurde sie auf dem Carbonatgepufferten MM (s. 2.2 Medien für *Aromatoleum aromaticum* EbN1) mit Benzoat anaerob adaptiert und mehrere Tage kultiviert. Das Wachstum wurde auf den Substraten Benzoat (Positivkontrolle), 4-Ethylphenol und 4-Hydroxyacetophenon als Intermediat im Abbauweg von 4-Ethylphenol, getestet. Zusätzlich wurde die Mutante IM*etpR* auf Wachstum auf 4-Ethylphenol mit Sauerstoff getestet, da in dieser Arbeit gezeigt werden konnte, dass *Aromatoleum aromaticum* EbN1 auch unter aeroben Bedingen auf 4-Ethylphenol wächst (Kapitel 3.1). Die Mutante weist unter anaeroben Bedingungen mit Benzoat als Substrat ein vergleichbares Wachstum wie *Aromatoleum aromaticum* EbN1 (WT) auf. Die Wachstumsrate beträgt hier 0,1344 h⁻¹ und der Stamm zeigt eine Verdopplungszeit von ungefähr 5 Stunden (Abbildung 8, \blacksquare).

Abbildung 8: Wachstumsphänotyp der Mutante Aromatoleum aromaticum IMetpR. Alle Kulturen wurden mit einer Benzoat-adaptierten Kultur auf eine OD₅78 von 0,01 angeimpft (Carbonat-gepuffertes MM mit jeweils 1 mM Substrat, s. 2.2 Medien für Aromatoleum aromaticum EbN1) und bei 28°C unter Agitation inkubiert. Legende: ■: Benzoat mit Nitrat, ▲: 4-Ethylphenol mit Nitrat, ▼:4-Ethylphenol mit Sauerstoff, ♦: 4-Hydroxyacetophenon mit Nitrat. Nitrat-Einsatz: 4 mM, Sauerstoff: mindestens die Hälfte des Flaschenvolumens war mit Luft gefüllt. Die Kulturen auf 4-Ethylphenol sind nach 48 h präzipitiert (Abbildung 9). Für jede Bedingung gab es mindestens zwei Replikate und zwei unabhängige Versuche

Ganz anders sah es bei den Substraten 4-Ethylphenol und 4-Hydroxyacetophenon aus. In allen drei Fällen (Ethyphenol mit Nitrat (▲), Ethylphenol mit Sauerstoff (▼) und 4-Hydroxyacetophenon mit Nitrat (, Abbildung 8)) wuchs die Mutante IMetpR in den ersten 22 Stunden minimal an und hörte dann auf zu wachsen. Dieser kleine Wachstumsanstieg wohl auf gespeicherte Kohlenstoffreserven (z.B. ist Polyhydroxybuttersäure (Trautwein et al., 2008)) zurückzuführen. In den Kulturen mit 4-Ethylphenol als Substrat bildete sich ein flockiges Präzipitiat, das eventuell eine Aggregation der noch vorhandenen und nicht mehr wachsenden Zellen anzeigt (Abbildung 9). Diese Ergebnisse sind im Einklang mit einer Studie von Büsing und Kollegen (2015), die zeigten, dass eine Deletionsmutante von etpR nicht in der Lage ist, auf 4-Ethylphenol oder 4-Hydroxybenzoat zu wachsen.

Abbildung 9: **Phänotyp von** *Aromatoleum aromaticum* **IMetpR**, **kultiviert unter drei verschiedenen Bedingungen**. Für alle drei Bedingungen wurde MM (s. 2.2 Medien für *Aromatoleum aromaticum* EbN1) ohne Paraffinöl verwendet. Links: 1 mM Benzoat mit Nitrat, Mitte: 1 mM 4-Ethylphenol mit Nitrat, Rechts: 1 mM 4-Ethylphenol mit Sauerstoff. Das Foto wurde nach 48 h Inkubation bei 28 °C aufgenommen.

Weitere Studien zur Mutante IMetpR zeigten allerdings, dass bei etwa 50 % der Kulturen nach zwei Wochen Inkubation bei Raumtemperatur doch Wachstum auf 4-Ethylphenol beobachtet wurde, wenn die Kulturen nicht zuvor präzipitierten. Um zu überprüfen, ob dabei das 4-Ethylphenol-Abbauoperon induziert ist, wurde ein Western Blot mit Avidin angefertigt, der den Biotin-Cofaktor in der kleinen Untereinheit der 4-Ethylphenol-induzierten Biotin-Carboxylase XccB anfärbt, falls diese produziert wird (Abbildung 10). Tatsächlich wurde dabei in den Kulturen mit 4-Ethylphenol sowohl bei der Mutante wie beim WT neben den Banden der konstitutiven Biotin-Proteine PccA und AccB eine dritte Bande sichtbar, die XccB darstellt (Muhr et al., 2015b). In Kulturen mit Benzoat fehlt diese Bande erwartungsgemäß in beiden Stämmen. Der Genotyp der Mutante wurde daraufhin erneut überprüft und als richtig bestätigt. Die Mutante IMetpR induziert das 4-Ethylphenol-Operon spezifisch unter Wachstum auf 4-Ethylphenol, obwohl der Regulator EtpR nicht wie im WT gebildet werden kann. Entweder ist die Disruption nicht ausreichend, um das Gen still zu legen oder der Stamm IMetpR mutiert zum Beispiel in einem der strukturell ähnlichen Regulatoren PdeR oder PdeR3, die dann EtpR ersetzen.

Abbildung 10: Avidin-Western-Blot gegen ganze Zellen von Aromatoleum aromaticum EbN1 (WT) und IMetpR (IMetpR). Beide Stämme wurden auf Benzoat (Bz) und 4-Ethylphenol (EtP) adaptiert und davon ganze, mit SDS-Ladepuffer aufgekochte Zellen auf ein 16,5 % -iges SDS-Gel aufgetragen, das Proteom aufgetrennt und anschließend auf eine Nitrocellulose-Membran übertragen. Die obere Bande in allen Proben korrespondiert mit dem Protein PccA (73,1 kDa), die unterste Bande mit AccB (16 kDa) und die mittlere Bande in den 4-Ethylphenol-Proben mit XccB (17,6 kDa) aus dem 4-Ethylphenol-Operon.

Konstruktion einer Integrationsmutante zur Disruption von pdeR

Da auch das Gen *pdeR*, das sich direkt neben dem Phenol-Operon in umgekehrter Orientierung befindet, für einen σ^{54} -abhängigen Regulator kodiert, wurde derselbe Ansatz zur Gendisruption wie für IM*etpR* gewählt. Dazu wurde auch hier ein Mittelstück aus dem Gen *pdeR* amplifiziert (Abbildung 11A) (Oligonukleotide: pdeR1-BamHl-for und pdeR1-BamHl-rev für ein 632 bp Amplifikat aus *pdeR*), mit BamHl geschnitten und in pK19*mobsacB* ligiert. Das verifizierte Plasmid wurde mithilfe von *E. coli* WM3064 in *Aromatoleum aromaticum* EbN1 SR7 konjugiert. Auch hier wurde die erfolgreiche Gendisruption mit verschiedenen PCR-Ansätzen überprüft (Abbildung 11C). Die Verifizierung der erhaltenen Mutante erfolgte wie bei der Mutante IM*etpR* wie zuvor beschrieben mit für diesen Genabschnitt spezifischen Oligonukleotiden (pdeR1-HiindIII-for und pEntry-rev; pHyb(Nde)rev und pdeR1-short-rev; pdeR1-Lgul-for und pdeR1-Lgul-rev, Abbildung 11B).

Abbildung 11: **Bestätigung der Mutante** *Aromatoleum aromaticum* **IMpdeR** mittels PCR. A: schematische Darstellung des Genabschnitts *pdeR* mit genomisch integriertem Plasmid pK19-pdeR-KI. Die Pfeile zeigen die Oligonukleotid-Bindestellen an. Die Nummern verweisen auf die erwarteten Produktgrößen in der Tabelle. B: Benutzte Oligonukleotidpaare und erwartete Größen der PCR-Produkte in jeweils *Aromatoleum aromaticum* EbN1 (WT) und IM*pdeR* (IM*pdeR*). C: Verifizierung der Mutante durch PCR, Bp: Basenpaare.

Aromatoleum aromaticum IMpdeR wächst nicht auf Phenol

Auch diese Mutante wurde auf ihren Phänotyp überprüft und dafür auf Carbonatgepuffertem Medium (Kapitel 2.2) auf Benzoat adaptiert. Das Wachstum auf Benzoat ist nicht eingeschränkt. Des Weiteren wurden als Substrate Phenol, 4-Hydroxybenzoat und 4-Ethylphenol getestet. Da IM*pdeR* auf allen Substraten mit Ausnahme von Phenol wachsen kann, passt der beobachtete Phänoptyp zu der Hypothese, dass PdeR ein Aktivator für den Abbau von Phenol sein muss. Mit Phenol als einziger Kohlenstoffquelle war auch nach wiederholten Versuchen nach bis zu vier Wochen kein Wachstum zu beobachten.

3.6 Das 4-Ethylphenol-Operon hat einen klassischen σ⁵⁴-abhängigen transkriptionellen Startpunkt

Es ist bereits weitgehend bekannt, dass die Regulation des Abbaus von Phenolen in anaeroben Bakterien meist σ^{54} -abhängig ist (Ehrt *et al.*, 1995; Kasak *et al.*, 1993; Kukor & Olsen, 1990; Ng et al., 1996; Santos & Sa-Correia, 2007; Wigmore & Bayly, 1974). Auch in Aromatoleum aromaticum EbN1 befindet sich sowohl neben dem Abbauoperon für Phenol als auch neben dem Abbauoperon für 4-Ethylphenol ein XylR-ähnlicher Regulator, der σ^{54} -abhänigig ist. Diese Art Regulatoren interagieren nicht mit der σ^{70} -abhängigen -35/-10- Promotorregion, sondern mit einer Sequenz, die an Position -24(GG)/-12(TGC) vor dem transkriptionellen Startpunkt zu finden ist (Morett & Buck, 1989). Consensus-Sequenzen zu diesen Promotorboxen sind sowohl vor dem ersten Gen des Phenol-Abbauoperons, ppsA, dem ersten Gen des 4-Ethylphenol-Operons acsA als auch vor dem ersten Gen des in Wöhlbrand et al. (2008) postulierten Stress-2-Operons zu finden (Abbildung 12, gelbe Boxen). Bei einem Vergleich der DNA-Sequenzen weiter stromaufwärts dieser Boxen lässt sich Folgendes feststellen: Der Bereich vor dem 4-Ethylphenol-Operon und der Bereich vor dem Stress-2-Operon weisen Übereinstimmungen auf, die auf potentielle Operator-Bindestellen hinweisen und den Schluss zulassen, dass hier derselbe Operator wirkt (Abbildung 12A). Ein Vergleich der Genregion vor dem Phenol-Operon mit anderen Organismen, die Phenol anaerob abbauen können, zeigt auch hier mögliche Operator-Bindestellen (Abbildung 12B).

A	Ethylphenol Operon Stress 2 Operon	GCGACGCCGAGGATCGTATGCCGCCCTCTCCGGTCGCAGCCCTGTCCTTGTTCTTTATCACGAA CACTCTTATTACTGAATTCGAGGGTCCGCGCCGCCGGCCTGCCT
	Ethylphenol Operon Stress 2 Operon	ATGTCTCC <mark>TGAAC</mark> CCTGCTTCTATTT <mark>TTATGAAGT</mark> CAACAGC <mark>CTCCTTC</mark> CCATCGCCAT <mark>TTTCACG</mark> CAAGACCA <mark>TGAAC</mark> GGAAGCACGAAAA <mark>TTATGAAGT</mark> TCGACAG <mark>CACCTTC</mark> TGAGAGGGG <mark>TTTCACA</mark>
	Ethylphenol Operon Stress 2 Operon	<mark>ATTTCATGAACTCG</mark> GCTCAAGGATAAAAAATGCTGCAAAGCAGTATTTTTTATCCTTCTAACAGTAT <mark>ATTTTATGAACCCG</mark> CTGCAAATCGACTTTCTTCCGCACTGCGCAAAACACTGTGGTATCACACGCT
	Ethylphenol Operon Stress 2 Operon	${\tt TGTCTATCGAAAAGTCCCTCACCCGGAAATGCTGCACTGCGCAATCCGACTTGTATCACTGCAC\underline{T}$
	Ethylphenol Operon Stress 2 Operon	<u>GGCA</u> TCCGTCT <u>TGC</u> T GTACGATCCA <u>TGC</u> TT
В	A. aromaticum EbN1 Azoarcus sp. KH32C T. aromatica K172 A. toluclasticus	CTATCCGAACGAACTGGAGACTCCGCTGAACGCCGGTTCACCAAATGGTCAAGCCGTGCGGCCG ATCGCGCGCGTTCCGGCACGGAATTTACCAAATGATCACTTCACCTTCCGCGAGGGCCGAAACCT GCGCAGCGCCGGAAACGAAGAGAAGCCCCTGCGTTCATCTAATGGTCAATCCTGCAGCCGGCC TTCGGGCCGTCCAGGAGGGGGTTCACCAAATGATGAATCCACCCGTGTCTAGCGTCCGAAAGCT
	A. aromaticum EbN1 Azoarcus sp. KH32C T. aromatica K172 A. toluclasticus	AGGAGACGAAATCTGATCAATTGGTAAAGCCGCGCTCGCCGCGCTGCCCCGTCGTGGCCC <mark>ACCT</mark> CATCAAATGATCAAACGGCGCAGGAGCCGGACGGGGCCGCAATGCCCATCGTTGCTGGGAAAA GGAAGGAGAACTGATCATTTGATGAATCGCATCCAATGGCCGCTTTTTCCAATTACCCGGCACAA CATCAATTGATCAAACGTCGCGTTGGCGCGCGGCGGGAAAGCGAGGCCCCGCAAGGCGTTTC
	A. aromaticum EbN1 Azoarcus sp. KH32C T. aromatica K172 A. toluclasticus	<mark>TCCGCA</mark> TCCTTCCCGCCGTTTTGCGTCGCCCCCCCGAAAAC <mark>GCCTGGAT</mark> CGCACGCTGTCCGCG ACGGGCAATTTGGATGGC <mark>TATTTTCCGCA</mark> TCTGCGTCATTG <mark>GCCCGGAT</mark> GCCGCACGGACATGC ACGCCCCGCCAGAAATT <mark>TATTTTTTGCA</mark> ACTGCATGAAATGCTCGAAAG <mark>GCCTG</mark> CACAACGGGCA GAGGGGTGAGAAAAGA <mark>TTTTTTTCCGCA</mark> GATGCGCAACGTGC <mark>GCC</mark> ATCCCCTTGCACGACGGCC
	A. aromaticum EbN1 Azoarcus sp. KH32C T. aromatica K172 A. toluclasticus	CGTCGCAGCCTCGCCGAAGCGCCCGCGGAAAGCCCAT <mark>CTGC</mark> CGG <mark>CCCGG</mark> CGCAGCCGCAAT ATTTTCCGGCCTTTGAAAATTCCATATACATATCCAT TTGCTGC G <mark>CCGCG</mark> TGATGACGCGG <u>T</u> AACAGCGCT <mark>CCCGGCG</mark> TATGCGCCCGAAGGCTGAA <mark>TTGCTGC</mark> TCTG <mark>CCGC</mark> AATTAATCG <u>T</u> GCGACACCCCTTCTTCCCACTCGGTTGGCATGTGATG <mark>TTGCTGC</mark> GTTGCGGCAGTGGCTGC <u>T</u>
	A. aromaticum EbN1 Azoarcus sp. KH32C T. aromatica K172 A. toluclasticus	GGCACACCCCTTGC GGCACACCCCTTGC GGCACAGCGCTTGCCAATTGCTGTCCGGCAACCGGTCGCCGAAAC GGCACACCCTTTGCATTGGATGCCTGGCAGGCGTCGTCCAACA GGCACACCGGTTGCGATGGCTGTCCGGCAACCGGCCGCGAAAC

Abbildung 12: Analyse von Genregionen vor σ⁵⁴-abhängigen Abbauoperons zur Bestimmung möglicher Operator-Bindestellen. A: Vergleich der Genregionen vor dem 4-Ethylphenol-Operon und dem Stress-2-Operon in *Aromatoleum aromaticum* EbN1. B: Vergleich der Genregionen vor den Phenol-Abbauoperons verwandter Organismen (*Aromatoleum aromaticum* EbN1, *Azoarcus sp.* KH32C, *Thauera aromatica* K172, *Azoarcus toluclasticus*). Grün: mögliche Operator-Bindestellen, gelb: -24/-12 Promotorregion.

Zur Untersuchung der transkriptionellen Startpunkte, die ein σ^{54} - abhängiges System weiter bestätigen würden, wurden Primer-Extensionen durchgeführt. Dazu wurde RNA aus Zellen von Aromatoleum aromaticum EbN1 extrahiert, die jeweils auf den verschiedenen Substraten Phenol und 4-Ethylphenol adaptiert waren. Als Kontrolle wurde für jedes Substrat der transkritionelle Startpunkt des Operons für den anaeroben Abbau von Benzoat mitbestimmt. Dieser wurde bereits im verwandten Organismus Azoarcus sp. CIB (Valderrama et al., 2011) gezeigt und konnte für Aromatoleum aromaticum EbN1 durch diese Untersuchungen bestätigt werden (Abbildung 14). Die Analyse ergab für das 4-Ethylphenol-Operon einen

transkriptionellen Startpunkt, der zwei bis drei Basen vor dem errechneten Startpunkt liegt (Abbildung 13) und damit im Rahmen für die σ^{54} -abhängige Promotorregion (Dixon, 1984; Gussin et al., 1986). Dieses Ergebnis war trotz eines schwachen Signals mehrfach reproduzierbar. Für die anderen beiden Operons (Phenol und Stress-2) wurden leider keine eindeutigen Ergebnisse erzielt.

4-Ethylphenoldes transkriptionellen Startpunktes des Abbilduna 13: Bestimmung Abbauoperons. A: Promotorbereich vor acsA (ATG markiert den translationellen Start des Gens), -24 (GG)/-12(TGC): vorhergesagte Promotorsequenz, o⁵⁴-abhängig, +1 markiert den prognostizierten transkriptionellen Start; B: Primer-Extension erstellt mit dem Licor Sequenzierer (s. Material und Methoden). Das Gel zeigt die 3'-Sequenz, die zur 5'-Sequenz übersetzt wurde, roter Kasten: Signal des transkriptionellen Starts (RNA Extraktion aus Kulturen auf 4-Ethylphenol)

С

 $\begin{array}{r} {} CACAAAATTGCATGCGCGGGAAAAACGTCGAAGAAAAATGCACGT\\ -35\\ GAGTGCAGTTTTCCTGTGCTGCGTTTGATCTA<u>TGTCAA</u>CAGTGGC\\ -10 \\ +1\\ TGCACTGGAGTGCGTACTATGCGCCAATCATGCAGGGCCGGAAAAA \\ \end{array}$

TAATGCAGCAGCCGCGGGGTCGGTACAGGCGTCGCGGATAAATCA GAGGAGATAGTTCG<u>ATG</u>AGCGATGGTTGGTTCGACCAGTTCAAGA CCTGGTACGAGAAGCGCCACGATTATGCACGGGACTGGAAGGCGC GGACCGGTGGGCAAGTGGTGGCAACGATGTGTACCTATACTGCCG AGGA

Abbildung 14: **Bestimmung des transkriptionellen Startpunktes des anaeroben Benzoat-Abbauoperons.** A: Promotorbereich vor *bcrC* (ATG markiert den translationellen Start des Gens), -35/-10: vorhergesagte Promotorsequenz, σ^{54} -abhängig, +1 markiert den prognostizierten (abgeleitet von *Azoarcus sp.* CIB, (Valderrama *et al.*, 2011)) und tatsächlichen transkriptionellen Start; B: Primer-Extension erstellt mit Licor Sequenzierer. Das Gel zeigt die 3'-Sequenz, die zur 5'-Sequenz übersetzt wurde, roter Kasten: Signal des transkriptionellen Starts

3.7 Etablierung von Transkriptom-Studien in Aromatoleum aromaticum EbN1

Die Biochemie der Regulatoren PdeR und EtpR aus Aromatoleum aromaticum EbN1 ist mit großen Schwierigkeiten verbunden, da sie sich zwar heterolog in E. coli überproduzieren lassen (bislang jedoch nicht homolog in Stamm EbN1), jedoch dann stets als unlösliche Einschlusskörperchen ausfallen (Daten nicht gezeigt). Aus diesem Grund wurde für diese Arbeit eine andere Herangehensweise gewählt. Die Arbeit von Enrico Muhr (2016) hat gezeigt, dass ein Zusammenhang zwischen der Regulation der Proteine für das Wachstum auf Ethylbenzol und 4-Ethylphenol besteht, auch wenn dafür bisher keine Indizien aus früheren Untersuchungen vorlagen. Um tiefere Einblicke und neue Hinweise auf die Regulation mit diesen Substraten, aber auch generell zum Metabolismus von Aromatoleum aromaticum EbN1 zu bekommen, wurde die Methode der Transkriptom-Studien etabliert und erste RNA-Sequenzierungen durchgeführt. Von Interesse waren zunächst die Transkriptome von Aromatoleum aromaticum EbN1 WT-Zellen, die auf den Substraten 4-Ethylphenol und Ethylbenzol und deren Abbau-Intermediaten 4-Hydroxyacetophenon und Acetophenon adaptiert sind, die auch als alleinige Kohlenstoffquelle dienen können. Als Kontrolle und Standardsubstrat wurde die Kohlenstoffquelle Benzoat gewählt. Für jedes Substrat wurden drei biologische Replikate angefertigt.

Nach verschiedenen Tests zur Extraktion der gesamten RNA aus Aromatoleum aromaticum EbN1 (in Kooperation mit Enrico Muhr), der Anreicherung von mRNA und der Suche nach dem idealen Zeitpunkt für die Zellernte (exponentielles Wachstum) wurde ein Arbeitsablauf ausgearbeitet, der zu einer cDNA-Bibliothek Bibliothek der mit mRNA-Spezies führt. momentanen Ausstattung Diese kann dann im Hochdurchsatz mit der Methode des Illumina-Sequencing analysiert werden. Nachdem die Roh-"Reads" mit Identitäten im Genom "gemappt" worden waren, zeigte sich, dass mindestens 67 % der "Reads" auf existierende mRNAs entfallen und demnach bei der mRNA-Anreicherung ein Großteil der rRNA entfernt wurde (Tabelle 10). In der Zelle macht die mRNA nur 10-20 % aus (bei 80-90 % rRNA-Anteil), weswegen man bei einem Versuchsansatz ohne mRNA-Anreicherung meist zu wenige ausgelesene mRNAs für die weitere Analyse erhält (O'Neil et al., 2013).

