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Abstract

In this thesis we present a pipeline for 3D model acquisition. Generating 3D
models of real-world objects is an important task in computer vision with many
applications, such as in 3D design, archaeology, entertainment, and virtual or
augmented reality.
The contribution of this thesis is threefold: we propose a calibration procedure for
the cameras, we describe an approach for capturing and processing photometric
normals using gradient illuminations in the hardware set-up, and finally we present
a multi-view photometric stereo 3D reconstruction method.
In order to obtain accurate results using multi-view and photometric stereo re-
construction, the cameras are calibrated geometrically and photometrically.
For acquiring data, a light stage is used. This is a hardware set-up that allows
to control the illumination during acquisition. The procedure used to generate
appropriate illuminations and to process the acquired data to obtain accurate
photometric normals is described.
The core of the pipeline is a multi-view photometric stereo reconstruction method.
In this method, we first generate a sparse reconstruction using the acquired images
and computed normals. In the second step, the information from the normal
maps is used to obtain a dense reconstruction of an object’s surface. Finally,
the reconstructed surface is filtered to remove artifacts introduced by the dense
reconstruction step.
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Kurzfassung

In dieser Arbeit präsentieren wir eine Pipeline zur Aufnahme von 3D-Modellen.
Die Erzeugung von 3D-Modellen von realen Objekten ist eine wichtige Aufgabe in
der Computer Vision mit zahlreichen Anwendungen, wie zum Beispiel 3D-Design,
Archäologie und virtueller oder auch erweiterter Realität.
Die vorliegende Arbeit liefert drei Beiträge: wir stellen eine Methode zur Kalib-
rierung von Kameras vor, wir beschreiben einen Ansatz zur Aufnahme und Ver-
arbeitung von photometrischen Normalen, die mit Hilfe von Gradientenbeleuch-
tung in der Hardwarekonfiguration aufgenommen worden sind, und schlieÃŸlich
präsentieren wir eine Methode zur Stereorekonstruktion von 3D-Modellen aus
photometrischen Daten und mehreren Perspektiven.
Um möglichst genaue Rekonstruktionsergebnisse aus mehreren Perspektiven mit
Hilfe von photometrischen Daten zu erhalten, werden die Kameras sowohl ge-
ometrisch als auch photometrisch kalibriert.
Zur Datenaufnahme wird eine sogenannte “Light Stage” benutzt. Dies ist eine
Hardwarekonfiguration, die es erlaubt die Beleuchtung während der Aufnahme
vollsändig zu kontrollieren. Die verwendete Methode zur Erzeugung der Gradien-
tenbeleuchtung und zur Verarbeitung der aufgenommenen Daten zur Erzeugung
genauer photometrischer Normalen wird beschrieben.
Der Hauptbestandteil der Pipeline ist eine Methode zur Stereorekonstruktion aus
photometrischen Daten und mehreren Perspektiven. Bei dieser Methode erzeugen
wir zunächst eine grobe Rekonstruktion mit Hilfe der aufgenommenen Bilder und
erzeugten Normalen. In einem zweiten Schritt werden die Normaleninformationen
verwendet um eine vollständige Rekonstruktion der Objektoberfläche zu erhalten.
Schließlich erfolgt eine Filterung der rekonstruierten Oberfläche, um Artefakte
aus dem zweiten Rekonstruktionsschritt zu entfernen.
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Chapter 1

Introduction

The acquisition of 3D models is one of the fundamental tasks in computer vision. 3D
models are used in many different areas like design, archaeology, movies and computer
games, virtual and augmented reality systems. Creating 3D models by artists is a slow, time
consuming process. Hence, various methods for 3D reconstruction have been developed.

These methods are either active or passive reconstruction methods. Passive reconstruc-
tion methods only use the information that is provided by the object in the scene itself.
Such approaches usually have simple hardware set-ups. But in this case an object can only
be reconstructed partially. On the other hand, there are active reconstruction methods.
Laser triangulation, structured light reconstruction, or photometric stereo reconstruction
are examples of such methods. Here, the object is illuminated in a way such that a better
reconstruction can be obtained. However, those methods use a more complex hardware
setup, requiring a more elaborate calibration. Furthermore, structured light and especially
laser triangulation techniques are rather slow.

Methods can also be classified into sparse and dense reconstruction methods. Passive
methods typically rely on the available information of an object only. This leads to sparse
reconstructions. Using surface fitting algorithms dense reconstructions can be obtained
from sparse ones. However, those algorithms simply interpolate the data from the sparse
reconstruction and create low detail reconstructions. On the other hand, dense reconstruc-
tions are typically obtained from active methods. Such methods obtain more information
about parts of the objects that passive methods have problems with.

Furthermore, methods range from interactive methods to fully automatic ones. Inter-
active methods have the advantage that the user can guide the reconstruction process and
improve the 3D model where it is not satisfactory. However, in order to enable interac-
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tivity the methods have to be efficient and fast which rules out computationally expensive
approaches and hence reduce the quality and accuracy of the result. Fully automatic meth-
ods should not rely on any user input and hence, be able to produce reconstructions of
high quality. To guarantee high quality reconstruction more complex and computationally
expensive algorithms are used.

In this thesis we present a pipeline for active, dense, and automatic 3D reconstruction.
This pipeline consists of the calibration of the hardware including a new method for con-
sistent calibration of multiple cameras, image acquisition and processing, and last, a novel
3D reconstruction method utilizing the acquired data in the hardware set-up.

State-of-the-art 3D reconstruction combine structured light with photometric stereo
reconstruction methods. The novel 3D reconstruction presented in this thesis omits struc-
tured light and instead uses multi-view stereo with photometric stereo reconstruction.
Using photometric stereo allows to obtain normal information of the object’s surface by
capturing a sequence of a few images. In contrast to laser triangulation or structured light
approaches our approach can capture the object from multiple view points at the same
time without any interference. Thus, the acquisition time is independent of the number of
viewpoints, which allows to acquire an object from all directions at the same time.

For photometric stereo reconstruction we use a light stage that allows to control the
illumination within it. We acquire images of the object under specific illuminations in order
to generate normal maps. For multi-view stereo reconstruction we use multiple cameras
that acquire images of the object simultaneously from different view points. For correct re-
constructions the cameras have to be calibrated with respect to each other and with respect
to the light stage. An appropriate calibration method to do this is described. Furthermore,
the captured images have to processed accordingly to ensure high reconstruction results.
The image development and processing steps as well as the generation of the illumination
patterns for the light stage are presented. Finally, the 3D reconstruction method that uses
the acquired data in order to generate dense, smooth 3D surfaces of objects is described.

This thesis is structured as follows. In Chap. 2 we give a brief introduction of the
background that is used throughout this thesis. This includes a description of the camera
model, an overview of optimization methods, and a short overview of existing approaches
to 3D reconstruction with related work. Chap. 3 presents our approach to geometric and
photometric camera calibration. In Chap. 4 we describe the hardware that we use for
acquiring data. In Chap. 5 our method for 3D reconstruction is presented. Last, conclusion
and future work is presented in Chap. 6.
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Chapter 2

Background

In this chapter we describe the mathematical background and give an overview of available
approaches for 3D reconstruction. First, we start with a mathematical description of
the camera model that we use for camera calibration. The camera calibration method
presented in Chap. 3 is an integral part for the presented pipeline for 3D reconstruction.
Next, we give a brief summary of optimization methods that are also used in the presented
camera calibration method as well as in the 3D reconstruction method in Chap. 5. Finally,
an overview of existing 3D reconstruction techniques is given. This also allows to put the
proposed reconstruction method into perspective with alternative methods.

2.1 Camera Model

In this thesis we use the pinhole camera model to describe the underlying process of image
formation. It is motivated by the pinhole camera, which is a type of camera without lens.
For a mathematical description we introduce homogeneous coordinates before we explain
the camera model in detail. Finally, we briefly describe how we model lens distortions
that arise from the usage of lenses with a real camera. For more details about the pinhole
camera model and the single view geometry that is related to it we refer to [43, 64].

2.1.1 Pinhole Camera

The pinhole camera is a simple camera that allows to describe the process of image for-
mation. With this camera rays originating from the observed scene pass through the tiny
pinhole of the camera and are projected to the opposite side of the camera.
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Figure 2.1: Geometry of the pinhole camera model. The pinhole is located in the origin
O
¯

of the coordinate system. The pinhole camera has focal length f . Left: If the image
plane is located behind the origin O

¯
, the image is inverted. Right: An upright image is

obtained when the (virtual) image plane is located in front of the origin O
¯
.

Since all rays intersect in the pinhole the image of the scene in the camera is inverted,
similar to the human eye where incident rays pass through the pupil and form an inverted
image on the retina. According to the theorem of intersecting lines an object of size X at
distance Z from the camera appears as an object of size x when projected to the back side
of the camera which has a distance of f from the pinhole:

f

Z
= x

X
(2.1)

Hence, the size of an object in the formed image x is proportional to the size of the object
in the real world X and inversely proportional to the distance Z of the object to the pinhole
and the focal length |f |, which is the distance between the opposite side of the camera and
its pinhole.

Assuming the pinhole of the camera is located in the origin of the coordinate system
O
¯

and X,Z > 0, then f < 0 and consequently x < 0. Since x is negative the image of the
pinhole camera is inverted.

However for the sake of simplicity we assume in our model from now on that the image
is formed in front of the pinhole. In this case f > 0, consequently x is positive and an
upright image is obtained.

The pinhole camera model is a simple model of a real world camera without lens
that neither suffers from diffraction phenomena, out-of-focus blur, spherical aberrations,
chromatic aberrations, and lens distortions introduced with a camera lens, nor from image
noise introduced from CCD/CMOS sensors from digital single lens reflex (DSLR) cameras
or film grain from the photographic film in analog cameras.
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2.1.2 Projective Space and Homogeneous Coordinates

We will now introduce the concept of projective space and homogeneous coordinates. This
allows us to express the projection of a 3D point in world space to a 2D point on the
camera sensor in a easy, convenient, and general way.

In this and the next section we use the following notation: We write X
¯

to denote a
point in the Euclidean space in order to distinguish it from X, which is the same point
represented in homogeneous coordinates. A point X

¯
∈ Rn in Euclidean space is represented

by a line X ∈ Rn+1 = Pn in projective space with homogeneous coordinates as follows:

X
¯

=


x1
...
xn

 ∈ Rn ↔ X =


w · x1

...
w · xn
w

 ∈ Pn = Rn+1, w ∈ R. (2.2)

Conversely, any point on the line X 6= 0 ∈ Pn represents the same point X
¯
∈ Rn. Note

that we treat points from Rn given in homogeneous coordinates as if they were points
from Rn+1. For the sake of simplicity we will transform points form Euclidean space to
homogeneous coordinates by

X
¯

=


x1
...
xn

 ∈ Rn → X =


x1
...
xn

1

 ∈ Pn, (2.3)

and homogeneous coordinates back to Euclidean space by

X =


x1
...
xn

w

 ∈ Pn → X
¯

=


x1

w...
xn
w

 ∈ Rn, (2.4)

for w 6= 0. If w = 0, X represents a point at infinity in Euclidean space, that may arise for
example as a result from computing the intersection of two parallel lines in P2.
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Figure 2.2: Change between the camera coordinate system on the left and the world
coordinate system on the right as given by Eqns. 2.5 and 2.6.

2.1.3 Camera Representation

Using homogeneous coordinates the projection of a point Xw ∈ P3 from the world coordi-
nate system to a point xi ∈ P2 in the image coordinate system of the camera sensor can
be described by the following three steps:

1. Transformation of Xw ∈ P3 from the world coordinate system to Xc ∈ P3 in the
camera coordinate system.

2. Projection of the point Xc ∈ P3 in 3D space from the camera coordinate system to
the 2D point xip ∈ P2 in the image plane of the camera.

3. Transformation of xip ∈ P2 from the image plane to xi ∈ P2 in the image coordinate
system, which is the coordinate system of the camera sensor.

In the camera coordinate system the camera center C
¯

is located at the origin O
¯

and the
optical axis of the camera coincides with the z-axis of the coordinate system. Given a point
Xc in the camera coordinate system, the corresponding point Xw in the world coordinate
system can be computed via

Xw =
 R C

¯
0> 1

Xc, (2.5)

where R ∈ R3×3 is a rotation matrix describing the orientation of the camera and 0 ∈ R3 is
the null vector. Computing the transformation of a 3D point from the world back to the
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camera coordinate system can be done by the inverse transformation of Eqn. 2.5:

Xc =
R> −R>C

¯
0> 1

Xw, (2.6)

which can be easily verified, given R−1 = R> and hence R>R = RR> = I3×3, where I3×3 is
the 3× 3 identity matrix.

The projection of the 3D point Xc in the camera coordinate system to the 2D point
xip in the image plane is computed by Eqn. 2.1. Using homogeneous coordinates this
projection can be written as

xip =


f 0 0 0
0 f 0 0
0 0 1 0

Xc, (2.7)

where f is the focal length of the camera.

For the camera position C
¯
and the 3D point positions Xc and Xw we use metric units.

Hence, also the 2D point xip representing the projection of the 3D point Xw onto the
image plane is given in metric units. However, the sensor of a camera is an array of cells.
Hence for transforming xip from the image plane to xi in the image coordinate system we
information about the geometry and position of the sensor. This information include the
pixel size sx and sy, the principal point offset px and py and the skew angle θ. The skew
angle θ is the angle between the x- and y-axis of the sensor. The principal point is the
intersection of the optical axis or principal axis with the image plane. The principal point
offset is the offset of this intersection point in x- and y-direction from the true (geometric)
center of the sensor. Finally, the pixel size sx and sy is the size of a single sensor cell or
pixel (picture element) in x- and y-direction. The transformation from the image plane to
the image coordinate system is then given by

xi =



1
sx

cot(θ) px

0 sin(θ)
sy

py

0 0 1

xip. (2.8)

In this representation we assume that the origin of the image coordinate system coincides
with the origin of the pixel coordinate system of the image. In this case the obtained
2D point xi in the image coordinate system given in homogeneous coordinates is simply
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transformed back to the 2D point x
¯p

in the pixel coordinate system:

xi =


x

y

w

→

x

w
y

w

 = x
¯p
. (2.9)

However, usually the origin of the pixel coordinate system in a digital image is located
in the top left corner of the image. In this case xp is obtained by back-transformation to
Euclidean space and translation:

xi =


x

y

w

→

x

w
+ width− 1

2
y

w
+ height− 1

2

 = x
¯p
, (2.10)

where width and height are the width and height of the image. From now on we will
not mention this translation explicitly and assume that it will be always applied correctly
during the back-transformation from homogeneous coordinates to Euclidean coordinates.

Summing up the above steps a 3D point Xw in world coordinates is projected to a 2D
point xi in image coordinates by:

xi =



1
sx

cot(θ) px

0 sin(θ)
sy

py

0 0 1



f 0 0 0
0 f 0 0
0 0 1 0


R> −R>C

¯
0> 1

Xw. (2.11)

We can rewrite this equation to the projection equation

xi = K
[
I 0

] R> −R>C
¯

0> 1

Xw, (2.12)

where R is a 3 × 3 rotation matrix describing the orientation of the camera, C
¯

is the
camera center, and K is the so called the calibration matrix. The orientation and camera
center are called extrinsic camera parameters. The focal length f , the pixel size sx and
sy, the principal point offset px and py, and the skew angle θ are called intrinsic camera
parameters.
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Figure 2.3: Change from the coordinate system of the image plane to the pixel coordinate
system by the calibration matrix K.

Those parameters are part of the calibration matrix K:

K =


f

sx
cot(θ) px

0 f

sy
sin(θ) py

0 0 1

 . (2.13)

As shown in Fig. 2.3, the calibration performs a change from the coordinate system of the
image plane to the pixel coordinate system. Usually the pixel size sx and sy are given
by the camera manufacturer or can be computed given the physical sensor size and the
image size of an acquired image in pixels. From the calibration matrix we can see, that
only the ratios f

sx
and f

sy
are necessary to uniquely determine K, although there are three

parameters: the focal length f and the pixel size sx and sy. Alternatively we can also
replace f

sx
by f and f

sy
by fsx

sy
= αf , where α is the so called aspect ratio sx

sy
resulting in

two unknowns f and α. Furthermore, we can see that K is an upper triangular matrix.

The projection equation Eqn. 2.12 can be written in a short way using the 3 × 4 pro-
jection matrix P:

xi = P ·Xw, with P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 . (2.14)

Every camera matrix of the form given in Eqn. 2.12 can be written in the form of Eqn. 2.14.
Such a camera is called projective camera. The converse however, is not true. We split the
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camera matrix P as P =
[
B b

]
into a left submatrix B ∈ R3×3 and a vector b ∈ R3. If B can

be decomposed as
B = K · R, (2.15)

with a upper-triangular calibration matrix K as given above and a 3× 3 rotation matrix R,
then the matrix is called metric camera. This decomposition of the matrix B can be done
by RQ decomposition which is similar to the QR decomposition given in 2.2.1. Another
special case is the orthographic camera.

The projection matrix has 12 entries, however, it has only 11 degrees of freedom. This
is because P is defined up to scale: P represents the same projection matrix as sP with
s 6= 0 in the same way as X represents the same point as sX with s 6= 0 in Euclidean
space, which can be verified by Eqn. 2.4. The 11 degrees of freedom correspond to the 5
intrinsic and 6 extrinsic camera parameters.

Rotations in 3D space only have 3 degrees of freedom. Hence, the 3×3 rotation matrix
R in Eqn. 2.12 only has 3 degrees of freedom although R has 9 entries. There are different
ways to describe this matrix. Using a parametrization allows to easily enforce the matrix
to be a rotation matrix. Different ways how to parametrize exist, which will be described
shortly in the following:

Euler Angles

Any rotation in 3D space can be expressed as a composition of three rotations around
three coordinate axes. The three rotations can be carried out be performing three rotations
around the axes of the original (fixed) coordinate system or around the axes of a coordinate
system obtained from the previous rotations. The rotations are called extrinsic rotations
and intrinsic rotations, respectively.

The order of the three rotations is given by the order of the rotation axes. For example,
a rotation around the x-axis, followed by rotations around the original y- and z-axis, is
denoted as x-y-z. The same order of rotations in a rotating coordinate system is denoted
by x-y′-z′′.

Rotations where the first and third rotation is performed around the same axis are
also called proper Euler angles in order to distinguish them from the so called Tait-Bryan
angles.

Throughout the rest of this thesis we will use the y-x′-z′′ convention for the Euler angles.
The rotation angles around the y-, x-, and z-axis we will call pan angle ϕ, tilt angle ϑ, and
roll angle ρ (see Fig. 2.4).
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and ρ (roll) according to the y-x′-z′′ convention as used in this thesis. From top left to
bottom right: World coordinate system, pan around the y-axis, tilt around the rotated
x-axis, roll around the rotated z-axis, local coordinate system after rotation.

The rotation matrix R can be written as

R = Rz(ρ) · Rx(ϑ) · Ry(ϕ), (2.16)

with parameters ϕ, ϑ, and ρ, where

Rz(ρ) =


cos(ρ) − sin(ρ) 0
sin(ρ) cos(ρ) 0

0 0 1

 ,

Rx(ϑ) =


1 0 0
0 cos(ϑ) − sin(ϑ)
0 sin(ϑ) cos(ϑ)

 ,

Ry(ϕ) =


cos(ϕ) 0 sin(ϕ)

0 1 0
− sin(ϕ) 0 cos(ϕ)

 . (2.17)
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Explicitly written we get:

R =


cos(ρ) −sin(ρ) 0
sin(ρ) cos(ρ) 0

0 0 1




1 0 0
0 cos(ϑ) −sin(ϑ)
0 sin(ϑ) cos(ϑ)




cos(ϕ) 0 sin(ϕ)
0 1 0

−sin(ϕ) 0 cos(ϕ)

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,
(2.18)

with

r11 = cos(ρ) cos(ϕ)− sin(ρ) sin(ϑ) sin(ϕ),

r12 = − sin(ρ) cos(ϑ),

r13 = cos(ρ) sin(ϕ) + sin(ρ) sin(ϑ) cos(ϕ),

r21 = sin(ρ) cos(ϕ) + cos(ρ) sin(ϑ) sin(ϕ),

r22 = cos(ρ) cos(ϑ),

r23 = sin(ρ) sin(ϕ)− cos(ρ) sin(ϑ) cos(ϕ),

r31 = − cos(ϑ) sin(ϕ),

r32 = sin(ϑ), and

r33 = − cos(ϑ) cos(ϕ).

