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Abstract 

Over the years, N. gonorrhoeae has evolved and acquired different mechanisms to protect itself 

against a variety of antibiotics and chemotherapeutic agents. One reason for the rapid spread of 

antibiotic resistance in gonococci is the highly effective horizontal gene transfer. The transferred 

DNA is either provided directly via conjugation, or via the environment via autolysis or the 

gonococcal type IV secretion system (T4SS), which secretes ssDNA into the extracellular milieu. DNA 

uptake from the environment in Neisseria involves the type IV pili (T4P) and the competence system, 

transporting the DNA across the outer and the inner membrane, respectively. Functional 

characterization of the type IV secretion system and DNA uptake system and thus the type IV pili 

machinery in N. gonorrhoeae could provide starting points in the exploration of new therapeutic 

strategies. 

To better understand the transcriptional regulatory network of the type IV secretion system of 

N. gonorrhoeae transcriptional mapping of genes essential for DNA secretion was performed. This 

revealed that genes essential for DNA secretion are encoded within four different operons. 

Additional analysis of a region, which is not essential for DNA secretion, encoding the single-

stranded DNA binding protein SsbB and the topoisomerase TopB showed that these genes are 

significantly more highly transcribed then genes that are involved in DNA secretion, such as the 

coupling protein TraD and the relaxase TraI. To investigate whether the single-stranded DNA, which 

is secreted via the T4SS encoded within the GGI facilitates biofilm formation, biofilm formation of 

N. gonorrhoeae strains were analyzed in continuous flow-chamber systems by confocal laser 

scanning microscopy. This showed that the ssDNA secreted via the T4SS plays a role in the early 

stages of biofilm formation. 

In Neisseria gonorrhoeae, the native PilQ secretin ring embedded in OM sheets is surrounded by an 

additional peripheral structure, consisting of a peripheral ring and seven extending spikes. To 

unravel proteins important for formation of this additional structure, we identified proteins that are 

present with PilQ in the OM. One such protein, which was named TsaP, the T4P secretin-associated 

protein, was identified as a widely conserved component that co-occurs with genes for T4P in Gram-

negative bacteria. TsaP contains an N-terminal carbohydrate-binding lysin motif (LysM) domain and 

a C-terminal domain of unknown function. In N. gonorrhoeae, lack of TsaP results in the formation of 

membrane protrusions containing multiple T4P, concomitant with reduced formation of surface-

exposed T4P. Lack of TsaP did not affect the oligomeric state of PilQ, but resulted in loss of the 

peripheral structure around the PilQ secretin. TsaP binds peptidoglycan and associates strongly with 

the outer membrane in a PilQ-dependent manner. In addition, we identified that TsaP contains apart 

from the LysM domain, two FlgT-like domains and a linker region, which is specific for Neisseria spp. 

We could show that the linker domain plays an important role in pilus ďiogeŶesis iŶ the β-

proteobacterium N. gonorrhoeae. In order to determine if TsaP directly interacts with PilQ via the B2 

domain, PilQ and TsaP of N. gonorrhoeae and M. xanthus were heterologously expressed and 

purified. Characterization of the heterologously expressed and purified proteins showed that TsaP is 

able to form SDS-stable complexes, resembling a ring-like structure, and that it might interact with 

PilQ, forming a double ring structure. In general, we propose that TsaP anchors the secretin to the 

PG to enable the secretin to withstand the forces generated during pilus extension and retraction. 
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Because T4P play an important role in the pathogenesis of many bacteria and TsaP is found in all 

bacteria that express T4aP and plays an important role in T4aP biogenesis, it might be an important 

future drug target. 
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Zusammenfassung 

Im Laufe der Jahre hat Neisseria gonorrhoeae verschiedene Mechanismen entwickelt, um sich gegen 

eine Vielzahl von Antibiotika und Chemotherapeutika zu schützen. Die Hauptursache für diese 

rasche Ausbreitung von Resistenzen ist ein sehr effizienter horizontale Gentransfer. Die zu 

transferierende DNA wird dabei entweder mittels Konjugation direkt übertragen oder durch 

Autolyse der Gonokokken bzw. durch Sekretion von Einzelstrang DNA durch ein Typ-IV-

Sekretionssystem (T4SS) an das extrazelluläre Milieu abgegeben. Die Aufnahme von DNA aus dem 

extrazellulären Milieu erfolgt in N. gonorhoeae durch Typ-IV-Pili (T4P) sowie das Kompetenz-System, 

welche DNA über die äußere und die innere Membran transportieren. Die funktionelle 

Charakterisierung des Typ-IV-Sekretionssystems und des DNA-Aufnahme-Systems und somit der 

Typ-IV-Pili-Maschinerie könnte neue Anhaltspunkte für die Entwicklung therapeutischer Strategien 

liefern.  

Um das Transkriptionsnetzwerk des Typ-IV-Sekretionssystems in N. gonorrhoeae besser zu verste-

hen, wurden die für die DNA-Sekretion essentiellen Gene transkriptionell kartiert. Dieser Ansatz 

ergab, dass diese Gene in vier verschiedenen Operons enthalten sind. Die Analyse einer für die DNA-

Sekretion nicht essentiellen Region, welche für das Einzelstrang-DNA bindende Protein SsbB sowie 

die Topoisomerase TopB kodiert, zeigte ferner, dass diese Gene signifikant höher exprimiert wurden 

als die an der DNA-Sekretion essentiell beteiligten Gene. Um zu untersuchen, ob die Einzelstrang-

DNA, welche über das T4SS sekretiert wird, die Bildung von Biolfilm erleichtert, wurde die Fähigkeit 

verschiedener N. gonorrhoeae-Stämme zur Biofilm-Bildung mittels konfokaler Laser Scanning-

Mikroskopie untersucht. Diese Analysen zeigten, dass die durch das T4SS sekretierte Einzelstrang-

DNA eine Rolle in den frühen Stadien der Biofilmbildung spielt.  

In N. gonorrhoeae ist der in der äußeren Membran lokalisierte und durch PilQ gebildete Sekretin-

Ring von einer zusätzlichen periphere Struktur umgeben. Diese besteht aus einem peripheren Ring 

und sieben davon ausgehenden Zacken. Um Proteine zu identifizieren, die für die Bildung der 

peripheren Struktur wichtig waren, wurden Proteine analysiert, die mit PilQ in der äußeren 

Membran lokalisiert sind. Durch dieses Vorgehen konnte ein Protein, das TsaP, kurz für Type-IV-

Pilus-Sekretin-assoziiertes Protein, genannt wurde, als stark konservierte T4P-Komponente 

identifiziert werden. TsaP enthält ein N-terminales Kohlenhydrat bindendes Lysin-Motiv, auch als 

LysM-Domäne bekannt, und eine C-terminale Domäne mit unbekannter Funktion. In N. gonorrhoeae 

resultierte die Deletion von TsaP in der Bildung von Membranausstülpungen, die mit einer 

verminderten Bildung von oberflächenexponierten T4P einherging. Ferner konnte gezeigt werden, 

dass eine Deletion von TsaP keinen Einfluss auf den oligomerisations Zustand von PilQ hatte, jedoch 

zu einem Verlust der peripheren Struktur um PilQ führte. Weitere Analysen zeigten, dass TsaP an 

Peptidoglycan band und in Abhängigkeit von PilQ mit der äußeren Membran assoziierte. Darüber 

hinaus konnten neben der LysM-Domäne zwei FlgT-ähnliche Domänen und eine Linker-Region, die 

spezifisch für Neisseria spp. ist, ermittelt werden. Wir konnten zeigen, dass die Linker-Domäne in N. 

gonorrhoeae eine wichtige Rolle bei der Pilus-Biogenese spielte. Um festzustellen, ob TsaP direkt mit 

der B2-Domäne von PilQ interagierte, wurden TsaP und PilQ von N. gonorrhoeae und M. xanthus 

heterolog überexprimiert und gereinigt. Die Charakterisierung dieser Proteine zeigte, dass TsaP in 

der Lage war, SDS-stabile Komplexe zu bilden, welche eine ringförmige Struktur aufwiesen, und dass 
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TsaP wahrscheinlich durch Interaktion mit PilQ eine Doppelringstruktur bildete. Wir vermuten, dass 

TsaP durch direkte Protein-Protein-Interaktion mit PilQ den Sekretin-Ring in der Peptidoglycan-

Zellwand verankert und es dem Sekretin-Ring dadurch ermöglicht, den während der Pilus-Bildung 

und -Retraktion erzeugten Kräfte standzuhalten. Da T4P eine wichtige Rolle für die Pathogenität 

vieler Bakterien spielen und TsaP in Bakterien, die T4aP exprimieren, vorkommt und eine wichtige 

Funktion bei der T4aP-Biogenese hat, könnte TsaP einen neuen Angriffspunkt für zukünftige 

therapeutische Strategien darstellen. 
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1. Introduction 

1.1 Neisseria gonorrhoeae 

Neisseria gonorrhoeae, first described by Albert Ludwig Sigesmund Neisser in 1879, is a Gram-

negative diplococcus, which is 0.6-1.0 µm in diameter, and belongs to the family of Neisseriaceae [1, 

2]. The only currently identified human pathogens within this family are N. gonorrhoeae, the 

causative agent of the sexually transmitted infection gonorrhea, and Neisseria meningitidis, an agent 

of acute bacterial meningitidis [2]. In contrast to infections with N. meningitidis, gonococcal 

infections have a high prevalence and low mortality.  

Gonococcal infections are acquired by sexual contact and are generally limited to mucosal epithelia 

of the urethra in men and the endocervix in women, but N. gonorrhoeae can also infect tissues like 

the throat, the rectum and the conjunctiva of the eye [3]. Despite effective antibiotic therapies, 

there are still about 106 million gonococcal infections occurring worldwide each year [4]. This can be 

explained by the fact that up to 15 % of infected men and 80 % of infected women remain without 

symptoms. In addition, individuals infected with N. gonorrhoeae do not develop protective 

antibodies. Reasons for this are the evolved immune evasion strategies, including the production of 

excess membrane, forming membrane vesicles known as blebs [5] and the consecutively or 

simultaneously expressed a variety of pathogenicity factors, like colony opacity-proteins (Opa) [6-8], 

porins [9, 10], outer membrane lipooligosaccharides (LOS) [11] as well as type IV pili (T4P), that 

frequently undergo antigenic- and phase variation [12]. 

Over the years N. gonorrhoeae has evolved and acquired many mechanisms to protect itself against 

a variety of antibiotics and chemotherapeutic agents. One reason for the rapid spread of antibiotic 

resistances in N. gonorrhoeae is caused by its ability to rapidly take up and transform DNA from the 

environment, gaining additional genetic information (e.g. genetic variability and antibiotic marker) 

that enhances its survival [13]. It has been shown that Neisseria preferentially takes up DNA that has 

a nonpalindromic 10 or 12 bp nucleotide seƋueŶĐe ;ϱ′-ATGCCGTCTGAA-ϯ′Ϳ, termed the DNA uptake 

sequence (DUS) [14, 15].The transferred DNA is either provided by autolysis or by the gonococcal 

type IV secretion system, which secretes ssDNA into the extracellular milieu [16-18]. DNA uptake in 

Neisseria involves the T4P as well as the competence system, transporting the DNA across the outer 

and the inner membrane, respectively. 

The aim of this thesis was to study the operon structure within the regions containing the genes 

involved in DNA release via the type IV secretion system encoded within the Gonococcal Genetic 

Island (GGI) of N. gonorrhoeae and to analyze the outer membrane components of the type IV pili 

system. Both systems are involved in the transfer of DNA and will be described in detail in the 

upcoming sections. 
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1.2 Bacterial secretion systems 

Bacterial secretion systems are multi-subunit complexes that are present in a large number of 

bacterial species. In Gram-negative bacteria, secretion systems have to span both the inner and 

outer membrane. Previously, 6 different classes of secretion systems have been identified in Gram-

negative bacteria [19]. Within the type I, type III, type IV and type VI secretion systems, 

macromolecules are transferred in a one-step process, whereas in type II and type V secretion 

systems macromolecules are first exported via the Sec or twin-arginine (Tat) pathway into the 

periplasm and are then translocated across the outer membrane. Within this chapter only the type II 

and the type IV secretion systems will be discussed. 

Type II secretion systems (T2SSs), which were first discovered in Klebsiella oxytoca [20], are 

dominantly found in bacterial pathogens of plants, animals and humans. In bacteria, the type II 

secretion systems secrete folded and/or oligomeric exoproteins in a two-step process. In the initial 

step, the protein is transported across the inner membrane via the Sec or Tat protein translocation 

machineries [21, 22]. Once in the periplasm, the effector proteins are folded and transported across 

the outer membrane by the T2SS. The T2SS, which has also been called the general secretion 

pathway (Gsp) or the secreton, is a multiprotein complex, which spans the inner and outer 

membrane [23] and is encoded by a set of 12 to 16 genes [24]. The core components, forming this 

multiprotein complex can be grouped into four subassemblies: the pseudopilus, the outer 

membrane complex, the inner membrane complex and the secretion ATPase. The pseudopilus, 

which is formed by five different pseudopilins with multiple copies of the major pseudopilin subunit, 

is mainly a periplasmic structure. Studies of the major pseudopilin subunit GspG of P. aeruginosa 

and K. oxytoca showed that after synthesis as a preprotein, inner membrane insertion of the 

pseudopilin subunits is mediated by the Sec-system. After inner membrane insertion, the N-terminal 

positive amino acid sequence is cleaved by the aspartyl prepilin protease GspO. Some species share 

the prepilin peptidase between the T2SS and the type IV pilus system [25]. Recent studies by 

Cisneros et al. suggested that minor pseudopilin subunits build an initiation complex for 

polymerization of the major pseudopilin subunits beneath it [26, 27]. The outer membrane complex 

is composed of GspD and belongs to the family of secretins. Secretins are multidomain proteins 

forming a multimeric channel, which are also identified in type III secretion systems, filamentous-

phage assembly systems and type VI pili systems. Sequence comparison and structural studies of 

GspD showed that it consists of a variable N-terminal domain and a conserved C-terminal domain. 

The conserved C-terminal domain that ĐoŶtaiŶs seǀeƌal putatiǀe tƌaŶsŵeŵďƌaŶe β-strands forms in 

its ŵultiŵeƌiĐ state a β-barrel, which then forms the actual outer membrane channel. Even though 

secretins are found in various systems, multimerization as well as outer membrane insertion is still 

not fully understood. Despite that, the efficient membrane insertion of many bacterial outer 

membrane proteins depend on the BAM-complex, it could be shown that multimerization and 

membrane insertion of GspD of K. oxytoca does not rely on BAM proteins. Instead, it was shown that 

these processes depend on a small lipoprotein called GspS [28, 29]. In K. oxytoca it was shown that 

in the absence of GspS, GspD mislocalizes in the inner membrane. Since GspS guides GspD to the 

outer membrane, GspS and homologs are also named pilotins. In addition, Hardie et al. could show 

that binding of the pilotin to GspD protects the secretin from proteolytic degradation [28]. In 

contrast to the C-terminal domain of GspD, the N-terminal domain of GspD extends into the 



1. Introduction  

 

 

 

3 

periplasm, forming a possible interaction site with other components of the T2SS. At the cytoplasmic 

side of this complex locates the inner membrane complex, which consists of GspE, GspF, GspL and 

GspM. GspE belongs to the secretion ATPase superfamily. Binding, hydrolysis and nucleotide release 

by GspE causes dynamic structural changes that lead to the conversion of chemical energy to 

mechanical work [30, 31]. Association of GspE to the T2SS is most likely mediated by an interaction 

to the polytopic inner membrane protein GspF [32] and the inner membrane protein GspL [33, 34]. 

Connection between the inner and outer membrane complexes has been suggested to be mediated 

via the inner membrane protein GspC, which is a bitopic inner membrane protein consisting of an N-

terminal cytoplasmic domain, a single membrane spanning helix and a large periplasmic domain.  

1.2.1 Type IV secretion systems 

Type IV secretion systems (T4SSs) are highly versatile multi-subunit secretion systems that are 

phylogenetically broadly distributed. In Gram-negative bacteria they are cell envelope-spanning 

complexes that form a channel through both membranes to enable the secretion of DNA and/or 

effector proteins. T4SSs mediate the exchange of genetic information among diverse species of 

bacteria as well as fungal, plant and mammalian cells that facilitates their adaptation to the 

environment. Despite the wide diversity of secreted substrates and various functions of T4SSs, all of 

these systems are evolutionary related. Homologous components of the different T4SSs have been 

given different names in different organisms. Within this thesis, a subscript will be used to indicate 

the T4SS from which the protein is derived. When no subscript is used or specific T4SS is mentioned, 

the protein encoded within the GGI is meant. Based on their function T4SSs can be divided into 

three subfamilies: (i) the conjugation systems, (ii) the effector translocator systems and (iii) the 

uptake and release systems [35]. 

The largest subfamily of T4SSs are the conjugation systems that are found in Gram-negative, Gram-

positive, wall-less bacteria and archaea. Within these systems single-stranded DNA and protein(s) 

are transferred via direct cell-to-cell contact from a donor into bacterial or eukaryotic target cells 

[36].The best studied conjugative T4SSs are the conjugative F-, R388 and pKM101 plasmid of 

Escherichia coli, as well as the T-DNA transfer system of Agrobacterium tumefaciens [37]. Next to 

plasmids, also integrated conjugative elements are transported via T4SSs. Translocation of the 

integrative conjugative elements takes place by chromosomal excision by an excisionase. Hfr+ strains 

of E. coli that contain integrated F-plasmid DNA in their chromosomes are able to transfer the whole 

chromosomal DNA in this manner [38]. 

The second subfamily of T4SSs is the effector and translocator subfamily that is used by many 

pathogenic bacteria like Bordetella pertussis, Legionella pneumophila, A. tumefaciens and 

Helicobacter pylori. Effector and translocator systems deliver DNA and protein effectors by direct 

cell-to-cell contact into the target cells to aid bacterial colonization and survival within host cells or 

tissues [35]. A. tumefaciens, the causative agent of crown gall disease, induces tumor growth of 

infected plant cells. The VirB/VirD4 system of A. tumefaciens is encoded on the tumor-inducing 

plasmid. By transferring, next to T-DNA also, at least four effector proteins this system functions as a 

conjugation and an effector and translocator system. VirE2, the single stranded DNA binding protein 

of A. tumefaciens binds to the T-DNA to protect it from degradation, and binding of VirE2 to the 

transported single stranded DNA (ssDNA) in the acceptor cell is also thought to be involved in 
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͚pulliŶg͛ the DNA to the acceptor cell. The role of the other transported effectors, VirE3, VirD4 and 

VirF during plant infection is still unknown. However, it is thought that VirE3 is involved in supporting 

the T-DNA transfer to the nucleus [39]. Another example is given by Legionella pneumophila, an 

intracellular pathogen that Đauses a foƌŵ of pŶeuŵoŶia kŶoǁŶ as LegioŶaƌies͛ disease. It eŶĐodes a 
T4SS, also known as the dot/icm system (defective for organelle trafficking/intracellular 

multiplication) that secretes effector proteins to the host cell. Within the host cell these effector 

proteins remodel the cellular compartment in such a way that the bacterium can survive within the 

host cell [40, 41]. 

The DNA uptake and release family is the third and smallest T4SS subfamily. This subfamily has 

evolved to translocate substrates independently of target cell contact and includes DNA transfer 

from or to the extracellular environment. At present, this family is found in only three species; 

H. pylori which takes up DNA, B. pertussis which exports the multisubunit pertussis toxin and 

N. gonorrhoeae which secretes DNA. The human pathogen H. pylori causes gastric diseases like 

gastritis or gastric cancer. It carries two T4SS: the cag pathogenecitiy island, which belongs to the 

effector translocator system, and the ComB system. The ComB T4SS of H. pylori is the only 

characterized T4SS that is able to take up DNA from the extracellular milieu [42]. Even though the 

ComB system mediates the uptake of DNA, it is not known whether the ComB system secretes any 

substrates. The T4SS of the whooping cough causing bacterium B. pertussis use the Ptl-system 

(pertussis toxin liberation) to secrete the pertussis toxin into the extracellular milieu of host cells. 

The Ptl-system encoded proteins show homology to the T4SS of A. tumefaciens but interestingly no 

coupling protein for the T4SS of B. pertussis could be identified [43]. The only known T4SS that 

secretes chromosomal DNA directly into the extracellular milieu is the unique T4SS of 

N. gonorrhoeae [16, 18, 44], which will be discussed below in more detail. 

Transport of substrates across the membrane by a T4SS occurs in several steps. The first step is 

recruitment of the substrate, which generally takes place via the coupling protein, which is located in 

the (inner) membrane. The coupling protein is an ATPase that is present in most T4SSs. The crystal 

structure of the soluble domain of TrwBR388, the coupling protein encoded on plasmid R388, shows a 

homohexameric structure with a diameter of 110 Å [45]. The structure has a central channel with a 

diameter of 20 Å and connects the cytoplasm with the periplasm [45]. For conjugative T4SSs, the 

coupling protein recruits the DNA via the relaxase. The relaxase is a protein, which binds and cleaves 

a specific region on the DNA, the origin of transfer (oriT). Several different families of relaxases have 

been identified and divided into 8 different MOB families (MOBB, MOBT, MOBV, MOBQ, MOBP, MOBH, 

MOBF, and MOBC) [46, 47]. DNA nicking is followed by unwinding of the DNA. This helicase activity 

can be part of the relaxase, or can be performed by another protein. Optimal nicking and unwinding 

of the DNA often requires accessory proteins. 

After recruitment of the substrate to the coupling protein, the protein is transported via the 

transport complex. In A. tumefaciens, the transfer DNA immunoprecipitation (TRiP) assay, in which 

components of the translocation machinery are co-immunoprecipitated with translocating DNA, 

helped to identify T4SS components which come in contact with the transported DNA [48]. This 

revealed that, after initial cross-links to the coupling protein VirD4Ti and the transport ATPase 

VirB11Ti, the translocating DNA contacts the inner membrane components VirB6Ti and VirB8Ti [48]. 

VirB6Ti is an inner membrane protein, which contains multiple transmembrane domains, and VirB8Ti 
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is a bitopic protein with a large C-terminal periplasmic domain. VirB3Ti, is also an inner membrane 

protein with one transmembrane domain, and deletion of VirB3Ti resulted in the loss of a cross-link 

to the pilin subunit VirB2Ti in the TRiP assay, suggesting that VirB3Ti does not contact the DNA, but is 

involved in later steps of the transport process [48]. Homologs of VirB3Ti, VirB6Ti and VirB8Ti are also 

found in T4SSs of Gram-positive bacteria, suggesting that these proteins form a conserved part of 

the translocation machinery across the inner membrane in all T4SSs [49].  

In Gram-negative bacteria, the substrates are further transported across the outer membrane via 

the core complex, which in A. tumefaciens is formed by VirB7Ti, VirB9Ti and VirB10Ti. The structure of 

the core complex of the T4SS encoded on plasmid pKM101, formed by the VirB7Ti, VirB9Ti, VirB10Ti 

homologs TraNKM101, TraOKM101 and TraFKM101 respectively was solved by both, electron microscopy 

and X-ray crystallography [50-52]. The structure revealed a cylindrical complex of 14 copies of each 

of the three proteins, through which the substrate most likely passes. The complex is anchored in 

the outer membrane by TraNKM101 and the C-terminal domains of TraOKM101 and TraFKM101. 

Remarkably, the N-terminal domain of TraFKM101 is anchored in the inner membrane via a 

transmembrane domain, thus connecting both the inner and the outer membranes.  

Recently a structure of the core complex together with the inner membrane complex was 

determined [53]. Below the core complex, the inner membrane complex, which is composed of 

VirB3, VirB4, VirB6, VirB8 and the N-terminus of VirB10, showed a pseudo two-fold symmetry 

around the long axis of the particle after reconstruction. At each side of the complex are barrel-like 

densities which are most likely formed by the VirB4 ATPase. Directly above each barrel-like structure 

lies the arch, which interconnects the barrel structure and the central stalk. The central stalk most 

likely forms a binding hub between the inner membrane and the core complex by extending into the 

I-layer of the core complex [53], connecting the core complex with the inner membrane complex 

(see Figure 1). [54] 

The transport of substrates by T4SS is driven by the hydrolysis of ATP. Next to the coupling protein, 

the A. tumefaciens system contains the VirB4Ti and VirB11Ti ATPases. VirB4-like proteins are the most 

conserved component of T4SSs, and consist of a C-terminal ATPase domain, along with a less 

conserved N-terminal domain. VirB4-like proteins most likely function as hexamers [55, 56]. The 

structure of the C-terminal ATPase domain of VirB4 from Thermoanaerobacter pseudethanolicus has 

been solved recently [57]. Moreover, structures of the H. pylori VirB11 homologue HP0525 and 

Brucella suis VirB11 protein have been solved. The crystal structures showed the presence of a 

hexameric ring of ~100–120 Å in diameter [58, 59]. The mechanism of how the energy generated by 

these ATPases is used to drive the transport of substrates remains unknown. Remarkably, in some 

T4SSs found in Gram-negative bacteria, like the T4SS encoded on the F-plasmid and all T4SSs of 

Gram-positive bacteria, no VirB11-like ATPases could be identified.  

Next to the proteins of the core complex, T4SSs can contain additional components that are involved 

in the formation or function of the functional transport complex. Most systems contain a protein 

with transglycosylase activity like VirB1Ti [60]. Mutagenesis of the transglycosylase activity of VirB1Ti 

showed that VirB1Ti is not essential for transport but reduces the transfer of DNA [61]. Many 

proteins found in T4SSs have only been identified in a subset of the T4SSs [49]. For example, the F-

plasmid encodes eighteen proteins that are involved in the assembly of the T4SS, of which ten show 
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no homology to the VirB1-11/VirD4 proteins [37]. Different families of transport complexes (also 

termed mating pair formation (MPF) complexes) have been identified, and based on the phylogeny 

of the VirB4 ATPase, these complexes have been divided into 8 different families (MPFT, MPFG, MPFF, 

MPFI, MPFFA, MPFbacteroidetes, MPFcyanobacteria, and MPFFATA) [47]. Although there is a bias of several MPF 

families to use relaxase of a specific family, (e.g. T4SS of the MPFH family generally are coupled to a 

MOBH family relaxase) many different combinations of relaxase (MOB) and transport complex (MPF) 

families have been identified. It was proposed that this indicates that the MOB and MPF modules 

may shuffle over long evolutionary distances [47].  

Besides the secretion of substrates, many T4SSs can also extend pili [62]. These T4SS pili play an 

important role in adhesion to target cells, and in case of the pilus encoded on the F-plasmid, can 

even retract [63]. Since mutants can be created that are either defective in substrate transfer or pili 

formation, formation of the pilus seems not to be coupled to substrates transport [64, 65]. T4SSs 

have been shown to contain two distinct classes of pili: long flexible F-type pili and short rigid P-type 

pili. The F-type pili are 2–ϮϬ ʅŵ iŶ leŶgth aŶd ϴ–9 nm in diameter , containing an 2 nm wide central 

lumen [37] whereas P-tǇpe pili aƌe shoƌteƌ thaŶ ϭ ʅŵ iŶ leŶgth aŶd ϴ–12 nm in diameter [66]. Most 

pilins of T4SSs are processed before they are inserted into the mating pair formation complex. For 

example, after pilin insertion into the membrane and processing by leader peptidase, TraA, the pilin 

subunit encoded on the F-plasmid is acetylated on its amino terminus [67]. In contrast, P-type pili, 

like the TrbC pilin of the RP4 plasmid and the VirB2 pilin of the Ti plasmid undergo maturation steps 

leading to the formation of a cyclic protein [68-70]. 

1.2.2 Type IV secretion system of Neisseria gonorrhoeae 

Approximately 80 % of the Neisseria gonorrhoeae and 17 % of the Neisseria meningitidis strains 

carry a 57 kb large genomic island, which was designated as Gonococcal Genetic Island (GGI). 

Sequence analysis of the GGI showed a significant lower G+C content (44 %) compared to the rest of 

the gonococcal chromosome (55 %), suggesting that the GGI is horizontally acquired [17]. As in the 

case for many horizontally transferred genetic islands, the GGI is integrated near the replication 

terminus and is flanked by a difA and an imperfect difB site [18]. The dif site is a repeated DNA 

sequence of 23 bp (AGTTCGCATAATGTATATTATGTTAAAT), which is found at the chromosome 

 

Figure 1 Schematic representation of the type IV secretion 

system 

Subunits on the right, identified with the A. tumefaciens 

VirB/VirD4 nomenclature, assemble as the T4S 

apparatus/pilus across the Gram-negative cell envelope. 