Experiment #Reads Durchschnitt Q30% Roh-Reads auf mRNA Ebene [%]
Benzoat, EB : Ethylbenzol, OH-A : 4-Hydroxyacetophenon, EP : 4-Ethylphenol. Durchschnitt Q30%: Prozent der Basen mit einem Phred Score von mindestens 30 (Wahrscheinlichkeit, dass 1 von 1000 Basen falsch ist).
Tabelle 10: Quantifizierung der gemappten mRNA der einzeinen Experimente. A: Acetophenon, B:

A1	45.369.859	96,58	67,68
A2	39.153.602	97,05	82,37
A3	53.109.973	97,22	81,43
B1	39.367.749	97,04	73,59
B2	36.083.448	97,25	86,77
B3	39.288.187	97,26	86,64
EB1	35.652.495	97,2	88,17
EB2	53.957.793	97,08	69,98
EB3	33.882.552	96,91	87,18
OH-A1	50.305.067	96,09	70,52
OH-A2	46.934.895	95,4	78,86
OH-A3	47.642.799	95,95	79,6
EP1	45.934.416	96,06	81,35
EP2	45.581.723	96,06	80,5
EP3	50.068.040	96,06	79,34

Die "gemappten Reads" wurden mit dem Programm ReadXplorer zu RPKM-Werten ("Reads" pro Kilobase pro eine Million "gemappten Reads") normalisiert (Hilker *et al.*, 2014). RPKM ist dabei eine Einheit, die in Betracht zieht, dass nicht jedes Gen gleich lang ist und die den Fehler berichtigt, dass sonst auf längere Gene mehr "Reads" mappen als auf kürzere. Die Formel wurde von Mortazavi *et al.* (2008) entwickelt:

$$RPKM = \frac{10^9 * C}{N * L} = \frac{Reads \ pro \ Transkript}{Millionen \ Reads * Transkript \ Länge \ (Bp)}$$

Die weiteren Analysen wurden mit dem Programm T-REx durchgeführt, um eine möglichst gute Übersichtlichkeit der Daten zu erreichen (de Jong *et al.*, 2015). Um eine Vergleichbarkeit zwischen den verschiedenen Experimenten und Substraten zu erzielen, wurden die Werte normalisiert, indem der log₂ der RPKM-Werte gebildet

wurde. Eine Auftragung der einzelnen Experimente gegen diese Werte für jedes Gen des Genoms in einer Farbskala (Abbildung 15) zeigt direkt Unterschiede der Transkripte jedes Gens zwischen den Kulturen mit verschiedenen Substraten, die im Weiteren näher beleuchtet werden. Die oben gezeigten Linien stellen in einem Dendrogramm dar, wie ähnlich die Ergebnisse der einzelnen Messungen waren, wobei die Werte der jeweils drei Replikate sich stets am meisten ähneln. Die unterschiedlichen Identitätswerte sind dabei auf Schwankungen in den RPKM-Werten zurückzuführen. Basierend auf dem Dendrogramm wird deutlich, dass die Kultur-Replikate auf 4-Hydroxyacetophenon und Ethylbenzol in Bezug auf das Gesamt-Transkriptom, heterogenere Werte lieferten als die Kulturen auf den anderen drei Substraten. Die jeweiligen Abweichungen scheinen allerdings in einem vernünftigen Rahmen zu liegen, um die Abweichungen zwischen verschiedenen Substraten als signifikant zu bewerten.

Abbildung 15: **Heatmap der normalisierten RPKM-Werte.** Links neben der Heatmap: geclusterte Gene des gesamten Genoms, oben: Darstellung der Ähnlichkeit zwischen den einzelnen Experimenten. Je dunkler der Abschnitt ist, desto stärker ist das jeweilige Gen induziert (siehe Farbschlüssel). Analyse wurde durchgeführt mit T-REx (de Jong *et al.*, 2015).

Wenn dann ein Blick auf die Gesamtmenge an induzierten und reprimierten Genen der Kulturen mit den jeweiligen Wachstumssubstraten im Vergleich mit der Kontrolle (Kultur auf Benzoat) geworfen wird, zeigt sich, dass auf 4-Hydroxyacetophenon und Ethylbenzol generell die meisten Gene induziert wurden (Tabelle 11), wobei hier zwei verschiedene Signifikanz-Ebenen gewählt wurden. Dies filtert das "Grundrauschen" aller Gene aus, deren Expression um weniger als um das 2-fache (p-Wert $\leq 0,05$) bzw. das 5-fache (p-Wert $\leq 0,01$) der Kontrolle verändert wurden. Im Vergleich zum Transkriptom der Kontrolle ist die Genexpression am wenigsten in den Kulturen auf Acetophenon verändert. Tabelle 11 unterstreicht die zuvor gemachte Beobachtung, dass das Verhältnis der Menge an unterschiedlich exprimierten Genen bei 4-Hydroxyacetophenon und Ethylbenzol im Vergleich zu Benzoat am größten ist.

Tabelle 11: Anzahl der Gene, deren Expression bei den Kulturen der getesten jeweiligen Substrate verändert im Vergleich zur Kontrolle (Benzoat). Zur Bestimmung wurden folgende Grenzen gesetzt: p-Wert ≤ 0.05 und X-fache Änderung ≥ 2 . Anzahl der Gene die eine X-fache Veränderung >5 (p-Wert ≤ 0.01) aufgezeigt haben (dargestellt in Fett)

Substrat	Induziert	Reprimiert
4-Hydroxyacetophenon	327/ 32	262/ 7
4-Ethylphenol	146/ 12	143/ 8
Acetophenon	38/6	62/ 5
Ethylbenzol	271/ 26	142/ 5

Wenn die Genexpression der Kulturen auf den einzelnen Substraten korreliert wird, ergibt sich eine hohe Ähnlichkeit der Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon (Abbildung 16). Da 4-Hydroxyacetophenon ein Intermediat des 4-Ethylphenol-Abbaus ist, war dies zu erwarten. Betrachtet man jedoch die Korrelation der Genexpression von Kulturen auf Acetophenon mit den anderen vier Substraten, wird deutlich, dass hier die höchste Ähnlichkeit zu Kulturen auf Benzoat besteht, obwohl Acetophenon ein Intermediat des Ethylbenzol-Stoffwechsels ist. Die Genexpression von Kulturen auf Ethylbenzol ist erwarteterweise wiederum am ähnlichsten zu Kulturen auf Acetophenon. Wie schon in Tabelle 11 deutlich wurde, ist das Transkriptom bei Wachstum auf Acetophenon und Benzoat für Aromatoleum aromaticum EbN1 fast gleich, wohingegen Aromatoleum aromaticum EbN1 bei Wachstum auf Ethylbenzol im Vergleich zu Benzoat wesentlich mehr Gene zusätzlich induziert.

Abbildung 16: Vergleich der verschiedenen Experimente untereinander basierend auf den induzierten Genen. Die Matrix wurde erstellt nach der Pearson-Korrelation. Je heller das Rechteck ist, desto näher liegen die Kulturen auf den verschiedenen Substraten in ihrer Genexpression beieinander. Je dunkler das Rechteck, desto weniger haben die Kulturen af den verschiedenen Kulturen gemeinsam.

Aromatoleum aromaticum EbN1 induziert die verantwortlichen Operons für die verschiedenen Substrate

Ein großer Aspekt eines Vergleichs zwischen Kulturen auf verschiedenen Substraten ist, ob die zuvor beobachteten Daten zur Substrat-abhängigen Induktion der spezifischen Abbau-Operons bestätigt werden können und damit eine Validierung und Verifizierung der alten und neuen Ergebnisse besteht. Darüber hinaus sollten möglichst weitere Daten gewonnen werden, die mit den bisherigen Verfahren wie Proteomik oder Messen von Enzymaktivitäten nicht zugänglich waren. Es konnte hinreichend gezeigt werden, dass 4-Ethylphenol und 4-Hydroxyacetophenon durch Enzyme metabolisiert werden, die in einem gemeinsamen Operon kodiert sind (Wöhlbrand et al., 2008) und unter der Kontrolle des Regulators EtpR stehen (Kapitel 3.5) (Büsing et al., 2015b). Ethylbenzol wird in Aromatoleum aromaticum EbN1 zu Acetophenon abgebaut, was durch die EbDH und die Ped katalysiert wird, welche beide neben vier weiteren putativen Proteinen in einem Operon kodiert sind. Die Enzyme für den Acetophenon-Metabolismus sind wiederum mit weiteren putativen Proteinen in einem separaten Operon kodiert, das direkt stomaufwärts vom Ethylbenzol-Operon zu finden ist. Es wurde postuliert, dass die Regulation dieser beiden Operons unter der Kontrolle von zwei Zweikomponenten-Systemen (EdiRS für das Ethylbenzol-Operon und AdiRS für das Acetophenon-Operon) steht (Rabus et al.,

2002; Rabus *et al.*, 2014). Alle vier Substrate werden über Benzoyl-CoA in den zentralen Metabolismus eingeführt und benötigen dazu die Proteine, die im Operon für den anaeroben Abbau von Benzoat kodiert sind. Mit Augenmerk auf die jeweilig beteiligten Abbau-Operons wurden deshalb die Veränderungen der normalisierten RPKM-Werte im Vergleich zu den Werten der Genexpression auf Benzoat gegen die Signifikanz (dafür wurde der -log₂ (*p*-Wert) gebildet) aufgetragen und für jedes Gen des Genoms bestimmt (Abbildung 17).

Beschriftung: siehe nächste Seite

Abbildung 17: Darstellung der Transkriptome der jeweiligen Kulturen auf den getesteten Substraten zur Bestimmung der signifikant abweichenden Expression von Genen im Vergleich zu Kulturen auf Benzoat. A: 4-Hydroxyacetophenon, B: 4-Ethylphenol, C: Acetophenon, D: Ethylbenzol. X-Achse: \log_2 der X-fachen Veränderung (FC), je weiter ein Punkt von 0 entfernt ist, desto höher bzw. niedriger ist die Expression des jeweiligen Gens im Vergleich. Y-Achse: $-\log_2$ vom *p*-Wert, je höher der Punkt liegt, desto signifikanter ist die Expression des jeweiligen Gens im Vergleich. Basierend auf allen Vergleichen wurden zwei Grenzen gesetzt: Alles, was in den grauen Balken liegt, kann als Hintergrundrauschen angesehen werden, alles außerhalb wird als Top-Hit gewertet (≥ 2 verändert und ein *p*-Wert ≤ 0.05 ; bezieht sich auf Tabelle 11). Die gestrichelten Linien setzten die zweite Grenze und werden als hoch-verändert (≥ 5) und sehr signifikant (*p*-Wert ≤ 0.01) angesehen (und sind in dieser Arbeit hauptsächlich von Interesse). Die grauen Schatten, die um die Punkte liegen, beziehen sich auf die Abweichungen der verschiedenen Replikate. •: Gene des 4-Ethylphenol-Operons (dunkelgrün: *etpR*), •: Gene des Operons für anaeroben Abbau von Benzoat, •: Gene des Acetophenon-Operons (dunkelblau: *adiRS*), •: Gene des Ethylbenzol-Operons (dunkelrot: *ediRS*)

Hierbei wird direkt deutlich, dass Aromatoleum aromaticum EbN1 sowohl bei Wachstum auf 4-Hydroxyacetophenon (Abbildung 17A) als auch auf 4-Ethylphenol (Abbildung 17B) das zugehörige Abbau-Operon signifikant induziert. Bei Wachstum auf Acetophenon (Abbildung 17C) oder Ethylbenzol (Abbildung 17D) wird dagegen wie erwartet das Acetophenon-Abbauoperon induziert. Erstaunlicherweise sind die hinteren Gene des apparenten "verlängerten" Acetophenon-Operons, die sich 3'-seitig des bal Gens befinden, nur bei Kulturen auf Ethylbenzol, nicht aber bei solchen auf Acetophenon induziert. Zusätzlich wird Ethylbenzol-abbauenden in Zellen erwarteterweise das Ethylbenzol-Operon induziert. Hierbei ist auch besonders bemerkenswert, dass die ediRS-Gene des putativen Ethylbenzol-spezifischen Regulationssystems (dunkelrote Punkte) in diesen Zellen ebenfalls signifikant hochreguliert sind. Zum anderen ist hervorzuheben, dass das hypothetische Protein C1A68, das direkt vor ebdA kodiert ist, genauso wie der Rest des ebd/ped-Operons induziert ist, vermutlich also ebenfalls zu diesem Operon gehört. Die Expressionswerte der Gene für den anaeroben Abbau von Benzoat (•) befinden sich fast alle im Bereich des Hintergrundrauschens. Dies bedeutet, dass diese Gene in allen Kulturen mit den getesteten Substraten in ähnlichen Anteilen exprimiert werden. Wenn die absoluten Signalwerte und nicht ihre relativen Veränderungen betrachtet werden, zeigt sich eine durchgängig hohe Expression der Gene des anaeroben Benzoat-Abbaus unter allen Substratbedingungen, die in dieser Darstellung nicht ersichtlich wird (Abbildung 18). Die einzige Ausnahme bildet dazu das Gen bcrA, das in Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon stark reprimiert zu sein scheint (Abbildung 17A und B). Dieses Gen ist jedoch generell sehr schwach exprimiert bzw. es scheint, dass die mRNA dieses Gens sehr instabil ist.

Die Gencluster für anaeroben und aeroben Abbau von Benzoat werden bei allen Kulturen auf den verschiedenen Substraten induziert

Aromatoleum aromaticum EbN1 besitzt jeweils ein Operon für den anaeroben und eines für den aeroben Abbau von Benzoat. Ersteres enthält zum einen ein Gen, das für eine Benzoat-CoA-Ligase BclA (Genlocus: ebA5301) kodiert, die Benzoat zu Benzoyl-CoA aktiviert und in Kulturen auf Benzoat sehr stark induziert ist (Abbildung 18 oben). Zum anderen sind in diesem Operon die Enzyme kodiert, die für die anaerobe Metabolisierung von Benzoyl-CoA wichtig sind. Dazu gehören die Benzoyl-CoA-Reduktase (BcrCBAD), die Cyclohexa-1,5-dien-1-Carbonyl-CoA-Hydratase (Dch), die 6-Hydroxycyclohex-1-en-1-carbonyl-CoA-Dehydrogenase (Had) und die 6-Oxocyclohex-1-en-1-carbonyl-CoA-Hydrolase (Oah). Außerdem finden sich am Ende des Operons Gene, die für zwei Benzoat-Transporter kodieren (Genprodukt von ebA5303-ebA5309: ABC-Transporter und BenK: MFS-Transporter). Im Operon für den aeroben Abbau von Benzoat ist ebenfalls eine Benzoat-CoA-Ligase kodiert, die zu 68 % mit der anaeroben BclA identisch ist: BclA (Genlocus: ebA2757). Dort befinden sich außerdem Gene, die für ein Substrat-Bindeprotein eines ABC-Transporters (zu 70 % identisch mit dem Genprodukt von ebA5303 aus dem "anaeroben" Operon) und des aeroben Benzoyl-CoA- Abbaus kodieren: die Aldehyddie Enzyme Dehydrogenase (BoxZ), die Benzoyl-CoA-dihydrodiol-Lyase (BoxC) und die Benzoyl-CoA-Oxygenase (BoxAB). Es wurde in dieser Arbeit beobachtet, dass beide Operons in allen Kulturen der getesteten Substrate und besonders auch in Zellen induziert sind, die anaerob Benzoat abbauen (Abbildung 17). Auch die Gene für die beiden involvierten Regulatoren BzdR (anaerober Benzoat-Abbau) und BoxR (aerober Benzoat-Abbau) sind induziert, wobei boxR im direkten Vergleich aller hier behandelten Regulatoren bei weitem am stärksten exprimiert wird (Daten nicht gezeigt). Die Sequenzen der beiden Regulatoren sind zu 49 % ähnlich und zeigen beide eine C-terminale Shikimatkinase-ähnliche Domäne (Pfam 30.0), die wohl denselben Effektor (wahrscheinlich Benzoyl-CoA (Barragan et al., 2005)) bindet und demnach die beiden Regulatoren in direkter Konkurrenz stellen könnten.

Ergebnisse

Benzoat Ethylbenzol 4-Ethylphenol 4-Hydroxyacetophenon

Abbildung 18: Genexpression der Operons zum Benzoat-Abbau in Aromatoleum aromaticum EbN1. Dargestellt sind die normalisierten (log2) Signale der Kulturen auf den fünf verschiedenen Substraten Acetophenon, Benzoat, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon. Je dunkler ein Feld ist, desto stärker ist das Gen in der jeweiligen Kultur (alle drei Replikate einbezogen) exprimiert (siehe Farbschlüssel). Proteinprodukte zu den angegebenen Genen (nach NCBI): anaerober Abbau (oben): Dch: Cyclohexa-1,5-dien-1-Carbonyl-CoA-Hydratase, BzdV: Oxidoreduktase, Had: 6-Hydroxycyclohex-1-en-1-Carbonyl-CoA-Dehydrogenase, EbA5303-5309: ABC-Transporter, BzdZ: Dehydrogenase, BcIA (EbA5301): Benzoat-CoA-Ligase, Fxd: Ferredoxin, BcrCBAD: Benzoyl-CoA-Reduktase, ORF3: Transkriptioneller Regulator, Oah: 6-Oxocyclohex-1-en-1-Carbonyl-CoA-Hydrolase, BenK: MFS-Transporter, BzdR: transkriptioneller Regulator, EbA5293, EbB187, EbA5280: hypothetische Proteine; aerober Abbau (unten): BoxAB: Benzoyl-CoA-Oxygenase, BcIA (EbA2757): Benzoat-CoA-Ligase, BoxZ: Aldehyd-Dehydrogenase, BoxR: transkriptioneller Regulator, EbA2752: Thioesterase, EbA2753: Laktonase, PhbP: Protein ähnlich zu Granulom-assoziierten Proteinen, EbA2768: β-Ketoadipyl-CoA-Thiolase, EbA2755: Substrat-Bindeprotein eines ABC-Transporters,

FdhAB: Formiat-Dehydrogenase, ProQ Aktivator vom osmoprotektierenden Transporter ProP, EbA2774: Aminopeptidase, EbA2751, EbA2758, EbA2769, EbA2773: hypothetische Proteine

In dieser Arbeit wird im Weiteren aufgrund der besseren Übersichtlichkeit nur auf Gene eingegangen, die starke Veränderungen in Kulturen der getesteten Substrate im Vergleich zur Kontrolle zeigen und eine hohe Signifikanz haben (Grenze der gestrichelten Linien, Abbildung 17). *Aromatoleum aromaticum* EbN1 enthält neben dem Genom noch zwei Plasmide. Diese wurden analysiert (Anhang: Abbildung 31 und Abbildung 32); da dabei jedoch bei keiner Kultur mit den verschiedenen Substraten ein Gen im Besonderen herausstach, werden sie nicht näher behandelt.

Die Thiolase EbA5319 aus dem Phenylpropionat-Abbauweg ist am Ethylbenzol- und Acetophenon-Abbau beteiligt und produziert Benzoyl-CoA

Im anaeroben Stoffwechsel von Ethylbenzol und Acetophenon sind mit einer Ausnahme die verantwortlichen Enzyme für jeden Schritt bereits identifiziert und charakterisiert. Es wurde schon ausführlich gezeigt werden, dass die Ethylbenzol-Dehydrogenase EbDH den ersten Schritt der Hydroxylierung von Ethylbenzol zu (S)-1-Phenylethanol und die Phenylethanol-Dehydrogenase Ped den zweiten Schritt der weiteren Oxidation zu Acetophenon katalysieren. Dieses wird dann mithilfe der Acetophenon-Carboxylase Apc1-5 zu Benzoylacetat carboxyliert und durch die Benzoylacetat-CoA-Ligase Bal weiter zu Benzoylacetyl-CoA aktiviert. Für den nächsten Schritt zu Benzoyl-CoA wird eine Thiolase benötigt, die jedoch weder im Ethylbenzol-. noch im Acetophenon-Operon kodiert ist. Bei der globalen Transkriptomstudie ist aufgefallen, dass in den Kulturen auf Acetophenon, aber auch in denen auf Ethylbenzol besonders ein Operon signifikant induziert ist (Abbildung 19). Dieses Operon umfasst die Gene ebA5314-ebA5321 und wurde zuvor als Operon für den Abbau von 3-Phenylpropionat (Trautwein et al., 2012b) beschrieben. Teil des Abbauwegs von 3-Phenylpropionat ist eine Thiolase (Genprodukt von ebA5319), die genau die notwendige Reaktion von Benzoylacetyl-CoA zu Benzoyl-CoA katalysiert und damit auch im Ethylbenzol-Stoffwechsel die letzte, ungeklärte Lücke schließt. Der Mechanismus der Induktion verläuft dabei vermutlich indirekt: die Akkumulation von Benzoylacetyl-CoA aus dem Acetophenon-Abbau führt vermutlich zu einem Rückstau

des Phenylpropionat-Abbauwegs, d.h. die Reaktionen der β -Oxidation laufen rückwarts und führen zur Bildung von Phenylpropionyl-CoA. Aus den Untersuchungen zur Regulation anderer Abbauwege von CoA-aktivierten Säuren ist zu schließen, dass dabei vermutlich jeweils die CoA-Thioester die aktiven Co-Regulatoren sind. Auf diese Weise sorgt dann die Produktion von Benzoylacetyl-CoA zusammen mit der Reversibilität der β -Oxidation (AG Heider, unveröffentlichte Daten) für die Induktion dieser Gene.

Abbildung 19: **Das 3-Phenylpropionat-Abbauoperon (A)**, **die Genexpression bei den Kulturen auf den verschiedenen Substraten (B) und der Abbau von 3-Phenylpropionaten (Trautwein** *et al.***, 2012b). Proteinprodukte zu den angegebenen Genen (Trautwein** *et al.***, 2012b): EbA5314: transkriptioneller Regulator (TetR Familie), EbA5316: Bindeprotein eines ABC-Transporters, EbA5317: Fettsäure-CoA-Ligase, EbA5318: Enoyl-CoA-Hydratase/Isomerase, EbA5319: β-Ketothiolase, EbA5320: 3-Hydroxyacyl-CoA-Dehydrogenase, EbA5321: Transposase; A: Orientierung und Aufbau des Abbauoperons im Genom von** *Aromatoleum aromaticum* **EbN1; B: Dargestellt sind die normalisierten (log₂) Veränderungen der Kulturen auf den vier verschiedenen Substraten Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon im Vergleich zur Kontrolle (Benzoat). Je blauer ein Feld ist, desto stärker ist das Gen exprimiert (siehe Farbschlüssel). C: Von Trautwein** *et al.* **(2012)**
postulierter Abbauweg für 3-Phenylpropionat (hier am Beispiel von Hydrocinnamat), chemische Verbindungen: 1. Hydrocinnamat, 2. Hydrocinnamoyl-CoA, 3. Cinnamoyl-CoA, 4. 3-Hydroxy-3-Phenylpropanoyl-CoA, 5. Benzoylacetyl-CoA, 6. Benzoyl-CoA, orange unterlegt: Thiolase, die möglicherweise auch für den Abbau von Ethylbenzol und Acetophenon wichtig ist.

