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I dedicate this thesis to my sister Kathrin.





i

Acknowledgement

I would like to express my gratitude to everyone who has supported me by writing this
dissertation. First of all I want to thank my supervisor Prof. Dr. Stephan Dahlke. He gave
me the chance to be his doctoral student and he supported and encouraged me a lot while
working on this thesis. Also I want to thank Prof. Dr. Dorothee D. Haroske for accepting
to be the second referee of this thesis. A special thanks goes to Dr. Petru A. Cioica-Licht
for many fruitful discussions and a lot of helpful advices.

I also want to thank the workgroup Numerical Analysis for a very friendly and nice
atmosphere. Working with you was a pleasure for me.

My deep gratitude goes to Stefan Bösner who shared his wisdom with me as a mentor
for more than six years now. You have inspired and encouraged me during difficult time
when I needed words of encouragement. Thank you for your time, support and patience.

Without my parents Ulrich and Doris and my sister Kathrin it would have been impos-
sible to finish this thesis. Thank you for staying with me, encouraging me and loving me
unconditionally. Furthermore I want to say thank you to a lot of wonderful friends who
supported me in the past years: Alan Shekho, Christian Bardtke, Christoph Wahl, Da-
go Nguessan, Daniel and Tamara Mombartz, Erika Höschele, Giulliana Tessarin, Hanna
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Abstract

This thesis is concerned with the regularity of solutions to Navier-Stokes and Stokes
equation on domains with point singularities, namely polyhedral domains contained in
R3 and general bounded Lipschitz domains in Rd, d ≥ 3 with connected boundary. The
Navier-Stokes equations provide a mathematical model of the motion of a fluid. These
Navier-Stokes equations form the basis for the whole world of computational fluid dyna-
mics, and therefore they are considered as maybe the most important PDEs known so
far. We consider the stationary (Navier-)Stokes equations. The study the Besov regularity
of the solution in the scale Bs

τ (Lτ (Ω))d, 1/τ = s/d + 1/2 of Besov spaces. This scale is
the so-called adaptivity scale. The parameter s determines the approximation order of
adaptive numerical wavelet schemes and other nonlinear approximation methods when
the error is measured in the L2-norm. In contrast to this the convergence order of linear
schemes is determined by the classical L2-Sobolev regularity.

In many papers the Besov regularity of the solution to various operator equations/partial
differential equations was investigated. The proof of Besov regularity in the adaptivity sca-
le was in many contributions performed by combining weighted Sobolev regularity results
with characterizations of Besov spaces by wavelet expansions. Choosing a suitable wavelet
basis the coefficients of the wavelet expansion of the solution can be estimated by exploi-
ting the weighted Sobolev regularity of the solution, such that a certain Besov regularity
can be established. This technique was applied for the Stokes system in all papers which
are part of this thesis. For achieving Besov regularity for Navier-Stokes equation we used a
fixed point argument. We formulate the Navier-Stokes equation as a fixed point equation
and therefore regularity results for the corresponding Stokes equation can be transferred
to the non-linear case.

In the first paper Besov regularity for the Stokes and the Navier-Stokes system in po-
lyhedral domains we considered the stationary Stokes- and the Navier-Stokes equations
in polyhedral domains. Exploiting weighted Sobolev estimates for the solution we proved
that the Besov regularity of the solutions to these equations exceed their Sobolev regula-
rity. In the second paper Besov Regularity for the Stationary Navier-Stokes Equation on
Bounded Lipschitz Domains we have investigated the stationary (Navier-)Stokes equati-
ons on bounded Lipschitz domain. Based on weighted Sobolev estimates again we could
establish a Besov regularity result for the solution to the Stokes system. By applying
Banach’s fixed point theorem we transferred these results to the non-linear Navier-Stokes
equation. In order to apply the fixed point theorem we had to require small data and
small Reynolds number.
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Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit der Regularität von Lösungen zu
Navier-Stokes- und Stokes-Gleichungen auf Gebieten mit Randsingularitäten. Mit Hilfe
der Navier-Stokes-Gleichungen lassen sich die Ausbreitung von Fluiden mathematisch mo-
dellieren. Sie bilden die Grundlage der gesamten Strömungsmechanik und gelten daher als
eine der wichtigsten partiellen Differentialgleichungen überhaupt. Wir betrachten stati-
onäre, d.h. zeitunabhängige (Navier-)Stokes-Gleichungen in polyhedralen Gebieten im R3

und in allgemeinen beschränkten Lipschitz-Gebieten mit zusammenhängenden Rand im
Rd, d ≥ 3. Wir bestimmen die Regularität s in der Skala von Besov-Räumen Bs

τ (Lτ (Ω))d,
1/τ = s/d+1/2. Diese Skala ist die sogenannte Adaptivitäts-Skala. Der Glattheitsparame-
ter s bestimmt die Konvergenzordnung von bestimmten adaptiven, numerischen Wavelet-
Verfahren, sowie von anderen nicht linearen Approximationsmethoden. Die Konvergenz-
ordnung von linearen Verfahren wird dagegen durch die klassische L2-Sobolev-Regularität
der Lösung bestimmt.

In zahlreichen Arbeiten wurde die Besov-Regularität in der Adaptivitäts-Skala von
Lösungen verschiedener Operatorgleichunge/partiellen Differentialgleichungen untersucht.
Dabei wurden Resultate über gewichtete Sobolev-Regularität verwendet, um die Koeffi-
zienten einer Wavelet-Entwicklung der Lösung geeignet abzuschätzen. Diese Beweisidee
beruht auf der Charakterisierung der Besov-Räume durch Wavelets. Diese Technik wurde
in dieser Arbeit verwendet, um Besov-Regularität für die Lösungen der (Navier-)Stokes-
Gleichungen auf polyhedralen Gebieten, sowie der Stokes-Gleichung auf Lipschitz-Gebieten
zu beweisen. Um Besov-Regularität für die Navier-Stokes-Gleichung auf Lipschitz-Gebieten
zu etablieren, wurde ein Fixpunktargument angewendet: Die Navier-Stokes-Gleichung
lässt sich als Fixpunktproblem formulieren, so dass sich die nicht lineare Gleichung als
lineare Gleichung mit modifizierte rechter Seite auffassen lässt. Die Regularitätsaussagen
folgen dann aus den entsprechenden Aussagen für die Stokes-Gleichung.

In dem ersten Paper Besov regularity for the Stokes and the Navier-Stokes system in po-
lyhedral domains haben wir die Regularität der Lösungen der stationären (Navier-)Stokes-
Gleichungen in polyhedralen Gebieten untersucht. Unter Zuhilfenahme von gewichte-
ten Sobolev-Regularitätsaussagen für die Lösung konnten wir Besov-Regularitätsresul-
tate beweisen, die zeigen, dass die Besov-Regularität die Sobolev-Regularität der Lösung
tatsächlich übertrifft. In der zweiten Arbeit Besov Regularity for the Stationary Navier-
Stokes Equation on Bounded Lipschitz Domains haben wir die Besov-Regularität der
Lösung von (Navier-)Stokes-Gleichungen in beschränkten Lipschtz-Gebieten untersucht.
Genau wie bei der Untersuchung in polyhedralen Gebieten, wurden hier gewichtete Sobolev-
Abschätzungen verwendet, um Besov-Regularität der Lösung für die Stokes-Gleichung zu
zeigen. Um entsprechende Aussagen für die Navier-Stokes-Gleichung zu zeigen, haben wir
den Banach’schen Fixpunktsatz angewandt. Um die Existenz eines Fixpunktes garantie-
ren zu können, sind Bedingungen an das Gebiet, die Norm der rechten Seite, sowie der
Reynolds-Zahl zu stellen.
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1 Introduction

Partial differential equations (PDE) are a powerful tool for modelling natural phenomena.
Consequently, the research field of PDEs was one of the key areas in the past century
and also in recent years. The theoretical study of existence, uniqueness and regularity
in suitable function spaces of a solution to PDEs were main aspects of mathematical
research. Since an analytic description of the solution is available only in rare cases, one
is forced to develop numerical schemes for the constructive approximation of the solution.
Therefore the analysis of efficient, numerical schemes for solving PDEs were promoted.
In this thesis we are concerned with the famous Navier-Stokes equation on a bounded
domain Ω contained in Rd, d ≥ 3.

Navier-Stokes equations

Let Ω ⊂ Rd be a bounded Lipschitz domain and T > 0. The Navier-Stokes equations

ut −∆u+ νu · (∇u) +∇π = f on Ω× (0, T ),

div u = 0 on Ω× (0, T ),

form the basis for the mathematical description of fluid mechanics. By ∆ we denote the
Laplace operator, ∇ stands for the gradient, further we put

u · ∇u =
d∑
i=1

ui ·
∂u

∂xi
.

The quantity ν > 0 denotes the Reynolds number that describes the viscosity of the
fluid. The field u = (u1, ..., ud) describes the velocity of the fluid, the term π denotes the
pressure, the right hand side f describe the exterior force. We give a short overview of the
physically derivation of the Navier-Stokes equations as it is displayed in [67]. We start by
the second equation div u = 0. We consider the mapping

Φ : Ω× [0,∞)→ Ω,

which maps for a particle, which is localized in x = Φ(x, 0) for t = 0, the point (x, t) to
the position Φ(x, t) for t ∈ (0,∞). The velocity of the fluid is given by

u(Φ(x, t), t) =
∂

∂t
Φ(x, t).

We define for t ∈ (0,∞) the set

Ωt := Φ(Ω0, t) = {Φ(x, t) ∈ Ω : x ∈ Ω0},
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where Ω0 ⊂ Ω is an arbitrary subdomain. With r : Ω× [0,∞)→ R we denote the density
of the fluid, then the mass is given by

m(t) :=

∫
Ωt

r(x, t)dx.

The transport theorem, see [67, Chapter 2.1] and the references therein, yields (we assume,
that the smoothness assumptions on r are fulfilled):

∂

∂t
m(t) =

∫
Ωt

(
∂

∂t
r + div (r · u)

)
(x, t)dx.

The law of conservation of mass yields∫
Ωt

(
∂

∂t
r + div (r · u)

)
(x, t)dx = 0.

The principle of localization says, if the integrand is smooth and the domain Ω0 is choosen
arbitrary, then we have

∂

∂t
r + div (r · u) = 0. (1.0.1)

This equation is called equation of continuity. Considering incompressible motions, i.e. r
is constant, then the equation of continuity is given by

div u = 0. (1.0.2)

Fluids with property (1.0.2) are called solenoidal. The first equation in the Navier-Stokes
equation is based on the conservation of momentum. It says that

∂

∂t

∫
Ωt

(ru)(x, t)dx = FV (t) + FR(t), (1.0.3)

where

FV (t) :=

∫
Ωt

(r · fv)(x, t)dx

is the force which depends on the given external force field fv. The term

FR(t) :=

∫
∂Ωt

(σ · n)(x, t)dS

models the boundary force. The vector n stand for the outward unit vector from ∂Ωt, the
matrix σ is the stress tensor

σ :=

(
∂ui
∂xj

+
∂uj
∂xi

)
i,j=1,...,d

.

Considering the left side of (1.0.3) componentwise and after applying the transport theo-
rem we find

∂

∂t

∫
Ωt

(ruj)(x, t)dx =

∫
Ωt

(
∂

∂t
(ruj) + div (ruju)

)
(x, t)dx.
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For incompressible fluids we get

∂

∂t

∫
Ωt

(ruj)(x, t)dx =

∫
Ωt

(
r
∂

∂t
uj + rdiv (uju)

)
(x, t)dx.

Using the divergence theorem, equation (1.0.3) reads as follows:∫
Ωt

(
r
∂

∂t
uj + rdiv (uju)

)
(x, t)dx =

∫
Ωt

((r · fj) + div σj)(x, t)dx,

consequently

r
∂

∂t
uj + rdiv (uju) = r · fj + div σj.

We find

r
∂

∂t
u+ r(u · ∇)u = rf + div σ.

The term div σ can be expressed in terms of the gradient ∇π, and the Laplace operator
∆ applied to the velocity field u and the Reynolds number ν > 0. For fluids with constant
density, this yields in the equation

∂u

∂t
+ ν · (u · ∇)u−∆u+∇π = f.

We add boundary conditions for u and initial values for t = 0 in order to achieve a
well-posed mathematical problem. In this thesis we only consider Dirichlet boundary
conditions. The non stationary Navier-Stokes equation is then given by

ut −∆u+ νu · (∇u) +∇π = f on Ω× (0, T ),

div u = 0 on Ω× (0, T ),

u = g on ∂Ω× (0, T ),

u(x, 0) = u0 on Ω

(NavSt1)

for T > 0. The linearized version of (NavSt1) is

ut −∆u+∇π = f on Ω× (0, T ),

div u = 0 on Ω× (0, T ),

u = g on ∂Ω× (0, T ),

u(x, 0) = u0 on Ω

(St1)

the time-dependent Stokes equation. We achieve this from neglecting the nonlinear term
u · (∇u). From a physically point of view the Stokes equation is a limit case of (NavSt1)
for very tough fluids. In this thesis we are only concerned with the stationary case of
(NavSt1):

−∆u+ νu · (∇u) +∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω,

(NavSt2)

and its linearized version:
−∆u+∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω.

(St2)
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In the second chapter (see also [40]) we also consider the generalized case div u = h.
We first have to deal with the question, what we mean by a solution to (St2). A natural

approach would be, to consider classical solutions, i.e. a pair (u, π) ∈ C2(Ω)d×C1(Ω), such
that (u, π) fulfills (St2). Since in many relevant cases, there exists no classical solution to
(St2), it is necessary to consider a different concept. To this end we discuss the basic idea
of developing a weak formulation for the stationary Stokes equation. Assume u and π to
be a classical solution of (St2). Multiplying the first equation in (St2) by ϕ ∈ C∞0 (Ω), the
set of test functions on Ω, and integration by parts yields∫

Ω

d∑
i,j=1

(∇u)ij (∇ϕ)ij (x) dx = f(ϕ)−
∫

Ω

d∑
i=1

π(x)
∂ϕi(x)

∂xi
dx. (1.0.4)

Thus, every classical solution fulfills (1.0.4) for all ϕ ∈ C∞0 (Ω). As mentionted above, in
some settings it can be shown, that there is no classical solution. In these situations there
may exists a pair (u, π) which fulfills (1.0.4) in the weak sense, as we explain now. We
therefore look for a solution u in the Sobolev space H1(Ω)d. In the case g = 0 in (St1),
we require u ∈ H1

0 (Ω)d. Assume f ∈ H−1(Ω)d. Then u ∈ H1(Ω)d fulfills∫
Ω

d∑
i,j=1

(∇u)ij (∇ψ)ij (x) dx = f(ψ) (1.0.5)

for all
ψ ∈ D1,2

0 (Ω) := {v ∈ C∞0 (Ω) : div v = 0}
|·|1,2

,

where |v|21,2 :=
∑
|α|=1

∫
Ω
|Dαv(x)|2dx (which is a norm on C∞0 (Ω)), if and only if there

exists a π ∈ L2(Ω) such that (u, π) fulfills (1.0.4) for all ϕ ∈ C∞0 (Ω), see [43, Lemma
IV.1.1]. According to this result we define the following:

Definition: We call u a weak solution to (St2) if the following conditions are satisfied:

(i) u ∈ H1(Ω)d.

(ii) u is weakly divergence free in Ω.

(iii) u satisfies the boundary condition u|∂Ω = g in the trace sense.

(iv) u fulfills (1.0.5) for all ψ ∈ D1,2
0 (Ω).

We call π the corresponding pressure.

For the third point we refer to [38] for trace theorems on Lipschitz domains. Since
div u = 0 we have due to the divergence theorem the natural compatibility condition∫

∂Ω

g · ndσ = 0. (1.0.6)

Based on this definition of a solution, we have indeed a well-posed problem: Requiring
(1.0.6) in the above situation for g ∈ H1/2(∂Ω)d we know, that there exists a unique
solution u ∈ H1(Ω)d and a corresponding pressure field π ∈ L2(Ω), see e.g. [43, Theorem
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IV.1.1]. For (NavSt2) the weak formulation can be derived in a similar way. We call
u ∈ H1(Ω)d a (weak) solution of (NavSt2) if u is divergence free, u = g on the boundary
∂Ω (in a trace sense) and u fulfills the equation

∫
Ω

d∑
i,j=1

(∇u)ij (∇ϕ)ij dx+ ν

∫
Ω

(u · (∇u))ϕ dx = f(ϕ)−
∫

Ω

d∑
i=1

π
∂ϕi
∂xi

dx

for all ϕ ∈ C∞0 (Ω) with a suitable π ∈ L2(Ω). See [43, Chapter IX] for more details. For
existence results for Navier-Stokes equations see for instance [43], [52] and [62].

Having a well-posed problem, i.e. existence and uniqueness of the solution are ensured,
the next issue is the study of properties of the solution. One important property is the
regularity of the solution. In the case of Navier-Stokes equations we address the question
how regular the motion of the fluid depending on the properties of the given data and the
underlaying domain is. While in the case of classical solutions the regularity measured
in classical Hölder spaces is of interest, we investigate the L2-Sobolev regularity of the
velocity field u and the corresponding pressure field π. We a priori know u ∈ H1(Ω)d

and π ∈ L2(Ω), but possibly the L2-Sobolev regularity is higher. It turns out, that the
Sobolev regularity depends on the regularity of the domain. Assuming Ω is a smooth
domain, an increasing Sobolev regularity of f and g leads to an increasing Sobolev re-
gularity of u and the corresponding pressure field π, see e.g. [1], [43, Theorem IX.5.1]
(interior regularity), [60]. This conclusion is no longer true on domains with singulari-
ties, e.g. polyhedral domains or general Lipschitz domains: If Ω is only assumed to be a
bounded Lipschitz domain a higher Sobolev regularity of f and g does not guarantee a
higher Sobolev regularity for the solution. This is due to boundary singularities, which
can cause higher derivatives to blow up near the boundary. These singularities therefore
diminish the Sobolev regularity. For the case of general bounded Lipschitz domains and
suitable right-hand side f and boundary data g results have been proven, which provide
a Sobolev regularity of 3/2 for the solution u and 1/2 for the pressure term to the statio-
nary (Navier-)Stokes equation, see for instance [3], [42] and [57]. Similar results for the
spatial Sobolev regulartiy for the non-stationary equations were proven in [3], [34]. To
the best of our knowledge there is no result which assures higher Sobolev regularity on
Lipschitz domains, even if the given data are assumed to be smoother. The fact, that the
Sobolev regularity is limited on domains with singularities, leads to the natural question
which regularity results can be established in weighted Sobolev spaces. In the weighted
Sobolev norm the (weak) derivatives are multiplied by the distance to the singularity (or
to the boundary) to the power of a certain parameter. The hope is that these weights
compensate the growing derivatives near the boundary, such that the weighted norm is
finite. For stationary Stokes equations the weighted Sobolev regularity has been studied
in [56] on polyhedral domains and in [3, 41] for Lipschitz domains.

Adaptive Wavelet schemes and Besov regularity

To study Besov regularity of the solution to Navier-Stokes equations is motivated by the
connection of Besov regularity and the convergence rate of adaptive numerical wavelet
schemes. Let us first briefly discuss the construction of wavelets. Consider a domain Ω ⊂
Rd, d ≥ 1. By L2(Ω) we denote the space of quadratically Lebesgue-integrable functions.
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The aim is now to construct a wavelet (Riesz-)basis {ψλ : λ ∈ Λ} for the Hilbert space
L2(Ω) with the following properties:

• The wavelets ψλ have compact support.

• They fulfill smoothness assumptions: ψλ ∈ Cr(Ω) for a suitable r ∈ N.

• The vanishing moment property is fulfilled:∫
supp ψλ

xα ψλ(x) dx = 0 for all α ∈ Nd
0 with |α| ≤ r.

Exploiting these facts give the following statements, see [17].

• Weighted sequence norms of coefficients of wavelet decomposition allow to charac-
terize certain smoothness spaces as Besov- and Sobolev spaces.

• The representation of a wide class of operators in the wavelet basis is nearly diagonal.

• The vanishing moments of wavelets remove the smooth part of a function.