Hexameric ATPases establish contacts with the integral 

inner membrane (IM) subunits to form an inner membrane 

complex. VirB7, VirB9, and VirB10 form a core complex 

extending from the IM, periplasm, and outer membrane 

(OM). A domain of unspecified composition (grey bullet 

structure) and the pilus assemble within the central 

chamber of the core complex (adapted from [54]) 
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replication terminus among proteobacteria and is recognized by the site specific recombinase XerCD. 

Usually, XerCD resolve chromosome dimers that arise during cell division. Recently, Domínguez et al. 

could show that substitution of the imperfect difB site by another copy of difA results in frequent 

XerD mediated excision and loss of the GGI, indicating that the imperfect dif site might be involved 

in the maintenance of the GGI [71].  

The GGI of N. gonorrhoeae strain MS11 encodes 62 open reading frames (ORFs) with multiple 

homologs of T4SS genes. The first 27.5 kb of the GGI encodes 24 open reading frames: 15 of these 

ORFs show a similar order to those of the well known E. coli F-plasmid conjugation system and 18 of 

these ORFs show significant similarity to the transfer genes of the F-plasmid or other T4SSs (TraD, 

TraI, LtgX, TraA, TraL, TraE, TraK, TraB, TraV, TraC, TrbI, TraW, TraU, TrbC, TraN, TraF, TraH, and 

TraG) [18]. 17 genes of the GGI show, like many F-plasmid transfer genes, coding regions which are 

overlapping or separated by only a few base pairs. 

Several studies have shown that the GGI encodes a T4SS that secretes DNA in a contact independent 

manner directly into the surrounding environment. These studies point out that N. gonorrhoeae 

secretes single stranded DNA during the log-phase, which is pƌoteĐted fƌoŵ the ϱ͛ eŶd [72]. 

Furthermore, Salgado-Pabón et al. could show that DNA secretion is higher in piliated then in non-

piliated strains [73]. A mutational analysis of genes encoded within the GGI determined the minimal 

composition of genes that are required for ssDNA secretion (Figure 2) [74]. 

Sequence analysis demonstrated that the GGI consists of three divergently arranged gene regions by 

which the GGI can be divided into three predicted gene regions. The first part of the GGI includes the 

relaxase TraI, the coupling protein TraD and two hypothetical proteins (Yaa and Yaf). A study by 

Salgado-Pabón et al. revealed that DNA secretion might be regulated at the transcriptional level of 

TraD and TraI, while the second part of the GGI is constitutively expressed. The ltgX-ycH region 

encodes proteins that are involved in the structural biology of the T4SS apparatus homologous to 

mating pair formation (Mpf) proteins of T4SSs. Most of the proteins encoded within the third region 

are of unknown function or have homologies to DNA processing and modifying proteins.  

The role of the secreted ssDNA is currently unclear. The secreted DNA can be used for natural 

transformation of other N. gonorrhoeae cells and contributes to horizontal gene transfer [17, 18, 

75]. The role of the GGI in pathogenesis is currently still unclear. Different forms of the GGI have 

 

Figure 2 Schematic representation of the genetic map of the GGI of N. gonorrhoeae 

In green are the genes known to be essential for DNA secretion and in white are the genes not required for DNA secretion. DNA 

uptake sequences and the putative origin of transfer (oriT) are indicated by black triangles and red dot, respectively. 
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been identified, and some of these forms may be correlated to disseminated gonococcal infection 

[17]. It has furthermore been demonstrated that during intracellular infection, the presence of the 

T4SS allows for survival of N. gonorrhoeae strains that lack the Ton complex required for the uptake 

of iron [76]. Remarkably, the T4SS encoded within N. meningitidis does not secrete DNA, nor does it 

confer Ton-independent intracellular survival [77]. The secreted DNA was also shown to facilitate 

especially the initial phases of biofilm formation in continuous flow-chamber systems [78]. 

1.3 Type IV pili system 

On the bacterial surface, a broad range of different proteinaceous surface organelles are assembled. 

The most abundant cell surface appendage is the so called type IV pili (T4P), which is found on Gram-

negative and Gram-positive bacteria [79]. Recently, it was discovered that also archaeal species 

possess a T4P like structure, which has been called the archaellum [80]. Since Gram-positive and 

Gram-negative bacteria as well as archaea, have many differences in cell wall architecture and other 

features, it is remarkably how similar the T4P core components are between these organisms. Based 

on this high degree of structural and functional similarities an ancestrally evolution of core 

components of the archaellum, the T2SSs and T4P systems is suggested [81, 82]. 

Regarding to the general architecture, type IV pili (T4P) are long hair-like fibers, formed by 

thousands of subunits arranged in a helical conformation. They are between 60-90 Å in width and 

extend up to 30 µm from the surface. In Gram-negative bacteria, T4P are involved in a specialized 

form of locomotion, called twitching motility [83, 84], while in archaea they form a rotating 

structure, with which archaea can move in a similar manner as observed for the bacterial flagella 

[80, 85]. In addition to motility, T4P play an important role in adhesion, biofilm formation [86-88] 

and competence for DNA transformation [89]. Furthermore, they are important for host colonization 

and virulence in pathogens like Pseudomonas aeruginosa, Vibrio cholera and Neisseria spp.  

The molecular details of T4P assembly are still not well understood. Biogenesis of T4P in Gram-

negative bacteria requires 12-20 different proteins that comprise a set of core-proteins that 

includes: (i) the major pilin subunit, (ii) a prepilin peptidase, (iii) a traffic ATPase that powers 

assembly, (iv) an integral polytopic inner membrane protein of unclear function and (v) an outer 

membrane proteins forming the gateway for the pilus fiber. 

 

Figure 3 Schematic representation of the type IV pili system 

Individual proteins were arranged to create a hypothetical model of the assembly complex based on known interaction of 

components of the type IV pili and type II secretion system.  
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A list of proteins involved in T4P biogenesis is provided in Table 1. Although many of these 

components are conserved in type IV pili systems they have been named differently throughout 

these systems. Here mainly the nomenclature adapted for N. gonorrhoeae is used. 

Table 1 Neisseria gonorrhoeae proteins involved in type IV pilus biogenesis 

Protein involved in  

type IV pili biogenesis 

Proposed localization and function of T4aP component Reference 

PilC1 /PilC2 Outer membrane or pilus associated adhesin [90-94] 

PilD Inner membrane pre-pilin peptidase [95, 96] 

PilE Fiber-forming major pilin subunit [97] 

PilF Cytoplasmic pilin polymerase/ATPase [98] 

PilG Inner membrane platform protein [99, 100] 

PilH Harbours a N-terminus conserved in prepilins, is cleaved 

by PilD 

[101] 

PilK Harbours a N-terminus conserved in prepilins, is cleaved 

by PilD 

[101] 

PilM Cytoplasmic FtsA-like assembly protein [102] 

PilN Inner membrane assembly protein; interacts with PilM 

via its N terminus, PilO and PilP via its C-terminus 

[102-104] 

PilO Assembly protein; interacts with PilN and PilP via its C-

termius 

[103, 104] 

PilP Assembly lipoprotein; interacts with PilN, PilO, and PilQ [104] 

PilQ Secretin monomer; forms outer membrane pore [105] 

PilS Silent minor pilin subunit [106] 

PilT Cytoplasmic pilin depolymerase/ATPase [84, 98, 

107, 108] 

PilU Cytoplasmic ATPase; regulation of pilus retraction [109] 

PilV Minor pilin subunit; involved in assembly [110] 

PilW Minor pilin subunit; involved in assembly  

PilX Minor pilin subunit; involved in assembly [111, 112] 

PilZ Harbours a N-terminus conserved in prepilins, is cleaved 

by PilD 

[101] 

ComP Minor pilin subunit; DUS-receptor [113, 114] 

NGFG_01202, (PilWa) Outer membrane pilotin; required for secretin outer 

membrane localization and oligomerization 

[115] 
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1.3.1 Type IV pili assembly machinery 

The type IV pilus fiber is a dynamic structure consisting of more than 1000 subunits of the major pilin 

subunit. The major pilin subunit PilE is a small structural protein (15-20 kDa) with a conserved, 

hydrophoďiĐ α-helical N-terminus that acts as both a transmembrane (TM) domain and a protein-

protein interaction domain [97]. Type IV pilin subunits are synthesized as prepilin subunits and 

although they are divergent in sequence, a defining characteristic is a positively charged N-terminal 

type III signal sequence [116]. This positively charged signal sequence is most likely involved in 

correct orientation of the pilin subunits during Sec-dependent membrane insertion. After membrane 

insertion with the C-terminal domain outside the cytoplamsic membrane the bifunctional aspartic 

protease PilD proteolytically removes the signal sequence and methylates the newly created N-

terminal amino acid [117, 118]. Due to their polar nature of the type III signal sequence, the 

processed pilin subunits remain within the cytoplasmic membrane, forming an inner membrane 

pool. Once extruded from the inner membrane pool, the pilin subunits assemble into a helical fiber.  

Based on the length of the leader peptide in the prepilin and the length of the mature protein, type 

IV pilin proteins have been divided into type IVa pili and type IVb pili [119]. Type IVa pili, which are 

present in a variety of bacteria (e.g. Myxococcus xanthus, P. aeruginosa and Neisseria spp.), have a 

short signal peptide, consisting of 6 to 7 residues. Type IVb pili, which are commonly found in enteric 

species (e.g. enteropathogentic E. coli), on plasmids and other mobile genetic elements have a 

longer signal peptide (15-30 residues) [120]. Sequence analyses showed that the methylated N-

terminal residue, which is phenylalanine for T4aP, varies for T4b pilins. In addition, type IVa proteins 

share greater N-terminal homology among themselves than with type IVb pili [121]. Although both 

tǇpes of pili shaƌe aŶ oǀeƌall aƌĐhiteĐtuƌe, the topologǇ of the β-sheets differs, resulting in different 

protein folds. Despite of the different topologies, pilins from many different bacteria share the same 

design that allows them to assemble into pilus filaments.  

Structural analysis of pilin subunits of N. gonorrhoeae, P. aeruginosa and V. cholerae revealed that 

these proteins share a common architecture, resembling a needle-like structure consisting of an N-

teƌŵiŶal α-helix and a globular C-terminal domain (Figure 4A) [97, 122, 123]. The N-terminus, which 

forms aŶ eǆteŶded α-helix, can be divided into two subdomaiŶs: ;iͿ αϭ-N aŶd ;iiͿ αϭ-C. The αϭ-N 

domain, which protrudes from the globular C-terminal domain, acts as a transmembrane segment, 

keeping the pilin subunits within the cytoplasmic membrane prior membrane extrusion [121]. The 

amphipathic α1-C domain is embedded in the C-terminal part of the globular domain and packed 

against the head domain; which generally consist of a 4-stƌaŶded β-sheet oriented 45° or more 

relative to the long axis of the αϭ heliǆ (Figure 4A) [124]. Full-length structures of P. aeruginosa and 

N. gonorrhoeae pilins showed that the two N-terminal helix-disrupting residues Pro22 and Gly/Pro42 

cause a shallow S-shaped kink, which is suggested to result in flexibility of the α-helix [122, 124]. The 

antiparallel four-stranded β-sheet of the globular domain is flanked by two variable regions: (i) the 

αβ-loop and (ii) the D-ƌegioŶ. The αβ-loop is located on one side of the globular head domain and 

connects the N-teƌŵiŶal α-heliǆ to the β-sheet. In addition, this partial surface exposed domain is 

involved in subunit-subunit interaction within the pilus fiber. The second variable domain, the D-

region is bound by two conserved C-terminal cysteines that link the D-region, opposite of the αβ-

domain, to the conserved structural core of the head domain. In P. aeruginosa this region is of 

biomedical interest, as it was shown to be involved in binding to epithelial receptors [125]. In 
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addition, it was shown that the D-region of the T4bP of V. cholerae is involved in pilus-pilus 

interaction and microcolony formation [126].  

Cryo-electron microscopy reconstruction and crystallographic analysis of the pilin monomer of 

N. gonorrhoeae showed that the assembled pilus is arranged as a helical fiber with an outer 

diameter of ~60 Å, which is consistent with the ~65 Å diameter opening of the secretin, through 

which the fiber passes to the extracellular milieu [124]. Three-dimensional cryo-EM reconstruction 

by Craig et al. suggested an arrangement of a 3-start left handed helix, which alternatively can be 

viewed as a 1-start right handed or 4-start right handed helix, with ~3.6 subunits per turn (see Figure 

4B) [124]. Reconstruction in radial distance coloring highlighted a tightly packed filament interior 

with a narrow central channel. The surface was shown to contain deep grooves that run along a 

repeating donut-shaped mass with a central depression. Fitting the crystal structure of the 

gonococcal pilin into the cryo-EM reconstruction of the pilus revealed that upon placing the 

hydrophobic N-terminal α-helices almost parallel to the filament axis within the filament core, the 

pilin globular head domain aligns with the repeating donut-shaped structure. The ǀaƌiaďle αβ-loop 

and D-regions aligned to protruding ridges of the donut-like structure, implicating a role in receptor 

binding and antigenic variation [124]. Recently, Biais et al. could demonstrate that T4aP of 

N. gonorrhoeae undergoes force-induced stretching with dramatic and reversible conformational 

changes. Stretching not only narrowed the pili by 40 % but exposed residues that were hidden in the 

unstretched form [127]. 

In addition to the major pilin subunit PilE, some T4P systems contain a number of prepilin-like 

proteins, named minor pilin subunits, containing the defining N-terminal prepilin signal sequence. 

These minor pilin subunits are, like PilE, processed by the prepilin peptidase and assemble into the 

pilus fibre that influence pilus assembly or function [27, 110, 128]. 

T4P systems have two, and sometimes three, cytoplasmic motor ATPases (PilF, PilT and PilU), 

belonging to the superfamily of secretion ATPases, which are required for rotational extension and 

retraction of the pilus fiber [129]. Based on homology with type II secretion ATPases, it is expected 

that the ATPases of the T4P system are composed of two major structural domains. An N-terminal 

domain which is required for membrane association and localization [130] and a C-terminal domain 

that contains the Walker A phosphate binding loop and the Walker B motif, that is involved in the 

formation and stabilization of the nucleoside binding fold by interacting with Mg2+. In addition, 

 

Figure 4 Structure of pilin subunits in the type IV 

pilus fiber 

(A) Secondary structure of the pilin subunit from 

N. gonorrhoeae. (B) Subunits traced along a right-

handed 1-start helix, along three strands of a left-

handed 3-start helix (colored red, blue, and yellow), 

and along four strands of a right-handed 4-start helix. 

(adapted from [123, 124]) 
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contains the C-terminal domain aspartate and histidine boxes which are only found in ATPases of the 

T2SS and T4P system [131, 132]. The aspartate box and the histidine-box contain two invariant 

residues, that are involved in twitching motility [133, 134]. Structural analysis of ATPases belonging 

to the secretion ATPase superfamily showed that they share a biloped structure, consisting of a PAS-

like domain which is joined by a flexible linker to a RecA fold C-terminal domain [135]. Structural 

data by Satyshur et al. showed that upon ATP binding, the N-terminal domain will tilt towards the 

center of the hexamer that results in a flip of the C-terminal domain towards the outside [135]. Thus, 

ATP binding lead to substantial movement that could translate bound proteins during pilus assembly 

and/or retraction [135]. Transposon mutagenesis studies of PilF, PilT and PilU, which are found as 

homologs in T2SSs, T3SSs and T4P systems and members of the secretion ATPase family, showed 

that transposon insertions in the ATPase PilF result in a non-piliated phenotype, suggesting that PilF 

is required for pilus assembly. In contrast, transposon mutagenesis in PilT and its paralogue PilU 

show a hyperpiliated phenotype [84, 98, 107, 108, 129, 136], suggesting that they are involved in 

pilus retraction. Optical tweezer experiments showed that retraction of a single pilus filament of 

N. gonorrhoeae can exert forces of 50-100 piconewtons. These forces which are equal to 100.000 

times the bacterial bodyweight, and make T4P the strongest microscale elements known to date 

[137]. 

The T4P and T2S systems contain a highly conserved polytopic inner membrane protein. Its broad 

distribution and high level of conservation led to the suggestion that this protein might play an 

essential role as a platform for pilus and pseudopilus assembly [99, 128, 129]. However, the specific 

function of members of this family within T2SSs and T4P systems still remains undefined. Despite the 

high conservation of PilG, relatively little is known about the structures of members of the PilG 

family. Transmembrane helix prediction methods predict 3 transmembrane helices with two large 

cytoplasmic loops. Structural analysis of PilG revealed that the protein forms dimers or possibly 

tetramers and that the cytoplasmic N-terminus forms an α-helical bundle [138-140]. Because of 

sequence similarities of the N-terminus and the C-terminus a similar fold of the C-terminus is 

suggested [140]. A systematic genetic analysis of inner membrane proteins of the T4P system of 

P. aeruginosa showed that the polytopic inner membrane protein PilG is essential for pilus 

polymerization and depolymerization through its potential association with the cytoplasmic ATPases 

PilB and PilT [141]. In N. meningitidis pili determination of a PilG/PilT double mutant showed that 

T4P could still be detected by immuno fluorescence microscopy, suggesting that PilG is not an 

essential assembly factor in N. meningitidis [101]. The result that PilG is not essential for T4P 

assembly in N. meningitidis by Carbonelle et al. is in conflict with results published by Tønjum et al. 

Using transposon mutagenesis Tønjum et al. showed that various PilG mutants in N. gonorrhoeae 

and N. meningitidis displayed non-piliated colony morphologies and when examined by transmission 

electron microscopy were devoid of pili [99]. In addition, deletion of the PilG homolog in the Gram-

Ŷegatiǀe δ-proetobacterium Myxococcus xanthus caused type IV pili dependent social-motility 

defects [142]. Based on the contradictory results of PilG, the exact role during T4P still needs to be 

clarified. 

Protein interaction studies of the T4P systems revealed an inner complex that might be involved in 

the physical interaction between components in the outer and inner membrane [143, 144]. The 

complex consisting of PilM, PilN, PilO and PilP was shown to be critical for T4P assembly in many 
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bacteria, like N. meningitidis [101], Thermus thermophilus [145] and M. xanthus [144]. PilM is a 

cytoplasmic protein with sequence similarities to the actin-like proteins MreB and FtsA [146, 147]. 

Structural studies by Karupphia et al. revealed that PilM adopts an actin-like fold [102]. Similar to 

other bacterial actin-like proteins, PilM shows a two domain structure, where each domain can be 

subdivided into two subdomains. The electron density map showed the presence of ATP, 

demonstrating that PilM can, similar to MreB and FtsA, bind ATP. However, no evidence for ATP 

hydrolysis by PilM has been shown up to now. In the structural studies by Karupphia et al., PilM was 

co-crystallized with a synthetic peptide, corresponding to the highly conserved region of PilN. The 

highly conserved N-terminus of PilN bound in a hydrophobic cleft between two subdomains [102]. 

Mapping sequence conservation onto the PilM surface shows sequence conservation around the 

PilN interaction site. In addition, this analysis revealed a second conserved patch, opposite of the 

PilM-PilN interaction cleft, which might be involved in binding to other components of the T4P 

system [102]. In general Karupphia et al. proposed that PilM first binds ATP and then interacts with 

PilN and possibly to another cytoplasmic T4P biogenesis protein [102]. In 2009, Sampaleanu et al. 

provided the first evidence that PilN, which has a conserved N-terminal transmembrane helix and a 

sequence variable periplasmic C-terminal domain [103], not only interact with PilM but also interacts 

with the periplasmic lipoprotein PilO, forming a stable heterodimer [103]. Even though it is predicted 

that PilN and PilO have a similar secondary structure, a comprehensive bioinformatic analysis of PilN 

and PilO proteins showed that proteins of the PilO family, have in contrast to PilN, a high sequence 

conservation in the periplasmic domain and a more variable cytoplasmic N-terminus [103]. To 

understand PilN and PilO at the molecular level, the periplasmic domains of PilN and PilO were 

crystallized [103, 148]. PilO was found to crystallize as dimers where the monomer has two distinct 

structural domains. An N-terminal coiled-coil domain, a highly versatile α-helical structure that in 

general is involved in oligomerization, protein-protein interaction and protein-DNA interactions 

[103]. The second domain is a compact C-terminal core domain, which secondary structure 

represents a cyclic permutation of the ferredoxin fold that has been previously seen for EpsM, the 

PilO homolog of the T2SS of V. cholerae [103, 138]. Recent structural data of the periplasmic part of 

PilN revealed that PilN forms a dimer with a ferredoxin-like fold, similar to PilO [148]. The last 

component of the physical connection complex is the lipoprotein PilP. PilP is a periplasmic 

lipoprotein that can localize to the inner membrane, even in the absence of its putative lipidation 

signal [104]. Co-purification experiments, with the inner membrane components PilN and PilO 

showed that these three proteins form a stable complex. Recently, Georgadiou et al. and Friedrich 

et al. could show that loss of either PilN, PilO or PilP in N. meningitis and M. xanthus had a negative 

effect on the stability of the other gene products, indicating an interaction between these proteins 

[144, 149]. Chemical shift assays, using recombinant PilP and part of the secretin PilQ identified that 

the C-terminal domain of PilP interacts with the N0 domain of the secretin PilQ. Suggesting that this 

forms the connection between on one hand the inner membrane lipoproteins PilN and PilO and on 

the other hand with the outer membrane secretin PilQ [150]. 

1.3.2 LysM domain containing proteins in Type IV pili systems 

Since the size of the T2SSs and T4P systems by far exceeds the experimentally determined 

permeability of 50-100 kDa of the peptidoglycan sacculi, bacteria containing these systems may 
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need to remodel their peptidoglycan layer. Up to now only a few peptidoglycan-associated or 

peptidoglycan modifying enzymes associated with these systems have been identified.  

It has been shown that the cytoplamisc protein complex, formed by ExeA and ExeB, of A. hydrophila 

might help translocation of the secretin ExeD from the inner membrane to the outer membrane 

[151, 152]. Indeed, the deletion of exeA and exeB results in monomeric and inner membrane 

localized ExeD. Interestingly, it is hypothesized that ExeA facilitates secretin formation by binding to 

peptidoglycan via a LysM domain [153]. Binding of ExeA to peptidoglycan causes multimerization 

into a ring-like structure that could act as scaffold to direct secretin assembly [154]. Another PG-

associated protein that affects/promotes secretin formation is the inner membrane protein FimV of 

P. aeruginosa. PG pulldown assays with FimV showed that it binds to PG in a LysM motif-dependent 

manner; the deletion of the LysM domain results in reduced motility, secretin levels and surface 

piliation. Wehbi et al. could show that FimV promotes secretin formation, which depends on the PG-

binding domain LysM [155, 156]. LysM domains are used by bacteria to keep specific proteins at the 

cell surface by attaching them in a non-covalently manner to the peptidoglycan. The LysM domain 

was discovered as a ƌepeat of ϰϰ aŵiŶo aĐids iŶ the lǇsozǇŵe of the BaĐillus phage φϮϵ [157]. Now 

that many genomes have been sequenced, the LysM domain has been identified in many proteins 

like bacterial lysins, bacteriophage proteins, bacterial peptidoglycan hydrolases, peptidases, 

chitinases, esterases, reductases and nucleotidase and even in some eukaryotic proteins. They have 

not been identified in archaeal proteins [158]. The number of this domain per protein and the 

position(s) within the proteins differ. A Hidden Markov model showed that the LysM sequence is 

conserved over the first 16 amino acids and less conserved over the last 10 residues. The first solved 

LysM structure was the LysM domain of the outer membrane-bound lytic murein transglycosylase 

MltD of E. coli. The stƌuĐtuƌe of MltD shoǁed a βααβ seĐoŶdaƌǇ stƌuĐtuƌe ǁith the tǁo α-helices 

paĐkiŶg oŶto the saŵe side of aŶ aŶtipaƌallel β-sheet [159]. In general LysM containing proteins can 

be classified into two categories, (i) PG-binding proteins and (ii) PG-hydrolyzing proteins. So far, most 

of the proteins encoding a LysM domain belong to the PG-hydrolyzing category. Nevertheless, PG-

binding proteins have been identified, such as FimV of P. aeruginosa or AcmA of Lactococcus lactis 

[156, 160]. 

1.3.3 Secretin 

The secretin family of outer membrane proteins is found in T2SSs, T3SSs, filamentous-phage 

assembly systems and type IV pili systems. Three-dimensional reconstructions of secretin structures 

by electron microscopy revealed that they adopt multimeric structures, characterized by the 

formation of large chambers with a central cavity that ranges from 50 to 90 Å in diameter [150, 161-

163]. Sequence comparison and limited proteolysis showed that secretins consist of a conserved C-

terminal (CTD) and variable N-terminal domains (Figure 5) [162]. The conserved C-terminal region 

that is responsible for oligomerization and membrane spanning contains seǀeƌal tƌaŶsŵeŵďƌaŶe β-

sheets forming a β-barrel upon multimerization [164-166]. Different experiments showed that this 

CTD is protease resistant and stays in its homomultimeric form after protease treatment [162]. The 

more variable N-terminal domain extends into the periplasm forming the sides of the chamber and is 

involved in interaction with other components [150, 167]. Structural studies showed that the N-

terminal domain of secretins consist of three to four subdomains, named N0 to N5, each exhibiting a 
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α/β-type fold. Crystallographic studies of N0-N2 of GspD, the secretin of the T2SS from ETEC, and 

N0N1, the secretin EscC from the T3SS, showed that these periplasmic domains are arranged into 

two lobes [168, 169]. In this structure the N0 domain interacts with the N1 domain via an 

aŶtipaƌallel paiƌ of β-strands. Sequence alignment showed that the hydrophobic interface residues 

are conserved throughout secretins of the T2SS, suggesting that the compact N0N1 lobe is a 

common feature in T2SS [168]. The recently solved structure of N0N1 of N. meningitidis by NMR 

showed that these periplasmic domains adopt a similar fold to the N0 domains identified for GspD 

and EscC. In addition, Berry et al. could show that the N0 domain of N. meningitidis possesses a 

strikingly novel feature. The C-terminus of the N. meningitidis N0 domain contains a long random 

coiled region, which forms a linker region between N0 and N1, and this feature is conserved 

throughout T4P dependent secretins [150]. Bioinformatic studies of T4P, T2SS and T3SS dependent 

secretins showed that the extreme N-terminal region of T4P dependent secretins contain one or two 

β-rich domains, named B1 and B2 (Figure 5). “eƋueŶĐe ĐoŵpaƌisoŶ of the seĐoŶd β-domain from 

PilQ revealed a high degree of conservation. Mapping 63 different T4P dependent secretin 

sequences onto the protein structure revealed that the conserved residues form a single patch on 

the domain, indicating that this conserved patch might form a binding site to an unidentified T4P 

biogenesis protein [150]. 

Over the last years, secretin complexes from T2SS, T3SS, T4P and filamentous phage extrusion 

systems have been studied intensively [167, 170, 171]. Electron microscopy analysis of secretins 

revealed that they share special features including a cylindrical structure with a 12-15 fold symmetry 

and a central cavity with a wide opening at one end and a periplasmic gate at the other. Analysis of 

the secretin PulD of the T2SS from K. oxytoca showed a cylindrical dodecameric arrangement with 

peripheral radial spokes, which are most likely formed by the pilotin PulS [166]. End- and side-view 

averages were used for 3D mapping and revealed that the cylindrical complex shows a two-ring 

structure from which the radial spokes extent from one of these rings. The first ring is present in the 

outer leaflet of the outer membrane with weak connections to the second ring, which is present in 

the periplasm and inner leaflet of the outer membrane (Figure 6A) [164]. The secretin complex that 

was shown to be open at its periplasmic side was closed off from the outer membrane by a 

continuous density [164]. Nouwen et al. could show that a fusion of proteoliposomes containing the 

purified PulD-PulS complex with a lipid bilayer results in a small voltage-activated, ion-conducting 

 

Figure 5 Schematic overview of secretin 

domain structure 

Domain architecture of secretins from 

the T4P system, T2SS and the T3SS. 