Aromatoleum aromaticum EbN1 induziert die 4-Hydroxybenzoat-CoA-Ligase und die 4-Hydroxybenzoyl-CoA-Reduktase beim Abbau von 4-Ethylphenol

Bis heute ist nicht genau geklärt, wie 4-Ethylphenol von Aromatoleum aromaticum EbN1 abgebaut wird. Wöhlbrand und Kollegen haben 2008 einen Abbauweg basierend auf dem Abbauoperon postuliert, der beschreibt, dass im ersten Schritt 4-Ethylphenol zu 4-Hydroxy-1-Phenylethanol umgesetzt wird, katalysiert durch die Methylenhydroxylase PchCF. Dieses Intermediat wird dann mithilfe der beiden stereospezifischen Alkohol-Dehydrogenasen ChnA und EbA309 4zu Hydroxyacetophenon umgewandelt, welches nicht nur ein Intermediat ist, sondern auch selbst als Substrat dienen kann. Der weitere Weg der Umsetzung von 4-Hydroxyacetophenon ist unklar: Wahrscheinlich ist die Biotin-abhängige Carboxylase XccBCA daran beteiligt, deren Gene im Operon lokalisiert sind und deren Untereinheiten als induzierte Proteine identifiziert wurden. Zurzeit wird eine Carboxylierung der Methylgruppe postuliert, die zu 4-Hydroxybenzoylacetat führt. Dieses wird dann durch die Acetoacetyl-CoA-Synthetase AcsA aktiviert und schließlich durch die Thiolase TioL zu 4-Hydroxybenzoyl-CoA und Acetyl-CoA gespalten. Es wird angenommen, dass anschließend die 4-Hydroxybenzoyl-CoA-Reduktase (HcrCAB), die auch für den Phenol-Abbau wichtig ist, den letzten Schritt zum Benzoyl-CoA katalysiert. Bei Phenol ist weiterhin bekannt, dass die Aktivierung des vorherigen Schritts (4-Hydroxybenzoat zu 4-Hydroxybenzoyl-CoA) mithilfe der 4-Hydroxybenzoat-CoA-Ligase (HbcL-1) geschieht. Es ist deshalb bemerkenswert, dass auch in Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon die hcrCAB und hbcL-1-Gene für die 4-Hydroxybenzoat-CoA-Ligase und die 4-Hydroxybenzoyl-CoA-Reduktase um ca. das 4-fache induziert sind (Abbildung 20). Außerdem wird auf diesen Substraten zusätzlich das 3-Hydroxybenzoat-Abbauoperon induziert, was wahrscheinlich auf eine unspezifische Kreuzinduktion durch 4-Hydroxybenzoyl-CoA zurückzuführen ist. Das liegt in einem Gencluster (Anhang: Abbildung Gen hbcL-1 30), dessen Expressionsverhalten auf zwei transkriptionelle Startpunkte hindeutet (Abbildung 20

oben). Der vordere Teil, in dem sich auch *hbcL-1* befindet, besteht außerdem aus Genen, die für einen Transporter (*dctP, ebB188, dctM*) kodieren, sowie aus zwei weiteren Genen (*ebA5371* und *ebA5375*), die für mögliche Regulatoren kodieren können. Im Operon zum Abbau von 3-Hydroxybenzoat finden sich Genduplikate, die für einen Transporter (Ähnlichkeiten: DctP/DctP (EbA729): 59 %, EbB188/EbA733:44 %, DctM/DctM (EbA732): 65 %) und auch für eine putative 3-Hydroxybenzoat-CoA-Ligase (zu 37 % ähnlich zu HbcL-1) kodieren. Die Gene *dctP/ebA733/dctM* für den putativen Transporter gehören zur Klasse der C4-Dicarboxylat-TRAP (*Tripartite ATP-independent periplasmic*)-Transporter. Ob diese Transporter eine Relevanz für den 4-Ethylphenol-Stoffwechsel haben oder nur mitinduziert werden, bleibt an dieser Stelle ungeklärt. Aus diesen Ergebnissen ist jedoch zu schließen, dass 4-Ethylphenol und 4-Hydroxyacetophenon bzw. ein Abbauprodukt aktivierend auf die Cluster mit HbcL-1, sowie die Operons für den Abbau von Hydroxybenzoat wirken. Es ist an dieser Stelle davon auszugehen, dass die letzten Schritte zum Benzoyl-CoA durch dieselben Enzyme katalysiert werden, die vom Phenol-Stoffwechsel bekannt sind (Abbildung 1).

Abbildung 20: Genexpression der Cluster, der die 4-Hydroxybenzoat-CoA-Ligase (HbcL-1, oben) beinhaltet und die für Proteine des Abbaus von Hydroxybenzoat (unten) kodieren. Dargestellt sind die normalisierten (log2) Veränderungen der verschiedenen Kulturen auf Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon im Vergleich zur Kontrolle (Benzoat). Je blauer ein Feld ist, desto stärker ist das Gen exprimiert und je brauner ein Feld ist, desto stärker ist das Gen reprimiert im Vergleich zum Wachstum auf Benzoat (siehe Farbschlüssel). Proteinprodukte zu den angegebenen Genen (nach NCBI): zugehörig zum hbcL-1-Cluster (oben): DctPM: Transporter, HbcL-1: 4-Hydroxybenzoat-CoA-Ligase, EbA5371: Hybrid-Sensorprotein eines Zweikomponenten-Systems, EbA5375: Regulatorprotein (Fis-Familie), EbA5384: Regulator (Phenolabbau?), EbB189: Integrase Fragment, Pdh: Phenylacetaldehyd-Dehydrogenase, EbA5380: FAD-abhängige Oxidase, ebB188, ebB190: hypothetische Proteine; zugehörig zum 4-Hydroxybenzoat-Abbau: HcrCAB: 4-Hydroxybenzoyl-CoA-Reduktase, EbA3601: hypothetisches Protein; zugehörig zu 3-Hydroxybenzoat-Abbau: BcrADBC: 3-Hydroxybenzoyl-CoA-Reduktase, EbA723, EbA738: Alkohol-Dehydrogenasen, EbA722: Enoyl-CoA-Hydratase, EbA725: MFS-Transporter, EbA741: Acetyltransferase, DctPM: Transporter, EbA736: Acyl-CoA-Dehydrogenase, EbA739, EbA733: hypothetische Proteine

An dieser Stelle ist zu bemerken, dass die gemessenen mRNA-Abundanzen immer sowohl von der Genexpression als auch von der Stabilität der jeweiligen mRNA-Spezies abhängen, was besonders an den Genen *bcrA* (*ebA5287*) und *bcrA* (*ebA742*) deutlich wird. Obwohl beide Gene jeweils für eine Untereinheit eines komplexeren Enzyms kodieren und die mRNAs der anderen Gene der putativen zugehörigen Operons hoch abundant sind, finden sich in allen Kulturen auf den getesten Substraten nur Spuren dieser Gene.

Ein Gencluster, das für eine NADH:Ferredoxin-Oxidoreduktase kodiert, ist in Kulturen auf 4-Ethylphenol induziert

Bei der Analyse des Transkriptoms von Aromatoleum aromaticum EbN1-Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon wurde deutlich, dass neben dem 4-Ethylphenol-Operon ein weiterer Gencluster von sieben Genen stark und ebenso hoch signifikant induziert wird (p-Wert < 0.01, Abbildung 21). Bei diesem Cluster handelt es sich um die Gene ebD64-ebA2590, die für eine NADH:Ferredoxin-Oxidoreduktase kodieren. Es gibt in EbN1 zwei Cluster für diese Art Enzym, wobei der andere Cluster in den Kulturen der getesteten Substrate nicht besonders hoch exprimiert ist. Die NADH:Ferredoxin-Oxidoreduktase ist ein Membranenzymkomplex, der eine reversible Redoxreaktion zwischen Ferredoxin und NAD+/NADH katalysiert und dabei Protonen oder Na+-Ionen über die Membran transportiert. Dadurch wird der Ferredoxin- und NADH-Haushalt der Zelle regeneriert. In diesem Zusammenhang ist auch auffällig, dass die Gene für eine 2-Oxoglutarat-Ferredoxin-Oxidoreduktase (KorAB) bei denselben Substraten ebenso signifikant induziert sind (Anhang: Tabelle 13). Dieses Enzym katalysiert die Reaktion von 2-Oxoglutarat zu Succinyl-CoA, wobei zwei Ferredoxine reduziert werden. Dies kann als erstes Indiz gewertet werden, dass im Abbauweg von 4-Ethylphenol oder 4-Hydroxyacetophenon ein Ferredoxin-abhängiges Enzym beteiligt sein könnte.

Abbildung 21: Genexpression eines der beiden Cluster, die für eine NADH:Ferredoxin-Oxidoreduktase kodieren. Dargestellt sind die normalisierten (log2) Veränderungen der verschiedenen Kulturen auf Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon im Vergleich zur Kontrolle (Benzoat). Je blauer ein Feld ist, desto stärker ist das Gen exprimiert und je brauner ein Feld ist, desto stärker ist das Gen reprimiert im Vergleich zum Wachstum auf Benzoat (siehe Farbschlüssel). Proteinprodukte zu den angegebenen Genen (nach NCBI): RnfABCDGEH: Elektronentransport-Komplex (NADH:Ferredoxin-Oxidoreduktase), EbD64: Metall-abhängige Hydrolase, EbA2571, EbA2572, ebB83, EbA2590, EbA2569: hypothetische Proteine

Zusätzlich zu den erwähnten Besonderheiten sollte hier noch angemerkt werden, dass das Operon für den anaeroben Abbau von Phenylacetat im Vergleich zu Kulturen auf Benzoat auf allen vier anderen getesteten Substraten und vor allem in den Kulturen auf 4-Ethylphenol und 4-Hydroxacetophenon (ungefähr um das 4-5-fache erhöhter mRNA-Anteil) induziert ist. Diese Beobachtung wurde auch bei Zellen gemacht, die auf Indolacetat kultiviert worden sind (persönliche Information von Karola Schühle) und lässt die Annahme zu, dass dieses Operon sehr unspezifisch induziert wird. Vermutlich dient hier (Hydroxy)Phenylpropionyl-CoA als Substrat-analoger Induktor, der durch einen rückwärtslaufenden β -Oxidationsweg aus dem Intermediat (Hydroxy)Benzoylacetyl-CoA entstehen kann.

Bei Wachstum auf Ethylbenzol ist ein Gencluster induziert, das Genduplikate aus Abbauoperons für Ethylbenzol, 4-Ethylphenol und Phenol besitzt

Wenn das Transkriptom von *Aromatoleum aromaticum* EbN1-Kulturen auf Ethylbenzol betrachtet wird, gibt es ein paar Überraschungen. Zum einen sind die Gene für hypothetische Proteine, die hinter den bisher identifizierten und funktional annotierten Genen des Acetophenon-Operons liegen, nur bei Ethylbenzol induziert und auch die Expression des Regulationssystems *ediRS* scheint bemerkenswert spezifisch durch Ethylbenzol induziert zu werden (Abbildung 17D). Zum anderen wird ein weiterer Gen-Cluster signifikant induziert, der wohl am besten als "Ersatz"-Cluster zu beschreiben ist (Abbildung 22). In diesem Cluster befinden sich Genduplikate von Genen aus dem 4-Ethylphenol-Abbauoperon, dem Phenol-Abbauoperon und dem Ethylbenzol-Abbauoperon (Abbildung 22 unten). Die Ähnlichkeiten der Genprodukte sind in Tabelle 12 aufgeführt und deuten darauf hin, dass vor allem die Gene *edbABCD2* die Funktion der ursprünglich beschriebenen Gene für die EbDH übernehmen könnten.

Tabelle 12: Vergleich der Genduplikate aus dem "Ersatz"-Cluster auf Proteinebene mit den bekannten Stoffwechsel-Enzymen: XccBCA (Biotin-Carboxylase) aus dem 4-Ethylphenol Operon, PpsAB (zwei Untereinheiten der Phenylphosphat-Synthetase) aus dem Phenol-Operon und Ped ((S)-1-Phenylethanol-Dehydrogenase) sowie EbdABCD (Ethylbenzol-Dehydrogenase) aus dem Ethylbenzol-Operon.

Ursprünglich beschriebene Gene	Genduplikat	Ähnlichkeit
хссВ	xccB2	37 %
xccC	xccC2	50 %
xccA	xccA2	46 %
ppsA	ppsA2	45 %
ppsB	ppsB2	37 %
ped	ped2	47 %
ebdA	ebdA2	78 %
ebdB	ebdB2	84 %
ebdC	ebdC2	61 %
ebdD	ebdD2	51 %

Ergebnisse

Des Weiteren gehört zum "Ersatz"-Cluster ein Operon, das zuvor als Stress-3-Operon beschrieben wurde (Wöhlbrand *et al.*, 2008) und in anderer Orientierung direkt stromaufwärts zu finden ist. In diesem Operon findet sich ein putativer Exporter, der eventuell zur Detoxifizierung der Zelle beitragen könnte. Dieser ist durch das Gen *ebA5763* kodiert und das Genprodukt hat eine 97 %-ige Ähnlichkeit zu EbA327, das im Stress-2-Operon kodiert ist, welches wiederum direkt neben dem 4-Ethylphenol-Operon zu finden und unter Wachstum auf 4-Ethylphenol und 4-Hydroxyacetophe non induziert wurde (Daten nicht gezeigt). Auch im Stress-1-Operon, das in der Nähe des Toluol-Abbauoperons lokalisiert ist, findet sich ein Gen dessen Genprodukt EbA1928 zu 99% zu EbA5763 identisch ist. Das Genprodukt C1A90, welches im hinteren Teil des Acetophenon-Operons kodiert ist und auch als Transporter annotiert wurde, weist eine 26 % Ähnlichkeit auf.

Neben vielen Genen, die als hypothetische Proteine annotiert sind, fällt das Stress-3-Operon dadurch besonders auf, dass es direkt benachbart zu Genen für zwei weitere putative Regulationssysteme liegt, die eventuell ein gemeinsames Operon bilden. Das erste Gen kodiert dabei für einen σ^{54} -abhängigen Regulator, der nahverwandt mit PdeR und EtpR ist (Abbildung 23) und hier als PdeR3 bezeichnet wird. Das andere putative Regulationssystem ist ein Zweikomponenten-System XdiRS, das die größte Verwandtschaft zum Zweikomponenten-System AdiRS hat (Abbildung 26).

Abbildung 22: Genexpression des "Ersatz"-Clusters in den Kulturen auf den verschiedenen Substraten im Vergleich zur Kontrollkultur (A) und Orientierung sowie Aufbau des Genabschnitts auf dem Genom von Aromatoleum aromaticum EbN1 (B). Proteinprodukte zu den Genen (nach NCBI): XccBCA2: Biotin-Carboxylase, angegebenen EbA5780: HAD-Zucker-Phosphatase, EbA5761: Oxidoreduktase/Zn-abhängige ADH, EbA5757: Regulatorprotein (Phenol?), Transporter, EbA5760: Acetoacetyl-CoA-Synthetase, EbdABCD2: Ethylbenzol-EbA5763: Dehydrogenase, Tnp46: Transposase, PdeR3: o⁵⁴-abhängiger Regulator, Ped2: Phenylethanol-Dehydrogenase, XdiRS: Zweikomponenten-System, PpsAB, EbA5762, EbA5768, EbA5766, EbA5764, EbA5788, EbA5769: hypothetische Proteine; A: Dargestellt sind die normalisierten (log2) Veränderungen der Kulturen mit den verschiedenen Substraten Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon im Vergleich zur Kontrolle (Benzoat). Je blauer ein Feld ist, desto stärker ist das Gen exprimiert und je brauner ein Feld ist, desto stärker ist das Gen reprimiert im Vergleich zum Wachstum auf Benzoat (siehe Farbschlüssel). B: Ersatz-Cluster, das zum einem das zuvor postulierte Stress-3-Operon (Wöhlbrand et al., 2008) und zum anderen ein Cluster mit Genduplikaten von xccBCA, ppsAB, ped und ebdABCD beinhaltet.

Alle diese Gene sind in Kulturen auf Ethylbenzol von Aromatoleum aromaticum EbN1 signifikant (p-Wert $\leq 0,01$) exprimiert und induziert, wobei hier zu vermerken ist, dass die Gene pdeR3 und xdiRS im Vergleich zum Rest des Clusters wesentlich schwächer induziert sind, was durchaus mit ihrer Eigenschaft als Gene für Regulatorproteine kompatibel ist.

Das Gen etpR ist in Kulturen auf 4-Ethylphenol hochreguliert

Um einen Überblick zu bekommen, wie viele putative Regulatorsysteme der beiden hier behandelten Klassen (σ^{54} -abhängig und Zweikomponenten-Systeme) im Genom von *Aromatoleum aromaticum* EbN1 kodiert sind, wurden bioinformatische Analysen durchgeführt. Zunächst wurde das Genom mit BLAST (NCBI, (Altschul *et al.*, 1990)) und P2CS (*Procaryotic 2-Component Systems* (Barakat *et al.*, 2009)) nach diesen putativen Regulatoren durchsucht. Für σ^{54} -abhängige Regulatoren wurden 17 putative Systeme zuzüglich eines Hybrid-Systems (EbA5371) identifiziert, aus denen mittels eines Sequenzvergleichs ein phylogenetischer Stammbaum erstellt wurde (Abbildung 23).

Abbildung 23: Radialer, phylogenetischer Stammbaum der σ^{54} -abhängigen Regulatoren, die im Genom von Aromatoleum aromaticum EbN1 kodiert sind. Stammbaum basierend auf einem Aminosäuresequenzvergleich. Die Stammbäume wurden mit CLC Genomics Workbench erstellt.

Dieser Stammbaum zeigt nochmal deutlich, dass die drei XylR-ähnlichen Regulatoren EtpR, PdeR und PdeR3 am nächsten miteinander verwandt sind. Der Regulator EbA5371 fällt hier heraus, da er nicht nur Domänen eines σ^{54} -abhängigen Regulators trägt, sondern auch Teil eines Zweikomponenten-Systems zu sein scheint (Anhang: Abbildung 30). Das Gen *ebA5371* liegt direkt neben einem Gen (*ebA5375*), das für einen putativen Hybrid-Sensor kodiert und deren beider Genprodukte zusammen ein Zweikomponenten-System sein könnten. Diese Gene sind in dem selben Gencluster wie HbcL1 und die Gene für den 4-Cresol-Abbau (Anhang: Abbildung 33). Die Domänen, die σ^{54} -Abhängigkeit suggerieren, sind am ähnlichsten zu PdeR3, PdeR und EtpR.

σ⁵⁴-abhängigen Regulatoren Da einige dieser putativen auch Teil eines Zweikomponenten-Systems sein könnten, wurden diese im nächsten Abschnitt in die Transkriptom-Analyse einbezogen. Der Vergleich der Expressionen dieser Gene, die putativ für σ^{54} -abhängige Regulatoren kodieren, zeigt zum einen, dass die Transkription des etpR-Gens wie erwartet bei Kulturen auf 4-Hydroxyacetophenon und 4-Ethylphenol hochreguliert wurde, zum anderen, dass auch die Transkription des pdeR-Gens für den Phenol-Regulator bei Wachstum auf diesen Substraten induziert wurde (Abbildung 24). Das Gen pdeR (1,7/2-fach erhöhter mRNA-Anteil) ist im Verhältnis stärker induziert bei Wachstum auf 4-Ethylphenol und 4-Hydroxyacetophenon (1,2/1,6-fach erhöhter als etpR mRNA-Anteil). Erstaunlicherweise wird auch die Expression des acxR-Gens, das mit der Regulation des Aceton-Metabolismus assoziiert wird, auf allen vier Substraten hochreguliert im Vergleich zu Kulturen auf Benzoat.

Abbildung 24: Genexpressionsmuster der σ⁵⁴-abhängigen Regulatoren in Aromatoleum aromaticum EbN1-Kulturen auf den verschiedenen Substraten im Vergleich zur Kontrolle (Benzoat). Dargestellt sind die normalisierten (log₂) Veränderungen. Substrate: Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon. Je blauer ein Feld ist, desto stärker ist das Gen

exprimiert und je brauner ein Feld ist, desto stärker ist das Gen reprimiert im Vergleich zum Wachstum auf Benzoat (siehe Farbschlüssel). **Proteinprodukte zu den angegebenen Genen (nach NCBI)**: EbA4696, EbA4627, EbA1664: σ⁵⁴-abhängiger, transkriptioneller Regulator, ebA6902: σ⁵⁴-abhängiges Regulatorprotein, EbA4722 (AcxR), EbA3662, EbA5375, EbA2951: transkriptioneller Regulator (Fis-Familie), PdeR3: Regulator (involviert in den Phenol-Abbau), AtoC (EbA6441): Regulator (involviert in Acetoacetat-Metabolismus), EtpR: Ethylphenol-Regulator, PdeR: Phenol-Regulator, NtrC: Regulator (involviert in Stickstoff-Assimilation), PilR: Regulator

Auch hier wurde beobachtet, dass die Expression des *pdeR3*-Gens aus dem "Ersatz"-Cluster nur in Kulturen auf Ethylbenzol induziert wurde. Es wird außerdem deutlich, dass diese Daten nur einen ersten Hinweis liefern und weitere Experimente notwendig sind, um eine klarere Aussage über die Funktionen der einzelnen Regulatoren zu machen. Dies ist zum einen beschränkt durch Kreuzinduktionen durch die ähnlichen Substrate und ihrer Abbauprodukte, zum anderen durch die geringeren mRNA-Mengen von Regulator-Genen.

Zweikomponenten-Systeme in Aromatoleum aromaticum EbN1 sind in zwei Untergruppen einteilbar

Basierend auf der Arbeit von Enrico Muhr zum Regulationssystem AdiRS wurden auch die Zweikomponenten-Systeme analysiert, die im Ethylbenzol- und Acetophenon-Metabolismus involviert sein könnten. Enrico Muhr (2016) zeigte, dass eine Deletion der adiRS-Gene nicht zum erwarteten Phänotyp führt, bei dem Aromatoleum aromaticum EbN ohne AdiRS weder auf Acetophenon noch auf Ethylbenzol wachsen könnte. Im Gegenteil zeigte sich, dass das Wachstum auf Acetophenon und Ethylbenzol nur unwesentlich beeinflusst ist. Nach einigen Tests ergab sich, dass Aromatoleum aromaticum AadiRS ein alternatives Gencluster (hier als "Ersatz"-Cluster bezeichnet, Abbildung 22) stärker zu induzieren scheint als der WT Stamm (Muhr, 2016). Der Stamm *AadiRS* produziert sowohl XccB aus dem Ethylphenol-Abbauoperon als auch XccB2, welches durch xccB2 neben den Genen ebdABCD2 kodiert ist. Direkt daneben liegen wiederum die Gene für das putative Zweikomponenten-System XdiRS. Enrico Muhr (2016) postuliert, dass dieses aufgrund seiner hohen Ähnlichkeit zu AdiRS als Ersatz für die deletierten Gene funaieren könnte. Sowohl die Sensor- als auch die Regulatorproteine von Zweikomponenten-Systemen lassen sich in Untergruppen einteilen. Basierend auf der Publikation von Huynh et al. (2010) können die konservierten Bereiche von

Histidinkinasen in mehrere Untergruppen eingeteilt werden, von denen hier die Motive HiskA (HE/DxxxN/T) und HisKA 3 (HDxxxQ) interessant sind. Wie in Abbildung 25 zu sehen, ist das vorherrschende Histidin-Motiv in den meisten Histidinkinasen der Sensorproteine bei Aromatoleum aromaticum EbN1 HE/DxxxN/T. Dieses Motiv befindet sich auch in EdiS und TdiS (Abbildung 25). Das Motiv, das Histidinkinasen als HiskA 3 klassifiziert, befindet sich in nur 6 der 38 putativen Sensorproteine von Zweikomponenten-Systemen in Aromatoleum aromaticum EbN1. Dazu gehören AdiS und XdiS, die nicht nur an dieser Stelle eine hohe Ähnlichkeit aufweisen (Muhr, 2016, Alignment beider Histidinkinasen). Die nahe Verwandtschaft dieser beiden Proteine wird besonders im phylogenetischen Stammbaum deutlich (Abbildung 26A: AdiS und XdiS). Dieser zeigt, dass AdiS und XdiS, sowie EdiS und TdiS sich jeweils am ähnlichsten sind. Diese Ähnlichkeit wird durch die zugeordneten Regulatorproteine der Sensorproteine (AdiS-AdiR, XdiS-XdiR, jeweiligen EdiS-EdiR, TdiS-TdiR) widergespiegelt. Wie im Stammbaum der Regulatorproteine ersichtlich ist, sind auch hier AdiR und XdiR sowie EdiR und TdiR jeweils am ähnlichsten zueinander, verglichen postulierten Zweikomponenten-Regulatorproteinen mit allen in Aromatoleum aromaticum EbN1 (Abbildung 26B).