The construction of a Riesz basis can be done by means of a multiresolution analysis,
i.e., a sequence (Vj)j≥j0 of closed linear subspaces of L2(Ω) such as

Vj ⊂ Vj+1 for all j ≥ j0,
⋃
j≥j0

Vj
‖·‖L2(Ω)

= L2(Ω).

We assume that there are so-called scaling functions {φλ : λ ∈ Ij} which form a Riesz
basis of Vj. By using the concept of multiresolution analysis, it is possible to construct
a biorthogonal basis. Therefore we assume, that there exists a Riesz basis {φ̃λ : λ ∈ Ij}
for a second sequence of approximation spaces (Ṽj)j≥j0 with the following property. We
consider the complements Wj and W̃j, which satisfy the biorthogonality condition, i.e.

Vj+1 = Vj ⊕Wj,Wj ⊥ Ṽj, Ṽj+1 = Ṽj ⊕ W̃j, W̃j ⊥ Vj.

Based on the scaling functions {φi}i∈I and {φ̃i}i∈I , we can construct a Riesz basis {ψλ :
λ ∈ Λj} of Wj and {ψ̃λ : λ ∈ Λj} of W̃j. Following the notation in [10] we write Λj0−1 := Ij0
and denote the scaling functions spanning Vj0 also by ψλ, λ ∈ Λj0−1. Assuming that the
scaling functions fulfill further regularity- and approximation properties, then

{ψλ : λ ∈ Λ}, Λ :=
⋃

j≥j0−1

Λj

form a Riesz basis of L2(Ω). We call this basis a wavelet Riesz basis. The Riesz basis
{ψ̃λ : λ ∈ Λ} is called biorthogonal basis. The construction of wavelets for L2(Rd) with
properties as mentioned above can be found for instance in [10, Chapter 2], [14] and [32].
Since wavelets can be used to design numerical schemes for solving operator equations
on bounded domains Ω, as we explain more detailed below, it it desirable to construct
wavelets for L2(Ω). It has been spend much effort in the construction of such wavelet basis
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on domains with singularities, including polygonal and polyhedral domains, see e.g. [5,6]
and [29–31].

As already mentioned above, wavelets can be used to characterize function spaces, for
instance Sobolev spaces and Besov spaces. Let us display this more explicit by using
an example: Consider the Besov space Bs

q(Lp(Rd)) with p ∈ (0,∞), q ∈ (0,∞] and
s > max {0, d (1/p− 1)}. Assume that the generator and the wavelets system {φk}k∈Zd ,
{ψi,j,k}(i,j,k)∈{1,...,2d−1}×N0×Zd and the dual basis {φ̃k}k∈Zd , {ψ̃i,j,k}(i,j,k)∈{1,...,2d−1}×N0×Zd ful-
fill certain technical assumptions. Further, we assume that there exists a dual Riesz basis
satisfying the same requirements. Then a locally integrable function f : Rd → R is in the
Besov space if, and only if,

f =
∑
k∈Zd
〈f, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k〉ψi,j,k

(convergence in D′(Rd)) with

(∑
k∈Zd

∣∣∣〈f, φ̃k〉∣∣∣p)
1
p

+

2d−1∑
i=1

∑
j∈N0

2j(s+d(
1
2
− 1
p))q

(∑
k∈Zd

∣∣∣〈f, ψ̃i,j,k〉∣∣∣p)
q
p

 1
q

<∞. (1.0.7)

A proof can be found in [10, Theorem 3.7.7]. Equation (1.0.7) states, that the decay of
the coefficients of the wavelets decomposition of a measurable function gives information
about its Besov regularity.

Wavelets become a very important tool in applied mathematics. They are used for
instance in image/signal analysis, see e.g. [7], [55]: Wavelets can be used to construct
very efficient compression schemes for images. An image can be modelled by a function
f ∈ L2(Q), where Q is the unit cube in R2. The approach is now to approximate f
by the linear combination of a suitable selection of wavelet basis elements. The task is
to choose this selection in a proper way. A natural approach is to consider all wavelet
coefficients up to a fixed refinement level of the underlying multiresolution analysis. We
call this a linear approximation. The quality of the linear approximation depends on
the L2-Sobolev regularity of f , see [7] for more information. An alternative approach is
called hard thresholding strategy. Roughly speaking we only choose wavelets such that the
corresponding coefficients are large enough, i.e. their absolut value exceeds a fixed value.
This kind of approximation is called nonlinear approximation. The approximation rate of
the nonlinear approximation is determined by the Besov regularity of the solution, where
the regularity is measured in the scale Bs

τ (Lτ (Q)), 1/τ = s/2 + 1/2. See [7] for details.
Furthermore wavelets can be applied for denoising, i.e. we start with a measurement

of corrupted wavelet coefficients and our goal is to find a approximation of the original
signal. For details we refer again to [7]. Furthermore wavelets are used for pre-conditioning,
tomography and in geophysics and meteorology. An overview of possible applications can
be found in [54].

Next we discuss an important application, which basically motivates our investigation
of Besov regularity: Wavelets became a very powerful tool for solving operator equations.
Let us discuss this by considering a general elliptic operator equation. By H̊1(Ω) we denote
the closure of the set of all infinitely differentiable functions with compact support in Ω
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with respect to the L2(Ω)-Sobolev norm ‖·‖H1(Ω). Let H−1(Ω) be the dual space of H̊1(Ω).
Further we write

a : H̊1(Ω)× H̊1(Ω)→ R

for a continuous, symmetric and elliptic bilinear form. In this setting we know

1

C
‖u‖H̊1(Ω) ≤ a(u, u) ≤ C · ‖u‖H̊1(Ω), u ∈ H̊1(Ω)

for a finite constant C > 0. The operator

A : H̊1(Ω)→ H−1(Ω), u 7→ a(u, ·)

is an isomorphism. Consequently, the equation

Au = f, f ∈ H−1(Ω)

has an unique solution u ∈ H̊1(Ω). Obviously, this equation is equivalent to the variational
formulation

a(u, v) = f(v), v ∈ H̊1(Ω). (1.0.8)

Since this solution is not known explicitly, one has to develop numerical schemes to con-
struct an approximation of the solution. The approach is now to discretize (1.0.8) and
then to solve finite linear equations systems. One way to discretize (1.0.8) is to use a Ga-
lerkin method, i.e. we consider a nested sequence (Sm)m≥0 of finite dimensional subspaces

of H̊1(Ω). Then we solve the problem

a(um, vm) = f(vm), vm ∈ Sm. (1.0.9)

If the solution um is sufficiently close to the solution of (1.0.9) we end, otherwise we
consider (1.0.9) in Sm+1. One of the main questions is how to construct the sequence
(Sm)m≥0 and in which way we can update the space Sm+1 (space refinement) if the solution
in Sm is not close enough to the solution. In the wavelet setting, a direct approach is to
choose the subspaces of a suitable multiresolution analysis (Vj)j≥0, i.e.

Sm(j) := Vj,

where m(j) :=
∣∣∣⋃j

i≥j0−1 Λi

∣∣∣. Obviously the space refinement is a priori fixed and there-

fore independent of the current approximation. This kind of approximation schemes is
called linear schemes. The practical advantage of this strategy is the easy implementati-
on. Also determining the convergence rate of these kind of schemes is quite simple. The
approximation error for uniform schemes as suggested above is defined by

Em(u) := inf
um∈Sm

‖u− um‖L2(Ω).

Under certain technical conditions for the wavelets we find the following: There is a r ∈ N
depending on the wavelet basis such that for all α ∈ [0, r] holds:

u ∈ Hα(Ω) =⇒ Em(u) ≤ C ·m−α/d,
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i.e. the convergence rate of linear schemes is determined by the L2-Sobolev regularity.
One can also show the converse implication:

Em(u) ≤ C ·m−α/d, m = m(j), for all j ≥ j0 =⇒ u ∈ Hα′(Ω), α′ < α.

See [35] for detailed information. As already discussed above, the guaranteed L2-Sobolev
regularity of solutions to Navier-Stokes equations on domains with singularities is limited,
even if the right-hand is smooth. Therefore the convergence rate of linear schemes as
discussed above is limited as well. A way out is the use of adaptivity, as we briefly explain
in the following. There might be areas of the domain in which the approximation is
already close to the solution and other parts of the domain, where the approximation is
still poor. Consequently it is reasonable to improve the approximation only in those parts
were the approximation is far from the exact solution. Therefore one needs to develop an a
posteriori error estimator, which estimates the local error of the recent result. Additionally
one has to invent an updating strategy, i.e. how to update the subspace Sm+1. The strong
analytic properties of wavelets make it possible to construct adaptive schemes based on
wavelets as described above, i.e. to construct a posteriori error estimator and a adaptive
refinement strategy, see e.g. [17, Section 3.2.1, Section 3.2.2]. Having such an adaptive
strategy it is a hard task to proof convergence of this scheme and to determine the
convergence rate. Furthermore the implementation of these schemes is much more difficult
than the implementation of linear schemes. Thus, before developing an adaptive scheme,
it is desirable to check if adaptivity really pays out. Meaning we have to analyze whether
it is possible to improve the convergence rate of uniform schemes. To this end we consider
the error of the best N-term wavelet approximation. We consider the manifold

ΣN :=

{∑
λ∈Λ0

cλ · ψλ : |Λ0| = N, cλ ∈ R

}

and the approximation error

σN(u) := inf
uN∈ΣN

‖u− uN‖L2(Ω).

Obviously, the convergence rate of best N-term approximation is a upper bound for the
convergence rate of any numerical scheme based on {ψλ : λ ∈ Λ}. Therefore, best N-
term approximation serves as a benchmark for numerical wavelet schemes. The quantity
σN(u) is connected to the Besov regularity of the target function. For the error of the best
N -term approximation we have

u ∈ Bs
τ (Lτ (Ω)),

1

τ
=
s

d
+

1

2
=⇒ σN(u) ≤ C ·N−s/d,

see [35]. In order to justify the use of adaptive schemes we have to ensure:

• It exists s > 0 such that σN(u) ≤ C ·N−s/d for a constant C independent on N ∈ N.

• s > αmax(u) := sup{α ≥ 0 : ∀m ∈ N : Em ≤ C ·m−α/d}.

Therefore we are in this thesis concerned with the question

s > αmax?
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In recent years there were successfully developed several adaptive wavelet schemes for
diverse problems. These schemes use a suitable wavelet basis. In many cases the conver-
gence rate of these schemes reach the convergence rate of best N-Term approximation. The
starting point were papers [2, 11]. They designed convergent, numerical adaptive wavelet
schemes to solve elliptic operator equations. For nonlinear problems we refer to [13]. Be-
side that adaptive wavelet methods were used to solve integral equations, see e.g. [28,48].
Moreover saddle point problems were addressed, see [19, 24]. For the stochastic Poisson
equation an adative wavelet algorithm was developed, see [9].

When using a wavelet basis one has to deal with a number of difficulties: One is usually
faced with relatively high condition numbers, the smoothness assumptions on wavelets are
hard to ensure and the existing constructions of wavelet basis are not easy to implement.
To this end, a weaker concept can be used. Instead of wavelet bases one uses wavelet
frames. A collection F = {fn}n∈N of elements of a Hilbert space (H, (·, ·)H) is called a
frame for H if there exists two constants 0 < C1 ≤ C2 <∞ such that

C1‖f‖2
H ≤

∑
n∈N

|(f, fn)H|2 ≤ C2‖f‖2
H, f ∈ H.

The construction of a frame can be performed in the following way: One has to construct
an overlapping partition Ω =

⋃
i Ωi of the underlaying domain, where Ωi is images of the

unite cube under a diffeomorphism. In a second step one can transfer a suitable wavelet
basis for the unit cube to Ωi. Finally, collecting everything together, gives a wavelet frame
on Ω. See [61] for details. In the past years, several methods for the solution of linear
equations using wavelet frames have been developed and analyzed, see e.g. [21–23, 68].
Also for nonlinear equations, results have been obtained. See [50], [53].

Besov regularity: State of the art

In recent years there were many partial differential equations studied concerning the Besov
regularity of their solution. For many equations it was possible to show that the Besov
regularity of the solution is indeed higher than its Sobolev regularity. We can not mention
all results here, but we discuss these results which are related to this thesis.

In [20] the Besov regularity of the solution to the Dirichlet problem for harmonic func-
tions and for the Poisson equation in Lipschitz domains was investigated. The main result
states, that a harmonic function v on a bounded Lipschitz domain with v ∈ Bλ

p (Lp(Ω)),
1 < p < ∞, λ > 0 is contained in Bα

τ (Lτ (Ω)), 1/τ = α/d + 1/p, 0 < α < λ · d/(d − 1).
Note, that Bs

p(Lp(Ω)) = W s(Lp(Ω)) for all p ∈ (1,∞) and s ∈ (0,∞)\N in the sense of
equivalent norms, where W s(Lp(Ω)) denotes the Lp-Sobolev space. Since α is strictly lar-
ger than λ, the Besov regularity for a harmonic function exceeds its Lp-Sobolev regularity.
This statement was used to prove regularity assertions for the Dirichlet problem [20, Eq.
(1.2)] and the Laplace’s equations [20, Eq. (4.3)], using additionally Sobolev regularity
results proven in [49]. The paper [20] was the first contribution, in which the technique of
wavelet characterization of function spaces for proving Besov regularity was applied. This
approach turned out to be quite profitable and was used in further papers. We will discuss
more details of this technique later on. One main ingredient for estimating the wavelet
coefficients is a weighted Sobolev estimate for harmonic functions. A Besov regularity
result already implies a weighted norm estimate for arbitrary large smoothness parameter
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k ∈ N of the form

‖ρ(x)k−β · |∇kv(x)|‖Lp(Ω) ≤ C · ‖v‖Bβp (Lp(Ω)), ρ(x) := dist(x, ∂Ω), (1.0.10)

for p ∈ [1,∞], β > 0 and k > β. By ∇kv(x) we denote the vector of all derivatives of
v of order k, the norm | · | denotes the euclidean length. The proof of this estimate uses
the mean value property of harmonic functions. Since this property is a special feature
of harmonic functions, it is in general not possible to prove such an estimate for non
harmonic functions. This leads to the fact, that in other results, parameters related to
the weighted Sobolev regularity occur in the bound of the Besov regularity parameter,
see e.g. (1.0.12), (1.0.16).

In [26] the Besov regularity of the Poisson equation in smooth and polyhedral cones
was studied. This is related to this thesis since we study (Navier-)Stokes equation in
polyhedral domains. These domains are a generalization of polyhedral cones, which are
defined by

K = {x ∈ R3 : x = ρ0(x) · ω(x), 0 < ρ0(x) <∞, ω(x) ∈ O},

whereO is a curvilinear polygon on the unit sphere bounded by the arcs γ1, ..., γn. Suppose
that the boundary ∂K consists of the vertex x = 0, the edges M1, ...,Mn and the faces
Γj := {x : x/|x| ∈ γj}, j = 1, ..., n. The angle at edge Mj will be denoted by θj.
Furthermore we define for x ∈ K the function rj(x) := dist(x,Mj). For r0 > 0 we define
the truncated cone K0 := {x ∈ K : |x| < r0}.

The proof of Besov regularity is again performed by estimating the wavelet coefficients of
the decomposition in a proper way. An important tool for doing this are weighted Sobolev
estimates corresponding to the weighted Sobolev norm as defined next. The corresponding
weighted Sobolev space on K is for l ∈ N0, β ∈ R, ~δ = (δ1, ..., δn) ∈ Rn, δj > −1 defined
by the norm

‖w‖W l,2

β,~δ
(K) :=

∫
K

∑
|α|≤l

ρ0(x)2(β−l+|α|)
n∏
k=1

(
rk(x)

ρ0(x)

)2δk

|Dαw(x)|2dx

1/2

.

A definition of trace spaces W
l−1/2,2

β,~δ
(Γj) can be found in [56]. It was proven (see [26,

Theorem 3.1]), that the Besov regularity of the unique solution to

−∆u = f in K, ∂u

∂nj
= Γj, j = 1, ..., n (1.0.11)

for f ∈ W l−2,2

β,~δ
(K) ∩ L2(K), gj ∈ W l−3/2,2

β,~δ
(Γj) is contained in

Bs
τ (Lτ (K0)), 1/τ = s/3 + 1/2, s < min (l, 3/2 · α0, 3 · (l − |δ|)) , (1.0.12)

where |δ| = δ1 + ...+ δn. The number α0 > 3/2 is a value depending on K0, such that the
solution of (1.0.11) is contained in Hα(K0) for all α < α0.

In [27] the question of Besov regularity to nonlinear elliptic partial differential equations
in a bounded Lipschitz domain was addressed. They considered equations of the form

−∆u(x) + g(x, u(x)) = f(x) in Ω, u(x) = 0 on ∂Ω.
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The (in general) nonlinear function g has to fulfill some smoothness assumptions and cer-
tain growth conditions, see [27, Section 3.2]. The above nonlinear problem was reformulate
as a fixed point problem defined in the scale of Besov spaces Bs

τ (Lτ (Ω)), 1/τ = s/d+ 1/2.
Since the above scale includes quasi-Banach spaces, Banach’s fixed point theorem is not
applicable. They used a fixed point theorem as stated in [58, Chapter 6.3.1]. The growth
condition on g are needed to achieve estimates of the form [58, Chapter 6.3.1, Eq. (4)],
which are needed to apply the fixed point theorem.

There are already positive results concerning the Besov regularity of the Stokes system.
For the stationary Stokes problem on a polygonal domain contained in R2 was established
a result which states that for body force f ∈ Hm(Ω)2, div u = h ∈ Hm+1(Ω) one has
u ∈ Bs

τ (Lτ (Ω))2, s < m + 2, π ∈ Bs
τ (Lτ (Ω)), s < m + 1, 1/τ = s/2 + 1/2, see [16]. The

proof is performed by splitting the solution into a sum of two components

u = uI + uB, π = πI + πB

by using a suitable truncation function. The first summands uI and πI , respectively, belong
to the functions in the interior of the domain. The regularity in these parts are achieved
by applying regularity theory for smooth domains. The second summands uB and πB
belong to the sector parts, where the point singularities of the domain are located. These
parts are estimated by using the technique of wavelet characterization of Besov spaces.
In [57] the Besov regularity of the Stokes equation in general bounded Lipschitz domain
contained in Rd, d ≥ 2 was investigated. The authors used boundary integral methods
to establish their results, which do not solely cover the scale of Besov spaces Bs

τ (Lτ (Ω)),
1/τ = s/d+1/2. In this specific scale, we could (partly) improve their results, see Remark
3.3.4 for a detailed discussion.

Discussion of the results in this thesis

Both contributions to this thesis (see Chapter 2, Chapter 3 and [40, 41]) address the
question: Which Besov regularity possesses the solution u to a (Navier-)Stokes equation
in the scale

Bα
τ (Lτ (Ω)),

1

τ
=
α

d
+

1

2
(1.0.13)

and is it higher than its L2-Sobolev regularity? As mentioned above, this positive result
in this direction was proven in numerous works for several problems. Therefore, it was
conjectured, that this is also true for Navier-Stokes equations on domains with non-smooth
boundary. Here we give an overview of the results that we have achieved. One main feature
our results have in common is that they are proven by exploiting weighted norm estimates.
These weighted spaces, i.e. especially the weights, depend on the shape of the underlaying
domain.

In the second chapter we consider the stationary Stokes equation (St2) and Navier-
Stokes equation (NavSt2) on a polyhedral domain, where we also include the case div u =
h 6= 0. The basic type of a polyhedral domain is a polyhedral cone with vertex at the
origin as defined above. General polyhedral domains G are usually defined by means of
diffeomorphism which maps the domain local to a polyhedral cone (see [56, Chapter 8.1]
for details):
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(i) The boundary ∂G consists of smooth open two-dimensional manifolds Γj (j =
1, ..., N), smooth curves Mk (k = 1, ..., n) and vertices x(1), ..., x(d′).

(ii) For every ξ ∈Mk there exist a neighborhood Uξ and a diffeomorphism κξ wich maps
G ∩ Uξ onto Dξ ∩B1 where Dξ is a dihedron and B1 is the unit ball.

(iii) For every vertex x(i) there exists a neighbourhood Ui and a diffeomorphism κi map-
ping G ∩ Ui onto Ki ∩B1 where Ki is a polyhedral cone with vertex at the origin.