One disadvantage of the parametrization of rotations with Euler angles is the so called
Gimbal lock. The Gimbal lock describes the loss of one degree of freedom of the rotation
matrix. Given Eqn. 2.18 this is the case for ϑ = π

2 .
Rotations in 3D can also be modeled using quaternions, an extension of the complex

numbers, or using Rodrigues’ rotation formula, which make the rotation axis V and rota-
tion angle α explicit. Here, we will not go into further detail.

2.1.4 Lens Distortion

The pinhole camera is the simplest camera model, where the light from the scene travels
through a tiny pinhole and illuminates the back of the camera. While in theory this model
can describe the process of image formation, it has disadvantages that makes it usage
impractical. Since the pinhole is tiny, the amount of light passing through it, is very small.
In order to capture an image the exposure time, that is the time the light is reaching the
photographic film or camera sensor, has to be very long. A long exposure time can only
be used, if the imaged scene is static, otherwise moving objects will introduce motion blur.
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Figure 2.5: Examples of radial lens distortion acting on the image of a grid. The radial
lens distortion parameter k1 is varied, while all other parameters ki, for i > 1 are 0. Left:
Undistorted image of grid, parallel lines appear parallel to each other, k1 = 0. Middle:
Pincushion distortion, straight lines appear to be bend towards the image center, their
outline resemble the shape of a pincushion, k1 > 0. Right: Barrel distortion, straight lines
appear to bend away from the image center, their outline resemble the shape of a barrel,
k1 < 0.

Using a more sensitive photographic film or increasing the sensitivity of the camera sensor
will introduce grain noise or photon noise, respectively.

Instead a real camera use a camera lens, which is an arrangement of individual lenses,
that are used to focus the incoming light to the focal plane at distance f . Because more
light can pass through the lens the exposure time can be significantly reduced. However
objects that are too close or too far away from the focus range of the camera lens are
blurred. The focus range is also called depth of field and indicates the depth from the
camera in which objects are imaged sharply.

Because a camera lens consists of several lenses that have imprecisions because of
the manufacturing process and each single lens only approximate a theoretical lens in its
properties the camera lens introduces so-called lens distortions [108, 24].

One can distinguish two kinds of lens distortion. With radial lens distortion a point
in the image plane is moved in radial direction from the principal point only. For simple
examples of the effects of radial lens distortion, see Fig. 2.5. This kind of distortion usu-
ally occurs because each individual lens in the camera lens has a varying thickness and
hence different refraction properties depending on the distance from the lens center. With
tangential lens distortion on the other hand, a point in the image plane is moved in the tan-
gential direction compared to radial lens distortion. This kind of distortion usually comes
from slight imprecision in the alignment of the individual lenses. Radial lens distortion is
by far more dominant in acquired images than tangential lens distortion [161]. Only if the
camera has to be calibrated with very high accuracy tangential lens distortion has to be
considered.
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Given the undistorted 2D point xu = (xu, yu)> of a 3D point X projected onto the
image the distorted 2D point xd = (xd, yd)> is modeled in the case of radial lens distortion
only as

xd = xu
(
1 + k1r

2 + k2r
4 + . . .

)
, (2.19)

yd = yu
(
1 + k1r

2 + k2r
4 + . . .

)
, (2.20)

and in the case of radial and tangential lens distortion as

xd = xu
(
1 + k1r

2 + k2r
4 + . . .

)
+
(
p2(r2 + 2x2

u) + 2p1xuyu
)(

1 + p3r
2 + p4r

4 + . . .
)
, (2.21)

yd = yu
(
1 + k1r

2 + k2r
4 + . . .

)
+
(
p1(r2 + 2y2

u) + 2p2xuyu
)(

1 + p3r
2 + p4r

4 + . . .
)
. (2.22)

Here r =
√
x2
u + y2

u is the distance of xu to the principal point in the image plane, k1, k2, . . .

are the radial distortion coefficients, and p1, p2, p3, p4, . . . are the tangential distortion co-
efficients [24, 25].

Introducing lens distortion to Eqn. 2.11 results in the following three steps, since the
higher order terms in Eqns. 2.19 – 2.22 cannot be expressed in a compact matrix notation:

1. Computing the undistorted projection xip,u of the 3D point Xw according to Eqn. 2.6
and 2.7:

xip,u =


f 0 0 0
0 f 0 0
0 0 1 0


R> −R>C
0> 1

Xw. (2.23)

2. Computing the distorted point xip,d in the image plane from the undistorted one
(xip,u) according to Eqns. 2.19 and 2.20 or Eqns. 2.21 and 2.22, respectively.

3. Computing the pixel position xx given the position of the distorted projection xip,d
of Xw according to Eqn. 2.8

xi =



1
sx

cot(θ) px

0 sin(θ)
sy

py

0 0 1

xip,d. (2.24)
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As mentioned above, in practice radial lens distortion dominates tangential lens distortion.
Hence estimating the radial lens distortion with distortion coefficients k1 and k2 is usually
sufficient to for a accurate camera calibration. Note that for larger and qualitatively better
camera lenses estimating k1 can also be sufficient since less distortion is present, while
for smaller camera lenses, for example in mobile phones, significantly more distortion is
present and it is therefore advisable to use more coefficients in the estimation process. Lens
distortion parameters are intrinsic camera parameters.

2.1.5 Camera Calibration Methods

The process of estimating the intrinsic and (relative) extrinsic camera parameters in
Eqns. 2.11 and 2.19 – 2.22 is called camera parameter estimation. Once camera parameter
have been estimated or if the camera parameters are already known the camera is said to
be calibrated. Hence this process is also called camera calibration.

Depending on the setting and the available data different parameters can be estimated.
From a sequence of images of a static scene (or static parts of a scene) captured by a
single moving camera the intrinsic camera parameter and the motion of the camera can be
estimated up to a scaling factor. This process is also known as camera auto-calibration.
In this context no information about the scene itself is known.

In classic camera calibration methods usually a calibration object, calibration device, or
calibration pattern is used. In this context the geometry of the object is known such that
intrinsic and extrinsic camera parameters can be estimated from a single image. Here, the
position and orientation is estimated with respect to the calibration object. The calibration
object is usually three-dimensional, however there also exists methods that can estimate
parameters from a planar calibration object. Given additional scene information, such as
the positions of lines in one image that are parallel in the real world, auto-calibration can
also be performed with one image only.

General Approach

Classic camera calibration methods use a calibration object with known geometry [67, 20,
53]. Such methods are also known as chart based calibration methods. For estimating the
five intrinsic camera parameters focal length f , principal point offset px, py, skew angle θ,
and aspect ratio α as well as the six extrinsic camera parameters (three for position and
three for orientation) correspondences between 2D feature points xi in the image and 3D
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points Xi of the calibration object have to be established. The 3D points Xi are known,
only the corresponding 2D points in the image have to be detected. In the context of camera
calibration the problem of estimating the extrinsic parameters with known intrinsic camera
parameters is also called pose estimation [76, 90, 4].

Typically two-dimensional calibration object with black-white features are used. Such
patterns may be either a checkerboard pattern, or patterns consisting of squares or circles
arranged in a regular grid or even irregularly. Alternatively, a planar pattern is moved
towards or away from the camera in a precisely defined way to generate samples points in
all three dimensions. Using a black-white pattern simplifies the task of extracting the 2D
feature points xi of the pattern by segmentation methods, such as thresholding. Once the
black regions of the calibration object have been detected either their centers or (in case of
rectangles or squares) their four corner points are computed. While computing the centers
is easier and faster, computing the four corner points of each square as intersection of its
four edges gives four times more points that can be used for parameter estimation, but it
also involves more sophisticated algorithms.

Once the 2D-3D correspondences xi ↔ Xi have been established, camera parameters
can be estimated. This task usually involves the solving of a linear system of equations,
which can be achieved for example by using a singular value decomposition (SVD, 2.33).
Additionally, the estimated camera parameters can be improved by minimizing the projec-
tion error ∑

i

d
(
x̃i, P̂X̄i

)2
. (2.25)

Here, x̃i is the measured 2D point corresponding to the known 3D point X̄i of the cal-
ibration pattern, P̂X̄i is the projection of the 3D point into the image plane using the
estimated projection matrix P̂, and d(a,b) =

√
||a − b|| is the Euclidean distance. A

method for minimizing the projection error is presented in Sec. 2.2.4.
In the case of lens distortion a linear estimation of the camera parameters is performed

first, neglecting lens distortion. Then, lens distortion parameters are introduced in the
process of minimizing the projection error as described in Eqn. 2.25 using Eqns. 2.19 –
2.24.

Such an approach to camera parameter estimation can be always used when information
about the 3D geometry of the calibration object is available. However this approach does
not work, if the 3D points Xi are coplanar (for example in the case of Zi = 0). Then,
the system matrix used in the initial parameter estimation will not have full column rank.
Hence, not all camera parameters of the projection matrix Eqn. 2.14 can be estimated in
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this case.

Tsai’s Method

One possibility to deal with such cases is to use Tsai’s approach [161]. It is a two stage
approach that uses a planar calibration pattern to estimate the parameters of

xi =


f

sx
s 0 0

0 f

sy
0 0

0 0 1 0


R> −R>C
0> 1

Xi, (2.26)

in the presence of radial lens distortion of the form xd = xu + xuk1r
2, yd = yu + yuk1r

2

given correspondences xi ↔ Xi and pixel sizes sx, sy. Here, we have the skew parameter
s instead of the angle of skew θ. In both stages different sets of camera parameters are
estimated in order to reduce the complexity of the estimation problem. In the first stage
the orientation R of the camera and the position (Cx,Cy)> parallel to the calibration
pattern is computed exploiting geometric constraints. In the second stage the focal length
f , radial lens distortion k1 and the distance Cz from the calibration pattern is computed.
This is done by computing f and Cz assuming k1 = 0 as initial solution for the following
optimization of f , Cz, and k1.

While this method allows to estimate camera parameters using a single input image of
the planar calibration pattern, care has to be taken in order to avoid positioning the camera
parallel to the calibration pattern. In this specific case the focal length and distance from
the calibration pattern cannot be estimated reliably at the same time anymore. This is
because there is no variation in the depth of the feature points of the calibration pattern in
the acquired image. We can see from Eqn. 2.7 with Xc = (0, 0, Xz, 1)> that changing the
distance Xz of a feature point from the camera can be exactly compensated by adjusting
the focal length f appropriately.

Zhang’s Method

The method of Zhang [174] is another approach that can estimate camera parameters from
a planar calibration pattern. However, the planar calibration pattern has to be viewed in
at least two different orientations. In this approach the projection matrix P is estimated
without lens distortion parameters.Then, the projection matrix is split into a submatrix
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B ∈ R3×3 and a vector b ∈ R3: P =
[
B b

]
. Constraints on the image of the absolute conic

and its image are used to recover the calibration matrix K from B.
The absolute conic and its image is a entity from projective geometry. The image of

the absolute conic is a set of purely imaginary points that neither depend on the position
nor on the orientation of the camera. This is comparable to vanishing points and vanishing
lines. A vanishing point is a purely imaginary point. It is the intersection of parallel lines in
the real world. One can think of parallel lines intersecting at infinity and the image of the
vanishing point being the projection of that intersection point at infinity. Pairs of parallel
lines in the real world can have different directions. This means that there are different
vanishing points depending on the direction of the parallel lines. The set of all vanishing
points, which is the set of vanishing points belonging to parallel lines of all directions, is
called the vanishing line. Because the vanishing line contains vanishing points that are all
located at infinity the position of the camera does not change the position of the vanishing
points in the image and hence also does not change the position of the vanishing line in
the image.

In the same way the image of the absolute conic is independent on the extrinsic camera
parameters. Hence it can be used to estimate the intrinsic camera parameters. With the
intrinsic parameters estimated the extrinsic parameters are computed from K and b. Finally
the camera parameters are optimized by minimizing the projection error from Eqn. 2.25
under lens distortion.

Auto-calibration

In contrast to the methods described in the previous sections, one or several cameras
can also be calibrated without a calibration object with known geometry. Such a cali-
bration method is called auto-calibration or self-calibration. In auto-calibration cameras
are calibrated from a set of uncalibrated images using constraints on the intrinsic camera
parameters and a so-called projective reconstruction. A more detailed description of the
projective reconstruction and the auto-calibration process is given in Sec. 2.3.1.

2.2 Optimization

Minimizing cost functions, for example the projection error in Eqn. 2.25, or optimizing pa-
rameters, as for example in camera parameter estimation, requires optimization methods.
One practically important class of optimization methods are iterative optimization meth-
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ods. Those methods do not compute the optimal solution directly. Instead, by using an
appropriate approximation they iteratively refine an initial solution to converge towards
the optimal solution. Directly computing the optimal solution is desirable, however for
complex problems that arise analytic solutions typically do not exist. Hence, iterative
methods are used for optimization. In this section we first introduce the problem, briefly
present some optimization methods for least squares problems [95, 49, 122, 129], and finally
describe the random sampling consensus method [47].

In this context we are given an error function f : Rn → Rm. We want to optimize a low
dimensional estimation parameter vector x̂ ∈ Rn given f in such a way that the function
values f(x̂) resembles a high dimensional measurement vector b̃ ∈ Rm with m > n:

f(x̂) = b̃. (2.27)

The function f is representing some error or cost function. The measurement vector b̃
is usually higher dimensional than the parameter vector x̂ and since the measuring itself
is not perfect small errors are also introduced to the measured data. Because of those
errors and the high dimensionality the measurements are contradicting each other. Hence,
a solution to Eqn. 2.27 does not exist. Instead, one can compute the parameters that
minimize the resulting error ||ε|| =

∣∣∣∣∣∣f(x̂)− b̃
∣∣∣∣∣∣. That means given the function f , and the

measurement b̃ compute
x̂ = arg min

x

∣∣∣∣∣∣f(x)− b̃
∣∣∣∣∣∣2 . (2.28)

Estimating x̂ in such a way is equivalent to finding the parameters x̂ that best describe
the measured data b̃ in a given model represented here by the function f .

2.2.1 Linear Least Squares

Computing Eqn. 2.28 in the case of the function f being linear is a simple optimization
problem. This leads to the method of linear least squares. In this case f can be simply
represented by a real-valued matrix A ∈ Rm×n: f(x̂) = Ax̂. Furthermore, Eqn. 2.27
simplifies to

Ax̂ = b̃ (2.29)

and we obtain a linear system of equations. In the presence of measurement errors and
because of the measurement vector b̃ ∈ Rm having a higher dimension than the parameter
vector x̂ ∈ Rn this linear system of equations is overdetermined and a solution usually does
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not exists. We obtain the normal equation by multiplying both sides with A>:

A>Ax̂ = A>b̃ (2.30)

By construction the resulting normal matrix C = A>A, C ∈ Rn×n on the left hand side is a
symmetric, positive semi-definite matrix. Also, the rank of C is equal to the rank of A. If
A has full rank, then C also has full rank and therefore C is positive definite and invertible.
In this case the linear system of equations

Cx̂ = d, (2.31)

with d = A>b̃,d ∈ Rn can be solved for x̂. This system can be solved by inverting C. The
solution is then given by x̂ = C−1d. The easiest way to compute C−1 is to use the method
of Gaussian elimination. However, there are better ways to solve this equation for x̂ in
terms of computation time, accuracy, and numerical stability than by directly computing
the inverse.

Matrix Decompositions

Different methods exist that solve linear systems of equations as given in Eqns. 2.29
and 2.31. Those methods decompose the system matrices into several easier to invert
matrices. Common decompositions will be explained briefly:

1. The eigenvalue decomposition or eigendecomposition of C ∈ Rn×n is given by

C = Q · E · Q>, (2.32)

with Q ∈ Rn×n being an orthogonal matrix such that Q>·Q = In×n and E ∈ Rn×n being
a diagonal matrix with the eigenvalues of C on the main diagonal. Furthermore the ith
eigenvalue in E corresponds to the ith (column) vector of Q, which is the eigenvector.
For a real-valued matrix C a unique eigendecomposition always exists. Given such a
decomposition Eqn. 2.30 can be solved in three steps. First, solve Qz = d for d by
computing z = Q>d. Then, solve Ey = z for y by component-wise division of the
entries of z by the corresponding eigenvalues in D. Finally, solve Q>x = y for x by
computing x = Qy. The eigendecomposition is also known as principal component
analysis (PCA).
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2. The singular value decomposition is a generalization of the eigendecomposition 2.32
to non-square matrices. The real-valued matrix of the overdetermined linear system
of equations A ∈ Rm×n given in Eqn. 2.29 can be decomposed to

A = U · S · V>, (2.33)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices with U> · U = In×n, V> · V =
Im×m and S ∈ Rm×n is a diagonal matrix with the singular values of A on the diagonal.
The singular values of A are the square roots of the eigenvalues of A> · A. Similar to
the eigendecomposition the ith (column) vector of U corresponding to the ith singular
value is called the left singular vector and the ith (column) vector of V corresponding
to the ith singular value is called the right singular vector. The left singular vectors
are the eigenvectors of A · A> and the right singular vectors are the eigenvectors of
A> · A = C. Usually the singular values are order in decreasing order. Then, the
singular value decomposition of matrix A is unique. Given such a decomposition
a solution to Eqn. 2.29 can be computed in the following three steps. First, solve
Uz = b by computing z as z = U>b. Second solve Sy = z for y by multiplying
z component-wise with the inverse of the singular values. Last, solve V>x = y by
computing x as x = Vy.

3. The QR decomposition is inspired by the method of Gram-Schmidt for the orthogo-
nalization of a set of vectors. It computes a decomposition of C ∈ Rn×n as

C = Q · R, (2.34)

where Q ∈ Rn×n is a orthogonal matrix such that Q> · Q = In×n and R ∈ Rn×n is an
upper triangular matrix. For an invertible matrix C and matrix R having positive
entries on the main diagonal this decomposition is unique. With a decomposition
of C a solution for Eqn. 2.30 is obtained as follows. First, solve the linear system
of equations Qy = d for y which is equivalent to computing y = Q>d. Then, solve
Rx = y for x by back substitution.

4. The LU decomposition computes
C = L · U, (2.35)

where C ∈ Rn×n is decomposed into a lower triangular matrix L ∈ Rn×n and an upper
triangular matrix U ∈ Rn×n. This decomposition exists and is unique, if and only if C
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is invertible. Having the decomposition C = L · U we solve Eqn. 2.30 in the following
way. The linear system of equations Ly = d can be efficiently solved by forward
substitution for y, since L is an lower triangular matrix. Finally, Ux = y is efficiently
solved by back substitution for x with U being an upper triangular matrix.

5. The Cholesky decomposition for the real-valued matrix C ∈ Rn×n computes

C = L · L>, (2.36)

with L ∈ Rn×n being a lower triangular matrix. Every real-valued invertible matrix
C can be uniquely decomposed in such a way. It follows from Eqn. 2.35 by exploiting
the fact that C is symmetric. Similarly to the LU decomposition, Eqn. 2.30 is solved
by first solving the linear system of equations Ly = d by forward substitution and
then solving L>x = y by back substitution.

6. The LDL decomposition is based on the Cholesky decomposition. Let L ∈ Rn×n

be a lower triangular matrix with all main diagonal entries being 1 and D ∈ Rn×n

be a diagonal matrix. With L′ = L · D 1
2 , L′ ∈ Rn×n from Eqn. 2.36 we obtain

C = L′ · L′> = L · D 1
2 ·
(
L · D 1

2
)>

= L · D 1
2 · D 1

2 · L>, which is

C = L · D · L>. (2.37)

It is also related to the eigendecomposition 2.32. For an invertible matrix this de-
composition is unique. Using the LDL decomposition Eqn. 2.30 is solved in three
steps. Forward substitution is performed in the first step to solve the linear system
of equations Lz = d for z. Then, Dy = z is solved for y by inverting the diagonal ma-
trix D which leads to component-wise division with the diagonal entries of D. Finally,
L>x = y is solved for x by back substitution.