Members of the secretin superfamily 

contain a C-terminal secretin core 

homology domain (light grey). Two to 

four periplasmic subdomains, termed 

N0–N3 (black). The T4P system specific 

B1 and B2 regions (dark grey), which are 

located at the N-terminus, are predicted 

to be rich in β-structure. A T2SS and 

T3SS-specific domain, termed the S-

domain (striped), is located at the very C 

terminus (adapted from [150]). 
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channel. Analysis of the PulD secretin channel in the presence of its corresponding substrate, 

pullulanase, showed no change in channel conductivity, indicating that the interaction between 

secreted proteins and the secretin might not be sufficient for channel opening [166]. Recent cryo-EM 

studies on the secretin of the T2SS from V. cholerae showed that GspD assembles into a complex 

which is ~155 Å in diameter and ~200 Å in length. The channel of the secretin complex has a 

periplasmic opening of approximately 75 Å in diameter is narrowed by a constriction to ~55 Å in 

diameter. Placing modeled dodecameric ring structures of N0-N1, N2 and N3 in the density map of 

EspD revealed that the N0-N1 ring fits into the widest area at the bottom of the periplasmic part of 

the secretin. The N2 and N3 rings can be positioned directly above the N0-N1 ring in the map. 

Surprisingly, the N3 ring fits to the constriction site of the cryo-EM map (Figure 6B) [167]. Studies by 

Collins et al. showed that the T4P secretin PilQ from N. meningitidis showed a doughnut-like 

structure with one open end. Single-particle averaging showed that this complex has a 12-fold 

rotational symmetry with a funnel-shaped cavity of 6.5 nm in diameter [172]. Since the cavity tapers 

to a closed point which effectively blocks the formation of a continuous pore, lead to the hypothesis 

that the secretin complex has to undergo conformational changes in order to allow passage of the 

assembled fiber [172]. In order to dock the recently solved structures of the N0, N1, B1 and B2 

domain into the PilQ secretin structure, a 3D reconstruction of the complete PilQ dodecamer was 

performed by Berry et al. Single particle reconstruction of ~20.000 particles showed that, in contrast 

to previously published N. meningitidis secretin complexes a chamber of 155 Å in height and 110 Å in 

diameter which is closed at both ends [150]. Docking of PilQ domain structures into the cryoelectron 

microscopy map showed that the N0N1 domain might line the chamber wall. Since Berry et al. 

ascribed the flattened disc density at the top of the 3D reconstruction to the membrane spanning C-

teƌŵiŶal doŵaiŶ, the β-domains would therefore be part of the density, closing the secretin 

chamber at the bottom. DoĐkiŶg the β-domains into the 3D reconstruction additionally revealed that 

the PilQ oligomer could accommodate 12 copies of B2 but not B1, suggesting that the B1 domain 

adopts a partially unfolded state in the assembled oligomer (Figure 6C) [150]. Recent transmission 

EM analysis of the T4P secretin PilQ from N. gonorrhoeae by Jain et al. showed that the secretin 

complex in its native lipid environment forms a double ring structure with seven extending spikes 

(Figure 6D) [105]. Single particle averaging revealed a 14-fold symmetry for the peripheral ring and a 

14-15 fold symmetry for the central ring, most likely corresponding to PilQ. Improvement of the 

obtained structure suggested that the structure is flexible between the central and peripheral ring. 

Single particle analysis of secretin structures from N. meningitidis showed that the spikes were 

absent and that the peripheral ring was partly or completely lacking. The results of Jain et al. 

demonstrate that the secretin complex contain unidentified flexible extra domains [105]. 
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Figure 6 Structural comparison of secretin complexes of the type II secretion system and type IV pili system  

(A) Calculated volumes and back-projections of PulD complex. The horizontal lines represent the outer limits of the 

lipopolysaccharide/phospholipid outer membrane. Scale bar equal 5 nm. (B) Fitting of 12-member ring models of the GspD N-terminal 

periplasmic domains (N0–N3) into the GspD density map. The N0 domain (dark blue) and N1 domain (light blue) are anchored at the 

bottom of the GspD density map. This places the N2 domain (light green) into the central periplasmic domain density and the N3 

domain (dark green) into the periplasmic constriction. (C) Docking of the B2 domain (purple) and N0/N1 domain (blue-green) into the 

PilQ cryoelectron density map. (D) Projection map of the secretin complex of N. gonorrhoeae. Scale bar equals 100 Å. (adapted from 

[105, 150, 164, 167]) 
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2. Scope of the thesis 

Over the years, N. gonorrhoeae has evolved and acquired different mechanisms to protect itself 

against a variety of antibiotics and chemotherapeutic agents. One reason for the rapid spread of 

antibiotic resistance in gonococci is the highly effective horizontal gene transfer that is promoted by 

the type IV pili. The transforming DNA is either provided by autolysis or by the gonococcal type IV 

secretion system, which secretes ssDNA into the extracellular milieu [16-18]. DNA uptake in 

Neisseria involves the T4P and the competence system, transporting the DNA across the outer and 

the inner membrane, respectively. Functional characterization of the type IV secretion system and 

DNA uptake system and thus the type IV pili machinery in N. gonorrhoeae could provide starting 

points in the exploration of new therapeutic strategies. 

In this thesis, components of the type IV secretion system and outer membrane components of the 

type IV pili system of Neisseria gonorrhoeae are described. 

Chapter 4.1 describes the analysis of the type IV secretion system of N. gonorrhoeae encoded by the 

Gonococcal Genetic Island. Mutational analysis of genes encoded within the GGI determined the 

minimal composition of genes, encoded within the GGI, which are required for ssDNA secretion [74]. 

Mapping of the operon structure within these regions was used to gain insights into the 

transcriptional regulatory network of the T4SS. To determine whether DNA secretion is regulated at 

the transcription level of TraD and TraI, which are involved in targeting the secreted DNA to the 

secretion apparatus [36], or additionally at the transcription level of the ssbB-yegA operon, the 

expression level of the ssbB-yegA operon was analyzed qRT-PCR. To investigate if the single stranded 

DNA, which is secreted via the T4SS encoded within the GGI facilitates biofilm formation, biofilm 

formation of different N. gonorrhoeae strains were compared by Maria Zweig. A complementation 

of a traB deletion strain by transformation with chromosomal DNA from N. gonorrhoeae MS11 WT 

strain showed that the ssDNA which is secreted via the T4SS within the GGI facilitates initial 

attachment of N. gonorrhoeae to surfaces. 

In Chapter 4.2, the secretin complex of the type IV pili system is analyzed. Based on the fact that the 

PilQ secretin complex of N. gonorrhoeae interacts with other proteins in the peripheral membrane 

to form a large multi-domain complex and that the functions of these extra domains are currently 

unknown, the aim was to identify the protein within the extra domains, to characterize their 

function and to determine whether these domains can also be found in Type II secretion systems 

and in the Type IV pili systems of other organisms. 

In Chapter 4.3, the identification of TsaP domains and their functional characterization is described. 

To study the effect of these domains, mutants carrying deletions of different domains were used to 

determine their effect on T4P and the secretin complex embedded in its native lipid environment. 

In Chapter 4.4, the interaction of TsaP with other components of the type IV pili system of 

N. gonorrhoeae and M. xanthus is described. To identify protein-protein interaction of TsaP and PilQ, 

fragments of TsaP and PilQ of N. gonorrhoeae were tested in vivo, using the bacterial adenylate 

cyclase two-hybrid (BACTH) system. As an alternative method to the BACTH system, size exclusion 

chromatography (SEC) of mixed proteins was used to study the interaction of TsaP with other 

components of the type IV pili system.  
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3. Material and Methods 

3.1 Material 

Buffers and solutions were prepared using ELGA H2O. Reagents were purchased from Difco 

(Heidelberg), Merck (Darmstadt), Roth (Karlsruhe), Fermentas (Sankt Leon-Roth) and Sigma-Aldrich 

(Steinheim) unless indicated otherwise. 

3.1.1 Strains 

Table 2 Neisseria gonorrhoeae strains used in this study 

Strain Genotype Source or references 

MS11 N. gonorrhoeae clinical isolate [173] 

FA1090 N. gonorrhoeae clinical isolate [174] 

ND500 derivative of N. gonorrhoeae strain MS11 with GGI 

deleted 

[18] 

KS031 derivative of N. gonorrhoeae strain MS11; tsaPΔ“Ϯϭ3-

V245 

This thesis 

KS035 ΔtsaP/Plac-tsaP This thesis 

KS036 derivative of N. gonorrhoeae strain KS031;  

tsaPΔSϮϭ3-V245/Plac-tsaP  

This thesis 

KS037 derivative of N. gonorrhoeae strain SJ082;  

ΔtsaP/Plac-tsaPΔA33-R83 

This thesis 

SJ001-MS derivative of N. gonorrhoeae strain MS11 with pilQ 

truncation 

[105] 

SJ004-MS pilQ with insertion encoding internal His-tag [175] 

SJ006-FA1090 FA1090 strain transformed with PCR product to 

introduce an in frame deletion of aa 1 to 31 of pilE 

[105] 

SJ030-MS MS11 strain transformed with pSJ030; non polar 

insertion in pilC, ErmCR 

[105] 

SJ031-MS MS11 strain transformed with PCR product to 

introduce in frame deletion of aa M1 to N181 of pilP 

[105] 

SJ032-MS MS11 strain transformed with pSJ032; non polar 

insertion of pilW, ErmCR 

[105] 

SJ082-MS derivative of N. gonorrhoeae strain MS11 with TsaP 

deleted  

[175] 

EP006 derivative of N. gonorrhoeae strain MS11 with RecA 

deleted 

[176] 

EP060 derivative of N. gonorrhoeae strain MS11 with PilF 

deleted 

[105] 

N. gonorrhoeae mutants were created by homologous recombination into the chromosome. Either 

plasmid DNA or PCR products were introduced by natural transformation or electroporation as 
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described in chapter 3.3.12.1 and 3.3.12.2 or previously [177]. MS11 was used as the WT strain. To 

generate SJ004-MS, in which a sequence encoding a His8-tag was inserted between P154 and F155 of 

the small basic repeat region of PilQ. 2 PCR products were generated with primers 552 and 572 and 

primers 573 and 553 respectively. These products were mixed and used as a template for a third PCR 

using primers 552 and 553. This PCR product was transformed to strain MS11. To generate strain 

SJ082-MS, in which tsaP is disrupted by the insertion of plasmid pIND3, MS11 was transformed with 

pSJ082. To generate strain KS035, in which the tsaP deletion in strain SJ082-MS is complemented by 

a copy of tsaP behind the lac promoter of plasmid pSJ023 inserted between the lctP and aspC genes, 

SJ082-MS was transformed with pKS007. To generate strain KS031, in which amino acids S213-V245 

of tsaP are deleted, MS11 was transformed with linearized pKS004. To generate strain KS036, in 

which the tsaPΔSϮϭϯ-V245 deletion in strain KS031 is complemented by a copy of tsaP behind the 

lac promoter of plasmid pSJ023 inserted between the lctP and aspC genes, KS031 was transformed 

with pKS007. To generate strain KS037, in which the tsaP deletion in strain SJ082-MS is 

complemented by a copy of tsaPΔA33-R83 behind the lac promoter inserted between the lctP and 

aspC genes, SJ082-MS was transformed with pKS036. All chromosomal mutations were confirmed by 

DNA sequence analysis. 

Table 3 Escherichia coli strains used in this study 

Strain Genotype Source or references 

DHϱα F- ΦϴϬlac)ΔMϭϱ Δ;lacZYA-argF) U169 recA1 endA1 

hsdR17 (rK–, mK+) phoA supEϰϰ ʄ– thi-1 gyrA96 relA1 

Invitrogen 

BL21 (DE3) Star F- ompT hsdSB (rB
-, mB

-) gal dcm rne131 (DE3) Invitrogen 

Rosetta 2 (DE3) F-
ompT hsdSB(rB

-mB
-) gal dcm (DE3) pRARE2 (CmR) Novagen/Merck 

BTH101 F- cya-99 araD139 galE15 galK16 rpsL1 (Strr) hsdR2 

mcrA1 mcrB1 

EUROMEDEX 

3.1.2 Plasmid 

Table 4 Plasmids used in this study 

Plasmid Properties Source or references 

pIND3 Insertion duplication mutagenesis vector for 

N. gonorrhoeae; ErmR 

[16] 

pET20b(+) Expression vector, T7 promoter; AmpR Merck Millipore 

pKS001 Plasmid, which is used as template to construct 

different tsaP mutants by site directed mutagenesis 

This study 

pKS004 Plasmid to construct tsaPΔSϮϭϯ-V245 deletion created 

by site-directed mutagenesis using primers 1007 and 

1008 

This study 

pKS007 pSJ023- tsaP; CmR This study 

pKS011 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-407) created with primers 1066 

and 1067, cloned in KpnI and PstI site of pKT25; KanR 

This study 
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pKS012 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa152-407) created with primers 1074 

and 1067, cloned in KpnI and PstI site of pKT25; KanR 

This study 

pKS013 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-151) created with primers 1066 

and 1069, cloned in KpnI and PstI site of pKT25; KanR 

This study 

pKS014 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-407) created with primers 1068 

and 1067, cloned in KpnI and PstI site of pKNT25; KanR 

This study 

pKS015 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa152-407) created with primers 1065 

and 1067, cloned in KpnI and PstI site of pKNT25; KanR 

This study 

pKS016 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-151) created with primers 1068 

and 1069, cloned in KpnI and PstI site of pKNT25; KanR 

This study 

pKS017 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-407) created with primers 1068 

and 1067, cloned in KpnI and PstI site of pUT18C; AmpR 

This study 

pKS018 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa152-407) reated with primers 1065 

and 1067, cloned in KpnI and PstI site of pUT18C; AmpR 

This study 

pKS019 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-151) created with primers 1068 

and 1069, cloned in KpnI and PstI site of pUT18C; AmpR 

This study 

pKS020 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-407) created with primers 1068 

and 1067, cloned in KpnI and PstI site of pUT18; AmpR 

This study 

pKS021 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa152-407) created with primers 1065 

and 1067, cloned in KpnI and PstI site of pUT18; AmpR 

This study 

pKS022 Plasmid used for BACTH analysis. Contains PCR product 

encoding TsaP(aa23-151) created with primers 1068 

and 1069, cloned in KpnI and PstI site of pUT18; AmpR 

This study 

pKS023 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-715) created with primers 1070 

and 1071, cloned in KpnI and BamHI site of pKT25; 

KanR 

This study 

pKS024 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-300) created with primers 1070 

and 1072, cloned in KpnI and BamHI site of pKT25; 

KanR 

This study 
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pKS025 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa301-715) created with primers 1073 

and 1071, cloned in KpnI and BamHI site of pKT25; 

KanR 

This study 

pKS026 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-715) created with primers 1070 

and 1071, cloned in KpnI and BamHI site of pKNT25; 

KanR 

This study 

pKS027 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-300) reated with primers 1070 and 

1072, cloned in KpnI and BamHI site of pKNT25; KanR 

This study 

pKS028 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa301-715) reated with primers 1073 

and 1071, cloned in KpnI and BamHI site of pKNT25; 

KanR 

This study 

pKS029 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-715) created with primers 1070 

and 1071, cloned in KpnI and BamHI site of pUT18C; 

AmpR 

This study 

pKS030 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-300) created with primers 1070 

and 1072, cloned in KpnI and BamHI site of pUT18C; 

AmpR 

This study 

pKS031 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa301-715) created with primers 1073 

and 1071, cloned in KpnI and BamHI site of pUT18C; 

AmpR 

This study 

pKS032 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-715) created with primers 1070 

and 1071, cloned in KpnI and BamHI site of pUT18; 

AmpR 

This study 

pKS033 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa25-300) created with primers 1070 

and 1072, cloned in KpnI and BamHI site of pUT18; 

AmpR 

This study 

pKS034 Plasmid used for BACTH analysis. Contains PCR product 

encoding PilQ(aa301-715) created with primers 1073 

and 1071, cloned in KpnI and BamHI site of pUT18; 

AmpR 

This study 

pKS035 Vector for overexpression of 10x his-tagged TsaPΔAϯϯ-

R83; AmpR 

This study 

pKS036 Plasmid to construct tsaPΔAϯϯ-R83 deletion. Created This study 
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by site-directed mutagenesis on pKS007 using primers 

1107 and 1108; CmR 

pAW001 Vector for overexpression of 10x his-tagged TsaP; 

AmpR 

Alexander Wagner 

pAW003 Vector for overexpression of HA-tagged PilQ(B1/B2); 

AmpR 

Alexander Wagner 

pSJ023 Vector for overexpression of OneSTrEP tagged SsbB 

(derived from pKH37 vector); CmR 

Samta Jain 

pSJ082 Plasmid to construct tsaP deletion vis insertion-

duplication mutagenesis; ErmR 

Samta Jain 

pSC108 Vector for overexpression of 6x his-tagged PilQmxaa20-

656; KanR 

Carmen Friedrich 

pSC121 Vector for overexpression of MalE-tagged TsaPmx; 

AmpR 

Carmen Friedrich 

pKNT25 Bacterial Adenylate Cyclase Two-Hybrid System vector; 

KanR 

EUROMEDEX 

pKT25 Bacterial Adenylate Cyclase Two-Hybrid System vector; 

KanR 

EUROMEDEX 

pUT18 Bacterial Adenylate Cyclase Two-Hybrid System vector; 

AmpR 

EUROMEDEX 

pUT18C Bacterial Adenylate Cyclase Two-Hybrid System vector; 

AmpR 

EUROMEDEX 

3.1.3 Oligonucleotides 

Table 5 Oligonucleotides used in this study 

Oligonucleotide 

name 

Sequence
1
 Description 

418F-GGI ϱ͛-AAGCATGATGAGGGCTATGG-ϯ͛ traH-exp1-C-For 

472R-GGI ϱ͛-GATATGCCCGAGTCTGAAGC-ϯ͛ traD 

473F-GGI ϱ͛-CCCAATGCGTCAATAAGAGG-ϯ͛ traD 

474R-GGI ϱ͛-GTCTATCCAACCGGTGACAG-ϯ͛ traI 

475F-GGI ϱ͛-CCCGGTTCTTTAGCTTTCTC-ϯ͛ traI 

476F-GGI ϱ͛-TGGTCGGACGGAACACAGAG-ϯ͛ ltgX-traF-H-For 

477R-GGI ϱ͛-CGACCTGCGTACCAATAGGG-ϯ͛ ltgX-traF-H-Rev 

478F-GGI ϱ͛-GGCCTGCTGCAATAGTGATG-ϯ͛ ltgX-traF-C-For 

479R-GGI ϱ͛-ACCGCACTAGCGGACTTTAC-ϯ͛ ltgX-traF-C-Rev 

480F-GGI ϱ͛-CAGCTTGGACAGTCGATATG-ϯ͛ ltgX-traF-I-For 

481R-GGI ϱ͛-TTGGCCGCTGTCTTGTTTAG-ϯ͛ ltgX-traF-I-Rev 

482F-GGI ϱ͛-AGACAGCGGCAAAGCATTTC-ϯ͛ ltgX-traF-J-For 
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483R-GGI ϱ͛-CCGGCTACGATTACATTGCG-ϯ͛ ltgX-traF-J-Rev 

484F-GGI ϱ͛-AGGGAGGCATCCGTTAATGG-ϯ͛ ltgX-traF-K-For 

485R-GGI ϱ͛-GATGGAAGTCCTTGCTAGAG-ϯ͛ ltgX-traF-K-Rev 

486F-GGI ϱ͛-ATGTCCGGCTTCGGTATAGG-ϯ͛ ltgX-traF-E-For 

487F-GGI ϱ͛-ATCAAGCAGCACGCATTTGG-ϯ͛ traH-exp1-D-For 

488R-GGI ϱ͛-CGCACTTGCGGATTATGAAC-ϯ͛ traH-exp1-D-Rev 

489F-GGI ϱ͛-TAGCGTATTCCCGCCCTGTC-ϯ͛ ltgX-traF-LM-For 

491F-GGI ϱ͛-TACAGCCGAGGCCATTGAAG-ϯ͛ ltgX-traF-G-For 

492R-GGI ϱ͛-CAAGGCTGCCCAATGAAACC-ϯ͛ ltgX-traF-G-Rev 

493F-GGI ϱ͛-TAAGGTCTTCCCGGTAGTTG-ϯ͛ ltgX-traF-F-For 

494R-GGI ϱ͛-ATGGCAGTCGGGAATAACTC-ϯ͛ ltgX-traF-F-Rev 

495F-GGI ϱ͛-CCGCTAGTGCGGTTGCATTG-ϯ͛ ltgX-traF-D-For 

496R-GGI ϱ͛-GATACCGGCACATGATAATCTC-ϯ͛ ltgX-traF-D-Rev 

498R-GGI ϱ͛-GACGGAATGCGACTATTGAG-ϯ͛ Ssb-yegA-E-Rev 

499F-GGI ϱ͛-ACTTTCCAGTATGCTGGTAGAGGGC-ϯ͛ Ssb-yegA-D-For 

701R-GGI ϱ͛-GTGGTTGAACACCGACAATC-ϯ͛ Ssb-yegA-D-Rev 

702F-GGI ϱ͛-TTACGGTAGCCACAGTAGTC-ϯ͛ Ssb-yegA-B-For 

703R-GGI ϱ͛-CTGAGCGTGTAGAAGCTATC-ϯ͛ Ssb-yegA-B-Rev 

704F-GGI ϱ͛-TGAGACTGCTCACGTTTAGG-ϯ͛ Ssb-yegA-A-For 

705R-GGI ϱ͛-TTCTGTGCCGATGACTGTCC-ϯ͛ Ssb-yegA-A-Rev 

706R-GGI ϱ͛-GCCGTATGTCGAGAAAGAAG -ϯ͛ parA-yfa-G-Rev 

707R-GGI ϱ͛-GCAGCATAGGGAGCCATTTC-ϯ͛ ltgX-traF-E-Rev 

708R-GGI ϱ͛-ATGTCTGTCCGACCTGTAAG-ϯ͛ Ssb-yegA-C-Rev 

709F-GGI ϱ͛-CTTCAGGATTGTCGGTGTTC-ϯ͛ Ssb-yegA-C-For 

710F-GGI ϱ͛-TGTGTCAACACCGAACTACC-ϯ͛ yaf-yaa-E-For 

711R-GGI ϱ͛-AACGCATTTACGGAGGGAAG-ϯ͛ yaf-yaa-E-Rev 

712F-GGI ϱ͛-TTCCAGATAACCGCTAGCAC-ϯ͛ yaf-yaa-AB-For 

713F-GGI ϱ͛-CGGCCACTGGAAGAAACAAC-ϯ͛ parA-yfa-F-For 

714R-GGI ϱ͛-GAGACCAGGGCTATCAAGAG-ϯ͛ parA-yfa-F-Rev 

716R-GGI ϱ͛-GAAAGCGCTCTCGGTTAATG-ϯ͛ ltgX-traF-AB-Rev 

717R-GGI ϱ͛-AAACGGGAGCTAAGAGTGAG-ϯ͛ parA-yfa-D-Rev 

718F-GGI ϱ͛-TTGGGCAAGGCTATAATCGG-ϯ͛ parA-yfa-D-For 

721R-GGI ϱ͚-TCTGTGACAATTCTAATTAAAATAAC-ϯ͚ yaf-yaa-B-Rev 

722F-GGI ϱ͛-AGGGAAGGGCATCCTTACTC-ϯ͛ yaf-yaa-C-For 

723R-GGI ϱ͛-GCCACTGCCGATAGATATTG-ϯ͛ yaf-yaa-C-Rev 

724F-GGI ϱ͛-GGCAGTAAGGGCATAATAGG-ϯ͛ yaf-yaa-D-For 

725R-GGI ϱ͛-CATACAGCCAGGTTCAAGAC-ϯ͛ yaf-yaa-D-Rev 

726F-GGI ϱ͛-GGTTAAGTTGCGGCTTTCAC-ϯ͛ Ssb-yegA-E-For 

728F-GGI ϱ͛-ATATCTAGCTAAAATGCCCACGGACAG-ϯ͛ parA-yfa-G-For 
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730R-GGI ϱ͛-TGTTGGCCATGATGCGTTTC-ϯ͛ yaf-yaa-FG-Rev 

733F-GGI ϱ͛-GAGGTAACGATCTAGTATCC-ϯ͛ traH-exp1-EF-For 

734R-GGI ϱ͛-TGCTCAAGTAGTGATTTAGG-ϯ͛ traH-exp1-E-Rev 

739R-GGI ϱ͛-GCCGGTTCAGATATACCAGG-ϯ͛ traH-exp1-F-Rev 

743R-GGI ϱ͛-ATTGGCTTCCGCTCCCATTG-ϯ͛ traH-exp1-AB-Rev 

744F-GGI ϱ͛-GCTATAACCGCTTCATGGAG-ϯ͛ traH-exp1-A-Rev 

746F-GGI ϱ͛-GACAACGCGGATATTTCAGG-ϯ͛ traH-exp1-B-Rev 

748R-GGI ϱ͛-AATATCCGCGTTGTCAACCG-ϯ͛ ltgX-traF-L-For 

750R-GGI ϱ͛-GCCGGCTTCGGAAAGATGTG-ϯ͛ ltgX-traF-M-For 

766R-GGI ϱ͛-ATCGTGATGCTGCCCATCTC-ϯ͛ ssbB 

767F-GGI ϱ͛-ACGCTCAGTTGGAACAATGAATAC-ϯ͛ ssbB 

769F-GGI ϱ͛-CCTGCCACAGTGTAGTAAAC-ϯ͛ topB 

770R-GGI ϱ͛-TCGATCGGACGGATTCAAAC-ϯ͛ topB 

774R-GGI ϱ͛-GGCAGCATTATACCTTATAAATC-ϯ͛ yaf-yaa-B-Rev 

775R-GGI ϱ͛-TCAAGGGAAAAAGGGTAAAAG-ϯ͛ yaf-yaa-A-Rev 

776R-GGI ϱ͛-GCAACAGCAAGAGTGACCAG-ϯ͛ traH-exp1-C-Rev 

778F-GGI ϱ͛-GCCTTTACCCTTATCGTATTC-ϯ͛ ltgX-traF-B-For 

779F-GGI ϱ͛-CTTGAACCCTTCCTTTAACC-ϯ͛ ltgX-traF-A-For 

784F-GGI ϱ͛-AGCCAAAGCAGCACGAGCCATATC-ϯ͛ parA-yfa-E-For 

785R-GGI ϱ͛-TAACCTATGCCCGCTGCGCTTC-ϯ͛ parA-yfa-E-Rev 

786F-GGI ϱ͛-ATTGTCGAGCGGATGATTTC-ϯ͛ parA-yfa-ABC-For 

592 ϱ͛-gagtggtaccTACAGCCCGTGGCAATGGTG-ϯ͛ tsaP-KpnI 

593 ϱ͛-catcggATCcAAGGATGGGTGCGGGTGTAG-ϯ͛ tsaP-BamHI 

697 ϱ͛-GCTTACGGCGTTGCTTATTG-ϯ͛ secY 

698 ϱ͛-CCCGCCCTACCATTAAACTG-ϯ͛ secY 

914 ϱ͛-ACCGGCTACACGTACAACTG-ϯ͛ yaf-yaa-F-For 

915 ϱ͛-GCTGGGACATATTGGAATGG-ϯ͛ parA-yfa-B-Rev 

926 ϱ͛-CAGACGCTCCATTCTCGAAG-ϯ͛ yaf-yaa-G-For 

1001 ϱ͛-gcgcggtaccATGCAACGTCGTATTATAACCCTGCTCTGC 

GCGGCAGGTATGGCATTCTC-ϯ͛ 
tsaP-KpnI 

1002 ϱ͛-gcgcgaattcTTATTGGAAAGGGTCGGAATCG-ϯ͛ tsaP-EcoRI 

1007 ϱ͛-TCGGAAATGGCGGTTTCGACGCGTTGTTCGAGGGCGG 

AGTC-ϯ͛ 
tsaPΔS231-V245 

1008 ϱ͛-GTCGAAACCGCCATTTCCGAAATACAGCAGGGCGACT 

ACCTGATG -ϯ͛ 
tsaPΔSϮϯϭ-V245 

1048 ϱ͛-GATTGCGGATGTTTTTCTCTTTATAAATC-ϯ͛ parA-yfa-C-Rev 

1050 ϱ͛-GCAATGGCGGAGGAATTCAC-ϯ͛ parA-yfa-A-Rev 

1052 ϱ͛-cggcgtatacatatgcaccatcaccaccatcatcaccatcaccacGC 

AAATCTGGAGGTGCGCCC-ϯ͛ 
tsaP 
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1 Sequences in bold display restriction sites used for cloning. Sequences in upper case indicate 

sequences complementary to the respective genes. Sequences in lower case show added sequences 

required for cloning purposes. 