We only consider the cases of domains with

κi : G ∩ Ui → Ki ∩Bi, x 7→ x+ b, (1.0.14)

where b is a vector in R3 independent of x. We will explain later on, why this restriction
comes into play.

For l ∈ N0, β = (β1, ..., βd′) ∈ Rd′ and δ := (δ1, ..., δn) ∈ Rn with δk > −1 for
k = 1, ..., n we define the weighted Sobolev space W l,2

~β,~δ
(G) to be the closure of the set

C∞0 (G\{x(1), ..., x(d′)}) with respect to the norm

‖u‖W l,2
~β,~δ

(G) =

 d′∑
j=1

∫
G∩Uj

∑
|α|≤l

ρj(x)2(βj−l+|α|)
∏
k∈Xj

(
rk(x)

ρj(x)

)2δk

|Dαu(x)|2dx

1/2

.

The set Xj denotes the collection of all indices k such that x(j) is an end point of the edge
Mk.

Sobolev regularity results were proven from M. Dauge, see [33]. She showed that for
(f, h) ∈ L2(G)3 ∩ Hα0(G), 0 < α0 < 1/2 the solution (u, π) is contained in Hα0+1(G)3 ×
Hα0(G). As already pointed out above, a higher Sobolev regularity of the given da-
ta f and h do not guarantee a higher Sobolev regularity of the solution to stationary
(Navier-) Stokes equations. This observation motivates to consider these equations in
weighted Sobolev spaces. In [56] was proven, that if the given data of the Stokes equation
are contained in a weighted Sobolev space with suitable weight parameters, the solution u
and the corresponding pressure term π are contained in the corresponding weighted space
with increased smoothness parameter:

(f, h) ∈ W l−2,2
~β,~δ

(G)3 ×W l−1,2
~β,~δ

(G) =⇒ (u, π) ∈ W l,2
~β,~δ

(G)3 ×W l−1,2
~β,~δ

(G), l ≥ 2. (1.0.15)

The discussions above suggest that weighted norm estimates can be used to establish
Besov regularity in the scale Bs

τ (Lτ (G)), 1/τ = s/3 + 1/2. The result (1.0.15) indicates,
that indeed a positive result can be expected. Thus, the idea is to prove an embedding of
(weighted) Sobolev spaces into Besov spaces. Indeed, we can show the following result:

W l,2

β,~δ
(G)3 ∩Hs0(G)3 ×W l−1,2

β,~δ
(G) ∩H t0(G) ↪→ Bs1

τ1
(Lτ1(G))3 ×Bs2

τ2
(Lτ2(G)),

1

τi
=
si
3

+
1

2
,

i = 1, 2 for

s1 < min
(
l, 3/2 · s0, 3 · (l − |~δ|)

)
, s2 < min

(
l − 1, 3/2 · t0, 3 · (l − 1− |~δ|)

)
, (1.0.16)
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see Remark 2.2.2 in this thesis. Consequently, valid results, which ensures that the solu-
tion u and the corresponding pressure term have certain (weighted) Sobolev regularity,
immediately lead to a Besov regularity result.

The embedding is proven by estimating the coefficients of the wavelet decompositi-
on. The norm equivalence (1.0.7) is the basis for this approach. Let us briefly discuss
the basic ideas. We consider one component of (v1, v2, v3, v4) ∈ W l,2

β,~δ
(G)3 ∩ Hs0(G)3 ×

W l−1,2

β,~δ
(G) ∩H t0(G) and denote it by v. We use the diffeomorphism defined in (1.0.14) in

order to transform v to the corresponding truncated polyhedral cones Ki. In order to keep
notation simple we denote the transformed v also by v. We cannot consider general dif-
feomorphism κi since we first prove Besov regularity in the polyhedral cones. For general
diffeomorphism κi we cannot guarantee u ◦ κ−1

i ∈ Bs
τ (Lτ (G ∩Ui)) for u ∈ Bs

τ (Lτ (K∩Bi))
for parameters s and τ as considered in the regularity results of this paper. We know
by assumption, that v is contained in a L2-Sobolev space. We use Rychkov’s extension
operator, which simultaneously extends Sobolev- and Besov spaces on a Lipschitz domain
to the corresponding spaces on the whole euclidean plane, independent of the defining
smoothness and metric parameters, see [59]. Since we assume, that v has a certain L2-
Sobolev regularity, we can extend v to the whole euclidean plane, such that the extension
has the same regularity. Since this operator is continuous, it is sufficient to estimate the
Besov regularity of the extension. This is performed by using the equivalent norm as
displayed in (1.0.7). We only have to consider those wavelets, whose support have non
empty intersection with the underlying domain. Basically, since the underlying domain is
bounded, the first summand in (1.0.7) is bounded. The main effort must be spend in the
treatment of the second summand. The proof is quite technical, therefore we only discuss
the basic ideas without going into detail. Since the wavelets are assumed to be compact
supported, there exists a cube Q such that

Qj,k := 2−jk + 2−jQ, j ∈ N0, k ∈ Z3

contains the supports of ψ̃i,j,k, ψi,j,k for all i ∈ {1, ..., 7}. We split the estimate into two
parts.

1. We start by estimating the coefficients corresponding to the interior wavelets, i.e.,
we estimate those coefficients 〈v, ψ̃i,j,k〉 such that Qj,k is contained in the cone. We
do this by considering two cases. First we give consideration to those wavelets,
whose support can not be arbitrary close to the origin. The corresponding wavelet
coefficients are estimated by using a Whitney type estimate, see [37]. There exists
a polynomial P of degree less or equal to l − 1 such that

‖ϕ− P‖Lp(Qj,k) ≤ C · |Qj,k|l/n · |ϕ|W l(Lp(Qj,k)), ϕ ∈ W l(Lp(Qj,k)). (1.0.17)

The vanishing moment property of wavelets allow to exploit (1.0.17) to estimate the
coefficients 〈v, ψ̃i,j,k〉 by the Sobolev half norm of v:

|〈v, ψ̃i,j,k〉| ≤ C · 2−lj|v|W l(L2(Qj,k)).

Roughly speaking, in a next step we insert suitable weights corresponding to the
weighted Sobolev space as displayed above, and therefore the corresponding coef-
ficients are bounded by the weighted Sobolev norm. Doing this, the first factor,
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depending on parameters of the weighted Sobolev space, remains to be estimated.
The conditions (1.0.16) are sufficient to ensure boundedness of the sum over all
corresponding indices of these factors.

In a second step we have to estimate all coefficients 〈v, ψ̃i,j,k〉, such that Qj,k can be
arbitrary close to the origin: For j ≥ 0 we consider all indices (i, j, k) such that

0 < dist(Qj,k, 0) < 2−j.

Due to the Lipschitz character of K0, the cardinality of this index set is bounded by
22j. Using this fact allows us to estimate the sum over all corresponding indices by
3/2 · s0 and 3/2 · t0, respectively.

2. In the last part we estimate the coefficients 〈v, ψ̃i,j,k〉 such that Qj,k has non-empty
intersection with the boundary. The cardinality of the set of all corresponding indices
is again bounded by 22j, so we can argue as above.

In the third chapter we consider the stationary Stokes problem (St2) and the Navier-
Stokes system (NavSt2) on a bounded Lipschitz domain with connected boundary contai-
ned in Rd, d ≥ 3. For the sake of completeness we recall the definition of a domain with
Lipschitz boundary:

A bounded domain Ω with boundary ∂Ω is called a Lipschitz domain if for every x ∈ ∂Ω
there exists a neighbourhood U of x and a bijective mapping φx : U → B1(0) := {z ∈ Rd :
‖z‖2 < 1} such that φx and φ−1

x are Lipschitz continuous and

φx(U ∩ Ω) = {z ∈ B1(0), zd > 0},
φx(U ∩ ∂Ω) = {z ∈ B1(0) : zd = 0},
φx(U\Ω) = {z ∈ B1(0), zd < 0}.

In contrast to polyhedral domains, singularities in Lipschitz domains can possibly occur
everywhere on the boundary. Therefore, the weight in the definition of the weighted So-
bolev spaces on Lipschitz domain, as we use them in this thesis, consists of the distance
to the boundary of the domain. For m ∈ N0, α > 0 and p ∈ [1,∞) the weighted Sobolev
space is defined as

Wm
α (Lp(Ω)) :=

{
f ∈ Lp(Ω) : ‖f‖pWm

α (Lp(Ω)) := ‖f‖pLp(Ω) +

∫
Ω

ρ(x)α|∇mf(x)|p`pdx <∞
}
,

where |∇mf |`p is the `p-norm of the vector ∇mf and ρ(x) := dist(x, ∂Ω), x ∈ Ω. We were
able to prove, that the solution u to the Stokes equation (St2) and the corresponding
pressure term π fulfill

u ∈ Bs1
τ1

(Lτ1(Ω))d,
1

τ1

=
s1

d
+

1

2
, 0 < s1 < min

{
3

2
· d

d− 1
, 2

}
,

and

π ∈ Bs2
τ2

(Lτ2(Ω)),
1

τ2

=
s2

d
+

1

2
, 0 < s2 <

1

2
· d

d− 1
,

if the right hand side f ∈ L2(Ω)d and the boundary data fulfill g ∈ H1(∂Ω)d. The bound
2 for the Besov regularity for u corresponds to the weighted Sobolev regularity of u, see
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Proposition 3.3.2 in this thesis. A result in [3] yields that the solution u to (St2) with f = 0
fulfill u ∈ W 2

1 (L2(Ω)) if g ∈ H1(∂Ω)d. We showed (u, π) ∈ W 2
1 (L2(Ω))d ×W 1

1 (L2(Ω)) for
the solution u and the corresponding pressure π even for general f ∈ L2(Ω)d. Exploiting
additionally Sobolev regularity results for the Stokes equation, see Proposition 3.3.1 (the
proof is based on results in [3] and [42]) we can prove the statement concerning the Besov
regularity of the solution, see Theorem 3.3.3 in this thesis. This result is based on the
following embedding for α0 > 0, α > 0, γ ∈ N and α < 2γ:

Hα0(Ω) ∩W γ
α (L2(Ω)) ↪→ Bs

τ (Lτ (Ω)),
1

τ
=
s

d
+

1

2
,

if 0 < s < min{2γ−α
2
· d
d−1

, α0· d
d−1

, γ}. Again we see the dependence of the Besov smoothness
parameter on the Sobolev regularity and the parameter of the weighted Sobolev spaces.
The factor d/(d− 1) also occurs in [40], which is equal to 3/2 for a subspace of R3. The
proof of the above embedding uses again the wavelet characterization of Besov spaces by
wavelets.

In order to treat the nonlinear Navier-Stokes equation we use Banach’s fixed point
theorem. Let us give a sketch of the proof: We reduce the Navier-Stokes equation to the
Stokes equation with modified right-hand side. To this end we consider the linear solution
operator of (St2)

L := Lt,p,Ω : Yt,p,Ω → Xt,p,Ω

(f, g) 7→ L(f, g) := (u, π),

for suitable function spaces Yt,p,Ω and Xt,p,Ω, see Section 3.2 and Section 3.4 for details.
The function u is the unique solution to (St2) with body force f and boundary value g,
and π is the corresponding pressure. The operator is well-defined due to results proven
in [57]. We consider the nonlinear operator

N : Xt,p,Ω → Yt,p,Ω ∩ (L2(Ω)d ×H1(∂Ω)d), N(u, π) := (f − νu · ∇u, g)

for fixed (f, g) ∈ Yt,p,Ω ∩ (L2(Ω)d ×H1(∂Ω)d). This operator is well-defined, see Proof of
Theorem 3.4.1 in this thesis. Consequently, the operator

T := L ◦N : Xt,p,Ω → Xt,p,Ω, (u, π) 7→ L(f − νu · ∇u, g)

is also well-defined. Obviously, a fixed point of T is a solution to (NavSt2). The existence
of a fixed point was proven by using Banach’s fixed point theorem. The restriction (3.4.4),
see Section 3.4 in this thesis, is needed to ensure, that T is a contraction on the subspace

A := {(v, q) ∈ Xr,p,Ω : ‖Lt,p,Ω‖ · ν · Ct,p,Ω · ‖(v, q)‖Xt,p,Ω ≤ 1/2},

where Ct,p,Ω > 0 is a finite constant, see also Remark 3.4.2, (ii) in this thesis. We further
note that

Xt,p,Ω ↪→ H1(Ω)d × (L2(Ω)/RΩ) ,

holds, i.e. any fixed point is a solution to the Stokes equation with modified right hand
side f − ν · u · ∇u ∈ L2(Ω)d. The desired Besov regularity results

u ∈ Bs1
τ1

(Lτ1(Ω))d,
1

τ1

=
s1

d
+

1

2
, 0 < s1 < min

{
3

2
· d

d− 1
, 2

}
, (1.0.18)
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and

π ∈ Bs2
τ2

(Lτ2(Ω)),
1

τ2

=
s2

d
+

1

2
, 0 < s2 <

1

2
· d

d− 1
, (1.0.19)

follow by applying Theorem 3.3.3 in this thesis. Different to the approach in [27] as des-
cribed above, we do not apply the fixed point theorem directly in the scale of Besov spaces
Bs
τ (Lτ (Ω)), 1/τ = s/d+ 1/2. Since the space Xt,p,Ω is a Banach space, the application of

Banach’s fixed point theorem is possible and it turned out to be profitable.
We oberserv in all results, that under some technical conditions, the Besov regularity of

the solution to (Navier-)Stokes equations is higher than its Sobolev regularity. In summary
we conclude that the development of adaptive wavelet schemes for solving (Navier-)Stokes
equation on polyhedral domains and Lipschitz domains is completely justified.
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2.1 Introduction

In this paper we are concerned with the 3D-Navier-Stokes system

−ν∆u+
3∑
j=1

uj
∂u

∂xj
+∇p = f in G

div u = g in G
u = 0 on Γj, j = 1, ..., N

and the 3D-Stokes system

−∆u+∇p = f in G
div u = g in G

u = 0 on Γj, j = 1, ..., N

on a polyhedral domain G ⊂ R3 where Γj are the faces of the domain. The Navier-Stokes
equations and its linearized version, the Stokes equations, describe the motion of a viscous
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fluid. Here ∆ :=
3∑

k=1

∂2

∂2xi
is the Laplace operator and by ∇ :=

(
∂
∂x1
, ∂
∂x2
, ∂
∂x3

)T
we denote

the gradient. As usual, u(·) = (u1(·), u2(·), u3(·)) denotes the velocity field and p stands for
the pressure field. Our aim is to prove regularity results for each component of the solution
(u, p) in the specific scale of Besov spaces Bs

τ (Lτ (G)), 1/τ = s/3 + 1/2 (see [64, Chapter 2
and 3] for definition of Besov spaces). This specific scale comes into play when studying
the convergence rate of adaptive numerical schemes. We will explain the relationship very
briefly in the following. Let us for the sake of simplicity assume g = 0, then the weak
formulation of the Stokes problem is given by

a(u, v) + b(p, v) = f(v) for all v ∈ H1
0 (G)3,

b(q, u) = 0 for all q ∈ L2,0(G)

with

a(u, v) :=

∫
G

3∑
i,j=1

∂ui
∂xj

∂vj
∂xj

dx,

b(p, v) := −
∫
G
p(x)(divv)(x)dx

and

f(v) :=

∫
G
〈f, v〉 dx.

H1
0 (G) is the closure of C∞0 (G) with respect to the H1(G)-Sobolev norm and L2,0(G) :=
{p ∈ L2(G) :

∫
G p(x)dx = 0}. For detailed definition of Sobolev spaces see [64, Chapter 2

and 3]. To treat the equation numerically we use the Galerkin approach, i.e. we consider
a nested sequence {Sj × S̃j}j≥0 of finite dimensional linear subspaces of H1

0 (G)3×L2,0(G)
such that the union is dense in H1

0 (G)3 × L2,0(G). This leads to the problems

a(uj, v) + b(pj, v) = f(v) for all v ∈ Sj,

b(q, uj) = 0 for all q ∈ S̃j.

In many cases, the approximation spaces Sj and S̃j are constructed by means of a uniform
grid refinement strategy. This kind of approximation is called linear approximation. It is
well-known that the performance usually depends on the Sobolev regularity of the solution.
For details we refer to [18], [35], [44] and [47]. However, in practice, due to singularities at
the boundary of the domain, this Sobolev regularity might not be very high and therefore
the approximation rate of uniform schemes drops down. In this setting, the use of adaptive
strategies seems to be reasonable. Roughly speaking, an adaptive scheme corresponds to
nonuniform grid refinement where the underlaying space is only refined in regions where
the current approximation is still far away from the exact solution. In this paper we are in
particular interested in adaptive wavelet algorithms. In this setting, an adaptive scheme
can be interpreted as a nonlinear approximation scheme, and for that reason best n-term
approximation serves as a benchmark for adaptive strategies (see [11], [18] for further
information): Instead of linear spaces one uses the nonlinear manifoldMn of all functions

S =
∑
λ∈Λ

cλψλ, |Λ| ≤ n,
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where {ψλ}λ∈J is a suitable wavelet basis. We define the approximation error

σn(u)L2 := inf
S∈Mn

||u− S||L2 .

In contrast to linear approximation schemes, the order of convergence for best n-term
wavelet approximation does not depend on the Sobolev regularity, but on the Besov
smoothness, i.e.

∞∑
n=1

[ns/3σn(u)L2 ]τ
1

n
<∞⇐⇒ u ∈ Bs

τ (Lτ ), 1/τ = s/3 + 1/2,

see [35], [36] for further details. As suggested above this shows that it is profitable to use
adaptive schemes if the Besov regularity of the solution in this specific scale is higher than
the Sobolev regularity. It is known that in smooth domains the Sobolev regularity of the
solution increases if the Sobolev regularity of f and g increase (see e.g. [47] for details
for the Stokes system). If the domain is only Lipschitz, this conclusion is no longer true
due to singularities at the boundary (see Proposition 2.5.1), but there is some hope that
these singularities do not influence the Besov smoothness in the scale 1/τ = s/d + 1/2.
Indeed there are already some positive results in this direction for a large class of partial
differential equations: In [16] it was shown that the Besov regularity of the 2D-Stokes
system in a polygonal domain is under some technical conditions higher than the Sobo-
lev regularity. In [20] the Besov regularity of the solution to the Dirichlet problem for
harmonic functions and for the Poisson equation in Lipschitz domains was investigated.
A result which is similar to our main statement was proven in [26] for Poisson equation.
In many cases these results are proven by using the characterization of Besov spaces by
means of weighted sequence norms of coefficients related to the wavelet decomposition of
the solution. Similar to the investigation in [26] we estimate the wavelet coefficient of the
solution by exploiting regularity results related to weighted Sobolev spaces introduced by
Maz’ya and Rossmann (see [56, Chapter 10 and 11] ). Furthermore there are also results
for nonlinear partial differential equations, see [27]. In this paper we consider the Navier-
Stokes system and the Stokes system on a polyhedral domain where singularities at the
vertices and on the edges might occur. To prove regularity results we need certain weigh-
ted Sobolev spaces which take these singularities into account. We denote these spaces
by W l,2

~β,~δ
, for details see Section 2.2 and Section 2.3. In this paper we establish a result

which shows that under certain technical conditions the Besov regularity to the solution
of the Navier-Stokes respectively the Stokes problem is higher than the Sobolev regularity
if additionally the parameter l is not so small: For suitable values of l the Besov regularity
is at least 3/2 times higher than the Sobolev regularity. For details, we refer to Theorem
2.2.1, Theorem 2.3.1 and Theorem 2.3.2, respectively.

This paper is organized as follows: In the second section we state and prove a result for
the Navier-Stokes system on a polyhedral domain. In the third section we show analog
results for the Stokes system. As mentioned above we use weighted Sobolev estimates. In
Section 4 we discuss some norm estimates for the solution of the considered Navier-Stokes
and Stokes equations. In Appendix 5, we discuss the Sobolev regularity and results for
weighted Sobolev regularity of the solution as far as they are needed for our purposes.
In the last section we recall the definition of Besov and Sobolev spaces and explain the
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connection between the Besov regularity of a distribution and the decay of its wavelet
coefficients.