Furthermore, depending on the structure of A and hence, also of C different implementations
for solving Eqns. 2.29 and 2.30 can be used. If A is dense then C is dense as well. Similarly
if A is sparse then C is sparse as well. Sparse solvers exploiting the sparse structure of the
system matrix are preferable, since they can reduced the computation time significantly.

However, not all optimization and minimization problems that arise are linear and
can therefore be solved in the way mentioned above. In the case of solving nonlinear
overdetermined systems of equations this leads to nonlinear least squares optimization.
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2.2.2 Gauss-Newton Method and Nonlinear Least Squares

The goal in nonlinear least squares optimization, just as in linear least squares optimization,
is to solve Eqn. 2.28. However, the cost or error function f cannot be expressed as a
convenient matrix. While the solution to a linear system of equations can be solved in one
step by inverting the system matrix this is in general not true for nonlinear optimization
problems any more. Except for rare cases where a analytic solution exist, iterative solution
schemes have to be used in order to compute a parameter vector x̂ that minimizes the
error ||ε|| =

∣∣∣∣∣∣f(x̂)− b̃
∣∣∣∣∣∣. Here, we will briefly present the Gauss-Newton method.

The idea behind this method is the following: the function f is approximated linearly
at an initial point x̂(0) such that a linear system of equations arises. Given the solution
x̂(k) a better solution x̂(k+1) is repeatedly computed until no significantly better solution
is found.

Starting with a good initial estimate x̂(0) we improve it in the following way. A function
f : Rn → Rm can be expressed as an infinite sum of values of the function’s derivatives
evaluated at the expansion point a ∈ Rn by a Taylor series:

f(x) = fa(x) =
∑
|n|>0

(x− a)n

n! Dnf(a), (2.38)

using multi-index notation for n = (n1, . . . , nn)> ∈ Nn
0 :

|n| =
n∑
i=1

ni, (x− a)n =
n∏
i=1

(xi − ai)ni , n! =
n∏
i=1

ni!, Dn = ∂|n|

∂xn1
1 · · · ∂xnnn

. (2.39)

Given an estimate x the function f evaluated at x + δ can be linearly approximated
according to the Taylor expansion (Eqn. 2.38) around x by

fx(x + δ) =
∑
|n|>0

δn

n!D
nf(x)

= f(x) +
n∑
i=1

δi
∂f(x)
∂xi

+ 1
2

n∑
i=1

n∑
j=1

δiδj
∂2f(x)
∂xi∂xj

+ . . .

≈ f(x) +
n∑
i=1

δi
∂f(x)
∂xi

= f(x) + ∂f(x)
∂x

δ = f(x) + J(x)δ, (2.40)

where J(x) is the Jacobi matrix of f evaluated at x. With x̂(n+1) = x̂(n) + δ(n) and
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ε(n) = f(x̂(n))− b̃ we have

ε(n+1) = f(x̂(n+1))− b̃

= f(x̂(n) + δ(n))− b̃
Eqn. 2.38= fx̂(n)(x̂(n) + δ(n))− b̃
Eqn. 2.40
≈ f(x̂(n)) + J(x̂(n))δ(n) − b̃

= ε(n) + J(x̂(n))δ(n). (2.41)

In order to minimize the error given an initial estimate x̂(0) we solve the overdetermined
linear system of equations

J(x̂(n))δ(n) = −ε(n) (2.42)

for δ(n), which corresponds to a linear least squares problem. As described in Sec. 2.2.1,
Eqn. 2.30 the solution can be obtained by solving the normal equation

J>Jδ = −J>ε (2.43)

for δ. Finally we obtain the update rule

x̂(n+1) = x̂(n) + δ(n). (2.44)

This iteration scheme using Eqn. 2.43 to compute updates for x̂ in every iteration is called
the Gauss-Newton method. Because of the nonlinearity of f local minima can exist. This
iterative scheme can converge towards such a local minimum. In order to avoid this from
happening the initial estimate for the solution x̂(0) has to be “close” to the true minimum
in order to converge towards the global minimum of f . Usually an approximation is used as
an initial estimate that is known to be close to the true minimum. As mentioned above, this
scheme is iterated until no significantly better solution is found. This can be achieved by
computing

∣∣∣∣∣∣ε(n+1) − ε(n)
∣∣∣∣∣∣, the length of the difference of consecutive errors. If the length

of this difference vector falls below a specified threshold the iterative scheme terminates.
This can be done because f is assumed to be convex at least in the neighborhood of a
minimum.
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2.2.3 Gradient Descent

Another possibility to minimize Eqn. 2.28 is to compute x̂ using the gradient descent
method. The gradient grad f for a scalar-valued function f : Rn → R is a directional
derivative

grad f =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)>
(2.45)

and points to the direction of the steepest ascent of the function values of f . Furthermore,
the gradient magnitude |grad f | of the gradient is a measure of how fast those function
values increase in the direction of the gradient. The strategy to follow the opposite direction
of grad f in order to find the minimum of the function f is called gradient descent. Similar
to nonlinear least squares optimizations the initial estimate is iteratively updated as in
Eqn. 2.44. In the case of gradient descent the update δ(n) is computed as

λδ(n) = −grad f(x̂(n)), (2.46)

where 0 < λ 6 1 is the parameter controlling the step size.

In the case of a vector-valued function f : Rn → Rm the gradient becomes the Jacobi
matrix J and the update can be computed as

λδ(n) = −J(x̂(n))>ε(n), (2.47)

or shortened as
(λIn×nδ =)λδ = −J>ε (2.48)

in each iteration. Note the similarity of this equation to Eqn. 2.43, where J>J is approx-
imated by the identity matrix λIn×n. Furthermore, for minimizing Eqn. 2.28 in a least
squares sense with

f(x̂) =
∣∣∣∣∣∣Ax̂− b̃

∣∣∣∣∣∣2 , (2.49)

we have
grad f(x̂) = 2A>

(
Ax̂− b̃

)
= 2

(
A>Ax̂− A>b̃

)
. (2.50)

From this equation and the necessary condition for a minimum, grad f(x̂) = 0, we obtain
the normal equation Eqn. 2.30.

Similar to nonlinear least squares optimization the initial estimate x̂(0) has to be “close”
to the global minimum of f to avoid running into a local minimum. The choice of the step
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size influences the required number of iterations of the gradient descent method to converge
to the minimum. In some cases the optimal step size λ for each iteration can be derived
analytically. In cases where an optimal step size cannot be derived analytically usually a
small constant value for λ is used. Iteration terminates if the update does not reduce the
cost significantly, so when

∣∣∣∣∣∣ε(n+1) − ε(n)
∣∣∣∣∣∣ falls below a specified threshold.

In practice gradient descent is not used very often, because of its slow convergence and
running time depending on the value of the parameter λ. Preconditioning can improve the
running time of gradient descent. Faster methods for solving linear systems of equations
are the conjugate gradient method and the preconditioned conjugate gradient method.
Both are related to the gradient descent method.

2.2.4 Levenberg-Marquardt

The Levenberg-Marquardt [97, 109, 115, 63] algorithm combines the methods of Gauss-
Newton and gradient descent. It is a iterative method to compute the x̂ that minimizes
Eqn. 2.28. Given an initial estimate x̂(0), better estimates are computed successively by
x̂(n+1) = x̂(n) + δ(n) (Eqn. 2.44) using the augmented normal equation

(
J>J + λIn×n

)
δ = −J>ε (2.51)

to compute the update δ(n) in each iteration for a specific 0 < λ. The initial value for the
parameter λ(0) is chosen much smaller than the average of the diagonal elements of J>J.
In each iteration Eqn. 2.51 is solved for δ(n). Then, the error ||ε(n)|| = ||f(x̂(n) +δ(n))− b̃||
is computed. Now, two cases can occur:

1. If ||f(x̂(n) + δ(n))− b̃|| < ||f(x̂(n))− b̃||, then the algorithm has been able to further
minimize the error. It proceeds with the next iteration using x̂(n+1) = x̂(n) +δ(n) and
a new, smaller λ(n+1) = λ−1

inc · λ(n), where λinc is the increment factor for λ, typically
chosen to be 10.

2. However, if ||f(x̂(n) + δ(n))− b̃|| > ||f(x̂(n))− b̃||, the algorithm has not been able to
minimize the error. In this case Eqn. 2.51 is repeatedly solved for δ(n) with increasing
λ(n) = λinc · λ(n), until an update δ(n) has been found that minimizes the error. The
algorithm proceeds with x̂(n+1) = x̂(n) +δ(n) and the new, larger λ(n+1) that has been
used to find δ(n).

As with the Gauss-Newton and the gradient descent method the algorithm terminates
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whenever no significant reduction of the error is obtained, in example when
∣∣∣∣∣∣ε(n+1) − ε(n)

∣∣∣∣∣∣
is below a specified threshold.

This strategy lets the Levenberg-Marquardt algorithm move smoothly between a Gauss-
Newton method and the gradient descent method: If the update δ(n) minimizes the error,
λ(n) is decreased by the factor λinc. So, as long as the new update always reduces the error
λ → 0 and hence, J>J + λIn×n → J>J. Conversely, if the update does not reduce the
error, λ(n) is increased by the factor λinc. So, for λ → ∞, we have J>J + λIn×n → λIn×n
in the sense that the solution of Eqn. 2.51 with J>J + λIn×n converges to the solution of
Eqn. 2.48 for λ→∞.

Thus, as long as the error is reduced the augmented normal equation converges to the
normal equation and as long as the error is not reduced the augmented normal equation
converges to the equation of the gradient descent method. This combination makes the
Levenberg-Marquardt algorithm converge faster toward a minimum, because of the fast
convergence of the Gauss-Newton method on the one hand. On the other hand, it guar-
antees in every step a minimization of the error because of the gradient descent approach.
Although the method is slower than a pure Gauss-Newton approach, this makes the method
faster then a pure gradient descent approach. Additionally, the method is more robust,
because it is better in avoiding local minima as well as less sensitive to the choice of the
initial estimate x̂(0).

Other optimization methods include conjugate gradient (CG) and preconditioned con-
jugate gradient descent methods (PCG) [72, 40, 150, 140, 15]. Some approaches also use
a combination of the Levenberg-Marquardt algorithm with conjugate gradient methods
[26, 167, 2].

2.2.5 Random Sample Consensus

The methods for solving Eqn. 2.27 presented so far assumed that the measurements contain
small errors. Parameters x̂ ∈ Rn are estimated by finding a solution f(x̂) that best
approximates the measurements b̃ ∈ Rm. In this case all measurements are considered.
Concerning the case where some measurements contain large errors this strategy is not
advisable any more. A single outlier can render such estimations void.

In this case it is useful to apply the random sample consensus algorithm (RANSAC,
[47]). The steps of the RANSAC algorithm can be summarized as follows:

1. A minimal sets of measurements is randomly picked. This is a set from which unique
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parameters of a model can be computed. From each chosen minimal set of measure-
ments the parameters of the model are computed.

2. From all given measurements, the inlier set of measurements is determined. This is
the set of measurements whose distance from the computed model is below a given
threshold tdist.

3. If the size of the inlier set is above another threshold tsize the model is estimated
using all measurements from the inlier set and the algorithm terminates. Otherwise,
the steps above are repeated at most nmax times. After nmax minimal sets has been
randomly chosen the one with largest inlier set is used to estimate the parameters of
the model.

The RANSAC parameter tdist defines which measurements should be considered as inliers
and which ones as outliers. The parameter tsize defines the minimal size of the inlier set
that should be used for model parameter estimation. However, if such a set cannot be
found with nmax trials the largest inlier set is used. Since it is not possible to check all
possible minimal sets, a maximal number of trials nmax is set. This number should be
chosen in a way to ensure with high probability that all measurements in the inlier set
are indeed true inliers. For more details about the choice of parameters of the RANSAC
algorithm, see also [64]. For other methods dealing with parameter estimation from data
sets containing outliers, see for example [130, 32, 135].

2.3 Reconstruction

By acquiring an image the 3D information of a scene is projected onto the 2D image
plane. During this projection process the depth information is lost. 3D reconstruction
tries to recover this lost information. Although 2D images provide data for each pixel,
the lost depth information usually cannot be reconstructed completely. Typically, 3D
point clouds are reconstructed and with additional assumptions and constraints dense
3D reconstructions can be obtained. Using 3D point clouds reconstructions can also be
generated by fitting surfaces to the point clouds.

Methods for 3D reconstruction can be classified either as active or passive methods.
Active methods are used to generate highly accurate, dense 3D reconstructions. They
actively manipulate the scene observed with one camera or multiple cameras. This can
involve laser triangulation, where a laser line scans the scene and a calibrated camera
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observes the 2D projection of the laser line. Structured light approaches use several patterns
that are being projected onto the scene and captured by a calibrated camera. Shape-from-
shading and photometric stereo methods illuminate the object from different directions
in order to reconstruct surface orientations. They are usually used in conjunction with
structured light approaches to obtain better reconstructions.

On the other hand, passive reconstruction techniques do not manipulate the scene ac-
tively, but only rely on the available scene information. In multi-view stereo reconstruction
images of the scene acquired at the same time from several cameras at different positions
are used. Using these images of the scene correspondences between different views are
established. Based on these correspondences the 3D points can be triangulated and hence
their depth and 3D position can be computed. Structure-from-motion is a similar approach
to multi-view stereo reconstruction. However, in this approach an image sequence of the
scene is captured by a moving camera and used for reconstruction. Because the individual
frames of the image sequence are not captured simultaneously only the static content of
the scene can be reconstructed in the same way as it is done with multiple view stereo
reconstruction. Extensions to structure-from-motion methods exist that enable them to
reconstruct moving objects in the image sequence, too.

For an overview of 3D reconstruction methods and is applications is given in [152, 92].

Feature Detection and Matching

Multi-view stereo and structure-from-motion methods rely on features that can be easily,
reliably and accurately detected and matched within different views. There are different
kinds of features, for example lines or points. In the context of feature detection, lines are
called edges and points are called corner, as will be described below. Depending on the
application, features should not only be detected easily, but also matched easily. While the
first task is referred to as feature detection, the latter is called feature matching. In multiple
view stereo reconstruction features are computed for all images, a feature descriptor is then
computed for all features, and finally, the features are matched based on similarity of their
descriptors. On the other hand, in structure-from-motion, first, features are detected for
one view and then, similar image patches that contain the detected features are sought in
the other views.

Finding 2D-2D correspondences xi,j ↔ xi,j′ across different views j and j′ for a 3D
point Xi in different views is not possible for every pixel. This is because from different
positions of the cameras the corresponding views are different: Parts of the scene may only
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be visible in one view because of occlusion. Then, corresponding points for this part of the
image do not exist in the other view. If we consider the case of an image sequence captured
by a camera, subsequent views are similar. But even in this case correspondences can only
be found for some points, because of the aperture problem: Point correspondences can be
uniquely established for corner points only.

For establishing correspondences between images corner points have to be found. A
popular choice to do that is the Harris corner detector [61]. It is invariant under rota-
tion and additive illumination changes besides being invariant under translations. Another,
more recent, approach for generating correspondences is the Scale-Invariant Feature Trans-
form (SIFT, [103, 104]). SIFT is a very popular and widely used feature descriptor, that
is invariant under translation, rotation, scaling, additive and multiplicative illumination
changes. Other feature detectors are for example: Speeded Up Robust Features (SURF,
[12, 11]) for corners, the Canny-Edge Detector [27] or the Sobel Operator [57] for edges.

2.3.1 Multiple View Stereo and Structure-from-Motion

Stereo reconstruction [136] is a passive reconstruction method that uses images captured
from two cameras in order to reconstruct the lost depth information. Multiple view stereo
reconstruction (MVS, [63, 153, 163, 145, 138, 55, 52, 2]) is an extension of this approach
to use more than two images for the reconstruction.

Structure-from-Motion (SfM) is related to multi-view stereo. While in MVS the scene
is reconstructed from multiple images, in SfM it is reconstructed from an image sequence
of a moving camera.

In both approaches the 3D points X̂i from the scene are reconstructed using only feature
point correspondences x̃i,j ↔ x̃i,j′ in different views j, j′. The feature point correspondences
are obtained from feature detection, matching, and tracking, or feature descriptors as
described above.

Epipolar Geometry and Fundamental Matrix

The underlying geometric constraints on the projections of 3D scene points Xi to 2D image
points xi,j are called epipolar geometry [43, 64]. We will describe the epipolar geometry
for the stereo approach, where we have two views.

Given a calibrated camera pair with camera matrices P1, P2, for a 2D point x1 in the
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first view the line of sight l1 of this point can be computed as

l1 = P+
1 xi,1, (2.52)

where P+
1 is the pseudo-inverse of P1: P1P+

1 = I3×3. Every point on the line of sight l1 is
projected to x1 in the first view. This line of sight l1 can be projected into the second view
and it is imaged as a line l2 = P2l1 in the image plane, the epipolar line. The point x2

corresponding to x1 must lie on the epipolar line l2 and vice versa. Because all line of sights
intersect in the camera center C, all epipolar lines intersect in one point e, the epipole.
The epipoles e1, e2 are the projections of the camera centers C1,C2 onto the image planes
of the other views. However, the epipoles do not necessarily have to lie in the image.

The fundamental matrix F [44, 62, 158] is the matrix that relates two views as described
above by epipolar geometry. Because the fundamental matrix establishes a relationship
between points and lines in the two-dimensional images, no 3D information is needed.
Hence, the cameras corresponding to those two views do not have to be calibrated.

Given a measured 2D point x̃1 in the first view it allows to compute the epipolar line
l = Fx̃1 in the other view (unless the 2D point x̃1 coincides with the epipole e). Since the
corresponding point x̃2 must lie on the epipolar line, we can write:

x′>Fx̃ = 0, (2.53)

which is called the epipolar constraint. The fundamental matrix is defined up to scale and
because it maps points in one image to lines in the other image, one eigenvalue is 0, hence
det(F) = 0. Hence, the fundamental matrix has rank 2 and 7 degrees of freedom.

For estimating the fundamental matrix approaches as described in [43, 64] can be used:
It is estimated in a least squares sense from established point correspondences and the rank
2 property is enforced in the second step. For estimating a robust fundamental matrix that
is not influenced by outliers, the RANSAC algorithm as described in Sec. 2.2.5, [47] can
be used. In this case it is advisable to use the 7-point-alogrithm [71, 148] that allows
estimating the fundamental matrix from 7 corresponding point pairs.

Furthermore, the essential matrix [101] relates two views exactly in same way as the
fundamental matrix, except that the image coordinates are normalized. Image coordinates
are normalized, if the calibration matrices of the two cameras are equal to identity matrix:
K1 = K2 = I3×3.
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Projective Reconstruction

Given an estimated fundamental matrix F̂ and a 2D feature point correspondence x̃1 ↔ x̃2

from which F̂ has been estimated, a projective reconstruction of the feature points can be
computed in the following way:

1. From the fundamental matrix F̂ the camera matrices for both cameras can be chosen
that relate the two views to each other and fulfill the epipolar constraint 2.53 for
corresponding points. For F̂ and the epipole ê2 in the second image

P̂1 =
[
I3×3 0

]
, and P2 =

[
[ê2]× F̂ ê2

]
(2.54)

can be chosen as camera matrices.

2. Compute the depth of the scene points X̂i corresponding to its 2D projections x̃1

and x̃2. This can be done either by triangulation or by minimizing the reprojection
error.

For triangulation from Eqn. 2.14 we get x̃1 = P̂1X̂ and x̃2 = P̂2X̂, which can be
written as x̃1× P̂1X̂ = 0 and x̃2× P̂2X̂ = 0. This way we obtain 6 constraints in the
unknowns of X̂, where 4 constraints are linearly independent. Since X̂ has 3 degrees
of freedom, this leads to an overdetermined linear system of equations AX̂ = 0. A
solution can be obtained as the singular vector corresponding to the smallest singular
value in an SVD (Eqn. 2.33).