3.1.4 Media and Media supplements 

Table 6 Lysogeny Broth (LB) medium 

Component  

Yeast Extract 15 g 

Tryptone 10 g 

NaCl 10 g 

H2O add to a total volume of 1 L 

Table 7 LB agar 

Component  

Agar 15 g 

LB medium add to a total volume of 1 L 

Table 8 GCBL medium 

Component  

Protease peptone 15 g 

Dipotassium phosphate 4 g 

1057 ϱ͛-gcgcccaTATGCAACGTCGTATTATAACCCTGCTCTGCG 

CGGCAGGTATGGCATTCTC-ϯ͛ 
tsaP-NdeI 

1058 ϱ͛-gcgcgccaagcttTTATTGGAAAGGGTCGGAATCG-ϯ͛ tsaP-HindIII 

1061 ϱ͛-gcggcgctcgaGTTATTGGAAAGGGTCGGAATC-ϯ͛ tsaP-PstI 

1065 ϱ͛-tcgcgcctgcagGCTGTACACCAAAGGCGCCAGGG-ϯ͛ tsaP-PstI 

1066 ϱ͛-tcgcgcctgcagGGGCAAATCTGGAGGTGCGCCC-ϯ͛ tsaP-PstI 

1067 ϱ͛-gcgcgggtaccCGTTGGAAAGGGTCGGAATCGAC-ϯ͛ tsaP-KpnI 

1068 ϱ͛-tcgcgcctgcagGGCAAATCTGGAGGTGCGCCC-ϯ͛ tsaP-PstI 

1069 ϱ͛-gcgcgggtaccCGCAGCCTGCCTTCCGGGCCCGAGAG-ϯ͛ tsaP-KpnI 

1070 ϱ͛-gcgcgggatccCGGAAACATTACAGACATCAAAG-ϯ͛ pilQ-PstI 

1071 ϱ͛-gcgcgggtaccCGATAGCGCAGGCTGTTGCC-ϯ͛ pilQ-KpnI 

1072 ϱ͛-gcgcgggtaccCGCCGGCCTGTGAAGGTTTTGG-ϯ͛ pilQ-KpnI 

1073 ϱ͛-gcgcgggatccCAAAATCTCCCTTGACTTCCAAGATG-ϯ͛ pilQ-PstI 

1074 ϱ͛-tcgcgcctgcagGGCTGTACACCAAAGGCGCCAGGG-ϯ͛ tsaP-PstI 

1107 ϱ͛-GAGGCGCGGTTCGCCGCCAACGTACGCCAAAGTTTGT 

GTTGAGAATG-ϯ͛ 
tsaPΔAϯϯ-R83 

1108 ϱ͛-CTCAACACAAACTTTGGCGTACGTTGGCGGCGAACCG 

CGCCTC-ϯ͛ 
tsaPΔAϯϯ-R83 
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Potassium dihydrogen phosphate 1 g 

NaCl 1 g 

H2O 1 L 

Before use, add 1 % supplement I (100x) and 0.1 % supplement II (1000x) and 10 % Sodium 

bicarbonate (100x) 

Table 9 GCB agar 

Component  

GC medium base 36.25 g 

Agar 1.25 g 

H2O 1 L 

After autoclaving add 1 % supplement I (100x), 0.1 % supplement II (1000x)  

Table 10 Supplement I (100 x) 

Component  

Glucose 40 g 

Glutamine 1 g 

Thiamine pyrophosphate 2 mg 

H2O add to a total volume of 100 ml 

Table 11 Supplement II (1000 x) 

Component  

Iron (III) nitrate 50 mg 

H2O add to a total volume of 100 ml 

Table 12 Sodium bicarbonate (100 x) 

Component  

Sodium bicarbonate 0.42 g 

H2O add to a total volume of 100 ml 

3.1.5 Antibiotics 

Table 13 Antibiotics used in this study 

Antibiotic Stock concentration 

[mg/ml] 

Final concentration 

[µg/ml] 

Solvent 

E. coli N. gonorrhoeae 

Chloramphenicol 34 34 10 EtOH 

Erythromycin 50 450 20 EtOH 

Kanamycin 50 50 - H2O 

Ampicillin 34 34 - H2O 
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3.1.6 Buffer and solutions 

Table 14 Assay buffer 

Component  

Tris/HCl; pH 10 100 mM 

NaCl 100 mM 

MgCl2 1 mM 

Table 15 Coomassie staining solution 

Component  

Ethanol 125 ml 

Acetic acid 100 ml 

Coomassie Blue R250 0.5 g 

CuSO4 5 H2O 0.5 g 

H2O add to a total volume of 250 ml 

Table 16 Destaining solution 

Component  

CuSO4 5 H2O 0.5 % (w/v)  

Acetic-acid 7 % (v/v) 

2-n-Propanol 12 %(v/v) 

Table 17 Lysis buffer 

Component  

Triton X-100 1 % (v/v) 

EDTA; pH 8.0 2 mM 

Tris/HCl 20 mM 

Table 18 Protein purification buffer A 

Component  

HEPES/NaOH; pH 7.5 50 mM 

NaCl 100 mM 

Imidazole 15mM 

Glycerol 10 % (v/v) 

Table 19 Protein purification buffer B 

Component  

HEPES/NaOH; pH 7.5 50 mM 

NaCl 100 mM 

Imidazole 400 mM 
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Glycerol 10 % (v/v) 

Table 20 Protein purification buffer C 

Component  

HEPES/NaOH; pH 7.5 50 mM 

NaCl 100 mM 

Glycerol 10 % (v/v) 

Table 21 Protein purification buffer D 

Component  

Tris/HCl; pH 7.5 20 mM 

NaCl 200 mM 

Imidazole 15 mM 

Glycerol 10 % (v/v) 

Table 22 Protein purification buffer E 

Component  

Tris/HCl; pH 7.5 20 mM 

NaCl 200 mM 

Imidazole 400 mM 

Glycerol 10 % (v/v) 

Table 23 Protein purification buffer F 

Component  

Tris/HCl; pH 7.5 20 mM 

NaCl 200 mM 

Glycerol 10 % (v/v) 

DTT 1 mM 

Table 24 Protein purification buffer G 

Component  

HEPES/NaOH; pH 7.5 50 mM 

NaCl 400 mM 

Imidazole 100 mM 

Glycerol 10 % (v/v) 

Table 25 Protein purification buffer H 

Component  

HEPES/NaOH; pH 7.5 50 mM 

NaCl 400 mM 
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Imidazole 500 mM 

Glycerol 10 % (v/v) 

Table 26 Protein purification buffer I 

Component  

HEPES 50 mM 

NaCl 400 mM 

Glycerol 10 % (v/v) 

Table 27 Protein purification buffer J 

Component  

Tris/HCl; pH 7.5 20 mM 

NaCl 200 mM 

DTT 1 mM 

EDTA 1 mM 

Table 28 Protein purification buffer K 

Component  

Tris/HCl; pH 7.5 20 mM 

NaCl 200 mM 

DTT 1 mM 

EDTA 1 mM 

Maltose 1 mM 

Table 29 Resolving-gel buffer 

Component  

Tris/HCl; pH 6.8 500 mM 

SDS 0.4 % (w/v) 

Table 30 Sodium Boric Acid buffer (20x; pH 8,5) 

Component  

NaOH 200 mM 

EDTA; pH 8.0 40 mM 

Table 31 Stacking-gel buffer 

Component  

Tris/HCl; pH 8.8 1.5 M 

SDS 0.4 % (w/v) 

Table 32 TBS buffer 
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Component  

Tris/HCl; pH 7.5 38 mM 

NaCl 15 mM 

Table 33 TBST+I buffer 

Component  

TBS 1 x concentrated 

I-Block 0.1 % (w/v) 

Tween 20 0.1 % (w/v) 

Table 34 TGS buffer 

Component  

Tris base 30.28 g  

SDS 10 g 

Glycine 144.13 g 

H2O add to a total volume of 1000 ml 

Table 35 Transfer buffer 

Component  

Tris base 20 mM 

Glycine  200 mM 

Methanol 20 % (v/v) 

Table 36 6x DNA loading dye 

Component  

Tris/HCl; pH 7.6 10 mM 

Bromophenol blue 0.03 % (w/v) 

EDTA 60 mM 

Glycerol 60 % (v/v) 

Table 37 5x Protein loading dye 

Component  

SDS 10 % (w/v) 

Bromophenol blue 0.04 % (w/v) 

DTT 500 mM 

Glycerol 50 % (v/v) 

Tris/HCl; pH 6.8 300 mM  
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3.1.6 DNA & Protein Ladder 

  
 

Figure 7 GeneRuler
TM

 1kb Plus DNA 

Ladder 

Figure 8 PageRuler Prestained Protein Ladder 

Plus 

Figure 9 NativeMark™ Unstained Protein 

Standard 

3.1.7 Kits 

Table 38 Kits used in this study 

Name Reagents 

First Strand cDNA Synthesis Kit M-MuLV Reverse Transcriptase; RiboLock RNase 

Inhibitor; 5x Reaction buffer; 10 mM dNTP Mix; 

100 µM random Hexamer Primer; nuclease free 

H2O 

Dnase I RNase-free DNase I; 10x Reaction Buffer with 

MgCl2; 50 mM EDTA 

peqGOLD TriFastTM peqGOLD TriFastTM 

GenEluteTM PCR Clean-Up Kit Column Preparation Solution; Binding Solution; 

Wash Solution 

GenEluteTM HP Plasmid Miniprep Kit Column Preparation Solution; Resuspension 

Solution; Lysis Buffer; Neutralization/Binding 

Buffer; Wash Solution 1, Wash Solution 2;  

3.2 Microbiological and molecular biological methods 

3.2.1 Cultivation E. coli 

E. coli strains were cultivated on LB agar plates, containing the appropriate antibiotic. For overnight 

cultures, single colonies were inoculated in 3 ml LB medium. Cells were grown 37 °C in a shaking 

incubator. 
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3.2.2 Cultivation of N. gonorrhoeae 

N. gonorrhoeae strains were grown on GCB agar plates, containing the appropriate antibiotic. 

Incubation was performed at 37 °C and 5 % CO2. The colony morphology, which indicates whether 

cells are piliated or non-piliated was checked under the light microscope before daily restreaking. 

Under the microscope piliated colonies of N. gonorrhoeae are small with sharp edges. In contrast, 

non-piliated N. gonorrhoeae colonies are flat aŶd ďiggeƌ iŶ size ǁith ͞fuzzǇ͟ edges. LiƋuid Đultuƌes of 
N. gonorrhoeae were inoculated from cell material of one fully grown agar plate and incubated 1.5 h 

in 3 ml of pre-warmed GCBL medium. After measuring the optical density at 600 nm (OD600), the 

liquid culture was diluted to OD600 0.3. For further experiments the diluted culture was incubated at 

37 °C (shaking) until the cells reached an OD600 ~1.0. 3 ml cells were pelleted in a 2 ml tube and 

stored at -80 °C for further use. 

3.3 Molecular methods 

3.3.1 Isolation of genomic DNA from N. gonorrhoeae 

Cell pellets derived from a 3 ml liquid culture of N. gonorrhoeae cells were used to isolate genomic 

DNA according to the instruction manual of the ZR Genomic DNA II Kit. DNA concentrations were 

measured using the PeqLab Nanodrop ND-1000 spectrophotometer. 

3.3.2 Isolation of plasmid DNA 

Plasmid DNA was isolated from 5 ml liquid cultures of E. coli according to the instruction manual of 

the GeŶElute™ HP Plasŵid MiŶipƌep Kit. Plasŵid DNA ĐoŶĐeŶtƌatioŶs ǁeƌe ŵeasuƌed usiŶg the 

PeqLab Nanodrop ND-1000 spectrophotometer. 

3.2.3 Agarose gel electrophoresis 

DNA fragments or PCR products were separated according to their molecular sizes in 1.5 % agarose 

in 1x SBA-buffer. Staining of nucleic acids was achieved by the intercalating fluorescent dye ethidium 

bromide which was added to the agarose gel with a final concentration of 1 µg/ml to the agarose 

gel. The samples were mixed with 6x DNA loading dye before loaded on the agarose gel. The voltage 

and gel running buffer were adjusted according to the demanded separation characteristics. To 

estimate the size of a DNA fragment the 1 kb Plus DNA Ladder was also loaded on the gel. DNA 

fragments were visualized by illuminating at 365 nm and then photographed using the UVP Bio-Doc 

Imaging System and Mitsubishi Electronic P93 printer. 

3.3.4 Polymerase Chain Reaction 

3.3.4.1 Standard PCR 

Standard PCR amplification of DNA was performed using Phusion polymerase. After an initial 

denaturation step of 30 sec at 98 °C, 35 cycles of denaturation (98 °C for 10 sec), annealing (30 sec) 

and elongation (30 sec/kb) were performed, followed by a final elongation at 72 °C for 10 min. The 

annealing temperature was chosen depending on the melting temperature of the primer as provided 

by the primer manufacturer or calculated by Clone Manager (normally in the range of 50-65 °C). The 
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elongation time was chosen depending on the length of the PCR product. The composition of a 50 µl 

PCR reaction is shown in Table 39. 

Table 39 Pipetting scheme of a 50µl PCR reaction 

PCR reaction mixture Volumes per reaction 

H2O 36.3 µl 

5x Phusion HF-Buffer 10 µl 

dNTPs (10 mM) 0.5 µl 

Primer (10 µM) 1.0 µl each 

Template DNA 1.0 µl 

Phusion DNA polymerase 0.2 µl 

 

3.3.4.2 Colony PCR 

Colony PCR was used to identify bacterial clones containing the correct insertion. Single colonies 

were picked and transferred to PCR tubes containing 50 µl Lysis buffer (Table 17) followed by 

heating to 95 °C and incubation for 10 min. The lysate was kept for additional 10 min at room 

temperature and centrifuged for 10 min at 17,000 x g. 4 µl of the lysate was used as a PCR template. 

PCR amplification of DNA was performed as described in 3.3.4.1. 

3.3.5 RNA isolation 

After thawing cell pellets of piliated and non-piliated N. gonorrhoeae strains, the pellet was 

resuspended in 1 ml TriFastTM buffer per reaction tube. To allow for the complete dissociation of the 

nucleoprotein complexes, the samples were kept for about 10 minutes at room temperature. After 

addition of 200 µl of chloroform, the samples were shaken vigorously for 15 sec and kept again at 

room temperature for 10 minutes. The red phenol-chloroform phase, the interphase and the 

colorless RNA containing aqueous phase were separated by centrifugation for 10 min at 

12,000 x g.The RNA containing aqueous phase was transferred to a new 1.5 ml reaction tube 

containing 500 µl of isopropanol. The RNA was precipitated by incubating the tube for 15 min on ice. 

After centrifugation at 4 °C for 10 minutes at 12,000 x g, RNA was pelleted at the side of the tube. 

After removal of the supernatant the RNA pellet was washed twice with 1ml ice-cold ethanol 

(75 % (v/v)) by vortexing and subsequent centrifugation at 4 °C for 10 minutes at 12,000 x g. The 

supernatant was removed carefully after the second washing step and the RNA pellet was air-dried. 

After resuspending the pellet in 20 µl diethyldicarbonate (DEPC) treated water the RNA 

concentration was measured using the PeqLab Nanodrop ND-1000 spectrophotometer. 

3.3.6 First Strand cDNA Synthesis 

Total RNA was (0.2 µg) mixed with DEPC treated H2O up to a final volume of 10 µl and 1 µl random 

hexamer primer (0.2 µg/µl) was added in a sterile reaction tube. The tubes were heated at 65 °C for 

10 min in the PCR cycler. After preparation of the reverse transcriptase mixture according to Table 

40, 9 µl of the mixture were pipette into each reaction tube containing RNA. The sample was 
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incubated for 5 min at 25 °C, followed by 60 min incubation at 37 °C. The reaction was terminated by 

incubation for 5 min at 70 °C. A control of cDNA synthesis was performed without the addition of 

Reverse transcriptase. The cDNA was stored at -80 °C was used as a template for polymerase chain 

reaction (PCR) and real-time PCR amplification reactions. 

Table 40 Components of reverse transcriptase mixture 

Reverse transcriptase mixture Volumes per reaction 

5x Reaction Buffer 4 µl 

RiboLock RNase Inhibitor (20 U/µl) 1 µl 

dNTP Mix (10mM) 2 µl 

M-MuLV Reverse Transcriptase (20 U/µl) 2 µl 

 

3.3.7 Transcriptional mapping 

The most general applied operon prediction method is a PCR based on intergenic distances. Total 

RNA from piliated and non-piliated N. gonorrhoeae strains was isolated and transcribed into cDNA 

according to 3.3.5 and 3.3.6. After cDNA synthesis PCR was performed as described in 3.3.4.1. A 

typical reaction composition for transcriptional mapping is shown in Table 41. If the intergenic 

distaŶĐe ďetǁeeŶ tǁo geŶes ǁas fouŶd to ďe ≥ ϭϬ ŶuĐleotides the ƌegioŶ ǁas seleĐted foƌ 
transcriptional analysis and oligonucleotides were designed for this region according to the GGI 

sequence. 

Table 41 Pipetting scheme of a 50µl transcriptional mapping PCR 

Reverse transcription reaction mixture Volumes per reaction 

H2O 35.3 µl 

5x Phusion HF-Buffer 10 µl 

dNTPs (10 mM) 0.5 µl 

Primer (10 µM) 1.0 µl each 

Template DNA 2.0 µl 

Phusion DNA polymerase 0.2 µl 

 

3.3.8 Real-Time PCR 

To determine the transcript levels of genes encoded within the GGI the Maxima SYBR Green/ ROX 

qPCR Master Mix was used. After an initial denaturation step of 2 min at 95 °C, 40 cycles of 

amplification, with 15 sec at 95 °C and 1 min at 60 °C, followed by melting curve analysis (15 sec at 

95 °C, 30 sec at 60 °C and 15 sec at 95 °C), was performed using a 7300 Real Time PCR System of 

Applied Biosystems. Results were depicted as the level of transcript compared with the secY gene 

(2^-ΔCt). A typical 25 µl qRT-PCR reaction mixture is shown in Table 42. For each gene, six biological 

replicates were performed.  
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Table 42 Pipetting scheme of a 25 µl qRT-PCR reaction 

qRT-PCR reaction mixture Volumes per reaction 

Maxima SYBR Green/ ROX qPCR Master Mix 12.5 µl 

Primer A (0.3 µM) 4.0 µl 

Primer B (0.3 µM) 1.0 µl 

cDNA  2.0 µl 

H2O 10.0 µl 

 

3.3.9 Restriction enzyme digestion 

The purified vectors and PCR products were mixed with the corresponding restriction enzymes and 

digested as recommended by the manufacturer. In most cases the reaction mix was incubated in a 

double digest reaction for 1 h at 37 °C and inactivated as recommended by the manufacturer. The 

digested DNA was purified with the GenEluteTM PCR Clean-Up Kit as described in the instruction 

manual. The DNA concentration was measured with PeqLab Nanodrop ND-1000 spectrophotometer. 

3.3.10 Ligation 

T4-ligase was used for DNA ligatino. T4-ligase catalyzes the formation of phosphodiesterbonds 

between neighbouring ϯ͛-OH aŶd ϱ͛-phosphate ends. The amount (ng/µl) of insert, which was added 

into the reaction, was double the amount (ng/µl) of vector. A typical ligation reaction which is 

incubated for 1 hour at RT is shown in Table 43. 

Table 43 Pipetting scheme of a 20 µl ligation reaction 

Ligation reaction mixture Volumes per reaction 

H2O 9.0 µl 

5x Rapid Ligation Buffer 4.0 µl 

T4 DNA-Ligase 1.0 µl 

Insert 4.0 µl 

Vector  2.0 µl 

 

3.3.11 Transformation of E. coli 

For transformation of E. coli cells, a 50 µl aliquot of chemical competent cells were thawed on ice 

and 1 µl plasmid DNA was added. After an incubation time of 30 min on ice the cells were subjected 

to a heat shock at 42 °C for 90 sec. The cells were immediately placed on ice for 2 min and 800 µL of 

LB medium was added. The cells were incubated at 37 °C for 1 h while shaking vigorously. The 

transformed cells were either used to inoculate LB medium or were grown on LB agar plates. To 

obtain single colonies on LB agar plates 50 µL of the culture was plated on LB agar plates 

supplemented with appropriate antibiotics. The plates were incubated over night at 37 °C. For liquid 

cultures, 50 mL of LB medium supplemented with appropriate antibiotics was inoculated with the 

transformed cell suspension and incubated at 37 °C overnight. 
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3.3.12 Transformation of N. gonorrhoeae 

3.3.12.1 Natural transformation of N. gonorrhoeae 

In the presence of high concentrations of DNA, N. gonorrhoeae can be transformed at high efficiency 

by growing bacteria on agar plates. To insert a construct into the chromosome by double-crossover 

event, 10 to 20 µl of linearized plasmid or purified PCR products were spotted on GCB agar plates, 

whereas for insertion duplication mutagenesis 10 to 20 µl of non linearized plasmid were used. After 

DNA was soaked into the agar plate, a piliated N. gonorrhoeae colony was streaked through the DNA 

spots. Subsequently the plate was incubated over night at 37 °C and 5 % CO2. For transformation 

without selectable markers, the individual colonies were screened onto GCB plates using an 

inoculation loop. The GCB agar plates were incubated overnight at 37 °C and 5 % CO2 and the 

individual transformants were screened for non-selectable mutations by PCR (see chapter 3.3.4.2). 

For transformations using fragments containing selectable marker, cells that grew on the DNA spots 

were transferred onto a GCB plate with appropriate antibiotics. After the GCB agar plates were 

incubated overnight at 37 °C and 5 % CO2, colonies were picked and screened for transformants as 

described above for transformation without selectable marker.  

3.3.12.2 Electroporation of N. gonorrhoeae 

N. gonorrhoeae strains were grown on GCB agar plates, supplemented with appropriate antibiotics. 

Incubation was performed at 37 °C in the presence of 5 % CO2. To prepare the cells for 

electroporation, cell material of one fully grown agar plate was transferred into 1 ml pre-warmed 

sucrose (0.3 M) and centrifuged for 30 sec at 17,000 x g at 37 °C. After two more washing steps with 

pre-warmed 0.3 M sucrose the pellet was resuspended in 100 µl of 0.3 M sucrose and mixed with 1-

5 mg DNA solution. The cell/DNA mixture was transferred into a 2 mm electroporation cuvette and 

electroporated with the pulse controller set at 2500 V, 25 µF, 200 Ω. Subsequently, cells were 

resuspended in 1 ml pre-warmed GCBL medium without antibiotics and transferred to a GCB agar 

plate without antibiotics. After incubating the plate right-side up for 6 h at 37°C and 5 % CO2, cells 

were washed off the plate with 1 ml GCBL medium. 50 µl of the cell suspension was plated onto a 

GCB agar plate containing the appropriate antibiotic. When required multiple plates were used. GCB 

agar plates were incubated at 37 °C and 5 % CO2 until colonies were observed.  

3.3.13 Preparation of N. gonorrhoeae membranes 

Cells of selected N. gonorrhoeae strains were grown overnight in 1 liter GCBL medium and harvested 

by centrifugation at 4,302 x g for 10 min. After resuspension of the pellet in 50 mM Tris/HCl pH 7.5 

cells were broken by 3 shots of a high-pressure Cell Disrupter (Constant Cell Disruption Systems) at 

1.9 kbar. Cell debris was removed by centrifugation for 10 min at 4,300 x g. Subsequently, 

membranes were sedimented by centrifugation at 178,000 x g for 1 hour. After the membrane 

factions were resuspended in 1 ml 50 mM Tris/HCl pH 7.5, total membrane fractions were 

subfractionated on a discontinuous sucrose gradient consisting of 1 ml 54 %, 1.8 ml 51 %, 0.8 ml 

45 % and 0.8 ml 36 % sucrose. Adjacent, centrifugation for 30 min at 44,400 x g the lower two 

fractions were collected, diluted in 50 mM Tris/HCl pH 7.5 and centrifuged for 1 hour at 178,000 x g. 
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The final membrane preparation was resuspended in 50 mM Tris/HCl pH 7.5 and used for 

membrane-stripping, immuno-blotting, SDS/PAGE and EM analysis. 

3.3.14 Phenol treatment of N. gonorrhoeae membranes 

To dissociate secretin complexes embedded in its native lipid environment, outer membrane 

samples were individually treated with an equal volume of phenol at 70 °C for 10 min. After 

incubating the samples for 10 min at 4 °C the phenol-protein suspension was centrifuged at 

5,000 x g for 10 min. After discarding the upper aqueous layer, the interface and phenol layer was 

treated with 1 ml chilled acetone. After the incubation overnight at -20 °C the protein was collected 

by centrifugation for 10 min at high speed (4°C). To improve sharpness of the protein bands on 

SDS/APGE gels, the pellet was washed twice with 1 ml chilled acetone. After collecting the proteins 

by centrifugation for 5 min at high speed and 4 °C, the supernatant was discarded and the pellet was 

dried at 37 °C. The final preparation was resuspended in 5x protein loading dye. 

3.3.15 Bacterial adenylate cyclase two-hybrid system 

Chemical competent BTH101 cells were co-transformed with BACTH plasmids. Serial dilutions of the 

transformants were plated on LB/X-Gal/IPTG agar plates and incubated at 30 °C for 2 days in order 

to obtain about 100-200 colonies per plate. If the proteins interact with each other the ƌesultiŶg β-

galactosidase activity results in blue colonies. As a positive control, competent cells were co-

transformed with the control plasmids pKT25-zip and pUT18C-zip whereas in the negative control 

cells were co-transformed with the plasmids pKT25 or pKNT25 and pUT18 or pUT18C. After two 

days, three clones per transformation were picked and used as inoculum for 2ml LB/IPTG. After an 

incubation time of 4 h, Ϯ ʅl of the liƋuid Đultuƌes ǁeƌe applied oŶ LB/X-Gal/IPTG plates for 

comparison of the color change. 

3.4 Analytical and biochemical methods 

3.4.1 SDS-Polyacrylaŵid‐Gel electrophoresis 

SDS/PAGE analyses were performed using the Bio-Rad Mini-PROTEAN Electrophoresis System 

Minigel-system (Biorad) with 0.75 mm or 1.5 mm gels. SDS-PAGE-gels consisting of a 12 % separating 

gel and a 4 % stacking gel were used. Before loading, the samples were mixed with 5x protein-

loading dye. SDS/PAGE was performed in 1x TBE buffer at 30 mA/gel for 50 min. For further analysis 

the gels were either pre-equilibrated for immunoblot analysis or stained with coomassie staining 

solution (Table 15). Gels were destained by heating up with destaining solution (Table 16). 

3.4.Ϯ Blue‐Native gel electrophoresis 

Blue native PAGE analysis were performed with the Minigel-system from Biorad with 0.75 mm gels. 

these were cast as gradient gels with 4-13 % acrylamide. 4 % stacking gels were layered on top of the 

native gel. The compositions for 4 % and 13 % gels are given in Table 44. The gels were cast at room 

temperature with a gradient-casting system. The cathode buffer A was stirred overnight at room 

temperature to completely dissolve the coomassie. The sample buffer was made of cathode buffer A 

and 10 % glycerol (v/v). The gels were run at 4-7 °C. As long as the samples were in the stacking gel, 
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gels were run with cathode buffer A at a constant voltage of 100 V. After entering the native gel the 

voltage was changed to 150 V. When 1/3 of the gels were reached the cathode, the buffer was 

changed to cathode buffer B and the voltage was adjusted to 200 V. The molecular masses of the 

protein samples were calculated based on the migration rates of the marker proteins and the 

sample. 

Table 44 Pipetting scheme of Blue native PAGE gels 

Component 4 % gel 13 % gel 

Acrylamide 40% 0.6 ml 3.25 ml  

Gel buffer 2.0 ml 3.33 ml 

Glycerol - 2.0 ml 

APS (10 % w/v) 50 µl 60 µl 

TEMED 5 µl 7 µl 

ddH2O 6 ml 10 ml 

 

3.4.3 Western Blotting 

To identify proteins via immuno blotting, electrophoresed proteins were transferred onto a 

polyvinylidene difluoride membrane using the mini trans-blot electrophoretic transfer cell. After the 

membrane was blocked for 1 h with TBST-I buffer (Table 33), the membrane was incubated for 1.5 h 

with anti-PilQ, anti-TsaP or anti-PilE antibody (1:5000 dilution in TBST-I buffer). Before the 

membrane was incubated for 1.5 h with AP conjugated secondary antibody, the membrane was 

washed twice for 10 min. Subsequently, the membrane was washed 3 times for 10 min with TBST-I 

buffer. Finally, the membrane was equilibrated twice for 5 min with assay buffer (Table 14) followed 

by 5 min incubation with CDP-star solution. The chemiluminescence signal was detected using the 

LAS-4000 Fujifilm analyser. 