	1.520			1.540			1.560		1.580		1.600
pilL (EbA1751)	AQLLPVFLDE	AAELLGELHA	ALROWGTDAA	VDAAQ A	T ARI	LLHTLKGS	AR MAGAM	<mark>.</mark> TL	GQHVH	HLES-QLVAA	LDGGQEPASG 1122
EbA6051	-QFFVGTLRD	ISERKAFIAA	LTR AREDA	EQASR A	K SAI	FLAAMSHE	IRTPMNGVM	G LIEV <mark>L</mark> ARTSL	S EH	QA - DL VAT	ICGSSSTLLR 916
EbA791		LAA	EDLRVKAQEL	ERVSAY	K SQI	FL ANMSHE	LRTPLNSLM	I LSSLLMQNKD	G NL S	EKQV-EFAST	IHSAGTDLLD 589
EbA6890		LVA	EHRL RGEA	ERANR A	K DEI	FLAIVSHE	LRSPLNALK	G WSQVLTASGN	P EPAT	VLRA AEA	IKRNIDHQAR 683
EbA169	• • • • • • • • • • •	AT	AELRAANERL	KELDR L	K DDI	FMSSVSHE		A FSEMLLDD	P DIAL	PDRM-RFLGI	IVSETERLTR 736
EbA6722		A	RHRESLHQRE	KLAA	L GSI	LLAGVAHE		A RAVMLEEQGD	P A	TQ - AAAAK	IRIAAERCAR 458
EbA6478	• • • • • • • • • •		KNLEL	LAANR A	K DHI	FLASMSHE		G FTGTLLM-KL	P GELN	PEQT-ROLEI	VRNNARHLLA 317
EdiS			QREQEQQHQL	AHATRLS-V	M GQI	FASALAHE	LGQPLNACQ	S YLAGLERRLA	PELSV	RPDLREAVDW	MDLHLTQSGD 382
TdiS			ELERLRHAEL	TREGRIN-S	ALL ALL	MAAAL AHO	MGOPLVSAV	N YLNGCRERLE	RVEGV	E-ETTESVGL	ALKYLEQAGE 378
EDA126		A	EVSRQUAERL	QRISELI-I	M GEI	MASTLAHE	LNOPLAATA	YCMGOVIRIO	SGNVR	SEDLLVAMOK	ASPUAERAGK 667
DctS (EDA4156)			ELGRQQEERL	QAISELV-I	M GEI	MASTLAHE	LNOPLAATA	S YNIGOLNRLE	QATTD	RDELRDTHAK	LGRQARRAGE 491
EDA3063		E	ARMRAGUEUA	MOOMELA	L GEI		LINGPLAATG	A A ELL TEEVE	NGRLT	VELINDN	APPLEP 261
FIIS (EDA3092)			TARREMEROL	AGANRISS	COL GOI	EASCIANE		C EASELOSIME	ALDNAAOLDD	LELIRDOLTT	LOEOAORCKA 541
EbA0371			VVEDDISBL	VAAORTA			IKNDI TRIO		DRVDAEG	RELIERATRT	LINOVESMEN 550
EbA2987			VVEDDISRL	VAAORTA	W AF	VARRIAHE	KNPL TPIO	SAFRIAYKLA	DRVDAEG	RELLERATRT	LINGVESMEN 550
PhoR (EbA3021)	POLTLEVOAV	PEGDGOKMLV	SRDISOLEKI	ETMRR.		FLANVSHE	RTPL TVVI	GELET	DAHEDLE	PAFAMRYIRI	AFDOSWRMOS 225
EbA3436	EV.	L GCYVHAVDV	TEORRTOHVI		GOI GOI	I SGGLAHD	ENNML TVVM	G NLAGIRE	ARPD	DGALOFEVAP	AMOAAOGGAO 199
EbA3794	VNQMAAKLAS	AHEDMSROIA	DATAELRARK	DEAERATLS	K SR	FLAAASHD	LROPMHALG	L FLAELSONTH	A	- PASRRLVER	LAASAEAMEN 319
AdiS	KKITHATWOD	VTAGNRAKK-	KLIESERFLR	ETCKHVEEV	R EE	EKASIARE	HDELGQLL	T ALKMEVE	CIKPGRSH	DVELMSKADA	MGVLIDSILV 272
XdiS	MVLWDGIMLD	ATDARRNEE -	KLRQSEEFLR	DLCVRVGMI	R EE	EKSAI ARE	IHDELGQLL	T VLKMDLS	CMREAGGL	DSRSVAKMLR	MESL TDD IL Y 349
EbA6844	HEVATRIMLS	DNSARKOLEI	ERVAHEARLA	ELSRHMVDV		ERRKL AGE	LHDRASPNL	A ALQUTLSNLA	CALPASVL	AEFEPMLGDA	QALLLDTAT - 651
NarX (ebA3507)	HTLVEAVSRH	MGIALGISHQ	SERERLLAL -		- QEI	ERSIIARE	LHDSLAQSL	S YMKIQASLLS	SALQRPER	RDDASDILAD	MKGGINAAYR 490
NarX (EbA6280)	RLLETLGQQ	LGIAIENQRL	QASGREHAV -	<mark>.</mark> . .	- SEI	ERNLL ARE	LHDSIAQGL	A FMNLQVQMLE	SALDRNEA	- GEARDTLAM	LRQGVQESYD 496
EbA3320			DSALGELRLS	LERERL		FTSDVSHE	LRTPLMIVA	T SCELL	EAVSL	PPRERDLVAR	IGRAAEEMGD 260
EbA6439		EM	QVKQEMERQM	LSSERLA-A	GRI GRI	LTAGIAHE	INNPLTGML	T AINTFORH	GAD	PQRAERTLSL	LORGL TO IRN 325
EbA1181			PVIVAFNDMM	ARLEENLOA	Q QRI	FIADAAHQ	MRTPLTGLK	M QTDLALLETD	PE	QLR ESLQR	IADSTDRASH 343
EbA4466			RAAHAFNRMQ	QRLQQHVGE	R TR	I L AA I SHD		L RAEL <mark>V</mark> E	DE	AVR AKIQ-	SDLDAMQA 280
EbA6233			PMVAALNRLL	QQLHALLER	E KRI	FLADAAHE	LRTPLAVLR	I HAQNALDAPD	PA	DRA ESLHQ	LVHGVDRSTR 309
EbA7143			PLVDELNALL	QHDAEVVTR	A RTO	QAGNL AHA	VKTPLAVLG	N AAACE	DG	PLA RLV	- AEQVATARR 292
YfhK (EbA960)			RVGRRLDWLR	VRLADLEAN	RIR	VLRHVSHE	LKIPLASLR	E GTALLKDGVV	GE	LIAGQHEVVG	ILEHNIRALQ 337
EbA2023			ELVEALNGML	DRLESAFOR	L SDI	FSADIAHE	LRIPVSNLM	I QTAVOLSRPC	NA	D-EYRDVLAS	NLEEYERTAR 293
EDA6498			AVAKAFNOMA	GDLARIDAD	AL DE	I LAGVSHD	LEARLE	L GVEM		SGAPETEVAA	MVADVEEMDR 309
EDA5/15		RRDQ	PLOSENOPH	LOLEVICA	CT	LINSUL ARE	INNDU VOW	MACLATREVE		DEPTRELLOF	IPPACEDOPT 244
EDA999	WEVL DI	LKTAOROAAS		LLEOPKERS		MOAEVVHD	KNEVACIE		N	PERIKELLGE	VALVESPMPA 550
EDA30	WEVEDL	ENTAUNUAAS	FLEARVRART	VELEAANDE	KA	ESVSVSHD	RAPIRAID	G EARLIEEELC	FRI	DPDAREHLVR	IRKAGMRMSH 446
NtrB (EbA(117)	VSPAEAVOVP	LLLEERPIDA	OLEVAREEOL	10000	S REI		KNPL GG IP	S SAOL FREI G	D	POLREYTEN	LLAEADRI OD 186
Consensue	TO BLAYON	LECTION	ELRRAYNYYI	ERAERI	L GE	FLAXIAHE		G FAELLI -LE	P	PERIPEYLAT	IXXOAERALR
Consensus	VOPACAVOVA	LELEPRETDA	ELRRAXNXXL	ERAERL A	L GEI	FLAXLAHE	LRTPLAALL	G FAELLL LE	P	PERLREXLAT	XXQAERALR

Abbildung 25: Ausschnitt des Sequenzvergleichs der putativen Histidinkinase-Proteine von Zweikomponenten-Systemen in Aromatoleum aromaticum EbN1. Hier ist die konservierte Region (rot: konservierte Aminosäure, blau: variable Aminosäure) mit dem namensgebenden und essentiellen Histidinrest der Histidinkinasen dargestellt. Die Mehrheit der Sensorproteine weist das konservierte Motiv HE/DxxxN/T auf. Bei einem geringen Teil ist das Histidin im Motiv HDxxxQ konserviert und deshalb in diesem Sequenzvergleich um zwei Aminosäuren nach rechts verschoben. Der Sequenzvergleich wurde mit dem Alignment-Tool von CLC Genomics Workbench erstellt.

Das Regulatorprotein eines Zweikomponenten-System ist in den meisten Fällen in zwei funktionelle Domänen aufteilbar (Stock et al., 2000). Die eine Domäne hat ein konserviertes Aspartat, welches mit dem autophosphorylierten Histidin der Sensor-Kinase interagiert (Cho et al., 2001), und wird hier als Antwort-Domäne bezeichnet. Die zweite Domäne ist eine C-terminale DNA-Bindedomäne, die an dem zu regulierenden Genabschnitt bindet (West & Stock, 2001). Die DNA-Bindedomäne ist fast immer eine HTH (Helix-Turn-Helix)-Domäne. Auch wenn diese Grundprinzipien sehr konstant im Reaktionsmechanismus von Zweikomponenten-Systemen zu finden sind, variieren die Regulatorproteine im Aufbau der einzelnen Domänen. Die meisten Regulatorproteine, die im Genom von Aromatoleum aromaticum EbN1 kodiert sind, können in vier Gruppen unterteilt werden: NarL, OmpR, NtrC und PleD_VieA (Abbildung 26B). Diese Gruppennamen leiten sich von den Proteinen ab, die zuerst als Teil ihrer Gruppe identifiziert worden waren. NarL wurde als Antwort-Protein des Zweikomponenten-Systems, das den Nitrat/Nitrit-Stoffwechsel reguliert, in E. coli charakterisiert (Baikalov et al., 1996). Das Protein OmpR wurde bereits 1981 als Regulator-Protein für Porine in der äußeren Zellmembran von E. coli identifiziert (Taylor *et al.*, 1981) und ist mittlerweile zusammen mit PhoB der Überbegriff für die am meisten vetretene Gruppe an Regulatorproteinen von Zweikomponenten-Systemen in Prokaryoten (Itou & Tanaka, 2001; Nguyen et al., 2015). Die Regulation der Stickstoff-Assimilierung wird unter anderem durch das Protein NtrC kontrolliert, welches σ^{54} abhängig und Teil eines Zweikomponenten-Systems ist (Stock et al., 1989). Die Gruppe PleD_VieA beschreibt eine Kombination aus Regulatorproteinen, die ähnlich zum PleD Protein und zum VieA Protein sind. Ersteres findet man zum Beispiel in Caulobacter crescentus, wo es unter anderem das Flagellum mit kontrolliert (Aldridge & Jenal, 1999; Aldridge et al., 2003). Das Protein VieA ist wiederum in die Regulation der Biofilm-Bildung in Vibrio cholerae involviert (Tischler & Camilli, 2004). Die Unterschiede zwischen diesen Gruppen beziehen sich vor allem auf konservierte Bereiche innerhalb der Domänen und werden hier nicht weiter ausgeführt. Zwar kann die Funktion der ursprünglichen namensgebenden Proteine ein erster Hinweis für die

sich die jeweilige Gruppierung nur auf strukturelle Ahnlichkeiten. Aus der Einteilung aller im Genom von *Aromatoelum aromaticum* EbN1 kodierten Antwort-Proteine ergibt sich, dass die für diese Arbeit interessanten Vertreter EdiR, AdiR und XdiR alle in der Gruppe NarL zu finden sind (Abbildung 26B).

gefunden, ähnlichen Proteine in Aromatoleum aromaticum EbN1 sein, jedoch bezieht

Abbildung 26: Radiale, phylogenetische Stammbäume für die annotierten Zweikomponenten-Systeme in Aromatoleum aromaticum EbN1. A: Stammbaum basierend auf dem Aminosäuresequenzvergleich (Abbildung 25) der putativen Histidinkinasen, B: Stammbaum basierend auf einem Aminosäuresequenzvergleich von putativen Regulatorproteinen in Zusammenhang mit Zweikomponenten-Systemen. Grün ist die Gruppe der NarL-ähnlichen Regulatorproteine, Blau bezieht sich auf OmpR-ähnliche Proteine, Orange auf NtrC-ähnliche (sind auch XyIR-ähnlich und damit auch σ^{54} -abhängig) und Violett bezieht sich auf die weiter entfernte Klasse der PleD_VieA-ähnlichen Proteine. Proteine, die nicht umkreist sind gehören Klassen an, die nicht stark in EbN1 vertreten sind und für diese Arbeit keine Bedeutung haben. Die Stammbäume wurden mit CLC Genomics Workbench erstellt.

Das Zweikomponenten-System EdiRS ist spezifisch und hochsignifikant in Kulturen auf Ethylbenzol induziert

Die Auswertung der Transkriptom-Studie zeigt sehr deutlich, dass der *ediRS*-Gencluster in Kulturen auf Ethylbenzol außerordentlich stark (für einen Regulator) hochreguliert ist. Vor allem sticht die erhaltene Transkript-Menge von *ediR* unter der Menge an Genen für Regulatorproteine hervor (Abbildung 27 unten). Aber auch *ediS* ist in Kulturen auf Ethylbenzol das am stärksten induzierte Gen aller Histidinkinasen im Vergleich zur Expression in Kulturen auf Benzoat (Abbildung 25, 26 und 27 oben). Hier ist anzumerken, dass *ediS* auch in Kulturen auf 4-Ethylphenol zu einem wesentlich geringeren Teil (Kulturen auf Ethylbenzol: 7-fach induziert; Kulturen auf 4-Ethylphenol: 3-fach induziert im Vergleich zur Kontrolle) hochreguliert wird, was die Hypothese zulässt, dass EdiS unspezifisch auch auf andere Derivate von Ethylbenzol reagiert.

Unter allen weiteren Histidinkinasen sind in Kulturen auf Acetophenon, 4-Ethylphenol und 4-Hydroxyacetophenon ist noch ein anderes interessantes Gen vergleichbar induziert. Das Gen *ebA5371* für den zuvor erwähnten Hybrid-Regulator ist direkt neben dem Gen *ebA5375* (kodierend für ein putatives Sensorprotein, Abbildung 24) zu finden. Wie zuvor angemerkt, befindet sich das Genpaar *ebA5371-ebA5375* in jenem Gencluster, in dem auch das Gen *hbcL-1* liegt, welches für die 4-Hydroxybenzoat-CoA-Ligase HbcL-1 kodiert (Abbildung 20, Anhang: Abbildung 33). Dieses putative Regulationssystem weist sowohl Merkmale von σ^{54} -Abhängigkeit als auch Domänen auf, die charakteristisch für Zweikomponenten-Systeme sind (Anhang: Abbildung 30). Ausgehend davon, dass *ebA5371* und *ebA5375* spezifisch auf den Substraten 4-Ethylphenol und 4-Hydroyacetophenon induziert sind, könnte vermutet werden, dass dieses Genpaar für das Regulationssystem kodiert, das das *hbcL-1* Gencluster kontrollieren könnte (Anhang: Abbildung 33).

Beschriftung auf der nächsten Seite

Abbildung 27: Genexpressionsmuster der Zweikomponenten-Systeme in Aromatoleum aromaticum EbN1 bei Wachstum auf verschiedenen Substraten im Vergleich zur Kontrolle (Benzoat). Dargestellt sind die normalisierten (log2) Veränderungen der Kulturen auf den vier verschiedenen Substraten Acetophenon, Ethylbenzol, 4-Ethylphenol und 4-Hydroxyacetophenon. Je blauer ein Feld ist, desto stärker ist das Gen exprimiert und je brauner ein Feld ist, desto stärker ist das Gen reprimiert im Vergleich zu Benzoat (siehe Farbschlüssel). Proteinprodukte zu den angegebenen Genen (nach NCBI): Oben: EbA126, EbA6478, EbA5715, EbA6439, EbA1181, EbA38, XdiS, YfhK, EbA6844, EbA6233, EbA2987, EbA6051, PhoR, EbA2830, EbA6498, EbA7143, EbA999, PilS, EbA2023: Sensorkinase, EbA5371, EbA6890, EbA3794: Hybrid-Sensor, AdiS: putative Acetophenon-Sensorkinase EdiS: Ethylbenzol-Sensorkinase, EbA6824, EbA3436, EbA3320: Sensor einer Histidinkinase, EbA6722: Histidinkinase, TdiS: Toluol-Sensorkinase, NtrB: Sensorkinase (involviert in Stickstoff-Assimilation); EbA169: Fusion aus Na-abhängiger Permease und Histidinkinase; DctS: Sensorkinase (involviert in Dicarboxylat-Transport), PilL: Chemotaxisprotein; NarX: Nitrat/Nitrit-Sensorkinase, EbA791: komplexes Regulatorprotein; EbA4466: Histidinkinase (ATPase-ähnlich); Unten: EbA3727, EBA5719, EbA3757, EbA6472, EbA1182, ColR, EbA168, EbA6235, EbA7146, EbA240, EbA1169, EbA3801, EbA6058, EbA2986, XdiR, EbA3439, EbA125, EbA37, EbA6729, EbA2828, EbA793, EbA2024: Regulatorproteine; EbA3707: Pilus-Assemblierungsprotein (Flp-Typ); AdiR: putatives Acetophenon-Regulatorprotein; DctR: Regulatorprotein (involviert in Dicarboxylat-Transport); CheY: Chemotaxis-Protein; PhoB: Phosphat-Regulon transkriptioneller Regulator; OmpR: Regulator (Osmolarität); TdiR: Toluol-Regulatorprotein, EbA3060: transkriptioneller Regulator (FixJ Familie); PilH, PilG: Typ IV Pilus-Regulatorprotein; NarL: Nitrat/Nitrit-Regulatorprotein; EbA6850: transkriptioneller Regulator (LuxR-Familie)

4. Diskussion

4.1 4-Ethylphenol als Kohlenstoffquelle für Aromatoleum aromaticum EbN1

Es wurde mittels Avidin-Western-Blot zum ersten Mal gezeigt, dass *Aromatoleum aromaticum* EbN1 4-Ethylphenol nicht nur anaerob, sondern auch aerob abbauen kann und dafür dasselbe Abbauoperon nutzt wie für den anaeroben Abbau (Daten nicht gezeigt). Der anaerobe Abbau wurde bereits diskutiert und auf Proteom-und Biochemieebene ausgewertet (Muhr *et al.*, 2015b; Wöhlbrand *et al.*, 2008), obwohl der genaue Verlauf des Abbauwegs von 4-Hydroxyacetophenon zu 4-Hydroxybenzoat noch unklar ist. Auch die hier generierten Transkriptomdaten und Reportergen-Studien bestätigen das zugehörige Abbauoperon, das sowohl in Kulturen mit 4-Ethylphenol als auch solchen mit 4-Hydroxyacetophenon induziert wird. Wie zuvor beobachtet, gibt es keinerlei Hinweise auf eine sequenzielle Induktion der Gene der jeweiligen Teil-Abbauwege durch die beiden Substrate, wie sie beim Ethylbenzol/Acetophenon-Metabolismus zu finden ist (Ball *et al.*, 1996; Rabus, 2005).

Zurzeit ist Aromatoleum aromaticum EbN1 der einzige Bakterienstamm, für den Wachstum auf 4-Ethylphenol und ein dafür separater Abbauweg bekannt ist. Durch die Weiterentwicklung der Technik werden jedoch immer schneller gesamte Genome entschlüsselt und so wurden kürzlich zwei Bakteriengenome sequenziert, die für Proteine mit hoher Ähnlichkeit zu den Proteinen des 4-Ethylphenol-Metabolismus von Aromatoleum aromaticum EbN1 kodieren (Abbildung 28). Diese Genome gehören nahverwandten β -Proteobakterium *Azoarcus* sp. PA01 und zum zum δ-Proteobakterium Desulfuromonas sp. TF (Junghare et al., 2015; Kim et al., 2014). Das Genom von Azoarcus sp. PA01 ist generell mit 64,4 % Identität sehr ähnlich zu dem von Aromatoleum aromaticum EbN1 und zeigt auch beim Abbauoperon von 4-Ethylphenol enorme Ähnlichkeiten der kodierten Proteine (66-97 % Ähnlichkeit). Da selbst der daneben kodierte Regulator zu 77 % identisch ist, kann hier von lateralem Gentransfer ausgegangen werden und es scheint sicher, dass Azoarcus sp. PA01 4-Ethylphenol genauso wie Aromatoleum aromaticum EbN1 abbaut. Die Proteine aus Desulfuromonas sp. TF sind nicht ganz so ähnlich und zeigen auch nicht den gleichen Operonaufbau (zwischen 28 und 78 % Ähnlichkeit, Abbildung 28). Jedoch ist ein Großteil der orthologen Proteine neben einigen anderen Proteinen in einem Cluster

kodiert. Als Ausnahme ist die in einem anliegenden Gencluster kodierte putative Methylenhydroxylase mit einer Ähnlichkeit zu PchC von nur 33 % zu nennen. Ob dieser Cluster für den Abbau von 4-Ethylphenol zuständig ist, kann noch nicht mit Bestimmtheit gesagt werden. Da das erste Enzym im Abbau (PchCF) nicht vollständig kodiert und die PchC-Untereinheit nur zu einem Drittel ähnlich ist mit dem aus *Aromatoleum aromaticum* EbN1, stellt sich die Frage, ob die weiteren Enzyme nicht vielleicht ein anderes Substrat als 4-Ethylphenol erkennen. Es ist möglich, dass *Desulfuromonas sp.* TF ein Intermediat des 4-Ethylphenol-Abbaus, wie z.B. 4-Hydroxyacetophenon, nutzen kann. Die genauere Erforschung des Clusters in *Desulfuromonas sp.* TF könnte in jedem Fall helfen, die Funktion der Carboxylase XccBCA zu klären.

Abbildung 28: Aminosäuresequenzvergleich der kodierten Proteine aus dem 4-Ethylphenol-Operon mit zwei neu sequenzierten Bakterienspezies. Dargestellt ist der Aufbau des 4-Ethylphenol-Operons von Aromatoleum aromaticum EbN1 mit den Genen für PchCF (Methylenhydroxylase), EbA303 (Zink-abhängige Alkohohl-Dehydrogenase oder NADP:Quinon-Oxidoreduktase), TioL (Thiolase), ChnA und EbA309 (stereospezifische Alkohol-Dehydrogenasen), EbA310 (FAD-gekoppelte Oxidase), EbA312 (Haloacid-Dehalogenase), XccBCA (Biotin-Carboxylase) und AcsA (Acetoacetyl-CoA-Synthetase). Hypothetische Proteine sind in grau dargestellt. Die Ähnlichkeiten (bei Vewendung von BLAST (Altschul *et al.*, 1990)) von Proteinen, die im 4-Ethylphenol-Operon in Aromatoleum aromaticum EbN1 kodiert sind, wurden als Prozentzahlen dargestellt. Das Operon in Azoarcus sp. PA01 ist genauso aufgebaut wie das in Aromatoleum aromaticum EbN1. Der Cluster in Desulfuromonas sp. enthält wesentlich mehr Gene, die in Tabelle 14 genauer beschrieben sind. Zur Orientierung wurden die Loci von Aromatoleum aromaticum EbN1 unter die ähnlichen Gene in Desulfuromonas sp. TF geschrieben worden.

Je mehr Organismen gefunden werden, die einen analogen Abbauweg für 4-Ethylphenol im Genom kodiert haben, desto einfacher wird es, die letzten ungeklärten Schritte des Abbaus zu ermitteln. Bei den nächsten Experimenten wird ein besonderes Augenmerk auf die Biotin-Carboxylase XccBCA geworfen werden, für die bisher keine Aktivität nachgewiesen und kein Substrat gefunden wurde (K.Schühle, persönliche Kommunikation). Wie in Abbildung 28 ersichtlich, sind die drei zugehörigen Gene in allen drei Organismen zu finden. An dieser Stelle ist zu erwähnen, dass auch *Thauera aromatica* K172 mit 4-Ethylphenol als alleiniger Kohlenstoffquelle anaerob wachsen kann (Daten nicht gezeigt), allerdings ist das Genom dieses Stamms bisher nicht zugänglich. PCR-Reaktionen mit Oligonukleotiden, die von *Aromatoleum aromaticum* EbN1 für Genabschnitte von *xccB, ebA309* und *pchC* abgeleitet wurden, ergaben mit DNA von *Thauera aromatica* K172 in allen drei Fällen amplifizierte Produkte. Eine Sequenzierung (Anhang: Abbildung 34) zeigte, dass *xccB* und *pchC* eine hohe Ähnlichkeit zu den Genen in *Aromatoleum aromaticum* EbN1 aufweisen, und liefert damit den ersten Hinweis, dass *Thauera aromatica* K172 4-Ethylphenol vergleichbar abbaut.