2.2 Besov regularity for the Navier-Stokes System in
polyhedral domains

In this section we state and prove the main result of this paper: We will show that under
some technical assumptions the Besov regularity of the solution to

−ν∆u+
3∑
j=1

uj
∂u

∂xj
+∇p = f in G

div u = g in G (2.2.1)

u = 0 on Γj, j = 1, ..., N

in the scale 1/τ = s/3+1/2 is 3/2 times higher than its Sobolev regularity. We consider
the Navier-Stokes equation on polyhedral domains. The basic type of a polyhedral domain
is a polyhedral cone. Define ρ(x) := |x|. Let

K = {x ∈ R3 : x = ρ(x) · ω(x), 0 < ρ(x) <∞, ω(x) ∈ Ω} (2.2.2)

be a polyhedral cone with vertex at the origin where Ω is a curvilinear polygon on the
unit sphere bounded by the arcs γ1, ..., γd. Suppose that the boundary ∂K consists of the
vertex x = 0, the edges M1, ...,Md and the faces Γj := {x : x/|x| ∈ γj}, j = 1, ..., d. The
angle at edge Mj will be denoted by θj. Furthermore we define for x ∈ K the function
rj(x) := dist(x,Mj). By K0 we denote an arbitrary truncated cone, i.e. there exists a
positive real number r0 such that

K0 = {x ∈ K : |x| < r0}.

Our technique requires regularity assertions in weighted Sobolev spaces. Following
Maz’ya and Rossmann we define these spaces for cones (see [56, Chapter 7] for details):

Let l be a nonnegative integer, β ∈ R and ~δ = (δ1, ..., δd) ∈ Rd, δj > −1 for j = 1, ..., d.

We define the space W l,2

β,~δ
(K) as the closure of the set C∞0 (K\{0}) with respect to the norm

||u||W l,2

β,~δ
(K) :=

∫
K

∑
|α|≤l

ρ(x)2(β−l+|α|)
d∏

k=1

(
rk(x)

ρ(x)

)2δk

|Dαu(x)|2dx

1/2

.

General polyhedral domains are usually defined by means of diffeomorphism which
maps the domain local to a polyhedral cone (see [56, Chapter 8.1] for details):

(i) The boundary ∂G consists of smooth open two-dimensional manifolds Γj (j =
1, ..., N), smooth curves Mk (k = 1, ..., d) and vertices x(1), ..., x(d′).

(ii) For every ξ ∈ Mk there exist a neighborhood Uξ and a diffeomorphism κξ which
maps G ∩ Uξ onto Dξ ∩B1 where Dξ is a dihedron and B1 is the unit ball.
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(iii) For every vertex x(i) there exist a neighborhood Ui and a diffeomorphism κi mapping
G ∩ Ui onto Ki ∩B1 where Ki is a polyhedral cone with vertex at the origin.

We will restrict ourselves to the case of

κj : G ∩ Uj → Kj ∩Bj, x 7→ x+ b,

where is a vector in R3 independent of x.

Now we recall the definition of weighted Sobolev spaces corresponding to polyhedral
domains (see again [56, Chapter 8] for details). We put

rk(x) := dist(x,Mk), k = 1, ..., d,

ρj(x) := dist(x, x(j)). j = 1, ..., d′.

With Xj we denote the set of indices k such that x(j) is an end point of the edge Mk. Let
U1, ..., Ud′ be domains in R3 such that

U1 ∪ ... ∪ Ud′ ⊃ G and Uj ∩Mk = ∅ if k /∈ Xj.

For l ∈ N0, β = (β1, ..., βd′) ∈ Rd′ and δ := (δ1, ..., δd) ∈ Rd with δk > −1 for
k = 1, ..., d we define the weighted Sobolev space W l,2

~β,~δ
(G) to be the closure of the set

C∞0 (G\{x(1), ..., x(d′)}) with respect to the norm

||u||W l,2
~β,~δ

(G) =

 d′∑
j=1

∫
G∩Uj

∑
|α|≤l

ρj(x)2(βj−l+|α|)
∏
k∈Xj

(
rk(x)

ρj(x)

)2δk

|Dαu(x)|2dx

1/2

.

In our case we consider polyhedral domains for which we can find a partition of unity
{σj}d

′
j=1 related to the domain decomposition G =

⋃d′

j=1 G ∩ Uj which fulfills

||σjv||Bsp(Lp(G∩Uj)) . ||v||Bsp(Lp(G)), 1/p = s/3 + 1/2, (2.2.3)

uniformly for all v ∈ Bs
p(Lp(G)). The symbol . means that the estimate is true up to a

constant. In many cases the condition (2.2.3) is fulfilled. For example investigations for
the L-shaped domain can be found in [21, Section 4.2]. Let us introduce a further notation:

By |~δ| we denote the sum of all δk. Now we can formulate and prove the following result:

Theorem 2.2.1. It exists a countable set E ⊂ C such that for all ~β ∈ Rd′, ~δ ∈ Rd with

β∗ := max
j=1,...,d′

βj < 1,

Re λ 6= 1/2− βj for all λ ∈ E (2.2.4)

and
max (0, 1− µk) < δk < 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =
0 if θk > π, the following holds: If (f, g) ∈ W 0,2

~β,~δ
(G)3×W 1,2

~β,~δ
(G)∩H1+ε(G), ε > 0, g fulfills

the compatibility condition
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g|Mk
= 0, k = 1, ..., d

and if a solution (u, p) of (2.2.1) is contained in Hs0(G)3 ×H t0(G) then

u ∈ Bs1
τ1

(Lτ1(G))3,
1

τ1

=
s1

3
+

1

2
, s1 < min

(
2, 3/2 · s0, 3 · (2− |~δ|)

)
, (2.2.5)

p ∈ Bs2
τ2

(Lτ2(K0)),
1

τ2

=
s2

3
+

1

2
, s2 < min

(
1, 3/2 · t0, 3 · (1− |~δ|)

)
(2.2.6)

Proof. : To prove the theorem we will study each component of the solution (u, p) =
(u1, u2, u3, p) to (2.2.1) separately. Let v be one of the functions u1, u2, u3 or p, respectively.
Moreover we define

µ :=

{
2 v = ui for i = 1, 2 or 3

1 v = p

and

α :=

{
s0 v = ui for i = 1, 2 or 3

t0 v = p
. (2.2.7)

From Proposition 2.5.6 we obtain v ∈ W µ,2
~β,~δ

(G). Using the transformation κj = · + b

introduced in the beginning of this section we define the function

vj := v ◦ κ−1
j : Kj ∩Bj → R.

For the sake of notation simplicity we denote vj by v, Kj by K and Kj ∩Bj by K0. We
obtain∫

K0

∑
|α|≤µ

ρ(x)2(β−l+|α|)
d∏

k=1

(
rk(x)

ρ(x)

)2δk

|Dαv(x)|2dx

1/2

<∞ and v ∈ Hα(K0), (2.2.8)

with the abbreviation β := βj. The proof uses the characterizations of Besov spaces by
wavelet expansions. Therefore we estimate the wavelet coefficients of v in order to show
that the equivalent quasi-norm as outlined in Proposition 2.6.1 is bounded. We make the
following agreements concerning the wavelet characterization of Besov spaces on R3: For
the sake of simplicity we associate to each dyadic cube I := 2−jk+2−j[0, 1]3 the functions

ηI := ψ̃i,j,k, j ∈ N0, k ∈ Z3, i = 1, ..., 7,

see Section 2.6 for details. Note that we disregard the dependence on i. By η∗I we denote
the corresponding element of the primal basis. Because the supports of the wavelets are
assumed to be compact there exists a cube Q centered at the origin such that

Q(I) := 2−jk + 2−jQ

contains the support of ηI and η∗I for all I. We will prove the result in three steps: In
a first step we will estimate the coefficients | 〈v, ηI〉 | for with Q(I) is contained in the
truncated cone and the distance from Q(I) to the origin is not to small. We will spe-
cify this later. In a second step we look for the coefficients for which Q(I) is contained
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in K0 but Q(I) can be located arbitrarily close to the origin. In the last step we consi-
der the coefficients for which the intersection of Q(I) and the boundary of K0 is not empty.

step 1: We start by estimating the coefficients | 〈v, ηI〉 | with Q(I) ⊂ K0. We put

ρI := dist(Q(I), 0)

and

rI := min
j=1,...,d

min
x∈Q(I)

rj(x).

For j ∈ N0 consider the set of indices:

Λj := {I : Q(I) ⊂ K0, 2−3j ≤ |I| ≤ 2−3j+2}.

Then we define a subset of Λj for k ∈ N:

Λj,k := {I ∈ Λj : k2−j ≤ ρI < (k + 1)2−j}.

Further we put for m ∈ N

Λj,k,m := {I ∈ Λj,k : m2−j ≤ rI < (m+ 1)2−j}.

We observe the following facts:

• There exists a general number C such that

Λj,k = ∅, k > C2j. (2.2.9)

• For the cardinality |Λj,k| of Λj,k holds

|Λj,k| . k2, k ∈ N. (2.2.10)

• It holds

|Λj,k,m| . m, m ∈ N. (2.2.11)

In every case the constant is independent of j, k and m. Recall that

|v|Wµ(L2(Q(I))) :=

(∫
Q(I)

|∇µv(x)|2dx

)1/2

,

which is well defined because of (2.2.8). The vector space of polynomials of order at most
µ is finite dimensional so there exists a polynomial PI such that

||v − PI ||L2(Q(I)) = inf
{
||v − P ||L2(Q(I)) : P is a polynomial of degree ≤ µ

}
.

The vanishing moment property of wavelets, see Subsection 2.6, Hölder’s inequality and
a classical Whitney-estimate (see [37, Theorem 3.4]) lead to
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| 〈v, ηI〉 | ≤ ||v − PI ||L2(Q(I))||ηI ||L2(Q(I))

. |I|µ/3 · |v|Wµ(L2(Q(I))).

For I ∈ Λj we obtain

| 〈v, ηI〉 | . 2−µj|v|Wµ(L2(Q(I))).

Let 0 < τ < 2. Summing up over I ∈ Λj,k yields

∑
I∈Λj,k

| 〈v, ηI〉 |τ .
∑
I∈Λj,k

2−µjτ
(∫

Q(I)

|∇µv(x)|2dx

)τ/2

.
∑
I∈Λj,k

2−µjτr
−τ |~δ|
I ρ

−τ(β−|~δ|)
I

∫
Q(I)

ρ2(β−|~δ|)

(
d∏

ν=1

rδνν

)2

|∇µv(x)|2dx

τ/2

.

We define

vI :=

∫
Q(I)

ρ2(β−|~δ|)

(
d∏

ν=1

rδνν

)2

|∇µv(x)|2dx.

Now we focus on the coefficients belonging to Λj,k,m. We now have to consider the cases

β > |~δ| and |~δ| ≥ β separately. If β − |~δ| > 0 we can conclude ρ
−τ(β−|~δ|)
I . (k2−j)−τ(β−|~δ|)

. Otherwise we get ρ
−τ(β−|~δ|)
I . ((k + 1)2−j)−τ(β−|~δ|). We will only discuss the case β > |~δ|

in detail. The second case can be treated analogously. Using Hölder’s inequality with
q = 2/τ , q′ = 2/(2− τ) results in

∑
I∈Λj,k,m

| 〈v, ηI〉 |τ . 2−µτj(k2−j)−τ(β−|~δ|)

 ∑
I∈Λj,k,m

r
−τ |~δ| 2

2−τ
I

 2−τ
2

·

 ∑
I∈Λj,k,m

vI

 τ
2

. 2−µτj(k2−j)−τ(β−|~δ|)

 ∑
I∈Λj,k,m

(m2−j)−τ |
~δ| 2

2−τ

 2−τ
2
 ∑
I∈Λj,k,m

vI

 τ
2

Together with (2.2.11) we obtain

∑
I∈Λj,k,m

| 〈v, ηI〉 |τ . 2τj(β−µ)k−τ(β−|~δ|)m−τ |
~δ|+ 2−τ

2

 ∑
I∈Λj,k,m

vI

 τ
2

.

We continue by using the fact that there are of order k sets Λj,k,m in each layer Λj,k.
Together with Hölders inequality, this gives

∑
I∈Λj,k

| 〈v, ηI〉 |τ . 2jτ(β−µ)k−τ(β−|~δ|)

(
Ck∑
m=1

m−τ |
~δ| 2

2−τ +1

) 2−τ
2

 ∑
I∈Λj,k

vI

 τ
2

. (2.2.12)
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Note, that the constant C only depends on K0. Together with

(
Ck∑
m=1

m−τ |
~δ| 2

2−τ +1

) 2−τ
2

.


k−τ |

~δ|+2−τ 2 > τ(1 + |~δ|),
(log(1 + k))

2−τ
2 2 = τ(1 + |~δ|),

1 2 < τ(1 + |~δ|).

we obtain from (2.2.12)

∑
I∈Λj,k

| 〈v, ηI〉 |τ . 2jτ(β−µ)

 ∑
I∈Λj,k

vI

 τ
2

×


k−τ(β+1)+2 2 > τ(1 + |~δ|),
k−τ(β−|~δ|)(log(1 + k))

2−τ
2 2 = τ(1 + |~δ|),

k−τ(β−|~δ|) 2 < τ(1 + |~δ|).

To simplify the notation we denote these functions of k in the second line by ak. Employing
(2.2.9) and Hölder’s inequality we get

∑
I∈Λj

| 〈v, ηI〉 |τ . 2jτ(β−µ)

C2j∑
k=1

a
2

2−τ
k

 2−τ
2
∑
I∈Λj

vI

 τ
2

.

From (2.2.8) we conclude that the last factor is bounded. To complete the estimate

we have to sum with respect to j ∈ N0: We first consider the sum
∑C2j

k=1 a
2

2−τ
k and derive

estimates depending on β. Then we study the convergence of

∑
j≥0

2jτ(β−µ)

C2j∑
k=1

a
2

2−τ
k

 2
2−τ
 .

More detailed we get the following cases:

3
(

1
τ
− 1

2

)
< µ if τ(1 + |~δ|) < 2 and β < 3

(
1
τ
− 1

2

)
,

β < µ if τ(1 + |~δ|) < 2 and β ≥ 3
(

1
τ
− 1

2

)
,

3
2
|~δ| < µ if τ(1 + |~δ|) = 2 and β < 3

2
|~δ|,

β < µ if τ(1 + |~δ|) = 2 and β ≥ 3
2
|~δ|,

1
τ
− 1

2
< µ− |~δ| if τ(1 + |~δ|) > 2 and 1

τ
− 1

2
> β − |~δ|,

β < µ if τ(1 + |~δ|) > 2 and 1
τ
− 1

2
≤ β − |~δ|.

Now we want to derive from these six cases sufficient conditions for s := 3
(

1
τ
− 1

2

)
such

that

v∗ :=
∑
j∈N0

∑
k∈N

∑
I∈Λj,k

〈v, ηI〉 η∗I
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belongs to Bs
τ (Lτ (R3)). We find that β < µ is necessary in all six cases. First we consider

the case |~δ| < 2
3
µ. If we require

s < µ

we can conclude (depending on the value of τ(1+|~δ|)) from the first, the third respectively
the fifth case the convergence of the above series if additionally s > β is fulfilled. For the
regularity result this is no relevant restriction. Next we look for the case |~δ| ≥ 2

3
µ. From

the fifth case again we conclude

β − |~δ| < s < 3(µ− |~δ|).

Since we have already found s < µ we actually obtain from |~δ| ≥ 2
3
µ the condition

s < 3
2
|~δ|. But |~δ| ≥ 2

3
µ implies 3(µ − |~δ|) ≤ 3/2|~δ|. Finally we have found the second

restriction in (2.2.5), (2.2.6).

step 2: In the next step we have to estimate the coefficients in

Λj,0 := {I ∈ Λj : 0 < ρI < 2−j}.

If Λj,0 is empty, there is nothing to do. Otherwise we argue as follows. From the Lipschitz
character of K0 follows |Λj,0| . 22j, j ∈ N0. For 0 < q < 2 we obtain with Hölder’s
inequality and by summing up over j ∈ N0:

∑
j≥0

2j(s+3(1/2−1/q))q
∑
I∈Λj,0

| 〈v, ηI〉 |q . ||v||q
B
s+ 1

2−
1
q

q (L2(R3))

. ||v||q
B
s+ 1

2−
1
q−ε

2 (L2(R3))

,

where ε > 0 can be chosen arbitrarily small, see [64, Chapter 2.3]. We choose s and q
such that

s :=
3α

2
and

1

q
:=

s

3
+

1

2
, i.e. s = 3

(
1

q
− 1

2

)
,

see (2.2.7) for the definition of α. We obtain α = 2
q
− 1, i.e. α > 0 is insured. Additionally

we get α = s+ 1
2
− 1

q
. That means ||v||q

B
s+ 1

2−
1
q

2 (L2(R3))

<∞. We get that

v∗∗ :=
∑
j≥0

∑
I∈Λj,0

〈v, ηI〉 η∗I

belongs to B
3/2α
q (Lq(R3)).

step 3: Finally we have to estimate the coefficients for which the supports of the ap-
pendant wavelets intersect with the boundary of the truncated cone. More precisely, we
consider the set

Λ#
j := {I|Q(I) ∩ ∂K0 6= ∅, 2−3j ≤ |I| ≤ 2−3j+2}, j ∈ N0.

Since K0 is a bounded Lipschitz domain there exists a linear and bounded extension
operator
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E : Hα(K0)→ Hα(R3).

which is simultaneously a bounded operator from Bs
q(Lp(K0)) to Bs

q(Lp(R3)) not de-
pending on s, p and q. We refer to [59] for further details. We define

v# :=
∞∑
j=0

∑
I∈Λ#

j

〈Ev, ηI〉 η∗I .

We recognize that

|Λ#
j | . 22j, j ∈ N0.

So we can argue as in step 2, this yields:

||v#||q
B

3/2α
q (Lq(R3))

. ||Ev||qBα2 (L2(R3)) . ||v||
q
Bα2 (L2(K0)) . ||v||

q
Hα(K0).

We end with summing up the functions v∗, v∗∗ and v# and obtain a function belonging
to Bs

τ (Lτ (R3)) where s < (µ, 3/2 · α, 3 · (µ − |~δ|)) and 1/τ = s/3 + 1/2. This shows that
v ∈ Bs

τ (Lτ (K0)). Using the translation invariance of Besov spaces and property (2.2.3)
ends the proof.

Remark 2.2.2. (i) If we consider arbitrary functions (u, p) in
[
W l,2

β,~δ
(K) ∩Hs0(K0)

]3

×

W l−1,2

β,~δ
(K) ∩ H t0(K0), l ≥ 2, β ∈ R, β < l − 1, ~δ ∈ Rd we achieve by applying the

arguments in the proof of Theorem 2.2.1 the estimate

||u||Bs1τ1 (Lτ1 (K0))3 + ||p||Bs2τ2 (Lτ2 (K0)) .

||u||W l,2

β,~δ
(K)3 + ||u||Hs0 (K0)3 + ||p||W l−1,2

β,~δ
(K) + ||p||Ht0 (K0).

Note that this estimate is true independent of problem (2.2.1). That means we have
a continuous embedding from[
W l,2

β,~δ
(K) ∩Hs0(K0)

]3

×W l−1,2

β,~δ
(K) ∩ H t0(K0) into Bs1

τ1
(Lτ1(K0))3 × Bs2

τ2
(Lτ2(K0)).

We will use this embedding in Section 2.4 in order to show norm estimates for the
solution of the Navier-Stokes and the Stokes system on polyhedral domains.

(ii) It can be shown that the set E in the theorem is the set of eigenvalues of the operator
pencil related to (2.2.1). It is known that E consists of isolated points, see [51], [56]

for details. Therefore by a minor modification of ~β, condition (2.2.4) is satisfied
and our arguments in the proof below also work with this minor modification. That
shows that condition (2.2.4) is not as restrictive as it seems to be.