3.4.4 Coomassie‐StaiŶing 

Polyacrylamide gels, covered with coomassie staining solution, were heated in a microwave until 

boiling. The gels were incubated in the hot coomassie staining solution for 5-10 min on a platform 

shaker and then washed twice in H2O. The gels were again heated in water and incubated for 5 min 

with constant shaking. A final destaining step was performed by incubating the gel in hot destaining 

solution until the background turned colorless. In a final step the gels were washed with H2O and 

scanned with an Epson Perfection V700 Photo scanner. 

3.4.5 Peptidoglycan isolation, binding and zymography 

Murein sacculi of N. gonorrhoeae were purified from three liters of an exponentially growing culture 

as described previously [178]. The purification of the sacculi was confirmed by EM. To test for 

binding to peptidoglycan, 5 µg purified N. gonorrhoeae TsaP or 5 µg E.coli Exonuclease I was 

incubated with or without 1 mg peptidoglycan in a volume of ϭϱϬ ʅl foƌ ϭ h at ϭϱ °C iŶ protein-

purification buffer D. Samples were spun down in an airfuge (Beckman Coulter) at 20 pounds per 
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square inch gage (psig) for 10 min. The supernatant (unbound fraction) was collected while the 

pellet was resuspended in protein purification buffer C. The samples were spun down again at 

20 psig for 10 min. The supernatant (wash fraction) was collected and the pellet fraction was 

resuspended in 4 % SDS in buffer C, incubated for 2 h at 15 °C and centrifuged for 5 min at 15 psig. 

The supernatant (bound fraction) was collected. All fractions were precipitated with trichloroacetic 

acid and analyzed by immunoblotting. To test for PG hydrolysis activity of TsaP, 5 µg purified TsaP 

was loaded on 12 % SDS/PAGE gels containing 0.04 % (w/v) PG and zymography was performed 

essentially as described [178]. 5 µg BSA, lysozyme and mutanolysin were loaded as negative and 

positive controls, respectively.  

3.4.6 Outer membrane detachment assay 

Outer membranes were treatment with 7.5 M urea for 30 min at 4 °C on a rotary shaker. Following 

membrane treatment, samples were centrifuged for 30 min at 10,000 x g at 4 °C. Proteins in the 

soluble fractions were collected. The insoluble proteins were treated once more with 7.5 M urea and 

collected by centrifugation. Supernatant and pellet fractions were then analyzed by SDS/PAGE and 

iŵŵuŶoďlottiŶg usiŶg α-TsaP peptide-antibody. Before loading, soluble fractions were precipitated 

with trichloroacetic acid. 

3.4.7 Outer membrane solubilization 

1 mg of outer membranes were solubilized in 950 µl solubilization buffer (4 % SB3-12, 50 mM Tris pH 

7.4, 250 mM NaCl) overnight at 4 °C. After centrifugation at 100,000 x g for 30 min, the solubilized 

proteins and non solubilized fractions were phenol treated as described before [105, 179] and 

analyzed on a 12 % SDS/PAGE. 

3.4.8 Mass spectrometry of non-solubilized fractions 

Membranes were solubilized for 2 h in buffer A with different detergents (1 % DDM, 2 % CHAPS, 1 % 

Triton, 4 % SB3-10, 4 % SB3-12 and 5 % SB3-14) at 4 °C. After centrifugation at 100,000 x g for 30 min 

at 4 °C, the supernatant was removed and the pellet was resuspended in 250 mM NaCl, 50 mM Tris; 

pH 7.4. After dissociation of the multimeric PilQ complex, samples were loaded on SDS/PAGE. Mass 

spectrometry to identify the proteins excised from SDS/PAGE gels was performed as described [180]. 

Mass spectrometry analysis was performed by Jörg Kahnt. 

3.4.9 Electron microscopy 

To analyze purified PilQ, elution fractions of the purification were applied on carbon coated copper 

grids and negatively stained with 2 % uranyl acetate by the droplet method as described previously 

[105]. EM and single particle analysis of secretin complexes from purified PilQ fractions or in isolated 

membranes was performed as described [105, 179]. For N. gonorrhoeae, transmission electron 

microscopy of whole cells and T4P was essential done as described [181]. Transmission electron 

microscopy was performed on a JEOL JEM-2100 at an acceleration voltage of 120 kV and images 

captured with a 2k x 2k fast scan CCD camera F214.  
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3.4.10 Purification of TsaP 

E. coli BL21 star (DE3) cells transformed with pAW001 were grown to an OD600 of 0.5 in Lysogeny 

Broth medium at 37 °C and induced with 0.5 mM IPTG. After incubation for another 3 h, cells were 

harvested by centrifugation at 4 °C for 10 min at 7,500 x g. Cells were resuspended in 10 ml protein 

purification buffer A ĐoŶtaiŶiŶg Pƌotease IŶhiďitoƌ CoĐktail ;‘oĐheͿ aŶd ϭϬ ʅg/ŵl DNase I aŶd lǇsed 
by three passages through a French press at 1,000 psi. The suspension was centrifuged at 4 °C for 

10 min at 12,000 x g followed by ultracentrifugation for 30 min at 180,000 x g. The supernatant was 

loaded on a HiTrap Chelating HP column (GE Healthcare) equilibrated with protein purification 

buffer A. After washing the column with protein purification buffer B containing 20, 40 and 50 mM 

imidazole, TsaP was eluted with a gradient from 50-400 mM imidazole in buffer B. Fractions 

containing TsaP were collected. These fractions were applied to a Superdex 75 HiLoad 16/60 column 

equilibrated with protein purification buffer C or protein purification buffer F if the protein is used 

for interaction assays. Fractions containing TsaP were collected and frozen. 

3.4.ϭϭ PurificatioŶ of TsaPΔA33-R83 

E. coli BL21 star (DE3) cells transformed with pKS035 were grown to an OD600 of 0.5 in Lysogeny 

Broth medium at 37 °C and induced with 0.5 mM IPTG. After incubation for another 3 h, cells were 

harvested by centrifugation at 4 °C for 10 min at 7,500 x g. Cells were resuspended in 10 ml protein 

purification buffer G ĐoŶtaiŶiŶg Pƌotease IŶhiďitoƌ CoĐktail ;‘oĐheͿ aŶd ϭϬ ʅg/ŵl DNase I aŶd lǇsed 
by three passages through a French press at 1,000 psi. The suspension was centrifuged at 4 °C for 10 

min at 12,000 x g followed by ultracentrifugation for 30 min at 180,000 x g. The supernatant was 

loaded on a HiTrap Chelating HP column (GE Healthcare) equilibrated with protein purification 

buffer G. After washing the column with protein purification buffer H containing 20, 40 and 50 mM 

imidazole, TsaP was eluted with a gradient from 50-500 mM imidazole in buffer H. Fractions 

containing TsaP were collected. These fractions were applied to a Superdex 75 HiLoad 16/60 column 

equilibrated with protein purification buffer I. Fractions containing TsaPΔA33-R83 were collected 

and frozen. 

3.4.12 Purification of HA-PilQ(B1/B2)-CPD-His10 

E. coli BL21 star (DE3) cells transformed with pAW003 were grown to an OD600 of 0.5 in Lysogeny 

Broth medium at 37 °C and induced with 0.5 mM IPTG. After incubation for another 3 h, cells were 

harvested by centrifugation at 4 °C for 10 min at 7,500 x g. Cells were resuspended in 10 ml Protein-

purification buffer D ĐoŶtaiŶiŶg Pƌotease IŶhiďitoƌ CoĐktail ;‘oĐheͿ aŶd ϭϬ ʅg/ŵl DNase I aŶd lǇsed 
by three passages through a French press at 1,000 psi. The suspension was centrifuged at 4 °C for 10 

min at 12,000 x g followed by ultracentrifugation for 30 min at 180,000 x g. The supernatant was 

loaded on a HiTrap Chelating HP column (GE Healthcare) equilibrated with protein purification 

buffer E. After washing the column with Protein-purification buffer A containing 20, 40 and 50 mM 

imidazole, TsaP was eluted with a gradient from 50-400 mM imidazole in protein purification buffer 

E. Fractions containing TsaP were collected. These fractions were applied to a Superdex 200 HiLoad 

16/60 column equilibrated with Protein-purification buffer D. Fractions containing HA-PilQ(B1/B2)-

CPD-His10 were collected and frozen. 
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3.4.13 Purification of- MalE-TsaPMX  

E. coli Rosetta 2 (DE3) cells transformed with pSC121 were grown to an OD600 of 0.5 in Lysogeny 

Broth medium at 37 °C and induced with 0.5 mM IPTG. After incubation overnight at 18 °C, cells 

were harvested by centrifugation at 4 °C for 10 min at 7,500 x g. Cells were resuspended in 10 ml 

protein purification buffer J containing Protease Inhibitor CoĐktail ;‘oĐheͿ aŶd ϭϬ ʅg/ŵl DNase I aŶd 
lysed by three passages through a French press at 1,000 psi. The suspension was centrifuged at 4 °C 

for 10 min at 12,000 x g followed by ultracentrifugation for 30 min at 180,000 x g. The supernatant 

was mixed with equilibrated amylose matrix and incubated for 30-60 min at 4 °C. The mixture was 

loaded on a Pierce centrifuge column. After collecting the flow through, the column was washed 

twice with 20 ml protein purification buffer J. Bound protein was eluted with 3 times 1 ml protein 

purification buffer K. These fractions were applied to a Superdex 200 HiLoad 16/60 column 

equilibrated with Protein-purification buffer F. Fractions containing MalE-TsaP were collected and 

frozen. 

3.4.14 Purification of His6-PilQmxaa20-656 

E. coli Rosetta 2 (DE3) cells transformed with pSC108 were grown to an OD600 of 0.5 in Lysogeny 

Broth medium at 37 °C and induced with 0.5 mM IPTG. After incubation overnight at 18 °C, cells 

were harvested by centrifugation at 4 °C for 10 min at 7,500 x g. Cells were resuspended in 10 ml 

protein purification buffer D ĐoŶtaiŶiŶg Pƌotease IŶhiďitoƌ CoĐktail ;‘oĐheͿ aŶd ϭϬ ʅg/ŵl DNase I 
and lysed by three passages through a French press at 1,000 psi. The suspension was centrifuged at 

4 °C for 10 min at 12,000 x g followed by ultracentrifugation for 30 min at 180.000 x g. The 

supernatant containing all soluble proteins was mixed with the equilibrated Ni2+-NTA agarose and 

incubated gently shaking at 4°C for 30-60 min. The mixture was loaded on a Pierce centrifuge 

column. After collecting the flow through, the column was washed twice with 20 ml protein 

purification buffer D. Bound protein was eluted with 3 times 1 ml protein purification buffer E. These 

fractions were applied to a Superdex 200 HiLoad 16/60 column equilibrated with Protein-purification 

buffer F. Fractions containing His6-PilQmxaa20-656 were collected and frozen. 

3.4.15 Protein-Protein Interaction Assay 

To identify direct protein-protein interaction, proteins purified in protein purification buffer F were 

mixed and incubated for 1 h at 32 °C. As control, each protein was additionally analyzed separately. 

After concentrating the protein mixture to a volume of 100 µl using an Amicon Ultra-0.5 device, the 

sample was applied to a Superdex 200 10/300 GL column equilibrated with Protein-purification 

buffer F. 

3.5. Bioinformatical methods 

3.5.1 Reciprocal BlastP analysis 

Reciprocal BlastP analysis was performed as described previously [182]. BlastP analyses were done 

with an initial expect value cutoff of 0.1 on 450 selected genomes of proteobacteria. The PilQ 

(NP_253727.1), PilT (NP_249086.1; Met1-Ser119), PilF (NP_253216.1; Met1-Gly199), PilM 

(NP_253731.1), PilN (NP_253730.1), PilO (NP_253729.1) and the TsaP (NP_248710.1; Arg90-Pro341), 
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MltD (PA1812), AmiC (PA4947), FimV (PA3115) proteins of Pseudomonas aeruginosa PAO1 were 

used as the initial query sequences in the analyses. The initial blast data was filtered with a query-

specific expect value cutoff (PilQ, E-65; PilT, E-20; PilF, E-5; PilM, E-15; PilN, E-5, PilO, E-5; TsaP, E-3; 

MltD, E-5; AmiC, E-5; FimV, E-5) to eliminate non-specific results. The reciprocal BlastP analysis was 

performed by Dr. Stuart Huntley. 
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4. Results 

4.1 Analysis of the Gonococcal Genetic Island 

4.1.1 Transcriptional mapping of the Gonococcal Genetic Island 

Many Gram-negative bacteria have conserved macromolecule secretion systems. Type IV secretion 

systems have been found mainly in pathogenic bacteria, such as Agrobacterium tumefaciens, 

Helicobacter pylori and Neisseria gonorrhoeae. In N. gonorrhoeae the type IV secretion system, 

which is involved in secretion of single stranded DNA into the extracellular milieu is located on a 

genetic island called the Gonococcal Genetic Island (GGI). Here I describe my contributions to the 

progress obtained in the understanding of the regulation and function of the genes encoded in the 

GGI.  

To gain insights into the transcriptional regulatory network of the T4SS, I aimed to map the operon 

structure within the regions containing the genes involved in DNA secretion using RT-PCR. Based on 

the three divergently transcribed gene regions of the GGI, the GGI has previously been divided into 

three major parts. PCR analysis of the genes yaf, traI, traD, and yaa which are found within the first 

GGI part, showed that the genes are encoded by the same polycystronic mRNA. The translational 

coupling of these 4 genes was as expected, based on the small spacing between these genes. Except 

for the translational coupling of these genes the analysis revealed that the transcription start area is 

between 130 and 210 bp upstream of the yaf gene. To determine the transcription end, 

oligonucleotides according to the sequence downstream of the dif site were designed. Remarkably, 

agarose gel electrophoresis of the amplified PCR products indicated that the transcript is terminated 

between 250 and 620 bp after the dif site (Figure 10A), demonstrating that the transcription takes 

place across the dif site. The second mapped GGI part was that from ltgX to ych, a region in which 

the genes are oriented in the same direction. Again, many of the genes in this region are located 

very close together, and the analysis was performed for all the genes which were spaced more than 

10 nucleotides apart. For all gene pairs studied, except for the traF-traH pair PCR products were 

obtained, indicating that this region consists of 2 operons, one operon from ltgX to traF and one 

region from traH to ych (Figure 10B and Figure 10C). Agarose gel electrophoresis of the amplified 

DNA products was used to determine the transcription start region, which was found to lie between 

290 and 200 bp upstream of ltgX (see Figure 10B). The operon mapping further demonstrated that 

the transcription start site for the traH-ych operon lies between 25 and 90 bp before the traH gene 

(see Figure 10C). The third GGI region encodes for proteins with homologies to DNA processing and 

modifying proteins. However, most of the genes of this region encode for proteins with an unknown 

function, and are not involved in DNA secretion. It was decided to map the regions including the 

genes which were shown to be essential for DNA secretion. The RT-PCR analysis demonstrated that 

the parA, parB, yfeB and yfb genes, although they are often found genetically linked to ssbB [183], 

are not encoded in the same operon (Figure 10D). To predict the transcription start of the last 

operon a more detailed analysis of the region upstream of parA was undertaken, which identified 

that the transcript starts between 320 and 350 bp before the dif site.  
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4.1.2 Analysis of the expression of the single stranded binding protein SsbB 

Currently no information is available about the expression of the SsbB protein encoded within the 

GGI or any of its close homologs. The ssbB gene is located between several genes transcribed in the 

same direction (Figure 11A). The RT-PCR analysis demonstrated that the ssbB, topB, yeh, yegB and 

yegA genes form an operon (Figure 11B). Homologs of the ParA and ParB proteins, the 

topoisomerase, and the proteins with the DUF2857 (YfeB) and the DUF1845 (Yfb) domains are 

conserved within the SsbB homologs encoded within genetic islands. The yegA gene is followed by a 

previously unnamed gene (annotated as NgonM_04872 in the MS11 whole genome shotgun 

sequence) which encodes a 149 amino acids long conserved hypothetical protein with a DUF3577 

domain. This gene was named yef. Remarkably, my operon mapping data shows that the operon 

that contains ssbB is transcribed during normal growth of N. gonorrhoeae. The first operon of the 

GGI which contains the traI and traD proteins that are involved in targeting the secreted DNA to the 

 
Figure 10 Transcription analysis of the genes encoded in the Gonococcal Gentic Island 

PCR with different primer combinations on cDNA generated by reverse transcriptase on RNA isolated from strain MS11, was used to 

identify operons within the GGI. The results of the transcriptional analysis using different primer pairs within A) the yaf-yaa, B) the 

ltgX-traF, C) the traH-exp1 and D) the parA-yfa regions are depicted. The right (A) or lower (B, C, D) agarose gels on which the PCR 

products obtained with the different primer combinations were loaded. The left (A) or upper (B, C, D) part of the figure shows a 

representation of the genetic structure of the operon. Genes are indicated by arrows and the expected PCR products by boxes over 

the genes. Primer combinations for which a PCR product was obtained are indicated by black boxes and primer combinations for 

which no PCR product was obtained are indicated by white boxes. 



4. Results  

 

 

 

46 

secretion apparatus is upregulated in piliated cells compared to non-piliated cells [36]. To determine 

the expression levels of the ssbB gene and to test whether a similar upregulation could be observed 

in the expression of the ssbB-yegA operon, a qualitative real time PCR (qRT-PCR) using primers 

designed against the ssbB, topB, traI and traD genes and against the secY gene as a control was 

performed on mRNA isolated from piliated and non-piliated strains (Figure 11). The qRT-PCR 

revealed relatively low levels of transcription compared to the transcript containing the secY gene 

but higher levels of transcription than the traI and traD genes. However, no differences in the 

expression levels of the ssbB and topB genes were observed between piliated and non-piliated cells. 

An analysis by S. Jain showed that although the ssbB gene is transcribed during growth, it had no 

significant effect on DNA release. To further validate if SsbB is secreted, different fractions (cytosolic 

fraction, blebs and medium fraction) were isolated and analyzed by immunoblotting. SsbB could only 

be detected in the cytosolic fraction but not in the medium fraction, suggestin that SsbB is not 

secreted. Additionally, it was tested if SsbB plays an important role in DNA uptake and competence. 

For this, the effect of SsbB on the efficieny of DNA uptake by N. gonorrhoeae was tested in co-

culture experiments. In general it could be shown that SsbB has no effect on ssDNA secretion and/or 

DNA uptake. 

4.1.3 DNA secretion facilitates biofilm formation 

During attachment to surfaces, planktonic bacteria start to produce extracellular substances like 

exopolysaccharides, secreted proteins, membrane vesicles and extracellular DNA (eDNA). It was 

demonstrated for many organisms, like Pseudomonas aeruginosa [184], Streptococcus pneumonia 

[185], Enterococcus faecalis [186], Staphylococcus aureus [187], N. meningitidis [188] and 

N. gonorrhoeae [189] that eDNA is an important component of the biofilm. As biofilms of 

N. gonorrhoeae contain large quantities of eDNA, we explored the possibility that the ssDNA, which 

is secreted by the T4SS, could contribute to biofilm formation. Biofilm experiments in continuous 

flow-chamber systems, performed by Maria Zweig, could show that the incorporation of the ssDNA 

degrading enzyme Exonuclease I into the media decreased N. gonorrhoeae biofilm formation by ~95 

 

Figure 11 Analysis of the transcription of the yfa-yef region 

Reverse transcriptase was used to map the operon structure of the ssb-yegA 

region within the GGI of N. gonorrhoeae strain MS11. A) Schematic 

representation of the yfa-yef region of the GGI. Genes are indicated by 

arrows and the expected PCR products by lines over the genes. Primer 

combinations for which a PCR product was obtained are indicated by black 

boxes and primer combinations for which no PCR product was obtained are 

indicated by white boxes. B) Operon mapping of the ssb-yegA operon. 

Transcripts were determined by PCR. (+) indicates reactions on cDNA created 

iŶ the pƌeseŶĐe of ƌeǀeƌse tƌaŶsĐƌiptase aŶd ;−Ϳ iŶdiĐates ƌeaĐtioŶs oŶ ĐDNA 
created in the absence of reverse transcriptase. C) Quantitative gene 

expression levels of ssbB, topB, traI and traD of piliated and non-piliated 

N. gonorrhoeae strains were determined by qRT-PCR. The graph shows the 

mRNA levels as comparative gene expression after normalizing each gene to 

secY. Values depict means ± standard deviation of six biological replicates. 
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%. Because biofilm formation was influenced by the addition of Exonuclease I, and thus most likely 

by the presence of ssDNA, it was tested whether the ssDNA secreted via the T4SS encoded within 

the GGI facilitates biofilm formation. 

To investigate if single stranded DNA, which is secreted via the T4SS encoded within the GGI 

facilitates biofilm formation, biofilm formation of two different N. gonorrhoeae strains was 

compared by Maria Zweig. The strains initially used within this study were the N. gonorrhoeae MS11 

WT strain and the MS11ΔtraB deletion strain. The MS11ΔtraB strain contains a deletion in the traB 

gene. TraB is part of the T4SS core complex and deletion of this gene results in abolishment of DNA 

secretion. Biofilms of the different strains were grown for 3 days in a continuous flow chamber 

system and biofilm formation was imaged by Maria Zweig after 24, 48 and 72 hours. Quantification 

of the biofilms showed that deletion of the traB gene influenced biofilms formation (Figure 12). 

However, N. gonorrhoeae strains can undergo both antigenic and phase variation, of especially 

proteins that are located on the surface of the cell, and are thus exposed to the immune system of 

the human host. Antigenic and phase variation of e.g. the pilin subunit strongly influence the ability 

of N. gonorrhoeae to form biofilms. Therefore, it was essential to show that the effects of the traB 

deletion on biofilm formation were caused by the traB mutation, and were not the result of 

antigenic variation. Complementation in N. gonorrhoeae is usually done by insertion of the gene of 

interest onto the gonococcal chromosome. The majority of DNA that enters the cell during natural 

transformation is single stranded and not a target for restriction enzymes and is therefore much 

more efficiently incorporated than replicating plasmids. For this reason, I restored the traB deletion 

strain by transformation with chromosomal DNA from N. gonorrhoeae MS11 wt strain, which results 

iŶ a stƌaiŶ iŶ ǁhiĐh the ΔtraB deletion is replaced by the WT traB gene. 

Using this strain, Maria Zweig showed that the strain in which the traB deletion is replaced by the 

WT traB gene forms biofilms in a similar manner as the WT strain, demonstrating that the effects 

observed in biofilm formation in the traB deletion strain are indeed caused by the traB deletion. 

 
Figure 12 Deletion of the traB gene results in a strong decrease of biofilms formation 

Confocal laser scanning microscopy in continuous flow chambers inoculated with N. gonorrhoeae M“ϭϭ, M“ϭϭΔtƌaB aŶd 
M“ϭϭΔtƌaB::tƌaB iŵaged Ϯϰ, ϰϴ aŶd ϳϮ hours after inoculation. (A) Biofilms were stained with Syto62 and visualized by CLSM. 

Micrographs represent three- dimensional projections. The scale bar equals 20µm. (B) Quantification of the amount of biofilms 

formed by MS11 (ǁhite ďaƌsͿ, M“ϭϭΔtƌaB ;light gƌeǇͿ aŶd M“ϭϭΔtƌaB::tƌaB ;dƌak gƌeǇ ďaƌsͿ afteƌ Ϯϰ, ϰϴ aŶd ϳϮ houƌs. [CLSM and 

quantification was performed by Dr. M. Zweig, MPI Marburg] 
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4.2 The peptidoglycan-binding protein TsaP functions in surface assembly of type IV 

pili 

4.2.1 Identification of a protein associated with secretin complexes of type IV pili in 

N. gonorrhoeae 

Previous transmission electron microscopic (EM) studies of native secretin complexes of 

N. gonorrhoeae embedded in OM sheets showed that the PilQ secretin ring is surrounded by an 

additional peripheral structure which consists of a peripheral ring and seven extending spikes (see 

Figure 16A and Figure 16E) [105]. To identify the protein(s) that form the peripheral structure, we 

first attempted to solubilize and purify the complex from isolated membranes. As has been done 

previously for N. meningitidis PilQ [190], a His8-tag was introduced into the small basic repeat region 

of PilQ of the N. gonorrhoeae wild-type (WT) strain MS11, generating strain SJ004-MS. In prior 

secretin cell envelope extractions studies of PilQ of N. meningitidis [172, 191, 192], PulD of 

Klebsiella oxytoca[166], XcpQ of P. aeruginosa [161], YscC of Yersinia enterocolitica [163, 193] and 

the filamentous phage pIV [171] a variety of zwitterionic, non-ionic and ionic detergents, which 

mimic the natural lipid environment, were used and it was found that proteins of the secretin family 

generally require harsh solubilization conditions. Based on these protocols isolated outer 

membranes, derived from N. gonorrhoeae strain SJ004-MS, were solubilized using the zwitterionic 

detergents SB3-14 (5 % w/v), SB3-12 (4 % w/v), SB3-10 (4 % w/v), CHAPS (2 % w/v) and the non-ionic 

detergents DDM (1 % w/v), CHAPS (2 % w/v) and Triton (1 % w/v). Even though SDS was additionally 

used in previous studies, SDS was not tested for His8-PilQ extraction, since this harsh detergent most 

likely would result in protein denaturation and loss of the additional structures. The outer 

membranes were incubated within the different detergents and subjected to an ultracentrifugation 

step, aimed to separate solubilized proteins from the non-solubilized pellet fraction. To determine 

the extraction efficiency of the His8-PilQ complex, the solubilized and pelleted non-solubilized 

fractions were phenol treated and analyzed by SDS/PAGE (Figure 13). Similar to what was reported 

previously; only small amounts of His8-PilQ could be extracted from outer membranes using 

zwitterionic and nonionic detergents. Comparing the amount of solubilized and non-solubilized His8-

PilQ demonstrated that PilQ is largely insoluble in nonionic detergents at neutral pH, a phenomenon 

which is common for secretin complexes [166]. A screen of several detergents showed that only 

 

Figure 13 Solubilization of His8-PliQ containing outer 

membrane 

Outer membranes isolated from His8-PilQ strain were 

solubilized by 4 % SB3-12, 4 % SB3-10, 1 % DDM, 2 % CHAPS 

and 1 % Triton respectively. The solubilized protein 

fractions (S) and non-solubilized pellet fractions (P) were 

phenol treated and analyzed by 12 % SDS/PAGE.  

 



4. Results  

 

 

 

49 

small amounts of His8-PilQ could be solubilized from isolated membranes and purified by Ni2+-affinity 

chromatography. Figure 14 shows the different fractions during purification of the His8-PilQ complex, 

analyzed after phenol treatment on a SDS/PAGE. To gain insights into the structure of the His8-PilQ 

containing elution fractions, electron microscopy (EM) was applied to negatively stained samples of 

the elution fraction. Figure 15 shows an overview of isolated particles obtained from a purification 

using 4% sulfobetaine 3-12 to solubilize and purify the complex. Single particle alignment of these 

particles showed a structure consisting of a single ring (Figure 16B and Figure 16F) with a diameter 

(150 Å) similar to that observed for PilQ complexes from N. meningitidis [190]. Comparison of these 

particles with the previously described class average of the secretin complex embedded in OM 

sheets, i.e. in its native OM environment ([105]; Figure 16A and Figure 16E), showed that isolated 

His8-PilQ has the same size and shape as the inner ring of this structure. However, the additional 

features, i.e. the peripheral ring and the spikes, were lost during solubilization and purification. This 

observation explains why these features have not been detected in previously described PilQ 

purifications [191, 192, 194]. At the obtained resolution, individual domains of the His8-PilQ complex 

are not well resolved, but, as observed previously [105], after imposing 14-fold symmetry features 

become more pronounced compared to any other imposed symmetry between 12 and 16, 

suggesting a 14-fold symmetry for the N. gonorrhoeae PilQ multimer (Figure 16F). 