Der Rnf-Komplex als Schlüssel für den ungeklärten Teil des 4-Ethylphenol-Abbauwegs?

Ein Rätsel gibt die Hochregulierung eines der beiden im Genom kodierten Rnf-Komplexe bei Wachstum auf 4-Ethylphenol und 4-Hydroxyacetophenon auf. Ursprünglich wurde der Rnf-Komplex als System zur Generierung von reduziertem Ferredoxin als Eletronen-Donator für die Nitrogenase identifiziert (Schmehl et al., 1993). Der Name steht für *Rhodobacter nitrogen fixation* und bezieht sich auf den Pionier-Organismus Rhodobacter capsulatus. Der Rnf-Komplex wird auch als NADH:Ferredoxin-Oxidoreduktase bezeichnet, da die Proteine den Elektronentransfer zwischen jeweils reduziertem oder oxidiertem Ferredoxin mit NADH oder NAD+ katalysieren. Zusätzlich konnte in Clostridium tetanomorphum ermittelt werden, dass der Komplex membranständig ist und wohl zugleich einen lonen-Transport katalysiert, entweder von Protonen oder Na⁺ (Boiangiu et al., 2005). Integriert man den Rnf-Komplex in die Atmungskette, ist er nach Biegel et al. (2011) am ehesten als Komplex 0 zu betrachten, der zunächst Ferredoxin oxidiert und über die verschiedenen Untereinheiten einen Elektronenfluss einleitet. Dabei wird NAD+ reduziert und es können paralell Na+-lonen gepumpt werden, die durch ein elektrochemisches Potenzial zum einen die ATP-Synthese und zum anderen die Rotation der Flagellen antreiben. Das generierte NADH + H⁺ könnte dann vom Komplex I der Atmungskette genutzt und Ubichinon zu Ubichinol reduziert werden. Es wurde ein sehr ähnlicher Komplex, genannt Nqr, in den zwei Vibrio-Arten V. alginolyticus und V. cholerae gefunden, dessen Hauptaufgabe wohl der lonen-Transport unter Verbrauch von NADH ist, um einen Elektronenfluss zum Quinon der Atmungskette zu gewährleisten (Backiel *et al.*, 2008; Beattie *et al.*, 1994) und der damit die Rolle von Komplex I in der Atmungskette übernimmt (Kerscher *et al.*, 2008).

Auch in E. coli wurde ein Gencluster identifiziert, das eine hohe Ähnlichkeit zu rnf aufweist. Dieser rsx-Cluster kodiert für Proteine, die den Regulator SoxR reduzieren und damit den Cluster unter Normalbedingungen inaktiv halten (Koo et al., 2003). Sobald der Organismus oxidativem Stress ausgesetzt wird, kommt es zur Oxidation von SoxR, das SoxS aktiviert, welches wiederum Proteine aktiviert, die helfen, den Organismus zu schützen. Der Rnf-Komplex wurde auch in vielen anaeroben Bakterien und Archaeen (z.B. Methanosarcina acetivorans (Li et al., 2006)) identifiziert und teilweise charakterisiert. Curatti et al. (2005) haben außerdem herausgefunden, dass Azotobacter vinellandii zwei rnf-Cluster besitzt. Der erste Cluster scheint vergleichbar wie bei Rhodobacter capsulatus unter der Nif-Regulation zu stehen und für die Stickstoff-Fixierung relevant zu sein. Der zweite Cluster ist jedoch unabhängig von der Stickstoffquelle und Orthologe wurden unter anderem in Thauera sp. MZ1T, Azoarcus sp. BH72 und Pseudomonas stutzeri A1501 gefunden (Sarkar et al., 2012). Die beiden Gencluster unterscheiden sich wesentlich in zwei Punkten voneinander. Vor dem rnf1-Cluster ist meist in umgekehrter Orientierung ein nifAL-Cluster zu finden, der wahrscheinlich regulierend wirkt und diese Gene mit Stickstoff-Fixierung in Verbindung bringt (nif steht für nitrogen fixation). Außerdem ist am Ende der fünf konservierten Gene *rnfABCDE* noch ein Gen *rnfH* unbekannter Funktion zu finden (Jouanneau *et al.*, 1998). Dieser Gencluster hat eine große Ähnlichkeit zu dem rsx-Cluster in E. coli und hat außerdem häufig eine Endonuklease III stromabwärts kodiert, die co-transkribiert wird (Gifford & Wallace, 2000). Aromatoleum aromaticum EbN1 besitzt auch zwei rnf-Cluster, wobei die hohe Induktion in Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon sich auf den *rnf1*-Cluster bezieht, der sonst meistens mit Stickstoff-Fixierung in Zusammenhang steht. Allerdings findet sich kein nifAL-Cluster in direkter Nähe dieses Operons und das Gen für die Endonuklease III ist bei EbN1 hinter dem *rnf*2-Custer zu finden. Dass der Rnf-Komplex eine Redoxreaktion zwischen Ferredoxin und NADH katalysiert und parallel als Protonen- oder lonen-Transporter fungiert, wurde durch die verschiedenen Studien der unterschiedlichen Arten deutlich (Biegel et al., 2011).

Die genaue Funktion des Rnf-Komplexes für Aromatoleum aromticum EbN1 ist jedoch unklar. Im nahverwandten Stickstoff-fixierenden Organismus Azoarcus sp. BH72 konnte eine Kopplung von Rnf an PI-Proteine und den Stickstoff-Metabolismus gefunden werden (Sarkar et al., 2012). Interessanter könnte jedoch sein, dass die Regulation der *rnf*-Gene *rpoN*- (Gen, das für den σ^{54} -Faktor kodiert) abhängig ist (Saez et al., 2001) und es bei Induktion des Regulators EtpR zu einer Produktion des σ^{54} *rnf1*-Cluster kreuzinduziert. Faktors kommt, der den Da auch die 2-Oxoglutarat:Ferredoxin-Oxidoreduktase hochreguliert ist, könnte natürlich auch die hohe Generierung von reduziertem Ferredoxin beim Oxoglutarat-Abbau die Induktion des Rnf-Komplexes forcieren (Ebenau-Jehle et al., 2003). Warum jedoch 2-Oxoglutarat unter diesen Wachstumsbedingungen eher mit einer Ferredoxin-Oxidoreduktase als mit der üblichen NAD-gekoppelten Dehydrogenase umgesetzt wird, ist wiederum völlig unklar und könnte mit dem noch unbekannten Mechanismus der Carboxylierung von 4-Hydroxyacetophenon zu tun haben. Die Aufklärung der genauen Funktion des Rnf-Komplexes in Aromatoleum aromaticum EbN1 ist umso spannender geworden.

4.2 Die letzte ungeklärte Lücke im Ethylbenzol-Stoffwechsel: Mögliche Bedeutung der Induktion des 3-Phenylpropionat-Operons bei Wachstum auf Ethylbenzol

Der für Aromatoleum aromaticum EbN1 charakteristische Abbauweg von Ethylbenzol ist im Grunde nahezu vollständig aufgeklärt und zu einem Großteil charakterisiert worden (Ball *et al.*, 1996; Kniemeyer & Heider, 2001a; Kniemeyer & Heider, 2001b; Rabus & Widdel, 1995). Fast alle benötigten Enzyme sind in den Operons *ebd-ped* (Ethylbenzol-Abbau) und *apc-bal* (Acetophenon-Abbau) kodiert (Rabus *et al.*, 2002). Jedoch findet sich dort für den Schritt von Benzoylacetyl-CoA zu Benzoyl-CoA kein Gen, das für eine passende, benötigte Thiolase kodiert und es muss demnach ein Protein aus einem anderen Abbauweg rekrutiert werden.

Die signifikante Induktion des 3-Phenylpropionat-Operons in Kulturen auf Acetophenon gibt einen soliden Hinweis darauf, dass die Thiolase EbA5319 für die Umsetzung von Benzoylacetyl-CoA zu Benzoyl-CoA und Acetyl-CoA verantwortlich

sein kann und damit den letzten Schritt einer β-Oxidation darstellt. Die Charaktersierung dieses Proteins wurde bereits begonnen und könnte in Kürze nähere Informationen bringen (AG Heider, unveröffentlichte Daten).

Das hier induzierte Operon liegt direkt neben dem Gen *ebA5314*, das für ein putatives Regulatorprotein kodiert, welches eine TetR-Typ- ähnliche Domäne besitzt (Pfam 30.0). Die Regulatorproteine der TetR-Familie sind Repressoren (Ramos et al, 2005) und demnach wird vermutet, dass auch EbA5314 ein Repressor sein könnte (Rabus et al, 2014). Rabus *et al.* (2014) haben spekuliert, dass Phenylpropanoyl-CoA als Co-Regulator dienen könnte. Ein Nachweis, dass auch Benzoylacetyl-CoA ein Effektor des Genproduktes von *ebA5314* sein könnte und dieses tatsächlich eine reverse β -Oxidation von Benzoylacetyl-CoA zu Benzoyl-CoA und Acetyl-CoA katalysiert, wäre ein erster Ansatz, um das Genprodukt von *ebA5314* als Thiolase für den Acetophenon-Abbau zu bestätigen.

Ein ursprünglich vermuteter Kandidat für eine Thiolase ist das Genprodukt von *ebA2314*, welches näher an den Ethylbenzol- (*ebd-ped*) und Acetophenon- (*acp-bal*) Operons kodiert ist. Die Expression des Gens wurde durch das Hintergrundrauschen in der Transkriptom-Studie verdeckt und schließt dadurch das Genprodukt von *ebA2314* als Thiolase für den Acetophenon-Abbau aus. Weitere Experimente, z. B. proteinbiochemische Charakterisierungen, zur Bestätigung dieser Spekulationen wären nötig, um die letzte Lücke im Abbauweg von Ethylbenzol in *Aromatoleum aromaticum* EbN1 zu schließen.

4.3 Die Regulation der aromatischen Verbindungen als Netzwerk

Die Regulation des 4-Etyhlphenol-Metabolismus

Parallel zu dieser Arbeit wurde eine Studie zu EtpR von Büsing und Kollegen (2015) veröffentlicht, die zeigt, dass eine Deletion des Gens *etpR* zum Verlust der Fähigkeit führt, auf 4-Ethylphenol sowie 4-Hydroxyacetophenon zu wachsen. Die Disruption des Gens in dieser Arbeit bestätigt diesen Phänotyp, zeigt jedoch auch, dass die erhaltene *Aromatoleum aromaticum*-Mutante IM*etpR* nach einiger Zeit doch wieder auf 4-Ethylphenol wächst. Eine mögliche Erklärung wäre eine weitere Mutation an einer bisher nicht identifizierten Stelle, die erneutes Wachstum zulässt. Eine nähere

Charakterisierung der Mutante, die auf 4-Ethylphenol wächst, zeigte die Induktion des 4-Ethylphenol-Operons (Abbildung 10). Es ist zu vermuten, dass die strukturell sehr ähnlichen Regulatoren PdeR und PdeR3 den Verlust von EtpR ausgleichen könnten (Abbildung 23, Anhang: Abbildung 30). Ein erster Hinweis in diese Richtung ist die beobachtete Kreuzinduktion von *pdeR* in Kulturen auf 4-Ethylphenol- und 4-Hydroxyacetophenon (Abbildung 24). Wie zuvor beobachtet, gibt es auch hier keinerlei Hinweise auf eine stufenweise Induktion des Operons (Abbildung 17). Die Bestimmung des transkriptionellen Startpunktes, der den vorhergesagten Promotor bestätigte, vervollständigt die Ergebnisse zur σ^{54} -abhängigen Regulation des 4-Ethylphenol-Operon mit einer mCherry-Fusion, zeigen eine hohe Spezifität für die Induktion des Operons (Abbildung 6). Neben 4-Ethylphenol und 4-Hydroxyacetophenon scheinen nur 3-Ethylphenol, Ethylbenzol und Acetophenon eine geringe induktive Wirkung zu haben.

Das Ausbleiben der Fluoreszenz in dem produzierten Reporterstamm bei gleichzeitiger Bildung des mCherry-Fusionsproteins kann bisher nicht erklärt werden. Die ersten Western-Blot-Analysen mit der Mutante AcsA-mCherry haben klar gezeigt, dass das Operon zeit- und konzentrationsabhängig, sowie spezifisch induziert wird (Abbildung 5, Abbildung 6) und sind vergleichbar mit den Studien zum Acetophenon-Operon (Muhr *et al.*, 2015a). Obwohl es in der Sequenz keinen Fehler gibt, fluoresziert das gebildete Protein mCherry in diesem Konstrukt nicht. Entweder blockiert das kurze Stück des AcsA-Proteins, das translationell vor mCherry fusioniert wurde, die korrekte Faltung von mCherry oder die Menge an Fluoreszenz ist zu gering, um durch FACS-Analyse oder Fluoreszenz-Mikroskopie detektiert werden zu können.

Die Regulation des Abbaus von Phenol

Obwohl 4-Ethylphenol und Phenol strukturell durch die polare Hydroxygruppe sehr ähnlich sind, werden sie in *Aromatoleum aromaticum* EbN1 über völlig unterschiedliche Wege anaerob abgebaut (Schmeling *et al.*, 2004; Schmeling & Fuchs, 2009; Schühle & Fuchs, 2004; Trautwein *et al.*, 2008; Wöhlbrand *et al.*, 2008). In aeroben Phenol-Abbauern wie *Pseudomonas sp.* CF600 werden Phenol und auch seine direkten Derivate über einen Weg abgebaut, der auf dem bakterieneigenen Plasmid im *dmp*-Operon kodiert ist (Powlowski & Shingler, 1994; Shingler *et al.*, 1989). In diesem Organismus ist nicht nur der Phenol-Abbau, sondern auch der Benzoat- und

Toluol-Abbau durch einen aktivierenden, σ^{54} -abhängigen Regulator gesteuert. Verschiedenste Experimente haben gezeigt, dass Mutationen in den Sensor-Domänen dieser Regulatoren das Substrat-Spektrum erweitern (Abril et al., 1989; Ramos et al., 1990) und lassen den Schluss zu, dass auch in Aromatoleum aromaticum EbN1 die spezifische Induktion von der Sensor-Domäne des jeweiligen σ^{54} -abhängigen Regulators abhängt. Da es sich bei diesen Systemen um Einkomponenten-Systeme handelt und bisher nur eine aktivierende Wirkung solcher Systeme bekannt ist, erschien eine Gendisruption ausreichend, um die vorhergesagte Funktion zu bestätigen. Die Disruption des Gens pdeR im Genom von Aromatoleum aromaticum EbN1 führt wie erwartet zur Unfähigkeit des Organismus, auf Phenol zu wachsen. Es ist nun höchst interessant diesen Effekt zu komplementieren und damit die endgültige Bestätigung zu bekommen, dass PdeR den Phenol-Metabolismus aktiviert. Erste Ergebnisse einer Reportergen-Studie bestätigten außerdem, dass Phenol aktivierend auf das Phenol-Abbauoperon wirkt (Abbildung 4). Weiterhin wurde in dieser Arbeit gezeigt, dass auch 4-Hydroxybenzoat eine induzierende Wirkung auf das Phenol-Operon hat. Zwar ist 4-Hydroxybenzoat ein Intermediat im Abbau von Phenol und strukturell deshalb auch ähnlich, aber eine Induktion durch 4-Hydroxybenzoat scheint unsinnig für den Organismus. Aromatoleum aromaticum EbN1 ist durchaus in der Lage, nur mit 4-Hydroxybenzoat als Kohlenstoffquelle zu wachsen, wobei die Enzyme für diesen Abbau an einer völlig anderen Stelle im Genom als das Phenol-Operon kodiert sind. Eine Produktion der Phenol-abbauenden Enzyme wurde bei Wachstum auf 4-Hydroxybenzoat nicht beobachtet. Insofern ist ein Einfluß weiterer regulatorischer Elemente nicht auszuschließen. Diese Beobachtungen sollten jedoch zunächst bestätigt werden, damit Artefakte ausgeschlossen werden können.

Die Zweikomponenten-Systeme EdiRS und AdiRS

Die sequenzielle Induktion der Operons zum Abbau von Ethylbenzol und Acetophenon wurde auch auf transkriptioneller Ebene bestätigt (Abbildung 17). Die Hypothesen zu den postulierten Regulationssystemen EdiRS und AdiRS, dass EdiRS den Ethylbenzol-Stoffwechsel und AdiRS den Acetophenon-Stoffwechsel reguliert, werden nur teilweise bestätigt. Die Gene *ediRS* sind so spezifisch auf Ethylbenzol-kultivierten Zellen induziert, dass wohl mit Sicherheit davon ausgegangen werden kann, dass EdiS Ethylbenzol als Substrat sensiert und EdiR aktivierend auf das *ebd* Operon und auf

den Genabschnitt *ediRS* wirkt (Abbildung 29). Erstaunlicherweise ist *ediS* auch in Kulturen auf 4-Ethylphenol induziert (*p*-Wert \leq 0,05), was mit der zuvor beobachteten Kreuzinduktion der beiden Kohlenstoffquellen korreliert (Muhr *et al.*, 2015b; Muhr, 2016) und ist vielleicht auf eine unspezifische Kreuzinduktion zurückzuführen. Ob eine Deletion der Gene *ediRS* jedoch zu einem klaren Wachstumsphänotyp auf Ethylbenzol führt, bleibt zu überprüfen. Da EdiRS nahe mit TdiRS verwandt ist und bereits beobachtet wurde, dass die Gene für den Ethylbenzol-Abbau in adaptierten Kulturen auf Toluol schwach induziert sind (Kuhner *et al.*, 2005), könnte es bei einer Deletion von *ediRS* vielleicht zu einer Kreuzinduktion durch TdiRS kommen.

Die adiRS Gene, die für das putative Acetophenon-Regulationssystem kodieren sollten (Rabus et al., 2002; Rabus et al., 2014), sind auf allen Kulturen der hier getesteten Substrate auf ähnlichem Niveau schwach induziert, was keine klare Aussage über ihre Funktion zulässt. Nur in Kulturen auf Ethylbenzol ist adiS signifikant höher induziert (mehr als 2-fach, p-Wert \leq 0,05). Frühere Studien zu AdiS haben gezeigt, dass es in vitro sowohl Acetophenon als auch ATP und Ethylbenzol spezifisch bindet (Kraushaar, 2010). Die Deletion der Gene adiRS haben jedoch weder auf Ethylbenzol noch auf Acetophenon einen klaren Phänotyp gezeigt (Muhr et al., unpubliziert). In dieser Mutante (Aromatoleum aromaticum $\Delta a di RS$) wurde ein schlechteres Wachstum auf Acetophenon und Ethylbenzol und eine geringere Produktion des Enzyms Acetophenon-Carboxylase beobachtet und ebenso wurden erste Hinweise auf eine stärkere Induktion des "Ersatz"-Clusters erhalten. Aufgrund dessen postulierte Enrico Muhr, dass AdiRS vermutlich wie erwartet als Aktivator der Transkription des acp-bal-Operons fungiert, aber in seiner Funktion zum Großteil durch ein zweites Regulationssystem, z. B. das sehr ähnliche XdiRS System, welches im "Ersatz"-Cluster kodiert ist, komplementiert werden könnte. Die mögliche die Ähnlichkeit Redundanz dieses Systems wird durch hohe in der Aminosäuresequenz, die nahe Verwandtschaft und die strukturelle Vergleichbarkeit der Histidinkinase-Typen unterstrichen (Abbildung 25, Abbildung 26,(Muhr, 2016)). Enrico Muhr postulierte außerdem, dass AdiRS eine weitere Funktion als Repressor für das 4-Ethylphenol-Operon haben könnte. Dies ergibt sich daraus, dass die Deletion von adiRSzur verstärkten Produktion der Biotin-Carboxylase XccBCA führte, die im 4-Ethylphenol-Abbauoperon kodiert ist. Ausgehend von den bisher generierten Proteomdaten sind keine Hinweise zu den Regulationssystemen EdiRS, AdiRS und TdiRS vorhanden, da die Proteomstudien anscheinend nicht sensitiv genug zum

Nachweis der in der Transkriptom-Studie beobachteten Phänomene sind. Die Induktion des adiS-Gens in Kulturen auf Ethylbenzol erlaubt die These, dass AdiRS speziell durch Ethylbenzol beeinflusst wird. An dieser Stelle ist interessant, dass die Gene, die nach bal im Acetophenon-Operon liegen, nur in Kulturen auf Ethylbenzol induziert sind (Abbildung 17). Dort befindet sich unter anderem ein Gen für einen putativen Transporter C1A92, der eine Proteinseguenzähnlichkeit von 26 % zum Genprodukt von ebA5763 hat. Das Gen ebA5763 ist Teil des Stress-3-Clusters und es wird vermutet, dass sein Produkt detoxifizierend wirkt (Wöhlbrand et al., 2008). Diese Gene hinter dem apc-bal Operon könnten zum Detoxifizieren der Zelle von Ethylbenzol benötigt werden. Wenn AdiRS normalerweise in Kulturen auf Ethylbenzol die Gene hinter dem apc-bal Operon als eigenes detoxifizierendes Operon induziert, wäre der generelle Abbau in der Mutante $\Delta a di RS$ nicht gestört, würde aber das langsamere Wachstum erklären. Die Induktion des 4-Ethylphenol-Operons sowie des "Ersatz"-Clusters ließe sich dadurch erklären, dass die Zelle alternative Anti-Stress-Enzyme benötigt und bei der Induktion die danebenliegenden Cluster mit xccBCA und xccBCA2 kreuzinduziert. Hinweise gegen diese Theorie sind zum einen die unvollständige und nicht reproduzierbare Komplementation von *DadiRS* (Muhr et al., unpubliziert) und dass AdiS nicht nur Ethylbenzol und ATP, sondern auch Acetophenon in vitro bindet (Kraushaar, 2010). Es ist nicht auszuschließen, dass ein weiterer, nicht identifizierter Regulator in die Regulation des Acetophenon-Operons und des direkt nachfolgenden Clusters unbekannter Funktion involviert ist.

Die Komplexität der Regulation der sehr ähnlichen Verbindungen, die Aromatoleum aromaticum EbN1 zum Wachstum nutzen kann, wird mit jedem Experiment deutlicher. Auch wenn es erstaunlich ist, dass für jedes Substrat ein eigenes Regulationssystem und ein eigener Abbauweg vorhanden ist, sind die Überschneidungen der Regulationen zwischen 4-Ethylphenol- und Ethylbenzol-Abbau nicht zu leugnen. In Abbildung 29 ist ein hypothetisches Modell der bisher vermuteten regulatorischen Zusammenhänge in der Vernetzung verschiedenener Systeme zusammengefasst.