A better approach for estimating the 3D position X̂ is to minimize the reprojection
error in both views. This means to minimize the cost function

c(x̃1, x̃2) = d (x̃1, x̂1)2 + d (x̃2, x̂2)2 , subject to x̂>2 F̂x̂1 = 0,

with x̂1 = P̂1X̂ and x̂2 = P̂2X̂. Here, d (a,b) =
√
||a − b|| is the Euclidean distance.

x̃1, x̃2 are the measured 2D projections and x̂1, x̂2 are the estimated 2D positions in
the image of the estimated 3D point X̂ in the two images. Furthermore, given the
estimated fundamental matrix F̂, x̂1 and x̂2 are the estimated 2D positions closest to
x̃1 and x̃2, respectively, that fulfill the epipolar constraint 2.53. This cost function
can be minimized by the Levenberg-Marquardt approach described in Sec. 2.2.4.

In addition, the camera matrices P̂j can be optimized at the same time. This simulta-
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neous optimization process is also known as bundle adjustment (BA, [160, 102, 167]):

arg min
P̂j ,X̂i

∑
j

∑
i

d
(
x̃i,j, P̂jX̂i

)2
. (2.55)

The obtained reconstruction of the 3D points X̂i and camera matrices P̂j is called projective
reconstruction, because it is defined up to a projective transformation given by an invertible
homography H4×4 ∈ R4×4. Applying this homography to the camera matrices and 3D points
does not change the projections x̂i,j:

x̂i,j = P̂jX̂i =
(
P̂jH4×4

)(
H−1

4×4X̂i

)
= P̂′jX̂′i ∀i, j. (2.56)

However, given additional information the intrinsic camera parameters can be estimated
from several images. This process is called auto-calibration.

Auto-Calibration

Auto-calibration [113, 45, 125, 106] refers to the task of estimating camera parameters
without using a calibration object. The intrinsic camera parameters can be estimated given
the projective reconstruction of the 3D points X̂i and some additional knowledge. Each of
the five intrinsic camera parameters focal length f , aspect ratio α, skew s, and principal
point offsets px, py can vary, be fixed, or even be known between subsequent uncalibrated
images. Usually both the two principal point offset parameters px, py vary, are fixed, or are
known at the same time. The additional knowledge of a parameter being fixed or known
allows to auto-calibrate the cameras. A known parameter provides one constraint for each
image in the image sequence. A fixed, but unknown parameter provides one constraint for
each image in the image sequence, too, except for the first image.

Usually the camera matrices Pj form the projective reconstruction will not fulfill these
constraints. However, an invertible homography H4×4 ∈ R4×4 as described in Eqn. 2.56 can
be computed such that the constraints are fulfilled while the projections of the 3D points
X̂i do not change.

In order to determine such a homography H4×4 and perform auto-calibration, at least
8 constraints are needed. This can be seen from the fact, that H4×4 is defined up to scale
and has 15 degrees of freedom, where we have to subtract 7 degrees of freedom for the
ambiguity of reconstruction. For the sake of simplicity we can simply assume that the first
camera is located in the origin of the world coordinate system, aligned with the coordinate
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axes and the scale of the scene is 1. This fixes the orientation, the position, and the scale
of the scene in the world coordinate system and hence, leaves 8 degrees of freedom for H4×4.

Instead of computing the homography H4×4 for auto-calibration, entities from projective
geometry can be used to obtain the calibration matrix. These entities involve the image of
the absolute conic, and its dual image, as well as the absolute dual quadric [159, 127, 126].

The image of the absolute conic is the intersection of the absolute conic with the plane
at infinity. The absolute conic is an algebraic 2D curve that can be represented by a
polynomial of degree 2. The image of the absolute conic is the intersection of the absolute
conic with the plane at infinity. The plane at infinity is the 3D analogue to the vanishing
line in 2D. The plane at infinity can be thought of as the plane where all possible pairs
of parallel lines intersect. Since the image of the absolute conic is located at the plane of
infinity, it is independent of the orientation and the position of the camera, as well as the
scale. It represents the 5 degrees of freedom that correspond to the intrinsic parameters of
the camera.

Metric Reconstruction

Metric reconstruction refers to the reconstruction of the 3D points X̂i and camera matrices
P̂j, where the cameras P̂j have the form according to Eqn. 2.11, rather than form according
to Eqn. 2.14. The cameras are in metric space rather than in projective space. As shown
in Eqn. 2.56 a homography H4×4 ∈ R4×4 can be applied to a projective reconstruction
without changing the projections X̂i. A metric reconstruction is obtained from a projective
reconstruction by determining and applying the rectifying homography H4×4 ∈ R4×4 to a
projective reconstruction. The rectifying homography is the homography that makes a
metric camera according to Eqn. 2.11 out of a projective camera with P̂′j = P̂jH4×4. At
the same time the inverse of the rectifying homography is applied to 3D points X̂i with
X̂′i = H−1

4×4X̂i to obtain a metric reconstruction.
By auto-calibration the obtained metric reconstruction is defined up to similarity trans-

formations: Given the 2D measurements of the detected feature points alone, the absolute
orientation, absolute position, and absolute scale in the world coordinate system cannot
be determined. Without additional knowledge of the scene, the metric reconstruction only
determines the relative orientation, relative position, and relative scale of the reconstructed
scene.

If, however, the cameras are already calibrated, then a metric reconstruction can be
performed directly without having to do a projective reconstruction first, followed by auto-
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calibration.
The reconstruction process with detecting corresponding features, computation of the

fundamental matrix, projective reconstruction, auto-calibration, and metric reconstruction
can be extended to more than two views.

Structure-from-Motion

Structure-from-Motion (SfM [157, 147, 48, 126, 99]) is closely related to MVS: Both ap-
proaches aim at reconstructing the imaged scene. While in MVS the scene is imaged from
different positions that are usually far apart, in SfM an image sequence from a moving
video camera is captured.

In addition the intrinsic and extrinsic camera parameters are estimated as well. If the
extrinsic parameters are known beforehand [121], only a camera pose estimation has to be
performed (see Sec. 2.1.5).

As described above, the quality of the results depends on the ability to detect features
and to identify corresponding features between views. In this respect, finding point corre-
spondences in structure-from-motion is easier than with MVS, since individual images of
the image sequence are captured from positions that are very close to each other. This is
because of the high frame rate of the video camera used to capture the sequence. Consecu-
tive images of the sequence are similar, because the points of view change slightly. Hence,
instead on relying on feature descriptors only, detected features in one image can be much
easier tracked over the image sequence. In fact, feature detection and feature descriptors
are only used to generate new feature points that are tracked in the sequence [105, 156].
New feature points have to be detected in the first image of the sequence and whenever
tracked features cannot be found in the next image due to occlusion or change in point of
view. The Harris corner detector [61] can be used for detecting features.

The 3D reconstruction is performed in a similar way as with MVS. However, there are
a few exceptions. First, because of the high frame rate of the camera the position of the
camera in subsequent images does not change much. In this case the fundamental matrix
cannot be estimated accurately. It is also possible, that the camera does not move at all
and hence, the fundamental matrix cannot be estimated at all. In this case the fundamental
matrix simplifies to a homography H4×4, that represents a rotation of the camera in 3D.
Hence for estimating the positions of the 3D points X̂i key frames have to be chosen, such
that a fundamental matrix can be estimated accurately and reliably. The key frames can
be chosen according to the geometric robust information criterion (GRIC, []), such that the
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position of the camera significantly changes between subsequent key frames. Second, the
3D points X̂i and camera matrices P̂j are estimated for two views by bundle adjustment
(BA, see Eqn. 2.55 ). Then, subsequent key frames are added one by one, where a bundle
adjustment is performed for every newly added key frame. Last, all images between the
chosen key frames are used to improve the estimate of X̂i and P̂j. This way the camera
parameters are estimated as well. Different variants exist in order to improve and speed
up the results, for example hierarchical BA, incremental BA, or sliding windows BA.

SfM is related to the problem of simultaneous localization and mapping (SLAM, [143,
144, 39, 5]): Generate a map of the surroundings and localize a moving robot within those
surroundings using the data of the robot’s camera.

Multi-View Stereo and Structure-from-Motion approach only reconstruct features points
that can be detected, matched, and tracked. This results a in sparse scene structure, where
the reconstructed points correspond to feature points. Given images of an object from mul-
tiple calibrated cameras the 3D shape of the object in the form of a dense 3D point cloud
can be reconstructed with Shape-from-Silhouettes approaches.

2.3.2 Shape-from-Silhouettes

Shape-from-Silhouettes is a 3D reconstruction approach for objects based on silhouette
information [10, 120, 21, 142, 42]. In this approach information from the object’s silhouettes
in multiple images are used for reconstructing a dense point cloud.

Given an image I of the object acquired by a calibrated camera, the silhouette of the
object in the image has to be extracted first. This can be done by acquiring an additional
image IB of the background without object. Subtracting the background image from the
image with object leads to an image of the foreground. Then, the silhouette in the image
is the boundary between the object and the background.

Each point of the silhouette can be back-projected to a ray in 3D space. For each
camera the set of all back-projected rays from a silhouette generate a generalized cone,
which is a volume in 3D space. The generalized cones obtained from each camera can be
intersected to generate the 3D volume in which the acquired object must lie.

Given a sufficient amount of views that are distributed around the object one obtains
the visual hull [94, 124, 149, 112]. This visual hull is a 3D volume that approximates the
shape of the acquired object.

In practice the generalized cones can be represented as polyhedra [10, 110]. Computing
polyhedron-polyhedron-intersection however, is expensive. Hence, in practice the volume
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of the object is discretized into a 3D grid voxels (volume elements, [151]), that are the 3D
analogue of pixels. The visual hull is then obtained in the following way. Each voxel is
projected into all camera views. A voxel that lies within all silhouettes of all views is kept,
otherwise the voxel is removed from the grid. In the end the 3D grid only contains voxels
that lie within all silhouettes and hence, the grid approximates the shape of the object.
Instead of discretizing the 3D volume, the projection of the visual hull in the images can
be computed [111].

The quality of the reconstructed shape depends on the size of the voxels. The smaller
the voxels the more accurate the shape is. On the other hand, smaller voxels increases the
number of voxels that have to be checked, which in turn increases the computation time
significantly.

2.3.3 Space Carving

In general, concave regions cannot be obtained in the way described above. However, in the
case of Lambertian reflectance (see Sec. 2.3.6 and Eqn. 2.70), photometric information can
be used to refine the initially obtained visual hull from Shape-from-Silhouette approaches.

Given a visual hull obtained from a Shape-from-Silhouettes approach of an object with
Lambertian reflectance, a space carving [91, 51] method can be used. Space carving works
as follows.

Voxels of the initial 3D grid are checked for photo-consistency. The voxel is projected
into all views. In the views, where the voxel is visible and hence, not occluded by other
voxels of the grid, the color information is compared. If the color in all those views is
inconsistent, the voxel is removed from the grid, since the color information must have
come from different voxels. This is because the Lambertian reflectance property ensures
that the color of a point on the object’s surface is independent of the camera position.
These steps are repeated for all voxels until only photo-consistent voxels remain.

In this way, the shape of an acquired object is obtained that is closer to the true
shape, since not only the information from silhouettes, but also color information is used.
However, in the presence of image noise photo-consistent voxels can be classified as photo-
inconsistent and vice versa, which limits the ability of space carving methods to accurately
reconstructed the true 3D shape.

Other methods for obtaining the true 3D shape of an object given an initial visual hull
use the discrete optimization method of (volumetric) graph cuts [23, 88, 89].

In contrast to space carving, methods based on voxel coloring [139, 41, 35, 163] do not
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remove voxels in which the captured object cannot be, but add photo-consistent voxels
across views to obtain a 3D model.

All presented approaches so far used either images from multiple cameras or from an
image sequence acquired by a moving camera. In the next section we will describe how
the shape of a 3D object can be reconstructed from one view given additional information
about scene.

2.3.4 Shape-from-Shading

Shape-from-Shading [74, 78, 50, 150, 173, 38] refers to the task of reconstructing the 3D
shape of an object from one view given the position ωi of the single light source in the
scene. We assume, that the acquired object has Lambertian reflectance (see Sec. 2.3.6 and
Eqn. 2.70). However, this does not have to be case in general. Hence, also shape-from-
shading methods with non Lambertian reflectance have been developed [6, 96, 3].

In the case of Lambertian reflectance the image irradiance I(x) is proportional to n ·ω
(see also Eqn. 2.71):

I(x) ∼ n · ω = cos θ, (2.57)

where θ is the angle between n and ω. This equation provides one constraint for the two
unknowns of the unit surface normal n. Hence, a unique solution cannot be computed
without any other assumptions.

For the sake of simplicity, we assume that the object is imaged in the camera coordinate
system, such that the camera center C is located in the origin and the optical axis coincides
with the z-axis (see Sec. 2.1.3). Furthermore, we assume the camera to be an orthographic
camera. This is a camera that is so far away from the object that the line of sights are equal
for all pixels. In this case all possible directions of the normal n(x) = (n1(x), n2(x), n3(x))>

at x can be represented by points n′(x) = (n′1(x), n′2(x))> in a 2D plane with stereographic
projection n(x) 7→ n′(x) given by

n′1 = 2 · n1

n3 − 1 , n′2 = 2 · n2

n3 − 1 (2.58)

and the back-projection n′(x) 7→ n(x) is given by

n1 = 4 · n′1
n′21 + n′22 + 4 , n2 = 4 · n′2

n′21 + n′22 + 4 , n3 = n′21 + n′22 − 4
n′21 + n′22 + 4 , (2.59)
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Assuming that the reconstructed surface of the object is smooth the shape is reconstructed
by minimizing the cost function

c(n′(x)) =
∫

Ω
F (n′1, n′2, n′1,x, n′1,y, n′2,x, n′2,y) dx, (2.60)

with

F (n′1, n′2, n′1,x, n′1,y, n′2,x, n′2,y) = (I(x)− n′(x) · ω)2

+ α ·
(
||grad n′1(x)||2 + ||grad n′2(x)||2

) (2.61)

and partial derivatives

n′1,x = ∂n′1
∂x

, n′1,y = ∂n′1
∂y

, n′2,x = ∂n′2
∂x

, n′2,y = ∂n′2
∂y

. (2.62)

In 2.61, the first term (I(x) − n′(x) · ω)2 is the data term representing the difference
between the given image I and the reconstructed surface normals n′(x). The second term
(||grad n′1(x)||2 + ||grad n′2(x)||2) is the smoothness term, which penalizes deviations from
a smooth solution of n′(x). With the parameter α the smoothness of the solution n′(x)
can be controlled. Furthermore, we have the boundary condition, that the normal n′(x)
at point x that belongs to the silhouette of the object is perpendicular to the line of sight
l(x) and perpendicular to the tangent t(x) at that point: n′(x) = l(x)× t(x).

Eqn. 2.60 can be minimized using variational calculus. Then, the solution is obtained
from the Euler-Lagrange equations

Fn′
1
−
∂Fn′

1,x

∂x
−
∂Fn′

1,y

∂y
= 0, (2.63)

Fn′
2
−
∂Fn′

2,x

∂x
−
∂Fn′

2,y

∂y
= 0 (2.64)

corresponding to the cost function 2.60 with the boundary condition n′(x) = l(x)× t(x).
Here, Fξ = ∂F

∂ξ
denote the partial derivative of F with respect to the variable ξ. These Euler-

Lagrange equations are coupled partial differential equations. The solution is obtained by
solving the linear system of equations in the unknowns n′1(x) and n′2(x) in all points x
arising from discretization of Eqns. 2.63 and 2.64 with boundary condition.
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2.3.5 Structured Light

In contrast to Shape-from-Shading approaches that use a omnidirectional light source and
a smoothness assumption on the reconstructed surface, Structured Light scanning (SL,
[128, 16, 86, 137]) approaches use directional light sources. A common set-up uses a pair
consisting of a calibrated video projector and a calibrated camera. The usage of a projector
makes SL an active reconstruction technique. Several specially encoded images or patterns
are projected into the scene and onto the object by the projector and are being captured
by the camera. From these images the objects surface can be dense reconstructed without
any assumptions being made.

A video projector can be taught of as an inverse camera. For a camera, all 3D points
X that lie on a line of sight are projected to one 2D point x in the image plane according
to Eqn. 2.14: x = PX. In contrast, a projector projects a 2D point x from the image plane
to the line l = P+x as described in Eqn. 2.52:

Xd = C + d · l = C + d · P+x for λ ∈ R+. (2.65)

In this case Xd is the point in 3D space with depth d, given that l is a unit vector.
The projection of the 3D point Xd that is captured in the image by the camera is the
intersection of the line of sight l corresponding to x with the object’s surface with minimal
depth. Other intersections with larger depth cannot be imaged because of occlusion.

In order to reliable identifying corresponding points between the projected images and
the captured images, a sequence of patterns is employed [134, 133]. Simple approaches use
binary patterns [54], Gray code patterns [19] or color-coded stripe patterns [28]. Binary
and Gray code patterns consists of repeated, regular, black and white stripes with varying
width between images. White stripes encode a 1 and black stripes encode a 0 of a binary
number. Considering all projected patterns together, a single stripe with the smallest
depth is uniquely determined by the patterns because of its binary code. Furthermore, the
Gray code is a binary code that differs only in one bit between subsequent encoded values.
In order to use the maximal resolution of the projector the stripes with smallest width are
one pixel wide. If the projector and camera are arranged horizontally, then those stripes
are usually arranged vertically and vice versa.

A line that is projected into the scene corresponds to a plane in the scene. Using
binary or Gray code, each line that is projected onto the object is uniquely determine.
Hence, each plane in 3D is uniquely determined. Considering all captured images, the
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encoding of an imaged pixel x in the calibrated camera uniquely determines the plane it
is lying in. Then, the true 3D position Xd of the point x can be obtained by computing a
ray-plane-intersection, which leads to the depth d.

Instead of projecting time varying patterns, correspondences between projector and
camera pixels can also be established by color [37], or color-coded stripes [22, 172].

In this set-up no smoothness constraints or boundary conditions are needed. However,
there are two limitations. Because of occlusions, only parts of the object that are visible
from both, the projector and the camera, can be reconstructed. This leads to holes in
the reconstructed surface. This occlusions can be minimized be reducing the baseline
distance, the distance between the center of the projector and the center of the camera.
But then, the accuracy of the computed depth is reduced. Second, the resolution of the
reconstruction depends on the resolution of the video projector and the one of the camera.
Since projectors usually have a much lower resolution than cameras, the resolution of the
reconstructed object is not very high.

In order to generate reconstructions with a high amount of details Structured Light is
used in combination with a technique called Photometric Stereo, that we introduce now.

2.3.6 Photometric Stereo

Photometric Stereo (PS, [166, 141, 75, 165, 68]) is an active method for reconstructing
high-accuracy details of surfaces. In contrast to Shape-from-Shading methods that has
to use smoothness constraints and boundary conditions to obtain a unique solution to
Eqn. 2.57 for every pixel, in photometric stereo several light sources are used to solve for
the surface normal n. Again, we consider the case of Lambertian reflectance of the object.
For approaches dealing with non-Lambertian reflectance, see [77, 116, 154, 70].

Calibrated Photometric Stereo

We assume now, that the light source positions are known with respect to the camera
position in the camera coordinate system. This set-up is called calibrated photometric
stereo. Here, it is assumed that the direction to the light sources and the direction to the
camera is the same for all points on the illuminated can captured object. This corresponds
to an orthographic camera as described in Sec. 2.1.3.

For a unique solution, three point light sources with known directions given by unit
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vectors ω1,ω2,ω3 are used. Then, the following linear system of equations is obtained:

ρd · ω>1 · ni = Ii,1(x),

ρd · ω>2 · ni = Ii,2(x),

ρd · ω>3 · ni = Ii,3(x), (2.66)

where ρd is the albedo of the surface. In total there are three degrees of freedom: The
normal ni has two degrees of freedom and the surface albedo ρd one additional degree of
freedom. These three constraints can be conveniently written in vector-matrix notation as

Ω> ·Ni = Ii, (2.67)

with Ni = ρd · ni. This linear system of equations can be solved for Ni ∈ R3 with a
unique solution for each pixel i, if Ii ∈ R3, Ω ∈ R3×3 and if Ω is invertible. The matrix
Ω is invertible if the directions to the three light sources are not collinear. Then we have
three linear independent constraints, Ω is invertible with Ω · Ω> = I. The solution Ni can
be computed by

Ni = Ω · Ii. (2.68)

On the other hand, if n light sources are used with n > 3, we have Eqn. 2.67 with Ii ∈ Rn,
Ω ∈ R3×n. The linear system of equations is overdetermined. A least squares solution can
be computed by SVD as described above (see Eqn. 2.33).