 

Figure 14 Analysis of purified PilQ by electron microscopy 

Elution fractions of the PilQ purification were applied to 

carbon coated copper grids and negatively stained with 2 % 

uranyl acetate. PilQ particles are indicated by the red 

boxes. The scale bar equals 100 nm. [The EM analysis was 

performed by Dr. M Webber-Birungi Rijksuniversiteit 

Groningen] 

Figure 15 Solubilized His8-PilQ purification 

Outer membranes isolated from His8-PilQ strain were solubilized by 

5 % SB3-14, 4 % SB3-12, 4 % SB3-10, 1 % DDM, 2 % CHAPS and 1 % 

Triton respectively and His8-PilQ was purified by Ni2+-affinity 

chromatography. The flowthrough (F), wash (W) and elution (E) 

fractions were phenol treated and analyzed by 12 % SDS/PAGE.  
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Figure 16 Identification of TsaP (NGFG_01788) 

(A) Coomassie stained SDS/PAGE of the non-

solubilized fraction of SB3-12 treated OMs. Analysis 

by mass spectrometry identified PilQ, TsaP 

(NGFG_01788), elongation factor Tu (EF-Tu), OM 

protein I (OMP I), OM protein III (OMP III) and a 

peroxiredoxin 2 family protein (Per2). (B) Domain 

structure of TsaP. The signal sequence (ss) and LysM 

domain are depicted. 

Because the peripheral ring and spikes were lost during solubilization and purification, we analyzed 

the non-solubilized N. gonorrhoeae membrane fractions by SDS-PAGE. These fractions contained 

significant amounts of His8-PilQ along with several other proteins (Figure 17A). Identification of 

these proteins by mass spectrometry (MS) (performed by J. Kahnt) identified EF-Tu, OMP I, OMP III 

and a peroxiredoxin 2 family protein. These proteins were identified in a proteome study of 

N. meningitidis as 4 of the 5 most abundantly expressed proteins [195]. MS also identified PilQ and 

the conserved hypothetical protein NGFG_01788, which were not identified as highly abundant 

proteins in the proteomics study mentioned. NGFG_01788 is a 45.5 kDa protein that contains a type 

I signal sequence, an N-terminal LysM domain and a C-terminal part of unknown function (Figure 

17B). The LysM domain is a widespread protein domain involved in PG binding. BlastP analysis and 

alignment identified many NGFG_01788 homologs that are conserved over the entire length of 

NGFG_01788 (Figure 18), and that are found widespread among Gram-negative bacteria. 

Importantly, as shown in Figure 18 the conserved residues in other LysM domains are also conserved 

in the LysM domains of homologs of NGFG_01788 [158, 159]. Based on the presence of 

NGFG_01788 in the non-solubilized membrane fractions together with His8-PilQ, the presence of the 

LysM domain, we hypothesized that NGFG_01788 is a component of the secretin complex that might 

anchor the complex to the PG. From here on, we refer to NGFG_01788 as TsaP, for Type IV pili 

secretin associated Protein. 

 

 

 

 

Figure 17 Projection maps of single particle electron microscopy analysis of 

the PilQ complex from N. gonorrhoeae 

Projection maps of class averages of single particle EM images obtained from 

membranes isolated from (A, E) the WT, (C, G) the ΔtsaP strain and (D, H) the 

ΔtsaP/tsaP+ strain grown in the presence of 1 mM IPTG. (B, F) show class 

averages of single particle EM images of the solubilized and purified His8-PilQ 

complex. Projection maps without (A, B, C and D) and with (E, F, G, H) 14-fold 

imposed symmetry are depicted. I, II and III indicate the inner ring, the 

peripheral ring and the spikes respectively. Scale bar, 10 nm. [The EM analysis 

and single particle electron microscopy analysis was performed by D.A. 

Semchonok, Rijksuniversiteit Groningen] 
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Figure 18 Alignment of TsaP homologs of different organisms 

TsaP homologs described in table 46 (supplementary data) were aligned. Colored residues are <50 % conserved. The putative signal 

sequence cleavage site is indicated with a black arrow, while the LysM domain is indicated with a green box. Residues (G40, D41, T42, 

N70 and G77) that are highly conserved in LysM domains are indicated in bold below the alignment. 
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4.2.2 Analysis of TsaP in membranes 

To characterize the function of TsaP in N. gonorrhoeae, a ΔtsaP mutant was generated in the WT 

strain by insertion duplication mutagenesis [16]. Moreover, a ΔtsaP complementation strain was 

generated by the ectopic insertion of a copy of tsaP under control of the lac promoter (ΔtsaP/tsaP+) 

[18]. Unless otherwise indicated, the ΔtsaP/tsaP
+ strain was grown in the presence of 1 mM IPTG. 

WesteƌŶ ďlot oŶ ǁhole Đell eǆtƌaĐts usiŶg α-TsaP antibodies demonstrated the presence of a protein 

of the expected size that was not detected in the ΔtsaP stƌaiŶ deŵoŶstƌatiŶg that the α-TsaP 

antibodies are specific for TsaP. Moreover, TsaP was present at WT levels in the ΔtsaP/tsaP+ 

complementation strain (Figure 19AͿ. IŵŵuŶoďlottiŶg oŶ ǁhole Đell eǆtƌaĐts usiŶg the α-PilE 

antibodies showed that all three strains accumulated similar amounts of the PilE pilin protein.  

To determine directly whether TsaP is associated with membranes, total membranes were isolated 

from the WT, ΔpilQ, ΔtsaP and ΔtsaP/tsaP+ strains. PilQ forms a highly SDS-stable oligomeric 

complex that migrates as a high molecular weight complex in SDS/PAGE. Coomassie staining of 

SDS/PAGE gels of isolated membranes showed that the high molecular weight PilQ complex was 

present in membranes from the ΔtsaP and ΔtsaP/tsaP+ strains at similar levels as observed in WT 

(Figure 19B). Thus, neither the level nor the oligomerization of PilQ are affected in ΔtsaP and 

ΔtsaP/tsaP+ strains. The PilQ oligomer can be dissociated before SDS/PAGE analysis by treatment 

with hot phenol. Phenol treated membranes were analyzed after SDS/PAGE and western blotting 

with antibodies raised against TsaP, PilQ and the pilin PilE. These experiments demonstrated that the 

PilQ ŵoŶoŵeƌ aĐĐuŵulated at siŵilaƌ leǀels iŶ the WT, ΔtsaP and ΔtsaP/tsaP+ strains. In isolated 

total membranes, ΔtsaP/tsaP+ and WT showed similar levels of TsaP accumulation (Figure 19C); 

however, the level of TsaP was reduced in the ΔpilQ mutant, suggesting that either membrane 

insertion or membrane association of TsaP depends on PilQ. As was observed for whole cell extracts, 

the level of PilE was comparable in membranes isolated from the WT, ΔpilQ, ΔtsaP and ΔtsaP/tsaP+
 

strains (Figure 19C), again showing that all strains expressed the pilin subunit. To test whether TsaP 

is more stably associated with membranes containing PilQ, total membranes isolated from the WT 

and ΔpilQ strains were incubated with 7.5 M urea. Incubation of membranes with 7.5 M urea is a 

common method to remove membrane associated but not membrane inserted proteins [196]. Even 

after two washes, TsaP was only partially dissociated from WT membranes containing PilQ 

(Figure 19D), suggesting that TsaP is either membrane inserted, or is very tightly bound to the 

membrane. Remarkably, when membranes derived from the ΔpilQ mutant were treated with 7.5 M 

urea, TsaP was fully removed. Thus tight association with or integration of TsaP in the OM depends 

on PilQ. We speculate that the reduced levels of TsaP observed in total membranes in the ΔpilQ 

strain (Figure 19C) either reflects the lack of tight association or integration of TsaP in the OM in the 

absence of PilQ or that PilQ functions to stabilize TsaP. As shown below, TsaP binds to PG. Therefore, 

it also remains a possibility that TsaP associates more strongly with PG in the absence than in the 

presence of PilQ. If that would be the case, less TsaP would be recovered in the membrane fraction 

in the absence of PilQ.  
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4.2.3 His10-TsaP can be purified as a highly stable monomer 

To further characterize TsaP, His10-TsaP was purified and biochemically characterized. As TsaP 

contains a type I signal sequence, the first 23 amino acids were removed to prevent transport to the 

periplasm upon overexpression in E. coli. His10-tagged TsaP was cloned under the T7 promoter and 

the resulting overexpression construct was transformed into E. coli BL21 (DE3) star. This 

overexpression strain carries the T7 polymerase and the IPTG-inducible lac-promoter. After 

overexpression, TsaP could be purified in homogenicity in large amounts using a two step protocol 

as described in paragraph 3.4.10. TsaP elutes from the Ni2+-affinity column at an imidazole 

concentration of 150 mM. The elution profile is shown in Figure 20A. Each second elution fraction 

was analyzed by SDS/PAGE. His10-TsaP migrates on SDS/PAGE gels at a position corresponding to the 

calculated size of 45.5 kDa (Figure 20B). Taking the SDS/PAGE into account the fractions A10-B9 

were pooled and loaded on a size exclusion volume. The elution profile showed one distinct peak at 

an elution volume of 80 ml (see Figure 20B). Correlating the elution volume of the observed protein 

peak with commercially available molecular weight standards showed that this peak correspond to a 

molecular mass of 45 kDa, which is in agreement with the calculate mass of monomeric His10-TsaP. 

The different elution fractions were analyzed by SDS/PAGE and TsaP was detected in each of the 

fractions (Figure 20D). A second band with a molecular mass of approximately 37 kDa could 

additionally be detected. This second band could also be detected in immunoblot analysis using an 

antibody raised against TsaP, indicating that the second band most likely correspond to degraded 

TsaP protein. 

 

Figure 19 Membrane binding of TsaP depends on PilQ 

(A) Immunoblot analysis of equal amounts of total cell extracts of 

the WT, ΔpilQ, ΔtsaP and ΔtsaP/tsaP+ strains grown in the 

pƌeseŶĐe of ϭ ŵM IPTG usiŶg α-TsaP, aŶd α-PilE antibodies. (B) 

The panel shows the upper part of a Coomassie stained SDS/PAGE 

of non-phenol treated OM fractions isolated from the indicated 

N. gonorrhoeae strains. (C) The left panel shows a Coomassie 

stained SDS-PAGE of phenol treated OM fractions from the 

indicated strains. The right panels show immunoblot analysis of 

the saŵe saŵples usiŶg α-TsaP, α-PilQ aŶd α-PilE antibodies. (D) 

Total membranes (TM) derived from N. gonorrhoeae WT (left) 

and the ΔpilQ mutant (right) were treated twice for 30 min with 

7.5 M urea. After centrifugation, the supernatants (W1 and W2) 

and the resuspended membrane pellets (P) were analyzed by 

iŵŵuŶoďlot aŶalǇsis usiŶg the α-TsaP antibody. 
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Figure 20 Purification of His10-TsaP 

(A) Elution profile of Ni2+-affinity chromatography. The protein was detected at 280 nm and is indicated by the solid line. The 

imidazole concentration is indicated by the dashed line. The intensity is given in mAU. The collected fractions are labeled as indicated. 

(B) 12 % SDS/PAGE with elution fractions from the Ni2+-affinity chromatography. The labeling of the lanes corresponds to the labeling 

of the elution fractions shown in (A). Molecular masses are indicated on the left side. TsaP migrates at a position corresponding to a 

molecular mass of 45 kDa. (C) His10-TsaP eluted as a monomer from the SD200 gel filtration column. The protein was detected at 

280 nm which is indicated by the solid line. (D) His10-tagged TsaP was essentially pure as assayed by Coomassie staining of a 12 % 

SDS/PAGE of the purified protein. The labeling of the lanes corresponds to the labeling of the elution fractions shown in (C). The 

position of various markers for the SDS/PAGE are indicated. 
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4.2.4 TsaP binds to peptidoglycan 

TsaP contains an N-terminal LysM domain. To test whether TsaP is able to bind and/or hydrolyze PG, 

His10-TsaP and murein sacculi of N. gonorrhoeae were purified (Figure 21A and Figure 21B). In a 

sedimentation assay, TsaP was found in the supernatant in the absence of murein sacculi and was 

sedimented to the pellet fraction in the presence of murein sacculi (Figure 21C), demonstrating that 

TsaP binds to isolated murein sacculi. Purified TsaP was also tested in a zymogram assay (Figure 

21D), but no hydrolysis of N. gonorrhoeae murein could be detected whereas lysozyme and 

mutanolysin, as expected, show clear zones of hydrolysis. The hydrolysis zone of mutanolysin was 

observed at a height comparable to proteins with a molecular mass of ~250 kDa. Most likely, 

mutanolysin is not completely unfolded during the SDS/PAGE and is thus retained by binding to the 

murein during electrophoresis, an effect which has been seen for other proteins before. Since the 

high level of O-acetylation of N. gonorrhoeae murein inhibits the activity of lysozyme [197], the 

specific activity of lysozyme was lower than the activity of mutanolysin.  

 

Figure 21 Characterization of binding of TsaP to isolated 

peptidoglycan sacculi 

(A) TsaP was overexpressed and purified from E.coli. Fractions 

eluted from the size exclusion column at a size corresponding to 

the monomer were analyzed by SDS-PAGE and Coomassie 

staining. (B) Peptidoglycan sacculi were isolated from 

N. gonorrhoeae and analyzed by electron microscopy. (C) To test 

for binding of TsaP to peptidoglycan, 5 µg TsaP were incubated 

without (upper panel, -PG) or with 1 mg peptidoglycan (upper 

panel, +PG). Samples were centrifuged, and the supernatant (S1) 

was collected and the pellet was resuspended. The samples were 

centrifuged again and the supernatant (S2) was collected and the 

pellet fraction was resuspended. The different fractions were 

aŶalǇzed ďǇ iŵŵuŶoďlottiŶg usiŶg α-TsaP antibodies. As a 

control, 5 µg purified His10-tagged Exonuclease I, was incubated 

without (lower panel, -PG) or with 1 mg peptidoglycan (lower 

paŶel, +PGͿ, tƌeated as desĐƌiďed aďoǀe, aŶd aŶalǇzed usiŶg aŶ α-

His antibody. To test for peptidoglycan hydrolysis, zymography 

was performed. (D) Lysozyme, mutanolysin, TsaP and BSA (5 µg 

each) were applied to SDS gels containing purified murein sacculi. 

The proteins were stained with Coomassie blue (lrightside). A 

second gel (left side) was incubated in renaturation buffer to 

allow for refolding of the proteins and peptidoglycan hydrolysis 

was detected by staining of sacculi with methylene blue. Clear 

zones of hydrolysis are observed for mutanolysin and lysozyme, 

but not for BSA and TsaP. 
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4.2.5 Lack of TsaP affects surface assembly of T4P 

On agar plates, gonococci assembling T4P on their cell surface form small, compact colonies with a 

sharp edge. Non-piliated Đells foƌŵ flat ĐoloŶies ǁith a laƌgeƌ diaŵeteƌ aŶd a ͞fuzzǇ͟ edge [177]. To 

further understand the function of TsaP, the WT, ΔpilQ, ΔtsaP and ΔtsaP/tsaP+ strains were analyzed 

on agar plates (Figure 22). WT and the ΔpilQ mutant showed colony morphologies corresponding to 

piliated and non-piliated cells, respectively. The ΔtsaP mutant and the ΔtsaP/tsaP+ strain grown in 

the absence of IPTG showed colony morphologies matching that of non-piliated cells. Importantly, in 

the presence of IPTG, the ΔtsaP/tsaP+ strain showed a colony morphology matching that of piliated 

cells. Thus, deletion of tsaP resulted in loss of the piliated colony morphology. The ΔtsaP and the 

ΔtsaP/tsaP+ strains grown in the absence of IPTG also showed slightly decreased growth on plates, 

but longer incubation did not result in a piliated colony morphology.  

 

In a next step, WT, ΔtsaP and ΔtsaP/tsaP+ cells were negatively stained for subsequent EM (Figure 

23). All strains showed OM vesicles (blebs) either as single blebs or in longer chains [198, 199]. In WT 

and the ΔtsaP/tsaP+ strain, single and bundled T4P were observed. In contrast, in the ΔtsaP mutant, 

T4P were only observed in membrane protrusions, which were filled with up to 10 T4P. This strongly 

resembles the phenotype of the previously described ΔpilQ/ΔpilT double mutant, in which T4P are 

assembled but cannot pass the OM and therefore form OM protrusions. Similar to the ΔtsaP mutant, 

the ΔpilQ/ΔpilT mutant also showed a slight growth retardation and a colony morphology matching 

that of non-piliated cells [200]. We conclude that in the ΔtsaP mutant, T4P are formed, but these 

T4P are unable to efficiently pass the OM and, therefore, assemble in OM protrusions and are not 

displayed on the cell surface. 

 

 

 

Figure 22 TsaP is important for T4P-

dependent colony morphology 

The indicated N. gonorrhoeae 

strains were incubated at 37 °C for 

24 h on GCB plates. The scale bar 

equals 1 mm. 

 

Figure 23 Deletion of TsaP leads to 

formation of membrane protrusions 

containing T4P in N. gonorrhoeae 

EM analysis of WT, ΔtsaP and ΔtsaP/tsaP+ 

strains grown in the presence of 1 mM 

IPTG. Cells were applied to carbon-coated 

copper grids, washed twice with double 

distilled water and subsequently stained 

with uranyl acetate before investigation via 

EM. T4P (black arrows) and membrane 

blebs (black arrow heads). The membrane 

protrusions (white arrows) observed in the 

ΔtsaP mutant are filled with T4P (see inset). 

Scale bar in main images and inset equal 

200 nm and 50 nm, respectively. [The EM 

analysis was performed by Prof. Dr. Klingl, 

Philipps-Universität Marburg] 
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4.2.6 The peripheral structure of the secretin complex is lost in the ΔtsaP mutant 

To determine whether the deletion of tsaP affected the structure of the secretin complex in its 

native OM environment, OMs isolated from the ΔtsaP and ΔtsaP/tsaP+ strains were studied by 

transmission EM followed by single particle averaging [105]. A comparison of the projection maps of 

the secretin complexes obtained from membranes of the ΔtsaP (Figure 16C and Figure 16G) and 

ΔtsaP/tsaP+ (Figure 16D and Figure 16H) strains with projection maps obtained from WT membranes 

(Figure 16A and Figure 16E), showed that the peripheral ring and the spikes aƌe lost iŶ the ΔtsaP 

mutant, and that they are recovered in the ΔtsaP/tsaP+ strain. The structures observed in 

ŵeŵďƌaŶes of the ΔtsaP mutant strongly resemble the structure of the isolated PilQ complex 

(Figure 16B). The two-dimensional map of the ΔtsaP/tsaP+ particle was obtained at slightly higher 

resolution than the map of the WT particle. The structure is seen in a slightly tilted top-view 

position. A small protein domain is visible inside the inner rings, especially in the lower half. It is 

present in 14 copies. This becomes even clearer after imposing a high-pass filter on the image 

(Figure 24). This analysis demonstrates that the N. gonorrhoeae PilQ secretin complex has a 14-fold 

symmetry. 

 

Loss of the peripheral structure in the ΔtsaP mutant, combined with the observations that the 

membrane association/integration of TsaP depends on PilQ, suggest that PilQ and TsaP interact 

directly and that at least part of the peripheral structure around the PilQ secretin is formed by TsaP. 

We have previously reported that in N. meningitidis, which also encodes a TsaP homolog, the 

secretin structure contains the inner and peripheral ring but that the spikes are absent [105]. 

Similarly, the spikes, but not the peripheral ring, are lost in the N. gonorrhoeae ∆pilP and ∆pilF 

mutants, whereas the spikes are still made in the ∆pilW and ∆pilC mutants [105]. Immunoblotting of 

whole cell extracts and of isolated membranes from the ∆pilP, ∆pilF, ∆pilW and ∆pilC mutants 

demonstrated that they contained similar levels of TsaP as the WT and that TsaP associated with the 

OM as in WT (Figure 25). Because loss of the peripheral ring is only observed in the ∆tsaP mutant 

and the tight association of TsaP with the OM depends on PilQ and occurs in the absence of the 

spikes, we suggest that TsaP forms, or is part of, the peripheral ring. 

 

 

Figure 24 Projection maps of single particle electron microscopy 

analysis of the PilQ complex from the N. gonorrhoeae 

ΔtsaP/tsaP+
 strain 

(A) A two-dimensional map of the ΔtsaP/tsaP+ particle, seen in a 

slightly tilted top-view position. A small protein domain is visible 

inside the inner rings, especially in the lower half. It is present in 

14 copies, but some copies in the upper half are partly invisible 

because of partial overlap with the main body of the ring, which is 

the effect of tilt on the carbon support film of most of the 

particles. (B) Fine details become stronger after imposing a high-

pass filter on the image in such a way all waves with a frequency 

representing wavelengths lower than 1.5 nm have been 

suppressed by 50 %. The red dots mark places with a wider part of 

the inner rings to which the small protein domains are connected. 

The scale bar is 10 nm. [The EM analysis and single particle 

electron microscopy analysis analysis was performed by D.A. 

Semchonok, Rijksuniversiteit Groningen] 
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4.2.7 TsaP homologs are specifically found in bacteria encoding T4aPS 

As mentioned, TsaP homologs are widespread in Gram-negative bacteria. Based on our studies in 

N. gonorrhoeae, we hypothesized that TsaP homologs may also be important for T4P function in 

these bacteria. To test this hypothesis, we set-out to determine whether TsaP homologs are 

specifically present in bacteria containing T4aPS. In Neisseriales, tsaP is not located in the vicinity of 

genes associated with T4PS. Synteny analysis of homologs of tsaP also did not reveal the presence of 

genes encoding proteins of T4PS in close proximity. Genes of T4PS are often found in operons, but 

e.g. genes encoding pilotins are generally found separated from other T4PS genes. To test whether 

there is a correlation between the occurrence of T4PS in a genome and the presence of a TsaP 

homolog the reciprocal BlastP method [182] was performed with 6 marker proteins whose presence 

is indicative of T4aPS (PilQ, PilF, PilT, PilM, PilN, and PilO). When 4 of the 6 proteins were identified 

within a genome, this genome was considered to contain a T4aP system. Divergent T4aP systems in 

more phylogenetically distant organisms might not be identified due to the stringent thresholds 

needed to distinguish between T4aP and T2SS. Therefore, we focused on 450 genomes available for 

proteobacteria. The presence of genes encoding the T4aP diagnostic proteins and TsaP homologs in 

the different genomes is given in the supplementary Table 46. The distribution of the TsaP homologs 

and the representatives of T4P systems, as identified by reciprocal blast analysis, is shown in Figure 

26. Using reciprocal BlastP analysis, 4 of the 6 T4aPS diagnostic genes were found in 171 of the 450 

genomes. In 155 of these 171 genomes, genes encoding TsaP homologs were identified. Only 1 TsaP 

homolog was detected in the remaining 279 genomes. This demonstrated a strong link between the 

presence of TsaP and the presence of a T4PS. Three other LysM domain containing proteins (MltD, a 

membrane-bound lytic murein transglycosylase D, AmiC, the N-acetylmuramoyl-L-alanine amidase 

and FimV, the peptidoglycan-binding protein) were also included in our analysis (see supplementary 

Table 46). No relation was found between the presence of MltD or AmiC and the presence of T4PS. 

FimV homologs could be identified in 114 of the 171 genomes encoding a T4PS and in 23 of the 279 

genomes that did not encode a T4PS, demonstrating that although not as strongly as observed for 

TsaP, also the presence of a FimV homolog correlated with presence of T4PS. Many bacteria that 

contain a T4PS contain both a TsaP and a FimV homolog. We were unable to find representative 

proteins and thresholds suitable to reliably identify T4bPS and T2SS using the reciprocal BlastP 

method, and therefore we manually screened genomes that did not encode a T4aPS, but encoded 

 

Figure 25 TsaP levels are reduced in membranes of the ΔpilQ strain, 

but not in the membranes of the ΔpilC, ΔpilF, ΔpilP and ΔpilW strains 

(A) Immunoblot analysis of equal amounts of total cell extracts of the 

N. gonorrhoeae WT, ΔpilQ, ΔtsaP,ΔpilC, ΔpilF, ΔpilP and ΔpilW strains 

usiŶg α-TsaP, antibodies. (B) Immunoblot analysis of membranes 

isolated from the N. gonorrhoeae WT, ΔpilQ, ΔtsaP, ΔpilC, ΔpilF, ΔpilP 
and ΔpilW stƌaiŶs usiŶg the α-TsaP antibody. 
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either a T4bPS or a T2SS for the presence of a TsaP homolog. No homologs of TsaP were identified 

on the R64 plasmid or in the genomes of enteropathogenic E. coli and of Aggregatibacter 

actinomycetemcomitans, which encode T4bPS or in the genomes of Klebsiella spp. and Yersinia 

enterocolitica which contain a T2SS, but not a T4aPS (Table 45). Therefore, we conclude that a strong 

correlation exists between the presence of TsaP homologs and T4aPS, but that this correlation does 

not seem to exist for TsaP and T4bPS or T2SS. 

 

Figure 26 Identification of genes encoding TsaP homologs and T4aPS related genes in different genomes 

Reciprocal Blast analysis was performed for six proteins representative for T4aPS (PilQ, PilT, PilF, PilM, PilN and PilO ), as well as for 

TsaP to identify the different proteins in 450 proteobacterial genomes. Results were plotted on the 16S RNA phylogenetic tree. 

Colored boxes indicate the presence of a TsaP ortholog or the presence of at least 4 of the 6 proteins representative for T4aPS. [The 

shown phyolgenetic tree was generated, using the ITOL website, according to the results of the reciprocal BlastP analysis which was 

performed by Dr. S. Huntley] 

Table 45 Nomenclature of TsaP homologs and ATPase and secretin proteins of T4P assembly systems and T2SS of 

different organisms 

Organism Type IV pili  

TsaP homolog 

T2SS 

Assembly 

ATPase 

Secretin Retraction 

ATPase 

Secretion 

ATPase 

Secretin 

Neisseria gonorrhoeae
1
 PilF PilQ PilT NGFG_01788   

Neisseria meningitdis
2
 PilF PilQ PilT, PilU NMC0101   

Ralstonia solanacearum
3
 PilF PilQ PilT, PilU RSc0069   

Methylobacillus flagellatus
4
 PilF PilQ PilT, PilU Mfla_0188   

Azoarcus spp.
5
 PilF PilQ PilT, PilU azo0098   

Methylococcus capsulatus
6
 PilB PilQ PilT, PilU MCA2842   

Dichelobacter nodosus
7
 PilB PilQ PilT, PilU DNO_0155   

enteropathogenic Escherichia coli
8
 HofB HofQ - -   

Plasmid R64
9
 PilQ PilN - -   

Aggregatibacter 

actinomycetemcomitans
10

 

TadA RcpA - -   

Shewanella putefaciens
11

 PilB PilQ PilT, PilU Sputcn32_0025 GspE GspD 

Pseudomonas aeruginosa
12

 PilB PilQ PilT, PilU PA0020 XcpR XcpQ 

Legionella pneumophila
13

 PilB PilQ PilT lpg2596 LspE LspD 

Vibrio cholerae
14

 PilB PilQ PilT, PilU VC0047 GspE GspD 

Xanthomonas campestris
15

 PilB PilQ PilT, PilU XCC3750 XpsE XpsD 

Myxococcus xanthus
16

 PilB PilQ PilT MXAN_3001 GspE GspD 

Klebsiella oxytoca
17

 - - - - PulE PulD 

Yersinia enterocolitica
18

 - - - - GspE GspD 

1
Neisseria gonorrhoeae MS11, 2

Neisseria meningitdis Fam18, 3
Ralstonia solanacearum GMI1000, 4

Methylobacillus flagellatus KT, 
5
Azoarcus sp. BH72, 6

Methylococcus capsulatus str. Bath, 7
Dichelobacter nodosus VCS1703A, 

8
Escherichia coli O104:H4 str. C227-11, 

10
Aggregatibacter actinomycetemcomitans D11S-1, 11Shewanella putrefaciens CN-32, 12

Pseudomonas aeruginosa PAO1, 13
Legionella 

pneumophila subsp. pneumophila str. Philadelphia I, 14
Vibrio cholerae O1 biovar El Tor str. N16961, 15

Xanthomonas campestris pv. 