Abbildung 29: **Modell eines möglichen Regulationsnetzwerkes, basierend auf den bisherigen Beobachtungen**. Durchgezogene Pfeile zeigen eine Interaktion, die bisher noch keine gegenteilige These hervorgebracht haben. Fein gestrichelte Pfeile deuten auf eine Interaktion hin, die durch verschiedene Experimente auf einen Zusammenhang hinweisen. Grob gestrichelte Pfeile stellen postulierte Hypothesen dar, die noch bewiesen werden müssen. 4-Hydroxyacetophenon und 4-Ethylphenol wirken auf EtpR und dieser aktiviert die Transkription des 4-Ethylphenol-Operons. Acetophenon scheint mit AdiRS zu interagieren, hat aber auf jeden Fall eine aktivierende Wirkung auf das 3-Phenylpropionat-Operon. Ethylbenzol wirkt aktivierend auf EdiRS und eventuell AdiS. EdiRS wiederum aktiviert wahrscheinlich die Induktion der *ebd-ped-* und *ediRS-*Operons. AdiRS könnte eventuell Aktivator oder Repressor sein und auf *ebd-ped, apc-bal* und die hinteren Gene des Acetophenon-Operons einwirken. Ethylbenzol hat außerdem Einfluss auf das "Ersatz"-Cluster mit den Genen *xccBCA2, ppsAB, ped2, ebdABCD2, pdeR3* und *xdiRS*. Phenol ist nicht Teil dieses Netzwerkes und wirkt auf PdeR, welcher das Phenol-Abbauoperon induziert. Inwiefern 4-Hydroxybenzoat dort einwirkt, bleibt zu klären. Neue Kandidaten, die regulativ in die Abbauwege von Ethylbenzol, Acetophenon, 4-Ethylphenol und Benzoat eingreifen könnten

Interessante weitere Kandidaten, die möglicherweise in die Regulation des Abbaus der aromatischen Kohlenwasserstoffe und der phenolischen Verbindungen involviert sein könnten, sind natürlich das putative Zweikomponenten-System TdiRS, der mit Aceton-Metabolismus assoziierte σ^{54} -abhängige Regulator AcxR und das Hybrid-System EbA5371-EbA5375. Das Hybrid-System ist ein Zweikomponenten-System, das in der Sensorkinase und im Regulatorprotein zusätzlich Domänen enthält, die für σ^{54} -abhängige Einkomponenten-Systeme charakteristisch sind (Anhang: Abbildung 30).

Die Komplexität der drei Systeme EdiRS, AdiRS und XdiRS machen TdiRS und seine Rolle im Netzwerk umso interessanter.

Der σ^{54} -abhängige Regulator AcxR ist auf allen getesteten Substraten im Vergleich zu Kulturen auf Benzoat schwach (2-fach erhöhter mRNA-Anteil) induziert (Abbildung 24). Der Regulator ist im Gen *acxR* am Ende des Operons kodiert, das unter anderem die Gene *acxABC* trägt, die für die Aceton-Carboxylase kodieren. Dieses Enzym kann sowohl Aceton als Butanon aerob als auch anaerob *in vivo* carboxylieren (Schühle & Heider, 2012). Ob es sich bei den hier beobachteten Ergebnissen um eine Kreuzinduktion handelt und ob AcxR wirklich für den Aceton-Metabolismus relevant ist, bleibt noch zu prüfen. In dem Operon ist zusätzlich noch ein LysR-Typ-Regulator kodiert. Die vorliegenden Ergebnisse suggerieren, dass Benzoat reprimierend auf das Gen *acxR* wirkt (Abbildung 24).

4-Ethylphenol und 4-Hydroxyacetophenon

Das Hybrid-System EbA5371-EbA5375 liegt, wie zuvor beschrieben, in dem Gencluster, der das Gen *hbcL-1* beinhaltet und könnte auf dieses regulierend wirken (Anhang: Abbildung 33). Alternativ könnte es auch sein, dass bei der Transkription der vorderen Gene die stromabwärts liegenden Gene mitgelesen werden. Da die Gene *ebA5380-pdh* für die Abbau-Proteine von 4-Cresol kodieren (Anhang: Abbildung 33), wurde das Regulatorsystem EbA5371-EbA5375 als 4-Cresol-Regulatorsystem impliziert (Rabus *et al.*, 2014). EbA5371 besteht nicht nur aus zwei PAS-Domänen und zwei Histidinkinase-Domänen, sondern trägt auch eine XylR-Typ-Domäne (Anhang:

Abbildung 30). Ebenso ist das Regulatorprotein EbA5375 ungewöhnlich aufgebaut. Es trägt eine Antwort-Domäne, wie sie bei Regulatorproteinen von Zweikomponenten-Systemen zu finden ist, eine σ^{54} -Bindedomäne und eine HTH-Domäne. EbA5371 und EbA5375 sind in den verwandten Organismen *Azoarcus sp.* PA01 (96 % und 83 %), *Azoarcus sp.* CIB (79 % und 78%), *Azoarcus sp.* KH32C (77 % und 78%) und *Azoarcus toluclasticus* (77 % und 82 %) konserviert (Anhang: Abbildung 33). Es bleibt zu testen, ob dieses System neben 4-Cresol unspezifisch auf 4-Ethylphenol und 4-Hydroxyacetophenon reagiert oder es tatsächlich eine ganz andere Rolle in der Regulation der Abbauwege für phenolische Verbindungen einnimmt. Es wurde bereits gezeigt, dass zwischen auf Kulturen auf Phenol und 4-Cresol Kreuzreaktionen der abbauenden Enzyme zu sehen sind (Trautwein *et al.*, 2012a; Wöhlbrand *et al.*, 2007).

Abschließend ist zu sagen, dass bisher alle neuen Ergebnisse genauso viele Fragen zur Regulation in Aromatoleum aromaticum EbN1 beantwortet, wie sie neue aufgeworfen haben. Die Aufklärung der Rolle von AdiRS in diesem komplexen Netzwerk wird ein großer Schritt sein. In Zukunft sollten nicht nur die Systeme TdiRS und EdiRS genauer studiert werden, sondern auch weitere involvierte Regulatoren identifiziert werden. Dazu könnte zum Beispiel die Promotorregion von apc1, von der bereits gezeigt wurde, dass hier ein Induktor wirken kann (Muhr et al., 2015a), über Streptavidin an magnetische Kügelchen gebunden und Regulatoren durch Bindung an diesen DNA-Abschnitt extrahiert werden. Die Aufklärung des komplexen Regulationsnetzwerkes mit allen interagierenden Partnern wird dabei helfen, die Regulationssysteme des gesamten Clusters der Rhodobacterales besser zu verstehen.

4.4 RNA- Sequenzierung als neue Methode für Aromatoleum aromaticum EbN1

Wegen seiner genetischen Zugänglichkeit, der ausgeprägten Resistenz gegen Lösungsmittel und der Optionen auf biotechnologische Anwendung ist Aromatoleum aromaticum EbN1 ein exzellenter Modellorganismus als Teil der Ordnung der Rhodobacterales (Trautwein et al., 2008; Wöhlbrand et al., 2007). Neben gut untersuchten aeroben Bakterien wie Pseudomonas putida, phototrophen anaeroben Bakterien wie Rheudopseudomonas palustris und strikt anaeroben Bakterien wie

Geobacter metallireducens unterstützen Experimente mit Aromatoleum aromaticum EbN1 die Aufklärung der speziellen Stoffwechselwege und ihrer spezifischen Regulationssysteme (Butler *et al.*, 2007; Larimer *et al.*, 2004; Nelson *et al.*, 2002).

Die Verwendung von Proteom-Studien, Genomsequenzierung und biochemischer Charakterisierung beantworteten erste Fragen zu den verantwortlichen Genen und Proteinen für die Abbauwege von Ethylbenzol. Acetophenon. 4-Ethylphenol. 4-Hydroxyacetophenon und Benzoat (Kuhner et al., 2005; Muhr et al., 2015b; Rabus, 2005; Wöhlbrand et al., 2007; Wöhlbrand et al., 2008). Mit der Etablierung der neuen Methode der Transkriptom-Sequenzierung für Aromatoleum aromaticum EbN1 eröffnen sich dann weitere, neue Möglichkeiten und tiefere Einblicke in das Verständnis dieses Organismus. Die RNA-Sequenzierung bestätigt einige der bereits gemachten Beobachtungen durch Proteomstudien und biochemische Messungen und stellt eine mögliche und umfassendere Alternative zu Microarrays dar. Die Art der Auswertung solcher Datenmengen ist umstritten und wurde hier basierend auf der gängigen Methode durchgeführt (Haas et al., 2012; Mortazavi et al., 2008). Eine Transkriptomstudie ist sensitiver als die Auswertung des Proteoms und ermöglicht eine detailierte Auswertung auf molekularer Ebene (Creecy & Conway, 2015; Croucher & Thomson, 2010). Zum Beispiel kommt die beobachtete signifikante Induktion des "Ersatz"-Clusters in Kulturen auf Ethylbenzol deutlich zum Tragen (Signifikante Induktion: p-Wert ≤ 0.01) bei Durchführung der Transkriptom-Studie. Andererseits hat diese Methode Schwachstellen, z.B durch die Unterschiede der Stabilität bestimmter mRNA-Transkripte (z.B. die anscheinend geringe Menge an *bcrA*). Man kann davon dass ein Gen, welches in einer Transkriptom-Studie ausgehen, konstant unterrepresentiert ist, eine instabile mRNA hat und damit nicht die Qualität der gesamten RNA-Sequenzierung in Frage gestellt werden muss (Finotello & Di Camillo, 2015; Gallego Romero et al., 2014). Die hohe Sensivität der Tanskriptom-Analyse wird außerdem durch die Identifizierung einer signifikanten Induktion des "Ersatz"-Clusters bei Kulturen auf Ethylbenzol deutlich (Abbildung 22), welches Genduplikate aus Ethylbenzol-. 4-Ethylphenol- und Phenol-Stoffwechselwegen trägt (Tabelle 12). Für diesen Effekt gab es bisher keine Indizien aus anderen Experimenten, obwohl bereits früher vermutet wurde, dass Ethylbenzol auf diesen Genabschnitt aufgrund des redundanten Clusters für die EbDH einwirken kann. In der Arbeit von Wöhlbrand et al. (2007) wurde nach erfolgreicher Deletion des ebdC2 Gens kein Phänotyp gefunden, was die Redundanz dieses Gens vermuten lässt. In dieser Arbeit wurde jedoch

deutlich belegt, dass Ethylbenzol eine aktivierende Wirkung auf dieses "Ersatz"-Cluster und für das nebenliegende Stress-3-Operon besitzt (Abbildung 22). Jedoch konnten in zuvor durchgeführten Proteomstudien nur in Kulturen auf Phenol und 4-Cresol die Genprodukte von *ebA5764* und *ebA5768* nachgewiesen werden, die im Stress-3-Operon kodiert sind (Rabus *et al.*, 2014; Trautwein *et al.*, 2008). Ob dieses Operon generell bei Lösemittelstress oder ähnlichen Stressfaktoren induziert ist, bleibt zunächst unklar. Eine Transkriptomstudie mit diesen beiden Substraten könnte hier näheren Aufschluss geben.

Durch die Erschließung des Transkriptoms können weitere Lücken in den Regulationsmechanismen und den Abbauwegen der aromatischen Verbindungen von *Aromatoleum aromaticum* EbN1 geschlossen werden.

III. Literaturverzeichnis

Abril, M. A., Michan, C., Timmis, K. N. & Ramos, J. L. (1989). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. *J Bacteriol* **171**, 6782-6790.

Achong, G. R., Rodriguez, A. M. & Spormann, A. M. (2001). Benzylsuccinate synthase of *Azoarcus sp.* strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. *J Bacteriol* **183**, 6763-6770.

Aeckersberg, F., Rainey, F. A. & Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. *Arch Microbiol* **170**, 361-369.

Aldridge, P. & Jenal, U. (1999). Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. *Mol Microbiol* **32**, 379-391.

Aldridge, P., Paul, R., Goymer, P., Rainey, P. & Jenal, U. (2003). Role of the GGDEF regulator PleD in polar development of *Caulobacter crescentus*. *Mol Microbiol* 47, 1695-1708.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. *J Mol Biol* 215, 403-410.

Alvarez, A. F. & Georgellis, D. (2010). In vitro and in vivo analysis of the ArcB/A redox signaling pathway. *Methods Enzymol* **471**, 205-228.

Backiel, J., Juárez, O., Zagorevski, D. V., Wang, Z., Nilges, M. J. & Barquera, B. (2008). Covalent binding of flavins to RnfG and RnfD in the Rnf complex from *Vibrio cholerae*. *Biochemistry* **47**, 11273-11284.

Baikalov, I., Schröder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R. P. & Dickerson, R. E. (1996). Structure of the *Escherichia coli* response regulator NarL. *Biochemistry* **35**, 11053-11061.

Ball, H.A., Johnson, H.A., Reinhard, M. & Spormann, A. M. (1996). Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. *J Bacteriol* **178**, 5755-5761.

Barakat, M., Ortet, P., Jourlin-Castelli, C., Ansaldi, M., Mejean, V. & Whitworth, D. E. (2009). P2CS: a two-component system resource for prokaryotic signal transduction research. *BMC Genomics* **10**, 315.

Barragan, M. J., Blazquez, B., Zamarro, M. T., Mancheno, J. M., Garcia, J. L., Diaz, E. & Carmona, M. (2005). BzdR, a repressor that controls the anaerobic catabolism

of benzoate in *Azoarcus sp.* CIB, is the first member of a new subfamily of transcriptional regulators. *J Biol Chem* **280**, 10683-10694.

Beattie, P., Tan, K., Bourne, R. M., Leach, D., Rich, P. R. & Ward, F. B. (1994). Cloning and sequencing of four structural genes for the Na(+)-translocating NADHubiquinone oxidoreductase of *Vibrio alginolyticus*. *FEBS Lett* **356**, 333-338.

Beller, H. R., Spormann, A. M., Sharma, P. K., Cole, J. R. & Reinhard, M. (1996). Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. *Appl Environ Microbiol* **62**, 1188-1196.

Beller, H. R. & Spormann, A. M. (1998). Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. *J Bacteriol* 180, 5454-5457.

Berne, F. & Cordonnier, J. (1995). Industrial water treatment: refining, petrochemicals and gas processing techniques. Houston, TX: Gulf Publishing Company.

Bertani, G. (1951). A Method for Detection of Mutations, Using Streptomycin Dependence in Escherichia Coli. *Genetics* **36**, 598-611.

Biegel, E., Schmidt, S., Gonzalez, J. M. & Müller, V. (2011). Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. *Cell Mol Life Sci* **68**, 613-634.

Biegert, T., Altenschmidt, U., Eckerskorn, C. & Fuchs, G. (1993). Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying *Pseudomonas* species. *Eur J Biochem* **213**, 555-561.

Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res* **7**, 1513-1523.

Boiangiu, C. D., Jayamani, E., Brügel, D. & other authors (2005). Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. *J Mol Microbiol Biotechnol* **10**, 105-119.

Boll, M. & Fuchs, G. (1995). Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from *Thauera aromatica* strain K172. *Eur J Biochem* **234**, 921-933.

Boll, M., Laempe, D., Eisenreich, W., Bacher, A., Mittelberger, T., Heinze, J. & Fuchs, G. (2000). Nonaromatic products from anoxic conversion of benzoyl-CoA with benzoyl-CoA reductase and cyclohexa-1,5-diene-1-carbonyl-CoA hydratase. *J Biol Chem* **275**, 21889-21895.

Bossert, I. D. & Young, L. Y. (1986). Anaerobic oxidation of p-cresol by a denitrifying bacterium. *Appl Environ Microbiol* 52, 1117-1122.

Bourret, R. B., Borkovich, K. A. & Simon, M. I. (1991). Signal transduction pathways involving protein phosphorylation in prokaryotes. *Annu Rev Biochem* **60**, 401-441.

Brackmann, R. & Fuchs, G. (1993). Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying *Pseudomonas* species. *Eur J Biochem* **213**, 563-571.

Breese, K., Boll, M., Alt-Morbe, J., Schagger, H. & Fuchs, G. (1998). Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium *Thauera aromatica*. *Eur J Biochem* **256**, 148-154.

Breese, K. & Fuchs, G. (1998). 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium *Thauera aromatica*--prosthetic groups, electron donor, and genes of a member of the molybdenum-flavin-iron-sulfur proteins. *Eur J Biochem* **251**, 916-923.

Brown, J. L., Bussey, H. & Stewart, R. C. (1994). Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. *EMBO J* 13, 5186-5194.

Burgess, R. R. (1969). Separation and characterization of the subunits of ribonucleic acid polymerase. *J Biol Chem* 244, 6168-6176.

Burgess, R. R., Travers, A. A., Dunn, J. J. & Bautz, E. K. (1969). Factor stimulating transcription by RNA polymerase. *Nature* **221**, 43-46.

Büsing, I., Hoffken, H. W., Breuer, M., Wöhlbrand, L., Hauer, B. & Rabus, R. (2015a). Molecular Genetic and Crystal Structural Analysis of 1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from '*Aromatoleum aromaticum*' EbN1. *J Mol Microbiol Biotechnol* 25, 327-339.

Büsing, I., Kant, M., Dorries, M., Wöhlbrand, L. & Rabus, R. (2015b). The predicted sigma⁵⁴-dependent regulator EtpR is essential for expression of genes for anaerobic *p*-ethylphenol and *p*-hydroxyacetophenone degradation in "*Aromatoleum aromaticum*" EbN1. *BMC Microbiol* **15**, 251.

Butler, J. E., He, Q., Nevin, K. P., He, Z., Zhou, J. & Lovley, D. R. (2007). Genomic and microarray analysis of aromatics degradation in *Geobacter metallireducens* and comparison to a *Geobacter* isolate from a contaminated field site. *BMC Genomics* **8**, 180.

Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A., Jakuba, M. V., Kinsey, J. C., McIntyre, C. P., Sylva, S. P. & Maloney, J. V. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. *Science* **330**, 201-204.

Champion, K. M., Zengler, K. & Rabus, R. (1999). Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. *J Mol Microbiol Biotechnol* **1**, 157-164.

Cho, H. S., Pelton, J. G., Yan, D., Kustu, S. & Wemmer, D. E. (2001). Phosphoaspartates in bacterial signal transduction. *Curr Opin Struct Biol* **11**, 679-684.
Cline, P. V., Delfino, J. J. & Rao, P. S. C. (1991). Partioning of aromatic constituents into water from gasoline and other complex solvent mixtures. *Environ Sci Technol* 25, 914-920.

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res* **16**, 10881-10890.

Coschigano, P. W., Wehrman, T. S. & Young, L. Y. (1998). Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of a glycine free radical. *Appl Environ Microbiol* **64**, 1650-1656.

Creecy, J. P. & Conway, T. (2015). Quantitative bacterial transcriptomics with RNA-seq. *Curr Opin Microbiol* 23, 133-140.

Croucher, N. J. & Thomson, N. R. (2010). Studying bacterial transcriptomes using RNA-seq. *Curr Opin Microbiol* **13**, 619-624.

Curatti, L., Brown, C. S., Ludden, P. W. & Rubio, L. M. (2005). Genes required for rapid expression of nitrogenase activity in *Azotobacter vinelandii*. *Proc Natl Acad Sci U S A* **102**, 6291-6296.

de Jong, A., van der Meulen, S., Kuipers, O. P. & Kok, J. (2015). T-REX: Transcriptome analysis webserver for RNA-seq Expression data. *BMC Genomics* 16, 663.

Dean, B. J. (1985). Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. *Mutat Res* **154**, 153-181.

Dehio, C. & Meyer, M. (1997). Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in *Bartonella henselae* following conjugal plasmid transfer from *Escherichia coli*. *J Bacteriol* **179**, 538-540.

Dixon, R. A. (1984). The genetic complexity of nitrogen fixation. The ninth Fleming lecture. *J Gen Microbiol* **130**, 2745-2755.

Duldhardt, I., Nijenhuis, I., Schauer, F. & Heipieper, H. J. (2007). Anaerobically grown *Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens* are more sensitive towards organic solvents than aerobic bacteria. *Appl Microbiol Biotechnol* **77**, 705-711.

Ebenau-Jehle, C., Boll, M. & Fuchs, G. (2003). 2-Oxoglutarate:NADP⁺ oxidoreductase in *Azoarcus evansii*: properties and function in electron transfer reactions in aromatic ring reduction. *J Bacteriol* **185**, 6119-6129.

Ehrt, S., Schirmer, F. & Hillen, W. (1995). Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in *Acinetobacter calcoaceticus* NCIB8250. *Mol Microbiol* **18**, 13-20.

Finotello, F. & Di Camillo, B. (2015). Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. *Brief Funct Genomics* **14**, 130-142.

Fuchs, G., Boll, M. & Heider, J. (2011). Microbial degradation of aromatic compounds - from one strategy to four. *Nat Rev Microbiol* **9**, 803-816.

Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. (2014). RNA-seq: impact of RNA degradation on transcript quantification. *BMC Biol* 12, 42.

Gescher, J., Zaar, A., Mohamed, M., Schagger, H. & Fuchs, G. (2002). Genes coding for a new pathway of aerobic benzoate metabolism in *Azoarcus evansii*. *J Bacteriol* **184**, 6301-6315.

Gifford, C. M. & Wallace, S. S. (2000). The genes encoding endonuclease VIII and endonuclease III in *Escherichia coli* are transcribed as the terminal genes in operons. *Nucleic Acids Res* **28**, 762-769.

Gourse, R. L., Ross, W. & Rutherford, S. T. (2006). General pathway for turning on promoters transcribed by RNA polymerases containing alternative sigma factors. *J Bacteriol* **188**, 4589-4591.

Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. *Proc Natl Acad Sci U S A* 87, 4645-4649.

Gulensoy, N. & Alvarez, P. J. (1999). Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities. *Biodegradation* 10, 331-340.

Gussin, G. N., Ronson, C. W. & Ausubel, F. M. (1986). Regulation of nitrogen fixation genes. *Annu Rev Genet* 20, 567-591.

Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W. & Livny, J. (2012). How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? *BMC Genomics* **13**, 734.

Harwood, C. S., Burchhardt, G., Herrmann, H. & Fuchs, G. (1998). Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. *FEMS Microbiol Rev* 22, 439–458.

Heider, J., Spormann, A. M., Beller, H. R. & Widdel, F. (1998). Anaerobic bacterial metabolism of hydrocarbons.

Heider, J. & Rabus, R. (2008). Genomic insights in the anaerobic biodegradation of organic pollutants. Norfolk, UK: Caister Academic Press.

Hilker, R., Stadermann, K. B., Doppmeier, D., Kalinowski, J., Stoye, J., Straube, J., Winnebald, J. & Goesmann, A. (2014). ReadXplorer--visualization and analysis of mapped sequences. *Bioinformatics* **30**, 2247-2254.

Hsing, W. & Silhavy, T. J. (1997). Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in *Escherichia coli*. *J Bacteriol* 179, 3729-3735.

Hurek, T. & Reinhold-Hurek, B. (1995). Identification of grass-associated and toluene-degrading diazotrophs, *Azoarcus spp.*, by analyses of partial 16S ribosomal DNA sequences. *Appl Environ Microbiol* **61**, 2257-2261.

Huynh, T. N., Noriega, C. E. & Stewart, V. (2010). Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. *Proc Natl Acad Sci U S A* 107, 21140-21145.

Igo, M. M., Ninfa, A. J., Stock, J. B. & Silhavy, T. J. (1989). Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. *Genes Dev* **3**, 1725-1734.

Inouye, S., Nakazawa, A. & Nakazawa, T. (1985). Determination of the transcription initiation site and identification of the protein product of the regulatory gene *xy*/*R* for *xy*/ operons on the TOL plasmid. *J Bacteriol* **163**, 863-869.

Itou, H. & Tanaka, I. (2001). The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. *J Biochem* **129**, 343-350.

Jindrova, E., Chocova, M., Demnerova, K. & Brenner, V. (2002). Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. *Folia Microbiol (Praha)* 47, 83-93.

Jobst, B., Schühle, K., Linne, U. & Heider, J. (2010). ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. *J Bacteriol* **192**, 1387-1394.

Johnston, A. W. & Downie, J. A. (1984). What is a *nif* promoter? *Trends Biochem Sci* 9, 367-368.

Jouanneau, Y., Jeong, H. S., Hugo, N., Meyer, C. & Willison, J. C. (1998). Overexpression in *Escherichia coli* of the *rnf* genes from *Rhodobacter capsulatus*-characterization of two membrane-bound iron-sulfur proteins. *Eur J Biochem* **251**, 54-64.

Jung, A., Eisheuer, S., Cserti, E., Leicht, O., Strobel, W., Moll, A., Schlimpert, S., Kuhn, J. & Thanbichler, M. (2015). Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium. *Appl Environ Microbiol* **81**, 736-744.