Lambertian Reflectance and Rendering Equation

The luminance Lo(x,ωo) (or observed radiance) of a surface point x with a given surface
normal that is observed or imaged by a camera from viewing direction ωo depends on:

1. the amount of emitted light Le(x,ωo) of that surface point x in the viewing direction
ωo,

2. the reflection property of the surface at the considered point x, expressed by the bidi-
rectional reflectance distribution function (BRDF, [118, 119]) R(x,ωi,ωo,n) which
specifies the amount of reflected light in direction ωo given the amount of incoming
light from direction ωi,

3. the amount and distribution of incoming light Li(x,ωi) from all possible directions
ωi of the unit hemisphere of the considered surface point, and
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4. the angle n(x) · ωi between the orientation n(x) = (nx(x), ny(x), nz(x))> of the
surface normal at point x and the direction of incoming light ωi.

The non-negativity of the angle n(x)·ωi follows from the fact that light that is illuminating
the surface from behind is blocked by the object itself and is not contributing to the amount
of incoming light. This fact can be easily expressed as max(n(x) · ωi, 0).

The mentioned dependencies are expressed in the rendering equation [85, 79]:

Lo(x,ωo) = Le(x,ωo) +
∫

Ω
R(x,ωi,ωo,n) · Li(x,ωi) ·max(n(x) · ωi, 0) dωi. (2.69)

Note that in this equation for the sake of simplicity we do not consider the wavelength
spectrum of the incoming and outgoing light, transparent and translucent medium, or sub-
surface scattering. This implies that while reflections can be expressed by an appropriate
BRDF, refraction, transparency, and translucency cannot. Here transparency is the effect
of light passing through a medium and being possibly refracted following Snell’s law, but
not being scattered. While translucency is the effect of light passing through medium being
scattered and not following Snell’s law. Subsurface scattering on the other hand, is the
effect of light entering the material, being scattered once or multiple times beneath the
surface and exiting the material close to the point where it has entered the material.

Extensions and generalizations of the BRDF such as the bidirectional scattering surface
reflectance distribution function (BSSRDF, [119, 83]) for handling subsurface scattering,
or the bidirectional transmittance distribution function (BTDF, [7]) to handle transparency
and translucency, exist to deal with these situations.

This work focuses on materials with Lambertian reflectance [93]. For an object made of
a material with Lambertian reflectance property the perceived brightness does not depend
on the viewing direction:

R(x,ωi,ωo,n) = ρd, (2.70)

where ρd is the albedo of the surface, specifying the ratio between the reflected and incoming
light.

Given an object that does not emit light, that is made of a material with Lambertian
reflectance property, and fixing x the rendering equation 2.69 simplifies to:

Lo(ωo) =
∫

Ω
ρd · Li(ωi) ·max(n · ωi, 0) dωi = ρd ·

∫
Ω
Li(ωi) ·max(n · ωi, 0) dωi. (2.71)

So, in case of Lambertian reflectance the luminance Lo(ωo) is independent of ωo. Hence,
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a point on an object with Lambertian reflectance is imaged with the same luminance
independent of the camera position.

Controlled Illumination

If, in addition, the position of the light sources can be chosen the computation of the
normal can be further simplified. According to Eqn. 2.71 for an object with Lambertian
reflectance property and a known illumination setup, the image irradiance does not depend
on the camera position.

We can express the integration over the unit hemisphere Ω in this equation by inte-
grating over all possible directions of the hemisphere. These direction are all the directions
of the upper hemisphere Ω+ in a local coordinate system where the z-axis coincides with
the surface normal n and the x- and y-axis are oriented perpendicular to each and to the
z-axis, but otherwise arbitrarily:

Lo(ωo) =
∫

Ω
ρd · Li(ωi) ·max(n(x) · ωi, 0) dωi =

∫
Ω+
ρd · Li(T>ω′i) · n · ω′i dω′i, (2.72)

where

T · ωi =


sx sy sz

tx ty tz

nx ny nz

 ·

ωs

ωt

ωn

 =


ω′s

ω′t

ω′n

 = ω′i, (2.73)

and T> · ω′i = ωi, which follows from T · T> = I.
In an environment where the illumination can be controlled the incoming light Li(ω′i)

from every direction ω′i at a considered surface point is known. Assuming that the light
is coming from the positive x-direction and that the light is parallel we have Li(T>ω′i) =
ω′s·sx+ω′t·tx+ω′n·nx, and for the luminance Lxo(ωo) of the observed point under illumination
coming from the x-direction we have

Lxo(ωo) =
∫

Ω+
ρd · Li(T>ω′) · (n · ω′) dω′

=
∫

Ω+
ρd ·

(
ω′s · sx + ω′t · tx + ω′n · nx

)
· z · ω′ dω′

=
∫

Ω+
ρd · ω′n · nx · ω′n dω′

= ρd · nx ·
∫

Ω+
ω′n

2 dω′ (2.74)

Furthermore, to integrate ω′n over all directions ω′ of the hemisphere Ω+ we use spher-
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ical coordinates instead of Cartesian coordinates. From the transformation of Cartesian
coordinates (x, y, z)> to spherical coordinates (r, θ, ϕ)>


x

y

z

→

r · sin θ · cosϕ
r · sin θ · sinϕ

r · cos θ

 (2.75)

the Jacobi matrix of the transformation is given by

J = ∂(x, y, z)>
∂(r, θ, ϕ)> =


sin θ · cosϕ r · cos θ · cosϕ −r · sin θ · sinϕ
sin θ · sinϕ r · cos θ · sinϕ r · sin θ · cosϕ

cos θ −r · sin θ 0

 (2.76)

with determinant det J = r2 · sin θ. This yields dV = r2 · sin θ dr dθ dϕ as volume element
and dA = dV

dr = r2 · sin θ dθ dϕ as surface element for integration. With r = 1 we obtain

dA = sin θ dθ dϕ (2.77)

as surface element for the integration over the unit hemisphere and

ω′n = cos θ. (2.78)

Hence,

Lxo(ωo) = ρd · nx ·
∫

Ω+
ω′n

2 dω′

Eqn. 2.77
Eqn. 2.78= ρd · nx ·

∫ π
2

0

∫ 2·π

0
cos2 θ · sin θ dϕ dθ

= 2 · π · ρd · nx ·
∫ π

2

0
cos2 θ · sin θ dθ

= 2 · π · ρd · nx ·
[
−1

3 · cos3 θ
]π

2

0

= 2 · π · ρd · nx ·
(
−1

3 · cos3
(
π

2

)
+ 1

3 · cos3(0)
)

=
(2

3 · π · ρd
)
· nx, (2.79)

and the luminance of an observed surface point x with surface normal n = (nx, ny, nz)>

under illumination coming from the x-direction is proportional to the x-component of the
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surface normal n: Lxo(ωo) ∼ nx. With similar argument Lyo(ωo) ∼ ny and Lzo(ωo) ∼ nz

hold as well [107].

Uncalibrated Photometric Stereo

Uncalibrated photometric stereo refers to the task of computing the surface normals of a
captured object, if the directions to the light sources are not known [8, 9, 46]. In this case
the positions of the light sources are computed as well. This means to solve Eqn. 2.67 for
Ni with unknown light directions Ω.

This can be done by considering the information from all pixels and computing the
normals for all pixels at the same time. Stacking up those equations for n light sources
and m pixels we obtain a linear system of equations

Ω> ·N = I, (2.80)

with N = ρd · n consisting of the stacked vectors ni with stacked albedo ρi,d for each
pixel i. Here, N ∈ R3·m, I ∈ Rn·m and Ω ∈ R3·m×n·m. This linear system of equations is
overdetermined if n > 3. A least squares solution can be computed with SVD (Eqn. 2.33).

However, in the case of uncalibrated photometric stereo the normals and light directions
can be determined up to an invertible 3 × 3 matrix G for each pixel i. This is called the
generalized bas-relief ambiguity (GBA, [87, 13]). Considering the scenario with one light
source and one normal as given in Eqn. 2.67 a set of solutions exists:

Ω> · G−1 · G ·Ni = Ii, (2.81)

with G ∈ R3×3. If we fix a coordinate system where x-, and y-axis coincide with the x-,
and y-axis of the image, then the z-axis is parallel to the viewing direction of the camera.
In this case the matrix G can be written as

G =


1 0 0
0 1 0
a b c

 , (2.82)

where a, b, and c ∈ R. In order to be able to compute the true surface normals and
light directions additional assumptions have to be used. This includes assumptions on the
surface geometry, the surface albedo, or the strength of the light sources.
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Chapter 3

Camera Calibration

This chapter describes how we calibrate multiple cameras. Multiple cameras have to be cal-
ibrated geometrically in order to obtain their extrinsic camera parameters, which describe
the relative positions and orientations to each other and their intrinsic camera parameters,
which describe the process of projection of the scene onto the image plane. These parame-
ters allow to compute correspondences between pixels in the image and line of sights in 3D
space. The cameras have to be calibrated photometrically in order to reproduce the same
color in the same way. This entails the camera sensor’s response to different amounts of
incoming light, as well as the relative response of the sensor to the three colors red, green,
and blue.

Applications include the calibration of cameras in various 3D reconstruction set-ups,
for example in multiple view stereo reconstruction, shape-from-silhouettes approaches,
structured-light approaches, but also in the case of calibrating cameras in a motion capture
studio, for robot navigation, or for augmented reality applications. We also use camera
calibration for 3D reconstruction in the set-up described in the Chapter 4. As described in
Sec. 2.3.1, the cameras in multi-view reconstruction can be also auto-calibrated from the
acquired data using some assumptions. However, better calibration results can be obtained
by performing an explicit camera calibration, if possible.

First, we present an approach for the geometric calibration of the cameras that is an
extension of the approach presented in [59]. Then, we show how we perform a photometric
calibration of them.
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Figure 3.1: Examples of calibration patterns used in our approach. Each pattern consists
of a grid with 8 rows and 12 columns. A marker in one corner determines the orientation of
the pattern. A pattern can be identified by the binary number encoded in the bottom row.
From left to right: Patterns with identifiers 0, 42 = 101010(2), and 204 = 11001100(2),
respectively.

3.1 Geometric Calibration

In this section we describe our approach to estimate the intrinsic and extrinsic parameters
of multiple cameras using multiple coded patterns. The cameras can be static or moving.
While estimating camera parameters we automatically obtain parameters for all visible
patterns in the image. The parameters of a pattern include the position of the pattern and
its orientation in 3D space. They are similar to the extrinsic camera parameters.

3.1.1 Overview

In the approaches of Tsai [161] and Zhang [174] the corners of square regions on the
calibration patterns are used as points. Finding those corner points becomes less accurate
with smaller size of the pattern in the image. Hence, we use the centers of the regions as
initial 2D points as they are easier to detect.

In order to extract a sufficiently high number of 2D-3D correspondences for camera
parameter estimation, the patterns used in our approach consist of a regular grid of rect-
angles that are arranged in rows and columns as shown in Fig. 3.1. The distance between
adjacent regions is given as input parameter dregion. Furthermore, the length of the side of
a square region is equal to dregion. The number of rows and columns in the grid as well as
the overall size of the patterns can be chosen depending on the application. The number
of rows and columns ngrid,x and ngrid,y, respectively, is given as another input parameter.
To define and detect the orientation of a pattern, we use a specific region in one corner of
the pattern that merges three squares into an L-shaped region. All patterns have a unique
identifier that allows them to be distinguished from each other. The identifier is encoded
in one row of rectangles of the pattern. All other rows consist of regions of square shape.
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The identifier is a binary coded number where squares represent 0s and rectangles
represent 1s. The rectangles are twice as long and half as thick as the squares resulting
in the same area as the squares. The grid of squares, including the coded identifier and
the marker, are surrounded by a frame. Using such a calibration pattern, provides enough
2D-3D correspondences for the estimation process.

Our method is designed to handle images of several distributed calibration patterns.
Hence, a pattern is or can be imaged multiple times by the same camera as well as by
other cameras. The unique identifier and the information which image has been captured
by which camera allows to generate a “connection graph”. This connection graph is con-
structed iteratively and contains the visibility information between cameras and imaged
patterns.

Using this connection graph and the input images of the calibration patterns corre-
spondences for the parameter estimation are generated. In a step-wise manner those cor-
respondences are used to finally estimate camera and pattern parameters.

3.1.2 Correspondence Points and Pattern Identification

In the first step we generate correspondence points and identify each visible calibration
pattern. In order to determine the position of the rectangular and square regions of the
calibration pattern different image processing methods are performed. For more details,
see [81, 57, 146]. For each input image Iinput these are following steps:

1. The input image Iinput is converted to a luminance image Ilum [80]:

Ilum = 0.299 · Iinput,r + 0.587 · Iinput,g + 0.114 · Iinput,b, ∀x ∈ Iinput (3.1)

where Ilum denotes the pixel of the image Ilum and Iinput,r, Iinput,g, Iinput,b denote the
red, green, and blue channel of the image Iinput.

2. We classify each pixel in the luminance image Ilum individually as black or white.
To do this, we threshold the image with a specified threshold t resulting in a binary
image Ibin:

Ibin =

 1, Ilum > t,

0, else,
∀x ∈ Ilum. (3.2)

3. In order to remove noise in the image Ibin we perform a morphological opening
followed by a morphological closing. The binary image Ibin is filtered with the same

49



structure element M . As a result of this step, we obtain the filtered, binary image
Ifiltered

Ifiltered = (Ibin ◦M) •M. (3.3)

As structuring element M we use a centered square of size 2 · tM + 1× 2 · tM + 1 with
parameter tM .

4. A pattern is identified by segmenting the filtered, binary image Ifiltered and counting
the number of distinct segments that each segment is adjacent to. Since the number
of regions in each row and column is known, the total number of distinct segments a
calibration pattern consists of, is known as well.

5. The 2D-3D correspondences of a calibration pattern are established: The 2D positions
are obtained by computing the center points of each rectangular and square region.
From the L-shaped marker in each calibration pattern its orientation is determined.
From the orientation and the given distances of the regions between each other the
absolute 3D positions are computed. In our case we assume the regions to lie in the
x-y-plane. Hence, the 3D position has z-coordinate 0.

6. Last, the binary encoded number in the pattern has to be identified. This is done
by regarding the pixels of a region as a distribution around the region center. By
performing a PCA as described in Eqn. 2.32, the eigenvalues and eigenvectors for
each region can be computed. We compare the ratio of the two eigenvalues and
consider the directions of the two eigenvectors. This allows to identify each region
either as squares or rectangle, since all but the first row of the pattern consist of
squares only.

3.1.3 Generation of Connection Graph

In the next step we assign globally consistent, unique identifiers to all patterns and we
generate a connection graph.

First, all occurrences of the same calibration pattern in multiple images taken by the
cameras have to be addressed. Because the position of the pattern or the cameras might
have changed a new, unique identifier is used for the same calibration pattern for each
captured image. This new, unique identifier is consistently applied to the corresponding
pattern for all the camera views. This way one calibration pattern can be used to generate
more correspondence points and increase the robustness of the calibration result.
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Second, the cases have to be handled in which a calibration pattern is not seen in
all cameras. To address this problem we introduce a data structure that we refer to as
connection graph. It is the bipartite, undirected graph in which cameras and patterns are
represented as nodes. Whenever a pattern is visible in a camera view, we add an edge in
the graph connecting the corresponding camera and pattern node. The added edge means
that position and orientation of the camera can be estimated with respect to the pattern.

This approach is based on the following two ideas: On the one hand, if two patterns are
visible in one image, the position and orientation between those patterns can be estimated
(see Sec. 3.1.4: single view alignment). On the other hand, if one pattern is visible in
two different camera views, the position and orientation between the two cameras can be
estimated (see Sec. 3.1.4: multiple view alignment).

The position and orientation of a pattern relative to the camera can be estimated, if
(and only if) there is a path from the corresponding camera node to the corresponding
pattern node in the connection graph. Globally consistent camera and pattern parameters
can be estimated if (and only if) the connection graph is connected.

3.1.4 Parameter Estimation

Having generated the connection graph, we will now show how consistent camera and
pattern parameters are estimated for the scene. For simplicity, in the following we will
describe the problems as if the scene is observed by multiple static cameras. However, a
single moving camera or multiple moving cameras can be handled in the same way by just
generating a new virtual static camera for each point in time.

The estimation of camera and pattern parameters is done in six steps:

1. Estimation of camera parameters for each pattern in each camera view using Tsai’s
approach.

2. Alignment of all patterns visible in each camera view.

3. Estimation of pattern parameters and intrinsic camera parameters for all patterns
visible in each camera view.

4. Consistent alignment of all cameras and all patterns.

5. Estimation of consistent camera and pattern parameters for all patterns and cameras.

6. Refinement of 2D points and re-estimation of camera parameters (optional).
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In our approach we represent cameras as described in Eqns. 2.12 and 2.13. We denote
the projection matrix corresponding to camera k by Pk. The orientation of the camera is
represented by the three Euler angles ϕ, ϑ, and ρ as described in Eqn. 2.18. The calibration
pattern l is represented as the 4× 4 transformation matrix from local to global coordinate
system given in Eqn. 2.5. The pattern parameters consist of the three Euler angles α,
β, and γ and the position of the pattern D

¯
∈ R3. The three Euler angles form a 3 × 3

orthogonal rotation matrix S and the transformation matrix for the pattern is denoted by
Ql.

The projection of a 3D point X of pattern l given in homogeneous coordinates in the
pattern coordinate system into the camera view k is then given by

xk,l = Pk · Ql ·X, (3.4)

or explicitly written as

xk,l = Kk
[
I3×3 0

] R>k −R>k ·C¯ k
0> 1

 Sl D
¯ l

0> 1

X, (3.5)

where xk,l is the corresponding 2D point in the image plane of camera k given in homoge-
neous coordinates. Following the naming given in Sec. 2.1.3 we have the calibration matrix
Kk, the rotation matrix Rk, and the center C

¯ k
of camera k. Furthermore, Sl is the rotation

matrix and D
¯ l

the position of calibration pattern l.
Lens distortion is modeled as in Eqns. 2.19 and 2.20. Hence, we only model radial

lens distortion since it is the dominant distortion in the lens. Furthermore, we use the
parameters k1 and k2 in our distortion model.

For the sake of clarity, we denote intermediate results P and Q of the camera and
pattern parameter estimation of the corresponding processing step m with an additional
index: P(m) and Q(m).

Tsai Calibration

The first step in the estimation process is to estimate camera parameters for each calibra-
tion pattern individually. This step is performed after the calibration patterns have been
identified and assigned globally consistent identifiers in the case of a calibration pattern
being imaged multiple times.

We estimate the camera parameters P̂(1)
k,l for camera k with respect to the calibration
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pattern l using the established correspondences between the measured 2D points x̃j,k,l in the
image plane and the true 3D points X̄j on the calibration pattern. The camera parameters
are computed using Tsai’s method [161], as described in Sec. 2.1.5. More specifically, we
estimate the focal lengths f , the rotation matrices R, and the positions C of the cameras.

Furthermore, we perform a bundle adjustment (see Eqn. 2.55) to minimize the re-
projection error:

argmin
P̂(1)
k,l

∑
j

d
(
x̃j,k,l, P̂(1)

k,l X̄j

)2
∀k, l, (3.6)

where d(a,b) =
√
||a − b|| denotes the Euclidean distance. In this step we assume further-

more, that the calibration pattern l lies in the x-y-plane of the world coordinate system.
Hence, the pattern parameters Q̄(1)

k,l are given by Q̄(1)
k,l = I4×4.