(iii) Assume that the weight ~δ ∈ Rd is chosen such that |~δ| < 2/3 then the Besov
regularity of u is bounded by the minimum of 2 and 3/2 ·s0 and the Besov regularity
of p is bounded by the minimum of 1 and 3/2 · t0. Therefore according to our
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motivation explained in the introduction the use of adaptive schemes is justified if
s0 < 4/3 and t0 < 2/3. These bounds for the Sobolev regularity depend on the
smoothness index related to the weighted Sobolev spaces: If Proposition 2.5.6 held
for a higher smoothness index l (as it does for the Stokes problem, see Proposition
2.5.4) then the use of adaptive schemes would be justified even for higher Sobolev
regularity of the solution of (2.2.1): In this case we get that the Besov smoothness
s1 of u is bounded by

min

(
l,

3

2
· s0, 3 · (l − |~δ|)

)
,

and the Besov smoothness s2 of p is bounded by

min

(
l − 1,

3

2
· t0, 3 · (l − (|~δ|+ 1))

)
.

This can be derived from the arguments in the proof of Theorem 2.2.1, see also part
(i) of this remark.

Proposition 2.5.5 yields a result about the Sobolev regularity for the solution u of
problem (2.2.1). For p we only know that it is contained in L2(G) so we can not achieve
a result for the Besov regularity. Applying Proposition 2.5.5 together with Theorem 2.2.1
we get the following result.

Corollary 2.2.3. It exists a countable set E ⊂ C such that for all ~β ∈ Rd′, ~δ ∈ Rd with

β∗ := max
j=1,...,d′

βj < 1,

Re λ 6= 1/2− βj for all λ ∈ E
and

max (0, 1− µk) < δk < 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =
0 if θk > π, the following holds: If (f, g) ∈ W 0,2

~β,~δ
(G)3×W 1,2

~β,~δ
(G)∩H1+ε(G), ε > 0, g fulfills

the compatibility condition

g|Mk
= 0, k = 1, ..., d

and the functional defined in (2.5.2) fulfills F ∈ H∗ and

||F ||H∗ + ||g||L2(G)

is sufficiently small then a solution (u, p) of problem (2.2.1) satisfies

u ∈ Bs
τ (Lτ (G))3,

1

τ
=
s

3
+

1

2
, s < min

(
3/2, 3 · (2− |~δ|)

)
.

Remark 2.2.4. (i) From Proposition 2.5.5 we conclude that u is unique on the set of
all functions with H1-norm less than a certain positive ε and p is unique up to a
constant.

(ii) Regarding our explanation in Remark 2.2.2, (iii) we see since s0 = 1 < 4/3 the use
of adaptive wavelet schemes to determine the solution u is justified.
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2.3 Besov regularity for the Stokes system in polyhedral
domains

In this section we study the Besov regularity of the stationary Stokes system on polyhedral
domains. We start with the investigation for the Stokes system on polyhedral cones and
then we use these results to prove analog results for the general case of a polyhedral
domain. The Stokes equations on a polyhedral cone are defined by

−∆u+∇p = f in K,
div u = g in K, (2.3.1)

u = 0 on Γj, j = 1, ..., d,

where Γj, j = 1, ..., d are the faces of the cone. Using the estimate in Remark 2.2.2,
Proposition 2.5.1 and Proposition 2.5.2 we immediately achieve the following regularity
result:

Theorem 2.3.1. Fix an integer l ≥ 2 and a real number 0 < α0 < 0.5. It exists a
countable set E ⊂ C such that for all β ∈ R, ~δ ∈ (R\Z)d with

β < l − 1,

Reλ 6= l − β − 3

2
for all λ ∈ E (2.3.2)

and
max (0, l − 1− µk) < δk < l − 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =

0 if θk > π, the following holds: If (f, g) ∈
[
W l−2,2

β,~δ
(K) ∩ L2(K0)

]3

×W l−1,2

β,~δ
(K)∩Hα0(K0)

and g fulfills in case of δk < l − 2 the compatibility condition

g|Mk
= 0

then the unique solution (u, p) of problem (2.3.1) satisfies

u ∈ Bs1
τ1

(Lτ1(K0))3,
1

τ1

=
s1

3
+

1

2
, s1 < min

(
l,

3

2
· (α0 + 1), 3 · (l − |~δ|)

)
,

p ∈ Bs2
τ2

(Lτ2(K0)),
1

τ2

=
s2

3
+

1

2
, s2 < min

(
l − 1,

3

2
· α0, 3 · (l − (|~δ|+ 1))

)
Next we investigate the Stokes System on a polyhedral domain:

−∆u+∇p = f in G
div u = g in G (2.3.3)

u = 0 on Γj, j = 1, ..., N.

In the proof of Theorem 2.2.1 we have reduced the problem on a general polyhedral
domain to a polyhedral cone. Using these arguments once again we obtain together with
Theorem 2.3.1 the following result:
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Theorem 2.3.2. Fix an integer l ≥ 2 and a real number 0 < α0 < 0.5. It exists a
countable set E ⊂ C such that for all ~β ∈ Rd′, ~δ ∈ Rd with

β∗ := max
j=1,...,d′

βj < l − 1, (2.3.4)

Re λ 6= l − βj −
3

2
for all λ ∈ E

and

max

(
0, l − 1− π

θk

)
< δk < l − 1, k = 1, ..., d

the following holds: If (f, g) ∈
[
W l−2,2

~β,~δ
(G) ∩ L2(G)

]3

×W l−1,2
~β,~δ

(G) ∩ Hα0(G) and g fulfills

in case of δk < l − 2 the compatibility condition

g|Mk
= 0, k = 1, ..., d

then the unique solution (u, p) of problem (2.3.3) satisfies

u ∈ Bs1
τ1

(Lτ1(G))3,
1

τ1

=
s1

3
+

1

2
, s1 < min

(
l,

3

2
· (α0 + 1), 3 · (l − |~δ|)

)
, (2.3.5)

p ∈ Bs2
τ2

(Lτ2(G)),
1

τ2

=
s2

3
+

1

2
, s2 < min

(
l − 1,

3

2
· α0, 3 · (l − (|~δ|+ 1))

)
(2.3.6)

Remark 2.3.3. (i) In the case of Theorem 2.3.1 and Theorem 2.3.2 we have a uni-
que solution in H1(G)3 × L2(G). M. Dauge could show (see [33]) that under the
conditions formulated in Proposition 2.5.1 the unique solution (u, p) is contained in
Hα0+1(G)3 × Hα0(G), i.e. the solution (u, p) found in Theorem 2.3.1 and Theorem
2.3.2 respectively has Sobolev regularity α0 + 1 or α0 respectively. Therefore for
valid parameters l and ~δ the Besov regularity in the specific scale we are interested
in is 3/2 times higher than its Sobolev regularity. Consequently the use of adaptive
schemes is justified also in this case.

(ii) Remark 2.2.2, (ii) applies analogously for set set E in Theorem 2.3.1, Theorem 2.3.2.

2.4 Norm estimates for Navier-Stokes and Stokes
equations on polyhedral domains

Analyzing the convergence of adaptive wavelet schemes we observe that the error of the
approximation can be estimated by a term in which the Besov norm of the exact solution
occurs. A typical estimate is of the form

σm.t(v) ≤ C||v||Bsq(Lq(Ω))m
− s−t

d ,

where σm,t denotes the error of the best m-term approximation measured in the H t-norm.
We refer to [18] and [35] for details. Therefore it is worthwile to ensure that the Besov
norm of the exact solution can be estimated by terms depending only on the right hand
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side of the partial differential equation. Otherwise we may have a certain convergence rate
but this is only asymptotic and for practice it is not applicable. We will derive norm esti-
mates by exploiting Remark 2.2.2. We begin with the Stokes system on a polyhedral cone.

Theorem 2.4.1. If the assumptions of Theorem 2.3.1 are fulfilled we obtain

||u||Bs1τ1 (Lτ1 (K0))3 + ||p||Bs2τ2 (Lτ2 (K0)) . (2.4.1)

(
||F ||H∗l−1−β

+ ||g||V 0,2
β−l+1(K) + ||f ||W l−2,2

β,δ (K)3 + ||g||W l−1,2
β,δ (K) + ||f ||L2(K0)3 + ||g||Hα(K0)

)
.

Proof:

From Remark 2.5.3 we obtain an estimate for the weighted Sobolev norm and the
usual Sobolev norm which occurs on the right side of the estimate in Remark 2.2.2. So,
if the assumptions in Theorem 2.3.1 are fulfilled the solution of the Stokes problem on a
polyhedral cone fulfills the stated estimate. �

For the Stokes system on a polyhedral domain as considered in Section 2.2 and Section
2.3 we obtain a norm estimate by reducing it to the estimate (2.4.1). Using the notation
ϕj := κ−1

j : Kj ∩Bj → G ∩ Uj we find by exploiting (2.2.3):

||u||Bs1τ1 (Lτ1 (G))3 + ||p||Bs2τ2 (Lτ2 (G))

.
d′∑
j=1

(
||u||Bs1τ1 (Lτ1 (G∩Uj))3 + ||p||Bs2τ2 (Lτ2 (G∩Uj))

)

.
d′∑
j=1

(
||u ◦ ϕj||Bs1τ1 (Lτ1 (Kj∩Bj))3 + ||p ◦ ϕj||Bs2τ2 (Lτ2 (Kj∩Bj))

)

Then (2.4.1) leads to

||u||Bs1τ1 (Lτ1 (G))3 + ||p||Bs2τ2 (Lτ2 (G))

.
d′∑
j=1

(||u ◦ ϕj||W l,2

βj,
~δ
(Kj) + ||u ◦ ϕj||Hα0+1(Kj∩Bj)

+ ||p ◦ ϕj||W l−1,2

βj,
~δ

(Kj) + ||p ◦ ϕj||Hα0 (Kj∩Bj))

.
d′∑
j=1

(||F ||H∗l−1−βj
+ ||g ◦ ϕj||V 0,2

βj−l+1(Kj) + ||f ◦ ϕj||W l−2,2

βj,
~δ

(Kj)3 + ||g ◦ ϕj||W l−1,2

βj,
~δ

(Kj))

+ ||f ||L2(G)3 + ||g||Hα0 (G).

We finally get



34
Besov Regularity for the Stokes and the Navier-Stokes System in Polyhedral

Domains

Theorem 2.4.2. If the assumptions of Theorem 2.3.2 are fulfilled we obtain

||u||Bs1τ1 (Lτ1 (G))3 + ||p||Bs2τ2 (Lτ2 (G))

.
d′∑
j=1

(
||F ||H∗l−1−βj

+ ||g ◦ ϕj||V 0,2
βj−l+1(Kj)

)
+ ||f ||W l−2,2

~β,~δ
(G)3 + ||f ||L2(G)3 + ||g||W l−1,2

~β,~δ
(G) + ||g||Hα0 (G).

In a last step we want to deduce an estimate for the Navier-Stokes system which we
have investigated in Corollary 2.2.3. Especially this means we only obtain an estimate for
the Besov norm of u. In the proof of existence of a weak solution for the Navier Stokes
equation (see [56, Theorem 11.2.1]) we see that the solution exists on a set with bounded
H1-Norm. Hence it exists a constant η > 0 such that for the solution u of problem (2.2.1)
we have

||u||H1(G)3 < η.

From [56, Lemma 8.1.1, Theorem 11.2.8] we conclude for arbitrary small ε > 0

||u||W 2,2
~δ,~β

(G) + ||p||W 1,2
~δ,~β

(G) .

(1 + η + η2)

(
d′∑
j=1

(
||F ||H∗l−1−βj

+ ||g ◦ ϕj||V 0,2
βj−l+1(Kj)

)
+ ||f ||W 0,2+ε

~δ,~β
(G) + ||g||W 1,2+ε

~δ,~β
(G)

)
+η3||u||W 2,2

~δ,~β
(G).

If we assume η ∈ (0, 1) we obtain with µ := 1+η+η2

1−η3 the estimate

||u||W 2,2
~δ,~β

(G)3

. µ

(
d′∑
j=1

(
||F ||H∗l−1−βj

+ ||g ◦ ϕj||V 0,2
βj−l+1(Kj)

)
+ ||f ||W 0,2+ε

~δ,~β
(G) + ||g||W 1,2+ε

~δ,~β
(G)

)
.

Exploiting Remark 2.2.2 we achieve

Theorem 2.4.3. If the assumptions of Corollary 2.2.3 are fulfilled then

||u||Bsτ (Lτ (G))3

. µ

(
d′∑
j=1

(
||F ||H∗l−1−βj

+ ||g ◦ ϕj||V 0,2
βj−l+1(Kj)

)
+ ||f ||W 0,2+ε

~δ,~β
(G) + ||g||W 1,2+ε

~δ,~β
(G)

)
+ η.
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2.5 Appendix A - Sobolev and weighted Sobolev
regularity of solutions of the Stokes and the
Navier-Stokes system

In this section we state several results which play a fundamental role in the proof of the
main theorems. First of all we recall a result concerning the Sobolev regularity for the
Stokes system on a polyhedral domain, see [33, Theorem 9.20].

Proposition 2.5.1. Let G ⊂ R3 be a polyhedral domain. Consider problem (2.3.3). As-
sume that (f, g) ∈ L2(G)3 × Hα0(G) for 0 < α0 < 0.5. Furthermore let g fulfill the
compatibility condition ∫

G
g(x)dx = 0. (2.5.1)

Then there exists a unique solution (u, p) ∈ Hα0+1(G)3 ×Hα0(G).

Of course this theorem is true for the special case that G is a polyhedral cone. Next
we cite a regularity result for solutions of the Stokes System in weighted Sobolev spaces
defined for polyhedral cones, see [56, Theorem 10.3.2].

Proposition 2.5.2. Let K be a polyhedral cone as defined in (2.2.2). Suppose (f, g) ∈
W l−2,2

β,~δ
(K)3×W l−1,2

β,~δ
(K) where l ≥ 2 is an integer. Then there exists a countable set E ⊂ C

such that the following holds. If β ∈ R and the vector ~δ ∈ (R\Z)d are chosen such that

Re λ 6= l − β − 3

2
for all λ ∈ E

and
max (0, l − 1− µk) < δk < l − 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =
0 if θk > π and if δk < l − 2 we claim g|Mk

= 0, then there exists a uniquely determined
solution of (2.3.1)

(u, p) ∈ W l,2

β,~δ
(K)3 ×W l−1,2

β,~δ
(K)

Remark 2.5.3. Following Maz’ya and Rossmann (see [56, Chapter 10.2, 10.3]) we use
the notation V l,2

β (K) := W l,2
β,0(K) and define the space

Hβ :=
{
u ∈ V 1,2

β (K)3 : u = 0 on Γj, j = 1, ..., d
}
.

If the assumptions from Proposition 2.5.2 are fulfilled the functional

F (v) :=

∫
K

(f +∇g) · vdx

defines a linear and continuous mapping on Hl−1−β. The solution (u, p) found in Propo-
sition 2.5.2 fulfills

||u||2
W l,2

β,~δ
(K)3 + ||p||2

W l−1,2

β,~δ
(K)
.

(
||F ||2H∗l−1−β

+ ||g||2
V 0,2
β−l+1

+ ||f ||2
W l−2,2
β,δ

+ ||g||2
W l−1,2
β,δ (K)

)
.

Moreover we obtain from [33] the estimate

||u||Hα0+1(K0)3 + ||p||Hα0 (K0) . ||f ||L2(K0)3 + ||g||Hα0 (K0).
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Analogously to Proposition 2.5.2 we cite a result for general polyhedral domains (see [56,
Theorem 11.1.5]):

Proposition 2.5.4. Let G be a polyhedral domain. Consider problem (2.3.1). Let (u, p) ∈
H1(G)3 × L2(G) be a solution. Suppose (f, g) ∈ W l−2,2

~β,~δ
(G)3 ×W l−1,2

~β,~δ
(G) where l ≥ 2 is an

integer and g|Mk
= 0 for k = 1, ..., d. Then there exists a countable set E ⊂ C such that

the following holds: If ~β ∈ Rd′ and ~δ ∈ Rd are chosen such that

Reλ 6= l − βj − 3/2 for all λ ∈ E, j = 1, ..., d′

and
max (0, l − 1− µk) < δk < l − 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =
0 if θk > π, and if δk < l − 2 we claim g|Mk

= 0, then (u, p) ∈ W l,2
~β,~δ

(G)3 ×W l−1,2
~β,~δ

(G).

For the Navier-Stokes system (2.2.1) we state the following result concerning the Sobolev
regularity (see [56, Theorem 11.2.1]). Therefore we consider the functional

F : H := {u ∈ H1(G)3 : u|Γj = 0 für j = 1, ..., N} → R

F (v) =

∫
G
(f(x) +∇g(x)) · v(x)dx (2.5.2)

Proposition 2.5.5. Let g ∈ L2(G). Assume that

||F ||H∗ + ||g||L2(G)

is sufficiently small. Then there exists a solution (u, p) ∈ H1(G)3×L2(G) of (2.2.1). Here
u is unique on the set of all functions with norm less than a certain positive ε, p is unique
up to a constant.

We cite the analog to Proposition 2.5.4 for the nonlinear problem (2.2.1) in the case
l = 2, see [56, Theorem 11.2.8].

Proposition 2.5.6. Let (u, p) ∈ H1(G)3 × L2(G) be a solution of the problem (2.2.1),
where g ∈ W 1,2

~β,~δ
(G) ∩ H1+ε(G), ε > 0, g|Mk

= 0 for k = 1, ..., d and F ∈ H∗ with given

f ∈ W 0,2
~β,~δ

(G)3. Then there exists a countable set E ⊂ C such that the following holds: If

~β ∈ Rd′ and ~δ ∈ Rd are chosen such that

Re λ 6= 1/2− βj for all λ ∈ E

and that
max (0, 1− µk) < δk < 1, k = 1, ..., d,

where µk = π/θk if θk < π and µk is the minimum of all solutions of µ sin(θk)+sin(µθk) =
0 if θk > π, then u ∈ W 2,2

~β,~δ
(G)3 and p ∈ W 1,2

~β,~δ
(G)
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2.6 Appendix B - Function spaces and wavelets

In this section we impose the notations concerning the wavelets. Moreover we state the
result which provides a characterization of the Besov spaces by the coefficients of the
wavelet expansion. For the construction of wavelets see, e.g., [32]. Let ϕ be a compactly
supported scaling function of sufficiently high regularity and let ψ, i = 1, ..., 2n − 1 be
corresponding wavelets. More detailed we require for some N > 0 and r ∈ N:

• supp ϕ, supp ψi ⊂ [−N,N ], i = 1, ..., 2n − 1.

• ϕ, ψi ∈ Cr(Rn), i = 1, ..., 2n − 1.

• The wavelets have the vanishing moments property:∫
xαψi(x)dx = 0

for all α ∈ Nn
0 with |α| ≤ r, i = 1, ..., 2n − 1.

• We use the standard abbreviations ϕk(x) := ϕ(x− k) and ψi,j,k(x) := 2jn/2ψi(2
jx−

k). We assume that

{ϕk, ψi,j,k : (i, j, k) ∈ {1, ..., 2n − 1} × N0 × Zn}

is a Riesz basis in L2(Rn).

Further, the dual Riesz basis should fulfill the same requirements, i.e. there exist functions
ϕ̃ and ψ̃i, i = 1, ..., 2n − 1, such that

• 〈ϕ̃k, ψi,j,k〉 =
〈
ψ̃i,j,k, ϕk

〉
= 0, 〈ϕ̃k, ϕl〉 = δk,l,

〈
ψ̃i,j,k, ψu,v,l

〉
= δi,uδj,vδk,l,

• supp ϕ̃, supp ψ̃i ⊂ [−N,N ], i = 1, ..., 2n − 1.

• ϕ̃, ψ̃i ∈ Cr(Rn), i = 1, ..., 2n − 1 and ψ̃i fulfill the vanishing moment property,
i = 1, ..., 2n − 1.

Next we state a result which allows to prove Besov regularity by estimating the coeffi-
cients of the wavelet expansion. More detailed, it holds:

Proposition 2.6.1. Let s ∈ R and 0 < p, q ≤ ∞. Suppose

r > max

(
s, nmax

(
0,

1

p
− 1

)
− s
)
.