Junghare, M., Patil, Y. & Schink, B. (2015). Draft genome sequence of a nitratereducing, *o*-phthalate degrading bacterium, *Azoarcus sp.* strain PA01(T). *Stand Genomic Sci* **10**, 90.

Kasak, L., Hôrak, R., Nurk, A., Talvik, K. & Kivisaar, M. (1993). Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding *pheBA* operon in *Pseudomonas putida* PaW85. *J Bacteriol* 175, 8038-8042.

Kawaguchi, K., Shinoda, Y., Yurimoto, H., Sakai, Y. & Kato, N. (2006). Purification and characterization of benzoate-CoA ligase from *Magnetospirillum sp.* strain TS-6 capable of aerobic and anaerobic degradation of aromatic compounds. *FEMS Microbiol Lett* **257**, 208-213. Kazmierczak, M. J., Wiedmann, M. & Boor, K. J. (2005). Alternative sigma factors and their roles in bacterial virulence. *Microbiol Mol Biol Rev* 69, 527-543.

Kerscher, S., Dröse, S., Zickermann, V. & Brandt, U. (2008). The three families of respiratory NADH dehydrogenases. *Results Probl Cell Differ* **45**, 185-222.

Kim, S. J., Park, S. J., Cha, I. T., Min, D., Kim, J. S., Chung, W. H., Chae, J. C., Jeon, C. O. & Rhee, S. K. (2014). Metabolic versatility of toluene-degrading, ironreducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. *Environ Microbiol* **16**, 189-204.

Knack, D., Hagel, C., Szaleniec, M., Dudzik, A., Salwinski, A. & Heider, J. (2012). Substrate and inhibitor spectra of ethylbenzene dehydrogenase: perspectives on application potential and catalytic mechanism. *Appl Environ Microbiol* **78**, 6475-6482.

Kniemeyer, O. & Heider, J. (2001a). Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. *J Biol Chem* 276, 21381-21386.

Kniemeyer, O. & Heider, J. (2001b). (*S*)-1-phenylethanol dehydrogenase of *Azoarcus sp*. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. *Arch Microbiol* **176**, 129-135.

Kniemeyer, O., Fischer, T., Wilkes, H., Glockner, F. O. & Widdel, F. (2003). Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. *Appl Environ Microbiol* **69**, 760-768.

Koch, R. & Wagner, B. O. (1989). Umweltchemikalien: physikalisch-chemische Daten, Toxizitäten, Grenz-und Richtwerte, Umweltverhalten. Weinheim, Germany: VCH Verlagsgeselllschaft.

Koo, M. S., Lee, J. H., Rah, S. Y., Yeo, W. S., Lee, J. W., Lee, K. L., Koh, Y. S., Kang, S. O. & Roe, J. H. (2003). A reducing system of the superoxide sensor SoxR in *Escherichia coli*. *EMBO J* 22, 2614-2622.

Kraushaar, T. (2010). Die Sensorkinase AdiS des anaeroben Acetophenonabbaus bei *Aromatoleum aromaticum* Stamm EbN1. In Microbiology: Philipps-Universität Marburg.

Kube, M., Heider, J., Amann, J., Hufnagel, P., Kuhner, S., Beck, A., Reinhardt, R. & Rabus, R. (2004). Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. *Arch Microbiol* **181**, 182-194.

Kuhner, S., Wöhlbrand, L., Fritz, I., Wruck, W., Hultschig, C., Hufnagel, P., Kube, M., Reinhardt, R. & Rabus, R. (2005). Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. *J Bacteriol* 187, 1493-1503.

Kukor, J. J. & Olsen, R. H. (1990). Molecular cloning, characterization, and regulation of a *Pseudomonas pickettii* PKO1 gene encoding phenol hydroxylase and expression of the gene in *Pseudomonas aeruginosa* PAO1c. *J Bacteriol* **172**, 4624-4630.

Lack, A. & Fuchs, G. (1992). Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. *J Bacteriol* 174, 3629-3636.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680-685.

Larimer, F. W., Chain, P., Hauser, L. & other authors (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium *Rhodopseudomonas palustris*. *Nat Biotechnol* 22, 55-61.

Leuthner, B. & Heider, J. (1998). A two-component system involved in regulation of anaerobic toluene metabolism in *Thauera aromatica*. *FEMS Microbiol Lett* **166**, 35-41.

Leuthner, B., Leutwein, C., Schulz, H., Horth, P., Haehnel, W., Schiltz, E., Schagger, H. & Heider, J. (1998). Biochemical and genetic characterization of benzylsuccinate synthase from *Thauera aromatica*: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. *Mol Microbiol* 28, 615-628.

Leuthner, B. & Heider, J. (2000). Anaerobic toluene catabolism of *Thauera aromatica*: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. *J Bacteriol* **182**, 272-277.

Li, Q., Li, L., Rejtar, T., Lessner, D. J., Karger, B. L. & Ferry, J. G. (2006). Electron transport in the pathway of acetate conversion to methane in the marine archaeon *Methanosarcina acetivorans*. *J Bacteriol* **188**, 702-710.

Londry, K. L., Suflita, J. M. & Tanner, R. S. (1999). Cresol metabolism by the sulfatereducing bacterium *Desulfotomaculum sp.* strain Groll. *Can J Microbiol* **45**, 458-463.

Model, P., Jovanovic, G. & Dworkin, J. (1997). The *Escherichia coli* phage-shock-protein (*psp*) operon. *Mol Microbiol* 24, 255-261.

Morett, E. & Buck, M. (1989). In vivo studies on the interaction of RNA polymerasesigma⁵⁴ with the *Klebsiella pneumoniae* and *Rhizobium meliloti nifH* promoters. The role of NifA in the formation of an open promoter complex. *J Mol Biol* **210**, 65-77.

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods* **5**, 621-628.

Muhr, E., Leicht, O., Gonzalez Sierra, S., Thanbichler, M. & Heider, J. (2015a). A Fluorescent Bioreporter for Acetophenone and 1-Phenylethanol derived from a Specifically Induced Catabolic Operon. *Front Microbiol* **6**, 1561.

Muhr, E., Schühle, K., Clermont, L. & other authors (2015b). Enzymes of anaerobic ethylbenzene and *p*-ethylphenol catabolism in '*Aromatoleum aromaticum*': differentiation and differential induction. *Arch Microbiol* **197**, 1051-1062.

Muhr, E. (2016). Regulation des anaeroben Abbaus aromatischer Kohlenwasserstoffe in *Aromatoleum aromaticum* EbN1. In Microbiology: Philipps-Universität Marburg.

Nelson, K. E., Weinel, C., Paulsen, I. T. & other authors (2002). Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. *Environ Microbiol* **4**, 799-808.

Ng, L. C., O'Neill, E. & Shingler, V. (1996). Genetic evidence for interdomain regulation of the phenol-responsive final sigma⁵⁴-dependent activator DmpR. *J Biol Chem* **271**, 17281-17286.

Nguyen, M. P., Yoon, J. M., Cho, M. H. & Lee, S. W. (2015). Prokaryotic 2-component systems and the OmpR/PhoB superfamily. *Can J Microbiol* **61**, 799-810.

Ninfa, A. J. & Magasanik, B. (1986). Covalent modification of the *glnG* product, NRI, by the *glnL* product, NRII, regulates the transcription of the *glnALG* operon in *Escherichia coli*. *Proc Natl Acad Sci U S A* **83**, 5909-5913.

O'Neil, D., Glowatz, H. & Schlumpberger, M. (2013). Ribosomal RNA depletion for efficient use of RNA-seq capacity. *Curr Protoc Mol Biol* **Chapter 4**, Unit 4 19.

Powlowski, J. & Shingler, V. (1994). Genetics and biochemistry of phenol degradation by *Pseudomonas sp.* CF600. *Biodegradation* **5**, 219-236.

Pratt, L. A. & Silhavy, T. J. (1995). Identification of base pairs important for OmpR-DNA interaction. *Mol Microbiol* **17**, 565-573.

Rabus, R. & Widdel, F. (1995). Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. *Arch Microbiol* 163, 96-103.

Rabus, R., Kube, M., Beck, A., Widdel, F. & Reinhardt, R. (2002). Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. *Arch Microbiol* **178**, 506-516.

Rabus, R. (2005). Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. *Appl Microbiol Biotechnol* **68**, 580-587.

Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F. & Reinhardt, R. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. *Arch Microbiol* **183**, 27-36.

Rabus, R., Trautwein, K. & Wöhlbrand, L. (2014). Towards habitat-oriented systems biology of "*Aromatoleum aromaticum*" EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. *Appl Microbiol Biotechnol* **98**, 3371-3388.

Ramos, J. L., Michan, C., Rojo, F., Dwyer, D. & Timmis, K. (1990). Signal-regulator interactions. Genetic analysis of the effector binding site of *xy/S*, the benzoate-activated positive regulator of *Pseudomonas* TOL plasmid meta-cleavage pathway operon. *J Mol Biol* **211**, 373-382.

Reitzer, L. & Schneider, B. L. (2001). Metabolic context and possible physiological themes of sigma⁵⁴-dependent genes in *Escherichia coli*. *Microbiol Mol Biol Rev* **65**, 422-444, table of contents.

Rudolphi, A., Tschech, A. & Fuchs, G. (1991). Anaerobic degradation of cresols by denitrifying bacteria. *Arch Microbiol* 155, 238-248.

Saez, L. P., Garcia, P., Martinez-Luque, M., Klipp, W., Blasco, R. & Castillo, F. (2001). Role for *draTG* and *rnf* genes in reduction of 2,4-dinitrophenol by *Rhodobacter capsulatus*. *J Bacteriol* **183**, 1780-1783.

Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular cloning : a laboratory manual New York: Cold Spring Harbor Laboratory Press.

Sambrook, J. & Russel, D. W. (2001). Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press.

Santos, P. M. & Sa-Correia, I. (2007). Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in *Pseudomonas sp.* M1. *J Biotechnol* **131**, 371-378.

Sarkar, A., Kohler, J., Hurek, T. & Reinhold-Hurek, B. (2012). A novel regulatory role of the Rnf complex of *Azoarcus sp.* strain BH72. *Mol Microbiol* 83, 408-422.

Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Puhler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* **145**, 69-73.

Schmehl, M., Jahn, A., Meyer zu Vilsendorf, A., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J. & Klipp, W. (1993). Identification of a new class of nitrogen fixation genes in *Rhodobacter capsulatus*: a putative membrane complex involved in electron transport to nitrogenase. *Mol Gen Genet* **241**, 602-615.

Schmeling, S., Narmandakh, A., Schmitt, O., Gad'on, N., Schühle, K. & Fuchs, G. (2004). Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in *Thauera aromatica*. *J Bacteriol* **186**, 8044-8057.

Schmeling, S. & Fuchs, G. (2009). Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. *Arch Microbiol* **191**, 869-878.

Schühle, K., Gescher, J., Feil, U., Paul, M., Jahn, M., Schagger, H. & Fuchs, G. (2003). Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. *J Bacteriol* **185**, 4920-4929.

Schühle, K. & Fuchs, G. (2004). Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in *Thauera aromatica*. *J Bacteriol* **186**, 4556-4567.

Schühle, K. & Heider, J. (2012). Acetone and butanone metabolism of the denitrifying bacterium "*Aromatoleum aromaticum*" demonstrates novel biochemical properties of an ATP-dependent aliphatic ketone carboxylase. *J Bacteriol* **194**, 131-141.

Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E. & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from *Discosoma sp.* red fluorescent protein. *Nat Biotechnol* **22**, 1567-1572.

Shingler, V., Franklin, F. C., Tsuda, M., Holroyd, D. & Bagdasarian, M. (1989). Molecular analysis of a plasmid-encoded phenol hydroxylase from *Pseudomonas* CF600. *J Gen Microbiol* **135**, 1083-1092.

Sikkema, J., de Bont, J. A. & Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. *J Biol Chem* **269**, 8022-8028.

So, C. M. & Young, L. Y. (1999). Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. *Appl Environ Microbiol* **65**, 2969-2976.

Stock, A. M., Robinson, V. L. & Goudreau, P. N. (2000). Two-component signal transduction. *Annu Rev Biochem* 69, 183-215.

Stock, J. B., Ninfa, A. J. & Stock, A. M. (1989). Protein phosphorylation and regulation of adaptive responses in bacteria. *Microbiol Rev* 53, 450-490.

Studholme, D. J. & Dixon, R. (2003). Domain architectures of sigma⁵⁴-dependent transcriptional activators. *J Bacteriol* **185**, 1757-1767.

Taylor, R. K., Hall, M. N., Enquist, L. & Silhavy, T. J. (1981). Identification of OmpR: a positive regulatory protein controlling expression of the major outer membrane matrix porin proteins of *Escherichia coli* K-12. *J Bacteriol* **147**, 255-258.

Tischler, A. D. & Camilli, A. (2004). Cyclic diguanylate (c-di-GMP) regulates *Vibrio cholerae* biofilm formation. *Mol Microbiol* **53**, 857-869.

Trautwein, K., Kuhner, S., Wöhlbrand, L., Halder, T., Kuchta, K., Steinbüchel, A. & Rabus, R. (2008). Solvent stress response of the denitrifying bacterium "Aromatoleum aromaticum" strain EbN1. Appl Environ Microbiol 74, 2267-2274.

Trautwein, K., Lahme, S., Wöhlbrand, L. & other authors (2012a). Physiological and proteomic adaptation of "*Aromatoleum aromaticum*" EbN1 to low growth rates in benzoate-limited, anoxic chemostats. *J Bacteriol* **194**, 2165-2180.

Trautwein, K., Wilkes, H. & Rabus, R. (2012b). Proteogenomic evidence for betaoxidation of plant-derived 3-phenylpropanoids in "*Aromatoleum aromaticum*" EbN1. *Proteomics* **12**, 1402-1413.

Valderrama, J. A., Durante-Rodríguez, G., Blázquez, B., García, J. L., Carmona, M. & Díaz, E. (2011). Cross-Regulation between Aerobic and Anaerobic Pathways. *J Biol Chem* 287, 10494–10508.

Vidangos, N., Maris, A. E., Young, A., Hong, E., Pelton, J. G., Batchelor, J. D. & Wemmer, D. E. (2013). Structure, function, and tethering of DNA-binding domains in sigma⁵⁴ transcriptional activators. *Biopolymers* **99**, 1082-1096.

Wanner, B. L. (1994). Multiple controls of the *Escherichia coli* Pho regulon by the Pi sensor PhoR, the catabolite regulatory sensor CreC, and acetyl phosphate. Washington, DC: ASM Press.

Weelink, S. A., van Doesburg, W., Saia, F. T., Rijpstra, W. I., Roling, W. F., Smidt, H. & Stams, A. J. (2009). A strictly anaerobic betaproteobacterium *Georgfuchsia toluolica* gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. *FEMS Microbiol Ecol* **70**, 575-585.

West, A. H. & Stock, A. M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. *Trends Biochem Sci* 26, 369-376.

Wigmore, G. J. & Bayly, R. C. (1974). A mutant of *Pseudomonas putida* with altered regulation of the enzymes for degradation of phenol and cresols. *Biochem Biophys Res Commun* **60**, 48-55.

Williams, P. A. & Sayers, J. R. (1994). The evolution of pathways for aromatic hydrocarbon oxidation in *Pseudomonas*. *Biodegradation* 5, 195-217.

Wöhlbrand, L., Kallerhoff, B., Lange, D., Hufnagel, P., Thiermann, J., Reinhardt, R. & Rabus, R. (2007). Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1. Proteomics 7, 2222-2239.

Wöhlbrand, L., Wilkes, H., Halder, T. & Rabus, R. (2008). Anaerobic degradation of *p*-ethylphenol by "*Aromatoleum aromaticum*" strain EbN1: pathway, regulation, and involved proteins. *J Bacteriol* **190**, 5699-5709.

Wöhlbrand, L. & Rabus, R. (2009). Development of a genetic system for the denitrifying bacterium 'Aromatoleum aromaticum' strain EbN1. J Mol Microbiol Biotechnol 17, 41-52.

Zengler, K., Heider, J., Rossello-Mora, R. & Widdel, F. (1999). Phototrophic utilization of toluene under anoxic conditions by a new strain of *Blastochloris* sulfoviridis. Arch Microbiol **172**, 204-212.

IV. Anhang

Abbildung 30: Aufbau der in dieser Arbeit interessanten Regulationssysteme aus Aromatoleum aromaticum EbN1.

Tabelle 13 ergänzende Information zur Expression besonders induzierter Gene der Kulturen auf den Substraten 4-Hydroxyacetophenon (4OH-Ac), 4-Ethylphenol (EtP), Acetophenon (Ac) und Ethylbenzol (EtB) im Vergleich zur Kontroll (Benzoat. Gene, die signifikant induziert sind (im Bereich außerhalb der gestrichelten Linien, Abbildung 17) und deren benachbarten Gene, die Teil eines Operons sein könnten. Rot: reprimiertes Gen; Blau: induziertes Gen. Die Gene die um mehr als +/- 2 verändert sind wurden annotiert (basierend auf NCBI)

Genname	Locus	4OH-Ac	EtP	Ac	EtB	Annotation (NCBI)	
ebA3146	ebA3146	1,84	2,28	-0,12	0,67		
korA2	ebA3149	5,59	4,40	0,50	-0,11	2-Ovodutarat Ferredovin Ovidoreduktase	
korB2	ebA3150	6,49	5,48	0,61	0,51		
purA	ebA 1249	-12,60	-12,60	-0,47	-0,93	Adenylosuccinat-Synthetase	
hisZ	ebA 1250	-12,21	-12,21	-0,71	-1,37	ATP Phosphoribosyltransferase	
ebA 1251	ebA 1251	-1,29	-0,94	-0,74	-1,17		
hflC	ebA 1252	-1,51	-1,16	-0,73	-1,12		
ebA 1253	ebA 1253	-0,43	-0,16	-0,87	-1,40		

hflX	ebA 1254	-1,10	-0,87	-0,68	-0,93		
hfq	ebA 1255	-2,89	-2,78	-0,46	-0,36	RNA Bindeprotein	
engA	ebA 1256	0,13	0,24	-0,52	-0,55		
ebA 1258	ebA 1258	2,30	2,49	-0,43	-0,58	Quinoprotein	
ebA 1259	ebA 1259	-0,32	-0,14	-0,37	-0,55		
hisS	ebA 1260	-0,38	-0,25	-0,44	-0,70		
ispG	ebA 1261	-0,33	-0,24	-0,49	-0,77		
ebA 1262	ebA 1262	-0,35	-0,19	-0,57	-0,93		
pilF	ebA 1266	0,11	0,19	-0,62	-1,17		
ebA 1268	ebA 1268	-0,61	-0,56	-0,53	-1,14		
ndk	ebB37	-0,50	-0,29	-0,41	-0,83		
sucD	ebA 1271	-0,06	0,05	-0,19	-0,10		
sucC	ebA 1272	-0,03	0,10	-0,22	-0,18		
ebA 1274	ebA 1274	-0,88	-0,51	-0,29	-0,90		
ebA2197	ebA2197	-1,50	-1,36	-0,31	-1,14		
ebA2200	ebA2200	-1,46	-1,55	-0,58	-1,23		
lysR	ebA2202	-0,08	0,49	0,83	0,19		
ebA2204	ebA2204	6,11	2,67	1,25	0,73	hypothetisches Protein	
ebA2206	ebA2206	6,46	2,98	0,89	0,31	Toluol Toleranz Protein	
vacJ	ebA2208	7,07	3,47	0,38	0,25	Lipoprotein	
ebA2210	ebA2210	0,52	0,52	0,55	0,78		
ebA2212	ebA2212	5,22	1,02	0,82	1,17	hypothetisches Protein	
ebA2213	ebA2213	1,64	0,20	0,26	0,32		
ebA2214	ebA2214	0,65	0,60	0,27	0,40		
ebA2217	ebA2217	0,28	0,16	0,08	0,58		
ccmF	ebA2222	0,38	0,13	-0,34	0,10		
ebA2226	ebA2226	0,33	-0,24	0,17	0,06		
ebA2229	ebA2229	0,29	0,46	0,14	0,55		
qhpB	ebA2230	0,49	0,18	0,29	0,51		
qhpC	ebC14	0,17	0,05	0,06	0,27		
qhpX	ebA2233	0,13	-0,06	0,00	0,21		
qhpA	ebA2235	0,28	0,09	0,01	0,02		
ebA2236	ebA2236	1,27	0,93	0,30	0,25		
ebA2237	ebA2237	1,46	0,72	0,59	1,72		
ebA3662	ebA 3662	0,62	0,30	0,29	0,95		
coxB2	ebA3665	5,21	1,69	1,00	1,53	Cytochrom C Oxidase	
coxA2	ebA 3666	4,93	1,51	1,07	1,49		
ebA3668	ebA 3668	4,62	1,30	1,03	1,64	Elektronen-Transport-Protein	
ebA3670	ebA3670	4,11	0,91	0,91	1,53	hypothetisches Protein	
ebA4221	ebA4221	-0,29	-0,15	-0,38	0,36		
recQ	ebA4224	0,29	0,26	0,21	0,89		
ebB144	ebB144	-0,60	-1,11	-0,27	0,92		
сохВ	ebA 4227	3,66	2,75	2,25	3,66	Cytochrom C Oxidase	
coxA	ebA 4228	5,12	2,46	2,92	4,63	Cutochrom C Ovideoo	
ebA 4229	ebA 4229	4,46	2,03	2,45	4,40	Assemblierungsprotein	

ebA 4230	ebA4230	4,25	1,87	2,59	4,34	hypothetisches Protein	
coxC	ebA4231	4,15	1,28	2,53	4,00	Cytochrome C Oxidase Untereinheit III	
ebA 4232	ebA 4232	0,99	0,91	0,34	1,72		
ebA4233	ebA4233	4,24	0,89	2,52	4,34	SURF 1 Protein (Reifung von Cytochrom C)	
ebA4234	ebA4234	3,81	0,60	2,41	3,94	hypothetisches Protein	
- 1- 4	- h A 4000	0.40	0.44	0.07	0.04	Cytochrom aa3 Oxidase	
CtaA	eDA 4236	3,49	0,44	2,37	3,91		
ctaB	ebA 4237	3,80	0,13	2,97	4,20	Protoham IX Farnesyltransferase	
eDA 4238	eDA 4238	-0,38	-0,56	0,18	0,57		
pilE1	ebA6	-0,73	-0,16	-4,66	-4,67	Pilin Protein (Klasse II)	
ebA 3696	ebA 3696	1,16	0,01	0,66	1,32		
ebA3702	ebA3702	1,11	0,10	0,28	0,93		
ebA3703	ebA3703	1,03	0,25	0,37	0,95		
ebA3705	ebA3705	1,68	0,59	0,73	1,12		
ebA3707	ebA3707	1,56	0,20	0,67	1,04		
ebA3709	ebA3709	1,36	0,04	0,21	0,88		
ebA3710	ebA3710	1,53	-0,14	-0,31	0,54		
ebA3711	ebA3711	1,64	0,37	0,05	0,70		
ebA3712	ebA3712	1,82	0,27	0,06	0,57		
cpaC	ebA3713	1,93	0,41	0,28	0,62		
сраВ	ebA3714	1,94	0,34	0,39	0,85		
ebA3716	ebA3716	3,21	0,85	0,54	1,09	ATPase	
ebA3718	ebA3718	3,74	0,78	0,65	1,49	9 Flp Pilus Assemblierungsprotein	
flp	ebD9	4,80	0,36	1,52	1,42	Pilus Assemblierungsprotein	
ebD22	ebD22	5,32	0,59	1,48	1,64	Flp/Fap Pilus Komponente	
flp	ebA3721	4,31	0,92	0,54	0,54	Pilus Assemblierungsprotein	
ebA3722	ebA3722	3,70	-0,06	0,59	0,02	hypothetisches Protein	
ebA3723	ebA3723	0,35	0,19	0,12	-0,24		
ebA3727	ebA3727	1,31	0,41	0,91	1,38		
ebA3729	ebA3729	1,05	0,87	0,76	0,94		
ebA6824	ebA6824	1,69	0,96	0,82	1,24		
yfiQ	ebA6829	-0,09	-0,31	0,07	-0,30		
ebA6832	ebA6832	-0,60	-0,68	-0,01	-0,18		
ebA6834	ebA6834	-0,88	-0,80	-0,13	-1,05		
ebA6835	ebA6835	-0,10	-0,07	0,14	-0,06		
minC	ebA6837	-0,13	0,03	0,10	-0,64		
minD	ebA6838	-0,06	0,12	0,20	-0,51		
minE	ebA6839	-0,32	-0,07	0,27	-0,41		
ebA6840	ebA6840	0,96	0,90	0,08	0,31		
lysS	ebA6841	-0,32	-0,12	-0,26	-1,04		
mnmC	ebA6842	-0,66	-0,57	-0,30	-0,78		
ebA6843	ebA6843	0,98	1,05	1,11	2,81	nypothetisches Protein	
ebA6844	ebA6844	0,63	-0,09	0,08	-1,47		
ebA6850	ebA6850	0,11	-0,34	-0,07	-2,04	transkriptioneller Regulator (LuxR-Familie)	
ebA6852	ebA6852	5,03	0,99	0,87	0,44	Phasin	
ebA5020	ebA5020	1,65	-0,51	-1,39	-1,65		