Single View Alignment

Given the estimated camera parameters P̂(1)
k,l from the first step, we align the camera pa-

rameters P̂(1)
k,l from each camera. We obtain consistent extrinsic camera parameters and at

the same time the relative positions and orientations of pattern. To do this, we move all
patterns Q̄(1)

k,l into the corresponding camera coordinate system by

Q̂(2)
k,l :=

Ŝ(2)
k,l D̂

¯
(2)
k,l

0> 1

 , with Ŝ(2)
k,l = R̂(1)>

k,l and D̂
¯

(2)
k,l = −R̂(1)>

k,l · Ĉ¯
(1)
k,l , ∀k, l, (3.7)

P̂(2)
k,l := K̂(2)

k,l

[
I3×3 0

]
I4×4, ∀k, l. (3.8)

Note, that from the two equations above the following holds:

P̂(1)
k,l Q̄

(1)
k,l X̄

(1)
j = x̂(1)

j,k,l = x̂(2)
j,k,l = P̂(2)

k,l Q̂
(2)
k,l X̄

(2)
j ∀j, k, l. (3.9)

Single View Bundle Adjustment

In the third step we incrementally perform a bundle adjustment (see Eqn. 2.55) for the
camera parameters P̂(2)

k,l and the pattern parameters Q̂(2)
k,l similar to an incremental bundle

adjustment.Let nk be the number of calibration patterns that are visible in camera k.
Iteratively we compute:

argmin
P̂(3,i)
k

Q̂(3,i)
k,l

∑
j,l6i

d
(
x̃j,k,l, P̂(3,i−1)

k Q̂(3,i−1)
k,l Xj

)2
for i = 1, . . . , nk,∀k, (3.10)
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with initialization P̂(3,0)
k := P̂(2)

k and Q̂(3,0)
k,l := Q̂(2)

k,l and results P̂(3)
k := P̂(3,nk)

k and Q̂(3)
k,l := Q̂(3,nk)

k,l

for all calibration patterns l.

Multiple View Alignment

In the forth step we align all cameras and patterns with respect to the first camera. Using
the generated connection graph we are able to select two camera views k and k′ that have
a pattern l in common.

The camera k′ is aligned to camera k by applying the transformation Tk,k′ , which
consists of the inverse transformation corresponding to pattern l in view k′ followed by the
transformation corresponding to pattern k in view k:

Tk,k′ := Q̂(3)
k,l

(
Q̂(3)
k′,l

)−1
. (3.11)

The transformation Tk,k′ is applied to the camera P̂(3)
k′ and all pattern Q̂(3)

l′,k′ that have not
been already aligned:

P̂(4)
k′ := P̂(3)

k′ T−1
k,k′ , (3.12)

Q̂(4)
l := Tk,k′ Q̂(3)

k′,l. (3.13)

For initialization, the first camera P̂(3)
1 and all patterns Q̂(3)

l := Q̂(3)
1,l visible in this camera

view are used. By iteratively selecting cameras k′ in which an aligned calibration pattern
is visible and aligning that camera k′ as described above, consistent camera and pattern
parameters are obtained. Aligning all cameras k to camera 1 is possible, if the connection
graph is connected.

Multiple View Bundle Adjustment

After the multiple view alignment, we perform more bundle adjustments (see Eqn. 2.55)
to minimize the re-projection error of the patterns Q̂(5)

l in all camera views P̂(5)
k . As in

the Single View Bundle Adjustment, we optimize the camera parameters and the pattern
parameters in this step. Iteratively we compute:

argmin
P̂(5,i)
k

Q̂(5,i)
l

∑
j,k6i,l

d
(
x̃j,k,l, P̂(5,i−1)

k Q̂(5,i−1)
l Xj

)2
for i = 1, . . . , k. (3.14)
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As in the single view bundle adjustment step, for initialization of these bundle adjustment
steps P̂(5,0)

k := P̂(4)
k and Q̂(5,0)

l := Q̂(4)
l are used. The results are P̂(5)

k := P̂(5,k)
k and Q̂(5)

l := Q̂(5,k)
l .

Refinement

As an optional sixth step a 2D point refinement is performed. The 2D points x̃j,k,l of cali-
bration pattern l in camera k have been computed as the center (of area) of the projected
rectangular and square regions. Because this center is not invariant under perspective pro-
jection, the measured 2D point does not correspond to the projection of the true geometric
center (of area) of the region. With the estimated parameters P̂(5)

k and Q̂(5)
l for all cameras

k and all calibration patterns l we can correct the measured 2D points.
A 2D offset vector is used to compensate for the error of the 2D point x̃j,k,l and finally,

to obtain the corrected 2D point x̃′j,k,l. This 2D offset vector is computed as the difference
between the projected geometric center (of area) of the region and the center (of area) of
the projected region.

The projected geometric center of a region is obtained by the intersection of the two
diagonals of that region. It is invariant under perspective projection. The projected region
appears as a quadrilateral in the image. A square or rectangular region is convex, hence the
projected region is convex as well. The center of a convex quadrilateral can be computed
as follows: First, compute the centers of the four triangles a quadrilateral can be split into.
These four centers form another quadrilateral. Then, compute the intersection of the two
diagonals of that new quadrilateral.

Using the new 2D points x̃′j,k,l we re-estimate all parameters:

argmin
P̂(6)
k

Q̂(6)
l

∑
j,k6i,l

d
(
x̃′j,k,l, P̂

(6)
k Q̂(6)

l Xj

)2
. (3.15)

We initialize the bundle adjustment with the results from the previous bundle adjustment:
P̂(6)
k := P̂(5)

k for all k and Q̂(6)
l := Q̂(5)

l for all l.
Our approach is flexible: Given a size of the patterns the size of the rectangular and

square regions can be traded for the number of rows and columns in the pattern. On the one
hand bigger regions lead to a more accurate detection of their centers. On the other hand,
increasing the size of the regions reduces their number. Hence, by the choice of the size of
the regions accuracy in detecting them can be traded for the number of correspondences.
However, several images can be captured of the same pattern from approximately the same
position in order to increase the number of correspondences.
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Figure 3.2: Synthetic image sequence. 6 out of 9 images shown. The positions of the
projections of the estimated patterns into the image planes of the estimated cameras can
be seen.

Additionally, the calibration patterns do not have to be visible in all the images. Our
method can detect whether it is possible to obtain parameters for all cameras and patterns.
If this is not possible, the method can compute parameters for the distinct sets of cameras
and patterns that are visible in the input images.

Furthermore, the number of correspondences can be simply increased by capturing more
images of the calibration patterns. By distributing several calibration patterns in the scene
the volume can also be sampled in a better way. Hence, a better calibration accuracy is
obtained within this volume.

3.1.5 Results

This section presents results of tests performed to evaluate our approach. In a first test,
we used synthetic data to be able to compare the estimated camera parameters with the
ground truth. In a second test, we took images from several calibration patterns located
on scale paper to compare estimated pattern positions with measured pattern positions.
Finally, we applied our method to calibrate two cameras of a robotic head which can
perform human-like movements.

Synthetic Ground Truth Example

We rendered a series of 9 images of a scene in which we placed six calibration patterns
(see Fig. 3.2 and 3.3). Generating a synthetic series of images enabled us to compare our

56



Figure 3.3: Synthetic image sequence. Detail of one of the images. Due to occlusion this
pattern is not visible in the image, however, from the other images the position of the
pattern can be estimated accurately.

Image Error RMSE
f C ϕ, ϑ, ρ

[mm] [mm] ×10−4 [rad]
1 0.00861 0.07769 1.8215
2 0.06058 0.26194 9.3651
3 0.01667 0.10513 7.0942
4 0.00287 0.03357 2.5241
5 0.00593 0.11377 1.1414
6 0.00130 0.13067 1.1775
7 0.00637 0.06130 0.9941
8 0.00428 0.07432 8.3503
9 0.05864 0.11363 11.946
all 0.02936 0.12170 6.3581

Table 3.1: Synthetic image sequence. Comparison between estimated camera parameters
and ground truth without 2D point refinement. Errors given for focal length, camera center
and RMSE for Euler angles of orientation.
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Image Error RMSE
f C ϕ, ϑ, ρ

[mm] [mm] ×10−4 [rad]
1 0.00166 0.01962 1.7127
2 0.01492 0.05603 7.9734
3 0.00311 0.02640 6.3498
4 0.00106 0.01355 2.2049
5 0.00872 0.05367 1.1054
6 0.00238 0.03902 1.2050
7 0.00026 0.01868 1.0056
8 0.00161 0.03465 6.7190
9 0.06134 0.07239 11.350
all 0.02852 0.10208 5.6700

Table 3.2: Synthetic image sequence. Comparison between estimated camera parameters
and ground truth with 2D point refinement. Errors given for focal length, camera center
and RMSE for Euler angles of orientation.

estimation results with the ground truth (see Tab. 3.1 and 3.2). To put the accuracy of
the estimation results into relation, the rendered virtual room has a size of approximately
4 × 4 meters. Compared to the overall extend of the scene, the observed errors can be
regarded as very low.

We performed two runs of camera parameter estimation using our approach. In the first
run we estimated camera and pattern parameters without refining the 2D points obtained
from Sec. 3.1.2, while in the second run we refined the 2D points. Although we found the
estimation results using the initial 2D points to be good, they could be improved by the 2D
point refinement (an improvement of approx. 3%, 16%, and 11% percent for focal length,
camera center and camera rotation, respectively).

Real-world Ground Truth Example

For a real-world example we printed seven calibration patterns and arranged them on a
paper with millimeter scale. Twelve images of this scene were taken. Since we placed the
pattern on the scale paper, in this example all patterns lay in one plane. By using scale
paper we were able to measure the corners of the patterns. From the corner points we then
computed the centers of the patterns. After applying our camera calibration approach, we
were able to compare the estimated pattern positions to the measured ones (see Tab. 3.3).
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Figure 3.4: Real-world image sequence: 6 out of 12 images shown. Patterns placed on
paper with millimeter scale. Projections of estimated patterns into the camera images are
overlaid.

The largest absolute difference in Tab. 3.3 is 1.14 mm in relation to a 583 mm absolute
pattern distance (corresponding to a relative deviation of 0.2%).

3.2 Photometric Calibration

The geometric calibration estimates the position and orientation of the cameras in the
world coordinate system and the intrinsic camera parameters that govern the projection.
In addition to this geometric calibration a photometric calibration of the cameras has to
be performed as well. This calibration step relates the measured intensities of the camera
in the acquired image to the physical intensities in the real world.

This calibration step consists of two parts:

1. Color mapping or color balancing refers to the process of mapping the measured
colors in the image to true colors. To do that, a color chart is used [31]. The color
checker is a chart consisting of several different patches with calibrated colors (see
Fig. 3.5). Capturing an image of such a color checker allows to compute how the true
color components red, green, and blue, r̄, ḡ, and b̄ are mapped to the imaged color
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— 876.94 354.41 368.27 477.54 823.98 829.50
876.94 — 714.22 711.34 399.43 285.58 333.02
354.41 714.22 — 568.29 382.47 559.94 807.66
368.27 711.34 568.29 — 380.13 784.79 540.83
477.54 399.43 382.47 380.13 — 406.04 425.21
823.98 285.58 559.94 784.79 406.04 — 582.95
829.50 333.02 807.66 540.83 425.21 582.95 —
— 876.63 354.20 368.03 477.58 823.16 829.40

876.63 — 713.65 711.24 399.09 285.16 332.37
354.20 713.65 — 567.77 382.19 559.11 806.94
368.03 711.24 567.78 — 380.14 784.00 541.16
477.58 399.09 382.19 380.14 — 405.20 424.76
823.16 285.16 559.11 784.00 405.20 — 581.81
829.40 332.37 806.94 541.16 424.76 581.81 —
— 0.30 0.21 0.23 0.04 0.82 0.11

0.30 — 0.58 0.10 0.34 0.42 0.65
0.21 0.58 — 0.51 0.28 0.83 0.72
0.23 0.10 0.51 — 0.01 0.80 0.33
0.04 0.34 0.28 0.01 — 0.83 0.44
0.82 0.42 0.83 0.80 0.83 — 1.14
0.11 0.65 0.72 0.33 0.44 1.14 —

Table 3.3: Real-world evaluation results. All values are given in millimeters. Distance
between pattern i and j is given in column i and row j. Top: Measured distances be-
tween pattern centers. Middle: Distances between estimated pattern positions. Bottom:
Difference between top and middle table.
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components r̃, g̃, and b̃. This allows to compute a 3× 3 matrix C
r̃

g̃

b̃

 = C ·


r̄

ḡ

b̄

 (3.16)

by a least squares method (see Sec. 2.2). The measured and reference color values
are normalized to the interval [0, 1] before computation of C. With this matrix C
the colors of all subsequently taken images can be balanced by applying the inverse
matrix C−1: 

r̄

ḡ

b̄

 = C−1 ·


r̃

g̃

b̃

 . (3.17)

This way the true colors of the captured object or scene are obtained independent
of the lighting conditions. Performing this color balancing explicitly also performs a
white balancing. For only performing white balancing, a gray balance card as shown
in Fig. 3.6 is already sufficient. However, using the 3×3 matrix C for color balancing
captured images using a color checker only works if the camera sensor has a linear
response. Hence, in addition a response curve estimation has to be performed as
follows.

2. Response curve estimation is the task of estimating the response of the camera’s
sensor to different amounts of incoming light. The obtained response curve relates
the amount of incoming light and the measured pixel values of the sensor. In our
pipeline the response curve has to be estimated in order to determine whether the
camera sensor has a linear response or not. With a linear response, the measured
pixel values are proportional to the amount of incoming light and hence the exposure
time. Camera sensors are designed to have a linear response [155], however, other
steps of the image processing pipeline of the camera’s digital signal processor (DSP)
can introduce non-linearities (see Sec. 3.2.1). Photographic film in analog cameras
has also a non-linear response [82]. For estimating the response curve a color checker
is used. In this case a sequence of images with different exposures is captured. Since
the true color values of the patches of the color checker and the exposure times
for each image are known, a response curve for each color component can be fitted
to the measured data using least squares techniques (see Sec. 2.2). The measured
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Figure 3.5: Color Rendition Chart Figure 3.6: Gray Scale Balance Card

and reference color values are normalized to the interval [0, 1] before response curve
estimation.

For more in-depth information about color mapping see [66, 31]. For camera response
curve functions and their estimation we refer to [114, 60].

3.2.1 Camera Image Processing Pipeline

Different processing steps are performed by the camera’s DSP during the development of
the raw image to a JPG image. We will briefly explain the reasons why those processing
steps are applied to the raw image. They include:

• Setting the black and saturation level: Because of the photo-electric effect the CCD
or CMOS sensor of the camera measure in each sensor cell a voltage that depends
on the amount of incoming photons. Then these voltages are amplified depending
on the ISO setting that corresponds to the film speed, which is the sensitivity of
a photographic film. Finally, the amplified voltages are converted by an analog-
to-digital converter. The black level corresponds to the voltage that a sensor cell
measures, if no photons reach the cell. The saturation level is the measured voltage
when a cell is saturated (see Fig. 4.3). The voltage of a saturated sensor cell cannot
increase, even if more photons hit the cell. Hence, the range that the sensor can
measure is determined by the black and saturation level. It is mapped to the range
[0, 214 − 1].

• Noise reduction: There are different sources for noise in the measuring process [66].
The most significant one is the noise introduces by the ISO setting of the camera.
The voltage that is measured in the sensor cells due to the photo-electric effect is
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Figure 3.7: Noise in the images with different ISO settings ranging from ISO 100 to ISO
6400. Standard deviation of the white, gray, and black patch of the gray scale balance
card shown in Fig. 3.6. Values averaged over 10 images. Standard deviation given relative
to range of values. From top left to bottom right: Noise of luminance computed from
RGB, Noise in red channel, green channel, and blue channel.

amplified before being converted by the ADC. The ISO setting of the camera controls
this amplification. It corresponds to the sensitivity of the photographic film in analog
cameras. Lower ISO settings lead to less amplification and reduced sensitivity, while
high ISO settings lead to more amplification and increased sensitivity. However,
amplifying the measured voltage introduces additional noise. The higher the ISO
setting, the more noise is introduced, which has to be dealt with in a noise reduction
step (see Fig. 3.7).

• White balancing: The appearance of individual colors in the image depends on the
color spectrum of the illumination which is given as a color temperature. White
balancing refers to the task of correcting the acquired colors’ appearances in the
image to a “natural” appearance. Here, natural appearance refers to the appearance
in daylight, which corresponds to a temperature of 5500 K. White balancing is done
either automatically, or by correcting the specified temperature of the light sources.

• Demosaicing (also called “debayering”): The CCD or CMOS sensor of digital cameras
cannot measure different colors. In order to generate RGB images red, green, and
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blue filters in front of the sensor cells are used. The filters for all three color channels
are typically arranged in a repeating pattern for each 2×2 block of sensor cells. This
pattern is also called Bayer pattern. The pattern consists of a red filter in one corner,
a blue filter in the opposite corner, and green filters for the two remaining corners of
each 2× 2 block. The Bayer pattern only yields one color component per pixel. The
interpolation process that fills in the missing information for the other color channels
per pixel is called demosaicing or debayering.

• Image sharpening: Because of the Bayer pattern in the raw image a demosaicing
algorithm has to be applied. The demosaicing process interpolates the measured
and fills in the missing color information. In this way RGB values for every pixel
are generated. The interpolation process can be thought of as a down-sampling of
the image from full resolution to half resolution, followed by an up-sampling back
to full resolution. This is comparable to a smoothing of the original image. Hence,
by demosaicing a smoothed image is generated. In order to compensate for the
smoothing an image sharpening is applied.

• Gamma correction: The mapping of linear input values from the camera’s sensor to
output values is called gamma correction. The input values are mapped exponentially
with a given parameter γ. This step is performed in order to give an image the same
appearance as in reality: The human visual system has a non-linear, logarithmic
response. Hence, in order for the image to appear as in reality the gamma correction
maps the measured values accordingly.

• Rescaling: CCD and CMOS sensors have limited color depth. Our cameras have
14 bits color depth, but consumer DSLR cameras with 12 bits are also often encoun-
tered. However, 8 bits is the color depth that all common file formats support, while
16 bits color depth is supported by some file formats as well. Hence, in order to store
the acquired information the data with 12 or 14 bits of color depth has to be scaled
to fin in the range of the file format. Additionally, the measured values in all the
RGGB Bayer pattern blocks can be corrected by scaling the red, the blue, and the
two green channels separately.

• Image compression: In order to use less space on the hard drive or faster transmis-
sion over network, the processed image is stored using the JPG file format. JPG is
a format with lossy compression. The steps that are being performed in the conver-
sion include color space conversion, chroma sub-sampling, discrete cosine transform,
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quantization, and entropy encoding. Depending on the quality setting more or less
information is lost when converting the image to JPG. Hence, after conversion the
original image cannot be retrieved anymore. On the other hand, in comparison to
the loss in visual image quality the size of the image is significantly reduced.

For most of the steps above different methods and/or different settings exists. The final
JPG image is one from many possible developed images. However, the majority of the
steps are designed to create a JPG image that can be viewed by the photographer to assess
for example the quality of the image, the composition of the motive, or the exposure.
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Chapter 4

Acquisition Hardware

This chapter describes the acquisition hardware that we use in our pipeline. First, we de-
scribe the illumination hardware that we use to generate controlled illumination. Second,
we describe the camera setup and setting that we use for capturing the objects in the light
stage. For precise 3D reconstruction it is important both, to generate accurate illumination
and correctly process the acquired data in order to obtain physically meaningful measure-
ments. They are crucial for the computation of normal maps, which is finally presented in
the last section.

4.1 Light Stage

The light stage is an apparatus that allows us to generate controlled illumination. It is
a sphere-like structure. At its inside light emitting diodes (LEDs) are attached. Their
brightness can be controlled individually to generate different illuminations. We use the
Light stage to generate specific illuminations that allows us to compute normal maps. The
normal maps are then used as input to our 3D Reconstruction method presented in Sec. 5.

4.1.1 Structure

The structure of the light stage itself is a geodesic dome. Geodesic domes are three di-
mensional polyhedra that resemble spheres. One possibility for obtaining a geodesic dome
such as the light stage that we use, is to construct it in the following way: The basic shape
of the geodesic dome is a regular icosahedron. Since the regular icosahedron is a Platonic
solid, a circumscribed sphere exists that passes through all vertices of the icosahedron.
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Figure 4.1: The structure of the light stage. Left: The regular icosahedron is the basic
shape of the light stage. Right: The geodesic dome that forms the shape of the light
stage. The dome is obtained from subdividing each triangle of the icosahedron into four
triangles. LEDs are placed at each vertex and in the middle of each edge.