Campestris str. ATCC 33913, 16
Myxococcus xanthus DK1612, 17

Klebsiella oxytoca KCTC 1686, 18
Yersinia enterocolitica subsp. 

enterocolitica 8081, 
19

Burkholderia pseudomallei K96243 
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4.3 Analysis of TsaP domains and their function 

4.3.1 Domain prediction 

Studies of the secretin ring of N. gonorrhoeae embedded in OM sheets showed that the PilQ-

secretin ring is surrounded by a peripheral structure. Previous experiments revealed that a 

conserved protein, named TsaP, forms this peripheral ring structure or at least is part it. To 

characterize TsaP in more detail, BlastP analysis and sequence alignment were performed and 

showed that TsaP homologs are conserved over the whole length of TsaP (Figure 18). These data 

together with recent RaptorX structure prediction analysis, gave more information about putative 

domains of TsaP. The in silico analysis identified tǁo β-sheet rich domains next to the N-terminal 

located LysM domain, which most likely resulted of sequence duplication. These two domains show 

18 % and 15 % sequence identity to the C-terminal domain of FlgT of Vibrio spp. FlgT is a periplasmic 

protein, forming the H-ring of the flagella system of Vibrio spp. Recently, Martinez et al. and 

Terashima et al. could show that the H-ring stabilizes the basal body structure that anchors the 

flagellum [201, 202]. The crystal structure of FlgT revealed that the C-terminal domain is made of 

seǀeŶ β-stƌaŶds, ǁheƌe siǆ of the seǀeŶ stƌaŶds aƌe aƌƌaŶged iŶ a Đoƌe β-barrel structure [202, 203]. 

RaptorX structure prediction, using TsaP and TsaPMX sequences, showed that the β-sheet rich 

domains form beta-barrel structures similar to the C-terminal domain of FlgT (Figure 27), facilitating 

outer membrane insertion. In addition, a linker region that connects the two FlgT-like domains was 

identified only in Neisseria spp. Therefore, we conclude that TsaP can be divided into four domains 

(Figure 28); (i) the LysM domain, (ii) FlgT domain 1, (iii) FlgT domain 2 and (iv) a linker region that is 

only found in Neisseria spp. 

 

Figure 27 Model prediction for TsaP and TsaPMX 

Side view on the structural ribbon model of TsaP from Neisseria gonorrhoeae (A) and Myxococcus xanthus (B). The structures have 

been modeled using the RaptorX prediction software. Identified domains are indicated. 
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Figure 28 Domain architecture of TsaP 

TsaP homologs described in table 46 (supplementary data) were aligned. Colored residues indicate <50 % conservation. The putative 

signal sequence cleavage site is indicated with a black arrow. The LysM domain is indicated with a green box. Residues (G40, D41, 

T42, N70 and G77), that are highly conserved in LysM domains are indicated in bold below the alignment. The FlgT domains are 

indicated with blue boxes and the neisserial linker domain is indicated by purple box.  
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4.3.2 Lack of the gonococcal linker domain of TsaP affects surface assembly of T4P 

To clarify the role of each TsaP domain in N. gonorrhoeae, we aimed to prepare domain deletion 

mutants, analyze the colony morphology of those mutants and monitor the secretin structures in 

their native lipid environment. To examine the contribution of the linker region to surface assembled 

T4P and to the secretin structure, an in-fame chromosomal deletion of amino acids S213-V245 of 

tsaP was constructed in the WT strain (tsaPΔSϮϭϯ-V245). Moreover, a tsaPΔSϮϭϯ-V245 

complementation strain was generated by the ectopic insertion of a copy of tsaP under control of 

the lac promoter (tsaPΔSϮϭϯ-V245/tsaP
+) [18]. Unless otherwise indicated, the tsaPΔSϮϭϯ-

V245/tsaP
+ strain was grown in the presence of 1 mM IPTG. In addition, it was aimed to generate a 

markerless tsaPΔlysM (tsaPΔA33-R83) mutant in the WT strain. Following mutagenesis, 

approximately 50.000 colonies were isolated and screened to identify those with a tsaPΔA33-R83 

mutation. Unfortunately, a tsapΔAϯϯ-R83 mutation could not be confirmed. In a next step, a 

tsaPΔA33-R83 strain was generated by complementing a ΔtsaP strain by an ectopic insertion of a 

copy of tsaPΔA33-R83 under control of the lac promoter (ΔtsaP/tsapΔA33-R83
+
). A total of 10 

colonies showed chromosomal integration of the tsaPΔA33-R83
+complementation construct. 

Western blot analysis on whole cell extracts of these 10 mutant revealed that 9 mutants had a 

restored full-length TsaP. This indicates that the complementation construct integrated in 90 % of 

the cases into the original loci, restoring the ΔtsaP mutation, which was generated by insertion 

duplication mutagenesis. Only one ΔtsaP/tsapΔA33-R83
+ strain showed correct insertion in the 

neisserial complementation site (data not shown).  

On agar plates, gonococci assembling T4P on their cell surface form small, compact colonies with a 

sharp edge. Non-piliated Đells foƌŵ flat ĐoloŶies ǁith a laƌgeƌ diaŵeteƌ aŶd a ͞fuzzǇ͟ edge [177]. To 

further understand the function of TsaP, the WT, ΔpilQ, tsaPΔSϮϭϯ-VϮϰϱ, tsaPΔSϮϭϯ-V245/tsaP
+ and 

ΔtsaP/tsaPΔA33-R83
+
 strains were analyzed on agar plates. WT and the ΔpilQ mutant showed colony 

morphologies corresponding to piliated and non-piliated cells, respectively. The tsaPΔSϮϭϯ-V245 

mutant and the tsaPΔSϮϭϯ-V245/tsaP
+ and ΔtsaP/tsaPΔA33-R83

+
 strains grown in the absence of 

IPTG showed colony morphologies matching that of non-piliated cells. Importantly, in the presence 

of IPTG, the tsaPΔSϮϭϯ-V245/tsaP
+ and ΔtsaP/tsaPΔAϯϯ-R83

+ strain showed a colony morphology 

matching that of piliated cells (Figure 29). Since we hypothesize that the LysM domain is involved in 

anchoring the secretin complex, the piliated colony morphology of the ΔtsaP/tsaPΔA33-R83
+ strain 

was unexpected. To exclude re-recombination of the ectopic tsaPΔAϯϯ-R83
+
 into the original tsaP 

loci immunoblot analysis of the induced strain need to be carried out. Thus, deletion of the linker 

region (S213-V245) resulted in loss of the piliated colony morphology.  

 

Figure 29 The linker domain of TsaP is important for T4P-dependent colony morphology 

The indicated N. gonorrhoeae strains were incubated at 37 °C for 24 h on GCB plates. The scale bar equals 1 mm. 
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Because the gonococcal TsaP mutant is deficient in surface exposed T4P, we asked whether surface 

exposed T4P were detectable in the tsaPΔSϮϭϯ-V245 and ΔtsaP/tsaPΔA33-R83
+ mutants. In a next 

step, WT, tsaPΔSϮϭϯ-VϮϰϱ, tsaPΔSϮϭϯ-V245/tsaP
+ and ΔtsaP/tsaPΔA33-R83

+ cells were negatively 

stained for subsequent EM analysis. In WT, the tsaPΔSϮϭϯ-V245/tsaP
+ and the ΔtsaP/tsaPΔlysM+, 

single and bundled T4P were observed. In addition, the ΔtsaP/tsaPΔAϯϯ-R83
+ showed single and 

bundled T4P and additional T4P filled membrane protrusions as observed in the ΔtsaP background 

strain. In contrast, no surface assembled T4P were observed in the tsaPΔSϮϭϯ-V245 mutant, 

suggesting that this deletion might affect the peripheral secretin structure.  

4.3.3 The peripheral structure of the secretin complex is lost in the tsaPΔSϮϭϯ-V245 

mutant 

In order to determine whether the deletion of the gonococcal TsaP-linker and the LysM domain 

affected the structure of the secretin complex in its native OM environment, OMs isolated from the 

tsaPΔSϮϭϯ-VϮϰϱ, tsaPΔSϮϭϯ-V245/tsaP
+ and ΔtsaP/tsaPΔAϯϯ-R83

+
 strains were studied by 

transmission EM followed by single particle averaging [105]. A comparison of the projection maps of 

the secretin complexes obtained from membranes of the tsaPΔSϮϭϯ-V245 (Figure 31B), tsaPΔSϮϭϯ-

V245/tsaP
+ (Figure 31C) and ΔtsaP/tsaPΔAϯϯ-R83

+
 (Figure 31D) strains with projection maps obtained 

from WT membranes (Figure 31A), showed that the peripheral ring and the spikes are lost in the 

tsaPΔSϮϭϯ-V245 mutant, and that they are recovered in the tsaPΔSϮϭϯ-V245/tsaP
+ strain. The 

structures observed in membranes of the tsaPΔSϮϭϯ-V245 mutant strongly resemble the structure 

of the isolated PilQ complex (Figure 16B). The structure observed in membranes of the 

ΔtsaP/tsaPΔAϯϯ-R83
+
 strain resembles the structure of the WT complex. Loss of the peripheral 

structure in the tsaPΔSϮϭϯ-V245 mutant, combined with the observations that this region is only 

found in Neisserial spp., suggest that this TsaP domain might interact with the SBR-region of PilQ 

which is also found only in Neisserial spp. 

 

Figure 30 Deletion of the gonococcal TsaP-linker domain leads to the loss of surface exposed T4P in N. gonorrhoeae 

EM analysis of WT, tsaPΔSϮϭϯ-VϮϰϱ, tsaPΔSϮϭϯ-V245/tsaP
+ and ΔtsaP/tsaPΔAϯϯ-R83

+ strains grown in the presence of 1 mM IPTG. 

Cells were applied to carbon-coated copper grids, washed twice with double distilled water and subsequently stained with uranyl 

acetate before investigation via EM. Scale bar equals 500 nm. [The EM analysis was performed together with A-L Henche, MPI-

Marburg] 
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4.4 Interaction of TsaP with other components of the type IV pili system 

4.4.1 Identification of protein-protein interaction between TsaP and PilQ using a 

bacterial adenylate cyclase two-hybrid system 

The process of assembly of pili is complicated: it requires the cooperative action of a group of 

proteins which span both the inner and outer membranes in bacteria. In September 2012, Berry 

et al. determined the structure of PilQ, which is part of the machinery forming a channel between 

both membranes [150]. Using bioinformatic studies, they suggested that the N-terminal regions of 

T4P-dependent secretins generally contain one or two putative domains (named B1/B2), predicted 

to ďe ƌiĐh iŶ β-sheets aŶd ĐhaƌaĐteƌistiĐallǇ diffeƌeŶt fƌoŵ the α/β doŵaiŶs oďseƌǀed iŶ TϮ““ aŶd 

T3SS secretins. Mapping sequence conservation on to the structure of the B2 domain implicated that 

there is a highly conserved patch, forming a binding site to another unidentified T4P biogenesis 

protein [150]. Since we could show that localization, membrane integration and/or stability of TsaP 

is PilQ dependent, we hypothesize that TsaP would bind to the highly conserved patch of the B2 

domain. To identify protein-protein interaction of TsaP and PilQ, fragments of TsaP and PilQ were 

tested in vivo, using the bacterial adenylate cyclase two-hybrid (BACTH) system. This system is based 

on the interaction-mediated reconstitution of the adenylate cylase activity in E. coli. One limitation 

of this system is that cAMP needs to be produced in the cytoplasm, precluding the analysis of 

proteins that have no cytoplasmic domain. For this reason, signal sequence truncated versions of 

TsaP and PilQ were generated. For TsaP and PilQ, 12 different plasmids were generated by cloning 

the full-length, the N-terminus and the C-terminus of the corresponding gene into appropriate 

BACTH vectors to create fusions with the N- or C-termini of T18 and T25. All the possible pairs of T18 

and T25 plasmids, 144 in total, were co-transformed in the E. coli strain BTH101. Functional 

complementation between T18 and T25 was determined by plating transformants on selective LB/X-

Gal/IPTG plates and observing the coloration of the colonies after 48 h of growth at 30 °C. In the 

absence of functional complementation between T18 and T25 the colonies are white, while they are 

blue when functional complementation occurs. The PilQ fragment fusions were apparently and for 

an unknown reason toxic, and could not be scored as it yielded no microscopic colonies even after 

prolonged incubation. Out of the 144 T18/T25 plasmid combinations, four yielded colored colonies, 

 

Figure 31 Projection maps of single particle electron microscopy analysis of the PilQ complex from N. gonorrhoeae 

Projection maps of class averages of single particle EM images obtained from membranes isolated from (A) the WT, (B) the 

tsaPΔSϮϭϯ-V245 strain, (C) the tsaPΔSϮϭϯ-V245/tsaP
+ and (D) the ΔtsaP/tsaPΔAϯϯ-R83

+ grown in the presence of 1 mM IPTG. I, II and 

III indicate the inner ring, the peripheral ring and the spikes respectively. Scale bar, 10 nm. [The EM analysis and single particle 

electron microscopy analysis was performed by D.A. Semchonok, Rijksuniversiteit Groningen] 
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indicating protein-protein interactions (Figure 32). In summary, using the BACTH system it could be 

shown that TsaP might self-interact forming oligomers. 

4.4.2 PilQ(B1/B2) can be purified as a stable dimer 

Since the fusions of full-length PilQ and the truncated PilQ-fragments to the T18 and T25 fragment 

were for an unknown reason toxic within the bacterial adenylate cyclase two-hybrid system it was 

aimed to test for protein-protein interaction using heterologous overexpressed and purified 

proteins. As PilQ contains a type I signal sequence, the first 21 amino acids were removed to prevent 

secretion of the protein upon overexpression in E. coli. In 2012 Berry et al. could show that 

overexpression of the B1-domain of N. meningitidis result in low protein yields and/or poor stability 

 

Figure 32 Binary interactions between TsaP and PilQ of N. gonorrhoeae using a bacterial adenylate cyclase two-hybrid (BACTH) 

system 

Full-length and protein domains of TsaP and PilQ, indicated by the amino acids, were fused to both the N- and C-termini of the 

B. pertussis adelyate cyclase fragments T18 and T25 respectively. All possible T18 + T25 plasmid combination, 144 in total were co-

transformed in E. coli strain BTH101 and plated on LB-agar plates supplemented with X-gal and IPTG. Functional complementation 

between the T18 and T25 fragments, which occurs only upon interaction of the hybrid proteins, triggers expression of the lacZ gene 

and yields blue colonies. +, pairs that yielded colored colonies; NT, this combination could not be tested because no colonies were 

obtained even after prolonged incubation. 
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of the protein [150]. To improve the protein yields and stability of the B1/B2 domain, HA-PilQ(B1/B2) 

was fused to the MARTX toxin cysteine protease domain (CPD) of V. cholerae, which is was shown to 

improve protein stability and solubility [204]. After overexpression, HA-PilQ(B1/B2)-CPD-His10 could 

be purified in pure and high amounts using a two step protocol as described in chapter 3.4.12. HA-

PilQ(B1/B2)-CPD-His10 elutes from the Ni2+-affinity column at an imidazole concentration of 200 mM. 

The elution profile is shown in Figure 33A. Each elution fraction was analyzed by 12 % SDS/PAGE. 

HA-PilQ(B1/B2)-CPD-His10 migrates on SDS/PAGE gels at a position corresponding to the calculated 

size of 55 kDa (Figure 33B). Fractions C1-C11 were pool and loaded on a size exclusion volume. The 

elution profile showed one distinct peak at an elution volume of 70 ml (see Figure 34A). Correlating 

the elution volume of the observed protein peak (600 mAU) with commercially available molecular 

weight standards showed that this peak correspond to a molecular mass of 109 kDa, which is in 

 

Figure 33 Ni
2+

-affinity purification of HA-PilQ(B1B2)-CPD-His10 

(A) Elution profile of Ni2+-affinity chromatography. The protein was detected at 280 nm and is indicated by the solid line. The 

imidazole concentration is indicated by the dashed line. The intensity is given in mAU. The collected fractions are labeled as indicated. 

(B) 12 % SDS/PAGE with elution fractions from the Ni2+-affinity chromatography. The labeling of the lanes corresponds to the labeling 

of the elution fractions shown in (A). Molecular masses are indicated on the left site. PilQ(B1/B2) migrates at a position corresponding 

to a molecular mass of 55 kDa.  
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agreement with the calculate mass of a dimeric HA-PilQ(B1/B2)-CPD-His10. The different elution 

fractions were analyzed by SDS/PAGE and TsaP was detected in fractions B10-B8 corresponding to a 

dimeric structure of HA-PilQ(B1/B2)-CPD-His10 (Figure 34B). 

ϰ.ϰ.ϯ TsaPΔLysM forŵs a SDS stable multimer 

In order to test for protein-protein interaction between PilQ and TsaP, it was decided to 

heterologously express and purify a truncated version of TsaP. As TsaP contains a type I signal 

sequence and a flexible LysM domain, which might interfere in the interaction assay, the first 83 

amino acids were removed. Similarly to the overexpressed and purified full length TsaP (see 

paragraph 4.2.3). TsaPΔAϯϯ-R83 was cloned under the T7 promoter. After overexpression in E. coli 

BL21 (DE3) star, His10- TsaPΔAϯϯ-R83 could be purified to homogenicity in high amounts using a two 

step protocol as described in chapter 3.4.11. The first step in His10-TsaPΔA33-R83 purification was an 

immobilized metal ion affinity chromatography (IMAC). The elution profile, shown in Figure 35A, 

 

Figure 34 Size exclusion chromatography of HA-PilQ(B1/B2)-CPD-His10 

(A) PilQ(B1/B2) eluted as a dimer from the Superdex 200 HiLoad 16/60  gel filtration column. The protein was detected at 280 nm and 

is indicated by the solid line. (B) HA-PilQ(B1/B2)-CPD-His10 was essentially pure as assayed by Coomassie staining of a 12 % SDS/PAGE 

of the purified protein. The labeling of the lanes corresponds to the labeling of the elution fractions shown in (C). The position of 

various markers for both the gel filtration and the SDS/PAGE are indicated. 
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indicates that the protein elutes from the Ni2+-affinity column at an imidazole concentration of 

350 mM. Each elution fraction was analyzed by 12 % SDS/PAGE. His10-TsaPΔAϯϯ-R83 migrates on 

SDS/PAGE gels at a position corresponding to the calculated size of 37 kDa (Figure 35B). Surprisingly, 

a SDS stable complex, which just migrated into the running gel could be observed in the fractions 

containing the His10-TsaPΔAϯϯ-R83 protein. This migration behavior has been seen before only for 

large and stable complexes, like secretin complexes. In a next step the fractions C10-D2 were pooled 

and analyzed by size exclusion chromatography. The elution profile, shown in Figure 36A, showed 

peaks at elution volumes of 42 ml, 52 ml and 80 ml. Correlating the elution volume of the observed 

protein peaks with commercially available molecular weight standards showed that the peak eluting 

at 80 ml correspond to a molecular mass of 44 kDa, which is in agreement with the calculate mass of 

 

Figure 35 Ni
2+

-affinity purification of His10- TsaPΔAϯϯ-R83 

(A) Elution profile of Ni2+-affinity chromatography. The protein was detected at 280 nm and is indicated by the solid line. The 

imidazole concentration is indicated by the dashed line. The intensity is given in mAU. The collected fractions are labeled as indicated. 

(B) 12 % SDS/PAGE with elution fractions from the Ni2+-affinity chromatography. The labeling of the lanes corresponds to the labeling 

of the elution fractions shown in (A). Molecular masses are indicated on the left site. His10-TsaPΔAϯϯ-R83 migrates at a position 

corresponding to a molecular mass of 37 kDa.  
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a monomer. Since the resolution of the size exclusion chromatography column is limited, molecular 

masses of proteins eluting at 42 ml and 52 ml cannot be determined. The different elution fractions 

were analyzed by SDS/PAGE and TsaPΔAϯϯ-R83 was detected in each of the fractions (Figure 36D). In 

addition, the peaks observed at 42 ml and 52 ml contained next to His10-TsaPΔAϯϯ-R83 also the SDS-

stable complex. Because of the limited resolution of the size exclusion chromatography column, it 

was not possible to distinguish between a high molecular complex and aggregated protein.  

In order to verify the molecular masses of the peaks detected at 42 ml and 52 ml and to determine 

the size of the SDS stable complex, the elution fractions B5, A6, A4 and A2 were analyzed by Blue 

native PAGE (BN/PAGE). BN/PAGE is a method that was developed for separation of protein 

complexes in the range of 10 kDa and 10 MDa under non-denaturing conditions [205]. The results of 

the BN/PAGE are shown in Figure 37A. To ensure appropriate molecular mass estimation of the 

proteins in the different fractions, a protein standard composed of eight proteins, with known 

masses, was used. Plotting the molecular masses and the relative mobility of the standard proteins 

as a function of each other allows calculation of the molecular masses of the analyzed protein. 

 

Figure 36 Size exclusion chromatography of His10- TsaPΔAϯϯ-R83 

(A) His10-TsaPΔAϯϯ-R83 eluted as a monomer from the Superdex 200 HiLoad 16/60 gel filtration column. The protein was detected at 

280 nm and is indicated by the solid line. (B) His10-TsaPΔAϯϯ-R83 was essentially pure as assayed by Coomassie staining of a 12 % 

SDS/PAGE of the purified protein. The labeling of the lanes corresponds to the labeling of the elution fractions shown in (C). The 

position of various markers for both the gel filtration and the SDS/PAGE are indicated. 



4. Results  

 

 

 

70 

Fitting the relative mobility of the analyzed proteins to the mobility of the standard proteins 

revealed that the different size exclusion chromatography fractions contain protein complexes with 

molecular masses of 50 kDa, 70 kDa, 153 kDa, 245 kDa, 712 kDa and >1236 kDa. To exclude that the 

protein complex that just migrated into the BN/PAGE gel (Figure 37A) is formed by aggregated 

protein, a second BN/PAGE gel analysis with longer migration time was performed. Since the high 

molecular weight complex of >1236 kDa is able to migrate further into the gel, protein aggregation 

was excluded (Figure 37B). MS analysis (performed by J. Kahnt) identified that the formed protein 

complexes are composed of His10- TsaPΔAϯϯ-R83. Therefore, it is concluded that His10-TsaPΔLǇsM 
forms different oligomers which result in the formation an SDS stable complex. 

4.4.4 PilQMX and TsaPMX can be purified as stable dimers 

To investigate direct protein-protein interactions for TsaP and PilQ of N. gonorrhoeae and other 

organisms, it was aimed to additionally test for interaction between PilQMX and TsaPMX of 

M. xanthus. PilQMX(aa20-656) and TsaPMX were cloned by Dr. Carmen Friedrich into the pET24b+ and 

pMal-c2x overexpression vector, respectively and the resulting overexpression constructs were 

introduced into E. coli Rosetta 2 (DE3). After overexpression, His6- PilQMX(aa20-656) and MalE-TsaPMX 

could be purified using a two step protocol as described in chapter 3.5.15 and 3.5.16. Size exclusion 

chromatography of His6- PilQMX(aa20-656) showed an elution profile with one distinct peak at an 

 

Figure 37 Blue Native PAGE analysis of His10-TsaPΔAϯϯ-R83 

(A) BN/PAGE with 5-13 % acrylamide gradient gel. (B) BN/PAGE with 5-13 % acrylamide gradient gel with a longer migration time than 

in (A). Molecular masses and His10-TsaPΔAϯϯ-R83 quaternary structures are indicated on the left and right side, respectively. The 

labeling of each lane corresponds to the different size exclusion chromatography fractions. (C) Comparison of the calculated His10-

TsaPΔAϯϯ-R83 quaternary structures and the molecular masses seen in BN/PAGE.  
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elution volume of 67 ml (Figure 38A). Correlation of the elution volume with commercially available 

size standards revealed that an elution volume of 67 ml correspond to a molecular mass of 140 kDa. 

Taking into account that the calculated mass of His6- PilQMX(aa20-656) is 70 kDa, indicates that His6- 

PilQMX(aa20-656) forms dimers. Analysis of the different elution fractions by SDS/PAGE showed that 

PilQMX was detected in each of the fractions (Figure 38B). 

Analysis of purified MalE-TsaPMX by size exclusion chromatography showed an elution profile with an 

increasing mAU signal at A280nm at an elution volume of 42 ml. Overlap of the increasing signal with 

a dominant peak of 1400 mAU at an elution volume 65 ml leads to the formation of a shoulder 

(Figure 39A). Due to resolution limitation of the size exclusion chromatography column is it not 

possible to determine the molecular mass of the shoulder, which starts at 42 ml and overlap with 

the dominant peak at an elution volume of approximately 58 ml kDa. In contrast, the shoulder 

eluting at 65 ml corresponds to a molecular mass of 169 kDa. Taking into account that the calculated 

mass of MalE-TsaPMX is 84,5 kDa, our data indicate that MalE-TsaPMX forms dimers. Analysis of the 

different elution fractions by SDS/PAGE showed that MalE-TsaPMX was detected in each of the 

fractions (Figure 39B). 

 

Figure 38 Size exclusion chromatography of His6- PilQMX(aa20-656) 

(A) His6- PilQMX(aa20-656) eluted as a dimer from the SD200 gel filtration column. The protein was detected at 280 nm and is 

indicated by the solid line. (B) His6- PilQMX(aa20-656) was essentially pure as assayed by Coomassie staining of a 12 % SDS/PAGE of the 

purified protein. The labeling of the lanes corresponds to the labeling of the elution fractions shown in (C). The position of various 

markers for both the gel filtration and the SDS/PAGE are indicated. 
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4.4.5 Identification of protein-protein interaction between TsaP and PilQ  

In order to determine whether TsaP directly interacts with PilQ via the B2 domain, TsaPΔAϯϯ-R83 

and PilQ(B1/B2) of N. gonorrhoeae as well as TsaPMX and PilQMX(aa20-656) of M. xanthus were 

purified. PilQ(B1/B2), TsaPMX and PilQMX(aa20-656) could be purified as stable dimers, where as 

TsaPΔAϯϯ-R83 eluted at a volume corresponding to a monomer and a high molecular weight 

complex. As an alternative method to the BACTH system, size exclusion chromatography (SEC) of 

mixed proteins was used. TsaPΔAϯϯ-R83 and PilQ(B1/B2) as well as TsaPMX and PilQMX(aa20-656) 

were mixed and analyzed by SEC. Comparing the elution profile of the TsaPΔAϯϯ-R83/PilQ mixture 

with the elution profiles of the single proteins, a peak at 7.5 ml appeared (see Figure 40). This peak 

elutes with an apparent molecular mass of >400 kDa. SEC analysis of the TsaPMX-PilQMX complex 

showed that free TsaP and free PilQMX(aa20-656) elute as dimers with apparent molecular masses of 

169 kDa and 140 kDa, respectively, which correspond well with the theoretical masses of 84,5 kDa 

and 70 kDa. Apparent TsaP-PilQ complexes elute at a molecular mass of >400 kDa, respectively 

(Figure 41). 

 

Figure 39 Size exclusion chromatography of MalE-TsaPMX 

(A) MalE-TsaPMX eluted as a dimer from the SD200 gel filtration column. The protein was detected at 280 nm and is indicated by the 

solid line. (B) MalE-TsaPMX was essentially pure as assayed by Coomassie staining of a 12 % SDS/PAGE of the purified protein. The 

labeling of the lanes corresponds to the labeling of the elution fractions shown in (C). The position of various markers for both the gel 

filtration and the SDS/PAGE are indicated. 
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In order to obtain structural data relevant to understand the formation of the high molecular weight 

complex observed during TsaPΔAϯϯ-R83 purification and in TsaP/PilQ interaction assay, EM was 

performed. Negatively staining of the A6 fraction of the size exclusion chromatography during 

TsaPΔAϯϯ-R83 purification showed ring like particles (Figure 42A). Measurements showed that these 

 

Figure 41 Analysis of complex formation of TsaP and PilQ 

by SEC 

(A) Analytical SEC analyses of TsaP and PilQ(aa20-656) from 

M. xanthus. (B) SDS-PAGE of samples derived from fractions 

indicated as A1, A2 and A3 on the chromatograms 

 

 

Figure 40 Analysis of complex formation of TsaP and PilQ by SEC 

(A) AŶalǇtiĐal “EC aŶalǇses of TsaPΔAϯϯ-R83 and PilQ(B1/B2) from N. gonorrhoeae. (B) SDS-PAGE of 

samples derived from fractions indicated as A1, A2 and A3 on the chromatograms 
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rings have a diameter of 19.6±2.2 nm, similar to the peripheral ring of the secretin complex, seen in 

its native lipid environment. These data indicate that TsaP forms higher oligomers, which assemble 

into a ring that could form the peripheral ring structure around the PilQ secretin ring.  