Then Bs
q(Lp(Rn)) is the collection of all tempered distributions f such that f is represen-

table as

f =
∑
k∈Zn

akϕk +
2n−1∑
i=1

∞∑
j=0

∑
k∈Zn

ai,j,kψi,j,k

with
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||f ||∗Bsq(Lp(Rn)) :=

(∑
k∈Zn
|ak|p

)1/p

+

2n−1∑
i=1

∞∑
j=0

2j(s+n(1/2−1/p))q

(∑
k∈Zn
|ai,j,k|p

)q/p
1/q

<∞

if q <∞ and

||f ||∗Bs∞(Lp(Rn)) :=

(∑
k∈Zn
|ak|p

)1/p

+ sup
i=1,...,2n−1

sup
j≥0

2j(s+n(1/2−1/p))

(∑
k∈Zn
|ai,j,k|p

)1/p

<∞.

The representation is unique and

ak = 〈f, ϕ̃k〉 and ai,j,k =
〈
f, ψ̃i,j,k

〉
hold. Further J : f 7→ {〈f, ϕ̃k〉 ,

〈
f, ψ̃i,j,k

〉
} is an isomorphic map of Bs

q(Lp(Rn)) onto

the sequence space (equipped with the quasi-norm || · ||∗Bsq(Lp(Rn))), i.e. || · ||∗Bsq(Lp(Rn)) may

serve as an equivalent quasi-norm on Bs
q(Lp(Rn)).

A proof of this proposition can be found in [63].

Acknowledgement: I would like to thank Ms. Monique Dauge for several helpful
remarks. Furthermore I want to thank the reviewers for there feedback which helped to
improve the article.
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3.1 Introduction

The Navier-Stokes equations provide a mathematical model of the motion of a fluid and
form the basis for the theory of computational fluid dynamics. Due to their relevance, the
Navier-Stokes equations have been very intensively studied over the centuries, hence the
amount of literature is enormous and can clearly not be discussed in detail here. Let us
just refer to [15,43,62,66] for an overview. An analytic description of the solution is only
available in rare cases, so that numerical schemes for the constructive approximation of
the solutions are needed. Once again, the deluge of literature cannot be comprehensively
presented here; let us just refer to [4, 44, 62] and the references therein.

In this paper, we consider an important special case: The incompressible, steady-state,
viscous Navier-Stokes equation given by

−∆u+ νu · (∇u) +∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω;

(NAST)

Ω denotes a bounded Lipschitz domain in Rd, d ≥ 3, with connected boundary, u is the
velocity field of the fluid, π denotes the pressure, f is the given body force, g is a prescribed
velocity field, and ν > 0 denotes the Reynolds number that describes the viscosity of the
fluid. We are concerned with the regularity analysis of solutions to (NAST). In particular,
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we study the smoothness of solutions in the specific scale

Bs
τ (Lτ (Ω)),

1

τ
=
s

d
+

1

2
, s > 0, (∗)

of Besov spaces.
The motivation for our analysis can be described as follows. Also for the stationary

Navier-Stokes equations (NAST), an analytic description of the solution is usually not
possible, so that once again efficient numerical schemes are needed. A first natural idea
would be to employ classical nonadaptive schemes. These methods correspond to a uniform
space refinement strategy, i.e., the underlying degrees of freedom are uniformly distributed
and do not depend on the shape of the unknown solutions. As a rule of thumb, the
convergence order of such a nonadaptive, uniform scheme depends on the regularity of
the object one wants to approximate as measured in the classical Sobolev scale, see,
e.g., [35, 47]. If the boundary of the underlying domain and the data of the equation are
smooth enough, then also sufficiently high Sobolev smoothness of the solutions to (NAST)
can be expected, since this is the case for the linearized equation (SP), see [1]. However, on
a general Lipschitz domain, boundary singularities may occur that significantly diminish
the Sobolev smoothness, so that the convergence order of uniform schemes drops down. In
these cases, adaptive algorithms suggest themselves. Essentially, adaptive algorithms are
tricky updating strategies. Based on an a posteriori error estimator, additional degrees
of freedom are only spent in regions where the numerical approximation is still far away
from the exact solution. Therefore, in each step, the current distribution of the degrees
of freedom depends strongly on the unknown solution. Although the idea of adaptivity
seems to be convincing, one principle problem remains. Adaptive schemes are very hard
to design, to analyze, and to implement. Therefore, a rigorous mathematical foundation
that indicates that adaptivity really pays is highly desirable. Our line of attack to give
a reasonable answer is based on the following observation. Given a dictionary {ψλ}λ∈J
of functions, the best we can expect is that an adaptive scheme realizes the convergence
order of best N -term approximation with respect to this dictionary. In this sense, best
N -term approximation serves as the benchmark for adaptive algorithms. In best N -term
approximation, one does not approximate by linear spaces but by nonlinear manifolds of
the form

SN :=
{
g | g =

∑
λ∈Λ

cλψλ, |Λ| = N, cλ ∈ R
}
,

i.e., one collects all functions g for which the expansion with respect to {ψλ}λ∈J has at
most N nonvanishing coefficients. In many cases, e.g., if the dictionary consists of a wa-
velet basis, adaptive algorithms that indeed realize the convergence order of best N -term
wavelet approximation schemes are known to exist, see, e.g., [11, 12]. These relationships
in mind, the following question arises: what is the order of convergence of best N -term
approximation, and is it higher than the order of nonadaptive, uniform schemes? For
then, the development of adaptivity would be completely justified. It is well-known that
in many settings, e.g., for the wavelet case, the order of approximation (in L2) that can be
achieved by best N -term approximation exactly depends on the smoothness of the object
under consideration in the so-called adaptivity scale (∗), i.e,

u ∈ Bs
τ (Lτ (Ω)),

1

τ
=
s

d
+

1

2
⇐⇒

∞∑
N=1

[N s/dσN(u)]τ
1

N
<∞, σN(u) := inf

g∈SN
‖u− g‖L2 ,
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see, e.g, [35,36] as well as [25] for similar relationships for approximations with respect to
other norms. Consequently, in order to decide the question whether adaptivity pays in the
context of Navier-Stokes equations, a rigorous analysis of the regularity of the solutions
to (NAST) in the scale (∗) is needed. If this regularity is higher than the classical L2-
Sobolev smoothness of the solutions under consideration, then adaptivity pays in the sense
that there is indeed the possibility that adaptive methods exhibit higher convergence rates
than their uniform alternatives.

This paper consists of two parts. In the first part, we study the linear version of (NAST),
i.e., the stationary Stokes problem

−∆u+∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω,

(SP)

on an arbitrary bounded Lipschitz domain Ω ⊆ Rd, d ≥ 3, with connected boundary.
For this class of problems, some positive results concerning Besov regularity in the

scale (∗) already exist. In [16], the Stokes equations on a polygonal domain in R2 have
been studied. The proofs were based on decompositions of the solutions into regular and
singular parts. In [40], these results have been generalized to polyhedral domains, whereat
specific Kondratiev spaces have been employed. For the case of general Lipschitz domains
we are interested in here, first results have been derived by Mitrea and Wright in [57].
Their proofs are based on the well-known concept of layer potentials. In this paper, we
improve the results of [57] in the following sense.

Our analysis shows that, other than conjectured in [57, p. 9], the results for the Besov
smoothness in the scale (∗) obtained therein, are not sharp for higher dimension d ≥ 4.
Our proof technique is completely different to the one used in [57]. We first show regularity
results in weighted Sobolev spaces, and then we prove that these spaces can be embedded
into the Besov spaces corresponding to the adaptivity scale (∗), which gives the desired
results.

The second part of this paper is concerned with the Besov regularity of solutions
to (NAST). To the best of our knowledge, no regularity result in the scale (∗) has been
obtained so far. We tackle this task by re-writing (NAST) as a fixed point problem. For
semilinear elliptic partial differential equations, this strategy has already been successful-
ly applied in [27]. Nevertheless, there is an important difference. In [27], the fixed point
theorems were directly applied to the quasi-Banach spaces in the adaptivity scale (∗),
whereas here we study the problem first in classical Besov spaces which enables us to
reduce everything to the case of the Stokes problem with modified right-hand side. Then
the desired Besov regularity results in the scale (∗) follows from the corresponding re-
sults for the Stokes problem. This approach has the advantage that certain admissibility
problems that arise in the context of quasi-Banach spaces can be avoided. Moreover, the
application of the Banach fixed point theorem guarantees uniqueness of the solution in a
suitable, small ball. To the best of our knowledge, the non-standard fixed point arguments
used in [27] only provide the existence of a solution. We show that by proceeding this
way we indeed obtain the desired result, in the sense that also for (NAST) the Besov
regularity of the solutions is higher than the standard Sobolev smoothness, so that the
use of adaptivity is again completely justified.

This paper is organized as follows. In Section 2, we fix notation and briefly recall some
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basic concepts that are used in the sequel, in particular, concerning function spaces and
their wavelet characterization. Section 3 is devoted to the Stokes problem. First of all, in
Section 3.1, we discuss (SP) in weighted Sobolev spaces. We generalize regularity results
obtained by [3] for the homogeneous Stokes equations to the inhomogeneous case. Then,
in Section 3.2, we prove that the weighted Sobolev spaces under consideration intersected
with classical (unweighted) Sobolev spaces can be embedded into the Besov spaces from
the adaptivity scale (∗) up to a certain smoothness s that depends on the Sobolev and
the weighted Sobolev regularity. A combination of these two facts provides our Besov
regularity result. In Section 4, we discuss the stationary Navier-Stokes equations (NAST).
We use Banach’s fixed point theorem to reduce the problem to the Stokes case. Then, we
apply the results derived in Section 3.

3.2 Preliminaries

3.2.1 Notations

In this paper G ⊆ Rd, d ≥ 2, stands for an arbitrary (not necessarily bounded) domain.
By D′(G) we denote the space of Schwartz distributions on G. For α = (α1, ..., αd) ∈ Nd

0,

we write Dαf := ∂|α|f
∂αdxd...∂

α1x1
for the corresponding derivative of f ∈ D′(G), where |α| :=

α1 + . . .+αd; D
0f := f . For m ∈ N0, ∇mf := {Dαf : |α| = m} is the set of all mth order

derivatives of f and is identified with an Rn-valued distribution, n =
(
d+m−1
m

)
. ∇ := ∇1

denotes the gradient and ∆ :=
∑d

i=1
∂2

∂xi∂xi
is the Laplace operator. For p ∈ [1,∞) and

m ∈ N0, Wm(Lp(G)) is the classical Sobolev space consisting of all (equivalence classes

of) measurable functions f : G → R such that ‖f‖Wm(Lp(G)) :=
(∑

|α|≤m‖Dαf‖pLp(G)

)1/p

is finite. For p ∈ (1,∞) and fractional s ∈ (0,∞) \ N, we define the Sobolev space
W s(Lp(G)) to be the Besov space Bs

p(Lp(G)), as defined below (see Definition 3.2.1). We

write W̊ s(Lp(G)) for the closure with respect to the Sobolev norm ‖·‖W s(Lp(G)) of the space
C∞0 (G) of infinitely differentiable functions with compact support within G. For negative
s < 0, W s(Lp(G)) is defined as the dual space of W̊−s(Lp′(G)), where 1/p + 1/p′ = 1.

If p = 2 we use the common notations Hs(G) := W s(L2(G)) and H̊s(G) := W̊ s(L2(G)),
s ∈ R. By making slight abuse of notation, we sometimes use the same abbreviations for
Rd-valued (generalized) functions. Moreover, we use the common notation

u · (∇v) :=
d∑
i=1

ui
∂v

∂xi
,

for d-dimensional (generalized) functions u and v and write RG for the set of all real-valued
constant functions on a domain G.

Throughout, we denote by Ω a bounded Lipschitz domain contained in Rd, d ≥ 3, which
in some of the central statements is assumed to have connected boundary. We set

ρ(x) := ρ(x, ∂Ω), x ∈ Ω,

and define the weighted Sobolev space Wm
α (Lp(Ω)) for m ∈ N0, α > 0 and p ∈ [1,∞) as

Wm
α (Lp(Ω)) :=

{
f ∈ Lp(Ω) : ‖f‖pWm

α (Lp(Ω)) := ‖f‖pLp(Ω) +

∫
Ω

ρ(x)α|∇mf(x)|p`pdx <∞
}
,
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where |∇mf |`p is the `p-norm of the vector ∇mf . For p ∈ (0,∞) and max{0, (d−1)(1/p−
1)} < s < 1 we define the Besov spaces Bs

p(Lp(∂Ω)) as they were introduced in [57,
Chapter 2.5]. We further introduce the subspace

Bs,0
p (Lp(∂Ω)) :=

{
g ∈ Bs

p(Lp(∂Ω)) :

∫
∂Ω

g · n dσ = 0
}
,

where n is the outward unit normal to ∂Ω. We norm this space with the norm inherited
from Bs

p(Lp(∂Ω)). Further we put W s(Lp(∂Ω)) := Bs
p(Lp(∂Ω)) for p ∈ [1,∞) and s ∈

(0, 1). The space W 1(L2(∂Ω)) is defined analogously, see for example [3]. For p = 2 we
also write Hs(∂Ω) := W s(L2(∂Ω)), s ∈ (0, 1].

For arbitrary normed spaces E1, ..., En, n ∈ N, the Cartesian product E1 × . . .× En is
endowed with the norm

‖(e1, ..., en)‖E1×...×En :=
n∑
i=1

‖ei‖Ei , (e1, ..., en) ∈ E1 × . . .× En;

we write shorthand En if Ej = E for all j = 1, . . . , n. The intersection of two normed
spaces (E1, ‖·‖E1) and (E2, ‖·‖E2) is normed by

‖f‖E1∩E2 := ‖f‖E1 + ‖f‖E2 , f ∈ E1 ∩ E2.

If E1 ⊆ E2 and there exists a constant C ∈ (0,∞), such that

‖f‖E2 ≤ C‖v‖E1 , v ∈ E1,

then we write E1 ↪→ E2 and say that E1 is embedded in E2. Quotient spaces E/E0 :=
{x + E0 : x ∈ E} of a normed space (E, ‖·‖E) and a subspace E0 ⊆ E are endowed with
the usual norm

‖f‖E/E0 := inf
g∈E0

‖f + g‖E,

where we make use of the common abuse of notation to write simply f instead of the
equivalence class f +E0. Throughout, the letter C denotes a finite positive constant that
may differ from one appearance to another, even in the same chain of inequalities.

3.2.2 Besov spaces and wavelet decompositions

In this section we present the definition of Besov spaces and describe their wavelet cha-
racterization. Our standard references in this context are [10], [39] and [64].

We introduce the Besov spaces Bs
q(Lp(G)) by using the common Fourier-analytical

approach. Therefore, we fix an arbitrary function ϕ0 ∈ C∞0 (Rd) with

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2,

and define for k ∈ N,

ϕk(x) := ϕ0(2−kx)− ϕ0(2−k+1x) for x ∈ Rd,

to obtain a smooth dyadic resolution of unity on Rd, i.e., ϕk ∈ C∞0 (Rd) for all k ∈ N0, and
∞∑
k=0

ϕk(x) = 1 for all x ∈ Rd.

We write F for the Fourier transform on the space S ′(Rd) of tempered distributions. Recall
that F−1(ϕkFf) is an entire analytic function for arbitrary f ∈ S ′(Rd) and k ∈ N0.
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Definition 3.2.1. Let {ϕk}k∈N0 ⊆ C∞0 (Rd) be a resolution of unity as described above.
Furthermore, let 0 < p, q <∞ and s ∈ R.

(i) The Besov space Bs
q(Lp(Rd)) is defined by

Bs
q(Lp(Rd)) :=

{
f ∈ S ′(Rd) : ‖f‖Bsq(Lp(Rd)) :=

( ∞∑
k=0

2ksq‖F−1 [ϕkFf ]‖q
Lp(Rd)

)1/q

<∞

}
.

(ii) Let G ⊆ Rd be an arbitrary domain. Then, the Besov space Bs
q(Lp(G)) is defined by

Bs
q(Lp(G)) :=

{
f ∈ D′(G) : there exists g ∈ Bs

q(Lp(Rd)) : g|G = f
}
.

It is equipped with the (quasi-)norm

‖f‖Bsq(Lp(G)) := inf
{
‖g‖Bsq(Lp(Rd)) : g ∈ Bs

q(Lp(Rd)), g|G = f
}
, f ∈ Bs

q(Lp(G)).

Remark 3.2.2. Besides the definition given above, Besov spaces Bs
q(Lp(G)) of positive

smoothness s > 0 are frequently defined by means of iterated differences, see for exam-
ple [64]. The two definitions coincide in the sense of equivalent norms for the range of
parameters s > max{0, d · (1/p− 1)}, provided, e.g., G is a bounded Lipschitz domain or
G = Rd, see, e.g., [39, Theorem 3.18] and [64, Theorem 2.5.12], respectively.

In order to present a characterization of Besov spaces on Rd in terms of wavelets, we
fix the following setting. Let φ be a scaling function of tensor product type on Rd and
let ψi, i = 1, . . . , 2d − 1, be corresponding multivariate mother wavelets such that, for a
given r ∈ N and some cube Q centered at the origin, the following locality, smoothness
and vanishing moment conditions hold. For all i = 1, . . . , 2d − 1,

supp φ, supp ψi ⊆ Q, (3.2.1)

φ, ψi ∈ Cr(Rd), (3.2.2)∫
Rd
xα ψi(x) dx = 0 for all α ∈ Nd

0 with |α| ≤ r. (3.2.3)

For the dyadic shifts and dilations of the scaling function and the corresponding wavelets
we use the abbreviations

φk(x) := φ(x− k), x ∈ Rd, for k ∈ Zd, and (3.2.4)

ψi,j,k(x) := 2jd/2ψi(2
jx− k), x ∈ Rd, for (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd, (3.2.5)

and assume that {
φk, ψi,j,k : (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd

}
is a Riesz basis of L2(Rd). Further, we assume that there exists a dual Riesz basis satisfying

the same requirements. That is, there exist functions φ̃ and ψ̃i, i = 1, . . . , 2d − 1, such
that conditions (3.2.1), (3.2.2) and (3.2.3) hold if φ and ψi are replaced by φ̃ and ψ̃i, and
such that the biorthogonality relations

〈φ̃k, ψi,j,k〉 = 〈ψ̃i,j,k, φk〉 = 0 , 〈φ̃k, φl〉 = δk,l, 〈ψ̃i,j,k, ψu,v,l〉 = δi,u δj,v δk,l ,
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are fulfilled. Here we use analogous abbreviations to (3.2.4) and (3.2.5) for the dyadic shifts

and dilations of φ̃ and ψ̃i, and δk,l denotes the Kronecker symbol. We refer to [10, Chapter
2] for the construction of biorthogonal wavelet bases, see also [14] and [32].

Such a wavelet basis at hand, it is possible to characterize Besov spaces by the decay of
the wavelet coefficients in the following way. A proof can be found in [10, Theorem 3.7.7].

Proposition 3.2.3. Let p, q ∈ (0,∞) and s > max {0, d (1/p− 1)}. Choose r ∈ N such
that r > s and construct a biorthogonal wavelet Riesz basis as described above. Then a
locally integrable function f : Rd → R is in the Besov space Bs

q(Lp(Rd)) if, and only if,

f =
∑
k∈Zd
〈f, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k〉ψi,j,k

(convergence in D′(Rd)) with(∑
k∈Zd

∣∣∣〈f, φ̃k〉∣∣∣p)
1
p

+

2d−1∑
i=1

∑
j∈N0

2j(s+d(
1
2
− 1
p))q

(∑
k∈Zd

∣∣∣〈f, ψ̃i,j,k〉∣∣∣p)
q
p

 1
q

<∞, (3.2.6)

and (3.2.6) is an equivalent (quasi-)norm for Bs
q(Lp(Rd)).

A short computation shows that the Besov spaces Bs
τ (Lτ (Rd)), with 1/τ = s/d + 1/2,

s > 0, admit the following characterization.

Proposition 3.2.4. Let s > 0 and τ ∈ R such that 1/τ = s/d+ 1/2. Choose r ∈ N such
that r > s and construct a biorthogonal wavelet Riesz basis as described above. Then a
locally integrable function f : Rd → R is in the Besov space Bs

τ (Lτ (Rd)) if, and only if,

f =
∑
k∈Zd
〈f, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k〉ψi,j,k

(convergence in D′(Rd)) with(∑
k∈Zd

∣∣∣〈f, φ̃k〉∣∣∣τ)
1
τ

+

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd

∣∣∣〈f, ψ̃i,j,k〉∣∣∣τ
 1

τ

<∞ , (3.2.7)

and (3.2.7) is an equivalent (quasi-)norm for Bs
τ (Lτ (Rd)).