cybB	ebA5023	1,34	-0,65	-1,50	-2,29	Cytochrom b561	
ebA5022	ebA5022	0,45	-0,50	-1,58	-2,00	hypothetisches Protein	
ebA5028	ebA5028	0,20	-0,30	-1,25	-1,24		
ebA5030	ebA5030	-0,43	-0,54	-0,98	-0,96		
ebB174	ebB174	-0,92	-0,70	-1,12	-1,01		
ebA 3935	ebA 3935	-4,79	-4,86	-3,48	-4,57	hypothetisches Protein	
ebA 3937	ebA 3937	-5,72	-5,66	-3,68	-5,86	TonB-abhängiger Rezeptor	
ebA 3939	ebA 3939	-5,31	-5,29	-3,06	-5,92	TonB-abhängiger Rezeptor	
metK	ebA 3942	-0,51	-0,51	-0,28	-1,34		
ebA5328	ebA5328	-0,63	-0,55	0,17	-0,17		
ebA5327	ebA5327	0,96	0,22	-0,14	0,70		
ebA5330	ebA5330	-0,01	-0,05	0,22	-0,13		
ebA5329	ebA5329	-0,11	-0,43	-0,13	-0,24		
ebA5333	ebA5333	-5,93	-5,36	-3,72	-5,92	TonB-abhängiger Rezeptor	
ebA5334	ebA5334	-4,88	-4,82	-3,53	-4,81	hypothetisches Protein	
ebA2169	ebA2169	-4,59	-5,04	-6,87	-6,43	Efflux Protein	
ob 1 2169	ob 1 2169	2 69	2 00	5 12	4 60	Kationen Effluxsystem	
ebA2100	ebA2100	-2,00	2,00	-5,15	-4,00		
06A2179	ebA2170	-2,04	-2,00	-4,71	-3,94		
ebA2170	ebA2170	-3,40	-3,47	-5,70	-4,00	Haloacid Debalogenase	
obB64	obB61	-0,12	-2.68	-4.67	-3.30	hypothetisches Protein	
ob A 2182	ob A 2182	-2,31	-2,00	-3.07	-2.54	Protoin-S-Isopropyleystoin Mothyltransforas	
ebA2102	ebA2102	0.78	0.22	-0.54	0.49		
eb42420	ebA2420	0,00	0,22	0,04	0,40		
eb42421	eb42421	0.78	0.46	0,39	1.58		
ebA2423	ebA2423	-3 65	-1 73	-1 01	1,00	hypothetisches Protein	
ebA2424	ebA2424	-3.28	-1.36	-0.12	2.03	hypothetisches Protein	
ebA2425	ebA2425	-0.48	-0.94	-0.50	2.81	hypothetisches Protein	
ebA2426	ebA2426	-1,78	-0,94	-0,50	2,64	hypothetisches Protein	
ebA2428	ebA2428	-0,99	-0,94	-0,50	2,50	hypothetisches Protein	
ihfB	ebB74	0,56	0,48	-0,50	0,41		
ebA2431	ebA2431	0,41	0,61	0,13	1,16		
ebB75	ebB75	-0,11	0,25	-0,13	4,55	hypothetisches Protein	
ebA2433	ebA2433	-0,10	0,62	0,25	4,61	hypothetisches Protein	
ebA2434	ebA2434	0,44	0,49	0,17	4,98	hypothetisches Protein	
ebA2435	ebA2435	-0,11	0,26	-0,13	5,03	hypothetisches Protein	
ebA2436	ebA2436	0,41	0,46	-0,12	7,22	hypothetisches Protein	
ebA2440	ebA2440	-0,11	-0,26	-0,59	6,01	hypothetisches Protein	
ebA2441	ebA2441	1,00	0,79	0,58	0,72		
ebA2442	ebA2442	0,66	1,63	1,10	2,98	hypothetisches Protein	
ebA2443	ebA2443	0,90	1,74	1,04	3,00	hypothetisches Protein	
ebA2446	ebA2446	0,89	1,51	0,81	2,85	hypothetisches Protein	
ebA2448	ebA2448	1,37	2,09	1,02	3,12	hypothetisches Protein	
ebA2450	ebA2450	1,53	2,13	0,87	3,00	hypothetisches Protein	
ebB76	ebB76	-0,11	-0,26	0,05	5,03	hypothetisches Protein	

ebA2454	ebA2454	0,10	0,51	0,26	5,45	hypothetisches Protein
ebA2455	ebA2455	0,70	1,26	0,69	8,00	hypothetisches Protein
ebA2457	ebA2457	-0,09	-0,04	1,19	4,60	hypothetisches Protein
topB1	ebA2458	0,13	-0,05	0,32	2,50	DNA Topoisomerase III
ebB77	ebB77	0,37	0,28	0,77	1,42	
ebA2461	ebA2461	-0,35	-0,29	0,06	0,87	
ebA2462	ebA2462	-0,62	-0,80	-0,30	0,18	
ebA2464	ebA2464	0,33	-0,05	0,24	0,43	
ebA2465	ebA2465	0,64	0,49	0,17	1,82	
ebA2466	ebA2466	0,19	-0,43	-0,50	1,74	
ebA2467	ebA2467	0,19	-0,05	-0,13	1,34	
ebA2468	ebA2468	0,56	0,33	-0,12	1,94	
soj	ebA2469	0,19	0,25	-0,13	1,97	
ebD61	ebD61	0,52	0,75	0,67	3,33	transkriptioneller Regulator
ebA2470	ebA2470	0,60	0,45	0,07	3,71	hypothetische Protein
ebA2471	ebA2471	0,11	0,32	-0,29	1,00	
ebA2472	ebA2472	0,32	0,48	-0,24	0,28	
ebA2730	ebA2730	5,14	3,01	3,79	4,52	Hitzeschock-Protein 20
ebB88	ebB88	5,41	3,23	3,79	4,76	Hitzeschock-Protein
ebA2733	ebA2733	5,41	3,22	3,85	4,76	Hitzeschock-Protein
ebA2737	ebA2737	2,62	1,85	1,64	3,09	hypothetische Protein
ebD66	ebD66	0,99	1,64	0,45	2,66	hypothetische Protein
ebA 1823	ebA 1823	-0,99	-0,99	-0,14	-1,37	
lgt	ebA 1825	-1,60	-1,39	-0,30	-1,35	
ebA 1826	ebA 1826	-1,68	-1,44	-0,47	-1,19	
ebA 1827	ebA 1827	0,84	0,66	0,51	0,66	
ebA 1829	ebA 1829	0,21	0,29	0,60	-0,13	
ebA 1830	ebA 1830	0,00	0,21	0,13	-0,07	
ebA 1833	ebA 1833	-0,04	0,11	0,26	0,23	
ebB54	ebB54	-0,52	-0,38	0,06	0,03	
ebD40	ebD40	-0,71	0,44	-1,06	-1,51	
bfd	ebD41	-0,17	-0,19	-0,81	-0,67	
bfr	ebA 1837	0,04	-0,43	-0,78	-0,31	
ebA 1839	ebA 1839	-3,69	-3,51	-3,09	-3,26	hypothetisches Protein
exbB	ebA 1841	-3,22	-3,07	-2,75	-3,30	(MotA/TolQ/ExbB) Protonen-Kanal
exbD1	ebA 1842	-2,93	-2,69	-2,54	-3,12	Biopolymer-Transport-Protein ExbD/TolR
ebA 1846	ebA 1846	-1,19	-1,47	-1,37	-1,86	
ebA 1848	ebA 1848	-0,55	-0,80	-0,73	-1,11	
ebA1847	ebA1847	-0,85	-1,01	-0,86	-0,71	
ebA 1852	ebA 1852	0,78	0,52	0,45	0,13	
ebA 1853	ebA1853	0,56	0,40	0,36	-0,02	
ebD42	ebD42	0,02	-0,17	0,26	-0,06	
ebA 1855	ebA 1855	-0,21	-0,37	0,14	-0,09	
ebA 1856	ebA1856	-0,61	-0,56	0,55	-0,73	
ebA 1857	ebA 1857	-0,61	0,32	-0,12	-0,73	

ebD43	ebD43	0,13	-0,05	0,12	0,21	
ebA 1858	ebA 1858	0,57	0,45	-0,08	0,24	
ebA 1861	ebA 1861	-3,65	-2,44	-2,58	-4,31	hypothetisches Protein
ebA 1863	ebA 1863	-3,84	-2,80	-2,96	-4,87	hypothetisches Protein
ebD44	ebD44	-3,63	-2,84	-2,78	-4,38	hypothetisches Protein
ebA 1866	ebA 1866	-3,45	-3,12	-3,09	-4,65	Eisen-Permease
ebA 1869	ebA 1869	-3,20	-3,07	-3,17	-4,39	Regulator-Protein

Abbildung 31 Induzierte (blau) und reprimierte (gelb) Gene von Plasmid 1 der Aromatoleum aromaticum EbN1-Kulturen auf den Substraten 4-Hydroxyacetophenon (A) und 4-Ethylphenol (B) im Vergleich zur Kontroll (Benzoat). Dargestellt ist der Log2 der Veränderung. Proteinprodukte zu den angegebenen Genen (nach NCBI): P1D3, P1B202: Transposasen, P1B83: Toxin-Protein

(CcdB), P1B201: Nuklease-ähnliches Protein, P1B92: Cobalamin Biosynthese Protein (CobS-ähnlich), P1B79: hypothetisches Protein (ParB), P1B247: Plasmid kodierte EDTA-Resistenz Nuklease, P1B143: Teilungsprotein (ParA), P1B210, P1B147, P1B273, P1B187, P1B264, P1B84, P1B331, P1B12, P1B332, P1B35, P1B308, P1B306, P1B307, P1B364, P1B188, P1D7, P1B196, P1B21, P1B110, P1B365, P1B26, P1B107, P1B17, P1B76, P1B109, P1B72, P1B86, P1B98, P1D4, P1B99, P1B67, P1B78, P1D6, P1B66, P1B68, P1D5, P1B375, P1B93, P1B342, P1D2, P1B186, P1D21, P1B191, P1B366: hypothetische Proteine. Bei Acetophenon-kultivierten Zellen gibt es keine Unterschiede zu Benzoat-kultivierten Zellen und bei Ethylbenzol sind zwei Gene induziert: p1B359 (kodiert für ein hypothetisches Protein) und p1B147 (s.o.)

Abbildung 32 Induzierte (blau) und reprimierte (gelb) Gene von Plasmid 2 der Aromatoleum aromaticum EbN1-Kulturen auf den Substraten 4-Hydroxyacetophenon (A), 4-Ethylphenol (B), Acetophenon (C) und Ethylbenzol (D) im Vergleich zur Kontrolle (Benzoat). Dargestellt ist der Log2 der Veränderung. Proteinprodukte zu den angegebenen Genen (nach NCBI): P2A241, P2A326, P2A146, P2A213, P2A365: Transposasen, P2A109: putative (De)Carboxylase (UbiD-typ), P2B22: Komponente für konjugationellen Transfer (TraJ-Typ), P2A384: putative Thiolase-Untereinheit (DitF-Typ), P2A156, P2A166, P2D3: hypothetische Proteine

Abbildung 33: Gencluster, welches für die Proteine für den 4-Cresol-Abbau (lila) und für einen Transporter (DctPQM) sowie die HbcL-1 (blau) kodiert. Außerdem ist ein Zweikomponenten-Hybrid-System (ebA5371-ebA5375, schwarz) kodiert (der Aufbau dieses Systems ist in Abbildung 31 dargestellt). Die blauen und die schwarzen Gene sind in Kulturen auf 4-Ethylphenol und 4-Hydroxyacetophenon im Vergleich zur Kontrolle induziert.

Tabelle 14: Loci des putativen 4-Ethylphenol-Clusters in *Desulfuromonas sp.* TF. Die Tabelle nimmt Bezug auf den in Abbildung 28 dargestellten Gen-Cluster. Die angegebenen Loci sind von den Genen von rechts nach links zuzuordnen. Die Annotationen basieren auf NCBI.

Locus	Annotation
DTF_RS0104855	4Fe-4S Ferredoxin
DTF_RS0104850	Cytochrom b6
DTF_RS0104845	Menaquinol-Oxidoreduktase
DTF_RS0104840	TCS-Sensor-Kinase
DTF_RS0104835	hypothetisches Protein
DTF_RS0104830	Succinyl-CoA3-Ketoacid-CoA Transferase
DTF_RS21960	Succinyl-CoA3-Ketoacid-CoA Transferase
DTF_RS0104820 (ebA303)	NADPH:Quinon-Oxidoreduktase
DTF_RS21955 (ebA318)	hypothetisches Protein
DTF_RS0104810 (xccB)	Untereinheit der Acetyl-CoA-Carboxylase (Biotin-
	Carrier)
DTF_RS0104805 (xccC)	Untereinheit der Acetyl-CoA-Carboxylase
DTF_RS0104800 (xccA)	Untereinheit der Acetyl-CoA-Carboxylase
DTF_RS0104795	hypothetisches Protein
DTF_RS0104790	hypothetisches Protein
DTF_RS0104785 (chnA)	Short-Chain Dehydrogenase
DTF_RS0104780 (tioL)	Lipid-Transfer Protein
DTF_RS0104775 (ebA312)	Haloacid-Dehalogenase
DTF_RS0104770	hypothetisches Protein
DTF_RS0104765	hypothetisches Protein
DTF_RS21950	Glykosyl-Dehydrolase
DTF_RS21945	RND-Transporter (70 % ähnlich zu EbA5763)
DTF_RS0104750	Ethyl-Tert-Butyl-Ether-Abbau-Protein EthD
DTF_RS21940 (ebA310)	FAD-bindende Oxidoreduktase
DTF_RS0104740 (ebA309)	Dehydrogenase
DTF_RS0104735 (acsA)	Acetyl-CoA-Acetyltransferase
DTF_RS0104730	hypothetisches Protein
DTF_RS0104720	hypothetisches Protein

xccB:

ACGCGGGGCCGTTCAACGAACTGAACCTGCAGACCCTGCGCTTCAAGCTGCAATTGCGCCGT GGCAGCGACGGCATGTGGACGCAGGAAGCGCAGATCCTTTCCGCTCCCGAGTTGCTGTCGCC GGCCACCGCTGCGGCCGCCGCCGCCGCCGCCAGCCCCCATGCCCCAGCGCAAGCCAGAC ATGCGGAAAAGGAGCACCTCACCCCGGTGCGCACGCCGCTGCTGGGCACTTTTTATCGCGCG CCCAAGCCCGGCGCCCCTGCGTTCGTGGAAGTCGGCAGCCGCGTCGGTCCCGACACCCTAGT CGGCATCGTCGAAACCATGAAGCTGATGAATTCGGTCTATGCCGGGGCCGCCGGAACGGTGG TGGAGATCTGCGCCAAGGACGCGGCCACCGTCGAGCACGGCGAAATCCTGATGTTCATCGAG CCCGAGGCACAGT

pchC:

NCGAGCGCGGTTTGGCCGTATTCCAGGAATGGTGTGTCTCGTGTCACGGAATCGGTCCGG GCCATCCGGGAACCCAGGCACTCGATCATCGCTATCAGGGCGTCTTTCCGGGCGCACTGG AGCAGCGCACCGATCTGTCGCCCGAGATCGTCAAGTCATTCGTCCGGAACGGGATCTCGG TCATGCCGTTTTTCCGCAAGACCGAGATCAGTGACGCTGAGCTCGATACGCTGGGAGCCT ACCTGTCGCGCAATAACCCACGAGGTGAAGAGNTTAATCNNCCCGGCGAANCCGACGACG GGGTGACGCTGATCGTGCCGNTGGCGATGCTCAACCAGGTTCCCGCCAACCNCTGCGAGT GGCTGGTGCCCGGCCTGCTCGAANAGAAGGTCACGGNGCTGATGAAGACCGTGCCGCAGA AGCACCGCCACCGCCTGCAGCCGGTGGCCGAGAGCGCGNCGGCGTTCATGGCGGCTTTCG AGGCCGGCGAGTTCGATCTCNACNAGCCGCTGCTGAAGACCTTGCAGCGCTTTGTCGAGG AGCGCGGCGACTTCGAACTGCCGCTGGAGAGGTTTCCGCCGGATTACCTCAACTCGCACG CGTTCATGAATTTCCGCGTCCTCGACGACGAGCGCGGCGTGATGGGACAGTCGCGCAATA ACCCACGAGGGTGAAAGA

Abbildung 34: **Sequenzen von Thauera aromatica K172**. Für die obere Sequenz wurde das Oligonukleotid-Paar xccB-for und xccB-rev eingesetzt, für die untere Sequenz wurde das Paar pchC-for und pchC-rev verwendet.

V. Abkürzungsverzeichnis

A	Adenin, Ampere		EdiRS	ethylbenzene degradation
AcsA	Acetoacetyl-CoA-			inducer
	Synthetase	(4-	ebd-ped	Abbauoperon für
	Ethylphenol-Abbau)			Ethylbenzol
ad	auffüllen auf		EDTA	Ethylendiamintetraacetat
AdiRS	acetophenone		et al.	et alii; und andere
	degradation inducer		EtpR	ethylphenol degradation
Amp	Ampicillin			regulator
Apc1-5	Acetophenon-		g	Gramm,
	Carboxylase		G	Guanin
apc-bal	Abbauoperon	für	h	Stunde
	Acetophenon		HbcL-1	4-Hydroxybenzoat-CoA-
APS	Ammoniumperoxodisul	fat		Ligase
ATP	Adenosin-5´-triphospha	lt	HcrCAB	4-Hydroxybenzoat-
a.u.	arbitrary u	nits		Reduktase
	(Fluoreszenz)		HTH	Helix-Turn-Helix-Domäne
Bal	Benzoylacetat-CoA-		k	kilo (10 ³)
	Ligase		Kan	Kanamycin
BclA	Benzoat-CoA-Ligase		Konz.	Konzentration
bla	Gen für die β-Lactama	se	1	Liter
Вр	Basenpaare		Μ	Molarität, Mega (10 ⁶)
bzw.	beziehungsweise		m	Meter, milli (10^{-3}) ,
°C	Grad Celsius			messenger
cat	Gen für	die	MCS	multiple cloning site
	Chloramphenicol-		mRNA	messenger RNA
	Acetyltransferase		min	Minute
ChnA	stereospezifische		mV	Millivolt
	Alkohol-Dehydrogenase	Э	μ	micro (10 ⁻⁶)
	(4-Ethylphenol-Abbau)		n	nano (10 ⁻⁹)
Cm	Chloramphenicol		nptll	Gen für die Neomycin-
C-Terminal	Carboxyterminal			Phosphotransferase
kDa	Kilodalton		N-Terminal	aminoterminal
d.h.	das heißt		PAGE	Polyacrylamid-
DMSO	Dimethylsulfoxid			Gelelektrophorese
DNA	Desoxyribonukleinsäure	9	PchCF	Ethylphenol-
DNase	Desoxvribonuklease			Methylenhydroxylase
dNTPs	Desoxvnukleosid-		Ped	Phenylethanol-
	triphosphate			Dehydrogenase
F.	Escherichia		PdeR	phenol degradation
EbA309	stereospezifische			regulator
	Alkohol-Dehydrogenase	ė	PIPES	Piperazin-N N'-bis(2-
	(4-Ethylphenol-Abbau)			Ethanesulfonsäure)
EhDH	Ethylbenzol-		nH	negativer dekadischer
	Dehvdrogenase		P. 1	Logarhitmus der
EbN1	Aromatoleum aromatic	n		Protonenkonzentration
	FhN1			Phenylphosphat-
				Carboxylase

PpsABC	Phenylphosphat-
PCP	Polymerase-
FOR	Kottoproaktion
RNA	Ribonukleinsäure
RNase	Ribonuklease
RPKM	Reads" pro Kilobase pro
	einer Million gemannten
	Reads"
rpm	revolutions per minute
RT	Raumtemperatur
S	Sekunde
sacB	Gen für die Levansucrase
SDS	Natriumdodecylsulfat
Stlsg.	Stammlösung
Т	Thymin
TCS	two component system
TdiRS	toluene degradation
	inducer
TioL	Thiolase (4-Ethylphenol-
	Abbau)
Tris	Tris-(Hydroxymethyl)-
	Aminomethan
Ŭ	Uridin, Unit
ÜN	über Nacht
V	Volt
v/v	Volumen pro Volumen
WT	Wildtyp
w/v	Gewicht pro Volumen
XccBCA	Biotin-abhängige
	Carboxylase (4-
_	Ethylphenol-Abbau)
z.B.	zum Beispiel
%	Prozent

VI. Danksagung

Zunächst danke ich Prof. Dr. Johann Heider für das interessante Thema und die Betreuung meiner Doktorarbeit.

Zudem danke ich Herrn Prof. Dr. Martin Thanbichler, der sich bereit erklärt, die Aufgabe des Zweitgutachters meiner Arbeit zu übernehmen.

Weiterhin möchte ich mich bei Prof. Dr. Becker, Dr. Liesack und Dr. Dongfei Han bedanken, die mich in die wunderbare Welt der RNA-Sequenzierung eingeführt haben.

Ganz besonders bedanke ich mich bei Karola, die nicht nur diese Arbeit Korrektur gelesen hat, sondern mir immer mit Rat und Tat zur Seite stand.

Außerdem bedanke ich mich bei den Arbeitsgruppen Heider und Buckel für eine tolle Arbeitsatmosphäre, wissenschaftlichen Input und die schöne Zeit im Labor. Besonderer Dank gilt Iris, Gabi und Andrea für ihre großartige Hilfe. Meinen Kollegen und Freunden Deniz, Kathi, Enrico, Georg und Daniel möchte ich auch für die nette Zeit außerhalb des Labors danken.

Weiterhin geht ein großer Extra-Dank an Gabi, die sich nicht nur jedes Problemchen geduldig angehört hat, sondern mir auch zu einer wunderbaren Freundin geworden ist, die ich nicht mehr missen möchte.

Meinem Freund Deniz möchte ich außerdem für sein Verständnis, seine Unterstützung, das Korrekturlesen und eigentlich für alles danken. Letztlich danke ich meinen Eltern, die mich immer unterstützen, mich immer begleiten, meine größten Fans sind und alles möglich gemacht haben.

VII. Erklärung

Ich versichere, dass ich meine Dissertation selbstständig, ohne unerlaubte Hilfe angefertigt und mich keiner anderen als der von mir ausdrücklich bezeichneten Quellen bedient habe.

Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

(Datum)

(Unterschrift)

VIII. Lebenslauf