Among the regular polyhedra made of triangles the icosahedron is the one that is most
similar to a sphere. It consists of 20 equilateral triangles, 12 vertices and 30 edges. By
subdividing each of its triangles into smaller triangles we obtain another polyhedron. The
triangles can be subdivided into quadratically many, smaller, equally sized, equilateral
triangles. Then, for this obtained polyhedron the newly introduced vertices can be moved
outwards such that the circumscribed sphere passes through them as well. We obtain the
structure of the light stage as shown in Fig. 4.1. Note however, that the resulting triangles
are not equilateral any more.

In the case of our light stage each triangle has been subdivided into four triangles. Its
diameter is approximately 80 cm. The Light Stage itself is assembled from metal bars that
correspond to the edges of the polyhedron. The five triangles facing the ground are missing
in order for a person to stand inside the Light Stage such that the face is in the center, or
to leave room for a supporting structure for objects placed in the center of the sphere.

4.1.2 Illumination

As light sources we use 156 light emitting diodes (LEDs) in total: 42 LEDs are placed at
the vertex positions, 120 at the midpoints of each edge, and 6 are missing at the bottom
part of the Light Stage because of the five left out triangles.

Most light sources emit a continuous electromagnetic spectrum of light. This means
the light contains different wave lengths that inside and outside the visible spectrum. The
visible spectrum contains light of wave lengths approximately between 380 nm and 780 nm.
The different wave lengths in the spectrum have different intensities. The color spectrum of
the light sources is related to the so-called black body radiation: A black body of a certain

68



b b b b b b b b b b
b b b b b b

b b b b b
b b b b b
b b b b b
b b b b b
b b b b
b b b b b
b b b b b
b b b b
b b b b b
b b b b
b b b b b
b b b b b
b b b b b
b b b b b
b b b b b
b b b b b
b b b b b
b b b b b b b

b b b b b
b b b b b
b b b b
b b b b b
b b b b b
b b b b b
b b b b b b

b b b b b
b b b b b
b b b b
b b b b b
b b b b b
b b b b b b

b b b b
b b b b b b

b b b
b b b b b b

b b b b b
b b b b b
b b b b
b
b
b b
b
b b b
b b b
b b b
b b b b b b b b

b b b b
b b b b
b b b
b b b b b
b b b b
b
b
b b
b b
b b b b b

40950

1

Figure 4.2: Brightness of LEDs depending on input value of LED drivers. Brightness scaled
to the range [0, 1].

temperature emits a characteristic electromagnetic spectrum. The color spectrum of the
light source can be characterized by the corresponding temperature value given in Kelvin of
a black body emitting an electromagnetic spectrum that best approximates the spectrum
of the light source. Light sources that emit a continuous spectrum are, for example, the
sun or incandescent light. Other light sources, like vapor lamps, emit a spectrum of light
that contains only one or a few characteristic wave lengths.

The LEDs attached to the Light Stage emit a spectrum that can be characterized by
approximately 6000 K color temperature. The brightness is individually controlled by
pulse-width modulation by LED drivers in 4096 steps between 0 and 4095, which corre-
sponds to 12 bit of information. Furthermore, the brightness of the LEDs can be controlled
linearly as shown in Fig. 4.2. The drivers use the serial peripheral interface (SPI). The
SPI is a serial interface designed for synchronized serial data transmission. Each driver
can control 16 light emitting diodes, so in order to control all light sources of the Light
Stage 10 drivers are daisy-chained and controlled by a micro-controller. In our case the
brightness values for all light sources are sent as a data sequence of 156 12-bit values by the
micro-controller to the drivers. The chaining of the drivers results in the first driver setting
the brightness of the first 16 light sources and forwarding the remaining data sequence to
the next driver. The second driver then sets the brightness of the next 16 light sources and
forwards the remaining data sequence to the next driver and so on, until the brightness of
all LEDs have been set.
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4.1.3 Micro-controller

We use an Arduino ATMega1280 micro-controller with 16 MHz clock frequency that can
handle 54 digital input/outputs, 16 analog inputs and can operate one SPI. The micro-
controller has 128 KB of flash memory, where approximately 124 KB can be used for storing
the code of uploaded programs. Furthermore, 8 KB of RAM memory are available to the
executed program.

Programs for the Arduino micro-controller are written in a restricted version of the C
programming language. These restrictions of the programming language come from the
limited abilities of the processor. A integrated development environment as well as plug-ins
for developing programs for the Arduino are available. They contain libraries that allow
to read from, write to, and set inputs and outputs. Furthermore, a compiler is available,
as well as an uploader that allows to upload the compiled program to the micro-controller
via USB connection.

As mentioned above the serial peripheral interface is used to transmit the sequence of
brightness values for all LEDs to the LED drivers. From the constructions of the Light
Stage as a regular icosahedron with subdivided triangles the positions of the individual
light sources can be computed. Those positions are stored in the flash memory of the
micro-controller to be accessible during program execution.

The micro-controller is also used to release the cameras’ shutters. This is done in the
following way: one digital output pin of the Arduino activates a electro-mechanical relay
that closes a larger circuit containing up to ten relays. Each of those relays is connected
to one camera via the remote control terminal. This remote control terminal allows both,
activating the auto-focus and releasing the shutter. We do not use the ability of the remote
control terminal to auto-focus, because auto-focus takes some additional time that reduces
the maximal number of images we can capture per second. Furthermore, by using auto-
focus before every image acquisition it is not guaranteed that the camera will focus on the
same distance between two image acquisitions. Hence, we use the functionality of releasing
the shutter through the circuitry only.

The delay introduced by one relay is 5 ms according to the specifications. Hence, the
delay of the entire circuitry for releasing the camera shutters is about 10 ms. On the
other hand, the exposure time that we use is at least around 40 ms (1/25). Additionally,
the cameras introduce a delay between the signal of releasing the shutter and the image
acquisition. Another delay is introduced after the image acquisition when the captured
information is read out from the CMOS sensor. Those delays result in a maximal frame
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rate of the camera of about 3.7 frames per second (fps), which corresponds to about 270 ms.
So, the delay introduced by the circuits with relays is low compared to the delay of the
cameras and the exposure time that is used for image acquisition. Hence, from these figures
and from measurements we assume that the image captured are synchronized in the sense.

4.2 Cameras

In our hardware set-up we use identical Canon 550D consumer DSLR cameras. The cam-
eras are mounted on tripods. The image stabilization is turned off, because otherwise we ex-
perienced misaligned images within acquired image sequences. The misalignment happens
because the image stabilizer is correcting for movement that does not exist. The cameras
have a CMOS sensor with a resolution of 5184 × 3456 pixels, corresponding to approxi-
mately 18 million pixel (18 MP). The sensor has a size of approximately 22.3× 14.9 mm,
which is roughly 38 % the size of a full frame sensor. Hence, the pixel size of the camera’s
sensor is approximately 4.3×4.3 µm. The camera’s crop factor, that is the factor the focal
length has to be multiplied with to obtain a comparable field of view using a full frame
sensor, is 1.6.

The camera uses a 14-bit analog-to-digital converter (ADC): The analog voltage mea-
sured by the sensor is converted to a digital value with 14 bits precision. Hence, the camera
sensor can distinguish 214 different shades of brightness. All cameras are equipped with an
identical Canon EF-S 18–135 mm f/3.5–5.6 IS zoom lens, that allows to adjust the effective
focal length of the lens between 18 and 135 mm with an aperture of f/3.5 at 18 mm and
f/5.6 at 135 mm.

4.2.1 Acquisition settings

All images are captured in the manufacturer’s raw file format CR2 (Canon original RAW
2nd edition) and in the JPG file format at the same time. As with every image given in
a raw file format, several settings can be changed after the image has been acquired and
hence, the image can be edited to some extent before it is developed and saved as a JPG
file. We acquire images with aperture f/7.1, exposure time of 1/40 s and an ISO setting
of 800. The focal length of the cameras’ lenses is set to approximately 32 mm, which
corresponds to a focal length of 50 mm for full frame cameras, because of the crop factor of
1.6. The aperture represents a compromise between the good depth of field and a sufficient
amount of incoming light in order to reduce the shutter time. The ISO setting represent a
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good compromise between noise in the image and sensor sensitivity in order to reduce the
shutter time for a general acquisition set-up (see Fig. 3.7).

However, in case of static objects the acquisition time is less important than in case
of acquiring for example moving objects, a human face or a facial expression. With static
objects the shutter time can be increased in order to compensate a smaller aperture which
increases the depth of field. Furthermore, a lower ISO setting can be used to reduce noise
in the images.

The acquired image in the JPG file format is an image that is developed by the camera’s
digital signal processor (DSP) from the corresponding raw image with the given camera
settings at acquisition time (see Sec. 3.2.1).

However, we are interested in using the cameras to obtain physically correct measure-
ments of the incoming light. Hence, we want to minimize the post-processing to a minimum
and only perform the necessary development steps as described in the following section.
That means, we are only interested in setting and correcting for the black and saturation
level of the raw images. In order to have full control of the other processing steps we handle
them ourselves.

4.2.2 Image Development

In this section we present how we process the raw image data. This include the usage of
tools for developing the raw images as well as the post-processing that we use for further
developing the image. The main focus is to obtain physically correct measurements of the
incoming light. From estimating the camera response curves as described in Sec. 3.2 we
know that the cameras in our setup have linear response. The estimated response curves
are presented in Fig. 4.3 and 4.4. With the knowledge of the camera sensor having linear
response, we obtain easily interpretable results: A measured value of 0 corresponds to no
incoming light, higher values indicate higher amounts of incoming light, where for example
doubling the amount of incoming light also results in doubled values.

We use the tool “dcraw” [33], that is freely available for Windows and UNIX/Linux
operating systems. This tool enables us to convert the raw images acquired by the cameras
from the proprietary CR2 file format of the cameras into the file format PPM. The PPM
(Portable Pixmap) file format has several advantages: In contrast to CR2, the majority of
image viewers can display PPM files without any additional plug-ins. Second, PPM is a
simple uncompressed file format, which can be processed and converted easily into other
file formats, like PNG. The PNG file format is a good candidate for archiving files, because
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Figure 4.3: Response curves for red, green, and blue channel of images of color chart.
Response values scaled to range [0, 1]. Left: Raw response curves as acquired by the
camera sensor and stored in raw file format (CR2). Right: Response curves obtained
from images developed by the camera’s DSP and stored in JPG file format. Black and
saturation level adjusted.
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Figure 4.4: Response curves for red, green, and blue channel of images of color chart.
Radiance and response values scaled to range [0, 1]. Linear response function fitted to
response curves. Left: Raw images converted with Canon Digital Photo Professional
software. Right: Raw images converted with DCRAW software as used in our pipeline.
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it allows lossless compression, which minimizes file sizes while preserving the original image
quality. Furthermore, we also use “dcraw” to automatically set the dark and saturation
level of the raw input images.

We decided to use “dcraw” instead of the software supplied with the cameras by the
camera manufacturer. The camera manufacturer provides both, a separate application and
a software development kit. Both have the same functionality. We prefer “dcraw” to those
two options, because they do not give full control over the raw image processing pipeline
or the methods and parameters used in it. Furthermore, “dcraw” can be integrated into an
automatic processing pipeline much easier: No additional program using the development
kit has to be written in order to convert the raw images from CR2 to a common image file
format.

We use “dcraw” to do the following: Read and convert the raw image from CR2 to
PPM file format; adjust the dark and saturation levels of the raw image; and finally, scale
the raw values to a 16-bit range.

In a second step we demosaic the converted image the following way: We generate an
image that is half the size of the original image in both dimensions. The values of the
red and blue channel of a 2 × 2 Bayer pattern block are mapped directly to the red and
blue component of the RGB image. The values of both green channels are averaged before
being mapped to the green component of the RGB image. This leads to an image of half
the size, since the values of the four cells of a 2× 2 Bayer pattern block are mapped to the
red, green, and blue value of one pixel in the output image. This method is also known as
binning. With binning no interpolation method has to be used to fill in the missing data.

Demosaiced images have the same resolution as the camera sensor, but red, green, and
blue information in each pixel, in contrast to the raw image. This is because demosaicing
interpolates the values.

However, from an information theoretic point of view the amount of information does
not increase by the interpolation, only the amount of data does. In this sense, by mapping
the four values of a 2 × 2 Bayer pattern cell to one RGB value with three components,
we reduce the amount of information by 1

4 . On the other hand, because of averaging the
two green channels, the obtained green component of the RGB value is measured twice as
accurate as the red or blue component.
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Figure 4.5: Color coding of the normals of a sphere in the normal maps. Left: Normals
of a hemisphere with view in negative z-axis direction. Right: Normals of the other
hemisphere with view in positive z-axis direction.

4.3 Normal Maps

We use the Light Stage to generate normal maps. Normal maps are images that contain
information about the normal vector of the captured surface instead of color or brightness
information. The normal vectors of the captured surface are color coded in the normal
map as shown in Fig. 4.5. In this section we will explain how we obtain normal maps using
the Light Stage and the set-up of cameras.

4.3.1 Gradient Illumination

In Eqns. 2.74 – 2.79 we have seen that the x-component of the surface’s normal at any
point is proportional to the irradiance in the case of light coming from the direction of the
positive x-axis. In the same way, the y- and z-component of the normal are proportional
to the irradiance in the case of light coming from the positive y- and z-axis, respectively.

With the Light Stage we can generate illuminations that approximates light coming
from one direction. In fact, the illuminations generated by the Light Stage are not restricted
to coincide with one coordinate axis: Illuminations from any direction can be generated.

This is done as follows: First, the light stage coordinate system has to be aligned to the
coordinate system in which the cameras have been calibrated. We achieve this by physically
aligning one calibration pattern with respect to the light stage during the acquisition of
the image sequence for calibration.

From the construction of the light stage as described in Sec. 4.1.1, the positions of the
light sources are known. We simply assume that the light stage itself coincides with a
sphere in 3D space. The coordinate system is defined in such a way that both, the x- and
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Figure 4.6: Gradient illuminations generated in the light stage. Left to right: Illumination
from the right (Ix), left (I−x), front (Iz), back (I−z), top (Iy), and bottom (I−y).

y-axis are parallel to the ground and each of both axes is parallel to one wall. This leaves
the z-axis to be perpendicular to the ground. The cameras are also calibrated with respect
to this coordinate system. In this coordinate system the normalized direction dLED of
emitted light of an LED is given by

dLED = − pLED
||pLED||

, (4.1)

where pLED is the position of the LED. When we want to generate an illumination with
light coming from direction i the brightness bLED is computed as the scalar product between
the light direction l and the direction of light emission dLED of the LED:

bLED = l>dLED. (4.2)

However, this way also negative values for bLED can occur. Since negative light cannot be
emitted in reality the values of bLED in the range [−1, 1] are mapped linearly to the range
[0, 1] by computing bLED as

bLED = 1
2 · l

> · dLED + 1
2 . (4.3)

4.3.2 Normal Map Computation

In order to retrieve the x-, y-, and z-component of the normal in the easiest and fastest
way, the illumination patterns should coincide with the directions of the x-, y-, and z-axis.
One way to that is to use three illumination patterns with light directions (−1, 0, 0)>,
(0,−1, 0)>, and (0, 0,−1)> representing light coming from the positive x-, y, and z-axis.
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Figure 4.7: From Left to right: Input images captured in light stage with gradient illu-
minations, normal map computed from input images, reference color coding of normals.

In Addition, a forth illumination with constant illumination

bLED = 1
2 (4.4)

for all light sources has to be used to compute the normal n as

n = (Ix − Id, Iy − Id, Iz − Id)>
||(Ix − Id, Iy − Id, Iz − Id)>||

, (4.5)

where Id is the radiance of a pixel under constant illumination and Ix, Iy, and Iz are the
radiance under illuminations from x-, y-, and z-direction [107].

Another way of computing the normal is to used six illuminations [164]: Additionally
to the three illuminations Ix, Iy, and Iz the three illuminations I−x, I−y, and I−z with light
directions (1, 0, 0)>, (0, 1, 0)>, and (0, 0, 1)> are used (see Fig. 4.6). In those illuminations
the light is coming from the negative x-, y-, and z-direction. Then, the normal n is
computed via

n = (Ix − I−x, Iy − I−y, Iz − I−z)>
||(Ix − I−x, Iy − I−y, Iz − I−z)>||

, (4.6)

Computing the normals as described above has several advantages. An image with light
direction (−1, 0, 0)> behaves complementary to an image with light direction (1, 0, 0)>.
The same applies for other light directions. That means bright parts in one image appear
dark in the other one and vice versa. Using two such complementary images for each
component of the normal increases the accuracy and robustness of the computation. Fur-
thermore, computing the normals as presented in Eqn. 4.6 makes them invariant under
linear transformations.
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The computed normals are stored as an RGB image. The continuous range [−1, 1]
for each component of the normal n = (nx, ny, nz)> is mapped to the discrete range of
[0, 65535] in case of a 16-bit image:


r

g

b

 =

n +


1
1
1


 · 32767.5 =



nx

ny

nz

+


1
1
1


 · 32767.5. (4.7)

The values nx, ny, and nz are stored in the red, green, and blue channel r, g, and b,
respectively. As an example two normal maps of a unit sphere are given in Fig. 4.5: One
normal map for the front hemisphere and another one for the back hemisphere. In Fig. 4.7
the normal map of a face is shown as an example.

The normal n is reconstructed from the red, green, and blue channel r, g, and b of the
normal map as follows:

n = (r − 32767.5, g − 32767.5, b− 32767.5)>
||(r − 32767.5, g − 32767.5, b− 32767.5)>|| . (4.8)
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Chapter 5

3D Reconstruction

3D reconstructions of mid-sized real objects are often obtained by triangulation methods.
In this area one can differentiate between active and passive methods.

Active triangulation methods, such as laser scanning [98] or structured-light-scanning
[131], modify the captured scene by projecting a high-frequency time-varying illumination
pattern onto the object. The accuracy is typically limited by the resolution of the projected
patterns. These methods are currently used the most in practical applications, because
of their high robustness. However, the capturing speed is limited by the projector and
acquisition hardware. Furthermore, for a complete reconstruction the object must be
captured from multiple viewpoints. Because of interferences of the illumination patterns,
acquisition from multiple viewpoints cannot be performed in parallel, which makes the
overall process slow.

In contrast, passive triangulation methods, such as stereo [136] or multi-view-stereo
[138], rely solely on two or more images taken from different viewpoints. The robustness of
passive stereo strongly depends on matchable image features. Therefore, a passive stereo
reconstruction requires a surface reconstruction method to obtain a closed surface. The
main advantages of passive triangulation methods are their reduced hardware effort because
no projectors are required and their speed because multiple viewpoints can be captured in
parallel.

Both, passive and active triangulation methods can be combined with photometric
stereo. Photometric stereo [166, 107] is a technique that allows reconstructing high-
resolution surface normals by observing the shading of an object under different lighting
conditions from a single viewpoint. In contrast to active triangulation methods, the illu-
minations are not high-frequency patterns but rather multiple distributed low-frequency
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illuminations that allow to invert the shading model in order to estimate the surface normal.
In this section we propose a novel, flexible method that can be classified as a combi-

nation of passive triangulation and photometric stereo [58]. We generate a time-varying
spherical gradient illumination and observe the scene with multiple cameras. Detailed nor-
mal maps of the inspected object from different viewpoints are obtained using photometric
stereo. The normal maps are the input to our multi-view stereo algorithm which generates
a 3D reconstruction. Then the normal information is employed to interpolate between the
sparsely sampled stereo estimates in order to obtain a high-resolution reconstruction.

In contrast to most existing approaches, we employ the normal information not solely to
refine the reconstruction. Instead, the normal information is used in the matching process
of our multi-view stereo approach. Our approach enables us to use significantly larger
windows during patch matching, which strongly increases its robustness. As a consequence,
smoothness constraints that are typically required in passive stereo are not necessary.
Consequently, without smoothness constraints the surface can be sparsely evaluated which
vastly reduces the computational effort compared to a densely sampled evaluation. The
resulting reconstruction is sparse, but the included estimates are all reliable. Finally, the
sparse reconstruction is interpolated with the normal information to obtain a dense and
detailed reconstruction.

Our approach is designed to handle and reconstruct objects, that are static, smooth
and diffuse. The limitation to static objects results from the limited capturing speed of
the employed consumer digital single lens reflex (DSLR) cameras. We focus on diffuse
objects or objects that are best approximated as diffuse. However, specular objects can be
reconstructed to a certain extent as presented in the results giving an indication about the
robustness of our method.