3.3 The stationary Stokes equation

3.3.1 The stationary Stokes equation in (weighted) Sobolev spaces

In this section we collect the relevant results known so far concerning existence, uniquen-
ess, and (weighted) Sobolev regularity of the solution to the stationary Stokes equation

−∆u+∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω,

(SP)
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on an arbitrary bounded Lipschitz domain Ω ⊆ Rd, d ≥ 3, with connected boundary.
Since we require div u = 0, we have to make sure that the prescribed velocity field g
satisfies the compatibility condition ∫

∂Ω

g · n dσ = 0, (3.3.1)

where n is the outward unit normal to ∂Ω. Following, for instance, [43, Chapter IV.1] we
call u ∈ H1(Ω)d a (weak) solution of (SP) if u is divergence free, satisfies u = g on the
boundary ∂Ω (in a trace sense) and fulfills the equation∫

Ω

d∑
i,j=1

(∇u)ij (∇ϕ)ij (x) dx = f(ϕ)−
∫

Ω

d∑
i=1

π(x)
∂ϕi(x)

∂xi
dx (3.3.2)

for arbitrary ϕ ∈ C∞0 (Ω) with a suitable pressure π ∈ L2(Ω). The existence and uniqueness
of such a solution u ∈ H1(Ω)d of (SP) can be guaranteed for arbitrary f ∈ H−1(Ω)d

and g ∈ H1/2(∂Ω)d satisfying (3.3.1), see, e.g., [43, Theorem IV.1.1]. The corresponding
pressure π ∈ L2(Ω) is only unique up to a constant. In what follows, whenever we speak
about “the corresponding pressure” to a solution u, we mean any of the corresponding
pressures. Up to a certain degree, the solution to (SP) gets smoother, if the right hand
side f and the boundary value g are assumed to be more regular, see [1] for instance. If we
use classical Sobolev spaces to measure the smoothness, the following proposition can be
proven. Due to the linear structure of (SP), the statement follows from [3, Theorem 2.12]
together with [3, Theorem 2.2], which relies on the results proven in [42].

Proposition 3.3.1. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3, with connected
boundary. Furthermore, let f ∈ L2(Ω)d and let g ∈ H1(∂Ω)d fulfill the condition (3.3.1).
Then there exists a unique solution u ∈ H3/2(Ω)d to the Stokes equation (SP) with corre-
sponding pressure π ∈ H1/2(Ω). Moreover, the estimate

‖u‖H3/2(Ω)d + inf
c∈R
‖π + c‖H1/2(Ω) ≤ C

(
‖f‖L2(Ω)d + ‖g‖H1(∂Ω)d

)
(3.3.3)

holds with a constant C ∈ (0,∞) that depends only on d and Ω.

If Ω is only assumed to be a bounded Lipschitz domain with connected boundary,
we cannot guarantee higher regularity of the solution to (SP) in the classical Sobolev
spaces, even if we assume the body force f and prescribed velocity field g to be smoother
than required above. This is due to boundary singularities, which can cause the second
derivatives of the solution to blow up near the boundary and can therefore diminish its
Sobolev regularity. This effect is already known for a long time from the theory of elliptic
equations on polygonal and polyhedral domains as well as on general bounded Lipschitz
domains, see, e.g., [45, 46, 49]. However, we can capture the bad behavior of the solution
at the boundary by using appropriate powers of the distance ρ(x) := ρ(x, ∂Ω) of a point
x ∈ Ω to the boundary ∂Ω. In particular, the following holds.

Proposition 3.3.2. Given the setting of Proposition 3.3.1, the estimate∫
Ω

ρ(x) · |∇2u(x)|2 dx+

∫
Ω

ρ(x) · |∇π(x)|2 dx ≤ C
(
‖f‖2

L2(Ω)d + ‖g‖2
H1(∂Ω)d

)
(3.3.4)

holds with a constant C ∈ (0,∞) that depends only on d and Ω.
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Proof. Estimate (3.3.4) has been proven in [3, Section 2] for (SP) with zero body force.
I.e., for the solution ū ∈ H1(Ω)d of the homogeneous boundary value problem

−∆ū+∇π̄ = 0 on Ω,

div ū = 0 on Ω,

ū = g on ∂Ω,

(3.3.5)

with corresponding pressure π̄ ∈ L2(Ω), we have∫
Ω

ρ(x) · |∇2ū(x)|2 dx+

∫
Ω

ρ(x) · |∇π̄(x)|2 dx ≤ C ‖g‖2
H1(∂Ω)d . (3.3.6)

In order to extend this estimate to general body forces f ∈ L2(Ω)d, we argue as fol-

lows. Let Ω̃ ⊆ Rd be a bounded C∞-domain containing the closure of Ω. Furthermore,
let E : L2(Ω) → L2(Ω̃) be a bounded extension operator, e.g., take Rychkov’s extension

operator from [59] combined with the restriction operator onto Ω̃. Since the boundary of

Ω̃ is smooth, the stationary Stokes equation on Ω̃ with zero Dirichlet boundary condition
and body force Ef ∈ L2(Ω̃), i.e.,

−∆ũ+∇π̃ = Ef on Ω̃,

div ũ = 0 on Ω̃,

ũ = 0 on ∂Ω̃,

has a unique solution ũ ∈ H2(Ω̃)d with pressure π̃ ∈ H1(Ω̃), which fulfill the estimate

‖ũ‖H2(Ω̃)d + ‖π̃‖H1(Ω̃) ≤ C ‖Ef‖L2(Ω̃)d (3.3.7)

see, e.g., [1, Theorem 3]. Due to the boundedness of the domain Ω and of the extension
operator E , this yields∫

Ω

ρ(x) · |∇2ũ(x)|2 dx+

∫
Ω

ρ(x) · |∇π̃(x)|2 dx ≤ C ‖f‖2
L2(Ω)d . (3.3.8)

The linear structure of the Stokes equation (SP) allows us to split its solution u into
u = ũ|Ω + ū−u0 with corresponding pressure π = π̃|Ω + π̄−π0, where u0 ∈ H1(Ω)d solves

−∆u0 +∇π0 = 0 on Ω,

div u0 = 0 on Ω,

u0 = ũ|∂Ω on ∂Ω,

with corresponding pressure π0 ∈ L2(Ω). Such a solution u0 exists by [43, Theorem IV.1.1],

since ũ ∈ H2(Ω̃), so that ũ|∂Ω ∈ H1(∂Ω)d due to classical results on traces in Sobolev
spaces, see, e.g., [38]; note that ũ|∂Ω verifies the compatibility condition (3.3.1), since∫

∂Ω

ũ|∂Ω · n dσ =

∫
Ω

div ũ(x) dx = 0,
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due to a proper generalization of Gauss’ theorem (see [43, Exercise II.4.3]), which can be
proven by [43, Lemma II.4.1,Theorem II.3.3, Theorem II.4.1]. Moreover, the pair (u0, π0)
verifies ∫

Ω

ρ(x) · |∇2u0(x)|2 dx+

∫
Ω

ρ(x) · |∇π0(x)|2 dx ≤ C‖ũ|∂Ω‖2
H1(∂Ω)d ,

due to the corresponding estimate from [3, Section 2] already used above to obtain (3.3.6).
Thus, since ũ verifies (3.3.7),

‖ũ|∂Ω‖H1(∂Ω)d ≤ C‖ũ‖H2(Ω̃)d ≤ C‖Ef‖L2(Ω̃)d ≤ C‖f‖L2(Ω)d ,

so that ∫
Ω

ρ(x) · |∇2u0(x)|2 dx+

∫
Ω

ρ(x) · |∇π0(x)|2 dx ≤ C‖f‖2
L2(Ω)d .

Since all the constants used in this proof depend only on d and Ω, the last estimate,
together with (3.3.6) and (3.3.8) proves the assertion.

3.3.2 Besov regularity for the stationary Stokes equation

In this section we prove the following main result concerning the Besov regularity in the
scale (∗) of the solution to the Stokes equation (SP) and of the corresponding pressure.

Theorem 3.3.3. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3, with connected
boundary. Let u be the unique solution of (SP) with f ∈ L2(Ω)d and g ∈ H1(∂Ω)d

fulfilling additionally (3.3.1), and let π be the corresponding pressure. Then

u ∈ Bs1
τ1

(Lτ1(Ω))d,
1

τ1

=
s1

d
+

1

2
, 0 < s1 < min

{
3

2
· d

d− 1
, 2

}
, (3.3.9)

and

π ∈ Bs2
τ2

(Lτ2(Ω)),
1

τ2

=
s2

d
+

1

2
, 0 < s2 <

1

2
· d

d− 1
. (3.3.10)

Moreover, for this range of parameters, the estimate

‖u‖Bs1τ1 (Lτ1 (Ω))d + inf
c∈R
‖π + c‖Bs2τ2 (Lτ2 (Ω)) ≤ C

(
‖f‖L2(Ω)d + ‖g‖H1(∂Ω)d

)
(3.3.11)

holds with a constant C ∈ (0,∞) that depends only on Ω, d, s1, s2, τ1, and τ2.

Before we prove this statement, we want to emphasize its significance for the question
raised in the introduction, whether adaptivity pays or not for the numerical treatment of
the Stokes equation. Moreover, we relate our result to what is already known about the
Besov regularity of the Stokes equation in the scale (∗).

Remark 3.3.4. (i) If we only assume that the boundary of the underlying domain Ω is
Lipschitz (and connected), then to the best of our knowledge the Sobolev regularity
result presented in Proposition 3.3.1 is sharp, i.e. for arbitrary ε > 0, there exists
a bounded Lipschitz domain Ωε and a function f ∈ L2(Ωε)

d, such that the solution
u to (SP) with g = 0 fails to have L2-Sobolev regularity of order 3/2 + ε. However,
Theorem 3.3.3 shows that for arbitrary Lipschitz domains we can go beyond 3/2 in
the scale (∗) of Besov spaces. For d = 3 we can choose any s1 less than 2, whereas
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for d ≥ 4 the bound is given by 3/2 ·d/(d−1), which is strictly greater than 3/2. As
already mentioned in the introduction, this justifies the usage of adaptive numerical
methods for the Stokes equation in the sense that in this situation they can have a
higher convergence rate than their classical uniform alternatives. The same is true
for the pressure π, since its Besov regularity in the scale (∗) is d/(d−1) times higher
than its worst case Sobolev regularity.

(ii) To the best of our knowledge, the most far reaching results concerning the Besov
regularity of the solution u to (SP) on general bounded Lipschitz domains (and for
the corresponding pressure π), have been obtained in [57]. Using boundary integral
methods, the authors undertake a detailed analysis of the Besov regularity of the
boundary value problem for the Stokes equation. Among others, for arbitrary dimen-
sions d ≥ 2, they determine corresponding ranges of smoothness and integrability
parameters allowing for implications of the type

f ∈ Bs−2
q (Lp(Ω))d, g ∈ Bs−1/p

q (Lp(∂Ω))d =⇒ u ∈ Bs
q(Lp(Ω))d, π ∈ Bs−1

q (Lp(Ω))

for Lipschitz domains Ω ⊆ Rd, see [57, Theorem 10.15]. However, these ranges
of admissible parameters depend on the degree of roughness of the boundary ∂Ω,
which is described by a value ε = ε(Ω) ∈ (0, 1]: the smaller the ε, the rougher
the underlying domain and the smaller the admissible range Rd,ε. Theorem 3.3.3
supports the claim from [57] that the results therein are sharp for low dimensions
d = 2, 3. However, for higher dimensions d ≥ 4, on general bounded Lipschitz
domains with connected boundary, i.e., if we do not make any further assumptions
on the smoothness of the boundary, we obtain higher regularity in the scale (∗) than
what is possible to extract from [57]. In detail, we have the following relationship
between the two results.

• If d ≥ 4 and ε ≤ 1/2 · 1/(d − 1), i.e., if the underlying domain Ω is rough,
the results in [57] do not imply a Besov regularity higher than 3/2 for the
solution and 1/2 for the corresponding pressure. Even choosing the integrability
parameter less than 2, does not help. However, we can get higher with our
result and reach any Besov regularity s1 < 3/2 · d/(d − 1) in the scale (∗) for
the solution and s2 < 1/2 ·d/(d−1) for the pressure. Our findings are depicted
in Figure 3.1 by means of a so called DeVore-Triebel diagram. A point (1/τ, s)
in the first quadrant stands for the Besov space Bs

τ (Lτ (Ω))d. In particular, the
ray with slope d starting in (1/2, 0) represents the scale (∗) of Besov spaces.
Due to Theorem 3.3.3, the regularity of the solution to (SP) climbs up this
scale until it (almost) reaches the smoothness s∗ = 3/2 · d/(d− 1). Firstly, we
observe, as already discussed in the first part of this remark, that the Besov
regularity in the scale (∗) is higher than the Sobolev regularity. Secondly this
Besov regularity is more than we can extract from [57]. If we do not impose any
further assumption on the Lipschitz character of the domain, the results in [57]
merely guarantee that the solution is contained in those Besov spaces that
correspond to the dark shaded area (and to any point below and to its right
until reaching the line {(1/τ, s) : 1/τ = s/d+ 1} due to standard embeddings),
see, e.g., [8, Theorem 2.61]. The only possibility to enlarge the admissible range
of parameters by using [57] is to impose more regularity on the boundary ∂Ω of
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1/τ = s/d + 1/2
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d
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)

1

Figure 3.1: Besov regularity for the solution u to (SP) achieved by exploiting [57],
versus the results in Theorem 3.3.3, illustrated in a DeVore/Triebel dia-
gram (d ≥ 4).

the domain, i.e., to relax the conditions on ε = ε(Ω). In Figure 3.1, this adds the
light shaded area to the range covered by [57], see, in particular, Theorem 10.15
therein. However, if ε ≤ 1/2 · 1/(d − 1), this area does not include all Besov
spaces from the scale (∗) with smoothness parameter less than s∗.

• If d ≥ 4 and ε > 1/2·1/(d−1), i.e., if the boundary ∂Ω is smooth enough, then,
the same regularity as in Theorem 3.3.3 can be established by exploiting [57,
Theorem 10.15]; with slightly weaker assumptions on f and g.

• If d = 3, Theorem 3.3.3 is covered by [57, Theorem 10.15], which guarantees
that, even under weaker assumptions on the data, the solution u ∈ B2−δ

p (Lp(Ω))
for arbitrary small δ > 0 and suitable p = p(δ) > 1. Consequently, u has Besov
regularity of any order s1 < 2 in the scale (∗) due to standard embeddings of
Besov spaces. If ε > 1/2, then under slightly stronger assumptions on the data,
any regularity up to 9/4 is possible due to [57, Theorem 10.15]. The pressure
has the corresponding regularity s2 < 1 and s2 < 5/4, respectively.

As already pointed out, the Sobolev regularity of the solution to the Stokes equation is
limited by 3/2 in a worst case scenario. However, we know from Proposition 3.3.2 that we
can still guarantee integrability of the second derivatives if multiplied by a proper power of
the distance to the boundary. These relationships will be the most important ingredients
for the proof of the following embedding, which, together with Proposition 3.3.2, proves
Theorem 3.3.3 as we will explain at the end of the Section. Recall that

Wm
α (Lp(Ω)) =

{
f ∈ Lp(Ω) : ‖f‖pWm

α (Lp(Ω)) = ‖f‖pLp(Ω) +

∫
Ω

ρ(x)α|∇mf(x)|p`pdx <∞
}
,

for m ∈ N0, α > 0 and p ∈ (1,∞).
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Theorem 3.3.5. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3. Let α0 > 0, α > 0,
and γ ∈ N with α < 2γ. Then,

Hα0(Ω) ∩W γ
α (L2(Ω)) ↪→ Bs

τ (Lτ (Ω)),
1

τ
=
s

d
+

1

2
,

for all

0 < s < min

{
2γ − α

2
· d

d− 1
, α0 ·

d

d− 1
, γ

}
.

Proof. The proof can essentially be performed by following the line of [20]. For reader’s
convenience, we briefly discuss the basic steps. Let us fix s and τ as stated in the theorem.
We choose a suitable wavelet basis{

φk, ψi,j,k : (i, j, k) ∈ {1, ..., 2d − 1} × N0 × Zd
}

of L2(Rd) satisfying the assumptions from Section 3.2.2 with r > γ. In particular, this
means that there exists a cube Q centered at the origin such that for (j, k) ∈ N0×Zd the
cube

Qj,k := 2−jk + 2−jQ

contains the support of ψi,j,k for all i ∈ {1, ..., 2d − 1} and supp φk ⊆ Q0,k; remember
that the supports of the corresponding dual basis fulfill the same requirements. Fix v ∈
Hα0(Ω) = Bα0

2 (L2(Ω)). Since Ω is assumed to have a Lipschitz continuous boundary, there
exists a linear bounded extension operator E : Bα0

2 (L2(Ω))→ Bα0
2 (L2(Rd)), see, e.g., [59].

Due to Proposition 3.2.3, we have the following wavelet expansion

Ev =
∑
k∈Zd
〈Ev, φ̃k〉φk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈Ev, ψ̃i,j,k〉ψi,j,k

for the extended v. If we restrict to the scaling functions and wavelets associated to those
cubes Qj,k that have a non-empty intersection with Ω, i.e., if we consider only the indexes
from

Λ :=
{

(i, j, k) ∈ {1, ..., 2d − 1} × N0 × Zd : Qj,k ∩ Ω 6= ∅
}

and
Γ := {k ∈ Zd : Q0,k ∩ Ω 6= ∅},

then
v =

∑
k∈Γ

〈Ev, φ̃k〉φk +
∑

(i,j,k)∈Λ

〈Ev, ψ̃i,j,k〉ψi,j,k

still holds on Ω. Consequently, due to Proposition 3.2.4 and since Besov spaces on domains
are defined via restriction, in order to prove the theorem, it is enough to show that(∑

k∈Γ

|〈Ev, φ̃k〉|τ
) 1

τ

≤ C‖v‖Hα0 (Ω) (3.3.12)

and ( ∑
(i,j,k)∈Λ

|〈Ev, ψ̃i,j,k〉|τ
) 1

τ

≤ C
(
‖v‖Hα0 (Ω) + ‖v‖W γ

α (L2(Ω))

)
, (3.3.13)
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with appropriate constants C ∈ (0,∞) that do not depend on v. For simplicity, we make
slight abuse of notation and write v instead of Ev in the sequel.

We start with (3.3.12). The index set Γ is finite due to the boundedness of the underlying
domain, so that a simple application of Jensen’s inequality, followed by an application
of Proposition 3.2.3 together with the boundedness of the extension operator and the
equivalence of the norms ‖·‖Hα0 (Ω) and ‖·‖Bα0

2 (L2(Ω)) on Bα0
2 (L2(Ω)), yields

∑
k∈Γ

|〈v, φ̃k〉|τ ≤ C

(∑
k∈Γ

|〈v, φ̃k〉|2
) τ

2

≤ C‖v‖τ
B
α0
2 (L2(Rd))

≤ C‖v‖τ
B
α0
2 (L2(Ω))

≤ C‖v‖τHα0 (Ω).

The constants above as well as all the other constants appearing in this proof do not
depend on v.