Analysis of the high molecular weight fraction of the interaction assay, using TsaP and PilQ of 

N. gonorrhoeae, showed neither formation of ring-like particles nor other complexes. In contrast, 

the high molecular weight fraction of the interaction assay, using the proteins of Myxococcus, 

showed a double ring structure (Figure 42B and Figure 42C). Measurements of this structure 

revealed that these rings have a diameter of 14.7±1.4 nm and 18.3±1.4 nm. Comparison of the 

double ring structure, seen in the high molecular weight fraction of the interaction assay, and the 

secretin complex structure of N. gonorrhoeae in it native lipid environment, revealed that the 

formed complexes have similar sizes. Because the PilQMX(aa20-656) construct does not only consists 

of the B1/B1 domain but also includes part of the N0 domain, lead to the suggestion that the B2 

domain of the HA-PilQ(B1/B2)-CPD-His10 might not be accessible for interacting with TsaP. However, 

these data indicate that the double ring structure formed by TsaPMX and PilQMX(aa20-656), might 

mediated via the interaction of TsaP and the B2 domain of PilQ. 

 
Figure 42 EM aŶalysis of TsaPΔAϯϯ-R83 and the high molecular weight complex of the TsaP/PilQ interaction assay 

;AͿ ElutioŶ fƌaĐtioŶs of the TsaPΔAϯϯ-R83 purification were applied to carbon coated copper grids and negatively stained with 2 % 

uƌaŶǇl aĐetate. TsaPΔAϯϯ-R83 particles are indicated by red boxes. The scale bar equals 100 nm. (B) Stain density across the diameter 

of a TsaPΔAϯϯ-R83 particle. (C/D) High molecular weight elution fraction of the TsaP/PilQ interaction assay using TsaPMX and 

PilQMX(aa20-656) of M. xanthus. [The EM analysis was performed together with A-L. Henche, MPI-Marburg] 
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5. Discussion 

5.1 Analysis of the Gonococcal Genetic Island 

Operons are the transcriptional unit in prokaryotes, allowing coordinated regulation of groups of 

genes that predominantly encode functionally linked proteins [206, 207]. To gain more insights of 

how genes of the type IV secretion system of N. gonorrhoeae are transcribed, transcriptional 

mapping was performed for genes essential for DNA secretion in N. gonorrhoeae.  

Using this approach, we revealed that they are encoded within different operons. The first operon 

encoded by the relaxase TraI, the putative coupling protein TraD and the two hypothetical proteins 

Yaf and Yaa is transcribed divergently from the rest of the T4SS genes. Analysis of the expression 

levels of traI and traD revealed an increased transcription level of traD and traI in piliated 

N. gonorrhoeae strains, leading to the hypothesis that secretion might be regulated by the DNA 

processing genes encoded in this operon. The second (ltgX-traF) and third operon (traH-ych) encode 

in total 22 proteins, including channel subunits, the energizing ATPase TraC, components of the 

pilus, which together are involved in the formation of the mating pair formation complex. The end 

region (exp1-parA) of the GGI encodes 36 open reading frames. Several of these genes encode 

proteins with homology to DNA processing and modifying proteins, however most genes encode for 

proteins with unknown function. However, the last operon (parA-yfa) within the GGI encodes the 

DNA partitioning proteins ParA and ParB. Downstream of this operon locates a repeated sequence, 

which may function as the centromer-like parS site, to which the partitioning protein ParB could 

bind. ParB-ParS binding and interaction of the nucleoprotein complex is important during DNA 

secretion, suggesting that these nucleoproteins may be involved in the recruitment to the secretion 

system as it was shown for A. tumefaciens [208]. The RT-PCR analysis additionally demonstrated that 

the parA, parB, yfeB and yfb genes are not encoded in the same operon, although they are often 

found genetically linked to ssbB [183]. In a next step, it was aimed to determine if the operon, 

containing the ssbB, topB, yeh, yegB and yegA genes is expressed, even though it is not essentially 

involved in T4SS dependent secretion. We next determined if the expression levels of the ssbB and 

topB genes might be influenced by the piliation state, like it was shown for traI and traD. The results, 

revealed no differences at the expression levels of the ssbB and topB genes between piliated and 

non-piliated cells. However, the expression level these two genes were significantly higher than the 

expression levels of traI and traD, indicating that the transcription of ssbB and topB is not regulated 

by the gonococcal piliation state. The exact role of this region remains to be elucidated.  

To investigate if single stranded DNA that is secreted via the T4SS encoded within the GGI facilitates 

biofilm formation, biofilm formation of two different N. gonorrhoeae strains was examined by 

Dr. Maria Zweig. Strains initially used within this study were the N. gonorrhoeae MS11 WT strain and 

the M“ϭϭΔtraB deletion strain. Biofilms were developed by growing cells of these two strains for 3 

days in a continuous flow chamber system. Biofilm formation was imaged by Dr. Maria Zweig after 

24, 48 and 72 hours. Quantification of biofilms showed that the deletion of traB affected biofilm 

formation. Complementation of the traB deletion by the WT traB gene demonstrated that the 

effects of the traB deletion on biofilm formation were indeed caused by the traB mutation, and were 

not the result of antigenic variation. A recent paper by Gloag et al. showed that eDNA is important in 
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coordinating bacterial movements during biofilm expansion of P. aeruginosa [209]. Since eDNA is 

important in coordinating bacterial movements, and the DNA secretion level is higher in piliated 

than in non-piliated Neisseria strains, suggests that T4P of N. gonorrhoeae bind the secreted ssDNA, 

which may serve as a signal for the formation of a complex network among cells, which is facilitated 

by the single stranded DNA, secreted via the T4SS. 

5.2 The peptidoglycan-binding protein TsaP functions in surface assembly of type IV 

pili 

Previous EM studies of PilQ in isolated membranes of N. gonorrhoeae showed that the native 

complex containing the PilQ secretin consists of an inner ring and an additional peripheral structure 

consisting of a peripheral ring with 14-fold symmetry and seven extending spikes [105]. Based on the 

structural similarity with purified PilQ of N. meningitidis, it was proposed that the inner ring is 

formed by PilQ and that the peripheral structure is formed by one or more unidentified proteins. In 

this study, we have identified TsaP, a 45.5 kDa protein with a signal sequence and an N-terminal 

LysM domain, as an essential component for the formation of the peripheral structure. TsaP was not 

found associated with solubilized and purified His8-PilQ of N. gonorrhoeae; however, TsaP was, like 

PilQ, detected in isolated membranes and was difficult to solubilize and extract from these 

membranes by 7.5 M urea. Membrane integration or association of TsaP depended on the presence 

of PilQ, and the level of TsaP in isolated membranes was strongly reduced in a strain lacking PilQ. 

Comparison of the projection maps of native secretin complexes observed in OM sheets isolated 

from the WT and the ΔtsaP mutant showed that the peripheral structure was lost in the ΔtsaP 

mutant. Deletion of tsaP also resulted in loss of the colony morphology that corresponds to piliated 

cells. EM showed that T4P are still assembled in the ΔtsaP mutant, but are not displayed on the 

surface of cells. Rather, the assembled T4P are found in membrane protrusions. Importantly, the 

peripheral ring and the spikes around PilQ and the display of T4P on the cell surface were recovered 

in the ΔtsaP/tsaP+ complementation strain. The presence of TsaP homologs in different genomes is 

strongly linked to the occurrence of T4aP systems in these genomes. No TsaP homologs were 

identified in species that contain only a T2SS or a T4bPS. The strong link between the presence of 

TsaP and T4aPSs suggested that the TsaP homologs are also important for T4aP biogenesis in other 

species. Overall, the data demonstrate that the presence of TsaP is strongly linked to the presence of 

T4PSs and that TsaP is important for the surface assembly of T4aP in N. gonorrhoeae.  

An important question remains whether the observed link between TsaP and PilQ is the result of a 

direct or indirect interaction. Several lines of evidences suggest that TsaP interacts directly with PilQ: 

(i) the peripheral ring around the inner PilQ secretin ring in OM sheets is lost in the N. gonorrhoeae 

ΔtsaP mutant (but not in the ΔpilC, ΔpilW, ΔpilP, ΔpilE, and ΔpilF mutants) and regained in the 

ΔtsaP/tsaP+ complementation strain; and (ii) TsaP associates with the OM of N. gonorrhoeae in a 

PilQ-dependent manner (but independent of PilC, PilW, PilP, and PilF). In addition to these 

indications Dr. Carmen Friedrich could show that, similar to N. gonorrhoeae, accumulation of the 

TsaP homolog in M. xanthus strongly depends on PilQMX and the pilotin Tgl, which is important for 

PilQ multimerization. These data indicate that TsaPMX is specifically stabilized by PilQMX [175]. 

Furthermore, Dr. Carmen Friedrich could show the absence of TsaPMX affects T4P-dependent 

motility; moreover localization of TsaP in M. xanthus specifically depends on PilQ and the pilotin Tgl, 
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but not the other proteins involved in T4P assembly and function (PilAMX, PilBMX, PilTMX, PilCMX, 

PilNMX, PilOMX or PilPMX), indicating that TsaP specifically interacts with PilQ but not with any of the 

other tested T4P proteins [175]. Therefore, TsaP most likely directly interacts with PilQ. 

Another important question is whether TsaP forms the peripheral ring or the spikes. We previously 

observed that in N. meningitidis, which also encodes a TsaP homolog, the spikes are absent [105], 

and the spikes were also not observed in images obtained from membranes of the N. gonorrhoeae 

ΔpilP and ΔpilF strains. The membranes of these strains, however, contain similar levels of TsaP as 

the WT. Because loss of the peripheral ring was only observed in the ΔtsaP mutant, we suggest that 

TsaP forms, or is part of, the peripheral ring. Derrick and coworkers recently solved the structures of 

the B2 and N0N1 domains of PilQ of N. meningitidis and modeled these structures on their 3D 

structure of full-length PilQ obtained by cryo-EM [150]. They also showed that the periplasmic 

domain of the IM lipoprotein PilP interacts with the N0 domain and identified a highly conserved 

patch on the B2 domain that could form a binding site for a T4PS protein [150]. The B2 domain is 

found in secretins of T4aPSs but not in secretins of T4bPSs or T2SSs. Because TsaP co-occurs with 

T4aP but not with secretins of T4bPSs or T2SSs, TsaP might bind to this conserved patch on the B2 

domain. We propose that TsaP interacts directly with PilQ and is part of the peripheral structure of 

the secretin complex in N. gonorrhoeae and, based on the widespread occurrence of TsaP in 

genomes of organisms containing T4aPSs, that this peripheral structure is also formed in other 

organisms.  

TsaP homologs contain a conserved N-terminal LysM domain. LysM domains bind PG and, in 

combination with a hydrolyzing domain (e.g., muramidase, glucosaminidase, or endopeptidase 

domain), can function in PG hydrolysis [158]; however, the LysM domain is not thought to be 

enzymatically active in PG hydrolysis. Bioinformatics analyses did not identify a PG hydrolyzing 

domain in TsaP. Consistently, we observed that purified TsaP binds to PG but we have not observed 

any PG hydolysis. This suggests that TsaP is a PG-binding protein and functions in anchoring the 

secretin complex to the PG via the LysM domain. Phylogenomic analyses showed that the presence 

of the tsaP gene in a genome is strongly linked to the presence of genes for T4aP systems. A main 

functional difference between T4aPSs and T4bPSs and T2SSs is that T4aP retracts and generates high 

forces [210, 211]. To our knowledge, nothing is known about extension and possible retraction rates 

and forces for T4bPSs and T2SSs, but these rates and forces may well be much lower than observed 

for T4aPSs. Thus, TsaP might only be required for T4aPSs where higher rates of extension and 

retraction result in greater forces. Recently, FimV, a LysM domain containing protein of 

P. aeruginosa, was also shown to be involved in T4P assembly [155, 156]. FimV is a 919 aa IM protein 

with an N-terminal LysM domain, a transmembrane domain, and an unusually acidic C-terminal 

domain with tetratricopeptide repeats. Lack of FimV results in impaired T4P assembly, reduced 

levels of PilQ multimer formation, and lower levels of the PilMNOP proteins [156]. Similar to TsaP, 

the presence of FimV homologs in bacterial genomes is related to the presence of a T4PS. The 

N. gonorrhoeae ΔtsaP mutant displays membrane protrusions that are filled with multiple T4P. 

Similar membrane protrusions have been described for a ΔpilQ/ΔpilT strain of N. gonorrhoeae [200]. 

These protrusions were only observed in the ΔpilQ/ΔpilT double mutant, but not in the ΔpilQ mutant 

[200]. Koomey and coworkers [200] proposed that in the ΔpilQ mutant, depolymerization exceeds 

polymerization of pilin subunits, whereas in the ΔpilQ/ΔpilT double mutant, polymerization exceeds 
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depolymerization. Because the membrane protrusions are observed in the ΔtsaP mutant even in the 

presence of PilT, pilin polymerization seems, contrary to the ΔpilQ mutant, not to be affected in the 

ΔtsaP mutant. Based on these comparisons, we speculate that the T4P-filled membrane protrusions 

formed in the absence of TsaP are either caused by (i) T4P that are stuck in the secretin ring and 

then push against the OM, resulting in the membrane protrusions, or (ii) misalignment of the 

IM/periplasmic and OM parts of the T4PS, resulting in the assembled T4P pushing against the OM. In 

both scenarios, the primary defect is likely caused by the lack of secretin attachment to the PG. We 

have previously shown that the PilQ secretin of N. gonorrhoeae interacts with other proteins in the 

OM to form a large multidomain complex. Here, we identified TsaP as a likely member of this 

complex and show that the occurrence of TsaP in bacterial genomes is strongly linked to the 

pƌeseŶĐe of TϰaP“s. TsaP plaǇs aŶ iŵpoƌtaŶt ƌole iŶ pilus ďiogeŶesis iŶ the β-proteobacterium 

N. gonorrhoeae. TsaP most likely functions in anchoring the secretin to the PG to enable the secretin 

to withstand the forces during pilus extension and retraction. TsaP might also function in aligning the 

IM and OM components of the T4PS. T4P play an important role in the pathogenesis of many 

bacteria. Because TsaP is found in all bacteria that express T4aP and plays an important role in T4aP 

biogenesis, it might be an important future drug target. 

5.3 Analysis of TsaP domains and their function 

Previous experiments revealed that a conserved protein, named TsaP, forms this peripheral ring 

structure or at least is part it. In silico analysis revealed that TsaP contains an N-terminal LysM 

domain and tǁo β-sheet rich domains that are separated by a linker region, only found in Neisseria 

spp. The tǁo β-sheet rich domains show 18 % and 15 % sequence identity to the C-terminal domain 

of FlgT of Vibrio spp., respectively. FlgT was shown to be a periplasmic protein, whose C-terminus is 

ŵade of seǀeŶ β-stƌaŶds foƌŵiŶg a Đoƌe β-barrel structure [203]. Studies by Martinez et al. and 

Terashima et al. could show that FlgT forms the H-ring of the flagella system of Vibrio spp., which is 

involved in basal body formation [201, 202]. Since the flagella motor of Vibrio alginolyticus can 

achieve remarkably fast rotation and flgT deletion mutants release assembled flagella into the 

supernatant, FlgT might be required to hold the flagella base on the cell surface and function as a 

scaffold to form the T ring [201, 202]. Since it is suggested that FlgT might reinforce robustness of 

the complex and thereby protect it against physical breaking of the basal body, it is suggested that 

TsaP might perform a similar function as FlgT in the flagella system. Additional in silico analysis 

showed that FlgT of Vibrio spp. and the FlgT-like domains of TsaP structurally resemble the N-

terminal domain of the F1 α/β-subunit and FliI. Since these proteins form a ring structure though the 

tight interaction between the tandem wise arranged, β-barrel domains by forming inter-subunit β-

sheets we hypothesize that TsaP molecules assemble around the secretin structure, forming the 

peripheral structure, which may be stabilized by a similar interaction through the two FlgT-like 

domains. Sequence alignment revealed that the two FlgT-like domains are separated by a linker 

region which is only present in Neisseria spp. Taking into consideration that PilQ of Neisseria spp. 

contains a small basic repeat region that is not found in other secretins [212], this region might 

interact with this linker region or is involved in spanning the linker region. In order to investigate the 

role of each domain, an in-frame chromosomal deletion of the linker region (tsaPΔSϮϭϯ-V245) was 

constructed. In addition, it was aimed to generate a markerless tsaPΔlysM (tsaPΔAϯϯ-E83) mutant. 

However, no tsaPΔAϯϯ-E83 mutation could be confirmed. Therefore, we hypothesized that the 
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deletion of the LysM domain would result in a full assembled T4P system whose secretin is not 

anchored to the peptidoglycan layer, if the LysM domain is involved in anchoring the secretin. If the 

system with special focus on the secretin complex is not anchored to the peptidoglycan layer, the 

high forces that are generated during assembly and retraction of the pilus fibers with approximately 

1.500 pilin subunits per second [84] might result in partial tearing of the complex from the 

membrane, which would lead to death of the cell. To test this hypothesis, it was aimed to 

complement the ΔtsaP strain by an ectopic insertion of a copy of tsaPΔAϯϯ-R83 under the control of 

the lac promoter (ΔtsaP/tsapΔAϯϯ-R83
+
), as this construct also includes a resistance marker which 

would simplify the screening. Even though the screening showed several colonies with chromosomal 

integration of the tsapΔAϯϯ-R83
+ construct, immunoblot analysis revealed that in 90 % of the 

colonies, the tsapΔAϯϯ-R83
+ construct integrated into the original loci that result in full length tsaP. 

However, one of the screened colonies revealed that in one case the tsapΔAϯϯ-R83 construct 

integrated into the chromosomal complementation site between aspC and lctP. Mutational analysis 

of the LysM domain and the linker region revealed that only deletion of the linker region resulted in 

the loss of the colony morphology that corresponds to piliated cells. EM showed that no T4P are 

assembled in the tsaPΔSϮϭϯ-V245 mutant. In contrast, the ΔtsaP/tsapΔAϯϯ-R83
+ mutant can form 

surface assembled T4P and additionally T4P filled membrane protrusions as observed for the ΔtsaP 
background strain. Comparison of the projection maps of native secretin complexes observed in OM 

sheets isolated from the WT, the tsaPΔAϯϯ-E83 strain, and ΔtsaP/tsapΔAϯϯ-R83
+ strain showed that 

the peripheral structure was lost in the tsaPΔSϮϭϯ-V245 mutant. Importantly, the peripheral ring 

and the spikes around PilQ and the display of T4P on the cell surface were recovered in the 

tsaPΔAϯϯ-E83/tsaP
+ complementation strain. Since Neisseria spp. show high recombination rates of 

chromosomal regions, it cannot be excluded that the results seen for the ΔtsaP/tsapΔAϯϯ-R83
+ 

strain are caused by re-recombination of the tsapΔAϯϯ-R83
+ construct into the original loci of the 

ΔtsaP strain. To exclude this possibility, immunoblot analysis of piliated ΔtsaP/tsapΔAϯϯ-R83
+ are 

required.  

We proposed that TsaP anchors the secretin to the PG and enables the secretin to withstand the 

forces generated during pilus extension and retraction. Here, we identified that TsaP contains apart 

from the LysM domain, two FlgT-like domains and a linker region, which is specific for Neisseria spp. 

We could show that the liŶkeƌ doŵaiŶ plaǇs aŶ iŵpoƌtaŶt ƌole iŶ pilus ďiogeŶesis iŶ the β-

proteobacterium N. gonorrhoeae. If the FlgT-like domains would lead to a tight interaction between 

the taŶdeŵlǇ aƌƌaŶged β-barrel domains by forming inter-suďuŶit β-sheets, TsaP could form a ring 

like structure, surrounding the PilQ secretin complex. If the FlgT-domains are important for subunit-

subunit interaction by forming inter-suďuŶit β-sheets, the deletion of the linker region could lead to 

hindered inter-subunit formation and by this disable the ring formation by TsaP. 

5.4 Interaction of TsaP with other components of the type IV pili system 

The process of type IV pili assembly is complicated: it requires the cooperative action of a group of 

proteins that span both the inner and outer membranes in bacteria. Previously we could identify a 

protein, which we named TsaP, whose localization, membrane integration and/or stability is PilQ 

dependent. In addition, we hypothesize that TsaP forms a ring structure, by inter-subunit formation 

of the β-sheets that are present in the FlgT-like domains, around PilQ. In September 2012, Berry 
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et al. identified a highly conserved patch of PilQ, named B2, which might form a binding site to 

another unidentified T4P biogenesis protein [150]. To investigate if TsaP would bind to the highly 

conserved patch of the B2 domain of PilQ, fragments of TsaP and PilQ were tested for interaction in 

vivo using the bacterial adenylate cyclase two-hybrid system and were heterologous overexpressed 

and purified. Since this system is limited by the cytoplasmic cAMP production, the used TsaP and 

PilQ fragments lack the signal sequence. Since the PilQ fragment fusions were apparently and for an 

unknown reason toxic, this assay only showed that TsaP might self-interact.  

In order to test for protein-protein interaction between PilQ and TsaP, we heterologously express 

and purify PilQ as well as a truncated version of TsaP, since the LysM domain might affect interaction 

between the two proteins. As we suggest that TsaP interacts with the recently identified B2 domain 

of PilQ, we adopted a cloning and expression strategy where HA-PilQ(B1/B2)-CPD-His10 and His10-

TsaPΔAϯϯ-R83 were overproduced. Overexpression of HA-PilQ(B1/B2)-CPD-His10 results in the 

formation of large amounts of soluble protein in E. coli BL21 star. Analyzing the purified protein by 

size exclusion chromatography revealed that the B1/B2 domain of PilQ of Neisseria gonorrhoeae 

forms stable homodimers, which is in agreement with the dimerization of the PilQ N0N1 domains of 

N. meningitidis [150] and the secretin XcpQ of the T2SS of P. aeruginosa [213]. Overexpression of 

His10-TsaPΔAϯϯ-R83 results in the formation of large amounts of soluble protein in E. coli BL21 star. 

SDS/PAGE analysis of the fraction obtained after Ni2+-affinity chromatography and size exclusion 

chromatography revealed a SDS-stable protein complex that just entered the running gel, apart from 

a protein band corresponding to the calculated size of 37 kDa. This migration behavior on SDS/PAGE 

has been observed previously only for large stable complexes. As this SDS-stable complex elutes in 

the void volume of the Superdex 200 HiLoad 16/60 column, no difference can be seen between a 

high molecular weight complex and aggregated protein. To differentiate between these two 

possibilities and to analyze the oligomerization state of purified His10-TsaPΔAϯϯ-R83, different 

fractions after the size exclusion chromatography were analyzed by BN/PAGE. Correlation of the 

relative mobility of the analyzed protein fractions with a protein standard composed of eight 

proteins revealed that His10-TsaPΔAϯϯ-R83 forms different quaternary structures. Importantly, MS 

analysis demonstrated that all oligomeric structures are solely formed by His10-TsaPΔAϯϯ-R83, 

indicating that the purified protein forms the SDS-stable complex, excluding the possibility of 

contamination. Remarkably, the quaternary structures identified by BN/PAGE also revealed a 

nonadecamer of His10-TsaPΔAϯϯ-R83. This is in contrast to the 14-fold symmetry of the peripheral 

structure detected in its native lipid environment [105]. However, mutational analysis of 

components of the T4P system followed by analysis of the secretin structure in its native lipid 

environment showed that the number of protein copies in the peripheral ring increase from 14 to 19 

in pilP and pilE mutants [105], leading to the suggestion that the symmetry of this protein depends 

on components of the membrane platform formed by PilM/PilN/PilO/PilP. Recently, Karuppiah et al. 

could show that after formation of a complex consisting of PilM/PilN/PilO, this complex is capable of 

binding the major pilin subunit, resulting in a T-shaped complex [148]. Overall, the deletion of parts 

of this complex leads to changes in symmetry [144]; while the stability of these proteins depends on 

each other [105]. Therefore, the connection between the secretin in the outer membrane and 

components in the inner membrane is disturbed as soon as one component is missing. If the 

interaction of PilQ to the membrane platform complex is lost, TsaP can arrange and interact with 

PilQ in a different way. If more components are required to receive a 14-fold symmetry, the 
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nodadecamer seen in BN/PAGE analysis can be explained by lack of these components. EM analysis 

of the fractions containing the high molecular weight complex revealed a ring-like structure with a 

diameter of 19.6±2.2 nm, similar to the peripheral ring of the secretin complex, observed in its 

native lipid environment. These data indicate that TsaP assembles into higher oligomers, forming a 

ring that may become the peripheral ring structure around the PilQ secretin ring.  

IŶ oƌdeƌ to deteƌŵiŶe if TsaP diƌeĐtlǇ iŶteƌaĐts ǁith PilQ ǀia the BϮ doŵaiŶ, TsaPΔAϯϯ-R83 and 

PilQ(B1/B2) of N. gonorrhoeae as well as TsaPMX and PilQMX(aa20-656) of M. xanthus were purified. 

Overexpression of His6-PilQMX(aa20-656) and MalE-TsaPMX leads to the formation of large amounts of 

soluble protein. Analysis of the purified proteins by size exclusion chromatography revealed that 

both proteins of M. xanthus form stable homodimers. As an alternative method to the BACTH 

system, size exclusion chromatography (SEC) of mixed proteins was used. For this, eitheƌ TsaPΔAϯϯ-

R83 and PilQ(B1/B2) or TsaPMX and PilQMX(aa20-656) were mixed and analyzed by SEC. The elution 

pƌofile of the TsaPΔAϯϯ-R83/PilQ or TsaPMX/PilQMX(aa20-656) mixture revealed the formation of a 

high molecular weight complex eluting at approximately 7.5 ml, compared to the profile of the 

individual proteins. It is worth noting, that variation of TsaP:PilQ(aa20-656) ratios leads to the 

suggestion that the height and with this the amount of the high molecular weight complex detected 

by SEC might be PilQ dependent. EM analysis of these high molecular weight fractions of the 

interaction assay, revealed that only TsaPMX/PilQMX(aa20-656) form a double ring structure, with a 

diameter of 14.7±1.4 nm and 18.3±1.4 nm. This double ring structure exhibits similar sizes compared 

with the secretin complex structure of N. gonorrhoeae in it native lipid environment. The fact that 

the PilQMX(aa20-656) construct does not only consists of the B1/B2 domain but also contains part of 

the N0 domain, leads to the suggestion that the B2 domain of the HA-PilQ(B1/B2)-CPD-His10 might 

not be accessible for TsaP to interact with. However, these data indicate that the secretin complexes 

of N. gonorrhoeae and M. xanthus are formed by PilQ and TsaP, whose interaction might be 

dependent of the B2 domain of PilQ. 

5.5. Conclusion 

In conclusion, the major part of this work describes the discovery of TsaP, a protein that functions in 

surface assembly of T4P. T4P are well studied, ubiquitous and versatile bacterial cell surface 

structures found in many bacteria, and involved in different processes like adhesion to host cells, 

biofilm formation, motility and DNA uptake. T4P play an important role in the pathogenesis of many 

bacteria. TsaP was identified as a protein that interacts with the secretin, most likely via the B2-

domain of PilQ and show that the presence of homologs of TsaP in bacterial genomes is strictly 

linked to the presence of genes involved in T4P assembly, and functionally characterized TsaP in the 

β-proteobacterium Neisseria gonorrhoeae. Our results show that TsaP is a peptidoglycan binding 

outer membrane bound protein that is involved in the surface assembly of T4P. Protein purification 

revealed that TsaP forms SDS-stable ring structures with the size similar to the peripheral ring of the 

secretin complex. Interaction assays using heterologous overexpressed proteins of N. gonorrhoeae 

and M. xanthus suggested a possible interaction of these proteins. Whether this interaction is 

mediated via the B2 domain of PilQ remains to be elucidated. Because we propose that TsaP is a 

novel ubiquitous protein that functions to anchor the secretin complex to the peptidoglycan and in 
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that way aligns the secretin to inner membrane components, TsaP might be an important future 

drug target. 
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V Supplementary Data 

Table 46 is olny part of the printed version and not of the electronic version of the thesis. 

Tabelle 46 ist nur Bestandteil der gedruckten Version, jedoch kein Bestandteil der Online-

Veröffentlichung.  

Table 46 Reciprocal blast analysis of the 450 genomes of proteobacteria 

The table describes the outcomes of the reciprocal blast analysis of 450 genomes. The table depicts for each organism its 

name, superkingdom, phylum and class, and whether or not a T4PS was identified. For all analyzed proteins, the names of 

the first (outSubj) and second (retSubj) blast and the respective E-value are depicted. It is also depicted whether, based on 

the criteria, the protein was identified. The first sign identifies whether a protein was identified that fit the criteria in the 

initial blast (outSubj) of the protein (no = -, yes = +). The second sign indicates whether the reblast of the identified protein 

against the original genome (retSubj) identified the initial protein (no = -, yes = +). [The table was generated according to 

the reciprocal blast analysis which was performed by Dr. S. Huntley] 
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