5.1 Related Work

This section reviews related work that combines passive triangulation methods with pho-
tometric stereo approaches for accurate 3D reconstruction.

Photometric Refinement Many approaches have been proposed using photometric
information to improve and refine an initial geometry or surface. The initial geometry in
these approaches can be obtained either by (multi-view) stereo reconstruction [34, 168,
169, 123], structure-from-motion [171, 100, 73, 132], or triangulation scanning [117, 84].
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Figure 5.1: The hardware that generates
different illuminations with three DSLR
cameras mounted on a tripod.

Figure 5.2: The calibration object made
of individual patterns that are attached
to the sides of an octagonal prism.

Other approaches employ 3D models that are morphed [170] or estimate shadow maps that
are then used to reconstruct the 3D geometry [29].

In contrast to our approach, these methods have in common that normal information
is not an integral part of the 3D position acquisition. Photometric information is used
in a refinement step, but it is not directly employed for the generation of the initial 3D
reconstruction.

Silhouettes-Based Approaches Silhouette information extracted from multiple views
allows to generate a visual hull of the object. The 3D positions and normals of the visual
hull can be optimized to obtain a 3D model [18, 30, 69]. The visual hull can also be used
as a proxy to deform and assemble partial reconstructions to a complete 3D model [162].

However, our approach does not rely on silhouette information and also works in sit-
uations where the visual hull is not available or is not very descriptive, as for example in
the case of a frontal view of a relief.

Multi-view Stereo and Normals Surface normals and positions can also be conjointly
estimated using a set of images captured under multiple point light illuminations [14] by
using a known example object [1]. In contrast to multi-view stereo methods our approach
does not rely on detectable image features which lead to sparse point clouds where a surface
has to be fitted.

Uncalibrated Photometric Stereo Furthermore, uncalibrated photometric stereo refers
to the case in which the lightning conditions are not known. Different methods deal with
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Figure 5.3: Generated normal maps (color-coded as RGB) for the corresponding three
different viewpoints. The normals are RGB color-coded.

this scenario. They generate a 3D model of the object and can estimate the light positions
[9, 46] or compensate for varying unknown illumination conditions [56].

5.2 Acquisition Setup

In order to perform a 3D reconstruction with our method, the inspected object is placed
in the light stage. Images of the object under different illuminations are taken by multiple
calibrated and synchronized DSLR cameras as described in Sec. 4.1. The object is captured
under six different gradient illuminations as described in 4.3.1. The normal maps are
computed as presented in 4.3.2 (see also [164]).

Fig. 5.1 shows the hardware that is used to generate the illuminations for photometric
stereo reconstruction. Three DSLR cameras as described in Sec. 4.2 are mounted on a
tripod for image acquisition. In Fig. 5.3 the generated normal maps from the corresponding
viewpoints of the cameras are shown. The normals are consistent across the views, which
is the prerequisite to employ the normal information as a matching score for multi-view
stereo.

An accurate (geometric) camera calibration is important, because calibration errors di-
rectly propagate into the 3D reconstruction. The camera calibration estimates the relation
between cameras by estimating the camera parameters. We use the approach presented
in Sec. 3.1. As a calibration object we use an octagonal prism with calibration patterns
attached to its sides as shown in Fig. 5.2. The calibration object is placed inside the light
stage at the position where the object is placed during the acquisition.
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5.3 Photometric Multi-View Stereo

In this section, we present our method for multiple view 3D reconstruction using normal
maps obtained from photometric stereo. First, we explain how we obtain a sparse re-
construction. Second, we describe how a dense reconstruction is obtained from a sparse
reconstruction. Last, a final filtering step of the dense reconstruction is presented.

Overview

Low frequency noise that is present in the input normal maps renders direct integration
methods unsuitable to accurately reconstruct the true 3D geometry of the object [117],
while high frequency noise leads to wrong reconstructions of local surface features.

Instead, in the first step (detailed in Section Sec. 5.3.1), normal information from pho-
tometric stereo is used to improve the patch matching capabilities of multi-view stereo. In
this step, 3D patch surfaces are generated using normal information in a reference view.
Reliable and accurate depth values are obtained by optimizing the 3D patch matching
costs. However, computing the depth values for all pixels is computationally very expen-
sive. Hence, we reconstruct the depths of a small number of points resulting in a sparse
reconstruction. This reduces the computation time to a few minutes on standard PC
hardware.

In the second step (detailed in Sec. 5.3.2), we use the normal map of the reference view
to interpolate the sparse reconstruction keeping the sparse points fixed. This resulting
reconstruction is dense and has high accuracy, however, there are some tiny disturbing
peaks at the positions of the sparse 3D points because of the quantization along the line
of sight.

In a third step (detailed in Sec. 5.3.3) those peaks are removed by a normal map driven
filtering. Fig. 5.4 shows the output of the individual steps of our algorithm for a face. The
next section explains each step in more detail.

It should be stressed that the normal map driven filtering is different from introducing
a smoothness term in the dense reconstruction step. In the reconstruction step we want
to compute a dense surface that approximates the measured normal maps the best. Intro-
ducing a smoothness term results in smoothing the overall reconstructed surface, which is
not desirable. In contrast, the normal map driven filtering is able to smooth areas where
normal map and surface contradict each other, while enhancing areas, where normal map
and reconstructed surface agree.
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Figure 5.4: Overview of the different steps of the algorithm. From left to right: Initial
sparse reconstruction after nearest neighbor interpolation; reconstruction obtained after 1
iteration of nonlinear least squares minimization; after 20 iterations of minimization; after
20 filtering iterations.

5.3.1 Sparse Reconstruction

In this first step an initial point cloud of the object is reconstructed that consists of reliable
and accurate 3D points. For the initialization a reference view vref is set. The 3D points
of the initial point cloud I correspond to 2D points lying on an equidistant grid in the
reference view and their depths. For each grid point we use the normals given in a window
of size w × w to reconstruct the local 3D geometry of that patch surface as follows.

Patch Reconstruction

Given the lines of sight li, lj, of pixels i, j, the normal ni, and the candidate depth di of
pixel i we can compute the depth dj of pixel j as

dj = l>i · ni
l>j · ni

· di. (5.1)

Rewriting this equation yields the constraint

l>j · ni · dj − l>i · ni · di = 0. (5.2)

Stacking up equations for all neighbors in a 4-neighborhood of every pixel in the considered
window leads to a linear system of equations

A′ · d = 0, (5.3)
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where d is the vector of unknown depths. Additionally, every equation (i.e., row of ma-
trix A′) is weighted according to a standard distribution with standard deviation σ depend-
ing on the distance of the considered pixel to the center pixel of the window.

Solving Linear System of Equations

In order to avoid the trivial solution we set the depth of the center pixel to 1 leading to
the extended linear system of equations: A′

e>

 · d =
0

1

 , (5.4)

where e is the canonical unit vector corresponding to the position of the center pixel in
vector d. Choosing a different depth di for the center pixel i will lead to di · d as solution
for the over-determined linear system of equations. Writing the extended linear system of
equations as

A · d = b, (5.5)

we compute a least squares solution by solving the normal equation

A> · A · d = A> · b (5.6)

using Choleksy decomposition (see Eqn. 2.36). The point cloud Pi representing the local
3D surface of that patch for pixel i is obtained by multiplying the depths with their
corresponding line of sights:

Pi :=
{
Xj|Xj = lj · dj, 1 6 j 6 w2

}
. (5.7)

Line of Sight Sampling

In order to find the 3D point Xi for each 2D grid pixel i, we sample depths di on the
line of sight. We can simply transform the reconstructed patch Pi using di · d. This is
a crucial advantage of our formulation because re-solving Eq. 5.5 is not required for each
depth candidate. Otherwise, the sampling along the line of sight would be computationally
too expensive for large patch size.

We project the reconstructed patch Pi from Eqn. 5.7 at depth di into the other views
v 6= vref. We then compute the 3D patch matching cost c(di) for depth di by comparing
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Figure 5.5: Comparison of patch matching with synthetic head model from three views,
patches of size 32 × 32 pixels used. From left to right: ground truth depth map; depth
map obtained from 2D patch matching; difference between ground truth and obtained
depth map (gray values adjusted for better visibility); depth map obtained from 3D patch
matching; difference between ground truth and obtained depth map (gray values adjusted).

the projections of the normals in the window around the grid point with the normals at
the points of projection in the other views v:

c(di) =
∑
v 6=vref

∑
Xj∈Pi

d(Nvref(PvrefXj · di), Nv(PvXj · di))2, (5.8)

where Xj is the j-th 3D point obtained from patch reconstruction, Pv is the projection
matrix of camera v, and Nv denotes the normal map of view v, returning the interpolated
value at the given point. We then choose the depth di that has the lowest cost among all
depths.

A typical window size for local patch reconstruction is 160× 160 pixels, which is much
larger than patch sizes used by standard multi-view stereo in the image domain (which
is typically 16×16 pixels or less). Increasing the patch size in the image domain is not
possible because the true surface can no longer be approximated by a fronto-parallel plane
as assumed by standard 2D patch matching. Fig 5.5 shows a comparison of standard
2D patch matching and our matching via local 3D patch surfaces. Because a large patch
can contain much information, the cost function in Eqn. 5.8 typically has a single distinct
minimum. However, if this is not the case, we discard estimates that have only small
variations among similar depths:

Var [c(di −DVar, di +DVar)] < tVar. (5.9)

As a consequence, our approach is highly robust. In our experiments, we observed that
the reconstructed depths contain no outliers if the threshold tVar was chosen correctly. As
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a result of this initialization step we obtain a set I of grid points in the reference view vref

with corresponding depths.

5.3.2 Dense Reconstruction by Nonlinear Optimization

In the second step, the set of points I with depths di from the multi-view stereo approach
and the normal map Nvref is used to reconstruct the dense surface of the object. This is
done by minimizing the cost function

c̄(d) =
∑
k

∑
j∈N (k)

(
l>j · ni · dj − l>k · nk · dk

)2
subject to dk = di, ∀i ∈ I, (5.10)

where N (k) denotes the 4-neighborhood of pixel k. Again, d is the vector of unknown
depth, now containing all depths dk. This cost function penalizes deviations from Eqn. 5.2,
while fixing the set of 3D points I. This is done to prevent the normals from pulling the
reconstruction towards the unconstrained solution, which is known to exhibit low-frequency
errors [117] on one hand and to avoid heading towards the trivial solution on the other hand.
A user-defined binary mask is used to determine the region of interest which determines
the set of pixels k used in the reconstruction process.

The minimization of the cost function Eqn. 5.10 is done by Newton’s method as de-
scribed in Sec. 2.2.2: As initial solution we use the 3D point cloud I of the grid points
with depths from the first step. Values in between the grid are interpolated by nearest
neighbor interpolation. The cost function is assumed to be locally linear and is iteratively
minimized. In each iteration a linear least squares problem similar to Eqn. 5.5 is solved
by Cholesky decomposition (see Eqn. 2.36). In all experiments 20 iterations have been
performed.

5.3.3 Filtering

In the last step we filter the depth values obtained from minimizing Eqn. 5.10, because the
depths di of the set of initial 3D points I have not been optimized. Filtering the depth
values is done iteratively. Rewriting Eqn. 5.2 we obtain

dj = l>i · ni
l>j · ni

· di, (5.11)
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which is used to propagate the four depth values of the four neighbors (left, right, top,
and bottom neighbor) to pixel i. The average depth of the four propagated depth values is
computed and updates the depth of pixel i. These depth values geometrically correspond
to line-plane-intersections. For numerical stability, a propagated depth value is only used
for the update, if the angle between the line of sight li and the normal nj is greater than
arccos(tangle) with threshold parameter tangle. In our experiments we use tangle = 0.173
corresponding to an angle of approximately 80◦. This update is performed iteratively for
all pixels. In all experiments we performed 20 iterations.

5.4 Results

In this section we first evaluate our method on synthetic data. Then we present 3D
reconstructions of real objects obtained from our method. Furthermore, we compare the
obtained reconstructions to results obtained from laser scanning.

5.4.1 Synthetic Data

Our method is evaluated on synthetic data. We generate a series of synthetic images of a
3D model of a human head as ground truth. We compute the normal maps for all three
views. The three normal maps computed for each view and the positions of the cameras
are used to reconstruct the human head. We align the ground truth head model and our
reconstructions with the iterative closest point (ICP, [17]) algorithm. The average distance
between the mesh the head model and the one of our reconstruction is used as quality
measure.

We test our method in settings with different material properties: Lambertian re-
flectance without shadows; Lambertian reflectance with shadows and different levels of
Gaussian noise added to the input images; Lambertian reflectance with shadows, specular
reflections, and different levels of Gaussian noise.

The results are shown in Table 5.1: The best reconstruction is obtained in the ideal
setting. With increasing level of noise the quality of the reconstruction decreases, while
in general the head is reconstructed better in the absence of specular reflections (because
specular reflections violate the assumption of a perfectly Lambertian surface).
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diffuse diffuse with shadows
Gaussian noise level [%] 0 0 1 2 3 4

AAE [%] 0.242 0.315 0.374 0.436 0.477 0.516
diffuse and specular with shadows

Gaussian noise level [%] 0 1 2 3 4
AAE [%] 0.402 0.434 0.468 0.528 0.544

Table 5.1: Average alignment error (AAE) of reconstructions to ground truth. The noise
level is given as percentage of the range of pixel values of the input images. The error is
given relative to the size of the ground truth model.

5.4.2 Real-World Data

For demonstrating the applicability of our method we show several reconstructions of
real-world objects. We use three DSLR cameras as described in Sec. 4.2. Fig. 5.6 shows
results of our reconstruction method for five objects: Relief, Purse, Shoe, Santa, and Vase.
Additional close-up views of the 3D geometry with and without texture of Relief, Shoe,
and Vase examples are shown in Fig. 5.7. Although the Vase has a specular surface, strong
errors in the reconstruction are mainly visible at grazing angles, while other parts are
reconstructed fairly well. This demonstrates that our approach is able to handle deviations
from the assumptions to some extent. Figure 5.8 shows the results of reconstructing three
faces. For all reconstructions we used a window size of 160 × 160 pixels. In all cases 20
iterations for minimizing Eqn. 5.10 and 20 additional iterations for filtering as described in
Sec. 5.3.3 have been performed. tVar has been set to 30.0. On standard PC hardware using
unoptimized C++ code, the computation times are between 10 and 15 minutes depending
on the model.

5.4.3 Comparison to Laser Scanning

We compare our method to 3D reconstructions of a laser scanner. Figure 5.9 shows a
qualitative comparison between the scanned objects and our results. Our method is able
to reconstruct finer details of the objects’ surfaces. We align our 3D reconstructions and
the ones obtained from laser scanning with the ICP method for a quantitative comparison.
The distance between the two aligned meshes is used as a measure of quality. We obtain
an average alignment error of 0.539% for the object Relief, 0.775% for the object Shoe, and
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Figure 5.6: 3D Reconstructions of several objects. Top to bottom: Relief, Purse, Shoe,
Santa, Vase. Left to right: Image from the reference camera; resulting 3D reconstruction
shown from two different views with and without texture.
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Figure 5.7: Details of the reconstructions. Top row; Reconstructed 3D geometry. Bottom
row: Reconstructed 3D geometry with texture. Left to right: Relief, Shoe, Vase.

Figure 5.8: Reconstructions of three faces with 3D geometry and rendered 3D geometry
with texture shown.
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Figure 5.9: Comparison to laser scanning: Relief, Shoe, and Santa. Top: results from
laser scanner. Bottom: our reconstruction result.
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0.544% for the object Santa. The error is given relative to the size of the scanned object.

5.4.4 Limitations

Currently, our results are obtained only from the perspective of a single reference view.
Hence, they can be parametrized in the image domain and are in fact only 2.5D (2D plus
depth). Augmenting our reconstructions to more complex topologies is possible by merging
multiple 2.5D reconstructions. To do that, the number of cameras must be increased in
order to capture multiple 2.5D reconstructions in parallel from different view points for
increased surface coverage. This does not increase the acquisition time. Merging multiple
2.5D reconstructions into a single 3D mesh can be achieved by using existing methods,
such as the volumetric range image processing method (VRIP, [36]).

Also, we do not handle cases in which the normal maps contain significant errors which
can occur at depth discontinuities, in shadowed regions, or when the material is not diffuse.
This may lead to wrong reconstructions. This effect can be reduced on one hand by
increasing the sampling density of the grid. In the extreme case each pixel of the grid
can be sampled. In this case the dense reconstruction step as well as the filtering step
can be omitted. There are no disadvantage to this approach, except for a significantly
larger computational effort. On the other hand, depth discontinuities can be automatically
detected. Once detected, they can be taken into account by considering neighboring pixels
in Eqn. 5.10, that do not lie at depth discontinuities. Furthermore, once a 3D mesh is
recovered, shadowed regions can be detected (compare with [65]) and used to improve the
generated normal maps.

In theory, our approach is capable of capturing dynamic scenes. However, the employed
consumer DSLR cameras are difficult to synchronize if operated at their maximum speed.
In future, we would like to augment our capturing setup with more professional high-speed
high-resolution cameras to obtain dynamic reconstructions.
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Chapter 6

Conclusion and Future Work

We have presented a pipeline for dense 3D reconstruction using active illumination. The
pipeline consists of calibration of the acquisition hardware, image development and pro-
cessing, and a novel 3D reconstruction method.

The flexible camera calibration method allows accurate calibration of cameras in chal-
lenging scenarios. This includes calibration of cameras that are facing each other or that
are facing away from each other. For increased accuracy of the camera parameter esti-
mation the number of acquired images of the calibration patterns can be increased, which
increases the number of point correspondences. Furthermore, the calibration estimates the
positions and orientations of the patterns. Besides considering the estimation error, this
allows to further assess the quality of the calibration, if the true positions and orienta-
tions of the patterns are known. By aligning a pattern to the light stage, the cameras are
calibrated with respect to the coordinate system of the light stage.

The light stage is used in order to generate illuminations that are used for photometric
stereo reconstruction. The acquired images are developed and processed in order to obtain
physically reliable measurements. This allows to compute robust surface normals of high
quality. The computed surface normals are stored as normal maps that are the input for
the 3D reconstruction method.

The 3D reconstruction approach is based on photometric normals given in multiple
views. The computed normal maps together with RGB images of the captured objects
in multiple views are used as input. The reconstruction method uses those information
to obtain an initial sparse 3D reconstruction similar to multi-view reconstruction. The
normal information are then used to compute a dense 3D surface based on the initial sparse
reconstruction. Finally, a filtering of the obtained surface is performed. Reconstructions
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generated with this method provide high detail, because of the photometric normals and
high accuracy, because of the initial multi-view reconstruction.

The contribution of this thesis is:

• A new camera calibration method for consistent calibration of multiple cameras. This
method can handle difficult calibration tasks, for example cameras facing each other,
showing its flexibility and robustness.

• A description of the hardware setup and image processing and development. Obtain-
ing high quality reconstruction results relies on high quality input data. This requires
special care that has to be taken during data acquisition and data processing.

• A novel method for dense, accurate, fully automatic 3D reconstruction. The method
employs photometric stereo reconstruction which allows to obtain the same level of
detail, while at the same time relaxing restrictions during acquisition This allows the
acquisition of the object from arbitrary many view points at the same time.

The presented setup can be easily extended by addition of more cameras. The cali-
bration procedure is designed to account for complex arrangements of cameras, such as
positioning cameras around the object. Furthermore, the acquisition time is independent
of the number of cameras, because the gradient illuminations for obtaining photometric
normals do not interfere with each other.

As future work, the presented set-up can be extended by more cameras that are arranged
around the light stage for reconstructing a full model. This way the person or object can
be captured from all sides. Then, the partial reconstructions have to be merged to a single
full 3D model.

Furthermore, depth discontinuities have to be automatically detected. In principle, this
can be done by considering the cost function used in the initial sparse reconstruction step.
The knowledge of depth discontinuities can be easily included into the dense reconstruction
step.

After the initial reconstruction, the obtained model can be used to estimate concave
regions in which the obtained photometric information is not accurate because of occlu-
sions. Iteratively, the corresponding normals can be corrected and with improved normal
maps the object can be reconstructed.
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