To prove the second estimate (3.3.13), we split the sum on the left hand side into two
parts and consider those coefficients that are related to wavelets with support in the
interior of Ω isolated from those associated with wavelets that might have support on the
boundary ∂Ω or outside of Ω. By using the notations

ρj,k := ρ(Qj,k, ∂Ω),

Λj := {(i, l, k) ∈ Λ : l = j},
Λj,m := {(i, j, k) ∈ Λj : m · 2−j ≤ ρj,k < (m+ 1) · 2−j},

Λ0
j := Λj\Λj,0,

Λ0 :=
⋃
j∈N0

Λ0
j ,

for j,m ∈ N0, k ∈ Zd, this splitting can be written as∑
(i,j,k)∈Λ

|〈v, ψ̃i,j,k〉|τ =
∑

(i,j,k)∈Λ0

|〈v, ψ̃i,j,k〉|τ +
∑

(i,j,k)∈Λ\Λ0

|〈v, ψ̃i,j,k〉|τ =: I + II. (3.3.14)

To estimate I, we exploit a Whitney type estimate (see [37, Theorem 3.4]), which
guarantees that that for every fixed (i, j, k) ∈ Λ0, there exists a polynomial Pj,k of total
degree less than γ, and a finite constant C that does not depend on j or k, such that

‖v − Pj,k‖L2(Qj,k) ≤ C 2−jγ
(∫

Qj,k

|∇γv(x)|2`2 dx

)1/2

;

note that the integral is finite, since (i, j, k) ∈ Λ0. Consequently, since ψ̃i,j,k is orthogonal
to every polynomial of total degree less than γ,

|〈v, ψ̃i,j,k〉| = |〈v − Pj,k, ψ̃i,j,k〉|
≤ ‖v − Pj,k‖L2(Qj,k)‖ψ̃i,j,k‖L2(Qj,k)

≤ C 2−jγ
(∫

Qj,k

|∇γv(x)|2`2 dx

)1/2

≤ C 2−jγρ
−α/2
j,k

(∫
Qj,k

|ρ(x)α/2∇γv(x)|2`2 dx

)1/2

=: C 2−jγρ
−α/2
j,k µj,k.
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Fix j ∈ N0. Exploiting Hölder’s inequality with parameters 2/τ > 1 and 2/(2 − τ), we
obtain ∑

(i,j,k)∈Λ0
j

|〈v, ψ̃i,j,k〉|τ ≤ C
∑

(i,j,k)∈Λ0
j

2−jτγρ
−ατ/2
j,k µτj,k

≤ C

( ∑
(i,j,k)∈Λ0

j

µ2
j,k

) τ
2
( ∑

(i,j,k)∈Λ0
j

2−
2jτγ
2−τ ρ

− ατ
2−τ

j,k

) 2−τ
2

. (3.3.15)

The first factor on the right hand side can be estimated by a constant times ‖v‖τ
W γ
α (L2(Ω))

,

which is bounded by assumption (see, e.g., the proof of [8, Theorem 4.7] for details). In
order to estimate the second factor we use the Lipschitz character of Ω, which guarantees
that

|Λj,m| ≤ C 2j(d−1) for all j,m ∈ N0. (3.3.16)

Moreover, the boundedness of Ω yields Λj,m = ∅ for all j,m ∈ N0 with m ≥ C · 2j. The
constant C in both estimates does not depend on j or m. Consequently, we obtain( ∑

(i,j,k)∈Λ0
j

2−
2jτγ
2−τ ρ

− ατ
2−τ

j,k

) 2−τ
2

≤ C

(
C2j∑
m=1

∑
(i,j,k)∈Λj,m

2−
2jτγ
2−τ ρ

− ατ
2−τ

j,k

) 2−τ
2

≤ C

(
C2j∑
m=1

∑
(i,j,k)∈Λj,m

2−
2jτγ
2−τ (m 2−j)−

ατ
2−τ

) 2−τ
2

(3.3.17)

≤ C
(

2j(d−1− (2γ−α)τ
2−τ ) + 2j(d−

2γτ
2−τ )

) 2−τ
2
.

If ατ/(2− τ) > 1, the last estimate follows from the convergence of the harmonic series.

For 0 < ατ/(2 − τ) ≤ 1, it can be obtained by estimating the integral
∫ C2j

1
t−

ατ
2−τ dt

properly. Summing up over j ∈ N0 in (3.3.15) and using (3.3.17), leads to

∑
(i,j,k)∈Λ0

|〈v, ψ̃i,j,k〉|τ ≤ C‖v‖τW γ
α (L2(Ω))

∑
j∈N0

(
2j(d−1− (2γ−α)τ

2−τ ) + 2j(d−
2γτ
2−τ )

) 2−τ
2
.

Obviously, the sums on the right hand side converge if, and only if, 0 < s < min
{
γ, 2γ−α

2
d
d−1

}
.

Therefore, since this is part of our assumptions,∑
(i,j,k)∈Λ0

|〈v, ψ̃i,j,k〉|τ ≤ C‖v‖τW γ
α (L2(Ω)). (3.3.18)

In the last step we have to estimate the second term II from (3.3.14). To this end we
use Hölder’s inequality together with (3.3.16) to verify that for every j ∈ N0,

∑
(i,j,k)∈Λj,0

|〈v, ψ̃i,j,k〉|τ ≤ C 2j(d−1) 2−τ
2

( ∑
(i,j,k)∈Λj,0

|〈v, ψ̃i,j,k〉|2
) τ

2

,
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where C ∈ (0,∞) is a constant independent of j. Summing up over all j ∈ N0 and using
the relationship 1/τ = s/d+ 1/2 yields∑

(i,j,k)∈Λ\Λ0

|〈v, ψ̃i,j,k〉|τ =
∑
j∈N0

∑
(i,j,k)∈Λj,0

|〈v, ψ̃i,j,k〉|τ

≤ C
∑
j∈N0

(
2j(d−1) 2−τ

2

( ∑
(i,j,k)∈Λj,0

|〈v, ψ̃i,j,k〉|2
) τ

2
)

= C
∑
j∈N0

(
2j

d−1
d
·s·τ
( ∑

(i,j,k)∈Λj,0

|〈v, ψ̃i,j,k〉|2
) τ

2
)

≤ C ‖v‖τ
B
d−1
d
s

τ (L2(Rd))
,

where the last estimate is due to Proposition 3.2.3. Since Bα0
2 (L2(Rd)) ↪→ B

d−1
d
s

τ (L2(Rd))
for arbitrary 0 < s < α0

d
d−1

, see, e.g., [64, Proposition 2.3.2.2], we obtain∑
(i,j,k)∈Λ\Λ0

|〈v, ψ̃i,j,k〉|τ ≤ C ‖v‖τ
B
α0
τ (L2(Rd))

≤ C ‖v‖τ
B
α0
τ (L2(Ω))

,

where we used the boundedness of the extension operator for the last estimate. Conse-
quently, since Hα0(Ω) = Bα0

2 (L2(Ω)) with equivalent norms,∑
(i,j,k)∈Λ\Λ0

|〈v, ψ̃i,j,k〉|τ ≤ C ‖v‖τHα0 (Ω).

This estimate together with (3.3.18) prove that (3.3.13) holds and, therefore, so does our
assertion.

Proof of Theorem 3.3.3. Due to Proposition 3.3.1 and Proposition 3.3.2, the state-
ment follows from a straightforward application of the embedding obtained above in
Theorem 3.3.5.

3.4 Besov regularity for the stationary Navier-Stokes
equation

In this section we extend our analysis to the stationary Navier-Stokes equation

−∆u+ νu · (∇u) +∇π = f on Ω,

div u = 0 on Ω,

u = g on ∂Ω;

(NAST)

ν > 0 denotes the Reynolds number and, as before, g is assumed to fulfil (3.3.1) for
compatibility reasons. Following the lines of the previous sections, we understand (NAST)
in a weak sense and call u ∈ H1(Ω)d a (weak) solution of (NAST) if u is divergence free,
satisfies u = g on the boundary ∂Ω (in a trace sense) and fulfils the equation∫

Ω

d∑
i,j=1

(∇u)ij (∇ϕ)ij dx+ ν

∫
Ω

(u · (∇u))ϕ dx = f(ϕ)−
∫

Ω

d∑
i=1

π
∂ϕi
∂xi

dx
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for all ϕ ∈ C∞0 (Ω) with a suitable π ∈ L2(Ω). See [43, Chapter IX] for more details.

Our goal is to establish existence of a solution to (NAST) with high regularity in
the scale (∗) of Besov spaces. To this end we exploit what we proved in the previous
section about the regularity of the Stokes equation together with a fixed point argument.
Our approach is based on the following basic observation: Assume that u ∈ H1(Ω)d is
a solution to (NAST) with f ∈ L2(Ω)d and g ∈ H1(∂Ω)d. Then, if we could guarantee
that u · (∇u) ∈ L2(Ω)d, the solution u ∈ H1(Ω)d to (NAST) would actually be a solution
to (SP) with body force f − u · (∇u) ∈ L2(Ω)d (instead of f) and prescribed velocity
field g ∈ H1(∂Ω)d. As a consequence, u and the corresponding pressure π would have the
Besov regularity in the scale (∗) guaranteed by Theorem 3.3.3. Of course, u ∈ H1(Ω)d is
not a sufficient condition for u ·(∇u) ∈ L2(Ω)d. However, the latter would hold if we could
additionally guarantee that our solution is essentially bounded. This would definitively
be fulfilled if we require u ∈ Bt

p(Lp(Ω))d for some p > 1 and t /∈ N with t > d/p, since
in this case Bt

p(Lp(Ω)) = W t(Lp(Ω)) ↪→ L∞(Ω) due to Sobolev’s embedding theorem. A
solution to (SP) with this property can be obtained by exploiting the results from [57].
Theorem 10.15 therein guarantees, among others, that the Stokes problem (SP) with body

force f ∈ Bt−2
p (Lp(Ω)) and boundary condition g ∈ Bt−1/p

p (Lp(∂Ω))d fulfilling (3.3.1) has a
unique solution u ∈ Bt

p(Lp(Ω))d with corresponding pressure π ∈ Bt−1
p (Lp(Ω))—provided

the parameters p and t are within an admissible range Rd,ε that depends on the dimension
d and on the Lipschitz character of the underlying domain Ω, which is expressed by the
quantity ε = ε(Ω) ∈ (0, 1], see also Remark 3.3.4. Moreover, there exists a finite constant
C > 0, such that

‖u‖Btp(Lp(Ω))d + inf
c∈R
‖π + c‖Bt−1

p (Lp(Ω)) ≤ C
(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

)
.

For d = 3, there always exists a pair (p, t) with t > d/p and t /∈ N within the range R3,ε

of parameters admissible in [57, Theorem 10.15], since R3,ε covers all p > 2 and t ∈ R
such that

max

{
3

p
, 1

}
< t < min

{
3

p
+ ε, 1 +

1

p

}
. (3.4.1)

This is also the case for d ≥ 4 if the underlying domain is smooth enough, i.e., if we
assume that the quantity ε = ε(Ω) describing the Lipschitz character of Ω fulfils

ε >
d− 3

2(d− 1)
.

Then the corresponding range Rd,ε in [57, Theorem 10.15] covers all p > d− 1 and t ∈ R
such that

max

{
d

p
, 1

}
< t < min

{
d

p
+ (d− 1)ε− d− 3

2
, 1 +

1

p

}
. (3.4.2)

Thus, for these ranges of parameters [57, Theorem 10.15] guarantees that the linear solu-
tion operator of the Stokes problem (SP),

L := Lt,p,Ω : Bt−2
p (Lp(Ω))d ×Bt−1/p,0

p (Lp(∂Ω))d → Bt
p(Lp(Ω))d ×

(
Bt−1
p (Lp(Ω))/RΩ

)
(f, g) 7→ L(f, g) := (u, π),
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where u is the unique solution to (SP) with body force f and boundary value g, and π is
the corresponding pressure, is well-defined and bounded (see Section 3.2.1 for notation).
We denote its operator norm by

‖Lt,p,Ω‖ := sup
(f,g)∈Y \{0}

‖Lt,p,Ω(f, g)‖Xt,p,Ω
‖(f, g)‖Yt,p,Ω

,

where
X := Xt,p,Ω := Bt

p(Lp(Ω))d ×
(
Bt−1
p (Lp(Ω))/RΩ

)
and

Y := Yt,p,Ω := Bt−2
p (Lp(Ω))d ×Bt−1/p,0

p (Lp(∂Ω))d.

Using this notation, we can present our main result concerning the regularity of the
solution to (NAST) in the scale (∗) of Besov spaces.

Theorem 3.4.1. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3, with connected
boundary. Assume that the quantity ε = ε(Ω) ∈ (0, 1] from [57] describing the Lipschitz
character of Ω fulfils

ε >
d− 3

2(d− 1)
. (3.4.3)

Let p > d− 1 and t ∈ R satisfy (3.4.1) for d = 3 and (3.4.2) for d ≥ 4, respectively. Fix

f ∈ L2(Ω)d ∩Bt−2
p (Lp(Ω))d

and

g ∈ H1(∂Ω)d ∩Bt−1/p
p (Lp(∂Ω))d with

∫
∂Ω

g · n dσ = 0.

Then there exists a finite constant C = Ct,p,Ω > 0 such that, if

Ct,p,Ω · ν ·
(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

)
<

1

4 · ‖Lt,p,Ω‖2
, (3.4.4)

then (NAST) has at least one solution u ∈ H3/2(Ω)d with corresponding pressure π ∈
H1/2(Ω) which satisfy

u ∈ Bs1
τ1

(Lτ1(Ω))d,
1

τ1

=
s1

d
+

1

2
, 0 < s1 < min

{
3

2
· d

d− 1
, 2

}
, (3.4.5)

and

π ∈ Bs2
τ2

(Lτ2(Ω)),
1

τ2

=
s2

d
+

1

2
, 0 < s2 <

1

2
· d

d− 1
, (3.4.6)

respectively. The pair (u, π) is unique in A1/2 := {(v, q) ∈ Xr,p,Ω : ‖Lt,p,Ω‖ · ν · Ct,p,Ω ·
‖(v, q)‖Xt,p,Ω ≤ 1/2}.

Remark 3.4.2. (i) Note that the restriction (3.4.3) is empty if d = 3, i.e., the theorem
holds for any arbitrary Lipschitz domain Ω ⊆ R3 with connected boundary.

(ii) A close look to the proof below reveals that the constant C = Ct,p,Ω > 0 in the
statement of Theorem 3.4.1 can be chosen to be the product of the embedding
constants of the embeddings in (3.4.7) and (3.4.8).
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(iii) The solution u to (NAST) and the corresponding pressure π determined in Theo-
rem 3.4.1 have L2-Sobolev regularity 3/2 and 1/2, respectively. To the best of our
knowledge there is no result which guarantees that a solution u to (NAST) and a
corresponding pressure term π have a higher L2-Sobolev regularity in the given set-
ting. However, their Besov regularity in the scale (∗) is strictly higher than 3/2 and
1/2, respectively, see (3.4.5) and (3.3.10). Therefore, the usage of adaptive wavelet
schemes for solving (NAST) is justified in the sense described in the introduction,
see also Remark 3.3.4.

Proof of Theorem 3.4.1. Fix the parameters p and t as well as the body force f and
the velocity field g as required in our assumptions. We prove that the mapping

T := T f,g,νt,p,Ω : Xt,p,Ω → Xt,p,Ω

(u, π) 7→ Lt,p,Ω(f − νu · (∇u), g),

has a fixed point (u, π) ∈ Xt,p,Ω consisting of a solution u to (NAST) and the corresponding
pressure π, both of them having the asserted properties. To this end, we first need some
preparations.

First of all we check that the operator T is well-defined. Since p > 2, 1 < t < 2, and Ω
is bounded, the embeddings

Lp(Ω) ↪→ Bt−2
p (Lp(Ω)) ∩ L2(Ω) and Bt

p(Lp(Ω)) ↪→ W 1(Lp(Ω)), (3.4.7)

hold, since the classical embeddings for Besov and Triebel-Lizorkin spaces, as they can
be found, e.g., in [64, Proposition 2.3.2/2], can be carried over to the case of bounded
Lipschitz domains (definition via restriction) and the Sobolev spaces W k(Lp(Ω)), k ∈ N0,
can be described in terms of Triebel-Lizorkin spaces, see, e.g., [65, Proposition 1.122(i)].
Moreover, since t > d/p, t /∈ N, Sobolev’s embedding theorem yields

Bt
p(Lp(Ω)) = W t(Lp(Ω)) ↪→ L∞(Ω), (3.4.8)

see, e.g., [58, Chapter 2.2.4]. These embeddings imply that v · (∇v) ∈ Bt−2
p (Lp(Ω))d ∩

L2(Ω)d whenever v ∈ Bt
p(Lp(Ω))d, since

‖v · (∇v)‖Bt−2
p (Lp(Ω))d + ‖v · (∇v)‖L2(Ω)d ≤ C ‖v · (∇v)‖Lp(Ω)d

= C
∥∥∥ d∑
i=1

vi
∂v

∂xi

∥∥∥
Lp(Ω)d

≤ C ‖v‖L∞(Ω)d‖v‖W 1(Lp(Ω))d

≤ C ‖v‖2
Btp(Lp(Ω))d ,

with a finite constant C =: Ct,p,Ω, which is the product of the embedding constants of the
embeddings above. As a consequence, the operator

N := N f,g,ν
t,p,Ω : Xt,p,Ω → Yt,p,Ω ∩

(
L2(Ω)d ×H1(∂Ω)d

)
(u, π) 7→ (f − νu · (∇u), g)

is well-defined, and, therefore, so is T = L ◦N : Xt,p,Ω → Xt,p,Ω.
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Secondly, we prove the existence of a fixed point of T . A similar calculation as above
shows that for (u, π), (ũ, π̃) ∈ Xt,p,Ω,

‖Tt,p,Ω(u, π)− Tt,p,Ω(ũ, π̃)‖Xt,p,Ω
≤ ‖Lt,p,Ω‖ · ν · ‖u · (∇u)− ũ · (∇ũ)‖Bt−2

p (Lp(Ω))d

≤ ‖Lt,p,Ω‖ · ν · Ct,p,Ω ·max
{
‖u‖Btp(Lp(Ω))d , ‖ũ‖Btp(Lp(Ω))d

}
· ‖u− ũ‖Btp(Lp(Ω))d .

Thus, if we can find λ < 1 such that

(u, π) ∈ Aλ :=
{

(v, q) ∈ Xr,p,Ω : ‖Lt,p,Ω‖ · ν · Ct,p,Ω · ‖(v, q)‖Xt,p,Ω ≤ λ
}

implies T (u, π) ∈ Aλ, then T is a contraction on a the closed ball Aλ ⊆ X, so that we
can obtain the fixed point we are seeking for by applying Banach’s fixed point theorem.
Assume (u, π) ∈ Aλ for some λ ∈ (0, 1). Then,

‖Tt,p,Ω(u, π)‖Xt,p,Ω
≤ ‖Lt,p,Ω‖

(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

+ ν ‖u · (∇u)‖Bt−2
p (Lp(Ω))d

)
≤ ‖Lt,p,Ω‖

(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

+ ν Ct,p,Ω ‖u‖2
Btp(Lp(Ω))d

)
≤ ‖Lt,p,Ω‖

(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

+
λ2

ν Ct,p,Ω ‖Lt,p,Ω‖2

)
.

Moreover,

‖Lt,p,Ω‖
(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

+
λ2

ν Ct,p,Ω ‖Lt,p,Ω‖2

)
≤ λ

ν Ct,p,Ω ‖Lt,p,Ω‖

if, and only if,

ν Ct,p,Ω ‖Lt,p,Ω‖2
(
‖f‖Bt−2

p (Lp(Ω))d + ‖g‖
B
t−1/p
p (Lp(∂Ω))d

)
≤ −λ2 + λ.

The right hand side is positive on (0, 1) and attains its maximum 1/4 at λ = 1/2. Thus,
λ0 = 1/2 does the job, so that, if (3.4.4) is assumed to hold, then we have a fixed point
(u, π) ∈ A1/2 ⊆ Xt,p,Ω.

Finally, we note that
Xt,p,Ω ↪→ H1(Ω)d × (L2(Ω)/RΩ) ,

due to the embeddings discussed at the beginning of the proof. Moreover, u·(∇u) ∈ L2(Ω),
as shown above. Therefore, any fixed point (u, π) ∈ Xt,p,Ω consists, by definition, of a
solution u ∈ H1(Ω)d to the Stokes problem (SP) with body force (f − νu · (∇u)) ∈ L2(Ω)
(instead of f) and prescribed velocity field g ∈ H1(∂Ω)d together with its corresponding
pressure π ∈ L2(Ω). Consequently, u ∈ H3/2(Ω)d and π ∈ H1/2(Ω) due to Proposition 3.3.1
and they have the asserted Besov regularity in the scale (∗) due to Theorem 3.3.3.
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